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1. Basics

What is the probabilistic method? It is a proof method using probability to tackle

combinatorial problems. Let’s consider some examples to see what it is.

Definition 1.1. Given a pair of integers k, s, we define R(k, s) be the smallest integer n

as follows: for any red/blue-edge-coloring of Kn contains a red monochromatic Kk or blue

monochromatic Ks.

For example, it is not difficult to see that R(3, 3) = 6. One can also prove the inequality

R(k, s) ≤ R(k, s− 1) +R(k − 1, s) which implies that R(k, k) = O(2
2k√
k
).

To prove a lower bound inequality R(k, k) ≥ n, one must present an edge-coloring of

Kn having no monochromatic copies of Kk. Many people tried to come up with ingenious

constructions of such colorings, but all those constructions fail to provide a lower bound

exponential in k until Erdős proved the following. Even by now, the best ‘explicit’ lower

bound is 2(log k)
ω(1)

by Barak, Rao, Shaltiel, Wigderson in 2012 which is far smaller than

exponential.

Theorem 1.2 (Erdős, 1947). R(k, k) > k2k/2

e
√
2
.

Proof. ConsiderKn and color each edge with red/blue independently with probability 1/2.

A set of k vertices forms a monochromatic Kk with probability 2 · 2−(k2). Since there are
(n
k

)

such events, the probability that at least one of them occurs is at most
(n
k

)

21−(
k
2). If

this is less than 1, then there is an 2-edge-coloring of Kn with no monochromatic clique of

size k and hence R(k, k) > n. Since
(n
k

)

< 1
2(
ne
k )

k, it suffices to have ne
k ≤ 2(k−1)/2, which

is equivalent to n ≤ k2k/2

e
√
2
. �

Since the above proof, many problems have been tackled using probabilistic method.

There are some philosophies here.

(1) Sometimes considering average behavior is much easier than considering optimal

behavior.

(2) Sometimes average behavior is good enough to prove what we want.

(3) Sometimes probabilistic computations provides more intuition than discrete com-

putations and is simpler as well.

In principle, many probabilistic arguments with finite sample space can be phrased as

weighted counting arguments, but the tools of probability do the job more clearly and

efficiently.

To make things more rigorous, we introduce the following concepts.

Definition 1.3. A discrete probability space is a finite or countable set S together with a

function Pr defined on the subsets of S (called events) such that

• If A ⊆ S, then 0 ≤ Pr(A) ≤ 1.

• Pr(S) = 1 and

• If A1, A2, . . . are pairwise disjoint subsets of S, then Pr(
⋃

Ai) =
∑∞

i=1Pr(Ai).

In the above example, we implicitly construct a probability space by just explaining

that we color each edge independently with probability 1/2. The actual probability space
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consists of 2(
n
2) distinct colorings of Kn with each having probability 2−(

n
2). We will

describe the probability space in the former way instead of explicitly listing all elements

of our probability spaces. Let’s see more applications of this probabilistic method.

Definition 1.4. A tournament on a set V of n vertices is an orientation T = (V,E) of the

edges of the complete graph on the set of vertices V . In other words, for every x 6= y ∈ V ,

either (x, y) or (y, x) is in E, but not both. If (x, y) ∈ E, we say that x is an in-neighbor

of y and y is an out-neighbor of x. We say that T has the property Sk if for every S ∈
(V
k

)

,

there is a vertex v ∈ V which has all vertices in S as its out-neighbors.

One natural question is that for given k > 0, does there always exists a tournament

with the property Sk? Indeed, if n is large enough compared to k, then we can always

find an n-vertex tournament with the property Sk as shown in the following theorem.

Theorem 1.5. If
(

n
k

)

(1− 2−k)n−k < 1, then there is a tournament on n vertices that has

the property Sk.

Proof. Consider a random tournament on the set V = [n] = {1, . . . , n}. This means that

we consider a discrete probability space consisting of 2(
n
2) tournaments on the vertex set

V where each of these 2(
n
2) events has the equal probability.

For every fixed subset K ∈
(

V
k

)

, let AK be the event that there is no vertex that has

all K as its out-neighbors. For every fixed vertex v ∈ V \K, the probability that v does

not have all of K as its out-neighbors is 1− 2−k, and all n− k events for distinct vertices

v are independent, hence we have Pr[AK ] = (1− 2−k)n−k. Thus

Pr







∨

K∈(Vk)

AK






≤

∑

K∈(Vk)

Pr[AK ] ≤
(

n

k

)

(1− 2−k)n−k < 1.

Therefore, with positive probability, no event AK occurs. This means that there is a

tournament on n vertices with the property Sk. �

Let f(k) denote the minimum number of vertices of a tournament that has the property

Sk. Using
(

n
k

)

< (enk )
k and (1−2−k)n−k < e−(n−k)/2k , we have f(k) ≤ (1+o(1))k22k ln(2).

It is known that f(k) = Ω(k · 2k) which is proved by Szekeres.

Let’s consider some problems regarding hypergraphs, which is also called set systems.

Definition 1.6. A hypergraph is a pair H = (V,E) where V is a finite set whose elements

are called vertices and E is a family of subsets of V called edges. It is k-uniform if each

edge contains k vertices. A k-uniform hypergraph is also called an k-graph.

An hypergraph H is called intersecting if A,B ∈ E(H) implies A ∩ B 6= ∅. What

would be the maximum number of edges in an n-vertex intersecting k-graph? In other

words, we consider 2K
(k)
k as a hypergraph with two disjoint edges, then how many edges

can an n-vertex k-graph with no copies of 2K
(k)
k have? (Here, K

(k)
n denotes the complete

k-uniform hypergraph with n vertices) This Turán-type question is completely answered

by the following Erdős-Ko-Rado theorem when n ≥ 2k. Note that a k-uniform hypergraph

H on [n] with E(H) = {e ∈
([n]
k

)

: e ∋ 1} shows that the bound
(n−1
k−1

)

is best possible.

Here if n < 2k, then it is obvious that any n-vertex k-graph is intersecting.
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Theorem 1.7 (Erdős-Ko-Rado). Let n ≥ 2k. Any n-vertex intersecting k-graph has at

most
(n−1
k−1

)

edges.

Proof. Let H be an intersecting k-graph on the vertex set [n]. Consider the following

Claim.

Claim 1. For s ∈ [n], let As = {s, s + 1, . . . , s + k − 1} where n + i = i for i > 0. Then

at most k of the sets {As : s ∈ [n]} are edges of H

Proof. Suppose At ∈ E(H) for some t ∈ [n]. All sets As that intersect with At can be

paired into pairs {At−i, At+k−i} of two disjoint sets. Hence at most one of such pair are

in E(H). This shows that at most k of the sets As are edges of H. �

Let σ be a permutation of [n] chosen uniformly at random and let i ∈ [n] is cho-

sen uniformly at random, where the choices of σ and i are independent. Let A =

{σ(i), . . . , σ(i+k−1)} be the random set obtained from σ and i, where n+ i = i for i > 0.

Conditioning on any choice σ0, the above lemma gives Pr[A ∈ E(H) : σ = σ0] ≤ k
n , hence

we have Pr[A ∈ E(H)] ≤ k
n .

But A is chosen uniformly from all k-sets so we have

k

n
≥ Pr[A ∈ E(H)] =

e(H)
(

n
k

) .

This yields e(H) ≤ k
n

(n
k

)

=
(n−1
k−1

)

. �

Definition 1.8. We say that H has property B or it is 2-colorable if there is a 2-coloring

of V such that no edge is monochromatic. Let m(k) be the minimum possible number of

edges of an k-uniform hypergraph that is not 2-colorable.

Proposition 1.9. Every k-graph with less than 2k−1 edges is 2-colorable. Therefore

m(k) ≥ 2k−1.

Proof. Let H = (V,E) be an k-graph with less than 2k−1 edges. Color V randomly by

two colors. For each edge e ∈ E, let Ae be the event such that e is monochromatic. Then

Pr[Ae] = 21−k. Therefore

Pr[
∨

e∈E
Ae] ≤

∑

e∈E
Pr[Ae] < 1.

This shows that there is a 2-coloring without monochromatic edges. �

Later we will improve this lower bound on m(k). For an upper bound, one can simply

consider a complete k-graph on 2k− 1 vertices. If we color the vertices of this hypergraph

with two colors, then the pigeonhole principle yields a monochromatic edges, so we obtain

m(k) ≤
(2k−1

k

)

≃ 4k√
πk

.

To get a better upper bound, we change what we randomly choose. Instead of choosing

coloring at random, we choose edges at random, and prove that the probability that no

coloring works for the resulting hypergraph is positive.

Theorem 1.10. There exists a k-uniform hypergraph with (1 + o(1))e ln 2
4 k22k edges that

is not 2-colorable.
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Proof. Consider k-graphs with m edges and vertex set [n], where n and m will be chosen

later to optimize the resulting bound. For a fixed coloring with r points in a color and s in

the other color, where r + s = n. The probability that a random k-set is monochromatic

is
(rk)+(

s
k)

(nk)
.

This probability is minimized when r = s, since
(

x
k

)

is convex function on x. For a

coloring σ : [n] → {0, 1}, the probability that a random k-subset of [n] is monochromatic

i thus at least 2
(n/2
k

)

/
(

n
k

)

=: p. If we select m edges of size k independently and uniformly

at random, the probability that none is monochromatic is at most (1 − p)m. In other

words, the probability that the specified coloring is a proper 2-coloring of the resulting

hypergraph is at most (1− p)m.

Since there are 2n possible colorings and each has probability at most (1−p)m of being a

proper 2-coloring, we have an upper bound of 2n(1−p)m on the probability that our set of

m random edges is 2-colorable. If 2n(1−p)m < 1, then some k-uniform hypergraph with n

vertices and m edges is not 2-colorable. We seek to minimize m such that 2n(1− p)m < 1.

Since (1− p) ≤ e−p, it suffice to have n ln 2−mp < 0. Choose m = ⌈n ln 2/p⌉.
Now we choose n to minimize n/p. p = 21−k

∏k−1
i=0

n−2i
n−i , then we have

n− 2i

n− i
= 1− i

n
−O(

i2

n2
) = e−i/n +O(

i2

n2
).

After summing the exponents, p is asymptotically 21−ke−k
2/(2n) when k/n → 0. So, we

now wish to minimize n2k−1ek
2/(2n); calculus tells us to set n = k2/2. With this choice,

we obtain m = (1 + o(1))e ln 2
4 k22k. �

The probabilistic method can be useful in tackling not only combinatorial problems

but also other problems. For example, we can consider the following number theoretic

problem.

Definition 1.11. A subset A of an abelian graph G is called sum-free if A+A = {a1+a2 :
a1, a2 ∈ A} does not intersect with A. In other words, there are no triples a1, a2, a3 ∈ A

with a1 + a2 = a3.

Theorem 1.12. Every set B = {b1, . . . , bn} of n nonzero integers contain a sum-free

subset A with |A| > 1
3n.

Proof. Let p = 3k+2 be a prime such that p is bigger than |bi| for any i ∈ [n]. We consider

the cyclic group Zp and let C = {k+1, . . . , 2k+1} ⊆ Zp. Note that C is a sum-free subset

of Zp.

We choose an integer x ∈ [p − 1] uniformly at random, and let di ∈ Zp such that

di ≡ xbi (mod p). As x ranges over all number 1, 2, . . . , p − 1, the number di also ranges

over all nonzero elements of Zp. Hence

Pr[di ∈ C] =
|C|
p− 1

=
k + 1

3k + 1
> 1/3.

Hence, C ∩ {d1, . . . , di} has expected size larger than n/3. Consequently, there is an

x ∈ [p − 1] and a subset A of B of size more than n/3 such that xa(mod p) ∈ C for

all a ∈ A. This A is also sum-free as a1 + a2 = a3 implies xa1 + xa2 ≡ xa3(mod p),

contradicting the fact that C is sum-free in Zp. This provides the desired A. �
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One can consider other abelian group rather than integer sets. Alon and Kleitman

(1990) proved that every set of n nonzero elements of an arbitrary abelian group contains

a sum-free subset with more than 2n/7 elements and the constant 2/7 is best possible.

The constant 1/3 in above theorem is also best possible as Eberhard, Green and Manners

(2013) proved that it cannot be replaced by 1/3 + ε for any ε > 0.
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2. Linearity of Expectation

Definition 2.1. A function X defined on a (discrete) probability space is called a random

variable.

The range of a random variable is usually R. When the range of the random variable X

is R, the expectation E[X] is
∑

eX(e)Pr(e) where e runs over all elements of the discrete

probability space. Let X1, . . . ,Xn be random variables, then X = c1X1 + · · · + cnXn is

also a random variable. Linearity of expectation states that

E[X] = c1E[X1] + · · ·+ cnE[Xn].

Also, if E[X] = c is given, there always exists a choice with X ≥ c and also there always

exists a choice with X ≤ c.

2.1. Max-cut problems. Consider the following problem: for a given graph G with m

edges, what is the maximum number of edges in a bipartite subgraph of G? In other

words, what is the maximum number of edges in the induced bipartite graph G[V1, V2]

where V1 ∪ V2 runs over all partition of V (G)? The following theorem shows that we can

always find a bipartite subgraph with at least m/2 edges.

Theorem 2.2. Let G be a graph with m edges. Then G contains a bipartite subgraph with

at least m/2 edges.

Proof. Let A ∪ B be a partition of V (G) obtained as follows: For each v ∈ V (G), we

add v to A or B independently uniformly at random. Call an edge xy ∈ E(G) crossing

if exactly one of x and y belongs to A. Let X be the number of crossing edges, then

X =
∑

e∈E(G)Xe where Xe is the indicator random variable for xy being crossing. In

other words, Xe = 1 if e is crossing and Xe = 0 otherwise. Then E[Xe] =
1
2 . Hence the

linearity of expectation yields that

E[X] =
∑

e∈E(G)

E[Xe] =
m

2
.

Thus there exists a choice of a partition A∪B of V (G) with at leastm/2 crossing edges. �

If we consider a complete graph, then we can see that the above theorem is almost best

possible, in a sense that we cannot replace m/2 with (12 + ε)m for any ε > 0. However,

can we improve by a sublinear term? We can improve this. Note that if m =
(2n
2

)

, then

the K2n shows that the following theorem is best possible.

Theorem 2.3 (Edwards, 1975). Let G be a graph with m edges. Then G contains a

bipartite subgraph with at least m
2 + −1+

√
8m+1
8 edges.

Proof. Let G be a graph with m edges.

Case 1. Let χ(G) = 2t for some t ∈ N. Let V1 ∪ · · · ∪ V2t be a partition of V (G)

into 2t independent sets. We choose I ∈
([2t]
t

)

uniformly at random. Let A =
⋃

i∈I Vi
and B = V (G) \ A. Let X be the number of crossing edges with respect to the partition
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A ∪ B. Then for each edges e between Vi and Vj , the probability that e is crossing is
2(2t−2

t−1 )
(2tt )

= 2t2

2t(2t−1) =
t

2t−1 . Hence, we have

E[X] =
tm

2t− 1
.

Note that an optimal coloring requires at least one edge between every two color classes,

hence we have m ≥
(2t
2

)

. This implies that t ≤ 1+
√
8m+1
4 . This shows that

E[X] =
tm

2t− 1
=
m

2
+

m

4t− 2
≥ m

2
+

1 +
√
8m+ 1

8
.

Case 2. Let χ(G) = 2t+ 1 for some t ∈ N. Let V1 ∪ · · · ∪ V2t+1 be a partition of V (G)

into 2t+1 independent sets. We choose I ∈
([2t+1]

t

)

uniformly at random. Let A =
⋃

i∈I Vi
and B = V (G) \ A. Let X be the number of crossing edges with respect to the partition

A ∪ B. Then for each edges e between Vi and Vj , the probability that e is crossing is
2(2t−1

t−1 )
(2t+1

t )
= t+1

2t+1 . Hence, we have

E[X] =
(t+ 1)m

2t+ 1
.

Note that an optimal coloring requires at least one edge between every two color classes,

hence we have m ≥
(

2t+1
2

)

. This implies that t ≤ −1+
√
8m+1
4 . This shows that

E[X] =
(t+ 1)m

2t+ 1
=
m

2
+

m

4t+ 2
≥ m

2
+

−1 +
√
8m+ 1

8
.

�

Although the above theorem is sharp, it is not easy to find a sharp example when

m is some not so nice number. So, Erdős asked whether there are infinite increasing

sequence m1 < m2 < . . . where any mi-edge graphs contains max-cut of size more than
m
2 + −1+

√
8m+1
8 + f(mi) where f(x) → ∞ as x → ∞. In 1996, Alon proved this with

f(x) = Ω(x1/4), and this is sharp as Alon proved that f(x) = ω(x1/4) is impossible.

There are some further researches whether one can find a bigger max-cut in graphs with

forbidden subgraphs. For example, Alon (1996) proved that if G is a triangle-free graph

with m edges, then it has a cut with size at least m
2 +Ω(m4/5) and there exists a triangle-

free graph with m edges such that every cut of this graph has size at most m
2 +O(m4/5).

Some results are known for H-free graphs for several graphs H.

2.2. Unbalancing lights. Let n × n array of lights be given. Suppose for each row and

each column, there is a switch so that if the switch is pulled all of the lights in that line

will be switched on to off or off to on. The question is for any initial configuration, how

many lights can we turn on? Can we turn on all of them? If all of them is not possible,

how much can we do? The following theorem roughly tells how much we can do.

We consider an n × n matrix with entries aij ∈ {−1,+1} where 1 indicates on and −1

indicates off. Let xi, yj ∈ {−1,+1} be the number indicating whether we activate the

switches on i-th row and j-th column,.
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Theorem 2.4. Let aij ∈ {−1,+1} for i, j ∈ [n]. Then there exists xi, yj ∈ {−1,+1} for

i, j ∈ [n] so that
n
∑

i=1

n
∑

j=1

aijxiyj ≥
(

√

2

π
+ o(1)

)

n3/2.

Proof. We first forget x1, . . . , xn. We select y1, . . . , yn independently uniformly at random

from {−1,+1}. Let

Ri =

n
∑

j=1

aijyj, R =

n
∑

i=1

|Ri|.

Whatever aij was, we know that aijyj is −1 or +1 with probability 1/2, and they

are independent over j. Hence whatever the i-th row initially was, the resulting row

(ai1y1, ai2y2, . . . , ainyn) is uniformly distributed over all 2n possible rows. So

E[|Ri|] =
n
∑

i=0

|n− 2i|
(

n

i

)

2−n = 21−n
∑

i≤⌊(n−1)/2⌋
(n

(

n− 1

i

)

− n

(

n− 1

i− 1

)

)

= n21−n
(

n− 1

⌊(n− 1)/2⌋

)

=

(

√

2

π
+ o(1)

)

√
n.

Here,
(n
i

)

= 0 for i < 0 or i > n. By the linearity of expectation of R, we have

E[R] =

(

√

2

π
+ o(1)

)

n3/2.

This shows that there exists y1, . . . , yn ∈ {−1,+1} with R at least this value. Now

we pick xi with the same sign as Ri, then we have
∑n

i=1

∑n
j=1 aijxiyj =

∑n
i=1 |Ri| ≥

(
√

2
π + o(1)

)

n3/2. �

However, how tight is this bound? One can show that the above number cannot be

bigger than n3/2. We know that there exists an n × n Hadamard matrix A when n is

a power of two. This is a matrix where the each column vectors u1, . . . , un ∈ {1,−1}n
forms an orthogonal basis. Note that if A is Hadamard matrix, then the result of arbitrary

row-switchings and column-switchings also yields a Hadamard matrix. On the other hand,

we have the following.

Lemma 2.5. Let A be a Hadamard matrix. Then
∣

∣

∣

∣

∣

∣

∑

i,j∈[n]
aij

∣

∣

∣

∣

∣

∣

≤ n3/2.

Proof. By Cauchy-Schwarz inequality, we have

(
∑

i,j∈[n]
aij)

2 ≤ n
∑

i∈[n]
(
∑

j∈[n]
aij)

2 ≤ n
∑

i∈[n]
(n+ 2

∑

j<ℓ

aijaiℓ)

≤ n3 + 2n
∑

j<ℓ

∑

i∈[n]
aijaiℓ ≤ n3.

Note that the term
∑

i∈[n] aijaiℓ is equal to the dot product of j-th column and ℓ-th

column, which is zero as j < ℓ. This completes the proof. �
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Thus, if the initial matrix is Hadamard, no matter how one switches on and off, one

cannot do better than n3/2.

2.3. List chromatic number. Graphs with many edges can have a low chromatic num-

ber, e.g a complete bipartite graph. However, this is not true for list chromatic number.

To prove lower bound on the list-chromatic number, we need to show that when the lists

have a given size there is a list assignment from which no proper coloring can be chosen.

Theorem 2.6 (Alon, 1993). For some constant c > 0, every graph G with average degree

d has list chromatic number at least c log d
log log d .

Proof. If suffice to show that d
4 >

(s4

s

)

log(2
(s4

s

)

) implies χℓ(G) > s.

Since G has average degree d, it has a subgraph G′ with minimum degree at least d/2.

The subgraph G′ in turn has a spanning bipartite subgraph H such that dH(v) ≥ dG′(v)

for all v ∈ V (G′), so δ(H) ≥ d/4.

We generate a random list assignment L for H with lists of size s. Let A and B be the

partite sets of H, with |A| ≥ |B|. Let S = [s4] and let t =
(s4

s

)

. Each vertex receives a

random s-subset of S as a list independently, with all t such sets equally likely.

Say that a vertex of A is full if all t possible lists appear on its neighbors. The probability

that a particular s-set T fails to appear on the neighbors of x is (1−1/t)dH (x). Since there

are t such sets and d/4 > t log(2t), we obtain

P (x is not full) ≤ t(1− 1/t)d/4 < te−d/(4t) < te− log(2t) = 1/2.

Hence for X = the number of full vertices, the expected number E[X] of full vertices is

at least |A|/2, and there is some outcome of the random list assignment such that at least

|A|/2 vertices of A are full. Fix such an assignment.

We now claim that extending this by a random list assignment for A produces with

positive probability a list assignment from which no proper coloring can be chosen. Let

f be a particular choice of colors from the lists on B. For a full vertex x in A, since all

s-sets appear on its neighbors, at most s − 1 colors fail to be chosen on its neighbors.

Hence f can be properly extended to x only if L(x) contains one of these missing colors.

There are at most s − 1 ways to name a usable color, and then L(x) must be filled from

the remaining colors, so

P (x can be colored) ≤
(s− 1)

(s4−1
s−1

)

t
− s− 1

s3
<

1

s2
.

In order to extend f to an L-coloring, all full vertices must be colored, so the probability

of extension is bounded by (1/s2)|A|/2, which equals s−|A|. Since there are s|B| choices for

the coloring f on B from the list assignment on B, the probability that some choice of

colors on B extends to an L-coloring is bounded by s|B|s−|A|. Since |A| ≥ |B|, this bound
is less than 1. Hence there is some outcome of the random assignment to A such that no

proper coloring can be chosen from the lists. �

Alon later improved this to (12 − o(1)) ln d. It is conjectured that for some constant

c, every d-regular bipartite graph has choice number at most c log d, but only O( d
log d) is

known as an upper bound.
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3. Alteration

Often, the expected behavior of random constructions is close to but not quite what we

want to prove. For some of such cases, one can make further modifications to improve the

obtained random constructions. Consider the following example.

3.1. Ramsey number and hypergraph 2-coloring.

Theorem 3.1. R(k, k) > (1− o(1))k2
k/2

e .

Proof. Let n be a number which we will determine later. Let X be the random variable

counting the number of monochromatic k-cliques in a random 2-coloring of the edges of

Kn. Then X =
∑

C XC where C runs over all k-vertex subset of V (Kn) and XC is the

indicator variable such that XC = 1 if C induces a monochromatic clique and XC = 0

otherwise. Then

E[X] =
∑

C

E[XC ] =
∑

C

Pr[XC = 1] =

(

n

k

)

21−(
k
2).

Then, there exists a coloring with at most this many monochromatic k-cliques. We delete

a vertex of each monochromatic k-clique in such a coloring, we retain a graph with at least

n−
(n
k

)

21−(
k
2) vertices but no monochromatic k-cliques.

Thus,

R(k, k) ≥ n−
(

n

k

)

21−(
k
2) ≥ n− (

ne

k
)k21−(

k
2).

We seek n to maximize this bound. Differentiate this to see that choosing n so that

1 = k ek (
ne
k )

k−121−k(k−1)/2, so we set n = e−1k2k/2(2e)−1/k. The factor (2e)−1/k is near 1

when k is large, so we don’t gain much from exact maximizing value of n.

So, let n be an integer nearby e−1k2k/2 then we have

n− (
ne

k
)k21−(

k
2) ≥ 1

e
k2k/2(1− 2e

k
).

Since 2e/k tends to 0 for large k, we obtain the claimed bound. �

Here, we consider a random objects which has small imperfections, and we correct

those imperfections. This is called ‘alteration method’ We consider another example of

alteration method.

Definition 3.2. A set S ⊆ V (G) is dominating if every vertex outside S has a neighbor

in S

Theorem 3.3. For k > 1, every n-vertex graph with minimum degree k has a dominating

set of size at most (1+ln(k+1)
k+1 )n.

Proof. Form a random vertex subset S in such a graph by including each vertex indepen-

dently with probability p = ln(k+1)
k+1 . Given S, let T be the set of vertices outside S having

no neighbors in S. Adding T to S yields a dominating set. We seek the expected number

of |S ∪ T |.
Since each vertex appears in S with probability p, linearity yields E[S] = np. The

random variable |T | is the sum of n indicator random variables for whether individual

vertices belong to T . We have v ∈ T if and only if v and its neighbors all fail to be in S. This
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has probability at most (1−p)k+1 since v has degree at least k. Since (1−p)k+1 < e−p(k+1),

we have

E[|S|+ |T |] ≤ np+ ne−p(k+1) = (
1 + ln(k + 1)

k + 1
)n.

Hence, there exists a choice of S ensuring |S| + |T | ≤ (1+ln(k+1)
k+1 )n which completes the

proof. �

The following lemma regarding the expectation and the probability will be useful in

many instances.

Lemma 3.4 (Markov’s inequality). If X is a discrete random variable, then Pr[X ≥ t] ≤
E[X]
t . Thus E[X] → 0 implies P [X = 0] → 1.

Proof. E[X] =
∑

k≥0 kPr[X = k] ≥ t
∑

k≥t Pr[X = k] = tP [X ≥ t]. �

Now we use the alteration method to prove the following theorem.

Theorem 3.5. Given k ≥ 3 and g ≥ 3, there exists a graph with girth at least g and

chromatic number at least k.

Proof. We generate graphs with vertex set [n] by letting each pair be an edge with the

probability p, independently. We show that for large p it has no large independent set,

and use χ(G) ≥ n/α(G) to prove that χ(G) is large. We also show that for small p, the

expected number of short cycles are small. If we choose right p, then we obtain a graph

with large chromatic number, and we delete some vertices to delete all short cycles in

there.

Let p = nt−1, where t = 1/g. Since there are at most nj/(2j) possible j-cycles and each

cycle appear with probability pj, the total number X of cycles of length less than g has

expectation

E[X] =

g−1
∑

i=3

nj

2i
pi ≤

g−1
∑

i=3

nti

2i
.

Since t = 1/g and g is fixed, we have E[X] < gn1−1/g. By Markov’s inequality, we

can now conclude that Pr[X ≥ n/2] → 0 as n → ∞. For n large enough, we have

Pr[X ≥ n/2] < 1/2.

Since α(G) cannot grow when we delete vertices, at least (n − X)/α(G) independent

sets are needed to color the vertices remaining when we delete a vertex of each cycle. If

X < n/2 and α(G) ≤ n/(2k), then at least k colors are needed for the graph remaining.

With r = ⌈3 lnnp ⌉, we have

Pr[α(G) ≥ r] ≤
(

n

r

)

(1− p)(
r
2) < (ne−p(r−1)/2)r.

This tends to 0 as n→ ∞.

Since r = ⌈3n1−t lnn⌉ and k is fixed, we can choose n large enough to obtain r < n/(2k).

For large enough n, we have

Pr[X ≥ n/2] < 1/2 and Pr[α(G) ≥ r) < 1/2.
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Then there exists an n-vertex graph G with α(G) ≤ n/(2k) and it has fewer than n/2

cycles of length less than g. We delete a vertex from each short cycle and obtain a graph

with girth at least g and chromatic number at least k. �

Let’s consider another example of 2-coloring of hypergraphs. We have proved that

2k−1 ≤ m(k) ≤ O(k22k−1). Beck 1978 improved the lower bound to Ω(k1/32k) and Rad-

hakrishnan and Srinivasan 2000 further improved this to Ω(2k(k/ log k)1/2).

Again to show the lower bound, we need to find a way to color edges of a hypergraph.

However, if we just randomly color, then each edge become monochromatic with prob-

ability 1
2k−1 . So simple random coloring would not work. We need to alter the random

coloring to obtain a desired 2-coloring.

Theorem 3.6 (Radhakrishnan and Srinivasan, 2000). If there exists p ∈ [0, 1] with s(1−
p)k + s2p < 1, then m(k) > s2k−1.

Proof. This proof is by Cherkashin and Kozik 2015.

For our convenience, we consider the following rather continuous time framework. For

each vertex v ∈ V , let xv be a real number in [0, 1] chosen uniformly at random, we call

this the label of vertex v. Note that all labels xv are distinct for distinct vertices with

probability 1. This gives an ordering of the vertices according to the values of xv. For an

edge e, we say that v ∈ e is the last vertex of e if xv is bigger than all xu with u ∈ e−{v}.
Let

L = [0,
1− p

2
),M = [

1− p

2
,
1 + p

2
), R = [

1 + p

2
, 1]

be three subintervals of [0, 1].

If xv is in L ∪M , then we color v blue and if xv is in R, then we color v red. As p

is positive, it is likely that we can avoid red monochromatic edges, while obtaining many

blue monochromatic edges. Now we recolor some vertices to destroy all blue edges as

follows:

for any vertex v with xv ∈M , if v is the last vertex of a blue monochromatic edge

e, then we recolor v to red.
(3.1)

Now, we compute the expected number of monochromatic edges. There are two types of

monochromatic edges, the edges e whose labels all lie in L or R, or the edges e which

becomes red monochromatic only after recoloring.

For the first type, the expected number of such edges is 2e(H)(1−p2 )k ≤ s(1− p)k.

For the second type, the first vertex of e must be blue before recoloring but becomes red

after recoloring. Hence, such an edge e belongs to a pair (f, e) of edges of H where e ∩ f
is a single vertex v and xv ∈M and v is the last vertex of f and first vertex of e. For such

a pair (e, f), assuming xv ∈M is chosen, the probability of the above event happening is

that xk−1
v (1− xv)

k−1 ≤ (14)
k−1. As there are at most s24k−1 such pairs (e, f) and xv ∈M

happens with the probability p, the expected number of monochromatic edges of second

type is at most

s24k−1 · p(1
4
)k−1 ≤ s2p.

Hence, the expected number of monochromatic edges is at most

s(1− p)k + s2p < 1.
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This shows that the above algorithm produces a coloring with no monochromatic edges

with positive probability. �

Using this, one can show the following corollary as desired.

Corollary 3.7. m(k) = Ω(2k(k/ log k)1/2).

Proof. As (1 − p) ≤ e−p, we have s(1 − p)k + s2p ≤ se−pk + s2p. The right hand side

is minimized at p = ln(k/s)
k . We substitute this back in then we have s2

k (1 + ln(k/s)).

To make this smaller than 1, let s = (k/ ln k)1/2 with sufficiently large k, then we have

s(1− p)k+ s2p < 1. With this, we can apply the previous theorem to finish the proof. �

3.2. dependent random choice. In undergraduate graph theory, we learned about

Turán’s theorem and Kövári-Sós-Turán theorem. These theorems estimate the maximum

number of edges in a graph without certain subgraphs. In other words, this theorem con-

cerns about finding certain subgraphs in a graph with many edges. This problem becomes

difficult especially when the graph we wish to find is bipartite. In this subsection, we learn

some tools that we can use. We want to extend the Kövári-Sós-Turán Theorem into the

following.

Theorem 3.8. Let s ∈ N and let H be a bipartite graph with vertex partition A,B such

that all vertices in B has degree at most s. Then there exists c = c(H) such that ex(n,H) ≤
cn2−1/s.

A very natural way to find a graph H into G is the following. We order the vertices in

A into (x1, . . . , xh) and we map xi into a vertex φ(xi) ∈ V (G) one by one. While doing

this, we make sure that for all y ∈ B, the common neighborhood of vertices in φ(NH(y))

is large. Once we map all vertices of x in this way, there are many choices of vertices in

G for y to embed. Hence, we can embed vertices in B one by one into different vertices.

Hence, the ideal situation is when we have a set U ⊆ V (G) of vertices which satisfies the

following property for some large r,m. Then we can freely embed vertices in A into U .

Every r vertices of U have at least m common neighbors.

If r,m > h, then we can arbitrarily embed each xi into U to obtain an embedding of H

into G. How can we obtain such a set U? We can find such a set using alteration method.

Lemma 3.9. Let a, d,m, n, r ∈ N. Let G be an n-vertex graph with d(G) = d. If there

exists t ∈ N satisfying
dt

nt−1
−
(

n

r

)

(
m

n
)t ≥ a,

then there exists a subset U ⊆ V (G) with |U | ≥ a such that every r vertices in U have at

least m common neighbors in G.

Proof. We will randomly choose vertices, and prove that chosen vertices have the desired

property with positive probability. Let N∗
G(W ) :=

⋂

x∈W NG(x).

Assume that we have for two sets W1 and W2 of size r with |N∗(W1)| > |N∗(W2)|. In

order to increase the probability of obtaining a desired set, we want W1 to be more likely
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to be included in U than W2 (as our goal is to make all r-subsets of U to have many

common neighbors). For this, we can randomly choose some vertex, say v, and we let

U be the neighborhood NG(v). In this way, we can ensure that W1 is more likely to be

included in U than W2 as

Pr[W1 ⊆ U ] = Pr[v ∈ N∗(W1)] =
|N∗(W1)|

n
>

|N∗(W2)|
n

= Pr[v ∈ N∗(W2)] = Pr[W2 ⊆ U ].

Now we start the proof. For each i ∈ [t], we choose a random vertex vi ∈ V (G)

independently uniformly at random. Note that two vertex vi and vj may be the same as

we choose independently. Let A = N∗({v1, . . . , vt}) and X = |A| be the random variable

denoting the size of A. Linearity of expectation implies

E[X] =
∑

v∈V (G)

(
|N∗(v)|
n

)t = n−t
∑

v∈V (G)

d(v)t ≥ n1−t(
1

n

∑

v∈V (G)

d(v))t ≥ dt

nt−1
.

Here, we obtain the penultimate inequality by the convexity of the function z → zt.

Let

R := {R ∈
(

V (G)

r

)

: |N∗(R)| ≤ m}.

Let Y be the random variable counting the number of subsets R ⊆ A of size r such that

|N∗(R)| ≤ m. For given R ∈ R, we have Pr[R ⊆ A] = ( |N
∗(R)|
n )t. Thus

E[Y ] =
∑

R∈R
(
|N∗(R)|

n
)t ≤

(

n

r

)

(
m

n
)t.

By linearity of expectation,

E[X − Y ] ≥ dt

nt−1
−
(

n

r

)

(
m

n
)t ≥ a.

This implies that there exists a choice of v1, . . . , vt which yields a setA satisfyingX−Y ≥ a.

Consider such a set A and delete one vertex from each subset R ∈ R lying inside A. Let U

be the set of remaining vertices, then U has size at least X − Y ≥ a, and U is our desired

subset. �

Observe that we choose U in a dependent way. By choosing something else, and the

choice of U depends from the earlier choice. Hence we call it dependent random choice.

By this, we achieve that certain sets will be included in U more likely that some other

sets. By using this lemma, we can prove Theorem 3.8.

Proof of Theorem 3.8. Let a := |A|, b := |B|,m := a + b, d := 2cn1−1/s and c ≥ 3ma.

Suppose that G is an n-vertex graph with e(G) ≥ cn2−1/s, hence d(G) ≥ d. We have

ds

ns−1
−
(

n

s

)

(
m

n
)s ≥ 2cs − ns

s!
(
m

n
)s ≥ cs ≥ a.

Thus Lemma 3.9 implies that there exists a set U with |U | = a such that any s vertices

in U has at least m common neighbors.

We take an arbitrary injective map φ : A → U . Let B = {y1, . . . , yb}. We embed

y1, . . . , yb one by one in order. Right before we embed yi, we have |N∗
G(φ(NH(yi)))| ≥

m = a + b, thus there exists a vertex vi ∈ N∗
G(φ(NH(yi)) which is not an image of any
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vertices in A ∪ {y1, . . . , yi−1}. We embed yi to vi. By repeating this, we obtain a copy of

H in G. This prove the theorem. �
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4. The second moment

So far, many of our proof concerns about expectation E[X] of certain random variable

X and show that it is possible to achieve as good as its expectation. Often times, this is

not good enough and we want to prove that X is actually very close to E[X] with high

probability (which is called ‘concentration’). Indeed, we know one concept which measures

how spread out X is from its expectation.

Definition 4.1. Var[X] = E[(X − E[X])2] is the variance of X.

As Var[X] = E[X2]−E[X]2, the study of Var[X] is essentially same as the study about

E[X2], which is called the second moment of the random variable X. For given random

variable we often write µ = E[X], σ2 = Var[X].

The following is a basic concentration theorem regarding the second moment. Note

that for a nonnegative random variable X and a > 0, Pr[X ≥ a] ≤ E[X]
a holds and this is

called Markov’s inequality.

Theorem 4.2 (Chebyshev’s inequality). For any λ > 0, we have

Pr[|X − µ| ≥ λσ] ≤ 1

λ2
.

Proof. By the definition of expectation, we have

σ2 = Var[X] = E[(X − µ)2] ≥ λ2σ2Pr[|X − µ| ≥ λσ].

This proves the theorem. �

Using Chebyshev’s inequality is called the second moment method. Chebyshev’s in-

equality is best possible by considering the case where X is µ or µ + λσ or µ − λσ with

probability 1 − 1/λ2, 1/(2λ2), 1/(2λ2). However, in certain cases, we can obtain a better

bound, which we will study later.

As before, we will frequently consider some random variable X which is sum of several

simpler random variables X1, . . . ,Xm. Then we have

Var[X] =
∑

i∈[m]

Var[Xi] +
∑

i 6=j
Cov[Xi,Xj ],

where we define Cov[Xi,Xj ] as follows.

Definition 4.3. The covariance Cov[Y,Z] is E[Y Z]− E[Y ]E[Z].

4.1. An application in Number theory. Let’s consider some applications of the second

moment method. Let ν(n) be the number of prime numbers p dividing n. Hardy and

Ramanujan in 1920 showed that ν(n) is close to ln lnn for almost all n. Later Turán gave

the following much simpler proof using the probabilistic method.

Theorem 4.4. Let ω(n) → ∞ arbitrarily slowly. Then the number of x in [n] such that

|ν(x)− ln lnn| > ω(n)
√
ln lnn

is o(n).
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Proof. Let x be a number in [n] chosen uniformly at random. For a prime p, let

Xp =

{

1 if p | x
0 otherwise.

Let

M = n1/10 and X =
∑

p≤M,p prime

Xp.

Then every x ∈ [n] has at most 10 prime factors larger than M , we have ν(x) − 10 ≤
X(x) ≤ ν(x), so we can focus on estimating the value of X(x) rather than ν. First, we

estimate the expectation of X. By the linearity of expectation,

E[X] =
∑

p

E[Xp] =
∑

p≤M

⌊n/p⌋
n

=
∑

p≤M
(
1

p
+O(

1

n
)) = ln lnn+O(1).

Here, we used the fact that
∑

p≤x 1/p = ln lnx+O(1).

Now we want to estimate the variance to show the concentration. As Var[Xp] =

(1/p)(1 − 1/p) +O(1/n) and
∑

x∈N 1/x2 = O(1) we have

∑

p≤M
Var[Xp] =

∑

p≤M

1

p
+O(1) = ln lnn+O(1).

Also, for two distinct primes p, q, we have XpXq = 1 if and only if pq | x, hence

Cov[Xp,Xq] = E[XpXq]− E[Xp]E[Xq] =
⌊n/(pq))⌋

n
− ⌊n/p⌋

n

⌊n/q⌋
n

= (
1

pq
± 1

n
)− (

1

p
± 1

n
)(
1

q
± 1

n
) = 0± 3

n
(
1

p
+

1

q
).

Thus, we have

|
∑

p 6=q≤M
Cov[Xp,Xq]| ≤

3

n

∑

p 6=q
(
1

p
+

1

q
) ≤ 6M

n

∑

p≤M

1

p
≤ O(n−9/10 ln lnn) = o(1).

Hence, Var[X] = ln lnn + O(1), and Chebyshev’s inequality gives that for any λ > 0, we

have

Pr
[

|X − ln lnn| > λ
√
ln lnn

]

< λ−2 + o(1).

Taking λ = ω(n) and using the fact that X and ν has difference at most 10, we conclude

the theorem. �

Let’s consider one more result.

Definition 4.5. A set {x1, . . . , xk} of positive integers have distinct sums if all sums
∑

i∈S xi are distinct over all subsets S ⊆ [k]. Let f(n) be the largest k such that there

exists a set {x1, . . . , xk} ⊆ [n] with distinct sums.

One example of a set with distinct sums is {1, 2, 22, . . . , 2⌊log2 n⌋} which shows f(n) ≥
1 + ⌊log2 n⌋. Erdős offered $300 for a proof or disproof that f(n) ≤ log2 n + C for some

constant C. As all 2f(n) sums must distinct and less than nf(n), we have 2f(n) ≤ nf(n),

so we have f(n) < log2 n+ log2 log2 n+O(1). We can use the second moment method to

prove the following.

Theorem 4.6. f(n) ≤ log2 n+ 1
2 log2 log2 n+O(1).
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Proof. Fix a set {x1, . . . , xk} having distinct sums. Let ε1, . . . , εk be independent random

variables having values 0 or 1 with probability 1/2. Let X =
∑

i∈[k] εixi be our random

variable. Then

µ = E[X] =
1

2

∑

i∈[k]
xi and σ

2 = Var[X] =
1

4

∑

i∈[k]
x2i ≤

n2k

4
.

By Chebyshev’s inequality, for any λ > 1, we have

Pr[|X − µ| < λn
√
k/2] ≥ 1− 1

λ2
.

However, as {x1, . . . , xk} have distinct sums, for any value t, Pr[X = t] ∈ {0, 2−k}. Thus

1− 1

λ2
≤ Pr[|X − µ| < λn

√
k/2] ≤ 2−k(λn

√
k + 1)

This implies n ≥ 2k(1−λ−2)−1√
kλ

. Putting λ > 1 implies that f(n) ≤ log2 n + 1
2 log2 log2 n +

O(1). �

4.2. Random graphs.

Definition 4.7. The binomial random graph model G(n, p) (it is also called the Erdős-

Rényi random graph model) is a probability space over the set of graphs on the vertex set

[n] determined by Pr[ij ∈ G] = p with these events mutually independent.

Definition 4.8. If a property P holds for G(n, p) with probability 1 − o(1) where o(1)

term tends to zero as n tends to infinity, then we say that G(n, p) satisfies P with high

probability (or asymptotically almost surely). We sometimes write whp or a.a.s instead.

Definition 4.9. A function r(n) is a threshold function for some property P , if whenever

p = p(n) satisfies p(n)/r(n) → 0, then the probability that G(n, p) satisfies P tends to 0

and whenever p(n)/r(n) → ∞ then the probability that G(n, p) satisfies P tends to 1.

When p is small, say o(1/n), G(n, p) is likely to be a forest, lacking of any subgraphs.

But when p is a positive constant, then G(n, p) is likely to be almost complete, containing

all small subgraphs. For a specific small graph H, one can ask at which point of p, does

G(n, p) starts to have H as a subgraph. To investigate this, we define the following concept

first.

Definition 4.10. Let H be a graph with n vertices and e edges. We call ρ(H) = e/v the

density of H. We call H balanced if every subgraph H ′ has ρ(H ′) ≤ ρ(H). We call H

strictly balanced if every proper subgraph H ′ satisfies ρ(H ′) < ρ(H).

We wish to show that if H is balanced, then n−v/e is the threshold function for having

H as a subgraph. For this we prove the theorem below.

We will use the Second moment method to prove the concentration of X which is a ran-

dom variable counting the subgraphs isomorphic to H. Note that Chebyshev’s inequality

says that for any ε > 0,

Pr[|X − E[X]| ≥ εE[X]] ≤ Var[X]

ε2E[X]2
.

Hence, often times, in order to prove concentration, it suffices to show that Var[X] =

o(E[X]2) holds.
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Theorem 4.11. Let H be balanced with v vertices, e edges and a automorphisms. Let

X be the number of copies of H in G(n, p). If pnv/e = o(1), then X = 0 whp, and if

pnv/e = ω(1) then we have X = (1 + o(1))n
vpe

a whp.

Proof. Let V (H) = [v] and for each ordered tuples (x1, . . . , xv) of vertices in G = G(n, p),

let Ax1,...,xv be the event that x1, . . . , xv provides a copy of H in that order. Let Ix1,...,xv
be the indicator variable for Ax1,...,xv . We say that x = (x1, . . . , xv) and y = (y1, . . . , yv)

are equivalent if yσ(i) = xi for some automorphism σ of H. Then X =
∑

Ix1,...,xv counts

the number of copies of H in G where the sum is taken for all equivalence class defined

above. Then it is easy to see

E[X] =
n(n− 1) . . . (n− v + 1)pe

a
= (1 + o(1))

nvpe

a
.

If pnv/e = o(1), then this is o(1) implying that X = 0 with probability 1− o(1). Assume

E[X] = ω(1).

Claim 2. If E[X] = ω(1), then Var[X] = o(E[X])2.

Proof. For any indicator variables Y,Z, we have

Var(Y ) = Pr[Y = 1]Pr[Y = 0] ≤ Pr[Y = 1] = E[Y ], and

Cov(Y,Z) ≤ E[Y Z]− E[Y ]E[Z] ≤ E[Y Z] = Pr[Y ∧ Z].
Also, if |{x1, . . . , xv}∩{y1, . . . , yv}| ≤ 1, then Ax and Ay are independent, so their covari-

ance is zero. We write x ∼ y if their intersection has size at least two. Hence,

Var[X] =
∑

Var[Ix] +
∑

x∼y

Cov[Ix, Iy]

≤ E[X] +
∑

x

∑

y∼x

Pr[Ax ∧Ay] = E[X] +
∑

x

Pr[Ax]
∑

y∼x

Pr[Ay | Ax].

Note that the events Ax are symmetric in the following sense: for two x,y there exists a

measure-preserving map of the underlying probability space that permute the events and

send Ax to Ay. Hence, to estimate the last term, we only have to compute

∆∗ =
∑

y∼x

Pr[Ay | Ax].

There are v!/a terms with {y1, . . . , yv} = {x1, . . . , xv} and each of them contributes at

most 1 to ∆∗. Assume {y1, . . . , yv} ∩ {x1, . . . , xv} = S has i elements with 2 ≤ i ≤ v − 1.

Then as H is balanced, at most ie/v edges of H corresponding to Ay lies inside S, and

e − (ie/v) of them does not lie in {x1, . . . , xv}. Hence Pr[Ay | Ax] = O(pe−(ie/v)). As

there are O(nv−i) tuples y intersecting with x at i vertices, so

∆∗ =
v−1
∑

i=2

O(nv−ipe−(ie/v)) = o(nvpe) = o(E[X]).

Thus

Var[X] ≤ E[X] +
∑

x

Pr[Ax]o(E[X]) ≤ o(E[X]2).

We obtain the final inequality as E[X] = ( 1a + o(1))nvpe tends to infinity as n grows. �
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By applying Chebyshev’s inequality, for any ε > 0, we have

Pr[|X − E[X]| ≥ εE[X]] ≤ Var[X]

ε2E[X]2
.

As Var[X] = o(E[X]2), this probability can be arbitrary small when n is sufficiently large.

This proves the theorem. �

4.3. The Rödl nibble. For a given hypergraph H and a set S ⊆ V (H), we write dH(S)

to denote the number of edges of H containing S. Let ∆i(H) = max
S∈(V (H)

i ) dH(S). We

say ∆(H) = ∆1(H) be the maximum degree of H and ∆2(H) be the maximum co-degree

of H.

Definition 4.12. A matching in a hypergraph H is a collection of vertex-disjoint edges.

In this subsection, we want to prove the theorem below, which is a refinement of Rödl

nibble. Here, when we write “a statement holds if 0 < x ≪ y, z < 1” this means that

there exists some function f such that “a statement holds if x < f(y, z)”. We will not

specify this function f explicitly. Note that with this definition, “if 0 < x ≪ y, z, then a

statement holds” is equivalent to the sentence “for given y, z there exists x0 such that the

statement holds for all 0 < x < x0”.

Theorem 4.13 (Pippenger). Let k,D be integers and ε, δ ∈ R such that 0 < 1/D, δ ≪
ε, 1/k ≤ 1. Let H be an n-vertex k-graph satisfying the following.

(1) (Almost regular) All vertices of H has degree (1± δ)D.

(2) (Small codegree) ∆2(H) < δD

Then H contains a matching of size at least (1− ε)n/k.

This theorem has surprisingly many applications. One of the application is the following.

Definition 4.14. (n, ℓ, k)-block design is a collection L of ℓ-sets in [n] satisfying the

following: For any K ∈
([n]
k

)

, there is exactly one ℓ-set L ∈ L containing K.

For example, (n, 3, 2)-block design is called Steiner triple system. This is equivalent to

finding an edge-decomposition of Kn into triangles, which exists if and only if n is 1 or 3

modulo 6. It is easy to see that this is necessary by counting the edges and considering

the degree of the complete graph.

In general, (n, ℓ, k)-block design is an edge-decomposition of the complete k-graph K
(k)
n

into copies of complete k-graphK
(k)
ℓ . One big conjecture was whether (n, ℓ, k)-block design

exists when the necessary divisibility condition holds. Recently Keevash proved that when

the divisibility condition holds and n is sufficiently larger than k, ℓ, then design exists.

However, before Keevash proved this, this problem was open for more than 100 years.

In 1963, Erdős and Hanani conjectured an approximate version of this, stating that for

any ε > 0, if n is sufficiently large then an ε-approximate decomposition exists. Here

ε-approximate decomposition of K
(k)
n into K

(k)
ℓ is a collection of edge-disjoint copies of

K
(k)
ℓ which covers at least (1− ε)-fraction of the host hypergraph.

Theorem 4.15 (Rödl). For ℓ ≥ k and ε > 0, if n is sufficiently large, then ε-approximate

decomposition of K
(k)
n into K

(k)
ℓ exists.
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Proof. Let r =
(

ℓ
k

)

and H be the r-graph whose vertices are all k-sets in [n] and whose

edges are all
(ℓ
k

)

k-sets that lie in an ℓ-set. Then each vertex of H has degree D =
(n−k
ℓ−k
)

and every two distinct vertices has codegree at most
(n−k−1
ℓ−k−1

)

= o(D). As n is sufficiently

large, Theorem 4.13 yieds that H has a matching of size at least (1 − ε)
(n
k

)

/
(ℓ
k

)

, which

yields an ε-approximate decomposition of K
(k)
n into copies of K

(k)
ℓ . �

In order to prove that H = H0 has a large matching, we use the following strategy.

(1) We choose edges of H0 independently at random with probability p = α/D.

(2) We throw away all vertices inside a chosen edge, and let the remaining vertices

induces a hypergraph H1.

(3) If some of the chosen edges has a common vertex, we discard them so that remain-

ing edges form a matching E0 disjoint from V (H1).

(4) Prove that H1 is also almost regular and having small codegree. We repeat this

for H1,H2, . . . .

For this purpose, we prove the following lemma which allow us to proceed one step of

the above iteration. Note that ‘almost regularity’ splits into two weaker conditions, which

makes our technical computations easier.

Lemma 4.16. Assume 0 < 1/D, δ0 ≪ δ1, α, 1/K, 1/k < 1. Let H be an n-vertex k-graph

satisfying the following.

(H1) For all x ∈ V (H) but at most δ0n of them has degree (1± δ0)D.

(H2) ∆(H) < KD.

(H3) ∆2(H) < δ0D.

Then H has a set M ′ of edges with the following properties where V ′ = V −⋃e∈M ′ e and

H ′ = H[V ′].

(M1) |M ′| = (1± δ1)
αn
k .

(M2) |V ′| = (1± δ1)ne
−α.

(M3) All vertices x ∈ V ′ but at most δ1|V ′| of them has degree dH′(x) = (1±δ1)De−α(k−1).

Let’s first see how this lemma proves what we want.

Proof of Theorem 4.13. Choose α with α ≪ ε, 1/k, 1/K < 1 and let t be an integer with

e−αt < α and choose δ0, . . . , δt and D be a large enough number so that the following

holds

1/D, δ0 ≪ δ1 ≪ · · · ≪ δt+3 ≪ α≪ ε, 1/k, 1/K < 1.

Let H0 = H and let Di = De−α(k−1)i and ni = ne−αi and Ki = Keα(k−1)i. For given Hi

satisfying

(Hi-1) All x ∈ V (Hi) but at most δini of them has degree (1± δi)Di.

(Hi-2) ∆(Hi) < KiDi.

(Hi-3) ∆2(Hi) < δiDi.

(Hi-4) |V (Hi)| = (1± δi)ni.

we apply Lemma 4.16 with δi, δi+1/10 playing the roles of δ0, δ1 there to obtain a graph

Hi+1 satisfying (H(i + 1)-1)–(H(i + 1)-4) and a set M ′
i+1 of size |M ′

i | = (1 ± δi+1)αni/k

covering (1± δi)ni − (1± δi+1)nie
−α ≥ (1− δi+2)(α− α2)ni vertices.
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Let Mi be the collection of edges in M ′
i which does not intersect with any other edges

in M ′
i . As M ′

i has (1 ± δi+1)αni/k edges covering at least (1 − δi+2)(α − α2)ni vertices,

we have |Mi| ≥ (α− 2kα2)ni/k.

Consider a matching M =M0 ∪ · · · ∪Mt, the number of edges in this is at least

t
∑

i=0

(α− 2kα2)ni
k

≥ (α− 2kα2)
n

k

t
∑

i=0

e−αi ≥ (α− 2kα2)
n

k
(
1− e−tα

1− e−α
)

≥ (α− 2kα2)
n

k
(
1− α

α
) ≥ (1− ε)

n

k
.

Note that these inequality holds as α≪ 1/k, ε and e−αt < α. Hence, this forms the desired

matching. �

Proof of Lemma 4.16. Choose δ0.1, . . . , δ0.6 such that

1/D, δ0 ≪ δ0.1 ≪ δ0.2 ≪ · · · ≪ δ0.5 ≪ δ1, α, 1/K, 1/k.

This hierarchy of numbers will allow us to omit many computations. Of course, we have

D ≤
(n−1
k−1

)

, hence n is also large as D is large.

Let M ′ be a random subset of E(H) obtained by picking each edge of H independently

at random with probability p = α/D. We will show that (M1)–(M3) holds with positive

probability.

First we show (M1). (H1) together with (H2) ensures that e(H) = (1 ± δ0.1)Dn/k.

So, E[|M ′|] = (1 ± δ0.1)αn/k and Var[|M ′|] = e(H)p(1 − p) ≤ (1 + δ0.1)(αn/k). Using

Chebyshev’s inequality, we have

Pr[|M ′| = (1± δ0.2)
αn

k
] ≥ 1− 4

δ20.2αn/k
≥ 0.99.

Hence (M1) holds with probability at least 0.99.

Second, we show (M2). For each x ∈ V (H), let Ix be the indicator variable of x

belonging to V ′. So, Ix = 1 if x ∈ V ′ and 0 if x ∈ ⋃e∈M ′ e. Then |V ′| = ∑

x∈V Ix. Let

x ∈ V (H) be good if it has the correct degree dH(x) = (1± δ0)D and bad otherwise. If x

is good, then

E[Ix] = Pr[Ix = 1] = (1− p)d(x) = (1− α

D
)(1±δ0)D = e−α(1± δ0.1).

If x is bad, then 0 ≤ E[Ix] ≤ 1, but there are only δ0n bad vertices, so

E[|V ′|] = e−α(1± δ0.1)(1± δ0)n± δ0n = ne−α(1± δ0.2).

Now we compute the variance of |V ′|. Note that

Cov[Ix, Iy] = E[IxIy]− E[Ix]E[Iy] = (1− p)d(x)+d(y)−d({x,y}) − (1− p)d(x)+d(y)

≤ (1− p)−d({x,y}) − 1 ≤ (1− α

D
)−δ0D − 1 ≤ δ0.1.
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Hence,

Var[|V ′|] =
∑

x∈V
Var[Ix] +

∑

x 6=y
Cov[Ix, Iy] ≤ E[|V ′|] +

∑

x 6=y
δ0.1

≤ (1± δ0.2)ne
−α + δ0.1n

2 ≤ δ0.2E[|V ′|]2.

Hence, we can apply Chebyshev’s inequality to conclude that

Pr[|V ′| = (1± δ0.4)ne
−α] ≥ Pr[|V ′| = (1± δ0.3)E[|V ′|]] ≥ 0.99.

So, (M2) holds with probability at least 0.99.

Now we prove (M3). For this, we first prove the following claim.

Claim 3. All but at most δ0.1n vertices x satisfy the following two.

(A) d(x) = (1± δ0)D.

(B) all but at most δ0.1D edges e ∈ E(H) with x ∈ e satisfy

|{f ∈ E(H) : x /∈ f, e ∩ f 6= ∅}| = (1± δ0.1)(k − 1)D. (4.1)

Proof. By (H1), all but at most δ0n ≤ δ0.1n/2 vertices satisfy (A).

Recall that the bad vertices are the vertices with degree not (1± δ0)D but at most KD.

As there are at most δ0n bad vertices, there are at most δ0nKD edges containing a bad

vertex. Hence, the number of vertices contained in more than δ0.1D such edges is at most

δ0nKDk/(δ0.1D) ≤ δ0.1n/2.

If x ∈ e and e does not contain any bad vertex, then as ∆2(H) ≤ δ0D, the number of

edges f not containing x that intersect with e is (k − 1)(1 ± δ0)D ±
(k−1

2

)

δ0D ± kδ0D =

(1± δ0.1)(k − 1)D, satisfying (4.1).

So, in total, there are at most δ0.1n vertices violating (A) or (B). �

Now we want to show that most of the vertices satisfying (A) and (B) satisfies (M3).

Let x be a vertex satisfying (A) and (B). We call an edge e good if it satisfies (4.1).

Conditioning on x ∈ V ′, the probability that a good edge containing x stays in H ′ is

(1 − p)(1±δ0.1)(k−1)D. As at most δ0.1n edges which is not good can stay with probability

between 0 and 1, we have

E[dH′(x)] = (1± δ0 ± δ0.1)D(1 − p)(1±δ0.1)(k−1)D ± δ0.1D = (1± δ0.2)e
α(k−1)D.

Now, we want to estimate the variance. For each edges e containing x, let Ie be the

indicator random variable which is 1 if e ⊆ V ′ and 0 otherwise. Then dH′(x) =
∑

e∋x Ie.

So,

Var[dH′(x)] ≤ E[dH′(x)] +
∑

e∋x,f∋x
Cov[Ie, If ]

≤ E[dH′(x)] + 2δ0.1D(1± δ0)D +
∑

e,fgood,e∋x,f∋x
Cov[Ie, If ].

We are left to bound the last term. For this, we fix a good e and bound
∑

f∋x,fgood Cov[Ie, If ].

There are at most (k − 1)δ0D edges f with |e ∩ f | > 1, and their contribution to the sum

is at most (k − 1)δ0D. If e ∩ f = {x}, then let t(e, f) be the number of edges of H that

intersect both e, f while not containing x. Then we have t(e, f) ≤ (k − 1)2δ0D. Let a be
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the number of edges not containing x but intersecting e, and b be the number of edges not

containing x but intersecting with f . For such e and f , we have

Cov[Ie, If ] ≤ E[IeIf ]− E[Ie]E[If ] ≤ (1− p)a+b−t(e,f) − (1− p)a+b

≤ (1− p)−t(e,f) − 1 ≤ δ0.1.

Hence, we have
∑

e,fgood,e∋x,f∋x
Cov[Ie, If ] ≤

∑

e

((k − 1)δ0D + (1 + δ0)Dδ0.1) ≤
∑

e

δ0.2D ≤ δ0.3D
2/2.

Hence, conditioning on x ∈ V ′, we have

Var[dH′(x)] ≤ E[dH′(x)] + δ0.3D
2 ≤ δ0.4(E[dH′(x)])2.

By Chebyshev’s inequality, dH′(x) = (1 ± δ0.5)De
−α(k−1) does not hold with probability

at most δ0.5. By using Markov’s inequality, with probability at least 0.99, for all but at

most 100δ0.5n vertices x satisfying (A) and (B) satisfy (M3). As at most δ0.1n vertices

not satisfy (A) and (B), and δ0.1n + 100δ0.5n ≤ δ1n, this proves that (M3) holds with

probability at least 0.99. This finishes the proof of the lemma. �
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5. The local lemma

In many cases, we actually showed that such events holds with high probability while

we only wanted to show that such events holds with a positive probability.

On the other hand, there are some cases where the probability of the event is actually

a small positive number. For example, considering n independent events of probability

p > 0, the probability that all of them happens is pn an exponentially small number.

Here the independency trivially provides such an answer. What about the case where

there are many events loosely independent of each other? Can we still somehow use ‘weak

dependency’ to prove what we want? We first have to quantify how one can measure

‘dependency’.

Definition 5.1. Let A1, . . . , An be events. A compound event specifies the occurrence of

Ai for i ∈ S and the non-occurrence of Aj for j ∈ T where S and T are disjoint subsets

of [n]. An event B is mutually independent of A1, . . . , An if B is independent of each

compound event specified by disjoint subsets of [n].

The following is a symmetric version of local lemma.

Lemma 5.2 (Symmetric local lemma; Erdős-Lovasz, 1975). Let A1, . . . , An be events such

that each is mutually independent of some set of all but at most d events. Suppose that

Pr(Ai) ≤ p < 1 for all i ∈ [n]. If ep(d+ 1) < 1, then Pr(
⋂

Ai) > 0.

The following is general version of the local lemma.

Definition 5.3. Let A1, . . . , An be events in a probability space. A directed graph D =

([n], E) on the vertex set [n] is called a dependency digraph for the events A1, . . . , An if

for each i ∈ [n], the event Ai is mutually independent of all the events {Aj : (i, j) /∈ E}

Lemma 5.4 (The local lemma, general version). Suppose that D is a dependency digraph

for the events A1, . . . , An and suppose there are real numbers x1, . . . , xn ∈ [0, 1) such that

Pr[Ai] ≤ xi
∏

j∈N+
D (i)(1− xj) for all i ∈ [n]. Then

Pr[

n
∧

i=1

Ai] ≥
n
∏

i=1

(1− xi).

In particular, with positive probability, no events Ai holds.

Proof. We use induction on s to show that for any S ⊆ [n] of size s < n and i /∈ S,

Pr[Ai |
∧

j∈S
Aj] ≤ xi.

This is true if s = 0. Assume that is holds for all s′ < s. Let

S1 = S ∩N+
D (i) and S2 = S \ S1.

Then we have

Pr[Ai |
∧

j∈S
Aj ] =

Pr[Ai ∧
∧

j∈S1
Aj |

∧

ℓ∈S2
Aℓ]

Pr[
∧

j∈S1
Aj |

∧

ℓ∈S2
Aℓ]

.
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Now we bound the numerator and denominator. As Ai is mutually independent to all

events corresponding to S2, we have

Pr[Ai ∧
∧

j∈S1

Aj |
∧

ℓ∈S2

Aℓ] ≤ Pr[Ai |
∧

ℓ∈S2

Aℓ] = Pr[Ai] ≤ xi
∏

j∈N+
D(i)

(1− xj). (5.1)

We now bound the denominator using induction hypothesis. If |S1| = 0, then this

denominator is 1. Otherwise, we have S1 = {j1, . . . , jr}. Then

Pr[
∧

j∈S1

Aj |
∧

ℓ∈S2

Aℓ] = (1−Pr[Aj1 |
∧

ℓ∈S2

Aℓ])(1−Pr[Aj2 |
∧

ℓ∈S2∪{j1}
Aℓ]) · · · (1−Pr[Ajr |

∧

ℓ∈S2∪{j1,...,jr−1}
Aℓ])

≥
r
∏

ℓ=1

(1− xjℓ) ≥
∏

j∈N+
D(i)

(1− xj).

By using these bound, we conclude that Pr[Ai |
∧

j∈S Aj ] ≤ xi.

Now we use this to prove the lemma.

Pr[

n
∧

i=1

Ai] = (1−Pr[A1])(1 −Pr[A2 | A1]) · · · (1−Pr[An |
n−1
∧

i=1

Ai]) ≥
n
∏

i=1

(1− xi).

�

Proof of the symmetric case. Assume d > 0 as it is trivial otherwise. Note that the de-

pendency digraph has maximum outdegree at most d. Take xi =
1
d+1 < 1, then we have

(1 − 1
d+1)

d > 1/e for all d. This guarantees that we can apply the general version of the

local lemma. �

5.1. Several applications. In many of our applications, the low dependency among the

events actually comes from the fact that the dependency of the events are ‘local’. This

motivates the name ‘local lemma’. The following proposition describes this localness.

Proposition 5.5 (Mutual independence principle). Let Z1, . . . , Zm be independent ex-

periments and A1, . . . , An be events such that each Ai is determined by a subset Si of

Z1, . . . , Zm. If Si is disjoint from Sj1 ∪ · · · ∪ Sjk then Ai is mutually independent of

{Aj1 , . . . , Ajk}.

Theorem 5.6. R(k, k) > (1 + o(1))
√
2
e k2

k/2.

Proof. We color E(Kn) giving each edge red or blue independently at random. For each

vertex set S of size k, let AS be the event that the subgraph induced by S is monochro-

matic. Knowing the color of all edges outside
(S
2

)

has no effect on the probability of AS .

Hence we can let d in the symmetric local lemma be the number of k-sets in [n] that share

at least two elements with S, the event AS is mutually independent of the sets of all other

events.

We have

d <

(

k

2

)(

n− 2

k − 2

)

<
k2

2
(
ne

k − 2
)k−2.

We also have Pr(AS) = 21−(
k
2) =: p for all S.
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To apply local lemma, it suffices to make n small enough so that

k2

2
(
ne

k − 2
)k−2 <

1

ep
=

1

2e
2k/2(2k/2)k−2.

Since 2k/2 = 2
√
2
k−2

, it suffices to have n ≤ c
√
2
e k2

k/2, where c = ( 2
ek2 )

1/(k−2) k−2
k . Since

c→ 1 as k → ∞, the claimed bound holds. �

Although we only gained factor
√
2, it is best we have so far. By using general version

of the local lemma, we can actually prove R(k, 3) = Ω(k2/ log2 k) and R(k, 4) > k5/2+o(1).

By considering red edges as edges and blue edges as non-edges, this implies that there

exists a triangle-free graph with independence number at most k with ck2/ log2 k vertices.

Hence, a graph with chromatic number at least s = k/ log2 k and the number of vertices

at most s2 log2 s.

Theorem 5.7 (Erdos, 1961). R(3, k) ≥ Ω( k2

log2 k
).

Proof. Generate a random graph with vertex set [n] by letting edge edge occur with

probability p which we determine later. We must avoid
(

n
3

)

possible triangles, each with

probability p3 and
(n
k

)

independent k-sets, each with probability (1− p)(
k
2), occurences of

these are our events Ai.

We can let N+
D (i) in the local lemma correspond to those events determined by edge

sets intersecting the edge set for Ai.

# tirangles in N+
D (i) # k-sets in N+

D (i)x

Ai is triangle < 3n <
(

n
k

)

Ai is k-sets <
(k
2

)

n <
(n
k

)

We want to find weights y for triangle and z for k-sets such that

p3 < y(1− y)3n(1− z)(
n
k) and (1− p)(

k
2) < z(1− y)k

2n/2(1− z)(
n
k).

First, consider k, p, y, z as all functions of n, and later we will consider n as a function of k.

We choose y = p3(1+ δ) for some δ > 0 and y, z small enough so that (1− y)3n, (1− z)(
n
k)

approach to 1. For this, we want

ny → 0 and

(

n

k

)

z → 0.

To guarantee this, let z =
(n
k

)−(1+δ)
and let p = c1n

−1/2 for some constant c1. This

choices guaranatees ny → 0 and
(n
k

)

z → 0, so we have (1 − y)3n ∼ e−3ny → 1 and

(1− z)(
n
k) ∼ e−z(

n
k) → 1. So, the first inequality holds with this choice for large enough n

when δ > 0 is a fixed small number.

Consider the second inequality. As our choice of z ensures that the last term in the

second inequality is asymptotically 1, we only need to ensure e−pk
2/2 < z(1 − y)k

2n/2. If

we can choose k so that log
(n
k

)

∼ c2k
2n−1/2/2 for some constant c2, then we only need

pk2/2 > (1 + δ)c2n
−1/2k2/2 + yk2n/2.

For this, it suffice to have

c1 > (c2 + c31)(1 + δ).
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This holds for some appropriate choices of 0 < c1, c2, δ < 0. When k = o(n), we

have log
(n
k

)

∼ k log n/k, so we want to have k log n/k ∼ c2n
−1/2k2/2. Choosing k =

c−1
2 n1/2 log n accomplishes this. This gives n ∼ 1

4c
2
2k

2/ log2 k. �

5.2. Linear arboricity of graphs. Let’s collect the following Chernoff bound which will

be useful later. Note the denominator 4pn on the exponent.

Lemma 5.8 (Chernoff’s bound). Suppose that X1, . . . ,Xn are independent random vari-

ables such that Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi for all i ∈ [n]. Let X :=

X1 + · · ·+Xn and p = 1
n

∑

i∈[n] pi. Then for all 0 < t < pn/4, we have

Pr[|X − E[X]| ≥ t] ≤ 2e−t
2/(4pn).

Proof. Let Yi = Xi − pi and Y =
∑

i∈[n] Yi, then E[Y ] = 0 and it is enough to show that

Pr[|Y | > t] ≤ 2e−t
2/(4pn).

Let λ > 0, and consider the expectation of eλYi , then

E[eλYi ] = pie
λ(1−pi) + (1− pi)e

−λpi = e−λpi(pie
λ + (1− pi)).

Thus

E[eλY ] =
∏

i∈[n]
E[eλYi ] =

∏

i∈[n]
(pie

λ(1−pi) + (1− pi)) ≤ e−λpn(peλ + (1− p))n.

The final inequality comes from the concavity of f(x) = ln(xeλ + 1 − x) which yields
∑

f(pi) ≤ nf(p). Hence we have

Pr[Y ≥ t] = Pr[eλY > eλt] < E[eλY ]/eλt ≤ e−λpn(peλ + (1− p))ne−λt.

Let λ = ln[(1−pp )( t+np
n−(t+np))] and use ln(1 + x) ≥ x− x2/2 then we have

Pr[Y ≥ t] ≤ e−t
2/(2pn)+t3/(4p2n2) ≤ e−t

2/(4pn).

Now we need to estimate Pr[Y ≤ −t]. Note that a symmetric argument only gives

e−t
2/(2(1−p))n+t3/(4(1−p)2n2) bound which is not what we want.

Again, we have E[e−λY ] ≤ eλpn(pe−λ + (1− p))n. Thus

Pr[Y ≤ −t] = Pr[e−λY ≤ eλt] ≤ eλpn(pe−λ + (1− p))ne−λt.

Use standard calculus to simplify the above expression and put λ = t/(np), then we have

Pr[Y ≤ −t] ≤ e−t
2/(4pn).

This proves the lemma. �

Definition 5.9. A linear forest is a disjoint union of paths. The linear arboricity la(G)

of G is the minimum number of linear forests in G whose union is the set of all edges of

G.

The following is a well-known conjecture raised by Akiyama, Exoo and Harary in 1981.

Conjecture 5.10 (The linear arboricity conjecture). The linear arboricity of a d-regular

graph is ⌈d+1
2 ⌉.
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As every linear forest has at most n − 1 edges, we have la(G) ≥ e(G)
n−1 = dn

2(n−1) > d/2.

This yields the lower bound for the conjecture. However, the upper bound is difficult. An

asymptotic upper bound was proved by Alon in 1988. We prove the following theorem.

Theorem 5.11. For every d-regular graph G, we have la(G) ≤ d
2 +O(d3/4 log1/2 d).

To make the analysis easier, we consider a directed version of the conjecture.

Definition 5.12. A d-regular digraph is a digraph where every vertex has out-degree d

and in-degree d. A linear directed forest is a disjoint union of directed paths. The dilinear

arboricity dla(G) of a digraph G is the minimum number of linear directed forests in G

whose union covers all edges of G.

Conjecture 5.13. For every d-regular digraph D, dla(D) = d+ 1.

Note that every 2d-regular graph can be oriented into a d-regular digraph. So this

conjecture implies the linear arboricity conjecture for even regular graphs.

We collect the following proposition to show what we want.

Proposition 5.14. Let H be a graph with maximum degree d and V (H) = V1 ∪ . . . Vr be

a partition of V into r sets. Suppose that for each i ∈ [r] we have |Vi| ≥ 2ed. Then there

is an independent set W that contains a vertex from each Vi.

Proof. Let g = ⌈2ed⌉ and delete some vertices if necessary to assume that |Vi| = g for

all i ∈ [r]. For each i ∈ [r], we pick a vertex in Vi independently uniformly at random,

and let W be the set of chosen vertices. We show that with positive probability, W is an

independent set. As we only choose one vertex from each Vi, we may assume that H has

no edges inside Vi for any i ∈ [r].

For each edge f ∈ E(H), let Af be the event that W contains both endpoints of f .

Then Pr[Af ] ≤ 1
g2 . Moreover, if f ⊆ Vi∪Vj, then Af is mutually independent of all events

{Af ′ : f ′ ∩ (Vi ∪ Vj) = ∅}. Thus the dependency digraph for the events Af : f ∈ E(H) has

maximum degree less than 2g∆(H) = 2gd. As e · 2gd · (1/g2) < 1, Lovasz Local Lemma

implies that with positive probability none of the events Af happen. This means that W

is an independent set containing a vertex from each Vi, with positive probability. This

concludes the proof. �

Now we use this to prove the above conjecture for graphs with large girth. Again, girth

of digraph is the length of the shortest (directed) cycle.

Theorem 5.15. Let D be a d-regular digraph with girth g ≥ 8ed. Then dla(G) = d+ 1.

Proof. By using Hall’s theorem, it is easy to prove that D can be decomposed into d

distinct 1-regular spanning digraphs F1, . . . , Fd, and each 1-regular spanning digraph is

a union of vertex disjoint cycles. Hence E(D) can be decomposed into E1, . . . , Er where

each Ei forms a cycle and |Ei| ≥ g ≥ 8ed.

We consider the line graph of the underlying graph of D, which is 4d − 2-regular. As

each Ei has size at least 8ed ≥ 2e(4d − 2), the previous proposition implies that there

exists a set M of edges of D which contains an edge of Ei and it forms a matching of the

underlying graph of D. Therefore M,F1 \M, . . . , Fd \M are d+ 1 directed linear forests
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covering all edges of D. Hence dla(D) ≤ d + 1. As D has d|D| edges and each directed

forest has |D| − 1 edges, so dla(D) ≥ |D|d
|D|−1 > d, so this shows the equality. �

Now our strategy of proving Theorem 5.11 is to first decompose the digraph into several

digraphs with high girth. For this, we prove the following lemma first.

Lemma 5.16. Let d be sufficiently large and let D be a d-regular digraph and let p ∈
[10

√
d, 20

√
d] be an integer. Then there exists a p-coloring of the vertices of D by the colors

[p] with the following: for each i ∈ [p] and v ∈ V (D), the number of out/in-neighbors of v

with color i is d/p± 5
√

d log d
p .

Proof. Let G be the underlying graph of D. Let f : V (D) → [p] be a random vertex

coloring of V obtained by chosing the color of each vertex independently uniformly at

random. For v, i, let A+
v,i be the event that X = the number of out neighbors of v with

color i is not d/p± 5
√

d/p
√
log d. As X is a binomial random vairiable, using Lemma 5.8

we have

Pr[A+
v,i] ≤

1

d4
.

Similarly, we define A−
v,i which also happens with probability at most 1/d4. As the events

A+
v,i or A

−
v,i are mutually independent of all events A+

u,j , A
−
u,j for all u that do not have a

common neighbor with v in G. Thus, the dependency digraph has maximum degree at

most (2d)2p. As e · (1/d4)((2d)2p+ 1) < 1, Lovasz local lemma implies that with positive

probability, no events A+
v,i or A

−
v,i holds. This provides the desired coloring f . �

Proof of Theorem 5.11. Let p be a prime satisfying 10d1/2 ≤ p ≤ 20d1/2. By using the

previous lemma, find a vertex-coloring f : V → [p] satisfying the conclusion of the lemma.

For each i ∈ [p], let Di be the spanning subgraph of D with edges {(u, v) ∈ E(D) :

f(v) ≡ f(u) + i(mod p)}. Then each Di forms a digraph such that all vertices have

in/out-degree d/p ± 5
√

d log d
p . For each i ∈ [p − 1], each Di has girth at least p as all

cycles in Di has length divisible by p. One can add vertices and edges to each Di to

convert it into a di-regular digraph D′
i of girth at least p where di = d/p + 5

√

d log d
p . By

the previous theorem, each D′
i decomposes into at most di + 1 directed linear forest, and

D0 decomposes into d/p+ 5
√

d log d
p digraphs with maximum out/in-degree one, and each

such graph decomposes into 2d/p + 10
√

d log d
p directed linear forests. In sum, we have

dla(G) ≤ (p− 1)(d/p + 5

√

d log d

p
) +

2d

p
+ 10

√

d log d

p
+ p− 1 ≤ d+O(d3/4(log d)1/2).

�

5.3. Lopsided Local Lemma. Note that in the proof of Local lemma, the equality in

(5.1) does not have to be equality. As long as we have Pr[Ai |
∧

ℓ∈S2
Aℓ] ≤ Pr[Ai], the

proof works. This motivates the following definition.

Definition 5.17. D is a negative dependency digraph for the events A1, . . . , An if for

every event Ai and subset S ⊆ [n] \N+
D (i), we have

Pr[Ai |
∧

ℓ∈S
Aℓ] ≤ Pr[Ai].
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Note that what we have above is equivalent to the following property: Pr[Ai |
∨

ℓ∈S Aℓ] ≥
Pr[Ai] for all S ⊆ [n] \ N+

D (i). This says that the out-neighborhood N+
D (i) contains all

events Aj satisfying Pr[Ai | Aj ] < Pr[Ai]. In other words, all events Aj to which Ai is

negatively related to are in N+
D (i), hence it is called a negative dependency digraph.

This definition with the proof of Local lemma yields the following theorem.

Theorem 5.18 (Lopsided Local Lemma). Let A1, . . . , An be events and suppose that

D is a negative dependency digraph on the vertex set [n] and suppose that there exists

x1, . . . , xn ∈ (0, 1) such that for every i ∈ [n] we have Pr[Ai] ≤ xi
∏

j∈N+
D(i)(1− xj). Then

Pr[
∧

i∈[n]
Ai] ≥

∏

i∈[n]
(1− xi).

Or, we can even directly assume the last inequality of (5.1), the proof of Local lemma

still works.

Theorem 5.19 (Extended Lopsided Local Lemma). Suppose that D is a digraph on vertex

set [n] and there exists x1, . . . , xn ∈ (0, 1) such that for every i ∈ [n] and J ⊆ [n] \N+
D (i),

we have Pr[Ai |
∧

j∈J Aj] ≤ xi
∏

j∈N+
D(i)(1− xj). Then

Pr[
∧

i∈[n]
Ai] ≥

∏

i∈[n]
(1− xi).

These versions of local lemma is applicable to problems dealing with probability spaces

with more structures than independent random variables. We consider an application of

this to Latin transversals.

Definition 5.20. Let A be an n×n matrix with integer entries. A set {(i1, j1), . . . , (is, js)}
of pairs is called a partial (Latin) transversal of size s if i1, . . . , is are all distinct and

j1, . . . , js are all distinct and the entries Ai1,j1 , . . . , Ais,js are all distinct. A partial Latin

transversal is called a (Latin) transversal if s = n.

For given n × n matrix filled with numbers in [n], it is called a Latin square if every

row and every column contains each element of [n] exactly once. Ryser-Brualdi-Stein

conjecture states that every odd Latin square has a Latin transversal and every even

Latin square has a partial Latin transversal of size n− 1. Brouwer, De vries and Wieringa

proved that it has a partial Latin transversal of size n − √
n and this was improved in

1982 by Shor to n − O((log n)2) and recently by Keevash-Pokrovskiy-Sudakov-Yepremen

to n−O( logn
log logn).

On the other hand, Stein conjectured that any n × n matrix where each element of

appears in at most n entries must have a partial Latin transversal of size n− 1. Recently

Pokrovskiy and Sudakov disproved this by showing that there is a such matrix with no

partial Latin transversal of size n − 1
42 lnn. On the other hand Aharoni, Berger, Kotlar

and Ziv in 2017 proved that any such a matrix has a partial Latin transversal of size at

least 2n/3.

In the course of attacking Stein’s conjecture, Erdős-Spencer in 1991 proved the following

theorem. This states that Stein’s conjecture is true if we strengthen the condition on the

matrix.
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Theorem 5.21. Let k ≤ n−1
4e and no integer appears in more than k entries of n × n

matrix A. Then A has a Latin transversal.

Proof. Note that once we choose a permutation π on [n], then we obtain a collection

{(1, π(1)), . . . , (n, π(n))} of pairs. Using this correspondence, we say that π is a Latin

transversal if the corresponding set of pairs is a Latin transversal. We choose a permutation

π uniformly at random among all permutations on [n]. Let

T := {(i, j, i′, j′) : i < i′, j 6= j′, Ai,j = Ai′,j′}.

For each z ∈ T , let Az denote the event that π(i) = j, π(i′) = j′. Then, the event of

π being a Latin transversal is that none of these bad events Az happens. Then we have

P[Az] =
1

n(n−1) .

Now we define a graph G on the vertex set T by making (i, j, i′, j′) adjacent to (p, q, p′, q′)

if and only if {i, i′} ∩ {p, p′} 6= ∅ or {j, j′} ∩ {q, q′} 6= ∅. We replace each edge of G into

two oppositely directed edges to obtain a digraph D.

Claim 4. D is negative dependency graph for the events {Az : z ∈ T}.

Proof. To prove this, fix z and S ⊆ T \N+
D (z). We want to prove

Pr[Az |
∧

y∈S
Ay] ≤

1

n(n− 1)
= Pr[Az].

By symmetry, it suffices to consider for the case when z = (1, 1, 2, 2). For each i 6= j ∈ [n],

let

Pi,j = {π : π(1) = i, π(2) = j, π ∈
∧

y∈S
Ay}.

Then, this partitions the events
∧

y∈S Ay into n(n − 1) blocks. Now we will show that

|P1,2| ≤ |Pi,j |. To see this, first consider the case when {i, j}∩{1, 2} = ∅ for each π ∈ P1,2,

let π∗ be a permutation in Pi,j where

π∗(ℓ) =































π(ℓ) if π(ℓ) /∈ {1, 2, i, j}
i if π(ℓ) = 1

1 if π(ℓ) = i

j if π(ℓ) = 2

2 if π(ℓ) = j

Indeed, π∗ is in Pi,j as π∗(1) = i, π∗(2) = j and if π ∈ ∧y∈S Ay then π∗ ∈ ∧y∈S Ay because

the events Ay do not involve 1 or 2. This correspondence π → π∗ is clearly injective, so

we have |P1,2| ≤ |Pi,j|.
Note that the above π∗ is the composition (1, i) · (2, j) · π of transpositions (1, i) and

(2, j) with π.
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Similarly, we can take π∗ as follows for the rest of the cases.

π∗ =







































(1, 2) · π if (i, j) = (1, 2)

(1, i) · π if 2 = j, i 6= 1

(2, j) · π if 1 = i, j 6= 2

(2, j) · π if 1 = i, j 6= 2

(21i) · π if j = 1, i 6= 2

(12j) · π if i = 2, j 6= 1

Again, this defines an injective map as before. Hence this shows that

P[A1,1,2,2 |
∧

y∈S
Ay] =

|P1,2|
∑

i 6=j |Pi,j |
≤ 1

n(n− 1)
.

�

Now we estimate the maximum out-degree of D. For given (i, j, i′, j′), there are at most

(4n − 4) choices for pairs (p, q) with p ∈ {i, i′} or q ∈ {j, j′}. For this fixed (p, q) there

are at most k − 1 pairs (p′, q′) with Ap,q = Ap′,q′ and (p, q) 6= (p′, q′). So, the maximum

out-degree d of D satisfies

(d+ 1) < (4n − 4)k ≤ n(n− 1)

e
.

Hence, if we let xz =
1
d+1 then we have

Pr[Ai] =
1

n(n− 1)
≤ 1

d+ 1
(1− 1

d+ 1
)d ≤ xi

∏

j∈N+
D(i)

(1− xj).

Hence the Lopsided Local Lemma implies that we can avoid all such events with positive

probability. This finishes the proof. �

5.4. Algorithmic aspects of Local Lemma. We often seek for an efficient algorithms

for the problems, either deterministic or randomized.

For example, in an undergraduate graph theory, we learned a simple example of ‘deran-

domization’ which converts a probabilistic argument into a deterministic polynomial-time

algorithm. A simplest way of derandomization is the method of conditional probabilities

which is illustrated in the following example.

Proposition 5.22. For fixed k, there exists a polynomial-time algorithm to color the edges

of Kn so that the number of monochromatic Kk is at most
(n
k

)

21−(
k
2).

Proof. Consider a complete graph Kn on vertex set [n] and consider a partial 2-coloring

f of E(Kn) which colors edges of a subgraph H of E(Kn). For each set S ∈
([n]
k

)

, we let

w(S) =











0 if f colors two edges in
(

S
2

)

by different colors

21−(
k
2) if no edge in

(S
2

)

is colored

2−r if f colors all but r edges in
(

S
2

)

using one color.

Let w(f) =
∑

S∈([n]
k )
w(S). Although this weight is a deterministic weight, it has the

following probabilistic interpretation. For given partial coloring f , we randomly color

remaining uncolored edges. The probability Pr[S is monochromatic] that S induces a

monochromatic k-clique in this experiment equals the weight w(S). Hence, w(f) = E[X :
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φ |E(H)= f ] where X is the number of monochromatic k-cliques in a random coloring φ,

where we condition on the event that the resulting coloring is f when it’s restricted to H.

So it’s a conditional expectation.

Now we choose an edge e not colored by f . Let f1, f2 be two extension of f by coloring

e with color 1, 2, respectively. As the weight is conditional expectation, we have w(f) =
1
2w(f1) +

1
2w(f2). Hence, there exists a choice i ∈ {1, 2} with w(f) ≥ w(fi). We color e

by the color i and we proceed in this manner. Since any edge we consider belongs to nk−2

cliques whose weight will be updated once we color the edges, the algorithm runs in time

O(nk). �

However, when we solve a problem by applying Local Lemma, it is difficult to imagine

how one can turn this proof into even an efficient randomized algorithm. Local lemma

shows that a given desired event holds with positive probability, but the probability can be

exponentially small in terms of the size of the problem. Consequently, one might have to

repeat the random process exponentially many times until one obtain a solution. However,

the folloiwng simple randomized algorithm by Moser 2009 and Moser-Tardos 2010 enable

us to turn most of the applications of Local Lemma into a randomized algorithm. We

consider the following set-up.

Set-up 5.23. Let Ω be a finite set and for each v ∈ Ω, let C[v] denote a random variable

and the random variables C[v] are mutually independent. Let I be an index set and for

each α ∈ I, there is a set A[α] ⊆ Ω and an event BAD[α] depending on (C[v] : v ∈ A[α])

with p[α] = Pr[BAD[α]]. Let α ∼ β if A[α] ∩A[β] 6= ∅ for each α, β ∈ I.

For example, consider the problem of avoiding monochromatic Kks in a random coloring

of Kn. We consider a random coloring of edges of Kn, Ω = E(Kn) and C[e] is a random

variable denoting the colors of edges e ∈ E(Kn). And I =
(V (Kn)

k

)

and A[α] = E(Kn[α])

for α ∈ I. Then BAD[α] is the event that α induces a monochromatic clique. In the

above set up, the relation ∼ yields a dependency graph on the events BAD[α].

Algorithm 5.24 (Moser’s fix-it algorithm). For each v ∈ Ω, choose C[v] at random. Pick

one arbitrary bad event BAD[α] occurred and select all the C[v] at random again for all

v ∈ A[α]. Repeat this while there’s bad events occured.

Note that resampling all C[v]s might induces some other bad events. But we just keep

repeating this, while hoping all bad events will disappear at some point.

Definition 5.25. Let LOG be the sequence α1α2 . . . αu where αt is the α selected at t-th

time in the above algorithm and let TLOG = u.

In order to analyze the LOG above, we introduce the following concept of Moser tree.

Definition 5.26. The depth of a vertex in a rooted tree is its distance from the root, and

the depth of a rooted tree is the maximum depth of its vertices. A Moser Tree is a finite

rooted tree T with labeling f : V (T ) → I satisfying the following:

(1) If u with label α is a child of v with label β, then α ∼ β.

(2) If u has label α and v has label β with α ∼ β, then u and v has different depths.



36 JAEHOON KIM

For a labelled rooted tree (T, f) with lables, let p(T ) =
∏

v∈V (T ) p(f(v)).

The reason why we define LOG and Moser trees are as follows. In the Moser’s fix-it

algorithm, we will obtain a sequence of labels as its LOG. We want to bound the probability

of getting a specific sequence as its LOG, so that we will be able to prove that the expected

length of the LOG is finite. For this, we will correspond a Moser tree T to a given possible

LOG, and show that p(T ) is an upper bound on the probability of having the sequence as

our LOG.

Definition 5.27. Let α1 . . . αu be a prefix of LOG. We associate to it a labeled rooted tree

Tu as follows. The root has label αu, and let t run from u−1 down to 1. If we do not have

αt ∼ αt′ for any t < t′ ≤ u for which αt′ has been already placed in Tu, then we ignore αt.

Otherwise, among all such t′, select one such that the vertex labeled αt′ is at the greatest

depth. (Ties can be broken arbitrarily) Add a vertex with label αt and make it the child of

the vertex labeled αt′ .

Claim 5. For a prefix α1 . . . αu of LOG, its corresponding labeled rooted tree Tu is a Moser

tree.

Proof. When a vertex with label β is created as a child of a vertex with label α, we must

have α ∼ β. Moreover, if two vertices at the same depth D has labels α ∼ β, the one

which was added later in the process must have been placed so that it has depth at least

D + 1, a contradiction. This proves the claim. �

Claim 6. For a prefix α1 . . . αv of LOG and u < v, the Moser trees Tu and Tv are not

equal.

Proof. Suppose Tu = Tv. Then we have αu = αv as they are the labels of two same Moser

trees. For all j ∈ [u], all αj in Tu must be also in Tv while Tv have an additional vertex

αv, hence |Tv| > |Tu| a contradiction. �

This claim shows that a LOG of length u will generate u distinct Moser trees. Hence,

E[TLOG] =
∑

n≥1

Pr[TLOG ≥ n] =
∑

T : a Moser tree

P[Tn = T for some n].

To show the following lemma, we define a weak Moser tree as follows.

Definition 5.28. A rooted tree with vertex labels in I is a weak Moser tree if the following

holds.

(1) If u with label α is a child of v with label β, then α ∼ β.

(2) Labels of the children of a vertex are all distinct.

Lemma 5.29. For any Moser tree T , we have

Pr[T = Tn for some n] ≤ p(T ).

Proof. Note that we will resample C[v] several times, and each resampling result is inde-

pendent with the previous ones. Hence, we may as well assume there are C[v, 0], C[v, 1], . . .

mutually independent identically distributed random variables.
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At the beginning of Moser’s fix-it algorithm, we use C[v, 0] and later if we resample

C[v] after using C[v, 0], . . . , C[v, t], we sample from C[v, t+ 1].

Let α1α2 . . . αu be the LOG which has Moser tree T . By deleting some unused labels

from the LOG, we assume that T has exactly u vertices, and w1, w2, . . . , wu are the cor-

responded vertices in T with wi being labeled with αi. For each i ∈ [n] and v ∈ A[αi], let

fi(v) = |{j ≤ i : v ∈ A[αj ]}| − 1.

For Tn = T to happen, it is necessary that BAD[αt] holds for all t. Then Pr[BAD[αt] |
∧

0≤t′<tBAD[αt′ ]] depends on (C[v, fi(v)] : v ∈ A[αt]). As all C[v, i] are mutually inde-

pendent, this happens with probability P[BAD[αt]] = p(αt). This proves that

Pr





∧

0≤t′<u
BAD[αt′ ]



 ≤
∏

0≤t≤u
Pr



BAD[αt] |
∧

0≤t′<t
BAD[αt′ ]



 = p(T ).

�

Now we estimate the following.

Lemma 5.30. Suppose that there exists x(α) ≥ p(α) for each α ∈ I such that

x(α) ≥ p(α)
∏

β∼α
(1 + x(β)).

Then E[TLOG] ≤∑α∈I x(α).

Proof. In order to upper bound E[TLOG], by the previous claim, we only have to bound
∑

T : a Moser tree

p(T ) ≤
∑

T : a weak Moser tree

p(T ).

Let w(D,α) =
∑

T : weak Moser tree with root
label α with depth ≤D

p(T ). Then, every weak Moser tree with root

labeled α decomposes into the root and some weak Moser tree with roots β ∼ α. Hence,

we have the following recursion.

w(D,α) = p(α)
∏

β∼α
(1 + w(D − 1, β)).

We show w(D,α) ≤ x(α) for all α ∈ I by induction on D. For D = 0, we have

w(0, α) = p(α) ≤ x(α). Suppose that w(D − 1, β) ≤ x(β) holds for all β ∈ I. Then the

above recursion implies

w(D,α) = p(α)
∏

β∼α
(1 + w(D − 1, β)) ≤ p(α)

∏

β∼α
(1 + x(β)) ≤ x(α).

Thus
∑

T : a weak Moser tree

p(T ) =
∑

α∈I
lim
D→∞

w(D,α) ≤
∑

α∈I
x(α).

This proves the lemma. �

Note that the condition Pr[Ai] ≤ xi
∏

j∈N+
D(i)(1 − xj) holds, then we let x(i) = xi for

all i ∈ I. As Pr[Ai] = p(i) and j ∈ N+
D (i) is same as i ∼ j in this set-up, for all α = i ∈ I,

we have

x(α) ≥ p(α)
∏

β∼α
(1− x(β))−1 ≥ p(α)

∏

β∼α
(1 + x(β)).
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Thus, as long as the Local Lemma works, then the above lemma ensures that the Moser’s

fix-it algorithm has expected TLOG at most
∑

α∈I xi. In most of the applications, there are

polynomially many bad events, and xi are polynomially small, this expectation is at most

a polynomial, say O(ns). Using Markov’s inequality, one can conclude that Moser’s fix-it

algorithm ends within a polynomial times O(ns+s
′
) with probability at least 1−O(n−s

′
).

In the symmetric case, with dependency digraph having degree at most d, taking x =

d−1 yields that ep(d+ 1) ≤ 1 implies E[TLOG] ≤ |I|
d .



PROBABILISTIC METHOD LECTURE NOTE 39

6. Correlation inequality

Consider a random graph G(n, p) and let H be the event that the random graph is

Hamiltonian and P be the event that the random graph is Planar. Intuitively, being

Hamiltonian suggests that it has many edges, and being planar suggests that it has a

few edges. Therefore, we might suspect Pr[P | H] ≤ Pr[P ], implying Pr[P ∧ H] ≤
Pr[H] ·Pr[P ].

Definition 6.1. A graph property is a collection of graphs. A graph property P is mono-

tonically increasing if for each G ∈ P and a supergraph G′ of G with V (G) = V (G′), we

have G′ ∈ P. A graph property P is monotonically decreasing if for each G ∈ P and a

subgraph G′ of G with V (G) = V (G′), we have G′ ∈ P.

Note that Hamiltonicity is a monotonically increasing property and Planarity is a mono-

tonically decreasing property. We want to consider some graph properties P,Q ⊆ 2(
[n]
2 )

where each of P,Q is either monotonically increasing or monotonically decreasing, we

want to compare two probabilities

Pr[G(n, p) ∈ P ∩Q] and Pr[G(n, p) ∈ P] ·Pr[G(n, p) ∈ Q].

In order to deduce the desired inequality, we will first prove a more general “the four

functions theorem” and deduce less general theorems “the FKG inequality” from it. Even-

tually the less general theorem will imply what we want.

Note that Pr[G(n, p) ∈ P] can be written as
∑

G∈P µ(G) where µ(G) = Pr[G(n, p) = G]

is the measure of a specific labeled graph. Moreover,
∑

G∈P
µ(G) =

∑

G: any labeled graphs

1P(G)µ(G).

By replacing the indicator function to more general functions, this motivates the following

theorem.

Theorem 6.2 (The FKG inequality). Let L be a finite distributive lattice, and let µ : L→
R
+ be a log-supermodular function. Then, for any two increasing functions f, g : L→ R

+,

we have
(

∑

x∈L
µ(x)f(x)

)(

∑

x∈L
µ(x)g(x)

)

≤
(

∑

x∈L
µ(x)f(x)g(x)

)(

∑

x∈L
µ(x)

)

.

We will later define the terms used here, like ‘distributive lattice’ and ‘log-supdermodular

functions’ and etc. However, notice that letting f(x) = 1P , g(x) = 1Q and µ(G) =

Pr[G(n, p) = G] and applying The FKG inequality will yields what we want, as 1P ·1Q =

1P∩Q. Moreover, the above inequality is regarding four functions µ ·f, µ ·g, µ ·f ·g, µ with

certain good property. By analyzing the essential properties of these functions making the

inequality true, we can make the statement more abstract to obtain the following more

general theorem, called the four function theorem.

Note that a graph G can be identified with a subset A of [n] if we identify each pair

in
(V
2

)

with a number in [n] when n =
(|V |

2

)

. So, the set-up in the following subsection is

more general than what we want.
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6.1. The four function theorem. Suppose n ≥ 1 and let 2[n] denote the set of all subsets

of [n]. For a function ϕ : 2[n] → R
+ and a family A ⊆ 2[n], we write ϕ(A) =

∑

A∈A ϕ(A).

For A,B ⊆ 2[n], let

A ∪ B = {A ∪B : A ∈ A, B ∈ B} and A ∩ B = {A ∩B : A ∈ A, B ∈ B}.

Theorem 6.3 (The four function theorem). Let α, β, γ, δ : 2[n] → R
+ be four functions

from the set of all subsets of [n] to the nonnegative reals. Suppose that for every two

subsets A,B ⊆ [n], we have

α(A)β(B) ≤ γ(A ∪B)δ(A ∩B). (6.1)

Then for any two families of subsets A,B ⊆ 2[n], we have

α(A)β(B) ≤ γ(A ∪ B)δ(A ∩ B). (6.2)

Proof. It is easy to check that if we replace α, β, γ, δ with α · 1A, β · 1B, γ · 1A∪B, δ · 1A∩B,

(6.1) still holds and (6.2) stays the same. After this replacement, we can assume that

A = B = A ∩ B = A ∩ B = 2[n].

With this assumption, we prove the inequality using induction on n. Consider the base

case when n = 1. For each ϕ ∈ {α, β, γ, δ}, let ϕ0 = ϕ(∅) and ϕ1 = ϕ([1]). Then (6.1)

implies that we have

α0β0 ≤ γ0δ0, α0β1 ≤ γ1δ0, α1β0 ≤ γ1δ0, α1β1 ≤ γ1δ1. (6.3)

To show (6.2), we only have to prove the following.

(α0 + α1)(β0 + β1) ≤ (γ0 + γ1)(δ0 + δ1). (6.4)

If γ1 = 0 or δ0 = 0, then this is obvious from (6.3). Otherwise, (6.3) implies γ0 ≥ α0β0/δ0

and δ1 ≥ α1β1/γ1. So, (6.4) can be derived from

(
α0β0
δ0

+ γ1)(δ0 +
α1β1
γ1

) ≥ (α0 + α1)(β0 + β1)

which is equivalent to

(α0β0 + γ1δ0)(γ1δ0 + α1β1) ≥ (α0 + α1)(β0 + β1)γ1δ0

also equivalent to

(γ1δ0 − α0β1)(γ1δ0 − α1β0) ≥ 0.

This follows from (6.3). This complete the proof for n = 1.

Suppose that the theorem holds for n − 1. For each ϕ ∈ {α, β, γ, δ} and A ⊆ [n −
1], let ϕ′(A) = ϕ(A) + ϕ(A ∪ {n}). As ϕ′(2[n−1]) = ϕ(2[n]), we only have to prove

α′(2[n−1])β′(2[n−1]) ≤ γ′(2[n−1])δ′(2[n−1]). For this we want to use the induction hypothe-

sis, so we only have to check the assumption (6.1) for α′, β′, γ′, δ′ on [n− 1].

Fix A′, B′ ⊆ [n− 1], and let α, β, γ, δ be functions on 2[1] with

α(∅) = α(A′), α([1]) = α(A′ ∪ {n})
β(∅) = β(B′), β([1]) = β(B′ ∪ {n})

γ(∅) = γ(A′ ∪B′), γ([1]) = γ(A′ ∪B′ ∪ {n})
δ(∅) = δ(A′ ∩B′), δ([1]) = δ((A′ ∩B′) ∪ {n}).
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Then (6.1) implies that we have α(S)β(R) ≤ γ(S ∪R)δ(S ∩R) for all S,R ⊆ [1], hence by

the case n = 1 of the statement we already proved, we have

α′(A′)β′(B′) = α(2[1])β(2[1]) ≤ γ(2[1])δ(2[1]) = γ′(A′ ∪B′)δ′(A′ ∩B′).

This is the desired inequality so that (6.1) holds for α′, β′, γ′, δ′ on [n − 1]. Hence we

have α′(A′)β′(B′) ≤ γ′(A′ ∪ B′)δ′(A′ ∩ B′). Induction hypothesis yields that we have

α′(2[n−1])β′(2[n−1]) ≤ γ′(2[n−1])δ′(2[n−1]) this implies that α(2[n])β(2[n]) ≤ γ(2[n])δ(2[n]).

Again, as we have replaced α, β, γ, δ with α ·1A, β ·1B, γ ·1A∪B, δ ·1A∩B at the beginning,

this implies (6.2), concluding the proof of the theorem. �

This theorem actually is about more general structures than just the subsets of [n].

Definition 6.4. A lattice is a partially ordered set in which every elements x and y have

a unique minimal upper bound x ∨ y called the join of x and y, and a unique maximal

lower bound x∧y called the meet of x and y. A lattice L is distributed if for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ⇔ x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 6.5. For two sets X,Y ⊆ L, define X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y } and

X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y }.

For example, considering partially ordered set on L ⊆ 2[n] ordered by inclusion, which

is closed under the union and intersection is a distributive lattice. Here, the join is same

as the union and meet is same as the intersection. It is standard to check that every finite

distributive lattice L is isomorphic to a sublattice of 2[n] for some n. This fact generalize

the previous theorem to the following.

Theorem 6.6. Let L be a finite distributive lattice and let α, β, γ and δ be four functions

from L to R
+ such that α(x)β(y) ≤ γ(x∨ y)δ(x∧ y) holds for all x, y ∈ L. Then for every

X,Y ⊆ L, we have α(X)β(Y ) ≤ γ(X ∨ Y )δ(X ∧ Y ).

6.2. The FKG inequality. Using the four function theorem, we can prove the FKG

inequality.

Definition 6.7. A function µ : L → R
+ where L is a finite distributive lattice is called

log-supermodular if µ(x)µ(y) ≤ µ(x∨y)µ(x∧y) for all x, y ∈ L. A function f : L→ R
+ is

increasing if f(x) ≤ f(y) whenever x ≤ y and decreasing if f(x) ≥ f(y) whenever x ≤ y.

Now we prove the folowing theorem.

Theorem 6.8 (The FKG inequality). Let L be a finite distributed lattice, and let µ : L→
R
+ be a log-supermodular function. Then, for any two increasing functions f, g : L→ R

+,

we have
(

∑

x∈L
µ(x)f(x)

)(

∑

x∈L
µ(x)g(x)

)

≤
(

∑

x∈L
µ(x)f(x)g(x)

)(

∑

x∈L
µ(x)

)

.

Proof. Define four functions α = µ · f , β = µ · g, γ = µ · f · g and δ = µ. We claim that

these functions satisfy the hypothesis of Theorem 6.6. Indeed, as f, g are increasing and
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µ is log-supermodular, for x, y ∈ L then we have

α(x)β(y) = µ(x)f(x)µ(y)g(y) ≤ µ(x ∨ y)f(x)g(y)µ(x ∧ y) ≤ µ(x ∨ y)f(x ∨ y)g(x ∨ y)µ(x ∧ y)
= γ(x ∨ y)δ(x ∧ y).

Thus, by Theorem 6.6, we have α(L)β(L) ≤ γ(L)δ(L), proving the inequality. �

Note that if f, g are decreasing, then the proof still works by switching the roles of

γ, δ. If f is increasing and g is decreasing, the opposite inequality holds. This can be

proved by applying the above theorem to two increasing functions f(x), k − g(x) where k

is maxx∈L g(x).

Again, one can consider µ as a measure on L.

Definition 6.9. Consider a finite set N . Let A be a family of subsets of N is mono-

tonically decreasing if A ∈ A and A′ ⊆ A implies A′ ∈ A. Similarly, it is monotonically

increasing if A ∈ A and A′ ⊇ A implies A′ ∈ A.

We consider N =
([n]
2

)

, then this coincides with the definition on the set of graphs.

Let |N | = m, and consider a real vector (p1, . . . , pm) where 0 ≤ pi ≤ 1. Consider the

probability space whose elements are all members of 2N where for each A ⊆ N , Prp[A] =
∏

i∈A pi
∏

j /∈A(1 − pj). Define µ = µp : 2
N → R

+ by µ(A) = Pr[A]. With this, it is easy

to check that µ is log-supermodular. Moreover, we have µ(A)µ(B) = µ(A ∪B)µ(A ∩B).

Applying FKG inequality, we obtain the following.

Theorem 6.10. Let A,B be two monotonically increasing families of subsets of N and

let C,D be two monotonically decreasing families of subsets of N . Then for any real vector

p = (p1, . . . , pm), 0 ≤ pi ≤ 1, we have

Prp[A ∩ B] ≥ Prp[A] ·Prp[B],
Prp[C ∩ D] ≥ Prp[C] ·Prp[D],

Prp[A ∩ C] ≤ Prp[A] ·Prp[C].

Note that with this set up and letting N =
(

[n]
2

)

, we obtain the probability space of

G(n, p), concluding

Theorem 6.11. Let Q1, . . . ,Q4 be graph properties where Q1,Q2 are monotonically in-

creasing and Q3,Q4 are monotonically decreasing. Let G = G(n, p) be a graph obtained

from the binomial random graph model. Then

Pr[G ∈ Q1 ∩ Q2] ≥ Pr[G ∈ Q1] ·Pr[G ∈ Q2],

Pr[G ∈ Q3 ∩ Q4] ≥ Pr[G ∈ Q3] ·Pr[G ∈ Q4],

Pr[G ∈ Q1 ∩ Q3] ≤ Pr[G ∈ Q1] ·Pr[G ∈ Q3].
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7. Martingales and tight concentrations

Assume that we are interested in a random variable X. As an example, you might

consider the number of heads you get after flipping coins n times. The value of X can be

computed thought a process, which yields intermediate values X0,X1, . . . ,Xn = X. In our

example, Xi is the number of heads in the first i coin tosses. We know E[X] = n/2, but

can we show that |X − E[X]| is small with a very high probability (tight concentration)?

More generally, we expect Xi to be close to f(i) = i/2, so f(i) is ’the expected behavior’

of the random variable Xi, and we wish to show that Xi is not too far from f(i) with high

probability. This can be shown if the expected value of Xi+1−Xi is same as f(i+1)−f(i)
and |Xi+1−Xi| is never too big. These two conditions are very natural condition to obtain

tight concentrations. Let’s first focus on the first condition. As this function f(i) can vary

over various random variables, and it’s not convenient to deal with, let X ′
i = Xi − f(i).

Then it suffices to show that X ′
i is close to zero. Conventionally, we instead consider

X ′
i = Xi − f(i) + X0 so that it is enough to show that X ′

i is close to X0. With this set

up, the first condition become that ”the expected value of X ′
i −X ′

i+1 is zero. We give the

following name to random variables satisfying this condition.

Definition 7.1. A martingale is a sequence of random variables X0,X1, . . . ,Xm such that

for every i and x0, . . . , xi ∈ R, we have

E[Xi+1 | X0 = x0, . . . Xi = xi] = xi.

In other words, we might just write E[Xi+1 | X0, . . . ,Xi] = Xi instead of the above

equation.

As an example, consider a gambler with initial amount of money X0. Each time the

gambler flips a fair coin and if it’s head the gambler earns 1 otherwise the gambler loses

1. As the game is fair, it is easy to check E[Xi+1|X0, . . . ,Xi] = Xi.

We might change the game a bit. Assume that a gambler can decide the amount of

money the gambler can bet. If the coin is head, the gambler earns the money as much as

the gambler and otherwise loses the money the gambler bet. The gambler might decide the

amount of money the gambler bet based on the previous history X0, . . . ,Xi. For example,

the gambler can double the bet until the gambler win. However, no matter what strategy

the gambler uses, we still have the equality E[Xi+1|X0, . . . ,Xi] = Xi. Hence X0, . . . ,Xm

is still a martingale.

In many of our applications, the martingale we deal with is of the following form.

Definition 7.2. Suppose that we have random variables X1, . . . ,Xn which are not neces-

sarily independent, and each Xi has a value in Vi and let f : V1 × · · · × Vn → R. Let

Yi = E[f(X1, . . . ,Xn) | X1, . . . ,Xi].

Then Y0, Y1, . . . , Yn forms a martingale and this is called the Doob martingale or the ex-

posure martingale.

Note that Yi is also a random variable as the values of X1, . . . ,Xi are randomly de-

termined and these values determine the value of Yi. Moreover, we can easily check that

E[Yi+1 : Y0, . . . , Yi] = Yi. Let’s see some examples of the Exposure martingale.
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Definition 7.3 (The edge exposure martingale). Consider the random graph G(n, p). Let

e1, . . . , em be an enumeration of pairs in
([n]
2

)

and let f be any graph theoretic function,

and let G be the random graph drawn from the distribution G(n, p). Let Ii be the indicator

random variable for the event ei ∈ E(G). Let Xi = E[f(G) : I1, . . . , Ii], then X0, . . . ,Xm

is an martingale called the edge exposure martingale.

Definition 7.4 (The vertex exposure martingale). Consider the random graph G(n, p).

Let f be any graph theoretic function, and v1, . . . , vn be an enumeration of [n] and let G

be the random graph drawn from the distribution G(n, p). Let Ii ∈ {0, 1}i−1 be a vector

where Iij is the indicator random variable for the event vjvi ∈ E(G) for each j ≤ i − 1.

Let Xi = E[f(G) : I1, . . . , Ii], then X0, . . . ,Xm is an martingale called the vertex exposure

martingale.

7.1. Concentration inequality. Where does the name ‘martingale’ comes from? In a

martingale X0, . . . ,Xm, when Xi is fixed, Xi+1 is somewhat tied to Xi. So Xi+1 tends to

not to be deviated too much from Xi, so hopefully we might be able to anticipate the value

of Xm with a good probability. However this is not true in general. It could be that Xi+1

is Xi +M or Xi −M with probability 1/2 where M is very large, then our anticipation

would be always wrong with probability more than 1/2. However, as long as we can limit

the deviation of Xi+1 from Xi, we can prove the following concentration inequality.

Theorem 7.5 (Azuma’s inequality). Let X0, . . . ,Xm be a martingale with |Xi+1−Xi| ≤ ci

for all i < m. For λ > 0, we have

Pr[|Xm −X0| > λ] ≤ 2 exp(− λ2

2
∑

i c
2
i

).

Proof.

Claim 7. For a random variable X with E[X] = 0 and |x| ≤ c, we have

E[eX ] ≤ ec + e−c

2
≤ ec

2/2.

Proof. Note that the function ex is convex function on [−c, c], hence we have ex ≤ 1
2c((c−

x)ec + (c+ x)e−c) = ec+e−c

2 + ec−ec
2c x. This implies that

E[eX ] ≤ ec + e−c

2
≤ ec

2/2.

The last inequality can be checked using Taylor expansion. �

Replace Xi with Xi −X0 if neccesary to assume X0 = 0. Let Yi = Xi −Xi−1, then we

have |Yi| ≤ ci and E[Yi : X0, . . . ,Xi−1] = 0, hence we have

E[etYi | X0, . . . ,Xi−1] ≤ et
2c2i /2.

Moreover, we have

E[etXi ] = E[etXi−1+tYi ] = E[E[etYi | Xi−1]e
tXi−1 ] ≤ et

2c2i /2E[etXi−1 ].

We repeat this for each i = m,m− 1, . . . , 1, then we obtain

E[etXm ] ≤ exp(
t2
∑

i c
2
i

2
).
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Hence, by Markov’s inequality, and applying t = λ(
∑

c2i )
−1, we have

Pr[Xn ≥ λ] ≤ e−tλE[etXn ] ≤ exp(−tλ+
t2
∑

i c
2
i

2
) = exp(− λ2

2
∑

c2i
).

By a symmetric argument, we also obtain

Pr[Xn ≤ λ] ≤ exp(− λ2

2
∑

c2i
).

which yields the desired inequality �

Let Ω = AB be the set of functions g : B → A and we define a measure by fixing values

pab and setting Pr[g(b) = a] = pab where the values g(b) are mutually independent and
∑

a∈A pab = 1. We fix a sequence of sets (called a gradation)

∅ = B0 ⊆ B1 ⊆ · · · ⊆ Bm = B.

Let L : AB → R be a function and for each h ∈ AB , we define a martingale X0,X1, . . . ,Xm

with

Xi(h) = E[L(g) : g(b) = h(b) for all b ∈ Bi].

Definition 7.6. For c = (c1, . . . , cm), a function L satisfies the c-Lipschitz condition

relative to the gradation if for each i, we have

h, h′ differs only on Bi+1 −Bi ⇒ |L(h)− L(h′)| ≤ ci.

The c-Lipschitz condition indicates (c, . . . , c)-Lipschitz condition and the Lipschitz condi-

tion indicates 1-Lipschitz condition.

Theorem 7.7. Let L satisfy the c-Lipschitz condition relative to the gradation ∅ = B0 ⊆
· · · ⊆ Bm = B, then the corresponding martingale Xi(h) = E[L(g) : g(b) = h(b) for all b ∈
Bi] satisfy |Xi+1(h)−Xi(h)| ≤ ci for all i < m and h ∈ AB.

Proof. Let g ∈ AB be a random function drawn from AB according to the measure defined

before. Hj := {h′ ∈ AB : h(b) = h′(b) for all b ∈ Bj}, then we have

Xi+1(h) =
∑

h′∈Hi+1

L(h′)Pr[g = h′ | g(b) = h(b) for all b ∈ Bi+1] =
∑

h′∈Hi+1

L(h′)wh′ ,

where wh′ = Pr[g = h′ | g(b) = h(b) for all b ∈ Bi+1]. For each h′ ∈ Hi+1, let H[h′] =

{h∗ ∈ AB : h∗(b) = h′(b) for all b /∈ Bi+1 −Bi}. Then, we have

Xi(h) =
∑

h′′∈Hi

L(h′′)Pr[g = h′′ | g(b) = h(b) for all b ∈ Bi]

=
∑

h′∈Hi+1

∑

h∗∈H[h′]

L(h∗)Pr[ g(b)=h∗(b)
for all b∈Bi+1

| g(b)=h∗(b)
for all b∈Bi

] ·Pr[g = h∗ | g(b)=h∗(b)
for all b∈Bi+1

]

=
∑

h′∈Hi+1

∑

h∗∈H[h′]

L(h∗)qh∗wh′ ,

where qh∗ = Pr[ g(b)=h∗(b)
for all b∈Bi+1

| g(b)=h∗(b)
for all b∈Bi

]. Here, we obtain the last inequality because

h∗ ∈ H[h′], which implies h′(b) = h∗(b) for all b ∈ B \ Bi+1 and the values g(b) are
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mutually independent. Thus

|Xi+1(h)−Xi(h)| =

∣

∣

∣

∣

∣

∣

∑

h′∈Hi+1

wh′



L(h′)−
∑

h∗∈H[h′]

L(h∗)qh∗





∣

∣

∣

∣

∣

∣

≤
∑

h′∈Hi+1

wh′
∑

h∗∈H[h′]

∣

∣(L(h′)− L(h∗))qh∗
∣

∣

≤ ci
∑

h′∈Hi+1

wh′
∑

h∗∈H[h′]

qh∗ ≤ ci.

�

This together with Azuma’s inequality yields the following.

Theorem 7.8. Let L satisfy the c-Lipschitz condition relative to a gradation ∅ = B0 ⊆
· · · ⊆ Bm = B. Then for all λ,

Pr[|L(g) − µ| ≥ λ] ≤ 2 exp(− λ2

2
∑

i c
2
i

).

Let’s consider some easy applications of Martingale. Let g be the random function

from [n] to [n] chosen from all nn possible functions uniformly at random. Let L(g) be the

number of values not in the range of g, meaning L(g) = |[n]\g([n])|. Then the expectation

can be computed by using the linearity of expectation that E[L(g)] = n(1 − 1
n)
n = n±1

e .

Let B0 = ∅ ⊆ · · · ⊆ Bn with Bi = [i] be a gradation. It is easy to see that L satisfies

the Lipschitz condition relative to this gradation as changing the value of g(i) can change

L(g) by at most 1. Thus, Azuma’s inequality shows the following concentration.

Theorem 7.9. Pr[|L(g) − n
e | > λ

√
n+ 1] ≤ 2e−λ

2/2.

7.2. Clique number and chromatic number. Now we consider the concentration

of a graph parameter of random graphs. Of course, it varies over the resulting graph

G ∼ G(n, 1/2), but we can show that the χ(G) is very close to some number with high

probability.

Let f(x) =
(

n
x

)

2−(
x
2) and let k0 be the number satisfying f(k0 − 1) > 1 ≥ f(k0). Let

k = k0 − 4, then we have k = (2 + o(1)) log2 n and f(k) > n3+o(1).

Theorem 7.10. There exists a constant c > 0 with Pr[ω(G) < k] ≤ e
− cn2

log8 n .

Proof. To prove this, we want to show a concentration of ω(G). However, this is difficult

to control. Because, if we want to prove that it is concentrated near E[ω(G)] ≃ Θ(log n),

then the Azuma’s inequality give an upper bound of the probability O(e−ε
2E[α(G)]2) which

is not small enough for our purpose. Hence, we consider the following random variable.

Let Y = Y (G) be the maximum size of a family of of edge-disjoint cliques of size k. In

this way, the E[Y ] becomes much larger, so we can show better concentration.

Claim 8. E[Y ] ≥ (1 + o(1)) n
2

2k2
.

Proof. Let K denote the family of k-cliques of G, then µ := E[|K|] =
(n
k

)

2−(
k
2) = f(k) >

n3+o(1). LetW be the number of unordered pair {C1, C2} of k-cliques of G with |C1∩C2| >
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1. Then

E[W ] =
∑

A 6=B∈(nk),|A∩B|>1

Pr[G[A] = Kk ∧G[B] = Kk]

=
1

2

∑

A

Pr[G[A] = Kk]
∑

B:|A∩B|>1

Pr[G[B] = Kk | G[A] = Kk] =
1

2
µ∆∗.

where ∆∗ =
∑

B:|A∩B|>1Pr[G[B] = Kk | G[A] = Kk], then we have

∆∗ =
k−1
∑

i=2

(

k

i

)(

n− k

k − i

)

2(
i
2)−(

k
2) = µ

k−1
∑

i=2

g(i),

where g(i) =
(ki)(

n−k
k−i)

(nk)
2(

i
2). Here g(2) = (1+o(1))k4/n2 and g(k−1) = (2+o(1))kn2−k/µ <

o(g(2)) as µ > n3+o(1) and 2−k = n−2+o(1). By some calculations, one can show that
∑

3≤i≤k−1 g(i) = o(g(2)). Hence, we have

E[W ] = (1 + o(1))
µ2k4

2n2
.

Now we use alteration method. For each C ∈ K, we add it to C independently at

random with probability q, which we determine later. LetW ′ be the number of unordered

pair {C1, C2} with C1, C2 ∈ C with |C1 ∩ C2| > 1. Then

E[W ′] = q2E[W ] = (1 + o(1))
µ2k4q2

2n2
.

We delete one set of each such pair {C1, C2} from C to obtain a set C∗ of edge-disjoint

k-cliques of G. Then

E[Y ] ≥ E[|C∗|] ≥ E[|C|]− E[W ′] = µq − (1 + o(1))
µ2k4q2

2n2
= (1 + o(1))

n2

2k4
,

if we let q = n2/(µk4). This proves the claim. �

Now, enumerate the pairs in
([n]
2

)

into e1, . . . , em withm =
(n
2

)

and let Bi = {e1, . . . , ei}.
Then the gradation B0 = ∅ ⊆ · · · ⊆ Bm and Y (G) satisfies the Lipschitz condition relative

to this gradation as changing whether ei lies in G = G(n, 1/2) only changes Y by 1. G

has no k-clique if and only if Y = 0, hence Azuma’s inequality gives that

Pr[ω(G) < k] = Pr[Y = 0] ≤ Pr[|Y − E[Y ]| ≤ E[Y ]]

≤ 2e
− E[Y ]2

2(n2) ≤ e−(c′+o(1))n2/k8 ≤ e−(c+o(1))n2/ log8 n.

�

Now we use this to prove the following theorem.

Theorem 7.11 (Bollobás, 1988). With high probability, we have χ(G) = (1+o(1)) n
2 log2 n

.

Proof. As α(G) = ω(G) has the same distribution as ω(G) for G = G(n, 1/2), we have

α(G) ≤ (2 + o(1)) log2 n with high probability. Hence with high probability we have

χ(G) ≥ n

α(G)
≥ (1 + o(1))

n

2 log2 n
.
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To show upper bound, let m = ⌊ n
log2 n

⌋. For any set S of m vertices the induced

subgraph G[S] has the distribution of G(m, 1/2). Let k = k0(m) − 4 as before, then

k = (2 + o(1)) log2 n. Then Pr[α(G[S]) < k] < e
− cm2

log8 m . As the number of such sets S is
(

n
m

)

< nm ≤ 2
n

log n , we have

Pr[α(G[S]) < k for some S ∈
(

[n]

m

)

] < 2
n

log2 n e
− cm2

log8 m = o(1).

Hence, with high probability, every m-sets contain an independent set of size k.

Suppose G has this property, then we take out an independent set of size k and take

this as a color class. We repeat this until there are less than m vertices left. then we give

each vertex a distinct color. Then we obtain that

χ(G) ≤ ⌈n−m

k
⌉+m ≤ n

k
+m ≤ (1 + o(1))

n

2 log2 n
.

This happens with high probability, so we have χ(G) = (1 + o(1)) n
2 log2 n

with high proba-

bility. �

Moreover, if p is much smaller, then we can get a much better concentration of the

chromatic number of G(n, p). The following theorem says that χ(G) is one of four values

with high probability.

Theorem 7.12. Let p = n−α with α > 5/6 fixed. Let G = G(n, p), then there exists

u = u(n, p) so that with high probability we have u ≤ χ(G) ≤ u+ 3.

Proof.

Claim 9. Fix c > 0. Then with high probability, every c
√
n vertices of G = G(n, p) can

be three-colored.

Proof. Let T be a minimal set of size t that is not three-colored. Then the minimality

ensures that any vertex x ∈ T has at least three other neighbors inside T . This implies

that G[T ] must has at least 3t/2 edges.

The probability that there exists a set T of size t with at most c
√
n vertices having at

least 3t/2 edges is at most

c
√
n

∑

t=4

(

n

t

)(
(

t
2

)

3t/2

)

p3t/2 ≤
c
√
n

∑

t=4

(
ne

t
(
te

3
)3/2n−3α/2)t ≤

c
√
n

∑

t=4

(cn
3
2
(5/6−α))t = o(1).

This proves the claim. �

Let ε > 0 be an arbitrary positive number. We prove that if n is large enough, then we

have u ≤ χ(G) ≤ u+ 3 for some u with probability at least 1− 3ε.

Let u be the least integer so that Pr[χ(G) ≤ u] > ε.

Let Y (G) be the minimal size of a set of vertices S for which G − S can be u-colored.

This Y (G) satisfies vertex Lipschitz condition as changes on the edges incident to one

vertex may change Y (G) by at most one. We consider the vertex exposure martingale

Yi = E[Y : G[{1, . . . , i}]]. Let µ = E[Y ] = Y0, we have

Pr[Y ≤ µ− λ
√
n] < e−λ

2/2 and Pr[Y ≥ µ+ λ
√
n] < e−λ

2/2.

Let λ be the number such that e−λ
2/2 = ε.
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By the definition of u, we have Y = 0 with probability at least ε. Hence, the first

inequality ensures that µ ≤ λ
√
n and the second inequality gives

Pr[Y ≥ 2λ
√
n] ≤ Pr[Y ≥ µ+ λ

√
n] ≤ ε.

Hence, with probability at least 1−ε, there is a u-coloring of all but at most c′
√
n vertices

for some constant c′ > 0 depending on ε. By the previous claim, with probability 1−o(1),
every c′

√
n vertices of G can be colored with 3 colors. Hence we have χ(G) ≤ u+ 3 with

probability at least 1− ε− o(1) ≥ 1− 2ε for large n.

On the other hand, by the minimality of u ensures that Pr[χ(G) ≥ u] ≥ 1− ε. Hence,

we have

Pr[u ≤ χ(G) ≤ u+ 3] ≥ 1− 3ε.

As ε > 0 can be arbitrary, we have χ(G) ∈ {u, u+1, u+2, u+3} with high probability. �

It is known that for α > 1/2, χ(G) is concentrated on at most two values. For G(n, 1/2)

on the other hand, it is recently proved by Heckel that χ(G(n, 1/2)) is not concentrated on

fewer than n1/4−o(1) consecutive integers. Hence, such a strong concentration for G(n, 1/2)

does not hold.
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7.3. Talagrand’s inequality and the concentration around the median. So far, we

have learned about concentrations around the expectation(=mean). One can also consider

a concentration around the median.

For example, consider a Lipschitz graph theoretic function f where f(G(n, 1/2)) has

the median m. Then A = {G : f(G) ≤ m} contains 1
2 · 2(n2) graphs. If f is a Lips-

chitz function, then the following would be a desired inequality leading towards a ‘one-

sided’ concentration: at least (1 − ε)2(
n
2) graphs can be obtained from a graph in A by

changing at most t adjacencies. As f is Lipschitz, this shows a one-sided concentration

Pr[f(G(n, 1/2)) ≤ m+ t] ≥ 1− ε as we wished.

As before, the set of graphs can be generalized into a collection of subsets of [n] for

appropriate n =
(|V |

2

)

. Thus, ths above discussion motivates to study the Hamming

distance over {0, 1}n. Let ρ be the Hamming distance over {0, 1}n and for A ⊆ {0, 1}n,
let B(A, s) = {y ∈ {0, 1}n : ρ(x, y) ≤ s for some x ∈ A}. A simple application of Azuma’s

inequality yields the following.

Theorem 7.13. Let λ > 0 and ε = e−λ
2/2 and let A ⊆ {0, 1}n with |A| ≥ ε2n. Then we

have |B(A, 2λ
√
n)| ≥ (1− ε)2n.

Proof. Choose a point z in {0, 1}n uniformly at random. For each y ∈ {0, 1}n, let X(y) =

minx∈A ρ(x, y). Let X0,X1, . . . ,Xn be the martingale by exposing one coordinate of z at

a time. Then the Lipschitz condition holds for X as |X(y) −X(y′)| ≤ 1 if y, y′ differ in

only one coordinate. Thus, we have the following where µ = E[X].

Pr[X < µ− λ
√
n] < e−λ

2/2 = ε and Pr[X > µ+ λ
√
n] < e−λ

2/2 = ε.

However, we have Pr[X = 0] = |A|2−n ≥ ε, this implies µ ≤ λ
√
n. Thus we have

Pr[X > 2λ
√
n] < ε.

As our choice of z is uniformly at random, we have

|B(A, 2λ
√
n)| = 2nPr[X ≤ 2λ

√
n] ≥ (1− ε)2n.

This proves the theorem. �

Let B(s) denote a ball of radius s about (0, 0, . . . , 0). The above inequality can be

rephrased as |A| ≥ |B(r)| ⇒ |B(A, 2λ
√
n)| ≥ |B(r + 2λ

√
n)| where r is not so much

smaller than n/2. Actually, this statement also holds when the condition on r is removed.

Harper 1966 proved that |A| ≥ |B(r)| → |B(A, s)| ≥ |B(r + s)| holds for all r, s.
In application, the Hamming distance is not exactly what we want. Imagine that we

are interested in the variable X which is the largest number of edge-disjoint k-cliques in a

graph G. Once we delete an edge to a graph G, then the value of X might or might not

change depending on which edge we delete. In other words, when we want to estimate f(x)

by using the Hamming distance between a point and x and a set A, some coordinates can

be more important than the other coordinate. In order to better cope with this situation,

we introduce the following definitions.

Let Ω =
∏

i∈[n]Ωi where each Ωi is a probability space and Ω has the product measure.

Let A ⊆ Ω and let ~x = (x1, . . . , xn) ∈ Ω.
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Definition 7.14. Let ρ(A,~x) be the least value such that for any ~α = (α1, . . . , αn) ∈ R
n

with |~α| = 1, there exists ~y = (y1, . . . , yn) ∈ A with
∑

xi 6=yi
αi ≤ ρ(A,~x).

For any real t ≥ 0, let At = {~x ∈ Ω : ρ(A,~x) ≤ t}.

Note that the above definition can deal with any choice ~α of weightings on coordinates

on Ω.

Theorem 7.15 (Talagrand’s inequality). For any A ⊆ Ω, we have

Pr[A](1 −Pr[At]) ≤ e−t
2/4.

In particular, we have a function f on Ω with the median m, then A = {~x : f(~x) ≤ m}
satisfies Pr[A] ≥ 1/2, and we obtain that Pr[At] is close to 1 when t is large. Hence

providing a concentration from above around the median. Similarly, we can take A = {~x :

f(~x) ≥ m} to obtain a concentration from below.

Definition 7.16. Let U(A,~x) = {~s ∈ {0, 1}n : ∃~y ∈ A such that xi 6= yi ⇒ si = 1}. In
other words, {i ∈ [n] : si = 1} contains a set of coordinates we need to change to obtain a

point in A from ~x.

Note that the Hamming distance between ~x and ~y ∈ A is same with |~s| for some

~s ∈ U(A,~x). As ρ(A,~x) is somehow ‘convex combination’ of normal Hamming distance,

the following theorem shows that ρ(A,~x) is the norm of a ‘convex combination’ of the

points ~y in U(A,~x). This provides an alternative characterization of ρ. Here, conv(X)

denotes the convex hull of X which is the smallest convex set containing X. We write

V (A,~x) = conv(U(A,~x).

Theorem 7.17.

ρ(A,~x) = min
~v∈V (A,~x)

|~v|.

Proof. Note that ρ(A,~x) is the least real number so that for all ~α with |~α| = 1 there exists

~s ∈ U(A,~x) with ~α · ~s ≤ ρ(A,~x).

Let ~v ∈ V (A,~x) be the point achieving the minimum. Consider the line from the origin

to ~v and the hyperplane P through ~v orthogonal to the line. Then P separates V (A,~x)

from the origin so that all ~s ∈ V (A,~x) have ~s · ~v ≥ ~v · ~v.
Let ~α = 1

|~v|~v, then all ~s ∈ U(A,~x) satisfies ~s · ~α ≥ ~v·~v
|~v| = |~v|. This proves ρ(A,~x) ≥

min~v∈V (A,~x) |~v|.
Conversely, take any ~α with |~α| = 1, then we have ~α · ~v ≤ |~v|. As we have ~v ∈ V (A,~x),

we may write ~v =
∑

λi~ti for some ti ∈ U(A,~x) with all λi ≥ 0 and
∑

λi = 1. Then we

have

|~v| ≥
∑

λi(~α · ~ti)

and hence there exists i such that ~α · ~ti ≤ |~v|. This proves that for any ~α with |~α| = 1,

there exists ~s ∈ U(A,~x) with ~α · ~s ≤ |~v|. Hence, we have ρ(A,~x) ≤ min~v∈V (A,~x) |~v|. �
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In case when Ω = {0, 1}n, then U(A,~0) is same as A and U(A,~x) is the set A′ obtained

from A by flipping coordinates on {i ∈ [n] : xi = 1}. Hence ρ(A,~x) is the Euclidean

distance from ~x to the convex hull of A′.

Theorem 7.18.
∫

Ω
exp

[

1

4
ρ2(A,~x)

]

d~x ≤ 1

Pr[A]
.

Proof. We use induction on n. For n = 1, ρ(A,~x) is 1 if ~x /∈ A and zero otherwise. So we

have
∫

Ω
exp

[

1

4
ρ2(A,~x)

]

d~x = Pr[A] + (1−Pr[A])e1/4 ≤ 1

Pr[A]

as the inequality u+ (1− u)e1/4 ≤ u−1 for 0 < x ≤ 1 holds.

Assume we have the result for n and consider Ω =
∏

i∈[n+1]Ωi. Write Ωn =
∏

i∈[n]Ωi.

Then any z ∈ Ω can be uniquely written z = (x,w) with x ∈ Ωn and w ∈ Ωn+1. Let

B = {x ∈ Ωn : (x,w) ∈ A for some w ∈ Ωn+1}

be the projection of A into Ωn. For each w ∈ Ωn+1, let

Aw = {x ∈ Ωn : (x,w) ∈ A}.

From this definition, we can observe the followings.

If ~s ∈ U(B,x), then (~s, 1) ∈ U(A, (x,w)).

If ~t ∈ U(Aw, x), then (~t, 0) ∈ U(A, (x,w)).

Hence, if ~s ∈ V (B,x) and ~t ∈ V (Aw, x), then (~s, 1) and (~t, 0) are in V (A, (x,w)). Thus,

for given λ ∈ [0, 1], we have

((1 − λ)~s+ λ~t, 1− λ) ∈ V (A, (x,w)).

The previous theorem implies that

ρ2(A, (x,w)) ≤ |(1− λ)~s + λ~t|2 + (1− λ)2 ≤ (1− λ)|~s|2 + λ|~t|2 + (1− λ)2.

By choosing ~s and ~t satisfying |~s| = ρ(B,x) and |~t| = ρ(Aw, x), we obtain

ρ2(A, (x,w)) ≤ (1− λ)2 + λρ2(Aw, x) + (1− λ)ρ2(B,x). (7.1)

Now we fix w and use the above to compute the integral as follows.
∫

x
exp[

1

4
ρ2(A, (x,w))] ≤ e(1−λ)

2/4

∫

x
(exp[

1

4
ρ2(Aw, x)])

λ(exp[
1

4
ρ2(B,x)])1−λ.

Using Hölder’s inequality, this is at most

e(1−λ)
2/4

[
∫

x
exp[

1

4
ρ2(Aw, x)]

]λ [∫

x
exp[

1

4
ρ2(B,x)]

]1−λ
.

Using induction hypothesis, this is at most

e(1−λ)
2/4(

1

Pr[Aw]
)λ(

1

Pr[B]
)1−λ ≤ 1

Pr[B]
e(1−λ)

2/4r−λ,
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where r = Pr[Aw]/Pr[B] ≤ 1. Now we wish to choose λ = 1+2 ln r for e−1/2 ≤ r ≤ 1 and

λ = 0 otherwise to optimize the above expression. By tedious calculations, we can check

e(1−λ)
2/4r−λ ≤ 2− r for the above choice of λ. Thus we have

∫

x
exp[

1

4
ρ2(A, (x,w))] ≤ 1

Pr[B]
(2− Pr[Aw]

Pr[B]
).

Now, we integrate this over w, then we have
∫

(x,w)∈Ω
exp[

1

4
ρ2(A, (x,w))] ≤ 1

Pr[B]
(2− Pr[A]

Pr[B]
) ≤ 1

Pr[A]
x(2− x),

where x = Pr[A]/Pr[B] ∈ [0, 1]. As x(2 − x) ≤ 1, this completes the induction step and

hence proves the theorem. �

Using the above theorem, we can prove Talagrand’s inequality as follows. Fix A and

consider a random variable X = ρ(A,~x) where ~x is chosen at random according to the

given probability distribution over Ω. Then Markov’s inequality yields

Pr[Ω \ At] = Pr[X ≥ t] = Pr[eX
2/4 ≥ et

2/4] ≤ E[eX
2/4]e−t

2/4.

The above theorem states that E[eX
2/4] ≤ 1/Pr[A] and this finishes the proof.

Now we consider applications of Talagrand’s inequality. In Ω =
∏

i∈[n]Ωi, we call

h : Ω → R a K-Lipschitz function if |h(x)− h(y)| ≤ K whenever x, y differ in at most one

coordinate.

Definition 7.19. Let f : N → N and h : Ω → R. We say that h is f -certifiable if whenever

h(x) ≥ s, there exists I ⊆ [n] with |I| ≤ f(s) so that all y ∈ Ω that agree with x on the

coordinates I have h(y) ≥ s.

As our choice of weighted Hamming distance was for arbitrary ~α, we can derive the

following corollary.

Theorem 7.20. Let f : N → N and h : Ω → R be a K-Lipschitz function which is f -

certifiable. Let x be a point randomly chosen from Ω according to the product measure and

X = h(x) be a random variable. Then, for any b, t, we have

Pr
[

X ≤ b− tK
√

f(b)
]

Pr [X ≥ b] ≤ e−t
2/4.

Proof. Let A = {x : h(x) < b− tK
√

f(b)}. Suppose that h(y) ≥ b, we claim y /∈ At. As h

is f -certifiable, there exists a set I of indices of size at most f(b) that certifies h(y) ≥ b.

Let αi = 0 for i /∈ I and αi = |I|−1/2 when i ∈ I.

Suppose y ∈ At. As ρ(A, y) ≤ t, by the definition of ρ, there exists z ∈ A such that
∑

i∈I:yi 6=zi |I|−1/2 ≤ t. Thus, z differs from y in at most t
√
I ≤ t

√

f(b) coordinates of I.

Let y′ agree with y on I and agree with z outside I. Then, by the certification, h(y′) ≥ b.

Now, y′ and z differ in at most t
√

f(b) coordinates and so by the Lipschitz condition, we

have

h(z) ≥ h(y′)− tK
√

f(b) ≥ b− tK
√

f(b),

but then z /∈ A, which is a contradiction. So, Pr[X ≥ b] ≤ 1 − Pr[At]. By Talagrand’s

inequality, we have

Pr[X < b− tK
√

f(b)]Pr[X ≥ b] ≤ e−t
2/4.
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As this holds for arbitrary t and the right hand side is continuous, we can replace < with

≤ as well. This proves the theorem. �

Again, this theorem yields a concentration of a random variable around its median. The

median is much more difficult to compute than the mean in general, but tight concentration

shows that the mean and median are not far away. Let’s consider some applications of

this theorem.

Theorem 7.21. Let x = (x1, . . . , xn) where each xi is independently and uniformly chosen

from [0, 1]. Let X = h(x) be the length of the longest increasing subsequence of x. Then

there exists m = Θ(n1/2) such that for any t ≥ 0, we have

Pr[|X −m| > tn1/4] ≤ 4e−Ω(t2).

Proof. We will take m as the median of X. We first want to show that m = Θ(n1/2). For

a given set I ⊆ [n] with |I| = k, the probability that (xi : i ∈ I) induces an increasing

subsequence is 1
k! ≤ ( ek )

k. Also there are
(n
k

)

≤ (enk )
k choices of I ⊆ [n] with size k. Hence,

for k = Cn1/2 for some large constant C, the probability that there are no increasing

subsequence of size k is at least

1− 1

k!

(

n

k

)

≥ 1− o(1).

Similarly, we can prove that with probability 1 − o(1) it does not contain any decreasing

sequence of length at least Cn1/2. Erdős–Szekeres theorem states that such a sequence

of length n contains an increasing subsequence of length at least 1
Cn

1/2. This shows that

Pr[ 1Cn
1/2 ≤ |X| ≤ Cn1/2] ≥ 1− o(1), hence we have m = Θ(n1/2).

Note that if we use Azuma’s inequality, then the concentration we can get is a concen-

tration with the window size O(n1/2), but it is not so good as m itself is Θ(n1/2). So we

use Talagrand’s inequality.

X is f -certifiable with f(s) = s as the s coordinates of the increasing subsequence

of length s certify that X ≥ s. Also f is a Lipschitz function. Let t′ be such that

t′m1/2 = tn1/4. Then we have

Pr[X < m− t′m1/2] ≤ e−t
′2/4Pr[X ≥ m]−1 ≤ 2e−t

′2/4.

Let b be such that b− t′b1/2 = m, hence b = m+ (1 + o(1))t′m1/2. Then we have

Pr[X > b] ≤ e−t
′2/4Pr[X ≤ m]−1 ≤ 2e−t

′2/4.

Combining this, we prove the theorem. �

Now we consider the clique number of the random graph G(n, 1/2) again. Again, recall

that we can consider this as a collection of
(n
2

)

independent random variables, where each

variable is the random variable indicating each pair being an edge. Note that the following

theorem yields a better concentration than Theorem 7.10.

Theorem 7.22. Let G, k be as in Theorem 7.10. then Pr[ω(G) < k] ≤ exp[−Ω( n2

ln6 n
)].

Proof. Let Y be the maximal number of edge-disjoint k-cliques. By Theorem 7.10, we

have E[Y ] = Ω(n2k−4) and Y is tightly concentrated around its mean. Hence the median

m of Y also satisfies m = Ω(n2k−4) with k = Θ(lnn) and Y is 1-Lipschitz. Also, Y is
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f -certifiable with f(x) =
(

k
2

)

s as the edges of the s-cliques certify that Y ≥ s. Hence we

have

Pr[Y ≤ m− tm1/2

(

k

2

)1/2

] < e−t
2/4Pr[Y ≥ m]−1.

Setting t = Θ(m1/2/k) so that m = tm1/2
(k
2

)1/2
, then we have

Pr[ω(G) < k] = Pr[Y = 0] < 2e−t
2/4 ≤ exp[−Ω(

n2

ln6 n
)].

�

7.4. Kim-Vu Polynomial concentration. We have learned about several concentra-

tion results. The simplest one was the Chernoff’s bounds which states that the sum of

independent random variables is concentrated around its mean. This is useful if, say, we

want to show that the number of edges of G(n, p) is concentrated as the number of edges

is
∑

ij∈([n]
2 )
1ij∈E(G(n,p)). In order to show that the number of triangles in G(n, p) is con-

centrated, we have to consider
∑

ijk∈([n]
3 )
1ij ·1ik ·1jk. This is a polynomial of independent

random variables. As the Chernoff’s bound is a general tool to prove a concentration when

this polynomial is of degree 1, one might ask whether there’s a general tool to deal with

more general polynomials. The approach of Kim and Vu is often useful. Note that as we

are dealing with indicator random variables, we have 1kij = 1ij for any k ≥ 1. Hence, we

assume that our polynomial f is a multilinear polynomial.

Let H = (V,E) be a hypergraph and let each edge e ∈ E(H) have a nonnegative

weight w(e). Let ti, i ∈ V (H) be mutually independent indicator random variables with

E[ti] = pi. Let

Y =
∑

e∈E(H)

we
∏

i∈e
ti.

We allow e = ∅, in this case, we let
∏

i∈e ti = 1. This yields a constant term, which is

not relevant to the concentration, but we allow constant term as it is convenient for us in

several ways.

Let S ⊆ V be a random set obtained by adding each i ∈ V to S independently with

probability pi. Then Y is the weighted number of hyperedge e in the restriction H[S] of

H to S. Let n = |V | and let k be the upper bound of the size of all hyperedges, which

yields the upper bound on the degree of the polynomial Y .

For A ⊆ V with |A| ≤ k, we truncate Y to YA as follows: for those terms
∏

i∈e ti with

A ⊆ e, we set ti = 1 for all i ∈ A, replacing the term by
∏

i∈e−A ti. All other terms

corresponding to e not containing A are deleted. In other words, YA is a partial derivative

of Y with respect to the ti, i ∈ A. Let EA = E[YA] and let Ei := max{EA : A ∈
(V
i

)

} and

let µ = E[Y ]. Let

E′ = max
1≤i≤k

Ei and E = max[µ,E′].

Then

Theorem 7.23 (Kim-Vu polynomial concentration). With the above hypothesis and ak =

8kk!1/2 and dk = 2e2, and for any λ > 1, we have

Pr
[

|Y − µ| > ak(EE
′)1/2λk

]

< dke
−λnk−1.
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We will not prove this theorem. To get the intuition, imagine we are revealing each

indicator variable one by one. Once t1, . . . , ti are revealed, we are above to choose ti+1.

Then the difference |E[Y : t1, . . . , ti, ti+1] − E[Y : t1, . . . , ti]| are somehow related to the

values EA where i + 1 ∈ A ⊆ {1, . . . , i + 1}. This gives us some intuition that the upper

bound on E′ above yielding concentration is somehow natural. We consider the following

simple applications of Kim-Vu polynomial concentration.

Theorem 7.24. Let p = n−α with 0 < α < 2/3. Fix a vertex x of G = G(n, p), an let

Y = Y (x) be the number of triangles containing x and µ = E[Y ] ∼ 1
2n

2−3α. Then there

exists ε = ε(α) > 0 depending on α such that for each δ > 0, we have

Pr[|Y − µ| > δµ] ≤ exp[−C(δ)nε].

Proof. The random graph G(n, p) is a collection of indicator random variable tij = 1ij∈G.

Then

Y =
∑

ij∈([n]−{x}
2 )

txitxjtij.

This is a polynomial of degree 3. For A = {xi}, we have EA = (n − 2)p2 and A =

{xi, xj, ij}, we have EA = 1, and when A = ∅, then we have EA = µ. For all other cases,

we have smaller value of EA. Hence E′ ≤ max[np2, 1]. If α < 1/2, then let ε = 1
6 (1 − α)

and if α ≥ 1/2, then let ε = 1
6 (2 − 3α). Then we have E′ ∼ cµn−6ε. By using Kim-Vu

polynomial concentration with λ = c′nε with small positive constant c′ = c′(δ), we have

Pr[|Y − µ| > δµ] ≤ exp[−Ω(nε)].

�
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8. The Poisson Paradigm

A discrete random variable X is said to have a Poisson distribution with the mean µ if

Pr[X = k] = µke−µ

k! for each k = 0, 1, 2, . . . .

Assume there are n events and they are all independent and each happens with prob-

ability p. When n is large and p is small, then np = µ is the expected number of events

happening. The number X of events happened, actually follows the binomial distribution

that Pr[X = k] =
(n
k

)

pk(1− p)n−k. However, if n is getting larger, then we can check

lim
n→∞

Pr[X = k] =
µke−µ

k!
.

Hence, if there are many rare events and we want to compute the probability that k of them

happens, we can approximate the probability by using Poisson distribution. But this is

under the condition that those events are independent. What if they are not independent,

but dependency is somewhat weak?

8.1. The Janson inequality. Consider the random graph G(n, p). What is the proba-

bility that it is triangle-free? It is easy to check that if p = o(1/n) then it is almost surely

triangle-free and if p = ω(1/n) then it is almost surely not triangle-free. Consider the case

where p = c/n. There are
(n
3

)

distinct sets S of size three, and let ES be the event that S

does not form a triangle, then we have Pr[Es] = 1− p3. Note that when X is the number

of triangles, then the expected number E[X] of triangles is
(n
3

)

p3. Note that for each S,

satisfying ES is a monotonically decreasing graph property, hence, if pn tends to zero, the

correction inequality yields that

Pr[G(n, p) is triangle-free] = Pr[X = 0] ≥ (1− p3)(
n
3) ∼ e−(

n
3)p

3
= e−E[X].

This provides a lower bound, but how good is this lower bound? For most of pairs

S, S′ ∈
([n]
3

)

, then event ES and ES′ are independent. To be more precise, as long as they

intersect at ≤ 1 points, they are independent. Hence, intuitively, the lower bound also

must be close to the upper bound as the ‘bad events’ are ‘mostly’ independent.

This situation is somewhat similar to the situation in using local lemma. In the chapter

of local lemma, we proved that if bad events B1, . . . , Bk have weak dependency, then we

can prove Pr[
∧

i∈[k]Bi] > 0. This provides a lower bound on the events
∧

i∈[k]Bi.

Consider the following set-up. Let Ω be a finite universal set and for each r ∈ Ω, we

independently at random add r to a set R with probability pr. This yields a random

subset R of Ω. For some index set I and each i ∈ I, let Ai be a subset of Ω and Bi be

the event that Ai ⊆ R. Let Xi be the indicator random variable for Bi and X =
∑

i∈I Xi.

Then the event
∧

i∈[k]Bi is equivalent to X = 0. For i, j ∈ I, we write i ∼ j if Bi and

Bj are not pairwise independent, in other words if Ai ∩ Aj 6= ∅. Then Bi is mutually

independent with {Bj : j ∈ J} for any J ⊆ {j ∈ I : i 6∼ j}. We let

∆ =
∑

i∼j
Pr[Bi ∧Bj ] and M =

∏

i∈I
Pr[Bi].

Here, ∆ is the sum over ordered pairs, thus ∆/2 is the sum of unordered pairs. Let

µ = E[X].
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Definition 8.1. Let an event E be an increasing event if whenever R satisfies it and

R ⊆ R′, then R′ also satisfies this. It is a decreasing event if whenever R satisfies it and

R′ ⊆ R, then R′ also satisfies this.

With this definition, the events Bi above are increasing events. With this set-up, we

can prove the following theorem.

Theorem 8.2 (The Janson inequality). Assume as above. If Pr[Bi] ≤ ε for each i ∈ I,

then we have

M ≤ Pr[
∧

i∈I
Bi] ≤Me

∆
2(1−ε)

and

Pr[
∧

i∈I
Bi] ≤ e−µ+∆/2.

Note that Pr[Bi] = 1 −Pr[Bi] ≤ e−Pr[Bi], so multiplying this all together yields M ≤
e−µ. This shows that the above inequalities are good if ∆ is small.

Proof. To estimate Pr[
∧

i∈I Bi], we want to estimate

Pr[Bi |
∧

j<i

Bj] = 1−Pr[Bi |
∧

j<i

Bj ]

and multiply them later. Fix i and let D0 =
∧

j<i:j 6∼iBj and D1 =
∧

j<i:j∼iBj. Then we

have

Pr[Bi | D0 ∧D1] =
Pr[Bi ∧D0 ∧D1]

Pr[D0 ∧D1]
≥ Pr[Bi ∧D0 ∧D1]

Pr[D0]
= Pr[Bi ∧D1 | D0]

= Pr[Bi | D0]−Pr[Bi ∧D1 | D0].

Note that Bi is independent of D0, so Pr[Bi | D0] = Pr[Bi]. Also as Bi ∧ D1 is an

increasing event and D0 is a decreasing event, so by Theorem 6.10 we have

Pr[Bi ∧D1 | D0] ≤ Pr[Bi ∧D1] = Pr[Bi ∧
∨

j<i,j∼i
Bj ] ≤

∑

j<i,j∼i
Pr[Bi ∧Bj ]. (8.1)

Now, this yields

Pr[Bi | D0 ∧D1] ≤ Pr[Bi] +
∑

j<i,j∼i
Pr[Bi ∧Bj ]. (8.2)

Let’s consider the first inequality. As Pr[Bi] ≥ 1− ε, using the fact 1+x ≤ ex, we have

Pr[Bi |
∧

j<i

Bj] ≤ Pr[Bi] exp(
1

1− ε

∑

j<i,j∼i
Pr[Bi ∧Bj]).

Multiplying this for all i yields that we have

Pr[
∧

i∈I
Bi] ≤Me

∆
2(1−ε) .

For the second bound, we use (8.2) as

Pr[Bi | D0 ∧D1] ≤ 1−Pr[Bi] +
∑

j<i,j∼i
Pr[Ai ∧Aj] ≤ exp(−Pr[Bi] +

∑

j<i,j∼i
Pr[Ai ∧Aj ])

and multiplying this for all i, then we obtain the desired bound.

�
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The above bound is good if ∆ is small. However if ∆ ≥ 2µ, then the upper bound

becomes useless. For those cases, the following theorem yields a better bound.

Theorem 8.3 (The extended Janson inequality). In the above set-up and with the further

assumption that ∆ ≥ µ, we have

Pr[
∧

i∈I
Bi] ≤ e−

µ2

2∆ .

Before, we saw that Var[X] ≤ µ+∆. Note that the second moment method yields that

Pr[
∧

i∈I
Bi] = Pr[X = 0] ≤ Var[X]

E[X]2
≤ µ+∆

µ2
.

Suppose µ → ∞ and µ2/∆ → ∞. However, this is roughly (µ2/∆)−1 while the Janson

inequality yields e−µ
2/∆.

Proof. Fix a set S ⊆ I of index, and order the indices in S. With this, the inequality (8.2)

holds. By multiplying these for all i ∈ S and taking logarithm, we obtain

− ln

(

Pr[
∧

i∈S
Bi]

)

≥
∑

i∈S
Pr[Bi]−

1

2

∑

i,j∈S,i∼j
Pr[Bi ∧Bj].

For each i ∈ I, we independently add i to S with probability p which we will determine

later. For this random subset S, we can compute the expectation of the above expression.

E

[

− ln

(

Pr[
∧

i∈S
Bi]

)]

≥ E

[

∑

i∈S
Pr[Bi]

]

− 1

2
E





∑

i,j∈S,i∼j
Pr[Bi ∧Bj ]



 = pµ− p2∆

2
.

We let p = µ/∆, then this p is at most 1. Then pµ − p2∆
2 ≥ µ2

2∆ . Thus, this shows that

there exists a set S ⊆ I for which we have − ln
(

Pr[
∧

i∈S Bi]
)

≥ µ2

2∆ , which implying

Pr[
∧

i∈I
Bi] ≤ Pr[

∧

i∈S
Bi] ≤ e−

µ2

2∆ .

�

Forget the previous set-up and we only assume that the events Bi are monotonically

increasing events. We define i ∼ j only when Bi and Bj are not pairwise independent,

and let ∆ =
∑

i∼j Pr[Bi∧Bj]. Then the Janson inequality holds as the proof works same.

To check that the proof works as it is, there are one point we need to check, which is that

Bi is independent of D0, meaning Pr[Bi | D0] = Pr[Bi] in the above proof. One subtlety

is that our definition of ∼ is regarding pairwise independence, and what we require is

mutual independence. In the previous set-up, as each Bi consists of independent random

variables, this mutual independence was obvious. However, in the current set-up we need

to check the following.

Proposition 8.4. Let A,B,C be increasing events. If A is independent of each of B and

C, then A is independent of B ∧C.
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Proof. We have

Pr[A ∧ (B ∧ C)] +Pr[A ∧ (B ∨ C)] = Pr[A ∧B] +Pr[A ∧ C] = Pr[A](Pr[B] +Pr[C]).

(8.3)

One the other hand, as B ∧C and B ∨C are both increasing events, the FKG inequality

implies that

Pr[A ∧ (B ∧ C)] ≥ Pr[A]Pr[B ∧C] and Pr[A ∧ (B ∨ C)] ≥ Pr[A]Pr[B ∨ C].

The sum of the left hand side is the left hand side of (8.3) and the sum of the right hand

side is the right hand side of (8.3). Hence, we have equalities

Pr[A ∧ (B ∧ C)] = Pr[A]Pr[B ∧C] and Pr[A ∧ (B ∨ C)] = Pr[A]Pr[B ∨ C].

This proves the proposition. �

With this proposition, we have Pr[Bi | D0] = Pr[Bi] in the above proof. we have the

Janson inequality over all increasing events (or decreasing events) when a log-supermodular

measure is given over a finite distributive lattice.

Now we are back to the probability of G(n, p) being triangle-free. In this case, we have

µ =
(n
3

)

p3 and M = (1 − p3)(
n
3) = e−(1+o(1))µ . Also two sets S, T in

([n]
3

)

satisfies S ∼ T

only when |S ∩ T | = 2. As there are 6
(n
4

)

= O(n4) pairs S, T with S ∼ T . Moreover, for

such pairs S, T the joint probability Pr[BS ∧ BT ] is p5. Thus ∆ = O(n4)p5. Note that if

p = o(n−1/2), then ∆ = o(µ), so Janson’s inequality yields that

Pr[G(n, p) is triangle-free] = exp(−(1 + o(1))µ).

What if p = Ω(n−1/2)? In this case, we have ∆ ≥ µ. So we use the extended Janson

inequality, then the probability thatG(n, p) is triangle-free is at most exp[− µ2

2∆ ] ≤ e−Θ(n2p).

On the other hand, the probability that G(n, p) is triangle-free is at least the probability

that it is an empty graph, which is (1 − p)(
n
2) ≥ e−Θ(n2p), so this is also tight up to a

constant multiplication on the exponent. So, we have

Pr[G(n, p) is triangle-free ] =

{

e−(1+o(1))n3p3/6 if p = o(n−1/2),

e−Θ(n2p) if p = Ω(n−1/2).
(8.4)

Similar result can be proved for graphs other than triangles. Recall that a graph H

is strictly balanced if e(H′)
|H′| < e(H)

|H| holds for all subgraphs H ′ of H. We can prove the

theorem for larger range of p with the same proof technique, but this range depends on

the values fj in the proof. Hence we just state the theorem as follows for specific p.

Theorem 8.5. Let H be a strictly balanced graph with v vertices e edges and a automor-

phisms. Let c > 0 be fixed. For p = cn−v/e, we have

Pr[G(n, p) contains no copy of H ] = exp(
−ce
a

+ o(1)).

Proof. For each α ∈ [ 1a
(n
v

)

v!], let Aα range over all edge sets of possible copies of H. Let

Bα be the event that G(n, p) contains edges of Aα. Then

µ =

(

n

v

)

v!pe/a = (1 + o(1))
ce

a
and M = (1− pe)

1
a(

n
v)v! = e−

ce

a
+o(1).
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Again, we want to estimate

∆ =
∑

α∼β
Pr[Bα ∧Bβ].

If α ∼ β, then Aα and Aβ has at least two common vertices. For each j ≥ 2, let fj be the

maximum number of edges in the intersection of Aα ∩ Aβ where α ∼ β and Aα and Aβ

intersect at j vertices. As α 6= β, we have fj < e. If 2 ≤ j ≤ v and α 6= β then Aα ∩Aβ is

a proper subgraph of H, hence strict balancedness of H implies

fj
j
<
e

v
.

There are O(n2v−j) choices of α, β intersecting at j vertices. Also for such α, β intersecting

at j vertices, we have

Pr[Bα ∧Bβ] = p|Aα∪Aβ | = p2e−|Aα∩Aβ | ≤ p2e−fj .

Thus, we have

∆ =
v
∑

j=2

O(n2v−j)O(n−
v
e
(2e−fj)) ≤

v
∑

j=2

O(n
vfj
e

−j) ≤
v
∑

j=2

o(1) = o(1).

Hence, Janson’s inequality implies that

M ≤ Pr[
∧

Bα] ≤ e−
ce

a
+o(1).

This proves the theorem. �

8.2. Lower tails. In the same set-up as above, recall that X =
∑

i∈I 1Bi is the random

variable counting the number of events Bi happened. In the example where we considered

triangles in G(n, p), X counts the number of triangles in the random graph. Previously,

we estimated the probability that X = 0. How about the probability that X is smaller

than 1
2E[X]? The following theorem provides a tool to bound such probability.

Theorem 8.6. Assume as in Theorem 8.2. For any 0 ≤ t ≤ µ, we have

Pr[X ≤ µ− t] ≤ e
− t2

2(µ+∆) .

With this, we can bound the desired probability as follows, where X is the number of

triangles in G(n, p) and C = C(c) is a constant depending on c.

Pr[X ≤ (1− c)µ] ≤ exp[−C n6p6

n3p3 + n4p5
].

Again these inequalities are tight up to constant multiple on the exponents by (8.4), as

triangle-free case is included in the event of X ≤ (1− c)µ.

Proof of Theorem 8.6. Let q ∈ [0, 1] be determined later. For each α ∈ I, let Jα be

independent random variables which is 1 with probability q and 0 with probability 1− q.

Add each α ∈ I to a set T independently at random with probability q. Let

XT =
∑

α∈T
1Bα =

∑

1BαJα.
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Then we have Pr[XT = 0 | X] = (1 − q)X . Take expectation on both sides, and apply

Janson’s inequality, then we obtain

E[(1− q)X ] = Pr[XT = 0] ≤
∑

S⊆I

(

Pr[T = S] · e−µS+∆S/2
)

≤ exp

[

∑

S

(Pr[T = S]e−µS+∆S/2)

]

≤ e−µ
′+∆′/2

where µS = E[XS ] and ∆S =
∑

α∼β∈S Pr[Bα ∧ Bβ] and µ′ = E[XT ] = qµ and ∆′ = q2∆.

The penultimate inequality is by the convexity of the function exp(x).

Using Markov’s inequality, we have

Pr[X ≤ µ−t] = Pr[(1−q)X ≥ (1−q)µ−t] ≤ (1−q)−µ+tE[(1−q)X ] ≤ (1−q)−µ+te−qµ+q2∆/2.

Let 1− q = e−λ with λ = 1
µ+∆ , then as λ ≥ q ≥ λ− λ2/2, we have

Pr[X ≤ µ−t] ≤ exp[λ(µ−t)−(λ−λ
2

2
)µ+

λ2∆

2
] = exp[−λt+λ

2

2
(µ+∆)] ≤ exp[− t2

2(µ+∆)
].

�

Note that this proof only works for lower tails. A similar statement does not hold

for upper tails. Again consider the random variable X counting triangles in G(n, p) and

p = ω(n−1/2). Once we have a clique on 2np vertices, then we have X ≥
(

2np
3

)

> 2E[X].

Then the probability that G(n, p) has a clique on a specific 2np vertices is at least p(
2np
2 ) ≥

e−cn
2p2 log(1/p) = ω(e−Cn

2p). Hence, one cannot expect an upper tail inequality of the

form Pr[X ≥ (1 + c)E[X]] ≤ e−Cn
2p. It is known that if p = Ω( lognn ), then we have

Pr[X ≥ 2E[X]] = e−Θ(n2p2 log(1/p)).

8.3. Large deviations and disjoint families. Recall our aims. We have bad events

B1, . . . , Bk which are determined by A1, . . . , Ak where each Ai is a set of independent

events. We have Bi ∼ Bj if and only if Ai ∩ Aj 6= ∅. We wish to obtain a concentration

result on X =
∑

1Bi . In other words, we want to count the number of events B1, . . . , Bk

happening. In many cases, especially if ∆ = o(µ), the number of (α, β) where α ∼ β and

Bα, Bβ both occurred is likely to be much smaller than X. Hence, if we count the largest

number of events Bi1 , . . . , Bis where ij 6∼ iℓ, it is likely to be close to X. So, counting this

may help us to obtain information about X. This connection from the size of independent

events toX are always done on ad hoc basis for each applications. We make this ‘collection

of independent events’ more rigorous and prove results about this. Later we see how we

make connection from this to X.

Definition 8.7. Given a selection R ⊆ Ω, we call a set J ⊆ I a disjoint family (disfam)

if

• Aj ⊆ R for every j ∈ J

• Ai ∩Aj = ∅.
If the following holds in addition, then we call J a maximal disjoint family (maxdisfam).

• if j′ /∈ J and Aj′ ⊆ R, then Aj′ ∩Aj 6= ∅ for some j ∈ J .

Recall that we write µ = E[X].
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Lemma 8.8. With the above set-up and an integer s, we have

Pr[∃ a disfam J with |J | = s] ≤ µs

s!
.

Proof. Such a probability is at most
∑

J={j1,...,js}
ji 6∼ji′ ,i 6=i′∈[s]

Pr[
∧

j∈J
Bj] =

∑

J

∏

j∈J
Pr[Bj ]

=
1

s!

∑

(j1,...,js),
ji 6∼ji′ ,i 6=i′∈[s]

Pr[Bj1 ] . . .Pr[Bjs ] ≤
1

s!
(
∑

i∈I
Pr[Bi])

s =
µs

s!
.

�

This provides a good bound if µs = o(s!), basically if s > µα for α > e. If s is smaller,

then we can instead consider the maxdisfam. Let

µs = min
j1,...,js∈I

∑

i 6∼jℓ for all ℓ∈[s]
Pr[Bi] and ν = max

j∈I

∑

i∼j
Pr[Bi].

Note that we have

µs ≥ µ− sν.

Lemma 8.9.

Pr[∃ a maxdisfam J with |J | = s] ≤ µs

s!
e−µse∆/2 ≤ µs

s!
e−µ+sνe∆/2.

Proof. We write

∗
∑

,

J
∑

and

J
∧

to denote
∑

J disfam of R=Ω,|J |=s
,

∑

i:i 6∼j∀j∈J
and

∧

i:i 6∼j∀j∈J
,

respectively. Fix such a set J with size s, and let

µJ = E[
J
∑

Pr[Bi]] ≥ µs

and let

∆J =
∑

i∼ℓ
i 6∼j,ℓ 6∼j,∀j∈J

Pr[Bi ∧Bℓ] ≤ ∆ =
∑

i∼ℓ
Pr[Bi ∧Bℓ].

As µJ ≥ µs, using Janson’s inequality, we have

Pr[
J
∧

Bi] ≤ e−µs+∆/2.

Thus we have
∗
∑

Pr[J maxdisfam] ≤ e−µs+∆/2
∗
∑

Pr[
∧

j∈J
Bj ] ≤ e−µs+∆/2µ

s

s!
.

The last inequality comes from the proof of the previous lemma. �

Note that if ∆ = o(1) and µs = µ + o(1), then the above lemma gives that the distri-

bution of existence of maxdisfam is approximately same with Poisson distribution. This

holds when, say, s ≤ 3µ and νµ = o(1). Also, if s is larger, then Lemma 8.8 provides a

very small upper bound.
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Now we see how one can use this to some specific problems. In G ∼ G(n, p) and x ∈ [n],

let X denote the number of triangles containing x. Then µ = E[X] =
(n−1

2

)

p3. Basically,

we want to count the edges in the neighborhood of x. One way to do this is using the

maximum matching size in E(G[NG(x)]) rather than the number of edges. The following

theorem can be proved for all p ensuring µ = ω(ln n), but we only present the proof when

p = n−2/3+o(1).

Theorem 8.10. Let p = n−2/3+o(1) and let G ∼ G(n, p) and x ∈ V (G). Let X be the

number of triangles containing x. For a fixed ε′ > 0, we have

Pr[X = (1± ε′)µ] ≥ 1− o(n−1).

Proof. Let ε < ε′ so that εµ < ε′µ − 50. We use the notations used in the previous two

lemmas. Let P be the Poisson random variable with the expectation µ. Note that we have

µ = no(1) and if s ≤ 3µ, then we have ν = maxj∈I
∑

i∼j Pr[Bi] = 2(n−3)p3, so νµ = o(1).

Also ∆ =
∑

i∼j Pr[Bi ∧Bj ] = 6
(n−1

4

)

p9 = o(1). Hence, the previous two lemmas yield

Pr[∃maxdisfam J, |J | ≤ (1− ε)µ] ≤ (1 + o(1))Pr[P ≤ (1− ε)µ]

Pr[∃maxdisfam J, (1 + ε)µ ≤ |J | ≤ 3µ] ≤ (1 + o(1))Pr[(1 + ε)µ ≤ P ≤ 3µ]

Pr[∃disfam J, |J | ≥ 3µ] ≤
∞
∑

s=3µ

µs

s!
= O((1− c)µ).

Here c is some absolute constant. As Poisson distribution is a limit of binomial distribution,

we can apply Chernoff to approximate the Poisson distribution. Then we can conclude

that the first two probabilitys are o(n−1). Hence, we can conclude that with probability

at least 1− o(n−1), every maxdisfam J has size between (1− ε)µ and (1 + ε)µ.

To obtain information aboutX from the above, we consider the probability that a vertex

y has degree at least 5 in L = G[NG(x)], i.e. there exist five triangles xyz1, . . . , xyz5 in

G. This probability is at most O(n6p11) = o(n−1). Also, the probability that L contains

four disjoint K1,2, in other words, the probability that there exists triangles xyizi, xyiz
′
i

for i ∈ [4] with x, y1, z1, . . . , y4, z4 distinct is at most O(n12p20) = o(n−1).

Hence, with probability at least 1 − o(n−1), the graph L has maximal matching J of

size between (1− ε)µ and (1 + ε)µ and has maximum degree at most 4 and has no 4K1,2

as a subgraph. Let J = {y1z1, . . . , yszs}.
If L has 50 edges not in J , then those edges are incident to one of {y1, . . . , zs}. If

there are 7 edges outside J intersecting with {yi, zi} for some i, then this contradicts

the assumption that L has maximum degree at most 4. So there are at most 6 edges

intersecting with each {yi, zi}. As there are more than 48 edges of L not in J , there are at

least eight indices i1, . . . , i8 such that those edges intersect with {yij , zij} for each j ∈ [8].

From this, we obtain 4K1,2, a contradiction. This proves that L has at most |J |+50 edges.

Hence, we have

(1− ε)µ ≤ X ≤ (1 + ε)µ+ 50

with probability at least 1− o(n−1). �
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8.4. Counting representations. We will use the following lemma.

Lemma 8.11 (The Borel-Cantelli Lemma). Let B1, . . . be events such that
∑∞

n=1 Pr[Bn] <

∞. Then, with probability 1, there exists n0 ∈ N such that Bn is false for all n > n0.

One can consider representations of an integer as a sum of other specific integers. As an

easy example, if S is a collection of powers of two, then every integer n can be expressed

as a sum of distinct elements in S in a unique way. It is known that every integers are

sum of four squares, and Goldbach conjectured that every even number can be written as

a sum of two primes.

We consider a case related to this theme. Let S ⊆ N be a set of natural number, let

f(n) = fS(n) be the number of representations n = x + y with x, y ∈ S, x < y. We are

interested in a set S where f(n) is somewhat uniform.

Theorem 8.12 (Erdős, 1956). There is a set S and constants c1, c2 > 0 so that for all

sufficiently large n, we have

c1 lnn ≤ f(n) ≤ c2 lnn.

Proof. For each x ∈ N, we add x to S with probability px = min[10
√

lnx
x , 1] independently.

We fix n, then f(n) is a random variable with µ = E[f(n)] = 1
2

∑

x+y=n,x 6=y pxpy. As long

as x, y are not too small, we have pxpy = Θ( lnnn ). Some calculus yield that

µ = (50 + o(1)) ln n

∫ 1

0

dx
√

x(1− x)
= (50π + o(1)) ln n.

For fixed n, all pairs {x, y} with x+ y = n are disjoint, so we use the Chernoff bound to

conclude that

Pr[|f(n)− µ| > 0.9µ] < 2e−0.1µ ≤ n−1.1

for sufficiently large n. Let c1 = 4π, c2 = 100π. Let Bn be the event that c1 lnn > f(n) or

f(n) > c2 lnn holds. As
∑

n∈N n
−1.1 <∞, by the Borel-Cantelli Lemma, with probability

1, there exists n0 ∈ N such that Bn fails for all n ≥ n0. Hence, c1 lnn ≤ f(n) ≤ c2 lnn for

all n ≥ n0. �

One can ask whether one can find such a set S in a more efficient way. Kolountzakis

1999 proved that there exists a recursive set S with the above property.

We can also consider similar question with k-sum. For example, let g(n) = gS(n) be

the number of representation n = x+ y + z with x, y, z ∈ S, x < y < z. Similarly, we can

define a function which is the number of representation of n into a sum of k elements of S.

The following theorem also holds for k > 3 but we only present a proof of the case k = 3

using Poisson paradigm.

Theorem 8.13 (Erdős-Tetali, 1990). There exists a set S and constant c1, c2 such that

for all sufficiently large n, we have

c1 lnn ≤ g(n) ≤ c2 lnn.
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Proof. For each x ∈ N, we add x to S independently with probability px = min[M( ln xx2 )
1/3, 1/2]

for some large numberM . Fix n ∈ N. Then g(n) is a random variable with µ = E[g(n)] =
∑

x+y+z=n,x<y<z pxpypz. Then, calculus yields that

µ ∼ M3

6
lnn

∫ 1

x=0

∫ 1−x

y=0

dxdy

(xy(1− x− y)2/3)
= K lnn

for some number K. As M is our choice of large number, we can assume K is also large.

We will use Lemma 8.9. Here, we have ∆ =
∑

pxpypzpy′pz′ where the sum is over all

tuples with x + y + z = x + y′ + z′ = n. Roughly there are n3 terms and each term is

roughly n−10/3+o(1), so that the sum is o(1). (Readers can check that the terms coming

from tuples containing small values do not contribute much.)

Fix s ≤ 3µ = Θ(lnn). Then µs is the minimum possible
∑

pxpypz where the sum is

over all x, y, z with x+ y + z = n that does not intersect a given set of s representations

of n. As s = Θ(lnn) is small, we can check that µs ∼ µ.

Let P be the Poisson distribution with mean µ. Again, we can conclude that for some

ε > 0,

Pr[∃maxdisfam J, |J | ≤ (1− ε)µ] ≤ (1 + o(1))Pr[P ≤ (1− ε)µ]

Pr[∃maxdisfam J, (1 + ε)µ ≤ |J | ≤ 3µ] ≤ (1 + o(1))Pr[(1 + ε)µ ≤ P ≤ 3µ]

Pr[∃disfam J, |J | ≥ 3µ] ≤
∞
∑

s=3µ

µs

s!
= o(n−c)

with c > 1. Here the third one can be obtained since K is large. By Borel-Cantelli Lemma,

with probability 1, there exists n0 ∈ N such that for all n ≥ n0, there is a maxdisfam J of

size between c′1 lnn and c′2 lnn for some c′1, c
′
2 > 0.

Now we use this J to estimate g(n). Let f(n) be the number of representation of n as

the sum of two elements of S. Then

E[f(n)] =
1

2

∑

x+y=n

(xy)−2/3+o(1) = n−1/3+o(1).

As the possible representations {x, y} with x+ y = n are pairwise disjoint, by Lemma 8.8

we have

Pr[f(n) ≥ 4] ≤ E[f(n)]4

4!
= n−4/3+o(1).

By the Borel-Cantelli Lemma, with probability 1, we have f(n) ≤ 3 for all sufficiently

large n. So, with probability 1, there exists C such that f(n) ≤ C for all n.

So, there exists a set S where f(n) ≤ C for all n and for all sufficiently large n, there

is a maxdisfam J of size at most c′2 lnn. As J is maxdisfam, for every triple x, y, z ∈ S

with x+ y+ z = n must contain at least one of these at most 3c′2 lnn points consisting J .

The number of triples x, y, z ∈ S with x+ y+ z = n for a particular x is f(n−x) which is

the number of representation n− x = y + z is at most C. So, there are at most 3Cc′2 lnn

total representations of n = x+ y + z. �
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9. Codes, games and entropy

9.1. Codes. Imagine we send a message (a string of bits) to someone far away. As there

are some noises in the channel, there is a probability p that any bit sent will be received

incorrectly. We assume that the probability that a zero is received as a one or a one

is received as a zero are both p, and each bits being received incorrectly are mutually

independent events.

How can we improve the reliability of this system? If we repeat each bits 2n+ 1 times,

and ‘decode’ it by choosing the bits occurring the most, then we can reduce the probability

of incorrect receipts. However, this makes the string longer, so it becomes less efficient.

Can we find a way so that the efficiency is not so bad while the probability of incorrect

transmissions approaching to zero? Shannon’s theorem states that this is possible.

Definition 9.1. A coding scheme consists of a positive integer m,n and function f :

{0, 1}m → {0, 1}n called the encoding function, and a function g : {0, 1}n → {0, 1}m
decoding function.

For given a coding scheme, a message x ∈ {0, 1}m will be encoded and sent as f(x) and

received message y ∈ {0, 1}n will be decoded as g(y) ∈ {0, 1}m. The rate of transmission

of such a scheme is defined to be m/n. Let E = (e1, . . . , en) be a random string defined by

Pr[ei = 1] = p, Pr[ei = 0] = 1− p where the value of each ei are mutually independent.

Definition 9.2. We defined the probability of correct transmission as Pr[g(f(x)+E) = x],

where x is assumed to be uniformly distributed over {0, 1}m and independent to E, and +

is vector addition modulo 2.

Let H(p) = −p log2 p− (1− p) log2(1− p) be the entropy function defined for p ∈ (0, 1).

We know that
(

n

pn

)

= 2n(H(p)+o(1)) and
∑

i≤pn

(

n

i

)

= 2n(H(p)+o(1)).

Note that the following theorem is best possible. If a coding scheme has rate of transmis-

sion larger than 1−H(p)+ε, then it must have a significant error probability. If f(x) is sent,

then the obtained output y is typically of distance (1 + o(1))np from f(x). Hence, among

2m input words, the total size of all typical outputs is about 2m
(

n
pn

)

= 2m+(1+o(1))H(p)n .

If this is much bigger than 2n, then there are significant overlaps between the output sets

of different input words, yielding a significant error probability.

Theorem 9.3 (Shannon’s theorem). Let 0 < p < 0.5 be fixed. For ε > 0, there exists a

coding scheme with the rate of transmission greater than 1 −H(p) − ε and probability of

incorrect transmission less than ε.

Before proving this theorem, consider the following concepts.

Definition 9.4. A group code is a coding scheme in which the map f : {0, 1}m → {0, 1}n
is linear, that is, f(0) = 0 and f(x+ x′) = f(x) + f(x′) modulo 2.

A group code is easier coding than general coding. Once we have x, we need to ‘compute’

f(x). But if we have a group coding, this is easier. The following theorem is stronger than

Shannon’s theorem, so we prove this theorem instead.



68 JAEHOON KIM

Theorem 9.5. Let 0 < p < 0.5 be fixed. For ε > 0, there exists a group code with the

rate of transmission greater than 1 − H(p) − ε and probability of incorrect transmission

less than ε.

Proof. Additions, subtractions here are all under modulo 2. Let δ > 0 be small so that

p+ δ < 0.5 and H(p+ δ) < H(p) + ε/2. Let n be large and m = n(1−H(p) + ε).

Let ui ∈ {0, 1}m be the vector with a 1 in the i-th position and rest of the position

zeros. Let f(u1), . . . , f(um) be chosen independently uniformly at random from {0, 1}n,
and for each x ∈ {0, 1}m we let

f(x) =
∑

i∈[m]

xif(ui).

Define the decoding function g : {0, 1}n → {0, 1}m by setting g(y) = x if x is the unique

vector in {0, 1}m whose image f(x) has Hamming distance at most n(p + δ) from y. If

there is no such x or more than one such x, then we consider the decoding to be incorrect.

There are two ways in which the decoding to be incorrect.

(1) f(x) +E has Hamming distance more than n(p+ δ) from f(x)

(2) There is some x′ 6= x with f(x) +E has Hamming distance at most n(p+ δ) from

f(x′).

The first happens when E has at least n(p + δ) digits of 1. However, the number of 1s

in E has the binomial distribution B(n, p), so Chernoff implies that this happens with

probability o(1). For the second case, let x 6= x′ ∈ {0, 1}m and z = x− x′ =
∑

ziui 6= 0.

WLOG, assume zm = 1. Fix E and let B(E) be the set of vectors Hamming distance

at most n(p + δ) from E. After we fix E and f(u1), . . . , f(um−1), the vector f(um)

is still uniform random vector, so f(z) is also distributed uniformly after fixing E and

f(u1), . . . , f(um−1). Thus Pr[f(z) ∈ B(E)] = |B(E)|2−n. As f(z) = f(x) − f(x′), we

have f(z) ∈ B(E) if and only if f(x)+E and f(x′) differs on at most n(p+δ) coordinates.

So, this shows that f(x) + E has Hamming distance at most n(p + δ) from f(x′) with

probability 2(1+o(1))H(p+δ)2−n. Taking union bounds for all x′ ∈ {0, 1}m − {x}, we have

that the second events happens with probability at most

2m2(1+o(1))H(p+δ)2−n < 2−n(ε/2+o(1)) = o(1).

Hence, the total probability for incorrect encoding is o(1). So for sufficiently large n, this

is at most ε. This probability can be rewritten as (note that there are (2n)m choices of f)

2−mn
∑

f

Prx,E[g(f(x) + E) 6= x] ≤ ε.

This implies that there exists a function f such that Prx,E[g(f(x)+E) 6= x] ≤ ε, so there

exists a specific coding scheme with probability of incorrect coding less than ε. �

9.2. Liar game. Consider that Paul and Carole plays the following Liar game.

In each round, Paul picks a subset S ⊆ [n] and asks a following question to Carole: ”is

your x belong to S?” Carole must say either Yes or No. At the end of the game, Paul picks

a number y ∈ [n] and Carole has to pick a number x ∈ [m] − {y}, which will determine

whether each of her previous answers was true or false.
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In this game consisting of q rounds, Paul wins if Paul Carole always end up lying more

than k times, otherwise Carole wins.

One can consider the version of game where x is determined by Carole at the beginning,

and Paul is trying to guess what x is while Carole can lie at most k times. If Paul can

always win in this version of the game, then Paul can win the Liar game. If Paul cannot

always ensure winning, then Carole wins the Liar game.

We are interested in determining who wins for given n, q, k. Consider the following

equivalent ChipLiar game.

Definition 9.6. There is a board with positions 0, 1, . . . , k. There are n chips labeled

1, . . . , n which are initially at position k. There are q rounds. On each round Paul selects

a set S of the chips. Carole can either move every chip not in S one position below or

move every chip in S one position below. Chips moved one position below from the position

0 will be removed from the borad. After q rounds, Carole wins if there is more than one

chip remaining on the board and Paul wins if there is one or zero chips remaining on the

board.

Basically chip i at position j represents that the answer x = i has already received k− j
lies.

In this ChipLiar game, there is no reason to place all chips at position k at the start.

More generally, for x0, . . . , xk ≥ 0, we define the (x0, . . . , xk), q-ChipLiar game to be

the above q round game with initial position consisting of xi chips at position i. Let

B(q, j) = 2−q
∑j

i=0

(q
i

)

be the probability that in q flips of a fair coin there are at most j

heads.

Theorem 9.7. If
∑k

i=0 xiB(q, i) > 1, then Carole wins the (x0, . . . , xk), q-ChipLiar game.

Proof. Note that this is a perfect information game with no draws, so someone has a

perfect strategy that always wins. So it suffices to show that every strategy of Paul is not

perfect.

Fix a strategy of Paul. Now Carole plays randomly. In each round, Paul has selected a

set S of chips, and Carole flips a fair coin. If it comes up with head then she move every

chip in S one position below and if it comes up with tail then she move every chip not in

S one position below.

For each chip c, let Ic be the indicator random variable for c remaining on the board at

the end of the game, and let X =
∑

c Ic be the number of chips remaining on the board

at the end of the game.

For each chip c, it is moved in each round with probability 1/2. So, if it starts with

the position i, then it remains on the board at the end of the game with the probability

B(q, i). By linearity of expectation, we have

E[X] =

k
∑

i=0

xiB(q, i) > 1.

Then, X > 1 must occur with positive probability. That is, Paul cannot always win. This

proves that no strategy of Paul is perfect, so Carole must have a winning strategy. �
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You might consider this proof not so efficient, as it does not tell you what is the strategy.

However, we can apply derandomization technique here. For a specific board with yi chips

on i-th position for each i and ℓ rounds remaining, we can compute the weight
∑

i yiB(ℓ, i)

which is same as E[Y ] where Y is the number of the chips that would remain on the board,

if Carole plays the rest of the game at random.

For each round, Carole evaluate this weight and choose a move which maximizes the

weight. Then this yields a deterministic algorithm which make sure Carole wins.

The converse of the theorem is not true. Consider the (0, 5), 5-ChipLiar game. Here

B(5, 1) = 6/32 and 5× (6/32) < 1. Still Carole has winning strategy. The problem is that

Paul has no good first move. If he selects 2 chips as S, then Carole move the two chips,

leaving the (2, 3), 4-ChipLiar game. As 2B(4, 0) + 3B(4, 1) = 17/16 > 1, Carole will now

win.

9.3. Entropy. Let’s consider the following simple game. Alice choose a number x in [2n]

and Bob asks a Yes/No question to determine the number x. In each question, Bob obtains

some more information and after n steps Bob can determine the number x.

There are 2n possibility, and each answer the Bob gets shrink the possibility into half.

For convenience, we want to transform the multiplication (shrinking) into addition by

considering the bits of information. The numbers in [2n] can be expressed by n bits, and

every answer to questions of Bob gives one bits of information.

Now we change the set-up. We consider the uniform probability distribution (or equiv-

alently a random variable X ∈ [2n] chosen uniformly at random) and random variables

Y1, . . . , Yt where each Yi is the answer to Bob’s question. Assume that Y1, . . . , Yt carries

enough information to determine X. (For example, one can consider i-th digit in the

binary expansion of X with t = n.) Note that each Yi corresponds to a question by Bob,

and note that X and Yi are not independent.

We want to consider more general situation where we want to measure how much

information on probability distribution (or a random variable) we get from some events.

In general, if we know that an event of probability p happens, then we can shrink the

universe of the probability distribution by a factor of p. It’s same as getting − log2(p) bits

of information. So for a discrete event x with the probability p, we define h(x) = − log2(p).

For a given discrete random variable Y taking values in S, we can consider the expected

amount of information we can get from this random variable, which is H(X) = E[h(X)] =
∑

s∈S psh(s) =
∑

s∈S −ps log2 ps where ps = Pr[Y = s]. So, in the above situation, if X

and (Y1, . . . , Yt) carries same information (i.e. (Y1, . . . , Yt) are enough to determine X)

then the expected information Y1, . . . , Yn carries must be at least the expected information

X carries. So, intuitively, we need H(X) = H(Y1, . . . , Yt) ≤ H(Y1) + · · · +H(Yt), which

requires t ≥ n. We will later define what H(Y1, . . . , Yt) means here and why the last

inequality holds. Note that for a real p ∈ (0, 1], the valueH(p) = −p log2 p+(1−p) log2(1−
p) is same as the entropy of random variable taking two values one with probability p and

the other with 1− p.

We collect some basic inequalities. The following lemma says that uniform random

variable has the largest entropy among all discrete random variables with the same range

set.
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Lemma 9.8. Let X be a discrete random variable taking values in S, then H(X) ≤
log2 |S|.

Proof. Note that the function f(x) = x log2 x is convex. So we have
∑

s∈S −f(ps) ≤
−|S|f( 1

|S|) = log2 |S|. �

For two random variables X,Y not necessarily independent, let Z = (X,Y ) be the joint

random variable. Let H(X,Y ) = H(Z). The below lemma shows that information we get

from X and Y together is at least as large as the information on (X,Y ).

Lemma 9.9 (Subadditivity). For given two random variables X,Y taking values in S, T ,

we have H(X) ≤ H(X,Y ) ≤ H(X) +H(Y ).

Proof. For x ∈ S, y ∈ T , we write

px = Pr[X = x], py = Pr[Y = y] and px,y = Pr[X = x, Y = y].

Then we have

H(X,Y ) = −
∑

x,y

px,y log2 px,y ≥ −
∑

x,y

px,y log2 px = −
∑

x

px log2 px = H(X).

Also, we have

H(X)+H(Y )−H(X,Y ) =
∑

x,y

(−px,y log2 px−px,y log2 py+px,y log2 px,y) =
∑

x,y

px,y log2
px,y
pxpy

.

Let f(z) = z log2 z and zx,y =
px,y
pxpy

, then the convexity of f yields that

∑

x,y

px,y log2
pxpy
px,y

≥ f(
∑

x,y

pxpyzx,y) = f(
∑

x,y

pxpy ·
px,y
pxpy

) = f(1) = 0.

�

When we use Y1, Y2, . . . , Ys to get more information, often Yi is not independent of

Y1, . . . , Yi−1 so that the information it gives might be already partially known. We want to

estimate average additional information we obtain. For this purpose, we define conditional

entropy as follows. For an event E, let H(X | E) =
∑

x−Pr[X = x | E] log2Pr[X = x |
E] and let H(X | Y ) = Ey[H(X | Y = y)]. Intuitively, this additional information we get

from X knowing Y must be same as H(X,Y )−H(Y ). This can be shown as follows.

Lemma 9.10 (Chain rule). For given two discrete random variables X,Y , H(X | Y ) =

H(X,Y )−H(Y ).

Proof. As we have Pr[X = x | Y = y] = px,y/py, we have

H(X | Y ) = Ey[H(X | Y = y)] =
∑

y

−py
∑

x

Pr[X = x | Y = y] log2 Pr[X = x | Y = y]

=
∑

x,y

−px,y log2 px,y +
∑

x,y

px,y log2 py

= H(X,Y ) +
∑

y

py log2 py = H(X,Y )−H(Y ).

The penultimate equality holds as
∑

x px,y = py. �
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Also, the additional information we get from X when we just know Y is bigger than

the additional information we get from X when we know both Y and Z.

Lemma 9.11 (Dropping conditions). For given discrete random variables X,Y,Z, H(X |
Y,Z) ≤ H(X | Y )

Proof. We have H(X | Y ) = H(X,Y )−H(Y ) ≤ H(X) +H(Y )−H(Y ) ≤ H(X). Hence

H(X | Y,Z) ≤ H(X | Y ). �

Let’s consider the following simple problem. Assume there are n coins, assume that the

set of coins is [n]. Each coins have weight 1, but there are some fake coins with weights

1+ 1
2n . You can grab a set S of coins and weigh them, which tells you how many coins in

S are fake. After weighing k times, you want to determine exactly which coins are fake.

For this, we want to find a lower bound on k.

Theorem 9.12. Let S1, . . . , Sk be subsets of [n]. For any two distinct subsets A 6= B ⊆ [n],

there exists i ∈ [k] such that |Si ∩A| 6= |Si ∩B|. Then k ≥ (2− o(1)) n
log2 n

.

Proof. Most naive way of approaching this problem considering a function f(A) = (|S1 ∩
A|, . . . , |Sk ∩ A|) from 2[n] to ([n] ∪ {0})k. As this is injective, we have (n + 1)k ≥ 2n,

implying that k ≥ (1 − o(1)) n
log2 n

. Here, we have the right order of magnitude, but a

wrong constant. This is because each time you measure |Si ∩ A|, it does not shrink the

possibility into 1/n-fraction in average.

One can also consider the following approach of ignoring unlikely events. Assume k ≤ n,

as otherwise we are done. For each Si, Chernoff’s bound (Lemma 5.8) implies that there

are at most 1
100n2

n subsets of [n] satisfying

|Si ∩A| 6=
|Si|
2

± 10 log n
√
n.

Let

S = {A ⊆ [n] : ∀i, |Si ∩A| =
|Si|
2

± 10 log n
√
n}.

Then we have that |S| ≥ 2n − k 1
100n2

n ≥ 2n−1. Now, the set f(S) lies in I1 × I2 × · · · × Ik

where each Ii = [ |Si|
2 − 10 log n

√
n, |Si|

2 + 10 log n
√
n] is an interval of at most 20 log n

√
n

integers. So, we have (20 log n
√
n)k ≥ 2n−1 implying

k ≥ n− 1
1
2 log2 n+ log log n+ log 20

≥ (2− o(1))
n

log2 n
.

This proof uses that Si ‘usually’ shrink the possibility by the fact of Θ( 1√
n logn

). To deal

with this problem, we can instead use the entropy.

Assume we are choosing a set A ⊆ [n] uniformly at random, meaning all 2n sets are

chosen equally likely. Then |Si ∩ A| is a random variable, containing some information

about the random variable A.

First, the binomial random variable Bin(m, 1/2) has entropy

H(Bin(m,
1

2
)) = −

m
∑

s=0

(

m

s

)

(
1

2
)m log2(

(

m

s

)

(
1

2
)m) = (

1

2
+ o(1)) log2m.

The last equality can be checked again using the Chernoff bound. (The Chernoff bound

can show that the terms become negligible when s is too far from m/2.)
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Now, as (|S1 ∩A|, . . . , |Sk ∩A|) determines A, by subadditivity we have

H(A) = H(|S1 ∩A|, . . . , |Sk ∩A|) ≤ H(|S1 ∩A|) + · · ·+H(|Sk ∩A|)

≤
k
∑

i=1

(
1

2
+ o(1)) log2 |Si| ≤ (

1

2
+ o(1))k log2 n.

Note that each of |Si∩A| has the same distribution as the binomial distributionBin(|Si|, 1/2).
Thus we conclude k ≥ (2− o(1)) n

log2 n
. �

Proposition 9.13 (Shear’s lemma). Let X1, . . . ,Xn be random variables and let A1, . . . , Ak ⊆
[n] be subsets where each i ∈ [n] is in at least s sets among A1, . . . , Ak. Let XAi = (Xi :

i ∈ Ai). Then we have

sH(X1, . . . ,Xn) ≤
∑

i∈[k]
H(XAi).

Proof. We use induction on s. If s = 1, then use subadditivity to a partition A′
1, . . . , A

′
k

of [n] where A′
i ⊆ Ai holds to obtain the desired conclusion.

Assume that the proposition holds for s − 1. If there is Ai with Ai = [n], then the

result follows from the induction hypothesis. If not, choose two sets Ai and Aj . By using

dropping conditions, we have

H[XAi\Aj
| XAi∩Aj ,XAj\Ai

] ≤ H(XAi\Aj
| XAi∩Aj ).

Using chain rule, we have

H(XAi∪Aj)−H(XAj ) ≤ H(XAi)−H(XAi∩Aj).

Hence, we have H(XAi∪Aj ) + H(XAi∩Aj ) ≤ H(XAi) + H(XAj ). So, we can modify the

collections of sets by replacing Ai, Aj with Ai ∪ Aj and Ai ∩ Aj until we have a set [n]

without increasing the entropy. Once we have a set [n], then we delete it and apply the

induction hypothesis. This proves the induction. �

Using this proposition, we can prove several results.

Corollary 9.14. Let F be a family of subsets of [n], and let pi be the fraction of the sets

in F which contains i. Then we have

|F| ≤ 2
∑n

i=1H(pi).

Proof. Choose F ∈ F uniformly at random, and let X = (X1, . . . ,Xn) be the 0, 1-vector

such that Xi = 1 if i ∈ F . Then we have

log2 |F| = H(X) ≤
∑

H(Xi) ≤
∑

i∈[n]
H(pi).

This proves the corollary. �

Corollary 9.15. Let F be a family of vectors in S1×· · ·×Sn for some finite sets S1, . . . , Sn.

Let A1, . . . , Am be a collection of subsets of [n], and each i ∈ [n] belongs to at least s sets

in the collection. For each i ∈ [m], let Fi be the set of all projections of the elements of F
on
∏

j∈Ai
Sj. Then

|F|s ≤
∏

i∈[m]

|Fi|.
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Proof. Choose F = (F1, . . . , Fn) ∈ F uniformly at random. For XAi = (Fj : j ∈ Ai), the

previous proposition implies

s log2 |F| = sH(F ) ≤
∑

H(XAi) ≤
∑

log2 |Fi|.

�

Note that the volume of any d-dimensional measurable set in R
n can be approximated

by the volume of standard aligned boxes in a fine grid. Using this, the previous result can

prove the following.

Corollary 9.16. Let B be a measurable body in the n-dimensional Euclidean space, let

vol(B) be its n-dimensional volume, and let vol(Bi) denote the (n−1)-dimensional volume

of the projection of B on the hyperplane spanned by all coordinates beside the ith one. Then

we have

vol(B)n−1 ≤
∏

i∈[n]
vol(Bi).

9.4. Graph homomorphisms and entropy.

Definition 9.17. A map φ : V (G) → V (H) is a graph homomorphism if we have

φ(u)φ(v) ∈ E(H) for all uv ∈ E(G). We write H(G,H) to denote the set of all graph

homomorphisms from G to H.

For example, consider H be the two vertex graph where two vertices v0 and v1 are adja-

cent and v1 has a loop to itself. Then each f ∈ H(G,H) corresponds to an independent set

f−1(v0) of G. Hence, we have |H(G,H)| = i(G) where i(G) is the number of independent

sets in G. Also it is easy to see that Hom(G,Kq) is a collection of proper q-colorings of

G.

Theorem 9.18 (Kahn). Let G be an n vertex d-regular bipartite graph. Then we have

i(G) ≤ [i(Kd,d)]
n
2d .

The above theorem can be extended to the following.

Theorem 9.19. Let G be an n-vertex d-regular bipartite graph, and let H be a graph with

possible loops. Then |Hom(G,H)| ≤ |Hom(Kd,d,H)| n
2d .

Proof. Let V (G) = [n]. We choose φ ∈ H(G,H) uniformly at random. For given φ, let

X = (x1, . . . , xn) where xi = φ(i). Then, as φ is uniformly chosen, we have

H(X) = log2(|Hom(G,H)|).

Let A ∪ B be a bipartition of G with |A| = |B| and for a vertex set C let XC = (xi :

i ∈ C). Then we have H(X) = H(XA) +H(XB | XA). As G is d-regular bipartite, each

vertex in A has d neighbors in B. Hence, using Proposition 9.13, we have

H(X) ≤ 1

d

∑

b∈B
H(XN(b)) +

∑

b∈B
H(Xb | XA) ≤

1

d

(

∑

b∈B
H(XN(b)) +

∑

b∈B
dH(Xb | XN(b))

)

.

The last inequality is by dropping conditions.
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Now we fix b and estimate H(XN(b)) + dH(Xb | XN(b)). Let X1
b , . . . ,X

d
b be the inde-

pendent random variables having the identical distribution to Xb. Then

H(XN(b)) + dH(Xb | XN(b)) = H(XN(b)) +
∑

i∈[d]
H(Xi | XN(b))

= H(XN(b)) +H(X1
b , . . . ,X

d
b | XN(b)) = H(XN(b),X

1
b , . . . ,X

d
b ).

Here, the joint random variable (XN(b),X
1
b , . . . ,X

d
b ) is a random homomorphisms in

Hom(Kd,d,H) in a certain distribution. To see this, XN(b) is identical to a certain dis-

tribution on choosing random homomorphism in left d vertices of Kd,d and X1
b , . . . ,X

d
b

correspond to assigning vertices in the d different vertices on the right side. This entropy

of possibly non-uniform distribution is upper bounded by the entropy of the uniform dis-

tribution over the independent sets of Kd,d which is log2 |Hom(Kd,d,H)|. As the above

discussion holds for all b ∈ B, we have H(X) ≤ n
2d log2(|Hom(Kd,d,H)|), implying that

|Hom(G,H)| ≤ |Hom(Kd,d,H)| n
2d .

�

This theorem yields Theorem 9.18

Definition 9.20. Let t(H,G) =
|Hom(H,G)|
|V (G)||V (H)| be the homomorphism density of H in G.

In other words, this is the probability that a map from V (H) to V (G) chosen uniformly at

random yields a graph homomorpihsm.

Regarding problems of counting homomorphisms, the following conjecture by Sidorenko

is famous.

Definition 9.21. If H is a bipartite graph, the for any G we have

t(H,G) ≥ t(K2, G)
e(H).

What this conjecture says is that among all graphs with a fixed edge density, t(H,G)

is minimized when G is a random graph. This conjecture is still wide open while some

instances of H are known to satisfy the conjecture. For example, we know the following.

Theorem 9.22 (Sidorenko, 1993). If H is a tree, then for any G we have

t(H,G) ≥ t(K2, G)
e(H).

A proof by Conlon, Kim, Lee, Lee. Let T be a tree with a fixed ordering r = x0, x1, . . . , xt

of all vertices of T where every xi has an earlier neighbor. We call such an ordering

appropriate. We consider the following T -branching random walk on an n-vertex graph

G.

Algorithm 9.23.

Step 1. Choose v0 ∈ V (G) with the probability dG(v0)
2e(H) . (This is called the stationary distri-

bution)

Step 2. Assume we have embedded v0, . . . , vi−1. Let xj be the unique earlier neighbor of

xi, then choose vi uniformly at random from NG(vj).

Step 3. Repeat Step 2 until the end.
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We want two aspects of this algorithm. Each edge xy ∈ E(T ) is mapped to an edge in

a uniform way, and T -branching random walk distribution comes from T − ℓ-branching

random walk distribution by just adding one edge (uniformly). The rather ensures that

we can multiply one ‘t(K2, G)’ term for every edge of T , yielding the desired bound

t(H,G) ≥ t(K2, G)
e(H).

Let φ be the resulting random homomorphism. This gives a probability distribution on

Hom(T,G). Note that for a specific homomorphism ψ = (v0, . . . , vt), we have

Pr[φ = ψ] =
dG(v0)

2e(G)
· ( 1

dG(v0)
)dT (x0)

∏

i≥1

(
1

dG(vi)
)dT (xi)−1 =

1

2e(G)

t
∏

i=0

(
1

dG(vi)
)dT (xi)−1.

Note that this formula does not depend on the ordering x0, . . . , xr of the V (T ). So, even

if we change the ordering into another appropriate ordering, the probability distribution

stays the same.

One good property of this is the following. For each xy ∈ E(H) and an edge uv ∈ E(G),

the probability

Pr[φ(x) = u, φ(y) = v] =
1

2e(G)
. (9.1)

This is easy to see by considering x as the first vertex of the ordering and y as the second

vertex of the ordering. (Remember that the ordering of T does not matter!)

Let T ′ be a subtree of T by deleting a leaf ℓ. Let φ′ be a random homomorphism in

Hom(T ′, G) obtained from T ′-branching random walk. Then we have

Pr[φ′ = ψ′] =
∑

ψ|V (T ′)=ψ
′

Pr[φ = ψ].

This can be easily check by considering an ordering of T where ℓ comes the last. Then

obviously φ |V (T ′) and φ′ have the same distribution. Recall that each v0, . . . , vt are all

random variables.

We use induction to prove the following claim

Claim 10. For a tree T with t edges, and φT ∈ Hom(T,G) obtained from T -branching

random walk, we have H(φT ) ≥ t log2(2e(G)) − (t− 1) log2(n).

Proof. If t = 1, then it is trivial. Assume that the statement holds for T ′ = T − ℓ where ℓ

is a leaf. We have

H(φT ′) ≥ (t− 1) log2(2e(G)) − (t− 2) log2(n).

Let x0, x1, . . . , xt = ℓ be an appropriate ordering where xt is adjacent to xj. Let vi = φ(xi),

which is also a random variable. We have

H(φ) = H(φ |V (T ′)) +H(vt | φ |V (T ′))

= H(φ |V (T ′)) +H(vt | vj) = H(φ |V (T ′)) +H(vj , vt)−H(vj)

(9.1)
= H(φ |V (T ′)) + log2(2e(H)) −H(vj) ≥ H(φ |V (T ′)) + log2(2e(H)) −H(n).

Here, the second equality holds as the choice of vt only depend on vj . The last inequality

holds as vj has one of n values. By the induction hypothesis, we have

H(φT ) ≥ t log2(2e(G)) − (t− 1) log2(n).
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This finishes the induction. �

Again, as we know H(φ) ≤ log2 |Hom(T,G)|, for a t-edge tree T , we have

|Hom(T,G)| ≥ 2t log2(2e(G))−(t−1) log2(n) = t(K2, G)
tnt+1.

Hence, t(T,G) ≥ t(K2, G)
t. �



78 JAEHOON KIM

10. More on independent sets

In Theorem 9.18, we proved that i(G) ≤ i(Kd,d)
n
2d for bipartite d-regular graphs. Here,

we will prove some theorems regarding average size of independent sets and the number

of independent sets in more general class of graphs.

10.1. The hard-core model. In order to better estimate the number of independent sets

as well as the average size of independent sets, we consider the following concept.

Definition 10.1. For given graph G, let PG(x) =
∑

I an indep set

x|I| be the independence

polynomial of G. This is also called the partition function.

Definition 10.2. The hard-core model with fugacity λ on G is a random independent

set I drawn according to the distribution Pr[I] = λ|I|

PG(λ) . In hard-core model, we let the

occupancy fraction to be

αG(λ) =
1

|G|E[|I|] =
1

|G|

∑

I |I|λ|I|
PG(λ)

=
1

|G|
λP ′

G(λ)

PG(λ)
=

λ

|G| (log PG(λ))
′.

Imagine a physical system with some atoms which cannot occupy spaces too closely.

Some atoms in this system may leave the system, or some atoms outside the system can

enter the system. By connecting nearby places in the system, one can obtain a graph.

How atoms are placed corresponds to an independent set. Fugacity above indicates how

easy an atom can enter to the system or leave the system. The hard-core model provides

a probability distribution of the state of this system. This provides some motivation for

the hard-core model.

Note that αG(1) is the average size of independent set. This fact together with the

equation αG(λ) =
1
|G|

λP ′
G(λ)

PG(λ) and some other useful property of this hard-core model allow

us to yields some results regarding independent sets. We first prove the following result

about average size of independent set.

Theorem 10.3. If G is a triangle-free graph with the maximum degree at most d, then

we have αG(1) ≥ (1 + o(1)) log dd .

Proof. For a positive real number z, let W (z) be the unique real number satisfying

W (z)eW (z) = z. Consider an independent set I drawn from the distribution of the hard-

core model with fugacity λ. We say a vertex v is occupied if v ∈ I and uncovered if

N(v) ∩ I = ∅. Let

pv = Pr[v ∈ I] and qv = Pr[N(v) ∩ I = ∅].

AssumeG has n vertices. Let U denote the set of uncovered vertices. Note that v ∈ I can

only happen when v is uncovered. Moreover, all indendent sets J in G−N [v] corresponds

to an independent set J ∪ {v} where λ|J∪{v}| = λλ|J |. Hence, we have pv =
λ

1+λqv. Let v
′

be a vertex of V (G) chosen uniformly at random, and let Y = |N(v′) ∩U |. Therefore, we
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have

αG(λ) =
1

n

∑

v∈V (G)

pv =
1

n

∑

v∈V (G)

λ

1 + λ
qv

=
λ

(1 + λ)n

∑

v∈V (G)

d
∑

j=0

Pr[|N(v) ∩ U | = j](1 + λ)−j

=
λ

1 + λ
E[(1 + λ)−Y ]. (10.1)

The penultimate equality holds because each of the j uncovered vertices belong to I with

probability (1 + λ)−1 and those events are independent as G is triangle-free (NG(v) is an

independent set).

Using αG(λ) =
1
n

∑

v∈V (G)
λ

1+λqv, we have

E[Y ] =
1

n

∑

v∈(G)

∑

u∈N(v)

qu ≤ d
1 + λ

λ
αG(λ). (10.2)

Note that the last term in (10.1) is at least λ
1+λ(1 + λ)−E[Y ] by the convexity of the

function x 7→ (1 + λ)−x. Hence, we have

αG(λ) ≥
λ

d(1 + λ)
min
x∈R

{

max{x, d(1 + λ)−x}
}

.

When x increases, d(1 + λ)−x decrease. Thus the minimum occurs for x where x =

d(1 + λ)−x holds. In other words, it holds where log(1 + λ)xelog(1+λ)x = log(1 + λ)d. So,

log(1 + λ)x =W (log(1 + λ)d). Hence, we have

αG(λ) ≥
λx

d(1 + λ)
≥ λ

1 + λ
· W (d log(1 + λ))

d log(1 + λ)
.

Now we plug is λ = 1/ log d and use W (z) ≥ log z − log log z for z ≥ e. Then we have

αG(λ) ≥ (1 + o(1))
log d

d
.

Now we show that αG(λ) is monotonically increasing in terms of λ. Let’s write PG(λ) =

P . Let I be an independent set drawn from the hard-core model with fugacity λ. Then

we have
λ2P ′′

P
+
λP ′

P
= E[|I|(|I| − 1) + |I|] = E[|I|2].

Hence, we have

α′
G(λ)|G| =

d

dλ
(
λP ′

P
) =

P ′

P
+
λPP ′′ − λ(P ′)2

P 2

=
P ′

P
+

1

λ
(
λ2P ′′

P
− (

λP ′

P
)2) =

1

λ

(

E[|I|2]− E[|I|]2
)

=
Var[|I|]
λ

≥ 0.

This shows that αG(1) ≥ αG(
1

log d). This concludes the theorem. �

As a corollary, we have the following bound on the ramsey number

Proposition 10.4. R(3, k) ≤ (1 + o(1)) k2

log k .



80 JAEHOON KIM

Proof. Assume that G is triangle-free n-vertex graph. We will show that is has an inde-

pendent set of size k.

If it has a maximum degree at least k, we are done as its neighborhood forms an

independent set. If it has maximum degree at most k, then the previous theorem yields

that it has an independent set of size at least (1 + o(1)) log kk n. This is at least k if

n > (1 + o(1)) k2

log k . Hence, we conclude that R(3, k) ≤ (1 + o(1)) k2

log k . �

Theorem 10.5 (Davies, Jenssen, Perkins, Roberts). For all d-regular graphs G and all

λ > 0, we have

αG(λ) ≤ αKd,d
(λ) =

λ(1 + λ)d−1

2(1 + λ)d − 1
.

Proof. Consider an independent set I drawn from the distribution of the hard-core model

with fugacity λ. We say a vertex v is occupied if v ∈ I and uncovered if N(v)∩ I = ∅. Let

pv = Pr[v ∈ I] and qv = Pr[N(v) ∩ I = ∅].

We first prove this statement for the case when G is a triangle-free n-vertex graph.

Assume G is triangle-free. Let U denote the set of uncovered vertices.

As before, (10.1) holds and (10.2) holds with equality. Hence, we have

E[Y ] = dE[(1 + λ)−Y ].

Now we do optimization over all distribution of Y (i.e. over all graphs G) we let

α∗ =
λ

d(1 + λ)
· sup
Y

{E[Y ] : E[Y ] = dE[(1 + λ)−Y ]}

where the supremum is taken over all distributions of Y which takes values in {0, 1, . . . , d}.
This is same as solving the following linear programming where xk = Pr[Y = k].

Maximize :

d
∑

k=0

kxk,

subject to :
∑

k

xk = 1,
∑

k

xk((1 + λ)−k − k

d
) = 0, xk ≥ 0.

Note that f(x) = (1 + λ)−x − x
d is a convex decreasing function where f(0) = 1, f(d) < 0.

For each 0 < i < d, the convexity of f yields that f(i) ≤ d−i
d f(0) + i

df(d). Hence, for a

function g(z) = zf(0) + (xi − z)f(d), we have

g(
(d − i)xi

d
) ≥ xif(i) ≥ xif(d) = g(0).

By the intermediate value theorem, there exists z such that g(z) = xif(i) where 0 ≤ z ≤
(d−i)xi

d ≤ xi. Note that (d− i)xi − zd ≥ 0.

Now we replace xi by 0 and increase x0 by z and xd by xi − z. With this new choice

of x0, . . . , xd, we have
∑

xk = 1 and
∑

k xk((1 + λ)−k − k
d ) = 0, xk ≥ 0 while

∑d
k=0 kxk

increase by (d− i)xi − zd ≥ 0. By repeating this, we may assume that a maximum occur

when xi = 0 for all i /∈ {0, d}. If we further solve the remaining linear program with

two variables, we obtain that x0 = (1+λ)d−1
2(1+λ)d−1

and xd = (1+λ)d

2(1+λ)d−1
. This is exactly the

distribution comes from a disjoint union of Kd,d.
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Now we consider general (not necessarily triangle-free) case. For given independent set

I, we define the free neighborhood of a vertex v to be G[{u ∈ N(v) : N(u) ∩ I = ∅}].
We draw I accorrding to the hard-core model and choose a vertex v uniformly at

random. Let C be the free neighborhood of v, which is also a random variable. For a

graph F , let pF = Pr[C isomorphic to F ]. As before, we will compute αG(λ).

First, we have

αG(λ) =
λ

1 + λ
Evqv =

λ

1 + λ

∑

F

(Pr[C ≃ F ] ·Pr[v uncovered | C ≃ F ])

=
λ

1 + λ

∑

F

(

Pr[C ≃ F ] · 1

PC(λ)

)

=
λ

1 + λ
EC [

1

PC(λ)
].

Here, we have the penultimate equality since v is uncovered if and only if I ∩ V (C) is ∅
and this happens with probability 1

PC(λ) . We also have

αG(λ) =
1

dn

∑

v

∑

u∈N(v)

pu =
1

d
Ev[|N(v) ∩ I|]

=
1

d

∑

F

Pr[C ≃ F ]

(

∑

k

kPr [|V (C) ∩ I| = k | C ≃ F ]

)

=
1

d

∑

F

Pr[C ≃ F ]EI∩V (C)[|I ∩ V (C)|] = 1

d

∑

F

Pr[C ≃ F ]
λP ′

F (λ)

PF (λ)
=
λ

d
EC [

P ′
C(λ)

PC(λ)
].

Here, the third equality and the penultimate equality hold since C is determined by

I ∩ (V (G)−N [v]), and once we fix I ∩ (V (G)−N [v]), the distribution of I ∩V (C) is same

as the hard-core model in the graph C.

Now we want to find

λ

2(1 + λ)
sup
C

{

EC [
1

PC(λ)
] +

λ+ 1

d
EC [

P ′
C(λ)

PC(λ)
] : EC [

1

PC(λ)
] =

1 + λ

d
EC [

P ′
C(λ)

PC(λ)
]

}

,

Let pF be the probability of having C = F . We want to solve the following linear

programming for all graphs F with at most d vertices.

Maximize :
∑

F

pF (aF + bF ),

subject to :
∑

F

pF = 1,
∑

F

pF (aF − bF ) = 0, pF ≥ 0,

where aF = 1
PF (λ) and bF =

(1+λ)P ′
F (λ)

dPF (λ) . In particular, we have a∅ = 1, b∅ = 0 and

aKd
= (1 + λ)−d and bKd

= 1.

Consider the following dual program.

Minimize : y1,

subject to : y1 + y2(aF − bF ) ≥ aF + bF , yF ≥ 0.

By setting y1 =
2

2−(1+λ)−d and y2 = 1−y1, we can check that λ
2(1+λ)y1 is exactly λ(1+λ)d−1

2(1+λ)d−1

which is what we desired. So, only remaining task is that this chose is a feasible solution

of the dual program. In other words, we need to show that for each F , y1+ y2(aF − bF ) ≥
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aF + bF . This is equivalent to showing
λP ′

F (λ)
PF (λ)−1 ≤ λd(1+λ)d−1

(1+λ)d−1
. For this, we prove the

following claim. This shows that the desired inequality is strict for all F other than two.

Claim 11. For each graph F /∈ {∅,Kd} with at most d vertices, we have

λP ′
F (λ)

PF (λ)− 1
<
λd(1 + λ)d−1

(1 + λ)d − 1
=

λP ′
Kd

(λ)

PKd
(λ)− 1

.

Proof. Let PF (λ) = 1 +
∑d

i=1 riλ
i, then we have (i + 1)ri+1 ≤ (d − i)ri as there are at

most d− i ways to extend an independent set of size i to and independent set of size i+1.

Let ti =
(d
i

)

then we have (i+ 1)ti+1 = (d− i)ti. This shows that we have
tk+i

tk
≥ rk+i

rk
for

all 0 ≤ k ≤ k + i ≤ d.

Now, we have

λP ′
Kd

(λ)(PF (λ)− 1)− λP ′
F (λ)(PKd

(λ)− 1) =

d
∑

k=1

(

k−1
∑

i=1

itirk−i −
k−1
∑

i=1

itk−iri

)

λk

=
d
∑

k=1





⌊k/2⌋
∑

i=1

(k − 2i)(tk−iri − tirk−i)



λk.

However, each tk−iri − tirk−i is nonnegative, so we have the claim. �

Note that this claim shows that each condition on the dual program holds with our

choice. This yields the desired inequality. �

Now, this shows that 1
λαG(λ) = d

dλ

(

1
|G| log PG(λ)

)

is maximized by Kd,d over all d-

regular graphs for all λ. So, if we integrate this nonnegative function, then 1
|G| log PG(λ)

is maximized by Kd,d over all d-regular graphs. Hence, we have

1

|G| log PG(λ) ≤
1

|Kd,d|
logPKd,d

(λ),

implying that

PG(λ) ≤ PKd,d
(λ)

|G|
2d .

By plugging λ = 1, we have the following theorem.

Theorem 10.6 (Kahn, Zhao, Galvin-Tetali). Let G be a n vertex d-regular graph. Then

we have i(G) ≤ [i(Kd,d)]
n/2d.
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11. Threshold

Recall that we defined the threshold of certain property P to be the function r = r(n)

where G(n, p) satisfies P with high probability if p(n)/r(n) → ∞ and G(n, p) does not

satisfies P with high probability if p(n)/r(n) → 0. We wish to find some upper bound on

the threshold for certain natural monotonically increasing properties P .

In G(n,m)-model, we choose an m-edge graph uniformly at random. As it is known

that G(n, p) and G(n,m) model are very similar when p = m
(n
2

)−1
. In other words, they

have the same threshold for most of the natural graph properties. So, we instead focus on

G(n,m)-model

For this purpose, we consider the following more general set-up. Consider each pair

ij ∈
([n]
2

)

as vertices of hypergraphs, and consider each minimal subgraphs in P as edges

of hypergraphs. If we choose a set U of m vertices independently uniformly at random

what is the probability that U contains an edge of the hypergraph? If this probability

tends to one, then p is an upper bound on the threshold.

Definition 11.1. A hypergraph is k-bounded if all edges have size at most k.

For a hypergraph H and a set S ⊆ V (H), let 〈S〉 = {T ⊇ S : T ⊆ V (H)}, and we write

〈H〉 = ⋃S∈E(H)〈S〉. A hypergraph is r-spread if |H ∩ 〈S〉| ≤ r−|S||H| for all S ⊆ V (H).

Theorem 11.2 (Frankston, Kahn, Narayanan, and Park, 2020+). There is a universal

constant K such that any k-bounded 2r-spread hypergraph H on [n] (with repeated edges

allowed), a random Kn log k
r -element subset of [n] chosen uniformly at random contains an

edge of H with high probability.

Proof. Let C0 be a large constant. Let p = C
r with C0 ≤ C ≤ r/C0, and let k′ = 0.9k and

N =
( n
np

)

.

Most natural attempt to prove this theorem is to choose a set W of certain size at

random, and find a set S ∈ E(H) where S \W is as small as possible and measure |S \W |.
However, finding best S is too difficult. Hence, we instead choose W at random and S

at random, but this makes |S \W | not as small as we wish. So, we make compromise by

choosing W at random and S at random, and choose a new set S′ ∈ E(H) which is better

than S. We choose some S′ ⊆ W ∪ S so that |S′ \W | ≤ |S \W |. This choice of S′ for

given (W,S) will be encoded in the following function ψ, and χ will measure |S′ \W |.
Fix a map ψ : 〈H〉 → H satisfying ψ(Z) ⊆ Z for all Z ∈ 〈H〉. For each W ⊆ [n] and

S ∈ E(H), we let

χ(S,W ) = ψ(S ∪W ) \W.
Note that if χ(S,W ) = ∅, then it means that W contains an edge S. So, we want

to ensure that χ(S,W ) is small. We say that (S,W ) is bad if |χ(S,W )| > k′ and good

otherwise.

The main part of the proof is the following lemma. By repeating this log k times, we

can ensure that a randomly chosen set ‘almost contains’ an edge S of H.

Lemma 11.3. Assume H is r-spread on [n]. Assume the above set-up. Let W be chosen

uniformly at random from
(

[n]
np

)

, then

E[|{S ∈ H : (S,W ) bad ] ≤ e(H)C−k/3.
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Proof. It is enough to show that the number of bad pairs is at most N |H|C−k/3. Fur-

thermore, let Hs = {S ∈ H : |S| = s}. It suffices to show that for each s ∈ [k′, k]

that

|{(S,W ) bad : S ∈ Hs,W ⊆ [n]}| ≤ N |H|
kC−k/3 .

We assume that s ≤ n/2 as otherwise we have the following where m is the largest

multiplicity of the edges of H: m ≤ r−s|H| ≤ k−sm2n. This is contradiction as r > C.

We define a pair (S,W ) to be pathological if there exists T ⊆ S with t = |T | > k′ and

|{S′ ∈ Hs : T ⊆ S′ ⊆ S ∪W}| ≥ Ck/2|H|r−tps−t.

We say that the above T witnesses the pathology of (S,W ).

Note that if W is randomly chosen from
([n]
np

)

, then the expected number of edges of size

s containing T in S ∪W is |H|r−t|ps−t as H is r-spread. Hence, the pathological pairs are

very ‘nontypical’ cases. We will count pathological bad pairs and non-pathological bad

pairs.

First, we count all non-pathological bad pairs by using the definition of pathological

pairs. We generate all non-pathological bad pairs as follows.

Step 1. Choose a set Z of size between [np, np + s] by
∑s

i=0

( n
np+i

)

≤
( n+s
np+s

)

≤ Np−s

choices. This set Z will be our W ∪ S later.

Step 2. Let S′ = ψ(Z) and choose a subset T of S′ with size t > k′. There are at most 2k

choices. This T will be our S ∩ S later.

Step 3. Choose an edge S ∈ H where S ∩ S′ = T and S ⊆ Z. As we are only interested in

non-pathological choices, the number of possibility is at most Ck/2|H|r−tps−t.
Step 4. Choose a set S′′ ⊆ S with at most 2k choices.

At the end W = Z \ (S \ S′′) with S forms a bad pair. In total, there are

Np−s · 2k · Ck/2|H|r−tps−t · 2k ≤ N |H|
C3k/8

non-pathological bad pairs.

In order to count pathological bad pairs, we first prove the following simple claim.

Claim 12. If (S,W ) is a pathological bad pair and T witnessing this pathology with |T | = t,

then there exists a set U = U(S,W ) with T ⊆ U ⊆ S with

|{X ∈ Hs : U ⊆ X ⊆ (W \ S) ∪ U}| > 2−(s−t)Ck/2|H|r−tps−t =: Φ(t).

Proof. As T is witnessing the pathology of (S,W ), there are at least Ck/2|H|r−tps−t edges
in Hs containing T . We partition them according to the intersection of the edge with S,

then we have at least one U as above. �

Now, we count pathological bad pairs using the spreadness and the ‘nontypicality’ of

pathological cases.

Step 1. Choose an edge S ∈ H with |H| choices.
Step 2. Choose T ⊆ S, there are at most 2k choices. This set T will be a set witnessing

pathology of the pair we are generating.

Step 3. Choose U with T ⊆ U ⊆ S by at most 2k choices. This U will be the set U(S,W )

for the pair (S,W ) we construct later.
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Step 4. Choose a set Y as follows: for any W with S∪W = S∪Y , (S,W ) is a pathological

pair with U(S,W ) = U . We prove that there are at most N( 4
C )

k/2 choicse for this

in the claim below.

Step 5. Choose a set X ⊆ S which will be S ∩W .

Overall, the number of choices is at most

|H| · 22k ·N(
4

C
)k/22k ≤ N |H|

C3k/8
.

It remains to show the following claim.

Claim 13. There are at most N( 4
C )

k/2 choices for Y in the above Step 3.

Proof. Choose Y from
⋃s
i=0

([n]\S
np−i

)

uniformly at random. Note that

|
s
⋃

i=0

(

[n] \ S
np− i

)

| =
s
∑

i=0

(

n− s

np− i

)

≤
(

np

s

)

≤ N.

Let |U | = u, then we have

|Hs ∩ 〈U〉| ≤ |H ∩ 〈U〉| ≤ |H|r−u.

For any S′ ∈ Hs ∩ 〈U〉, we have

Pr[Y ⊇ S′ \ U ] ≤ (
np

n− s
)s−u.

So, we have

E[|{X ∈ Hs : U ⊆ X ⊆ Y ∪ Y }|] ≤ |H|r−u( np

n− s
)s−u.

Hence, Markov’s inequality implies that

Pr[|{X ∈ Hs : U ⊆ X ⊆ Y ∪ Y }| > Φ(t)] ≤
|H|r−u( np

n−s)
s−u

Φ(t)
≤ (

4

C
)k/2.

Hence we have at most

NPr[|{X ∈ Hs : U ⊆ X ⊆ Y ∪ Y }| > Φ(t)] ≤ N(
4

C
)k/2

choices for Y in Step 3. �

Overall, we have at mot 2 N |H|
C3k/8 bad pairs, proving the lemma. �

Assume that edges of H are ordered, and ψ(Z) is the first edge of H lying inside Z.

Let H0 = H. Let ki = 0.9ik. We choose m so that 0.9m =
√
log k
k and let q = log k

r . We

choose pn-subset Wi of V (Hi) uniformly at random, and let Hi+1 be the hypergraph on

the vertex set V (Hi) \W . Let χi(S,Wi) = S′ \Wi where S
′ is the first member of Hi

inside S,Wi. Say S ∈ Hi is good if |χi(S,Wi)| ≤ ki, otherwise bad. Let

Hi = {χi(S,Wi) : S ∈ Hi, S is good}

and we inherit the ordering in a natural way.

We say that i-th round is successful if e(Hi+1) > (1− 1
2m )e(Hi). By the previous lemma

and Markov’s inequality, we know that

Pr[i-round not successful | W1, . . . ,Wi−1 successful] < 2mC−ri−1/3.
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Note that assumingW1, . . . ,Wi−1, the hypergraph e(Hi) ≥ 1
2e(H), hence it is still r-spread

(recall origial hypergraph was 2r-spread.) Hence, the lemma ensures the above inequality.

Hence, with probability at least 1 − 1
2m

∑m
i=0 C

−ri/3 > 1 − exp(−√
log k), we have all m

rounds successful, and get Hm with at least half of the edges of H. Let n′ = |V (Hm)|.
To finish the remaining proof, we prove the following claim.

Claim 14. Choose each vertex v in V (Hm) independently at random with probability

q′ = qn/n′, and let Y be the random set of chosen vertices. Then

Pr[Y ∈ 〈Hm〉] ≤ exp−
√
log k .

Proof. We use Janson’s inequality. Note that H is km = 0.9mk =
√
log k-bounded. Denote

edges of Hm by Si and let Ii be the indicator random variable of the event Si ⊆ Y . Then

µ = q′r|Hm| and

∆ =
∑

Si∩Sj 6=∅
E[IiIj] ≤ |Hm|

km
∑

t=1

(

km
t

)

r−t|H|q2r−t

≤ µ2
km
∑

t=1

(

km
t

)

(rq′)−t ≤ µ2((1 +
1

rq′
)km − 1) ≤ µ2

1√
log k

.

By Janson’s inequality, the probability that no events Ii occurs is at most exp[− µ2

2∆ ] ≤
exp[−1

4

√
log k]. �

As the above claim is for sets chosen randomly from all subsets of V (Hm), we need to

make some changes for our purpose of choosing a set with fixed size. If we choose a set

W of size qn from Z, then we have

Pr[W /∈ 〈Hm〉] ≤ 2Pr[|Y | ≤ qn]Pr[W /∈ 〈Hm〉]
≤ 2Pr[|Y | ≤ qn]Pr[Y /∈ 〈Hm〉 | |Y | = qn]

≤
qn
∑

i=0

2Pr[|Y | = i]Pr[Y /∈ 〈Hm〉 | |Y | = i]

≤ 2Pr[Y /∈ 〈Hm〉].
Here, we have the penultimate inequality as choosing less vertices makes it more likely

to not contain given edges. This we the above claim says that if we choose a random

qn-set Wm+1 from Z, then Wm+1 contains an edge of Hm with probability at least 1 −
2exp[−1

4

√
log k]. Hence, W1 ∪ · · · ∪Wm+1 contains an edge of H with probability at least

1 − (m + 2) exp[−1
4

√
log k] which tends to 1 as k tends to infinity. As W1 ∪ · · · ∪Wm+1

has the same distribution of choosing a random (mp + q)-set and mp + q ≤ 3C log k
r , we

obtained the desired conclusion. �

Note that many natural structures in graphs gives a well-spread hypergraphs as above.

For example, if we consider the collection of all Hamilton cycles in G(n, p) model, then it

yields O(n)-spread n-uniform hypergraphs. This yields that the threshold of the existence

of Hamilton cycles is p = O( lognn ). Similarly, one can show that threshold of containing a

specific copy T of bounded degree tree is O( lognn ).


	1. Basics
	2. Linearity of Expectation
	2.1. Max-cut problems
	2.2. Unbalancing lights
	2.3. List chromatic number

	3. Alteration
	3.1. Ramsey number and hypergraph 2-coloring
	3.2. dependent random choice

	4. The second moment
	4.1. An application in Number theory
	4.2. Random graphs
	4.3. The Rödl nibble

	5. The local lemma
	5.1. Several applications
	5.2. Linear arboricity of graphs
	5.3. Lopsided Local Lemma
	5.4. Algorithmic aspects of Local Lemma

	6. Correlation inequality
	6.1. The four function theorem
	6.2. The FKG inequality

	7. Martingales and tight concentrations
	7.1. Concentration inequality
	7.2. Clique number and chromatic number
	7.3. Talagrand's inequality and the concentration around the median
	7.4. Kim-Vu Polynomial concentration

	8. The Poisson Paradigm
	8.1. The Janson inequality
	8.2. Lower tails
	8.3. Large deviations and disjoint families
	8.4. Counting representations

	9. Codes, games and entropy
	9.1. Codes
	9.2. Liar game
	9.3. Entropy
	9.4. Graph homomorphisms and entropy

	10. More on independent sets
	10.1. The hard-core model

	11. Threshold 

