
Chapter 1

Basics of elementary number
theory

1.1 Divisibility
Definition 1.1 (Divisibility). Let m,n ∈ Z. We say m divides n and write m | n if
there exists some integer q such that n = qm. If m divides n, we say n is a multiple
of m and say m is a divisor or a factor of n.

Definition 1.2 (Congruence). Let a, b ∈ Z, q ∈ N∗. If q | (a − b), we say a and b
are congruent modulo q and write

a ≡ b (mod q).

Definition 1.3 (Greatest common divisor and least common multiple). Let m,n ∈
Z, not both zero. The greatest common divisor (g.c.d. for short) of m and n,
denoted by (m,n) or gcd(m,n), is the largest positive integer d such that d | m and
d | n.

Let m,n ∈ Z \ {0}. The least common multiple (l.c.m. for short) of m and
n, denoted by [m,n] or lcm(m,n), is the smallest positive integer d such that m | d
and n | d. If mn = 0, we define [m,n] = 0.

Similarly, we can iteratively define the g.c.d. or l.c.m. of multiple integers.

Theorem 1.1 (Euclidean division theorem). Let a be an integer and let b be a
positive integer. Then there is a unique pair of integers q and r such that

a = bq + r, 0 ≤ r < b.
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The integer q is called the quotient and r is called the remainder when b is divided
by a.
Proof. Take q to be the largest integer with bq ≤ a and set r = a − bq. Then r
satisfies 0 ≤ r < b since otherwise q′ = q + 1 will be a larger integer satisfying
bq′ ≤ a.

Remark. Theorem 1.1 imples that Z is a euclidean domain hence is a principal ideal
domain. So any non-zero ideal a of Z is of the form mZ with m ∈ N∗. Let mZ be a
non-zero ideal of Z, we have the natural homomorphism of rings

Z → Z/mZ : a 7→ a+mZ.
For a ∈ Z, we usually denote the image of a under the above homomorphism by ā
or a (mod m). The concepts of divisibility and congruences can be described in the
language of ring theory:

• a | b ⇔ b ∈ aZ ⇔ b̄ = 0̄ in Z/aZ.

• a ≡ b (mod m) ⇔ a+mZ = b+mZ ⇔ ā = b̄ in Z/aZ.
In order to obtain the greatest common divisor, we can use the following eu-

clidean algorithm: Let a and b be positive integers. By repeatedly applying The-
orem 1.1, we find the sequence of equations:

a = bq1 + r1, 0 < r1 < b,

b = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

· · ·
rn−1 = rnqn+1 + rn+1, 0 < rn+1 < rn

rn = rn+1qn+2.

This process must terminate in finitely many steps since the decreasing sequence
b, r1, r2, . . . can not contain more than b positive integers. Clearly, we have

(a, b) = (b, r1) = (r1, r2) = · · · = (rn, rn+1) = rn+1.

Example 1.1. We apply the euclidean algorithm to evaluate (525, 231):
525 = 231 · 2 + 63,

231 = 63 · 3 + 42,

63 = 42 · 1 + 21,

42 = 21 · 2.
So we find (525, 231) = 21.
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1.2 The prime numbers
Definition 1.4 (Prime number). An integer p is a prime number if it satisfies
the following equivalent conditions:

i) p = ab with a, b ∈ Z ⇒ a ∈ Z× or b ∈ Z×.

ii) p | ab with a, b ∈ Z ⇒ p | a or p | b.

The set of positive prime numbers is denoted by P. Positive integers larger than 1
which are not prime are called composite.

Convention. Unless otherwise stated, when we say “prime number”, we mean “posi-
tive prime number”. The lowercase letter p, with or without subscripts, is considered
as a prime number, unless otherwise stated. This convention is usually used when p
appears as a variable in

∑
or
∏

. For example, the notation∑
p≤x

1

p

means summing over all prime numbers not exceeding x.

Theorem 1.2 (Fundamental theorem of arithmetic). Every integer n > 1 can be
uniquely represented as a product of prime numbers, up to the order of factors.

Definition 1.5 (Prime factorization). By the fundamental theorem of arithmetic,
we have the prime factorization for each integer n > 1:

n = pα1
1 p

α2
2 · · · pαk

k ,

where p1, . . . , pk are distinct prime numbers and α1, . . . , αk are positive integers.

Definition 1.6 (p-adic valuation). Let p be a prime number and let n ∈ Z \ {0}.
Then there exists a unique non-negative integer α such that pα | n but pα+1 ∤ n. We
denote this case as pα ‖n. The exponent α is called the p-adic valuation of n and
is denoted by vp(n). Set vp(0) = +∞.

Remark. Clearly, for any m,n ∈ Z \ {0}, we have

vp(mn) = vp(m) + vp(n). (1.1)

That is, vp(n) is a completely additive function (ref. Definition 2.1).
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Theorem 1.3 (The infinity of prime numbers). There are infinitely many prime
numbers.

Proof I. Suppose on the contrary that there are only finitely many prime numbers,
say, p1, . . . , pk. Then any prime factor of p1 · · · pk + 1 is a prime number differing
from p1, . . . , pk. This is a contradiction.

Proof II. Suppose on the contrary that there are only finitely many prime numbers,
say, p1, . . . , pk. Let N be an arbitrarily large integer. By Theorem 1.2, every positive
integer n ≤ N can be uniquely represented as

n = pα1
1 · · · pαk

k

with αj ∈ N, j = 1, 2, . . . , k. Moreover, since n ≤ N , we have

pαk
j ≤ n ≤ N ⇒ αj ≤

logN

log pj
≤ logN

log 2
.

So the number of possible choices of (α1, . . . , αk) is at most(
logN

log 2
+ 1

)k

.

But for sufficiently large N , we have(
logN

log 2
+ 1

)k

< N.

This is a contradiction.

In analytic number theory, we are more concerned with quantitative behavior.
For x ≥ 1, we define the prime counting function π(x) by

π(x) = |P ∩ [1, x]| .

In other words, π(x) is the number of prime numbers not exceeding x. Actually, our
proof of Theorem 1.3 provides a (very weak) lower bound for π(x). Let pn denote
the n-th prime. From the first proof, it is not hard to obtain the inequality

pn ≤ 22
n

,
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which implies the lower bound (provided that x is sufficiently large)

π(x) ≥ log log x

log 2
−
(
log log 2

log 2
+ 1

)
.

The second proof provides a better bound:

π(x) ≥ log x

log log x
.

But these bounds are far from the best since we have the following well-known prime
number theorem.

Theorem 1.4 (Prime number theorem). As x→ +∞, we have π(x) ∼ x/ log x, i.e.

lim
x→+∞

π(x)

x/ log x
= 1.

Proving the prime number theorem is one of the main goals of this course.

1.3 The functions [x] and {x}
Let [x] denote the “rounding down” function, i.e.

[x] = the largest integer not exceeding x.

Clearly, for n ∈ Z,
[x] = n ⇔ n ≤ x < n+ 1.

Let {x} = x − [x] denote the fractional part of x. The following facts about these
two functions can be easily checked.

Proposition 1.5. i) For any x ∈ R, we have 0 ≤ {x} < 1.

ii) For x ∈ R and n ∈ Z, we have [x+ n] = [x] + n and {x+ n} = {x}.

iii) For x, y ∈ R, [x] + [y] ≤ [x+ y].

Proposition 1.6. Let d ∈ N∗ and x ∈ R+. The number of positive integers not
exceeding x which are divisible by d is [x/d].
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Proof. The set of positive integers not exceeding x divisible by d can be represented
as

{d, 2d, . . . , kd},
where k is the largest positive integer such that kd ≤ x. But

kd ≤ x ⇔ k ≤ x

d
.

So k = [x/d].
Theorem 1.7. Let n ∈ N∗ and let p ∈ P. We have

vp(n!) =
∞∑
k=1

[
n

pk

]
.

Proof. By (1.1), we have

vp(n!) =
n∑

m=1

vp(m) =
n∑

m=1

∑
k≤vp(m)

1 =
∞∑
k=1

∑
m≤n

vp(m)≥k

1.

Notice that
vp(m) ≥ k ⇔ pk | m.

So by Proposition 1.6, the last summation is∑
m≤n

vp(m)≥k

1 =
∑
m≤n
pk|m

1 =

[
n

pk

]
.

This completes the proof.
Theorem 1.8. Let m,n ∈ N∗ with m ≤ n. Then the bionomial number(

n

m

)
=
n(n− 1) · · · (n−m+ 1)

m!
=

n!

m!(n−m)!

is an integer.
Proof. It is sufficient to show that for any prime number p, the p-adic valuation of
the denominator does not exceed that of the numerator. By Theorem 1.7 and iii) of
Proposition 1.5, we have

vp(n!) =
∞∑
k=1

[
n

pk

]
≥
∑
k=1

([
m

pk

]
+

[
n−m

pk

])
= vp(m!(n−m)!).
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Theorem 1.9 (Dirichlet’s approximation theorem). Let Q ≥ 1 be a positive integer.
Then for any real number α, there exist integers a, q with 1 ≤ q ≤ Q and (a, q) = 1,
such that ∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
.

Proof. Consider the following (Q+ 1) points in [0, 1):

0, {α}, {2α}, . . . , {Qα}.

By the pigeonhole principle, there are two points whose distance is less that 1/Q.
That is, there exist 0 ≤ m1 < m2 ≤ Q such that

|{m2α} − {m1α}| <
1

Q
.

We have
{m2α} − {m1α} = (m2 −m1)α− ([m2α]− [m1α]) .

Take
a

q
=

[m2α]− [m1α]

m2 −m1

and the desired result follows.

Remark. In fact, the requirement “Q is an integer” is not necessary. The same
result holds for real Q ≥ 1. One could prove this slightly stronger version by slightly
modifying the above proof. We leave it as an exercise.

Corollary 1.10. Let α be an irrational number. Consider the irrational rotation on
the unit circle

Tα : T1 → T1

x 7→ x+ α

where
T1 = R/Z = {x (mod 1) | x ∈ R}.

Then for any x ∈ T, the orbit {T n
αx}+∞

n=1 is dense in T.

Proof. It suffices to show that

U ∩ {T n
αx}+∞

n=1 6= ∅
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for any interval U . In fact, suppose that the length of U is ε. By Theorem 1.9, there
exist integers a, q with q ≥ 1 such that∣∣∣∣α− a

q

∣∣∣∣ < ε

q
⇒ |qα− a| < ε.

Let δ = qα− a. Then |δ| < ε and

T q
αx = x+ qα (mod 1) = x+ δ (mod 1).

for any x ∈ T. Therefore, under the repeated action of T q
α, x will eventually enter

U .
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