Chapter 1

Basics of elementary number theory

1.1 Divisibility

Definition 1.1 (Divisibility). Let $m, n \in \mathbb{Z}$. We say m divides n and write $m \mid n$ if there exists some integer q such that n = qm. If m divides n, we say n is a multiple of m and say m is a divisor or a factor of n.

Definition 1.2 (Congruence). Let $a, b \in \mathbb{Z}$, $q \in \mathbb{N}^*$. If $q \mid (a - b)$, we say a and b are congruent modulo q and write

 $a \equiv b \pmod{q}$.

Definition 1.3 (Greatest common divisor and least common multiple). Let $m, n \in \mathbb{Z}$, not both zero. The greatest common divisor (g.c.d. for short) of m and n, denoted by (m, n) or gcd(m, n), is the largest positive integer d such that $d \mid m$ and $d \mid n$.

Let $m, n \in \mathbb{Z} \setminus \{0\}$. The **least common multiple** (l.c.m. for short) of m and n, denoted by [m, n] or lcm(m, n), is the smallest positive integer d such that $m \mid d$ and $n \mid d$. If mn = 0, we define [m, n] = 0.

Similarly, we can iteratively define the g.c.d. or l.c.m. of multiple integers.

Theorem 1.1 (Euclidean division theorem). Let a be an integer and let b be a positive integer. Then there is a unique pair of integers q and r such that

$$a = bq + r, \quad 0 \le r < b.$$

The integer q is called the **quotient** and r is called the **remainder** when b is divided by a.

Proof. Take q to be the largest integer with $bq \leq a$ and set r = a - bq. Then r satisfies $0 \leq r < b$ since otherwise q' = q + 1 will be a larger integer satisfying $bq' \leq a$.

Remark. Theorem 1.1 imples that \mathbb{Z} is a euclidean domain hence is a principal ideal domain. So any non-zero ideal \mathfrak{a} of \mathbb{Z} is of the form $m\mathbb{Z}$ with $m \in \mathbb{N}^*$. Let $m\mathbb{Z}$ be a non-zero ideal of \mathbb{Z} , we have the natural homomorphism of rings

$$\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} : a \mapsto a + m\mathbb{Z}.$$

For $a \in \mathbb{Z}$, we usually denote the image of a under the above homomorphism by \bar{a} or $a \pmod{m}$. The concepts of divisibility and congruences can be described in the language of ring theory:

- $a \mid b \iff b \in a\mathbb{Z} \iff \overline{b} = \overline{0} \text{ in } \mathbb{Z}/a\mathbb{Z}.$
- $a \equiv b \pmod{m} \iff a + m\mathbb{Z} = b + m\mathbb{Z} \iff \bar{a} = \bar{b} \text{ in } \mathbb{Z}/a\mathbb{Z}.$

In order to obtain the greatest common divisor, we can use the following **euclidean algorithm**: Let a and b be positive integers. By repeatedly applying Theorem 1.1, we find the sequence of equations:

$$a = bq_1 + r_1, \quad 0 < r_1 < b,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\dots$$

$$r_{n-1} = r_nq_{n+1} + r_{n+1}, \quad 0 < r_{n+1} < r_n$$

$$r_n = r_{n+1}q_{n+2}.$$

This process must terminate in finitely many steps since the decreasing sequence b, r_1, r_2, \ldots can not contain more than b positive integers. Clearly, we have

$$(a,b) = (b,r_1) = (r_1,r_2) = \dots = (r_n,r_{n+1}) = r_{n+1}$$

Example 1.1. We apply the euclidean algorithm to evaluate (525, 231):

$$525 = 231 \cdot 2 + 63,$$

$$231 = 63 \cdot 3 + 42,$$

$$63 = 42 \cdot 1 + 21,$$

$$42 = 21 \cdot 2.$$

So we find (525, 231) = 21.

1.2 The prime numbers

Definition 1.4 (Prime number). An integer p is a **prime number** if it satisfies the following equivalent conditions:

- i) p = ab with $a, b \in \mathbb{Z} \implies a \in \mathbb{Z}^{\times}$ or $b \in \mathbb{Z}^{\times}$.
- *ii)* $p \mid ab \text{ with } a, b \in \mathbb{Z} \implies p \mid a \text{ or } p \mid b.$

The set of positive prime numbers is denoted by \mathbb{P} . Positive integers larger than 1 which are not prime are called **composite**.

Convention. Unless otherwise stated, when we say "prime number", we mean "positive prime number". The lowercase letter p, with or without subscripts, is considered as a prime number, unless otherwise stated. This convention is usually used when p appears as a variable in \sum or \prod . For example, the notation

$$\sum_{p \le x} \frac{1}{p}$$

means summing over all prime numbers not exceeding x.

Theorem 1.2 (Fundamental theorem of arithmetic). Every integer n > 1 can be uniquely represented as a product of prime numbers, up to the order of factors.

Definition 1.5 (Prime factorization). By the fundamental theorem of arithmetic, we have the **prime factorization** for each integer n > 1:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k},$$

where p_1, \ldots, p_k are distinct prime numbers and $\alpha_1, \ldots, \alpha_k$ are positive integers.

Definition 1.6 (*p*-adic valuation). Let *p* be a prime number and let $n \in \mathbb{Z} \setminus \{0\}$. Then there exists a unique non-negative integer α such that $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n$. We denote this case as $p^{\alpha} \parallel n$. The exponent α is called the *p*-adic valuation of *n* and is denoted by $v_p(n)$. Set $v_p(0) = +\infty$.

Remark. Clearly, for any $m, n \in \mathbb{Z} \setminus \{0\}$, we have

$$v_p(mn) = v_p(m) + v_p(n).$$
 (1.1)

That is, $v_p(n)$ is a completely additive function (ref. Definition 2.1).

Theorem 1.3 (The infinity of prime numbers). There are infinitely many prime numbers.

Proof I. Suppose on the contrary that there are only finitely many prime numbers, say, p_1, \ldots, p_k . Then any prime factor of $p_1 \cdots p_k + 1$ is a prime number differing from p_1, \ldots, p_k . This is a contradiction.

Proof II. Suppose on the contrary that there are only finitely many prime numbers, say, p_1, \ldots, p_k . Let N be an arbitrarily large integer. By Theorem 1.2, every positive integer $n \leq N$ can be uniquely represented as

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$$

with $\alpha_j \in \mathbb{N}, j = 1, 2, \dots, k$. Moreover, since $n \leq N$, we have

$$p_j^{\alpha_k} \le n \le N \quad \Rightarrow \quad \alpha_j \le \frac{\log N}{\log p_j} \le \frac{\log N}{\log 2}.$$

So the number of possible choices of $(\alpha_1, \ldots, \alpha_k)$ is at most

$$\left(\frac{\log N}{\log 2} + 1\right)^k.$$

But for sufficiently large N, we have

$$\left(\frac{\log N}{\log 2} + 1\right)^k < N.$$

This is a contradiction.

In analytic number theory, we are more concerned with quantitative behavior. For $x \ge 1$, we define the **prime counting function** $\pi(x)$ by

$$\pi(x) = \left| \mathbb{P} \cap [1, x] \right|.$$

In other words, $\pi(x)$ is the number of prime numbers not exceeding x. Actually, our proof of Theorem 1.3 provides a (very weak) lower bound for $\pi(x)$. Let p_n denote the *n*-th prime. From the first proof, it is not hard to obtain the inequality

$$p_n \le 2^{2^n},$$

1.3. THE FUNCTIONS [X] AND $\{X\}$

which implies the lower bound (provided that x is sufficiently large)

$$\pi(x) \ge \frac{\log \log x}{\log 2} - \left(\frac{\log \log 2}{\log 2} + 1\right).$$

The second proof provides a better bound:

$$\pi(x) \ge \frac{\log x}{\log \log x}.$$

But these bounds are far from the best since we have the following well-known prime number theorem.

Theorem 1.4 (Prime number theorem). As $x \to +\infty$, we have $\pi(x) \sim x/\log x$, *i.e.*

$$\lim_{x \to +\infty} \frac{\pi(x)}{x/\log x} = 1.$$

Proving the prime number theorem is one of the main goals of this course.

1.3 The functions [x] and $\{x\}$

Let [x] denote the "rounding down" function, i.e.

[x] = the largest integer not exceeding x.

Clearly, for $n \in \mathbb{Z}$,

$$[x] = n \quad \Leftrightarrow \quad n \le x < n+1.$$

Let $\{x\} = x - [x]$ denote the fractional part of x. The following facts about these two functions can be easily checked.

Proposition 1.5. *i)* For any $x \in \mathbb{R}$, we have $0 \le \{x\} < 1$.

- ii) For $x \in \mathbb{R}$ and $n \in \mathbb{Z}$, we have [x+n] = [x] + n and $\{x+n\} = \{x\}$.
- *iii)* For $x, y \in \mathbb{R}$, $[x] + [y] \le [x + y]$.

Proposition 1.6. Let $d \in \mathbb{N}^*$ and $x \in \mathbb{R}^+$. The number of positive integers not exceeding x which are divisible by d is [x/d].

Proof. The set of positive integers not exceeding x divisible by d can be represented as

$$\{d, 2d, \ldots, kd\},\$$

where k is the largest positive integer such that $kd \leq x$. But

$$kd \le x \quad \Leftrightarrow \quad k \le \frac{x}{d}.$$

So k = [x/d].

Theorem 1.7. Let $n \in \mathbb{N}^*$ and let $p \in \mathbb{P}$. We have

$$v_p(n!) = \sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right].$$

Proof. By (1.1), we have

$$v_p(n!) = \sum_{m=1}^n v_p(m) = \sum_{m=1}^n \sum_{k \le v_p(m)} 1 = \sum_{k=1}^\infty \sum_{\substack{m \le n \\ v_p(m) \ge k}} 1.$$

Notice that

$$v_p(m) \ge k \quad \Leftrightarrow \quad p^k \mid m.$$

So by Proposition 1.6, the last summation is

$$\sum_{\substack{m \le n \\ v_p(m) \ge k}} 1 = \sum_{\substack{m \le n \\ p^k \mid m}} 1 = \left\lfloor \frac{n}{p^k} \right\rfloor.$$

This completes the proof.

Theorem 1.8. Let $m, n \in \mathbb{N}^*$ with $m \leq n$. Then the bionomial number

$$\binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

is an integer.

Proof. It is sufficient to show that for any prime number p, the p-adic valuation of the denominator does not exceed that of the numerator. By Theorem 1.7 and iii) of Proposition 1.5, we have

$$v_p(n!) = \sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right] \ge \sum_{k=1}^{\infty} \left(\left[\frac{m}{p^k} \right] + \left[\frac{n-m}{p^k} \right] \right) = v_p(m!(n-m)!).$$

1.3. THE FUNCTIONS [X] AND $\{X\}$

Theorem 1.9 (Dirichlet's approximation theorem). Let $Q \ge 1$ be a positive integer. Then for any real number α , there exist integers a, q with $1 \le q \le Q$ and (a, q) = 1, such that

$$\left|\alpha - \frac{a}{q}\right| < \frac{1}{qQ}.$$

Proof. Consider the following (Q + 1) points in [0, 1):

$$0, \{\alpha\}, \{2\alpha\}, \dots, \{Q\alpha\}.$$

By the pigeonhole principle, there are two points whose distance is less that 1/Q. That is, there exist $0 \le m_1 < m_2 \le Q$ such that

$$|\{m_2\alpha\} - \{m_1\alpha\}| < \frac{1}{Q}.$$

We have

$$\{m_2\alpha\} - \{m_1\alpha\} = (m_2 - m_1)\alpha - ([m_2\alpha] - [m_1\alpha])$$

Take

$$\frac{a}{q} = \frac{[m_2\alpha] - [m_1\alpha]}{m_2 - m_1}$$

and the desired result follows.

Remark. In fact, the requirement "Q is an integer" is not necessary. The same result holds for real $Q \ge 1$. One could prove this slightly stronger version by slightly modifying the above proof. We leave it as an exercise.

Corollary 1.10. Let α be an irrational number. Consider the irrational rotation on the unit circle

$$\begin{array}{rccc} T_{\alpha}: \mathbb{T}^{1} & \to & \mathbb{T}^{1} \\ & x & \mapsto & x + \alpha \end{array}$$

where

$$\mathbb{T}^1 = \mathbb{R}/\mathbb{Z} = \{x \pmod{1} \mid x \in \mathbb{R}\}.$$

Then for any $x \in \mathbb{T}$, the orbit $\{T_{\alpha}^n x\}_{n=1}^{+\infty}$ is dense in \mathbb{T} .

Proof. It suffices to show that

$$U \cap \{T^n_\alpha x\}_{n=1}^{+\infty} \neq \emptyset$$

11

for any interval U. In fact, suppose that the length of U is ε . By Theorem 1.9, there exist integers a, q with $q \ge 1$ such that

$$\left|\alpha - \frac{a}{q}\right| < \frac{\varepsilon}{q} \quad \Rightarrow \quad |q\alpha - a| < \varepsilon.$$

Let $\delta = q\alpha - a$. Then $|\delta| < \varepsilon$ and

$$T^{q}_{\alpha}x = x + q\alpha \pmod{1} = x + \delta \pmod{1}.$$

for any $x \in \mathbb{T}$. Therefore, under the repeated action of T^q_{α} , x will eventually enter U.