
A LECTURE ON GRAPH LIMITS

JAEHOON KIM

Abstract. In this course, we learn basics of graph limit theory. The materials on this
note are based on [1, 2, 3]

1. Short motivations

Let G1, G2, . . . . . . be a sequence of graphs. Our aim is to define when this sequence
is convergent, and what the limit of this sequence should be. Obviously if a sequence
is convergent, the graphs on the sequence eventually must share some characteristics.
Consider some examples.

Example 1.1. Let K1,K2,K3, . . . be the sequence of n-vertex cliques.

How do we feel about the above sequence? Do we feel that the graphs in the sequence
shares some characteristic? Do we feel that the sequence must converges to? What should
be the limit of this sequence? Let’s consider one more example.

Example 1.2. Let P1, P2, P3, . . . be the sequence of n-vertex paths.

In both of the examples, we feel that both sequences should be convergent. If we
ask ourselves why we feel this way, one reason is that their local shapes are alike. For
n1, n2 � r, if we take random s vertices from Kn1 and Kn2 , they induces the same graph
Kr with high probability (in fact, they are always the same). For n1, n2 � r, if we take a
random vertex in Pn1 and Pn2 , the r-neighborhood Br(v) induces the same graph P2r+1

in both graphs unless the vertex v is very close to the end of the paths. In this two cases,
‘local shapes’ are a bit different. In one case, we take arbitrary vertices and in the other
case, we take a neighborhood of a vertex. The former case leads to graph limits of dense
graphs and the latter case lead to graph limits of sparse graphs. In sum, we will study
about the probability distributions of certain random sampling on a given graph.

To further motivate the study on the subgraph statistics (which is the same to the
probability distributions of certain random sampling), consider the following problem.

Question 1.1. For an n-vertex labeled graph G with labeled edge density at least 1/2, how
small the labeled C4-density can be?

Here, labeled edge density is 2e(G)/n(n − 1) and labeled C4-density is the number of
labeled C4s divided by n(n− 1)(n− 2)(n− 3). Erdős showed that the labeled C4-density
of such a graph is at least 1/16. However, this number 1/16 is not achieved by any graph.
On the other hand, there exists a sequence (Gn)n∈N of graphs with edge density at least
1/2 whose labeled 4-cycles density approaches to 1/16. This example motivates the study
of limits of subgraph densities as it can be used to study certain inequalities from the
extremal graph theory.
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2. Graphons

We want to first define homomorphism density, which is a random sampling we will use.
Then we define convergence and objects which will be the limit of convergent sequence of
dense graphs.

Motivated from Example 1.1, we want to define ‘local shape’ or ‘local behavior’ of
graphs. As in the previous section, we want to analyze what graphs a set of s chosen
vertices induces. For that, we can consider the number of sets S ∈

(
V (G)

s

)
which induces

a certain graph F . However, for several reasons it’s more convenient to work with the
following set up.

(1) Instead of choosing s vertices at once, we choose vertices one by one. In other
words, we distinguish choosing v1, v2 in order with choosing v2, v1 in order.

(2) We allow to choose the same vertex multiple times.
(3) We normalize the number, i.e. divide the number by all possible choices.

First two choices allows us to simplify many calculations, and such choices do not make
any essential difference. The third choice enables us to deal with graphs with different
number of vertices. As we are allowing to choose same vertex multiple times, the following
notions of homomorphism is more appropriate than just considering subgraphs. Let’s write
|G|, e(G) for the number of vertices and the number of edges of G.
Definition 2.1. A function f : V (F ) → V (G) is a homomorphism from F to G if
f(u)f(v) ∈ E(G) for all uv ∈ E(F ). Let the homomorphism number hom(F,G) be the
number of homomorphisms from F to G. Let the homomorphism density t(F,G) be

hom(F,G)

|G||F | .

The homomorphism density t(F,G) captures the local behavior that we wanted to
define. This is a probability that a randomly chosen map f : V (F ) → V (G) is a homo-
morphism. Then, {t(F,G)}|F |=s provides the probability distribution of random sampling
of s vertices. As this reflects ‘local behavior’ of our interest, we can propose the following
definition.
Definition 2.2. A sequence (Gn)n∈N is convergent if the sequence (t(F,Gn))n∈N converges
for all graphs F .

Another way of considering this is the following. We enumerate all the graphs into
F1, F2, . . . and we identify G with an infinite tuple (t(F1, G), t(F2, G), . . . ). Note that this
is a sequence which has only finitely many nonzero terms. With the above definition,
the sequence G1, G2, . . . converges if and only if the sequence of the corresponding tuples
component-wise converges.

With this definition, it is easy to define the limit. The limit of a sequence G1, G2, . . .
should be the probability distribution

( lim
n→∞

t(Fi, Gn) : i ∈ N)

This is our object of interest. We want to know what kind of probability distribution
can be obtained from a sequence of graphs, and what property do they have. Note that
every graph corresponds to an infinite tuple with finitely many nonzero components, but
the limit can be an infinite tuple with infinitely many nonzeros. Hence, the limits of a
convergent sequence of graphs may not be graphs.

Although this definition is very natural, this is not descriptive of what happens and it
does not provide much intuition to us. Hence we want to find another more descriptive
(equivalent) definition of graph limits.

As we mention before, t(F,G) captures the local behavior of our interest. Assume
V (F ) = [s]. This can be interpreted as the following. We choose random vertices
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Figure 1. An associated graphon WG for G = Kn,n,n.

x1, x2, . . . , xs in G uniformly at random and compute the probability that the map f(i) =
xi is a homomorphism. Here, the graph G provides a distribution of the probability that
xixj forms an edge. In above discussion, we identified the graph with an infinite tuple
(t(Fi, G))i∈N which is same as the probability distributions based on this sampling proce-
dures for all possible s ∈ N. Moreover, what kind of properties this distribution have? For
given graph G, we can check the following.

(1) For {i, j} ∩ {i′, j′} = ∅, the event of xixj forming an edge and the event of xi′xj′
forming an edge are independent.

(2) If we fix xi ∈ V (G), then the distribution of xixj forming an edge is determined.
Once xi = v is anchored, the distribution of vxj forming an edges are determined. This

motivates us to write the distribution for each v in a row to make a matrix. This provides
the adjacency matrix. For this adjacency matrix A, what is hom(F,G)? This can be
written as follows where V (F ) = [s].

t(F,G) =
∑

f :[s]→V (G)

∏
ij∈E(F )

A(f(i), f(j))× 1

|G|s
.

Now we forget the graph, and try to mimic this for some given (more general) distri-
bution W (x, y) on two variables. We have a measure space V , and we choose elements
x1, . . . , xs according to some measure, and compute W (xi, xj) for all i, j and use this
to compute something similar to the homomorphism density. From this motivation, we
define as follows by taking [0, 1] as our measure space.

Definition 2.3. Let W0 denote the set of all symmetric measurable functions [0, 1]2 →
[0, 1]. The elements of W0 are called graphons. We also define W1 be the set of all sym-
metric measurable functions [0, 1]2 → [−1, 1] and W be the set of all symmetric measurable
functions [0, 1]2 → R which are called kernels.

Let’s consider some examples of graphon.

Example 2.1. Given an n-vertex (edge)-weighted graph H with edge weights β(ij) ∈ [0, 1],
we define its associated graphon WH : [0, 1]2 → [0, 1] as follows. Let I1 ∪ · · · ∪ In be a
partition of [0, 1] into n sets of same Lebesgue measure and let WH(x, y) = β(ij) if
ij ∈ E(H) and x ∈ Ii, y ∈ Ij. Given an n-vertex graph G, we identify this with weighted
graphs with β(ij) = 1 for all ij ∈ E(G) this naturally defines its associated graphon WG.
In a similar way, we can defined associated graphon for a symmetric matrix with entries
in [0, 1].

Similarly as for the graphs, for given graphon, we can also define homomorphism density
as follows. For given graph F on the vertex sets [s],

t(F,G) =

∫
[0,1]s

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi
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Figure 2. Wφ2 ,Wφ3 are weakly isomorphic but there are no measure-
preserving transformation up to a null set from one to another.

If W (x, y) ∈ {0, 1} and if we interpret W (x, y) being 1 as xy being an edge, then this is
exactly the probability that a map V (F ) → [0, 1] chosen at random in uniform measure
induces a homomorphism. Hence, (t(Fi, G))i∈N is a weighted version of probability dis-
tribution of random sampling. Again, we define a convergent sequence of graphons using
this probability distribution.
Definition 2.4. A sequence (Wn)n∈N of graphons is convergent if the sequence (t(F,Wn))n∈N
converges for all graphs F .

Recall our purpose again. Our purpose is to define objects which will be limits of
convergent graph sequences. Are graphons the objects we wanted? Not quite. Consider
two graphons W and W ′ which are same everywhere except a measure zero set in [0, 1]2.
Then we have t(F,W ) = t(F,W ′) for all graphs F . We wanted to say that a convergent
sequence G1, G2, . . . has limit W if limi→∞ t(F,Gi) = t(F,W ) for all graphs F . However,
if the limit of a sequence G1, G2, . . . is W , then W ′ also can be its limit. So, we want to
‘identify’ two graphons W and W ′ if t(F,W ) = t(F,W ′) for all graphs F .
Definition 2.5. Two graphons W and W ′ are weakly isomorphic if t(F,W ) = t(F,W ′)
for all graphs F .

However, when does two graphons are weakly isomorphic? Consider Example 2.1. There
the partition I1 ∪ · · · ∪ In of [0, 1] into sets of equal measures are arbitrary. Let W,W ′ be
two graphons we get from two different partitions. Then we again have t(F,W ) = t(F,W ′)
for any graph W . Among two partitions, one partition can be obtained from the other by
taking an invertible measure-preserving map of [0, 1] and changes on a measure-zero set.
Definition 2.6. We say that a map φ : [0, 1] → [0, 1] is measure-preserving with respect
to a measure λ if λ(X) = λ(φ−1(X)) for all measurable X ⊆ [0, 1].
Definition 2.7. Two graphons W,W ′ are isomorphic up to a null set if there exists an
invertible measure-preserving map φ : [0, 1] → [0, 1] such that W ′(φ(x), φ(y)) = W (x, y)
almost everywhere. Here, almost everywhere meaning that the equality holds for all (x, y)
up to a set of measure zero.

So, if two graphons W,W ′ are isomorphic up to a null set, then they are weakly
isomorphic. However, does the converse hold? No. One easy way to see this is to
observe that the term ‘invertible’ is not really necessary. Meaning that if we define
Wφ(x, y) = W (φ(x), φ(y)) for a given measure-preserving map φ : [0, 1] → [0, 1], we
have

t(F,W ) = t(F,Wφ)

for all graphs F . With this example, it is not difficult to check t(F,W ) = t(F,Wφ).
However, again there are two weakly isomorphic graphons W,W ′ which are not obtained
by using this relation. For example, consider measure preserving maps φk : x 7→ kx
(mod 1). Then the graphons W,Wφ2 ,Wφ3 are weakly isomorphic. But there are no
measure-preserving transformation up to a null set from Wφ2 to Wφ3 . On the other hand,



A LECTURE ON GRAPH LIMITS 5

it is known that if two graphons W1,W2 are weakly isomorphic, then there exists a graphon
W0 and measure preserving maps φi such that Wi =Wφi

0 up to a null set for each i ∈ [2].

3. Cut distance

In order to better understand graphons, we want to measure distances between two
given graphons and turn the space of graphons into a metric space. Obviously, we want
two graphons W,W ′ to be close if and only if |t(F,W ) − t(F,W ′)| is small for all graphs
F . Moreover, we want two graphons W,W ′ are at distance zero if and only if they are
weakly isomorphic. How can we define distances between graphons?

Let’s consider graphs first. For two graphs G and G′ with the same vertex set [n], the
most natural way to measure the distance between them is to consider the following.

d1(G,G
′) =

|E(G)4E(G′)|
n2

.

Of course, we want to identify two graphs if one can be obtained from the other by
permuting the vertices.

δ1(G,G
′) = min

G′′ is a permutation of G′

|E(G)4E(G′′)|
n2

.

However, even with this definition, δ1 does not capture the homomorphism density as
we want. Consider two independent random graphs G,G′ with edge probability 1/2,
then with high probability, δ1(G,G′) = 1/4. However, for any small graph F , we have
t(F,G) = t(F,G′)± o(1). Hence, δ1 is not the right distance we want.

Also consider the following example.

Example 3.1. Let G1, G2 be two graphs having the same partition V1 ∪ · · · ∪ Vr such that
Gk[Vi, Vj ] is ε-regular with density di,j for all k ∈ [2] and ij ∈

(
[r]
2

)
. Then for any small

graph F , we have t(F,G1) = t(F,G2)±O(|e(F )|ε+ 1/r).

Recall that a pair (S, T ) of vertex sets in a graph G is ε-regular if

|eG(S
′, T ′)

|S′||T ′|
− eG(S, T )

|S||T |
| < ε

for all S′ ⊆ S, T ′ ⊆ T with |S′| ≥ ε|S|, |T ′| ≥ ε|T |.
The above example roughly tells us the following. For two graphs G1 and G2, for not-

too-small sets S, T , if the number of edges between S and T is similar for the two graphs,
then they must be close in terms of our desired distance. Hence this tells us that whether
each edge is at the right positions (which is measured by edit distance) is not important
but we have to care whether the number of edges between two large sets are correct. This
motivates the following definition of cut distance between two graphs with the same vertex
set.

d□(G,G
′) = max

S,T⊆V (G)

|eG(S, T )− eG′(S, T )|
n2

and δ□(G,G
′) = min

G′′ is a permutation of G′
d□(G,G

′′)

Of course this can be only defined for two graphs with the same vertex set, and it can
be easily generalized into two graphs with the same number of vertices. There are ways
to generalize this to two graphs with different number of vertices. However, we rather
directly consider graphons. The following norms are natural.

Definition 3.1. For W : [0, 1]2 → [0, 1], we define Lp norm as ‖W‖p = (
∫
[0,1]2 |W |p)1/p

and L∞ norm ‖W‖∞ to be the infimum of all the real numbers α such that {(x, y) ∈
[0, 1]2 :W (x, y) > α} has measure zero.
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Similarly to the graph case, let d1(U,W ) = ‖U − W‖1. The following cut norm for
graphon is also similarly defined as the graph case.

‖W‖□ = sup
S,T⊆[0,1]

|
∫
S×T

W (x, y)dxdy| and d□(U,W ) = ‖U −W‖□

where the supremum is taken over all measurable subsets S and T .
Then we have

‖W‖□ ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1.

From this we define cut distance as
δ□(U,W ) = inf

φ
d□(U,W

φ)

where φ is taken over all invertible measure-perserving
Note that this cut-distance is not a metric as two different graphons can have distance

zero. We identify two graphons with cut-distance zero to obtain the set W̃0 of unlabeled
graphons. Later we will see this cut-distance is the distance we wanted, meaning that two
graphons are weakly isomorphic if and only if cut-distance between them is zero.

For R ⊆ W0, define
B1(R, ε) = {W ∈ W0 : ∃U ∈ R such that d1(W,U) < ε}
B□(R, ε) = {W ∈ W0 : ∃U ∈ R such that d□(W,U) < ε}

Using these as bases, L1-norm and cut norm defines topologies on W. These two topologies
are different. Note that an open set in the topology defined by cut norm is also an open
set in L1-norm, but the converse is not true.

4. Szemerédi partitions

A function W ∈ W is called a stepfunction if there exists a partition S1 ∪ · · · ∪ Sk of
[0, 1] into measurable sets such that W is constant on Si × Sj for all i, j ∈ [k]. It is an
easy fact that any integrable function can be approximated by a stepfunction in terms of
L1-distance.

It would be very useful if we can also approximate graphons by stepfunctions with
respect to cut distance. Indeed, this is possible by the following regularity lemma.

Lemma 4.1 (Weak regularity lemma). For every W ∈ W and k ≥ 1 there is stepfunction
W with k steps such that

‖W − U‖□ <
4‖W‖2√
log k

.

Furthermore, the following counting lemma helps us to approximate t(F,W ).

Lemma 4.2 (Counting lemma). For U,W ∈ W0 and a graph F ,
|t(F,U)− t(F,W )| ≤ e(F )δ□(U,W ).

Hence, to approximate t(F,W ), we first find a stepfunction U with small ‖W−U‖□ with
k steps. As U is a stepfunction, computing t(F,U) can be done with a finite computation.
Then, using the above counting lemma, t(F,U) is an approximation of t(F,W ). Moreover,
we can ensure such stepfunctions are steppings of W , which we define as follows.

Definition 4.3. For a partition P = {S1, . . . , Sk} of [0, 1] into measurable subsets and
W ∈ W. The stepping WP is defined by

WP(x, y) =
1

λ(Si)λ(Sj)

∫
Si×Sj

W if (x, y) ∈ Si × Sj .

Here λ(Si) is the Lebesgue measure of Si. Instead of proving weak regularity lemma we
will prove the following version.
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Lemma 4.4. Let W ∈ W and 1 ≤ m ≤ k. For every m-partition Q of [0, 1] there is a
k-partition P refining Q such that

‖W −WP‖□ ≤ 4‖W‖2√
log(k/m)

.

To prove lemma 4.4, we prove the following lemmas first.

Lemma 4.5. For any U ∈ W there are two sets S, T ⊆ [0, 1] and a real number 0 ≤ a ≤ 1
such that

‖U − a1S×T ‖22 ≤ ‖U‖22 − ‖U‖2□.

Proof. Let S and T be measurable subsets of [0, 1] such that the cut-norm is achieved with
S and T , meaning

‖U‖□ =

∣∣∣∣∣
∫
[0,1]2

U · 1S×T

∣∣∣∣∣ .
Let a = 1

λ(S)λ(T )‖U‖□. Then

‖U − a1S×T ‖22 =
∫
[0,1]2

(U2 − 2aU · 1S×T + a2) = ‖U‖22 − ‖U‖2□.

□

Note that for any W ∈ W and a partition P of [0, 1] into measurable sets, we have
‖WP‖□ ≤ ‖W‖□.

To see this, consider sets S, T ⊆ [0, 1]. For some Si ∈ P, if Si ⊊ S, we consider S′ = S∪Si
and S′′ = S \ Si. Depending on the sign of

∫
Si×T WP , one of |

∫
S′×T WP | and |

∫
S′′×T WP |

is as large as |
∫
S×T WP |. By repeating this, one can obtain Ŝ, T̂ such that

|
∫
S×T

WP | ≤ |
∫
Ŝ×T̂

WP |

and Ŝ =
⋃

i∈I Si, T̂ =
⋃

j∈J Tj for some I, J ⊆ [k]. For such sets, we have |
∫
Ŝ×T̂ WP | =

|
∫
Ŝ×T̂ W | ≤ ‖W‖□. Using this, we can prove the following lemma.

Lemma 4.6. Let W ∈ W0 and U be a stepfunction with steps P. Then
‖W −WP‖□ ≤ 2‖W − U‖□.

Proof. As we have ‖(U −W )P‖□ ≤ ‖U −W‖□,
‖W −WP‖□ ≤ ‖W − U‖□ + ‖U −WP‖□ = ‖W − U‖□ + ‖(U −W )P‖□ ≤ 2‖W − U‖□.

□

Proof of Lemma 4.4. Let s = d12 log(
k
2m)e. By repeatedly applying Lemma 4.5, we obtain

pairs of sets Si, Ti and real numbers ai such that Wj =W −
∑j

i=1 ai1Si×Ti satisfying

0 ≤ ‖Wj‖22 ≤ ‖W‖22 −
j−1∑
i=0

‖Wi‖2□.

Thus, there exists t ≤ s such that ‖Wt‖□ ≤ ∥W∥2√
s

. Consider U =
∑t

i=1
ai
2 (1Si×Ti+1Ti×Si).

As W is symmetric, we have

‖W − U‖□ ≤ ‖1
2
W − 1

2

j∑
i=1

ai1Si×Ti‖□ + ‖1
2
W − 1

2

j∑
i=1

ai1Ti×Si‖□ ≤ ‖Wt‖□ ≤ ‖W‖2√
s
.
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Note that U is a stepfunction with at most 22s steps. Let Q′ be the set of these steps.
Let P be the common refinement of Q and Q′, then P has at most m22s ≤ k. Applying
Lemma 4.6, we finish the proof. □

We have defined the metric space (W̃, δ□). We can prove that this space is compact.
In particular, this implies that the limit of a convergent sequence of graphons is again a
graphon. (Every compact metric space is complete, so the limit of convergent graphon
sequence is a graphon.) To prove that, we need some concepts.
Definition 4.7. A sequence X0, X1, . . . of random variables is a martingale if E[Xn |
Xn−1, . . . , X0] = Xn−1 for all n.

Imagine that each Xi+1 is determined after we have Xi. As E[Xn] = Xn−1, it is not
likely that |Xn −Xn−1| is too big and the sequence is not likely to deviate too much from
X0. This intuition is captured in the following fact. We omit the proof of this theorem.
Theorem 4.8. Let X0, X1, . . . be a martingale where each taking real value and we have
supn E[|Xn|] <∞. Then X0, X1, . . . is convergent with probability 1.

We now prove the following theorem.

Theorem 4.9. The metric space (W̃0, δ□) is compact.
Proof. Based on the definition of compactness, our goal is to prove the following: every
sequence W1,W2, . . . of graphons has a convergent subsequence.

For each n ∈ N, we apply Lemma 4.4 to obtain the partitions P ′
n,k of [0, 1] satisfying

the followings, where P ′
n,1 = {[0, 1]} is a trivial partition. Here, we allow the partitions

P ′
n,k to have several empty parts to ensure (3).

(1) ‖Wn −W ′
n,k‖ ≤ 1/k where W ′

n,k = (Wn)P ′
n,k

.
(2) P ′

n,k+1 refines P ′
n,k

(3) |P ′
n,k| = mk where mk depends only on k.

Note that Pn,1 = P ′
n,1 is a trivial partition, thus it is a partition of [0, 1] into intervals. We

also want to ensure this for all partitions with larger second indices. Let Wn,1 =W ′
n,1.

For a fixed n and k ≥ 2, assume Pn,k−1 is a partition of [0, 1] into intervals. We apply a
measure preserving bijection to W ′

n,k and P ′
n,k to obtain Wn,k and Pn,k such that Pn,k is

a partition of [0, 1] into intervals and it refines Pn,k−1. From this we obtain the following
for each k ≥ 1.

(W1) δ□(Wn,Wn,k) ≤ 1/k.
(W2) Pn,k+1 refines Pn,k and all Pn,k partitions [0, 1] into intervals.
(W3) |Pn,k| = mk where mk depends only on k.
Let

ℓ(n, k) = (ℓn,1, . . . , ℓn,mk
) ∈ [0, 1]mk

where ℓn,i is the length of the i-th interval in Pn,k. We first find an increasing sequence
n′1, n

′
2, . . . of natural numbers satisfying the following.

(N′1) For each k ∈ N, the sequence ℓ(n′1, k), ℓ(n′2, k), . . . converges.
To show that this is possible, assume that we have an infinite sequence nk−1

1 , nk−1
2 , . . . such

that ℓ(nk−1
1 , j), ℓ(nk−1

2 , j) . . . converges in [0, 1]mj for all j ≤ k − 1. Now, we consider the
sequence ℓ(nk−1

1 , k), ℓ(nk−1
2 , k), . . . in the compact space [0, 1]mk . This has a convergent

subsequence ℓ(nk1, k), ℓ(nk1, k), . . . where nkj = nk−1
j for j ≤ k. By repeating this, we obtain

the desired sequence n′1, n′2, . . . where n′k = nkk is well-defined by our construction.
Now, we take a subsequence n1, n2, . . . of n′1, n′2, . . . and graphons Uk as follows.
(N2) For each k ∈ N, the sequence Wn1,k,Wn2,k . . . converges to Uk on almost all points

on [0, 1]2.
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To show that this is possible, we only focus on the values of the graphon on j-th interval
× j′-th interval. Fix k and consider fi,k : [mk]

2 → [0, 1] be a function where fi,k(j, j′)
is the value of Wn′

i,k
on the j-th interval × j′-th interval. Note that fi,k ∈ [0, 1]m

2
k for

each k. As before, we can repeatedly taking subsequences for each k in an increasing
order, we can find subsequence n1, n2, . . . where fn1,k, fn2,k, . . . converges in [0, 1]m

2
k for

all k ≥ 1. For fixed k, together with (N′1), the limit of this subsequence and the limit
of ℓ(n1, k), ℓ(n2, k), . . . yields Uk as desired. Let Pk be the partition corresponding to Uk.
Note that this is the partition corresponding to the limit of ℓ(n′1, k), ℓ(n′2, k), . . . .

By deleting all Wi with i /∈ {n1, n2, . . . }, and renaming the remaining graphons to
W1,W2, . . . , we assume that W1,k,W2,k, . . . converges to Uk and Uk is a step graphon on
Pk. By (W1), each Pn,k+1 refines Pn,k, we have Wn,k = (Wn,k+1)Pn,k

. From this, we
obtain Uk = (Uk+1)Pn,k

.
Let (x, y) be a point in [0, 1]2 chosen uniformly at random. Then the above relation

shows that U1(x, y), U2(x, y), . . . forms a bounded martingale. Hence Theorem 4.8 implies
that this sequence is convergent with probability 1. In other words, U1, U2, . . . converges
on almost all points (x, y) on [0, 1]2. Let U be the limit where we assign 0 on the null set
of points of non-convergence.

Now we claim that δ□(Wn, U) converges to zero as n tends to infinity. Let ε > 0. As
Uk converges to U , we have ‖Uk − U‖1 ≤ ε/3 for some k > 3/ε. Fix this k and choose n0
such that ‖Uk −Wn,k‖1 ≤ ε/3 for all n ≥ n0. Then we have

δ□(Wn, U) ≤ δ□(Wn,Wn,k) + δ□(Wn,k, Uk) + δ□(Uk, U)

≤ 1/k + ‖Uk −Wn,k‖1 + ‖Uk − U‖1 ≤ ε.

This shows that the subsequence W1,W2, . . . converges in δ□ metric. □

Recall that we have defined the convergence of graphs in terms of its homomorphism
densities. To quantify this, we introduced the notion of the cut distance. To show that
the cut distance serves our purpose well, we need to prove the counting lemma.

Proof of Lemma 4.2. It suffices to prove |t(F,W )− t(F,U)| ≤ e(F )‖W − U‖□ as one can
taking infimum over all right hand side over all Uφ where φ is is measure-preserving
bijections.

We first prove the following claim.

Claim 1.

‖W‖□ = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W

∣∣∣∣ = sup
u,v:[0,1]→[0,1]

∣∣∣∣∣
∫
[0,1]2

W (x, y)u(x)v(y)dxdy

∣∣∣∣∣ ,
where the supremum is taken over all measurable functions u and v.

Proof. The first equality is the definition of cut norm. We only consider the second
equality. Right hand side being as big as the left hand side is clear by taking u = 1S , v =
1T .

Consider u, v : [0, 1] → [0, 1]. If there exist a set A of measure ε > 0 where ε < u(x) <
1− ε for all x ∈ A, then consider c =

∫
[0,1]2 W (x, y)1A(x)v(y). Depending on the sign of c,

either replacing u with u+ ε1A or u− ε1A yields a value of |
∫
[0,1]2 W (x, y)u(x)v(y)dxdy|

as large as before. This shows that the supremum is obtained by the supremum over
indicator functions up to null sets. Implying the desired equality. □

We now prove the counting lemma. We enumerate the edges of F , and let isjs be the
s-th edge of F .
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|t(F,W )− t(F,U)| =

∣∣∣∣∣(
∫
s

∏
s

W (xis , xjs)−
∏
s

U(xis , xjs))
∏
i

dxi

∣∣∣∣∣
≤

e(F )∑
s=1

∣∣∣∣∣∣
∫ s′−1∏

s=1

U(xis , xjs)(W (xis′ , xjs′ )− U(xis′ , xjs′ ))

e(F )∏
s=s′+1

W (xis , xjs)

∏
dxi

∣∣∣∣∣∣
≤ e(F )‖W − U‖□.

The last inequality comes from the Claim as all the
∏s′−1

s=1 U(xis , xjs)
∏e(F )

s=s′+1W (xis , xjs)
can be expressed as∏

s<s′:is=is′

U(xis , xjs)
∏

s>s′:is=is′

W (xis , xjs)×
∏

s<s′:js=js′

U(xis , xjs)
∏

s>s′:js=js′

W (xis , xjs)

× remaining terms.
As the first two terms can play the roles of u and v and the last term is just constant
when we consider all variables other than xis′ , xjs′ as constants. □

Definition 4.10. A sequence W1,W2, . . . converges if t(F,Wi) converges for all graphs
F .

This definition extends the convergence of graphs. For graphs, its limit is not necessarily
a graph. But for graphons, the limit of convergent graphon sequence is again a graphon.

Theorem 4.11. Let W1,W2, . . . be a convergent sequence of graphons. Then there exists
a garaphon W such that t(F,Wn) converges to t(F,W ) for every graph F .

Proof. As W̃0 is compact, there exists a subsequence n1, n2, . . . and a graphon W such
that δ□(Wni ,W ) → 0 as i tends to infinity. Using counting lemma, t(F,Wni) → t(F,W ).
However, our assumption tells that {t(F,Wn)}n converges, hence t(F,Wn) → t(F,W ). □

It is known that t(F, ·) : W̃0 → [0, 1] is a continuous function. Hence the solutions on
optimization problems on homomorphism densities can be attained. For example, there
exists a graphon W where t(K3,W ) is the minimum over all graphons with t(K2,W ) ≥
1/2. Such a graphon provides an approximate solution to the graph case problem. Many
problems in extremal graph theory can be reformulated in this way.

5. Sampling and inverse counting lemma

Now we want to prove the following theorem.

Theorem 5.1. Let W1,W2, . . . be a sequence of graphons. Then the sequence is convergent
if and only if it is Cauchy with respect to δ□.

‘If’ direction of this theorem is proved by the counting lemma above. We want to prove
the ‘only if’ direction. In other words, we want to prove the following.

Lemma 5.2 (Inverse counting lemma). Let k be a positive integer, let U,W ∈ W0, and
assume that for every simple graph F on k nodes, we have |t(F,U) − t(F,W )| ≤ 2−k2.
Then δ□(U,W ) ≤ 100√

log k
.

We also want to prove that every graphon is the limit of a sequence of graphs. To
prove this and the above inverse counting lemma, we consider some random sampling on
a graphon. We will choose some random points on [0, 1] and construct some (weighted)
graph based on the chosen points and the graphon.

Let’s collect the following Azuma’s inequality.
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Theorem 5.3. Let X1, X2, . . . be a martingale such that |Xm+1 −Xm| ≤ 1 for every m.
Then

P[Xm > X0 + λ] < e−λ2/(2m).

We also consider the following definitions for a given graphon W .

Definition 5.4. Let W -random weighted graph H(n,W ) be the edge-weighted graph ob-
tained as follows: we pick x1, . . . , xn from [0, 1] uniformly at random and the resulting
graph has a vertex set [n] and ij has the weight W (xi, xj).

Definition 5.5. For a given weighted graph H with edge weight β, let G(H) be random
graph model which yields a graph G with vertex set V (H) and each pair uv is an edge in
G independently at random with probability β(uv).

Definition 5.6. A W -random graph G(n,W ) is a probability distribution of graphs where
the resulting simple graph is obtained as follows: we pick a random edge-weighted graph
H ∈ H(n,W ) and for each edge ij with weight β(ij), G has the edge ij with probability
β(ij) independently at random. In other words, G(n,W ) = G(H(n,W )).

We identify a simple graph with an edge-weighted graph with weights 0 and 1.

Theorem 5.7. Let f be a graph parameter where |f(H)−f(H ′)| ≤ 1 for two edge-weighted
graphs whose weights differ on only edges incident to one vertex. Let W ∈ W0 and k ≥ 1.
Then for all λ ≥ 0,

P
(
f(G(k,W )) ≥ E[f(G(k,W ))] +

√
2λk

)
≤ e−λ, and

P
(
f(H(k,W )) ≥ E[f(H(k,W ))] +

√
2λk

)
≤ e−λ.

Proof. Let’s only consider G(k,W ) as H(k,W ) is simpler. We choose x1, . . . , xk in [0, 1]
uniformly at random, and we obtain G as ij is an edge of G with probability W (xi, xj).
This random process yields the distribution of G(k,W ). For i ≥ 0, let Xi = E[f(G) :
x1, . . . , xi]. Then one can check that |Xi+1 − Xi| ≤ 1. Hence, we can use the Azuma’s
inequality to obtain the desired result. □

For given U ∈ W and points x1, . . . , xk in [0, 1] write X = (x1, . . . , xk), let U [X] be the
k × k matrix with U [X]ij = U(xi, xj). This symmetric matrix corresponds to a weighted
graph, whose cut norm can be also defined as follows

‖A‖□ = max
S,T⊆[k]

∑
i∈S,j∈T Ai,j

k2
.

Note that H(k, U) and U [X] are essentially the same object. Using this, we can prove the
following sampling lemma.

Lemma 5.8. Let U ∈ W1 and let X be an ordered tuple of k points in [0, 1] chosen
uniformly at random. Then with the probability at least 1− 4e−

√
k/10,

−3

k
≤ ‖U [X]‖□ − ‖U‖□ ≤ 9

k1/4
.

To prove this lemma, we define the following for given kernel W .

‖W‖+□ = sup
S,T⊆[n]

∫
S×T

W (x, y)dxdy.

Note that ‖W‖□ = max{‖W‖+□, ‖ −W‖+□}.
Let A = U [X] be a matrix. For any set R of rows and C of columns let A(R,C) =∑
i∈R,j∈C Aij . We write R+ = {j : B(R, {j}) > 0}, C− = {B({j}, C) ≤ 0} and define

R−, C+ analogously.
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Lemma 5.9. Let A be a matrix with ‖A‖∞ ≤ 1 and S1, S2 ⊆ [k] and let Q be a random
q-subset of [k]. Then

A(S1, S2) ≤ EQ(A((Q ∩ S2)+, S2) +
k2
√
q
.

Proof. Note that the right hand side is independent of S1. Hence, we can replace S1 if
necessary to assume that A(S1, S2) is maximum among all choices of S1. In other words,
S1 = S+

2 and [k] \ S1 = S−
2 .

Consider row i of A, and and ai =
∑

j∈S2
Aij and ci =

∑
j∈S2

A2
ij . For each i ∈ S1 = S+

2

and j ∈ [k] \ S1 = S−
2 , let

fi := ai1j∈(Q∩S2)− and gi := ai1j∈(Q∩S2)+ .

Observe that
A((Q ∩ S2)+, S2) = A(S1, S2)− (

∑
i∈S1

fi −
∑
j /∈S1

gi).

Now we want bound the expectation of
∑

i∈S1
fi −

∑
j /∈S1

gi from above.
For each i ∈ [k], let Ti =

∑
j∈Q∩S2

Aij . Then we have E[Ti] = qai/k. Let Ej be Aij if
j ∈ Q and 0 otherwise. Then we can check that V ar(Ti) ≤ qci

k holds.1 Hence,

P(aiTi ≤ 0) ≤ P
(
|Ti −

qai
k

| ≥ qai
k

)
≤ k2V ar(Ti)

q2ai
<
kci
qa2i

.

As P(aiTi ≤ 0) is between 0 and 1, this implies that P(aiTi ≤ 0) ≤
√
kci√
q|ai| . So, we have

EQ(
∑
i∈S1

fi −
∑
j /∈S1

gi) ≤
∑
i∈S1

ai

√
kci√
q|ai|

−
∑
i/∈S1

ai

√
kci√
q|ai|

≤ k2
√
q
.

This proves the lemma. □

The following lemma reduces the number of rectangles to consider in estimating cut
norms.

Lemma 5.10. Let Q1, Q2 be random q-subsets of [k]. Then

‖A‖+□ ≤ 1

k2
EQ1,Q2

[
max
Ti⊆Qi

A(T+
2 , T

+
1 )

]
+

2
√
q
.

Proof. By the previous lemma, for some S1, S2 ⊆ [k], we have

k2‖A‖+□ ≤ EQ2(A((Q2 ∩ S2)+, S2)) +
k2
√
q
.

We apply the same lemma again with rows and columns interchanged. Then we have

A((Q2 ∩ S2)+, S2) ≤ EQ1((Q2 ∩ S2)+, (Q1 ∩ S1 ∩ (Q2 ∩ S2)+)+) +
k2
√
q

≤ EQ1( max
Ti⊆Qi

A(T+
2 , T

+
1 )) +

k2
√
q
.

1

V ar(Ti) =
∑
j∈C

V ar(Ej) + 2
∑
j<j′

Cov(Ej , Ej′) =
∑
j∈C

(E[E2
j ]− E[Ej ]

2) + 2
∑
j<j′

(E[EjEj′ ]− E[Ej ]E[Ej′ ])

=
qci
k

−
∑
j∈C

(
qai

k
)2 + 2

∑
j<j′

(
AijAij′

k(k − 1)
− AijAij′

k2
) =

qci
k

− q2ci
k2

+
a2
i − ci

k2(k − 1)
≤ qci

k
.

Here we use the Cauchy-Schwartz to show that a2
i ≤ kci.
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Thus, we have

‖A‖+□ ≤ 1

k2
EQ1,Q2

[
max
Ti⊆Qi

A(T+
2 , T

+
1 )

]
+

2
√
q
.

□

Proof of Lemma 5.8. We prove that the following holds with probability at least 1 −
2e−

√
k/10.

−3

k
≤ ‖U [X]‖+□ − ‖U‖+□ ≤ 9

k1/4
.

Let A = U [X]. Recall that X = (x1, x2, . . . , xk) is an ordered tuple of randomly chosen
points. We will consider the expectation of ‖U [X]‖□ − ‖U‖□. For two measurable sets
S1, S2 ⊆ [0, 1], we have

‖A‖+□ ≥ 1

k2
U(S1 ∩X,S2 ∩X) =

∑
x∈S1∩X,y∈S2∩X

U(x, y).

As we choose X at random, we have

EX(‖A‖+□) ≥
1

k2
EX(U(S1 ∩X,S2 ∩X)) =

k − 1

k

∫
S1×S2

U(x, y)dxdy +
1

k

∫
S1∩S2

U(x, x)dx

≥
∫
S1×S2

U(x, y)dxdy − 2

k
.

By taking supremum of the right side over all measurable sets S1, S2 we obtain

EX(‖A‖+□) ≥ ‖U‖+□ − 2

k
.

We apply Theorem 5.7 to conclude that the lower bound holds with probability at least
1− e−

√
k/10.

We now prove the upper bound on the ‖U [X]‖□ − ‖U‖□, we let Q1, Q2 be random
q-subsets of [k], where q = b

√
k/4c. The previous lemma implies that for every X and

A = U [X], we have

‖A‖+□ ≤ 1

k2
EQ1,Q2

[
max
Ti⊆Qi

A(T+
2 , T

+
1 )

]
+

2
√
q
.

Now we take the expectation of this over the choices of X while fixing some points
corresponding to Q = Q1 ∪ Q2. We fix the set Tj ⊆ Qj ⊆ [k] with j ∈ [2], and points
xi ∈ [0, 1] for which i ∈ Q = Q1 ∪Q2. Let

Y1 = {y ∈ [0, 1] :
∑
i∈T1

U(xi, y) > 0} and Y2 = {y ∈ [0, 1] :
∑
i∈T2

U(y, xi) > 0}.

Let X ′ = (xi : i ∈ [k] \Q), then

EX′ [A(T+
2 , T

+
1 )] ≤

∑
i∈T+

2 \Q,j∈T+
1 \Q

∫
Y1×Y2

U +
∑

{i,j}∩Q ̸=∅

1

≤ k2‖U‖+□ + 4kq.

We now want to prove concentration of A(T+
2 , T

+
1 ). Without loss of generality, assume

that [k] \ Q = [k − q]. As we have fixed (xi : i ∈ Q), the following is a random variable
depending on xi : i ∈ [k] \Q :

Xi = E[A(T+
2 , T

+
1 ) : x1, . . . , xi].

Moreover, changing one point xi changes the value of this by at most 4k as at most 2k
entries changes by at most 2.
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We use Azuma’s inequality to conclude that with the probability at least 1− e−2q, we
have

A(T+
2 , T

+
1 ) ≤ EX′ [A(T+

2 , T
+
1 )] + 8k

√
kq ≤ k2‖U‖+□ + 4kq + 8k

√
kq.

As there are 4q pairs of (T1, T2), union bound yields that with probability at least 1 −
4qe−2q ≥ 1−eq/2, this holds for all T1 ⊆ Q1, T2 ⊆ Q2, and so it holds also for the maximum
over all choices. We take the expectation over all Q1, Q2, then with probability at least
1− e−q/2, we have

‖A‖+□ ≤ ‖U‖+□ +
2
√
q
+

4q

k
+

8
√
q

√
k
.

If k is large enough, this implies the upper bound.
Applying the above proof to both U and −U , then with probability 1 − 4e−

√
k/10, we

have
−3

k
≤ ‖U [X]‖+□ − ‖U‖+□ ≤ 9

k1/4
and − 3

k
≤ ‖U [X]‖−□ − ‖U‖−□ ≤ 9

k1/4
,

implying the desired inequality. □

Lemma 5.11. For every q-vertex edge-weighted graph H with edge weights in [0, 1] and
λ ≥ 10/

√
q, we have P(d□(G(H),H) > λ) ≤ e−λ2q2/100.

Proof. For i, j ∈ [q], let Xij = 1ij∈E(G(H)) be the indicator random variable. For two
disjoint sets S, T ⊆ [q], {Xij : i ∈ S, j ∈ T} is a collection of independent random
variables with E[Xij ] being the edge weight β(ij). So,

eG(H)(S, T )− eH(S, T ) =
∑

i∈S,j∈T
(Xij − E(Xij)).

By using Chernoff’s inequality, we have

P

∣∣ ∑
i∈S,j∈T

(Xij − E(Xij)
∣∣ > 1

4
λq2

 ≤ 2 exp(
−λ2q4

32|S||T |
) ≤ 2 exp(

−λ2q2

32
).

As there are 3q possible pairs (S, T ), so the probability that the above events hold for all
(S, T ) is at most 2 exp(−λ2q2

32 )3q < e−λ2q2/100. In this case, we have d□(G(H),H) ≤ λ. □

Using these, we can prove the following.

Lemma 5.12. Let k ≥ 1, and W ∈ W0. Then with probability at least 1−exp(−k/(2 log k)),

d□(G(k,W ),W ) ≤ 30√
log k

.

Proof. We wish to bound the expectation of d□(G(k,W ),W ) and apply Theorem 5.7. We
apply regularity lemma to find an equipartition P = {V1, . . . , Vm} of [0, 1] into m = bk1/4c
classes such that d□(W,WP) ≤ 20√

log k
.

Let S be an ordered tuple of k random points from [0, 1], then Lemma 5.8 implies
|d□(W [S],WP [S])− d□(W,WP)| ≤ 9

k1/4
with probability at least 1− 4e−

√
k/10. Hence

E
[∣∣d□(W [S],WP [S])− d□(W,WP)

∣∣] ≤ 9

k1/4
+ 4e−

√
k/10 · 1 ≤ 10

k1/4
.

Then, we have

E[d□(W [S],WP [S])] ≤ d□(W,WP) +
10

k1/4
≤ 23√

log k
.
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On the other hand, let H =WP [S]. Then the graphons WP and WH . Let |Vi ∩ S|/k =
1/m+ ri, then two corresponding intervals of two step graphons have length difference ri.
Hence, δ□(WP ,WH) ≤ δ1(WP ,WH) ≤ 2

∑
i ri. Then we have

E[δ□(WP ,WH)] ≤ 2
∑
i

E[|ri|] = 2mE(|r1|) ≤ 2m
√

E(r21) = 2

√
m− 1

k
<

1

k3/8
.

2 Hence,

E[δ□(W,W [S])] ≤ δ□(W,WP) + E[δ□(WP ,WP [S])] + E[δ□(WP [S],W [S])] ≤ 25√
log k

.

Using Lemma 5.11 with λ = 10√
k
,

E[δ□(H(k,W ),G(k,W ))] ≤ 10√
k
· (1− e−

√
k) + e−

√
k · 1 ≤ 11√

k
.

Hence,

E[δ□(W,G(k,W )) ≤ E(δ□(W,H(k,W ))) + E[δ□(H(k,W ),G(k,W ))] ≤ 27√
log k

.

Let f(G) = |G|δ□(G,W ), and apply Theorem 5.7 with this function f yields the conclu-
sion. □

Using the above lemma, we can see the following by taking a sequence (Gn)n∈N of graphs
with Gn = G(n,W ): For given graphon W , there exists a sequence of finite graphs having
limit W . Now we prove the following inverse counting lemma.

Lemma 5.13 (Inverse counting lemma). Let k be a positive integer, let U,W ∈ W0, and
assume that for every simple graph F on k nodes, we have |t(F,U) − t(F,W )| ≤ 2−k2.
Then δ□(U,W ) ≤ 100√

log k
.

Proof. Inclusion-exclusion implies that P[G(k, U) = F ] =
∑

F ′⊇F (−1)e(F
′)−e(F )t(F ′,W ).

This implies that for each k-vertex graph F ,

|P[G(k, U) = F ]− P[G(k,W ) = F ]| ≤ 2(
k
2
)2−k2 = 2−(

k+1
2
). (5.1)

Define

FU = {F : |F | = k, δ□(U,F ) ≤
30√
log k

} and FW = {F : |F | = k, δ□(W,F ) ≤
30√
log k

}.

By Lemma 5.12, we have∑
F∈FU

P[G(k, U) = F ] ≥ 1− 2 exp(−k/(2 log k)) and

∑
F /∈FW

P[G(k,W ) = F ] ≤ 2 exp(−k/(2 log k)).

If FU ∩ FW is not empty and contains a graph F , then we have

δ□(U,W ) ≤ δ□(U,F ) + δ□(W,F ) ≤
30√
log k

+ 0 +
30√
log k

≤ 100√
log k

.

Hence, it suffice to prove that FU ∩ FW is not empty. Assume FU ∩ FW = ∅. Then∑
F∈FU

(P[G(k, U) = F ]− P[G(k,W ) = F ]) ≥ 1− 4 exp(− k

2 log k
) ≥ 1

2
.

2Note that we have E[r1] = 0, so E[( k
m

+ kr1)
2] = k2/m2 + 2E[r1]k2/m + k2E[r21] = k2/m2 + k2E[r21].

Also, we have E[( k
m

+ kr1)
2] = E[|Vi ∩ S|2] = V ar[|Vi ∩ S|] + E[|Vi ∩ S|]2 = k · (1/m) · (1− 1/m) + k2/m2.

This implies that E[r21] = m−1
km2 .
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As |FU | ≤ 2(
k
2
), this implies that there exists F such that P[G(k, U) = F ]− P[G(k,W ) =

F ] ≥ 2−(
k
2
)−1 > 2−(

k+1
2
), a contradiction to (5.1). Therefore, FU ∩ FW is not empty and

this proves the theorem. □

This implies the following.

Corollary 5.14. Two graphons U,W ∈ W0 are weakly isomorphic if and only if δ□(U,W ) =
0.

6. Bounded degree graphs

We again want to define probability distribution on a sparse graph G using random
sampling. However, as G is a sparse graph, the homomorphism density t(F,Gn) always
tends to zero as |Gn| tends to infinity. Hence, we define another random sampling pro-
cedure which makes more sense for graphs with maximum degree bounded by constant.
Let ∆ be a constant. From now on, we will only consider graphs with maximum degree
at most ∆.

Definition 6.1. Let Br be the set of rooted graph F = (F ′, u) where every vertex in F ′ has
distance at most r from u ∈ V (F ). We call each rooted graph in Br an r-ball. We say that
two rooted graphs (F ′, u′) and (F ′′, u′′) are isomorphic if there exists a graph isomorphism
f : F ′ → F ′′ where f(u′) = u′′. Let deg(F ) = degF ′(u) be the degree of the root.

As F ′ above has maximum degree bounded, Br is a finite set.

Definition 6.2. For given graph G and F = (F ′, u) ∈ Br, let ρG(F ) = ρG,r(F ) be the
probability that the r-neighborhood Br(v) in G with the root v is isomorphic to (F ′, u) for
a vertex v ∈ V (G) chosen uniformly at random.

Definition 6.3. A sequence of graphs (Gn)n∈N of bounded degree is locally convergent if
the r-neighborhood density ρGn,r(F ) converges for every r and every r-ball F .

As ρGn,r is a probability distribution on Br, and ρG1,r, ρG2,r, . . . converges to a probabil-
ity distribution σr, we can consider σ = (σ1, σ2, . . . ) as the limit of a convergent sequence
G1, G2, . . . . However, as we have constructed graphons as a more descriptive limit object,
we want to construct a more descriptive limit object of this convergent sequence. In order
for this, we first need to know more properties of the σ = (σ1, σ2, . . . ).

First, this distribution is consistent in the following sense. We select a random r-ball
using the distribution σr and delete all vertices of distance r from the root, then we get
an (r − 1)-ball in Br−1. This provides the distribution σr−1.

Second, this is ‘involution invariant’ in the following sense. An r-ball (F, u) chosen from
σr and consider a neighbor v of the root u and consider (r − 1)-ball around v. This must
also yields the distribution similar to σr−1 except a vertex with higher degree is more
likely to be chosen. This motivates to define the following for each F ∈ Br:

σ∗r (F ) =
deg(F )σr(F )∑

H∈Br
deg(H)σr(H)

.

Here, this can be considered as the probability of getting F = (F ′, u) when we choose
an edge e = uv of G uniformly at random, and choose an endpoint u and taking an
r-neighborhood of u. We can encode this information by the following definition.

Definition 6.4. Select a random r-ball F from σ∗r and an edge uv from the root u of F
uniformly at random. We delete all vertices of distance r from u to obtain a rooted graph
F1 with root u and root edge uv, and we delete all vertices at distance more than r − 1
from v to obtain a rooted graph F2 with the root v and the root edge uv. If each of F1
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and F2 has the same distribution with σ∗r−1, then we say that the sequence (σ1, σ2, . . . ) is
involution invariant.

As we consider pointwise convergence of the distributions (ρG1,r, ρG2,r, . . . ), every con-
vergent graph sequence gives rise to an involution invariant and consistent probability
measure σ on Br.

In order to define a limit of convergent sequence of graphs, we want to consider a graph
with infinitely many vertices. Recall that when we consider the sampling distribution for
finite graphs G above, we choose one vertex uniformly at random with probability 1/|G|
and consider its r-neighborhood. However, for infinite graphs, the probability of choosing
one vertex is not so important as it is zero if the choice is uniform. Instead, for a certain
subset A of vertices, we need to consider the probability of choosing the vertex from the
set A. Hence, we need to instead consider an infinite graph equipped with a measure λ
on the vertex set so that we can consider a random sampling procedure where λ(A) is the
probability of choosing a random vertex from the set A. Of course, we can’t expect to
define a nontrivial measure λ(A) for all sets A ∈ 2V for infinite set V as we have learned
in analysis (we know that the axiom of choice provides a non-measurable set). So, we will
restrict our attention to certain ‘good’ sets. The following is what we will do.

(1) Define Polish space which will be the vertex set of our infinite graph G.
(2) Define Borel sets, which will be the ‘good’ subset of V (G) whose measures can be

computed.
(3) Define Borel graphs, which will allow us to use graph operations on Borel subsets

of V (G), in particular, the neighborhood N(A) of a Borel set is again Borel.
(4) Define Graphings, which will allow us to use graph operations on Borel subsets

while predicting how the measure of the sets changes during the operations.

(1) Possibly, we will work on a graph with vertex set V where V is a topological space
like a unit interval [0, 1]. This motivates to work on Polish space, which will be the vertex
set of our infinite graphs.

(2) Of course, we want to be able to compute the measure on all intervals inside [0, 1],
and their unions and intersections and etc. This motivates to use the definition of Borel
sets, which is a smallest good collection containing all those intervals and their countable
unions and countable intersections and etc.

(3) and (4) We want to be able to consider neighborhood of a given Borel set, and
compute the measure of the neighborhood. One of the reason for this is to be able to
make sure that the distribution from the infinite graph becomes involution invariant.
Recall that, in finite graphs, we randomly choose a vertex u proportional to its degree and
an incident edge uv, and compare this with the probability of choosing the root v with an
edge uv.

For infinite graphs, we need to compute the probability of choosing u ∈ A and an
incident edge uv with v ∈ B for certain measurable sets A and B and we need to compare
this to the probability of choosing v ∈ B and an incident edge uv with u ∈ A. In order for
this, we need to make sure that the neighborhood NG(A) of a Borel set A is also Borel in
our graph G, so we can compute the measure of NG(A)∩B. This motivates our definition
of Borel graphs. Moreover, the involution invariance can be stated as follows.

∫
A
degB(x)dλ(X) =

∫
B
degA(x)dλ(x).

This motivates the definition of graphings.
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7. Borel graphs

A subset D ⊆ X of a topological space X is dense if it meets every nonempty open set.
A space X admitting a countable dense set is called separable. If X is metrizable, then X
is separable if and only if X has a countable basis.

On a metric space (X, d), a Cauchy sequence is a sequence (xn) of elements of X such
that limm,n d(xm, xn) = 0. We call (X, d) complete if every Cauchy sequence has a limit in
X. We say that a topological space X is completely metrizable if it admits a compatible
metric d such that (X, d) is complete.

Definition 7.1. A topological space X is Polish if it is completely metrizable and sepa-
rable.

We call (X,B(X)) Standard Borel Space (SBS) if X is a Polish space. It is known that
any SBS are either isomorphic to (X, 2X) with countable X or isomorphic to (I,B(I))
where I ∈ {[0, 1], (0, 1), [0, 1)} is an interval. It is not difficult to see that any Polish space
has a countable basis. Also we have the following.

Proposition 7.2. The following spaces are also Polish: All closed/open subsets, all open
subsets of Polish spaces, a disjoint union of Polish spaces and a product of Polish spaces.

We say that a collection A an σ-algebra on a set X if it is a family of subsets containing
∅ and closed under complements and countable unions. For a family F of subsets of X,
let σ(F) be the smallest σ-algebra containing F . This is well-defined as 2X is a σ-algebra,
and arbitrary intersection of σ-algebras are also σ-algebra.

Definition 7.3. A measure space is a pair (X,FX) when X is a set and FX is a σ-algebra
on X. A map f : X → Y is called measurable if f−1(A) ∈ FX for all A ∈ FY .

Definition 7.4. For a topological space X with topology T , we write B(X) = σ(T ) and
call it Borel σ-algebra.

The following graphs give some idea on the graphs we will deal with.

Example 7.1. Fix α ∈ R \Q and consider a set V = [0, 1) and a transformation
T : x 7→ (x+ α) (mod 1)

from V to V . Let Rα := (V,E) where we have E = {xT (x) ∈
(
V
2

)
}

Consider the above V as a unit circle, by identifying 0 and 1. This consists of uncount-
ably many components where each component is a bi-infinite path. This is different from
a countable union of infinite paths, as we have a nontrivial measure equipped with the
vertex set. It is known that such a graph cannot be partitioned into two Borel independent
sets.

Example 7.2. Let α ∈ R \Q, V = [0, 1)× {0, 1} and let T (x, i) = (x+ α mod 1, 1− i)
be a transformation from V to V . Let Dα := (V,E) where E = {vT (v) : v ∈ V }.

Note that Dα is again a 2-regular acyclic graph. To visualise this, consider two disjoint
unit cycles corresponding to [0, 1) × {i} with i ∈ {0, 1}. As there’s no edges inside each
cycle, Dα can be colored with 2 colors in such a way that each cycle is monochromatics,
hence a coloring with Borel color classes. So Rα and Dα are not equivalent under Borel
coloring.

In this section, we will prove that the definition of Borel graphs below provides the
following properties:

(a) N(A) is a Borel set when A is a Borel set
(b) Borel graph G can be decomposed into finitely many Borel matchings.
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(a) is as we intended to prove and (b) will be useful to deal with the properties we
mentioned in (4) in the previous section.

Definition 7.5. A graph G = (V,B, E) is a Borel graph if the followings hold.
(1) (V,B) is standard Borel space, i.e. there exists a Polish topology T such that

B = σ(T ).
(2) E ⊆ V × V is Borel and (x, y) ∈ E if and only if (y, x) ∈ E.

Again, we always assume that every graph we deal with has maximum degree at most
∆. In the second condition, we mean that say that an edge set E is Borel in the space
B(V )× B(V ) = B(V 2). The followings are some examples of Borel graphs.
Example 7.3.

(1) Every finite graphs G are Borel graphs.
(2) Rα and Dα are Borel graphs.

For the second example, note that T is continuous. Hence, E = f−1({0}) where
f(x, y) = y − T (x) is a closed set in V 2 thus Borel. So Rα and Dα are Borel graphs.
We will use the following theorem to prove the next lemma.

Theorem 7.6 (Lusin). For a continuous countable to 1 function f and a Borel set A,
f(A) is again Borel.

Lemma 7.7. Let V be a Polish space and G = (V,E) be a graph with ∆(G) ≤ ∆ < ∞.
Then G is a Borel graph if and only if N(A) = {y : ∃x ∈ A, xy ∈ E} is Borel for all Borel
subset A ⊆ V .

Proof. (⇐) Suppose that for all Borel sets A, N(A) is Borel. Consider a countable base
{Un} of the Polish space V . Then we claim

V 2 \ E =
⋃
n

(Un × (N(Un)
c)). (7.1)

As ⊇ is clear, we show ⊆. Consider (x, y) ∈ V 2 \ E and let z1, . . . , zs be the neighbors of
y. As x /∈ {z1, . . . , zs}, there exists ε > 0 such that

Bε(x) ∩ {z1, . . . , zs} = ∅.
Thus there exists i such that x ∈ Ui but zj /∈ Ui for all j ∈ [s] and y ∈ N(Ui)

c. This
proves (7.1).

As Un is an open set, the assumption implies that N(Un)
c is a Borel set. So (7.1) implies

that V 2 \ E is a countable union of Borel sets, thus it is Borel, hence its complement, E
is also Borel.

(⇒) Let A be a Borel set. Then we have
N(A) = pr2((A× V ) ∩ E),

where pr2 is a projection map to the second coordinate, which is a continuous map. Note
that every x ∈ V has at most ∆, finitely many preimage. Hence, N(A) is a image of
(A× V ) ∩E ∈ B(V 2) via a continuous countable to 1 map and Theorem 7.6 implies that
N(A) is Borel. □

Let’s consider one more example.

Example 7.4. Let Γ = 〈S〉 be a group generated by a finite set S with S = S−1. Let Γ
act on a Polish space X in a Borel way. In other words,

• For all γ ∈ Γ, the map x → γ.x is Borel, meaning that preimage of every Borel
set under this map is Borel. (Equivalently, (γ, x) → γ.x is a Borel map when we
give Γ is countable sets with discrete topology.)
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Then G = (X,E) is a Borel graph where E = {{x, γ.x} : x ∈ X, γ ∈ S} \ {(x, x) : x ∈ X}.
Note that ∆(G) ≤ |S|.

Let A be a Borel subset of X and let Tγ be the map x→ γ.x. Then

N(X) =
⋃
γ∈S

{γx : x ∈ X} =
⋃
γ∈S

{γ−1x : x ∈ X} =
⋃
γ∈S

T−1
γ (X).

As Γ act on X in a Borel way, the set T−1
γ (X), the preimage of Tγ , is Borel. Hence N(X)

is a finite union of Borel sets, thus a Borel set. By Lemma 7.7, such a graph is actually
Borel graph. Note that we know that the function is Borel if and only if its corresponding
graph is Borel.

Theorem 7.8 (Kechris-Solecki-Todorcevic). For a Borel graph G, we have χB(G) ≤
∆(G) + 1.

Proof. Consider a countable base {Un} of (V, T ). We first define the following assignment
of a sequence to each point. For each x ∈ V , let

f(x) := (1U1(x),1U2(x), . . . ) ∈ 2N.

As for any x 6= y ∈ V , there exists a base Ui containing x but not y. This shows that f
is an injective function. For p = (p1, . . . , pk) ∈ 2<∞ =

⋃
k≥0{0, 1}k, let Wp ⊆ 2N be the

collection of sequences whose first k terms are same with p.
We consider 2N as a countable product of discrete topologies, then {Wp : p ∈ 2<∞} is a

base for 2N. For all p = (p1, . . . , pk) ∈ 2<∞, the set

Xp := f−1(Wp) =
⋂

i:pi=1

Ui ∩
⋂

i:pi=0

U c
i

is a Borel set. Hence f is a Borel map while it is not necessarily continuous.
Now we first define a coloring with countably many colors and then use this coloring

to obtain the desired coloring. Let ℓ : V → 2<∞ by ℓ(x) := p where p is a shortest
sequence with f(x) ∈ Wp but f(N(x)) ∩Wp = ∅}. For example, f(x) = (0, 1, 1, 0, . . . )
and N(x) = {y, z} with f(y) = (0, 1, 0, 0, . . . ) and f(z) = (1, 0, 1, 0, . . . ), then we have
ℓ(x) = (0, 1, 1).

Note that the injectivity of f implies that ℓ is well-defined. Also we have the following
claim stating that ℓ is a Borel function.

Claim 2. For all p ∈ 2<∞, we have ℓ−1(p) ∈ B.

Proof. We use induction of the length of p. If p = ∅, it is easy as ℓ−1(p) = ∅. Assume that
the claim holds for all p with length at most i. For a sequence p of length i+ 1, we have

ℓ−1(p) = Xp \ (N(Xp) ∪
⋃
q<p

ℓ−1(q)).

where q < p implies that q is a proper prefix of p. Note that N(Xp) is a Borel set by
Lemma 7.7 and ℓ−1(q) are Borel sets by Induction hypothesis. Hence ℓ−1(p) is also a Borel
set. This proves the claim. □

By the claim and renumbering, we have a Borel partition V1∪V2∪. . . of V into countably
many independent sets. Now we greedily construct the desired coloring c : V → [∆ + 1].
Assume that we have coloring c : V1 ∪ · · · ∪ Vi → [∆ + 1]. For every x ∈ Vi+1, let

c(x) := min{k ∈ [∆ + 1] : k /∈ c(N(x))}.

As ∆(G) ≤ ∆, the function c is well-defined on every point in Vi+1. This defines c on
every Vi, hence on every V . For each i ∈ N and k ∈ [∆ + 1], let Vi,k := c−1(k) ∩ Vi.
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We claim that each Vi,k is a Borel set. We prove this by using induction on (i, k), where
(i′, k′) < (i, k) if either i′ < i or i′ = i and k′ < k. Then V1,1 = V1 is a Borel set. Also

Vi,k = Vi \
⋃
k′<k

⋃
i′<i

N(Vi′,k′)

is again Borel by Lemma 7.7. This shows that every Vi,k is Borel sets and c−1(k) =⋃∞
i=1 Vi,k is a Borel set. Hence we obtain a Borel coloring, hence χB(G) ≤ ∆+ 1. □

Similarly, we can consider edge-colorings of Borel graphs.

Definition 7.9. Borel chromatic index χ′
B(G) is the minimum k ∈ N such that there

exists a Borel edge coloring c : E → [k]. In other words, we have c(x, y) = c(y, x) for all
xy ∈ E and c gives a Borel partition E = E1 ∪ E2 ∪ · · · ∪ Ek to matchings.

Theorem 7.10. For a Borel graph G, we have χ′
B(G) ≤ 2∆(G)− 1.

Proof. One possible way to prove this is to apply Theorem 7.8 to the line graph. One
can check that (E,B(V 2) ∩ E) is a Standard Borel space. Also one can check that {ee′ ∈
E × E : e ∩ e′ 6= ∅} is Borel.

Another way to prove this is to consider a square G2 of G where two vertices are adjacent
in G2 if and only if the distance between them is at most two in G. Then we obtain a Borel
partition V = V1 ∪ · · · ∪ Vk where E =

⋃
ij∈(k

2
)Eij where Eij = E ∩ ((Vi × Vj)∪ (Vj × Vi))

is a Borel matching. Hence, we can apply parallel greedy algorithm over ij as we did in
the proof of Theorem 7.8. □

Definition 7.11. For given set S of bijection on V , let graph(S) be the Borel graph with
vertex set V and edge set

{xϕ(x) : x ∈ V, ϕ ∈ S, ϕ(x) 6= x}.

Theorem 7.12. Let G = (V,E) be a Borel graph. Then there exists a finite set S with
|S| ≤ 2∆− 1 satisfying the following.

(a) Each ϕ ∈ S is a Borel involutions. In other words, each ϕ ∈ S satisfies ϕ◦ϕ = IdV .
(b) G = graph(S).

Proof. By Theorem 7.10, there exists a Borel partition E =
⋃k

i=1Ei with k = 2∆− 1. For
each i ∈ [k], let ϕi : V → V by

ϕi(x) =

{
y if xy ∈ Ei

x otherwise.

Clearly each ϕi is an involution. We still need to prove that each Ei is a Borel set in
V × V .

Claim 3. Let X,Y be Standard Borel spaces, and let f : X → Y . Then f is Borel if and
only if F = {(x, f(x)) : x ∈ X} ∈ B(X × Y ).

Proof. Proof is similar for the proof of Lemma 7.7. Take a countable base {Un} of Y
and show that F c =

⋃
n(f

−1(Un) × U c
n) to conclude (⇒). For the other direction, use

Theorem 7.6. □

It is easy to use this claim to conclude that each Ei is a Borel set. So S = {ϕ1, . . . , ϕk)
suffice. □



22 JAEHOON KIM

8. Graphings

Now we will consider the objects which can be considered as a limit of bounded degree
graphs.

Definition 8.1. We say that G = (V,B, E, λ) is a graphing if (V,B, E) is a Borel graph
and λ is a probability measure on (V,B) such that

there exists Borel bijections ψ1, . . . ψk : V → V such that E = graph(ψ1, . . . , ψk)
and each ψi is measure preserving. I.e. for all A ∈ B, ψ−1

i (A) ∈ B has the same
λ-measure as A.

(8.1)

For a graphing G, there could be more than one choice of {ψ1, . . . , ψk} generating E.
However, the following lemma shows that any choice of {ψ1, . . . , ψk} consists of measure
preserving bijections as long as there is one such choice of measure preserving bijections.
Here [x]E denote the component containing x.

Lemma 8.2. Let G be a graphing and A,B ∈ B(V ) and f : A→ B be Borel bijection such
that for all x ∈ A, f(x) ∈ [x]E. Then f is measure preserving.

Proof. Let Γ =< ψ1, . . . , ψk > be the formal free group generated by symbols ψ1, . . . , ψk

and their inverses. We enumerate Γ = {γ0, γ1, . . . } with |γ0| ≤ |γ1| ≤ . . . . In particular,
we have γ0 = ∅. For each i ≥ 0, define

Di = {x ∈ A : f(x) = γix} \ (
⋃
j<i

Dj).

Each Di is a Borel set. If γi = ψε1
k1

◦ · · · ◦ ψεs
ks

, then f |Di is ψε1
k1

◦ · · · ◦ ψεs
ks

|Di , a measure
preserving function. As Di are disjoint and forms a partition of A, f is also measure
preserving. This finishes the proof. □

Example 8.1. Let α ∈ R \ Q and consider Rα = graph(x 7→ x + α (mod 1)) with
V = [0, 1). Note that the Lebesgue measure λ is preserved by this map.

As a graphing has probability measure, we can sample a random vertex according to this
probability distribution. Picking a random vertex v and considering an r-neighborhood
Br(v), we can get an r-ball in Br.

We say that a sequence (Gn) of graphs converge (in a sense of Benjamini-Schramm) to
a graphing G if for all r ∈ N and any rooted graph F ,

P
x uniform in V (Gn)

[Br(x) ' F ] → P
x∼(V,λ)

[Br(x) ' F ].

Note that such a graphing G may not be unique.

Example 8.2. Let Gn = Cn be the n-cycle. Then Gn
BS−→ Rα for any α ∈ R \Q.

Example 8.3. Let Gn be n×n grid. A possible graphing is G = ([0, 1]2,B, graph(ψ1, ψ2), λ)
where ψ1 : (x, y) 7→ (x+α, y) and ψ2 : (x, y) 7→ (x, y+β) where α, β are generic irrational
number, algebraically independent each other.

We say that S = {ϕ1, . . . , ϕk} is an involutive measure preserving family for G if
G = graph(S) and each ϕi is measure preserving involutions.

Theorem 8.3. For each graphing G, there is an involutive measure preserving family
with at most 2∆− 1 bijections.

Proof. Use Theorem 7.10 to find 2∆−1 Borel matchings. Each matching yields a involutive
Borel bijections. Lemma 8.2 implies that each such involution is measure preserving. □
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Using this, it is easy to check that the following holds for graphings.∫
A
degB(x)dλ(X) =

∫
B
degA(x)dλ(x).

In fact, any Borel graph with this condition is a graphing. Hence this condition can be
taken as the definition of graphing.

9. Limit of sequences of bounded degree graphs

Our aim on this section is to show that any locally convergent sequence of graphs with
bounded degree has a graphing as a limit. For such a sequence, we have a limiting sampling
distribution σ = (σ1, σ2, . . . ). We will do the following.

(1) Define a Borel graph H.
(2) Define sampling distributions on given graphings.
(3) Find a way to give measure to H to make it a graphing which has sampling

distribution σ, hence it can be considered as a limit of the given sequence.
We wish to define a graphing. As seen before, a graphing in general consists of infinitely

many components where each component is a countable graph. So it would be convenient
to define one graph having all possible countable graphs. Our aim is to define a Borel
graph H and give measures according to the given distribution σ = (σ1, σ2, . . . ). One
issue is that when we have two components, H1,H2 of infinite graphs where H1 has no
automorphism while H2 is an infinite path. Then some ‘measure’ of σr(P2r−1) must be
distributed over all vertices of H2, while some ‘measure’ of σr(F ) must be distributed
over only finitely many vertices of H1. This can possibly make ‘measure distribution’
complicated. To avoid this issue, instead of choosing a vertex at random, we build a
rooted graph at random using σ = (σ1, σ2, . . . ) in such a way that the r-ball around the
root of the built graph is the graph from σr. In other words, each rooted graph will be
the vertex we can choose. For this, we define the following set of all connected countable
rooted graphs.

Definition 9.1. Let B• denote the set of connected countable graphs with maximum degree
at most ∆ that have a specified vertex called their root. For each H ∈ B• we write root(H)
to denote the root of H or we write H = (H ′, v). Let deg(H) be the degree of its root.

We consider two graphs in B• the same if there is an isomorphism between them
preserving the root. For H ∈ B•, let BH,r ∈ Br be the rooted graph induced by the
neighborhood of the root with radius r. For every r-ball F , let B•

F denote the set of those
graphs H ∈ B• for which BH,r ' F as rooted graphs.

Let σ = (σ1, σ2, . . . ) be any probability distribution on (B•,A). We choose a graph
F ∈ B• in the following way: we choose F1 ∈ B1 with respect to the measure σ1, and
F2 with respect to σ2 conditioning on BF2,1 = F1, and similarly, choose Fr+1 with respect
to σr+1 conditioning on BFr+1,r = Fr for all r ≥ 1. This sequence (F1, F2, . . . ) yields an
infinite graph F ∈ B•. This procedure provides a probability distribution on B•, which
again call this distribution σ.

Definition 9.2. We define a graph H on the vertex set B• as follows: For each (H, v) ∈ B•

and vv′ ∈ E(H), we connected (H, v) and (H, v′) in H. We call H “graph of graphs”.

If H has no automorphism as unrooted graphs, then the r-neighborhood of a rooted
graph H in H is isomorphic to the r-neighborhood of the root in H. In order to make this
a Borel graph, we define the following metric: for two graphs H1,H2 ∈ B•, we define the
ball distance by

d•(H1,H2) = inf{2−r : BH1,r ' BH2,r}.



24 JAEHOON KIM

This turns B• into a metric space where B•
F forms an open basis. Moreover the space

(B•, d•) is compact. Moreover the graph H is a Borel graph with respect to the above
topology and sigma-algebra A obtained from the ball distance.

Proposition 9.3. The graph of graphs H is Borel.

Proof. We prove that E(H) is closed with the topology given from the metric.
Let H1H2 /∈ E(H) and let F1, . . . , Fd be the neighbors of H1 distinct from H1, where

all these rooted graphs is isomorphic to some graph H when we forget the root. As H2

is not adjacent to H1, there exists r ≥ 1 such that BH2,r is not isomorphic to any of
BF1,r, BF2,r, . . . , BFd,r.

We claim that if H ′
1,H

′
2 ∈ B• such that d•(H1,H

′
1) < 2−r and d•(H2,H

′
2) < 2−r then

H ′
1H

′
2 /∈ B•.

Indeed, assume H ′
1H

′
2 ∈ E(H). We know BH1,r+1 ' BH′

1,r+1. Let x = root(H1), y =

root(H2), u = root(H ′
1) and v = root(H ′

2). Assume that y1 = root(F1) corresponds to
v in the isomorphism BH1,r+1 ' BH′

1,r+1. Then we have BH1,r(y1) ' BH′
1,r

(v). But
d•(H2,H

′
2) < 2−r implies that BH2,r(u) ' BH′

2,r
(v) ' BH1,r(y1) = BF1,r(y1), a contradic-

tion to our choice of r.
Therefore, for any H1H2 /∈ E(H), there exists an open set B2−r(H1) × B2−r(H2) con-

taining H1H2 lying outside E(H). Hence, E(H) is a closed set, hence a Borel set. □

We have a Borel graph H. To make this a graphing, we need to define measure on B•.
There will be many ways to give measures to this Borel graph. Let σ be a probability
distribution on B•.

For each d ∈ N, the set deg−1(d) = {F ∈ B• : deg(F ) = d} is the union of finitely many
B•

F , it is an open set. Hence, deg is a measurable function. As we did with finite graph
cases, we will consider the following new measure.

σ∗(A) =

∫
A deg(F )dσ∫
B• deg(F )dσ

.

Note that this is at most ∆ and the denominator is nonzero unless the measure is an
indicator measure on K1. In this case, we set σ∗ = σ.

Now we will consider ‘involution invariance’ as we did for finite graphs. We select a
rooted graph H according to the distribution σ∗ and then select an edge e incident from
the root uniformly at random. We consider e as oriented away from the root. This provides
a probability distribution σ→ on the set B→ of graphs in B• with an oriented edge from
the root are also specified.

Definition 9.4. We say that σ is involution invariant if the map B→ → B→ obtained
by reversing the orientation of the root edge and changing the root is measure preserving
with respect to σ→. We call the random rooted connected graph drawn from an involution
invariant probability measure on B• as involution invariant random graph.

We first introduce how to define sampling distribution of graphing. Let G = (Ω,B, λ, E)
be a graphing and we choose a random point x ∈ V (G) with respect to the given measure
of the graphing. The connected component Gx of G containing x with the root x is a
graph in B•, which we call a random rooted component of G. The map x→ Gx is called
the component map, and this is measurable function and thus every graphing G defines
a probability distribution σG on (B•,A).

Let d0 =
∫
Ω deg(x)dλ(x) let λ∗(A) =

∫
A deg(x)dλ(x)/d0 be the stationary distribution

of G. Let η = ηG on (Ω× Ω,B × B) by

η(A×B) =

∫
A
degB(x)dλ(x).
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This extends to the sigma-algebra B × B (this is by Caratheodory’s extension theorem).
The measure η/d0 can be considered as a uniform probability measure on E(G). Moreover,
the above expression gives

η(A×B) =

∫
A
degB(x)dλ(x) =

∫
B
degA(x)dλ(x) = η(B ×A)

hence, η is symmetric.
We select x from the distribution λ∗, the graph Gx will be a random rooted connected

graph from the distribution σ∗ on B•. Selecting an edge of Gx incident with x, we get
an edge of G from the probability distribution ηG/d0 together with an orientation. Since
ηG is symmetric, shifting the root to the other endpoint does not change the distribution,
hence σ is involution invariant. Thus, every graphing yields an involution invariant random
graph, we also say that the graphing represents this distribution. The converse also holds
by the following theorem. Note that such a graphing representing an involution invariant
probability distribution is not unique.
Theorem 9.5. Every involution invariant probability distribution on B• can be represented
by a graphing.
Proof. We generalize the construction of graph of graphs. Let B+ denote the set of triples
(H, v, α) where (H, v) ∈ B• and α : V (H) → [0, 1] is a weighting of the vertices of H
and v is the root of H. Two rooted weighted graphs are considered the same, if there
is an isomorphism between the graphs preserving the root and the weights. Let A+ be
the sigma-algebra on B+ generated by the following cylinder sets: for an r ≥ 0, we fix
an r-ball B ∈ Br and for every vertex u in B, we specify a Borel set Au in [0, 1] and
consider a cylinder set {(H, v, α) : H ∈ BB, α(w) ∈ Au} where w is the image of u in the
isomorphism from B to an r-neighborhood of H around the root. Then it is not difficult
to check that (B+,A+) becomes a Borel sigma-algebra.

Let H+ be the graph of weighted graphs on the vertex set B+ as follows: we connect
(G,α) and (G′, α′) be an edge if G′ is obtained from G by shfting the root to one of its
neighbors while keeping all the vertex weights.

Given a probability distribution σ on (B•,A), we can define a probability distribution
σ+ on (B+,A+) as follows: we select a random graph H ∈ B• from the distribution σ
and assign weights to each vertex from [0, 1] independently uniformly at random.

Now, we prove that (H+, σ+) is a graphing. Choose a rooted weighted graph (H, v, α) ∈
B+ from the distribution (σ+)∗ and a random neighbor u of v uniformly from the neigh-
bors. Then almost surely, H has no nontrivial automorphisms as our choices of weights are
uniformly at random from [0, 1], the graph (H,u, α) is different from (H, v, α). The pair
(H,u, α)(H, v, α) is an edge of H+ and selecting another neighbor of v yields a different
edge of H+. Hence, this procedure generates a random edge of H+ with an orientation.
As σ is involution invariant, this distribution on the edges of H is invariant under flipping
the orientation.

For two measurable sets A and B,
∫
A degB(x)dλ(x) measures the probability of choosing

a weighted rooted graph (H, v, α) inA with an oriented edge towardsB and
∫
B degA(x)dλ(x)

measures the probability of choosing a weighted rooted graph (H,u, α) in B with an ori-
ented edge towards A. As the distribution on the edges of H is invariant under flipping
the orientation, we have ∫

A
degB(x)dλ(x) =

∫
B
degA(x)dλ(x)

Thus (H+, σ+) is a graphing.
Let (H, v, α) be an rooted graph from σ+ with no automorphism. We claim that the

connected component of H+ containing (H, v, α) as a root is isomorphic to (H, v). Indeed,
assinging the role of the root to different nodes of H gives non-isomorphic rooted graphs,
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and as we get an injection of V (H) into B•. From the definition of adjacency in H,
this injection preserves adjacncies and nonadjacencies, and B• is the set of connected
components of H+. This proves (H+, σ+) respresents σ. □
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