Chapter 4

The distribution of prime numbers: elementary method

Recall the prime counting function $\pi(x)$ is defined to be the number of prime numbers not exceeding x. To study the distribution of prime numbers, we introduce the following functions:

$$
\psi(x)=\sum_{n \leq x} \Lambda(n), \quad \theta(x)=\sum_{p \leq x} \log p .
$$

By the definition of $\Lambda(n)$,

$$
\psi(x)-\theta(x)=\sum_{p^{k} \leq x, k \geq 2} \log p=\sum_{p \leq \sqrt{x}} \log p \sum_{k \leq \log x / \log p} 1 \ll \sqrt{x} \log x .
$$

So

$$
\begin{equation*}
\psi(x)=\theta(x)+O(\sqrt{x} \log x) . \tag{4.1}
\end{equation*}
$$

In practice, we usually investigate $\psi(x)$ instead of $\pi(x)$. The reason is that $\Lambda(n)$ is more closely related to the Riemann ζ-function (see Theorem 2.13).

4.1 Chebyshev's estimate

The first remarkable estimate for $\pi(x)$ is given by Chebyshev. He proves that the prime number theorem holds "in the sense of order". Moreover, the proof of this conclusion is quite elegant.

Theorem 4.1 (Chebyshev's estimate). For $x \geq 2$, we have

$$
\psi(x) \asymp x
$$

Proof. We begin with the sum

$$
S(x)=\sum_{m n \leq x} \Lambda(m)
$$

We will give two different expressions of $S(x)$:
i). $S(x)=x \log x-x+O(\log x)$.
ii). $S(x)=\sum_{n \leq x} \psi\left(\frac{x}{n}\right)$.

In fact, we have

$$
S(x)=\sum_{m n \leq x} \Lambda(m)=\sum_{d \leq x} \sum_{m n=d} \Lambda(m)=\sum_{d \leq x} \log d
$$

From this and Theorem 3.5, we deduce the first expression. Changing the order of summation, we obtain the second expression:

$$
S(x)=\sum_{m n \leq x} \Lambda(m)=\sum_{n \leq x} \sum_{m \leq x / n} \Lambda(m)=\sum_{n \leq x} \psi\left(\frac{x}{n}\right) .
$$

Therefore, we have

$$
\begin{equation*}
\psi(x)-\psi\left(\frac{x}{2}\right)+\psi\left(\frac{x}{3}\right)-\cdots=S(x)-2 S\left(\frac{x}{2}\right)=x \log 2+O(\log x) \tag{4.2}
\end{equation*}
$$

By the monotonicity of $\psi(x)$, we infer two inequalities from (4.2):

$$
\psi(x)-\psi\left(\frac{x}{2}\right) \leq x \log 2+O(\log x) \leq \psi(x)
$$

The second inequlity has already given the desired lower bound for $\psi(x)$. Repeatedly applying the first inequality, we obtain the desired upper bound:

$$
\psi(x) \leq \psi\left(\frac{x}{2}\right)+x \log 2+O(\log x) \leq \cdots \leq x \log 4+O\left(\log ^{2} x\right) \ll x
$$

Corollary 4.2. For $x \geq 2$, we have

$$
\pi(x)=\frac{\theta(x)}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) .
$$

Proof. By partial summation, we have

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(u)}{u \log ^{2} u} \mathrm{~d} u+O(1) .
$$

By Chebyshev's estimate and (4.1), we have

$$
\theta(x) \asymp x .
$$

Thus

$$
\begin{aligned}
\int_{2}^{x} \frac{\theta(u)}{u \log ^{2} u} \mathrm{~d} u & \ll \int_{2}^{x} \frac{1}{\log ^{2} u} \mathrm{~d} u=\int_{2}^{\sqrt{x}} \frac{1}{\log ^{2} u} \mathrm{~d} u+\int_{\sqrt{x}}^{x} \frac{1}{\log ^{2} u} \mathrm{~d} u \\
& \ll \sqrt{x}+\frac{x}{\log ^{2} x} \ll \frac{x}{\log ^{2} x} .
\end{aligned}
$$

The desired result follows.
Corollary 4.3. For $x \geq 2$, we have

$$
\pi(x) \asymp \frac{x}{\log x}
$$

Corollary 4.4. The following statements are equivalent:

$$
\begin{aligned}
\pi(x) & \sim \frac{x}{\log x}, \quad x \rightarrow+\infty \\
\psi(x) & \sim x, \quad x \rightarrow+\infty \\
\theta(x) & \sim x, \quad x \rightarrow+\infty
\end{aligned}
$$

Corollary 4.5. There exists some constant $A>1$, such that for sufficiently large x, the interval $[x, A x]$ contains at least one prime number.

Remark. Actually, we can prove that for any integer $n>1$, the interval $[n, 2 n]$ always contains a prime number. This conclusion is known as Bertrand's postulate. Assuming the prime number theorem, we can show that there exists a function $\Delta(x)$ with $\Delta(x)=o(x)$ as $x \rightarrow+\infty$ such that the interval $[x, x+\Delta(x)]$ always contains a prime for sufficiently large x.

4.2 Mertens' theorem

Some weighted sum over primes is easier to investigate than the prime counting functions $\pi(x)$. This is the case for the sum evaluated in the following theorem:

Theorem 4.6 (Mertens' first theorem). For $x \geq 2$, we have

$$
\begin{equation*}
\sum_{p \leq x} \frac{\log p}{p}=\log x+O(1) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1) \tag{4.4}
\end{equation*}
$$

Proof. We first show that these two assertions are equivalent. In fact, we have

$$
\begin{aligned}
\sum_{n \leq x} \frac{\Lambda(n)}{n}-\sum_{p \leq x} \frac{\log p}{p} & =\sum_{\substack{p^{k} \leq x \\
k \geq 2}} \frac{\log p}{p^{k}} \leq \sum_{p \leq \sqrt{x}} \log p \sum_{k=2}^{\infty} \frac{1}{p^{k}} \\
& \ll \sum_{p \leq \sqrt{x}} \frac{\log p}{p^{2}} \ll 1 .
\end{aligned}
$$

So it suffices to prove (4.4). On the one hand, we have

$$
\begin{aligned}
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right] & =\sum_{n \leq x} \Lambda(n) \sum_{m \leq x / n} 1=\sum_{m \leq x} \sum_{n \leq x / m} \Lambda(n)=\sum_{d \leq x} \sum_{m n=d} \Lambda(n) \\
& =\sum_{d \leq x} \log d=x \log x+O(x)
\end{aligned}
$$

On the other hand,

$$
\sum_{n \leq x} \Lambda(n)\left[\frac{x}{n}\right]=x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O(\psi(x))=x \sum_{n \leq x} \frac{\Lambda(n)}{n}+O(x)
$$

Thus

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

By partial summation, we can derive the following asymptotic formula from Mertens' first theorem.

Theorem 4.7. There exists a constant C such that for any $x \geq 30$, we have

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+C+O\left(\frac{1}{\log x}\right)
$$

Proof. Write

$$
\sum_{p \leq x} \frac{1}{p}=\frac{1}{2}+\sum_{2<p \leq x} \frac{1}{p}=\frac{1}{2}+\int_{2}^{x} \frac{1}{\log u} \mathrm{~d} \sum_{p \leq u} \frac{\log p}{p}
$$

Then the desired result follows from Theorem 4.6 and partial summation.
Theorem 4.8. There exists a constant $c>0$ such that for any $x \geq 30$, we have

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\frac{C}{\log x}\left\{1+O\left(\frac{1}{\log x}\right)\right\}
$$

Proof. Since

$$
\begin{equation*}
\prod_{p \leq x}\left(1-\frac{1}{p}\right)=\exp \left\{\sum_{p \leq x} \log \left(1-\frac{1}{p}\right)\right\} \tag{4.5}
\end{equation*}
$$

it suffices to give the asymptotic formula of

$$
\sum_{p \leq x} \log \left(1-\frac{1}{p}\right)
$$

By Taylor's formula, we have

$$
\log \left(1-\frac{1}{p}\right)=-\frac{1}{p}+O\left(\frac{1}{p^{2}}\right)
$$

So the series

$$
\sum_{p=1}^{\infty}\left\{\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right\}
$$

is convergent and we have

$$
\sum_{p \leq x}\left\{\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right\}=c_{1}+\sum_{p>x}\left\{\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right\}=c_{1}+O\left(\frac{1}{x}\right)
$$

where

$$
\begin{equation*}
c_{1}=\sum_{p=1}^{\infty}\left\{\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right\} . \tag{4.6}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\sum_{p \leq x} \log \left(1-\frac{1}{p}\right) & =-\sum_{p \leq x} \frac{1}{p}+\sum_{p \leq x}\left\{\log \left(1-\frac{1}{p}\right)+\frac{1}{p}\right\} \\
& =-\log \log x-c_{2}+O\left(\frac{1}{\log x}\right)+c_{1}+O\left(\frac{1}{x}\right) \tag{4.7}\\
& =-\log \log x+c_{3}+O\left(\frac{1}{\log x}\right)
\end{align*}
$$

where c_{1} is given by (4.6), c_{2} is the constant in Theorem 4.7 and

$$
c_{3}=c_{1}-c_{2} .
$$

Substituting (4.7) into (4.5), we obtain

$$
\begin{aligned}
\prod_{p \leq x}\left(1-\frac{1}{p}\right) & =\exp \left\{\sum_{p \leq x} \log \left(1-\frac{1}{p}\right)\right\} \\
& =\exp \left\{-\log \log x+c_{3}+O\left(\frac{1}{\log x}\right)\right\} \\
& =\frac{C}{\log x}\left\{1+O\left(\frac{1}{\log x}\right)\right\}
\end{aligned}
$$

where $C=e^{c_{3}}$.
Remark. The constant C in Theorem 4.8 can be explicitly computed. It can be proved that $C=e^{-\gamma}$. This asymptotic formula is called Mertens' second theorem.

Theorem 4.9. We have

$$
\liminf _{x \rightarrow+\infty} \frac{\pi(x)}{x / \log x} \leq 1 \leq \limsup _{x \rightarrow+\infty} \frac{\pi(x)}{x / \log x}
$$

As a consequence, if

$$
\pi(x) \sim \frac{c x}{\log x}
$$

for some constant c, then $c=1$.

Proof. We only prove

$$
\limsup _{x \rightarrow+\infty} \frac{\pi(x)}{x / \log x} \geq 1
$$

The other inequality can be proved similarly. Let

$$
U=\limsup _{x \rightarrow+\infty} \frac{\pi(x)}{x / \log x}
$$

Then for any $\varepsilon>0$, there exists some $x_{0}>0$ such that for any $x>x_{0}$, we have

$$
\pi(x) \leq(U+\varepsilon) \frac{x}{\log x}
$$

Therefore, by partial summation, for $x>x_{0}$, we have

$$
\begin{aligned}
\sum_{p \leq x} \frac{1}{p} & =\sum_{p \leq x_{0}} \frac{1}{p}+\sum_{x_{0}<p \leq x} \frac{1}{p} \\
& =O_{\varepsilon}(1)+\int_{x_{0}}^{x} \frac{1}{t} \mathrm{~d} \pi(t) \\
& =O_{\varepsilon}(1)+\frac{\pi(x)}{x}-\frac{\pi\left(x_{0}\right)}{x_{0}}+\int_{x_{0}}^{x} \frac{\pi(t)}{t^{2}} \mathrm{~d} t \\
& =O_{\varepsilon}(1)+O\left((U+\varepsilon) \int_{x_{0}}^{x} \frac{1}{t \log t} \mathrm{~d} t\right) \\
& \leq(U+\varepsilon) \log \log x+O_{\varepsilon}(1) .
\end{aligned}
$$

By Theorem 4.7, we have $U+\varepsilon \geq 1$ and hence $U \geq 1$ since ε is arbitrary.

4.3 Average orders of $\omega(n)$

In this section, we consider the average orders of $\omega(n)$.
Theorem 4.10. There exist some constant C such that for any $x \geq 30$,

$$
\sum_{n \leq x} \omega(n)=x \log \log x+C x+O\left(\frac{x}{\log x}\right)
$$

The constant C is the same with the constant C in Theorem 4.7.

Proof. The proof is fairly straightforward. We have

$$
\begin{aligned}
\sum_{n \leq x} \omega(n) & =\sum_{n \leq x} \sum_{p \mid n} 1=\sum_{p \leq x} \sum_{\substack{n \leq x \\
p \mid n}} 1=\sum_{p \leq x}\left[\frac{x}{p}\right] \\
& =x \sum_{p \leq x} \frac{1}{p}+O(\pi(x)) \\
& =x\left(\log \log x+C+O\left(\frac{1}{\log x}\right)\right)+O\left(\frac{x}{\log x}\right) \\
& =x \log \log x+C x+O\left(\frac{x}{\log x}\right)
\end{aligned}
$$

where we have used Theorem 4.7 and Chebyshev's estimate in the third "=".

Remark. The same conclusion holds for $\Omega(n)$ (but not with the same constant C). In fact, we can also replace $\omega(n)$ by $\Omega(n)$ in the next two theorems.

Next we investigate the second moment of $\omega(n)$.
Theorem 4.11. For $x \geq 30$, we have

$$
\sum_{n \leq x} \omega^{2}(n)=x(\log \log x)^{2}+O(x \log \log x)
$$

Proof. We have

$$
\begin{aligned}
\sum_{n \leq x} \omega^{2}(n) & =\sum_{n \leq x}\left(\sum_{p_{1} \mid n} 1\right)\left(\sum_{p_{2} \mid n} 1\right)=\sum_{p_{1} \leq x} \sum_{p_{2} \leq x} \sum_{\substack{n \leq x \\
\left[p_{1}, p_{2}\right] \mid n}} 1 \\
& =\sum_{\substack{p_{1} \leq x \\
p_{1} \neq p_{2}}} \sum_{p_{2} \leq x}\left[\frac{x}{p_{1} p_{2}}\right]+\sum_{\substack{p \leq x \\
p \leq x \\
p \mid n}} 1
\end{aligned}
$$

For the second term, we have

$$
\sum_{p \leq x} \sum_{\substack{n \leq x \\ p \backslash n}} 1=\sum_{n \leq x} \omega(n)=O(x \log \log x)
$$

by Theorem 4.10. For the first term, we have

$$
\begin{aligned}
\sum_{\substack{p_{1} \leq x \\
p_{1} \neq p_{2} \leq x}} \sum_{p_{2} \leq}\left[\frac{x}{p_{1} p_{2}}\right] & =\sum_{p_{1} \leq x} \sum_{p_{2} \leq x}\left[\frac{x}{p_{1} p_{2}}\right]-\sum_{p \leq x} \sum_{p^{2} \mid n}\left[\frac{x}{p^{2}}\right] \\
& =\sum_{\substack{p_{1} \\
p_{1} p_{2} \leq x}} \sum_{p_{2}}\left[\frac{x}{p_{1} p_{2}}\right]+O(x) \\
& =x \sum_{\substack{p_{1} \\
p_{1} p_{2} \leq x}} \sum_{p_{2}} \frac{1}{p_{1} p_{2}}+O\left(\sum_{p \leq x} \pi\left(\frac{x}{p}\right)\right) .
\end{aligned}
$$

By Theorem 4.7, the O-term

$$
\ll x \sum_{p \leq x} \frac{1}{p} \ll x \log \log x .
$$

For the main term, we notice that

$$
\left(\sum_{p \leq \sqrt{x}} \frac{1}{p}\right)^{2} \leq \sum_{\substack{p_{1} \\ p_{1} p_{2} \leq x}} \sum_{\substack{p_{2}}} \frac{1}{p_{1} p_{2}} \leq\left(\sum_{p \leq x} \frac{1}{p}\right)^{2} .
$$

Both sides of the above inequality are

$$
(\log \log x+O(1))^{2}=(\log \log x)^{2}+O(x \log \log x) .
$$

So the same asymptotic formula holds for

$$
\sum_{\substack{p_{1} \\ p_{1} p_{2} \leq x}} \sum_{\substack{p_{2}}} \frac{1}{p_{1} p_{2}} .
$$

Combining all the above results, we get the desired conclusion.
Theorem 4.12. Let $\varepsilon>0$ be a fixed number. For sufficiently large x, the number of integers n with $1 \leq n \leq x$ such that

$$
|\omega(n)-\log \log x| \geq(\log \log x)^{\frac{1}{2}+\varepsilon}
$$

is

$$
O\left(\frac{x}{(\log \log x)^{2 \varepsilon}}\right)
$$

Proof. Let

$$
\mathcal{A}(x)=\left\{n \leq x:|\omega(n)-\log \log x| \geq(\log \log x)^{\frac{1}{2}+\varepsilon}\right\} .
$$

Then we have

$$
\begin{aligned}
|\mathcal{A}(x)|(\log \log x)^{1+2 \varepsilon} \leq & \sum_{n \in \mathcal{A}(x)}|\omega(n)-\log \log x|^{2} \\
= & \sum_{n \leq x}|\omega(n)-\log \log x|^{2} \\
= & \sum_{n \leq x} \omega^{2}(n)-2 \log \log x \sum_{n \leq x} \omega(n)+x(\log \log x)^{2} \\
= & \left\{x(\log \log x)^{2}+O(x \log \log x)\right\} \\
& -2 \log \log x(x \log \log x+O(x))+x(\log \log x)^{2} \\
= & O(x \log \log x)
\end{aligned}
$$

The desired result follows.
From the point of view of probability theory, Theorem 4.12 is nothing but a direct application of the Chebyshev inequality. We regard $\omega(n)$ as a random variable on the probability space $\mathbb{N} \cap[1, x]$ equipped with the uniform probability. Then Theorem 4.10 implies that the expectation of ω is $\log \log x$ asymptotically. Theorem 4.11 implies that the variance of ω is $O(\log \log x)$. So by the Chebyshev inequality, for any $D>0$, the probability of the event " $|\omega(n)-\log \log x|>D$ " does not exceed

$$
\frac{\operatorname{Var}(\omega)}{D^{2}}=O\left(\frac{\log \log x}{D^{2}}\right)
$$

To obtain a non-trivial conclusion from this inequality, we should take $D>(\log \log x)^{1 / 2}$. By taking $D=(\log \log)^{1 / 2+\varepsilon}$, we obtain Theorem 4.12.

A more interesting question is to investigate the asymptotic behaviour of the distribution of an arithmetic function as a random variable. For example, we have the "central limit theorem" for $\omega(n)$:
Theorem 4.13 (Erdös-Kac, 1939). We have uniformly for $x \geq 30, y \in \mathbb{R}$ that

$$
\frac{1}{x}\left|\left\{n \leq x: \omega(n) \leq \log \log x+y(\log \log x)^{1 / 2}\right\}\right|=\Phi(y)+O\left(\frac{1}{(\log \log x)^{1 / 2}}\right)
$$

where $\Phi(y)$ is the normal distribution function

$$
\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} \mathrm{~d} t
$$

Proof. Omitted.

4.4 Equivalent conditions of the prime number theorem

In this section, we give some propositions equivalent to the prime number theorem. Let $M(x)$ denote the Mertens function defined by

$$
M(x)=\sum_{n \leq x} \mu(n) .
$$

We will show that $M(x)=o(x)$ is equivalent to $\psi(x) \sim x$. Hence by Corollary 4.4, it is equivalent to the prime number theorem. We begin with a simple lemma.

Lemma 4.14. Let

$$
H(x)=\sum_{n \leq x} \mu(n) \log n
$$

Then $H(x)=o(x \log x)$ is equivalent to $M(x)=o(x)$.
Proof. By partial summation, we have

$$
H(x)=\int_{1}^{x} \log u \mathrm{~d} \pi(u)=\pi(x) \log x-\int_{1}^{x} \frac{\pi(u)}{u} \mathrm{~d} u=\pi(x) \log x+O(x)
$$

Therefore, we have

$$
\frac{H(x)}{x \log x}=\frac{M(x)}{x}+O\left(\frac{1}{\log x}\right)
$$

The desired result follows.
Theorem 4.15. The prime number theorem is equivalent to $M(x)=o(x)$.
Proof. Suppose that $\psi(x)=o(x)$. By Theorem 2.10 and the Möbius inversion formula (Theorem 2.6), we have

$$
-\mu(n) \log n=\sum_{d \mid n} \mu(d) \Lambda\left(\frac{n}{d}\right)
$$

By Dirichlet's hyperbola method (Theorem 3.11), we see for any $1 \leq y \leq x$ that,

$$
-H(x)=-\sum_{n \leq x} \mu(n) \log n=\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)+\sum_{n \leq x / y} \Lambda(n) M\left(\frac{x}{n}\right)-M(y) \psi\left(\frac{x}{y}\right) .
$$

We specify $y=x / \log x$ and estimate the above three terms.

- The estimate of $M(y) \psi(x / y)$ is easy. We use the trivial bound for $M(y)$ and use Chebyshev's estimate for $\psi(x / y)$ to obtain that

$$
M(y) \psi\left(\frac{x}{y}\right) \ll y \cdot \frac{x}{y}=x=o(x \log x) .
$$

- To estimate the second term, we trivially bound $M(x / n)$ by x / n and apply (4.4) to obtain that

$$
\sum_{n \leq x / y} \Lambda(n) M\left(\frac{x}{n}\right) \leq x \sum_{n \leq x / y} \frac{\Lambda(n)}{n} \ll x \log \frac{x}{y}=x \log \log x=o(x \log x)
$$

- Finally, we estimate $\sum_{n \leq y} \mu(n) \psi(x / n)$. Since $\psi(x) \sim x$, we can write

$$
\psi(x)=x(1+R(x))
$$

where $R(x) \rightarrow 0$ as $x \rightarrow+\infty$. So we have

$$
\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)=x \sum_{n \leq y} \frac{\mu(n)}{n}+O\left(x \sum_{n \leq y} \frac{R(x / n)}{n}\right) .
$$

By Corollary 2.8, we have

$$
x \sum_{n \leq y} \frac{\mu(n)}{n}=O(x)
$$

For the O-term, we have

$$
x \sum_{n \leq y} \frac{R(x / n)}{n} \leq x\left(\sup _{x / y \leq u \leq x}|R(u)|\right)\left(\sum_{n \leq y} \frac{1}{n}\right) \ll x \log x\left(\sup _{x / y \leq u \leq x}|R(u)|\right) .
$$

Since $y=\log x$, we have $x / y \rightarrow+\infty$ as $x \rightarrow+\infty$. Thus

$$
\lim _{x \rightarrow+\infty} \sup _{x / y \leq u \leq x}|R(u)|=0
$$

Therefore,

$$
\sum_{n \leq y} \mu(n) \psi\left(\frac{x}{n}\right)=o(x \log x)
$$

In summary, we have deduced that $H(x)=o(x \log x)$. So by Lemma 4.14, we have $M(x)=o(x)$.

Conversely, assuming that $M(x)=o(x)$, we would like to prove $\psi(x) \sim x$. We first claim the following identity:

$$
\begin{equation*}
\psi(x)=x-\sum_{m n \leq x} \mu(m) f(n)+O(1) \tag{4.8}
\end{equation*}
$$

where

$$
f(n)=\tau(n)-\log n-2 \gamma
$$

This identity can be easily deduced from the following Dirichlet convolutions:

- $\mu * \tau=\mu * \mathbb{1} * \mathbb{1}=\delta * \mathbb{1}=\mathbb{1}$.
- $\mu * \log =\Lambda$.
- $\mu * \mathbb{1}=\delta$.

Moreover, by Theorem 3.10 and Theorem 3.7, we have

$$
\begin{equation*}
F(x):=\sum_{n \leq x} f(n)=O(\sqrt{x}) \tag{4.9}
\end{equation*}
$$

By (4.8), it suffices to show

$$
\sum_{m n \leq x} \mu(m) f(n)=o(x)
$$

We again apply Dirichlet's hyperbola method. For any $1 \leq y \leq x$, we have

$$
\sum_{m n \leq x} \mu(m) f(n)=\sum_{n \leq y} \mu(n) F\left(\frac{x}{n}\right)+\sum_{n \leq x / y} f(n) M\left(\frac{x}{n}\right)-M(y) F\left(\frac{x}{y}\right) .
$$

We estimate these three terms.

- For the first term, we apply (4.9) to obtain that

$$
\begin{equation*}
\sum_{n \leq y} \mu(n) F\left(\frac{x}{n}\right) \ll \sqrt{x} \sum_{n \leq y} \frac{1}{\sqrt{n}} \ll \sqrt{x y} \tag{4.10}
\end{equation*}
$$

- For the third term, we again use (4.9) and estimate $M(y)$ trivially to obtain that

$$
\begin{equation*}
M(y) F\left(\frac{x}{y}\right) \ll y \sqrt{\frac{x}{y}}=\sqrt{x y} . \tag{4.11}
\end{equation*}
$$

- The main difficulty comes from the second term. We are going to show that for any $\varepsilon>0$,

$$
\left|\sum_{m n \leq x} \mu(m) f(n)\right| \leq \varepsilon x
$$

So we need to specify the implied constants in (4.10) and (4.11): Let $C_{1}>0$ be such that

$$
\max \left(\left|\sum_{n \leq y} \mu(n) F\left(\frac{x}{n}\right)\right|,\left|M(y) F\left(\frac{x}{y}\right)\right|\right) \leq C_{1} \sqrt{x y}
$$

By Proposition 3.1 and the definition of $f(n)$, we have

$$
f(n) \ll \sqrt{n}
$$

Since now we assume that $M(x)=o(x)$, we can write $M(x)=x R(x)$ with $R(x) \rightarrow 0$ as $x \rightarrow+\infty$. Therefore, we have

$$
\sum_{n \leq x / y} f(n) M\left(\frac{x}{n}\right)=x \sum_{n \leq x / y} \frac{f(n)}{n} R\left(\frac{x}{n}\right) \leq C_{2} x \sqrt{\frac{x}{y}} \sup _{y \leq u \leq x}|R(u)|
$$

for some absolute constant $C_{2}>0$.
Now we fix an arbitrarily small positive number ε. Since $R(x) \rightarrow 0$, there exists some $X_{0}>0$ such that for any $x>X_{0}$, we have

$$
|R(x)| \leq \frac{\varepsilon^{2}}{9 C_{1} C_{2}}
$$

Set

$$
y=\left(\frac{\varepsilon}{3 C_{1}}\right)^{2} x
$$

Then for any $x>\left(3 C_{1} / \varepsilon\right)^{2} X_{0}$, we have

$$
\max \left(\left|\sum_{n \leq y} \mu(n) F\left(\frac{x}{n}\right)\right|,\left|M(y) F\left(\frac{x}{y}\right)\right|\right) \leq C_{1} \sqrt{x y} \leq \frac{\varepsilon}{3} x
$$

and

$$
\sum_{n \leq x / y} f(n) M\left(\frac{x}{n}\right) \leq C_{2} x \sqrt{\frac{x}{y}} \sup _{y \leq u \leq x}|R(u)| \leq C_{2} x \frac{3 C_{1}}{\varepsilon} \cdot \frac{\varepsilon^{2}}{9 C_{1} C_{2}}=\frac{\varepsilon}{3} x
$$

The proof is complete.

Remark. Similarly, we can prove that the estimate

$$
L(x):=\sum_{n \leq x}=o(x)
$$

is equivalent to the prime number theorem.

