Homework 1

(due Friday, March 10, 2023)

1. Prove that for any $n>1$,

$$
S=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

is not an integer.
2. Show that there are infinitely many prime numbers of the form $4 m+3$ with $m \in \mathbb{N}$.
3. Prove the following slightly stronger version of Dirichlet's approximation theorem: Let $Q \geq 1$ be a positive real number. Then for any real number α, there exist integers a, q with $1 \leq q \leq Q$ and $(a, q)=1$, such that

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q Q} .
$$

4. Let α and β be positive real numbers. Let

$$
A=\left\{[\alpha n]: n \in \mathbb{N}^{*}\right\}, \quad B=\left\{[\beta n]: n \in \mathbb{N}^{*}\right\} .
$$

Prove that A and B take all positive integers without repetition (i.e. $A \cup B=\mathbb{N}^{*}$ and $A \cap B=\emptyset$) if and only if α and β are irrational and

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1
$$

