Homework 2

(due Friday, March 17, 2023)

1. Show that

$$
\sum_{d \mid n} \mu^{2}(d)=2^{\omega(n)}
$$

2. A perfect number is a positive integer that is equal to the sum of its proper divisors. That is, n is a perfect number if and only if

$$
\sigma(n)=2 n,
$$

where $\sigma(n)$ is the sum of divisors of n. Prove that n is a perfect number if and only if

$$
\sum_{d \mid n} \frac{1}{d}=2 .
$$

3. Let $\tau(n)$ denote the number of divisors of n. Prove that for $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} \frac{\tau^{2}(n)}{n^{s}}=\frac{\zeta^{4}(s)}{\zeta(2 s)}
$$

4. Let q, n be positive integers. Define the Ramanujan sum $c_{q}(n)$ by

$$
c_{q}(n)=\sum_{\substack{1 \leq h \leq q \\(h, q)=1}} e\left(\frac{n h}{q}\right)
$$

where $e(u):=e^{2 \pi i u}, u \in \mathbb{R}$.
1). Show that

$$
c_{q}(n)=\sum_{d \mid(q, n)} d \mu\left(\frac{q}{d}\right) .
$$

$2)$. Let $t=q /(n, q)$. Show that

$$
c_{q}(n)=\frac{\mu(t) \varphi(q)}{\varphi(t)} .
$$

