
Chapter 4

The distribution of prime
numbers: elementary method

Recall the prime counting function π(x) is defined to be the number of prime numbers
not exceeding x. To study the distribution of prime numbers, we introduce the
following functions:

ψ(x) =
∑
n≤x

Λ(n), θ(x) =
∑
p≤x

log p.

By the definition of Λ(n),

ψ(x)− θ(x) =
∑

pk≤x,k≥2

log p =
∑
p≤

√
x

log p
∑

k≤log x/ log p

1 �
√
x log x.

So
ψ(x) = θ(x) +O(

√
x log x). (4.1)

In practice, we usually investigate ψ(x) instead of π(x). The reason is that Λ(n)
is more closely related to the Riemann ζ-function (see Theorem 2.13).

4.1 Chebyshev’s estimate
The first remarkable estimate for π(x) is given by Chebyshev. He proves that the
prime number theorem holds “in the sense of order”. Moreover, the proof of this
conclusion is quite elegant.
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Theorem 4.1 (Chebyshev’s estimate). For x ≥ 2, we have

ψ(x) � x.

Proof. We begin with the sum

S(x) =
∑
mn≤x

Λ(m).

We will give two different expressions of S(x):

i). S(x) = x log x− x+O(log x).

ii). S(x) =
∑
n≤x

ψ
(x
n

)
.

In fact, we have

S(x) =
∑
mn≤x

Λ(m) =
∑
d≤x

∑
mn=d

Λ(m) =
∑
d≤x

log d.

From this and Theorem 3.5, we deduce the first expression. Changing the order of
summation, we obtain the second expression:

S(x) =
∑
mn≤x

Λ(m) =
∑
n≤x

∑
m≤x/n

Λ(m) =
∑
n≤x

ψ
(x
n

)
.

Therefore, we have

ψ(x)− ψ
(x
2

)
+ ψ

(x
3

)
− · · · = S(x)− 2S

(x
2

)
= x log 2 + O(log x). (4.2)

By the monotonicity of ψ(x), we infer two inequalities from (4.2):

ψ(x)− ψ
(x
2

)
≤ x log 2 + O(log x) ≤ ψ(x).

The second inequlity has already given the desired lower bound for ψ(x). Repeatedly
applying the first inequality, we obtain the desired upper bound:

ψ(x) ≤ ψ
(x
2

)
+ x log 2 + O(log x) ≤ · · · ≤ x log 4 + O(log2 x) � x.
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Corollary 4.2. For x ≥ 2, we have

π(x) =
θ(x)

log x
+O

(
x

log2 x

)
.

Proof. By partial summation, we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(u)

u log2 u
du+O(1).

By Chebyshev’s estimate and (4.1), we have

θ(x) � x.

Thus ∫ x

2

θ(u)

u log2 u
du�

∫ x

2

1

log2 u
du =

∫ √
x

2

1

log2 u
du+

∫ x

√
x

1

log2 u
du

�
√
x+

x

log2 x
� x

log2 x
.

The desired result follows.

Corollary 4.3. For x ≥ 2, we have

π(x) � x

log x
.

Corollary 4.4. The following statements are equivalent:

π(x) ∼ x

log x
, x→ +∞,

ψ(x) ∼ x, x→ +∞,

θ(x) ∼ x, x→ +∞.

Corollary 4.5. There exists some constant A > 1, such that for sufficiently large x,
the interval [x,Ax] contains at least one prime number.

Remark. Actually, we can prove that for any integer n > 1, the interval [n, 2n] al-
ways contains a prime number. This conclusion is known as Bertrand’s postulate.
Assuming the prime number theorem, we can show that there exists a function ∆(x)
with ∆(x) = o(x) as x→ +∞ such that the interval [x, x+∆(x)] always contains a
prime for sufficiently large x.
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4.2 Mertens’ theorem
Some weighted sum over primes is easier to investigate than the prime counting
functions π(x). This is the case for the sum evaluated in the following theorem:

Theorem 4.6 (Mertens’ first theorem). For x ≥ 2, we have∑
p≤x

log p

p
= log x+O(1) (4.3)

and ∑
n≤x

Λ(n)

n
= log x+O(1). (4.4)

Proof. We first show that these two assertions are equivalent. In fact, we have

∑
n≤x

Λ(n)

n
−
∑
p≤x

log p

p
=
∑
pk≤x
k≥2

log p

pk
≤
∑
p≤

√
x

log p
∞∑
k=2

1

pk

�
∑
p≤

√
x

log p

p2
� 1.

So it suffices to prove (4.4). On the one hand, we have∑
n≤x

Λ(n)
[x
n

]
=
∑
n≤x

Λ(n)
∑

m≤x/n

1 =
∑
m≤x

∑
n≤x/m

Λ(n) =
∑
d≤x

∑
mn=d

Λ(n)

=
∑
d≤x

log d = x log x+O(x).

On the other hand,∑
n≤x

Λ(n)
[x
n

]
= x

∑
n≤x

Λ(n)

n
+O(ψ(x)) = x

∑
n≤x

Λ(n)

n
+O(x).

Thus ∑
n≤x

Λ(n)

n
= log x+O(1).
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By partial summation, we can derive the following asymptotic formula from
Mertens’ first theorem.

Theorem 4.7. There exists a constant C such that for any x ≥ 30, we have∑
p≤x

1

p
= log log x+ C +O

(
1

log x

)
.

Proof. Write ∑
p≤x

1

p
=

1

2
+
∑

2<p≤x

1

p
=

1

2
+

∫ x

2

1

log u
d
∑
p≤u

log p

p
.

Then the desired result follows from Theorem 4.6 and partial summation.

Theorem 4.8. There exists a constant c > 0 such that for any x ≥ 30, we have∏
p≤x

(
1− 1

p

)
=

C

log x

{
1 +O

(
1

log x

)}
.

Proof. Since ∏
p≤x

(
1− 1

p

)
= exp

{∑
p≤x

log

(
1− 1

p

)}
, (4.5)

it suffices to give the asymptotic formula of∑
p≤x

log

(
1− 1

p

)
.

By Taylor’s formula, we have

log

(
1− 1

p

)
= −1

p
+O

(
1

p2

)
.

So the series
∞∑
p=1

{
log

(
1− 1

p

)
+

1

p

}
is convergent and we have∑

p≤x

{
log

(
1− 1

p

)
+

1

p

}
= c1 +

∑
p>x

{
log

(
1− 1

p

)
+

1

p

}
= c1 +O

(
1

x

)
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where
c1 =

∞∑
p=1

{
log

(
1− 1

p

)
+

1

p

}
. (4.6)

Therefore,∑
p≤x

log

(
1− 1

p

)
= −

∑
p≤x

1

p
+
∑
p≤x

{
log

(
1− 1

p

)
+

1

p

}
= − log log x− c2 +O

(
1

log x

)
+ c1 +O

(
1

x

)
= − log log x+ c3 +O

(
1

log x

) (4.7)

where c1 is given by (4.6), c2 is the constant in Theorem 4.7 and

c3 = c1 − c2.

Substituting (4.7) into (4.5), we obtain

∏
p≤x

(
1− 1

p

)
= exp

{∑
p≤x

log

(
1− 1

p

)}

= exp

{
− log log x+ c3 +O

(
1

log x

)}
=

C

log x

{
1 +O

(
1

log x

)}
where C = ec3 .

Remark. The constant C in Theorem 4.8 can be explicitly computed. It can be
proved that C = e−γ. This asymptotic formula is called Mertens’ second theorem.

Theorem 4.9. We have

lim inf
x→+∞

π(x)

x/ log x
≤ 1 ≤ lim sup

x→+∞

π(x)

x/ log x
.

As a consequence, if
π(x) ∼ cx

log x

for some constant c, then c = 1.
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Proof. We only prove

lim sup
x→+∞

π(x)

x/ log x
≥ 1.

The other inequality can be proved similarly. Let

U = lim sup
x→+∞

π(x)

x/ log x
.

Then for any ε > 0, there exists some x0 > 0 such that for any x > x0, we have

π(x) ≤ (U + ε)
x

log x

Therefore, by partial summation, for x > x0, we have∑
p≤x

1

p
=
∑
p≤x0

1

p
+
∑

x0<p≤x

1

p

= Oε(1) +

∫ x

x0

1

t
dπ(t)

= Oε(1) +
π(x)

x
− π(x0)

x0
+

∫ x

x0

π(t)

t2
dt

= Oε(1) + O

(
(U + ε)

∫ x

x0

1

t log t
dt

)
≤ (U + ε) log log x+Oε(1).

By Theorem 4.7, we have U + ε ≥ 1 and hence U ≥ 1 since ε is arbitrary.

4.3 Average orders of ω(n)
In this section, we consider the average orders of ω(n).

Theorem 4.10. There exist some constant C such that for any x ≥ 30,

∑
n≤x

ω(n) = x log log x+ Cx+O

(
x

log x

)
.

The constant C is the same with the constant C in Theorem 4.7.
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Proof. The proof is fairly straightforward. We have

∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

∑
n≤x
p|n

1 =
∑
p≤x

[
x

p

]

= x
∑
p≤x

1

p
+O (π(x))

= x

(
log log x+ C +O

(
1

log x

))
+O

(
x

log x

)
= x log log x+ Cx+O

(
x

log x

)
,

where we have used Theorem 4.7 and Chebyshev’s estimate in the third “=”.

Remark. The same conclusion holds for Ω(n) (but not with the same constant C).
In fact, we can also replace ω(n) by Ω(n) in the next two theorems.

Next we investigate the second moment of ω(n).

Theorem 4.11. For x ≥ 30, we have∑
n≤x

ω2(n) = x (log log x)2 +O (x log log x) .

Proof. We have

∑
n≤x

ω2(n) =
∑
n≤x

∑
p1|n

1

∑
p2|n

1

 =
∑
p1≤x

∑
p2≤x

∑
n≤x

[p1,p2]|n

1

=
∑
p1≤x

∑
p2≤x

p1 ̸=p2

[
x

p1p2

]
+
∑
p≤x

∑
n≤x
p|n

1.

For the second term, we have∑
p≤x

∑
n≤x
p|n

1 =
∑
n≤x

ω(n) = O (x log log x)
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by Theorem 4.10. For the first term, we have∑
p1≤x

∑
p2≤x

p1 ̸=p2

[
x

p1p2

]
=
∑
p1≤x

∑
p2≤x

[
x

p1p2

]
−
∑
p≤x

∑
p2|n

[
x

p2

]

=
∑
p1

∑
p2

p1p2≤x

[
x

p1p2

]
+O(x)

= x
∑
p1

∑
p2

p1p2≤x

1

p1p2
+O

(∑
p≤x

π

(
x

p

))
.

By Theorem 4.7, the O-term

� x
∑
p≤x

1

p
� x log log x.

For the main term, we notice that∑
p≤

√
x

1

p

2

≤
∑
p1

∑
p2

p1p2≤x

1

p1p2
≤

(∑
p≤x

1

p

)2

.

Both sides of the above inequality are

(log log x+O(1))2 = (log log x)2 +O (x log log x) .

So the same asymptotic formula holds for∑
p1

∑
p2

p1p2≤x

1

p1p2
.

Combining all the above results, we get the desired conclusion.

Theorem 4.12. Let ε > 0 be a fixed number. For sufficiently large x, the number
of integers n with 1 ≤ n ≤ x such that

|ω(n)− log log x| ≥ (log log x)
1
2
+ε

is
O

(
x

(log log x)2ε

)
.
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Proof. Let

A(x) =
{
n ≤ x : |ω(n)− log log x| ≥ (log log x)

1
2
+ε
}
.

Then we have
|A(x)| (log log x)1+2ε ≤

∑
n∈A(x)

|ω(n)− log log x|2

=
∑
n≤x

|ω(n)− log log x|2

=
∑
n≤x

ω2(n)− 2 log log x
∑
n≤x

ω(n) + x(log log x)2

=
{
x(log log x)2 +O(x log log x)

}
− 2 log log x (x log log x+O(x)) + x(log log x)2

= O(x log log x).

The desired result follows.

From the point of view of probability theory, Theorem 4.12 is nothing but a
direct application of the Chebyshev inequality. We regard ω(n) as a random variable
on the probability space N ∩ [1, x] equipped with the uniform probability. Then
Theorem 4.10 implies that the expectation of ω is log log x asymptotically. Theorem
4.11 implies that the variance of ω is O(log log x). So by the Chebyshev inequality,
for any D > 0, the probability of the event “|ω(n)− log log x| > D” does not exceed

Var(ω)

D2
= O

(
log log x

D2

)
.

To obtain a non-trivial conclusion from this inequality, we should takeD > (log log x)1/2.
By taking D = (log log)1/2+ε, we obtain Theorem 4.12.

A more interesting question is to investigate the asymptotic behaviour of the
distribution of an arithmetic function as a random variable. For example, we have
the “central limit theorem” for ω(n):
Theorem 4.13 (Erdös–Kac, 1939). We have uniformly for x ≥ 30, y ∈ R that

1

x

∣∣{n ≤ x : ω(n) ≤ log log x+ y(log log x)1/2
}∣∣ = Φ(y) +O

(
1

(log log x)1/2

)
,

where Φ(y) is the normal distribution function

Φ(y) =
1√
2π

∫ y

−∞
e−t2/2 dt.

Proof. Omitted.
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4.4 Equivalent conditions of the prime number
theorem

In this section, we give some propositions equivalent to the prime number theorem.
Let M(x) denote the Mertens function defined by

M(x) =
∑
n≤x

µ(n).

We will show that M(x) = o(x) is equivalent to ψ(x) ∼ x. Hence by Corollary 4.4,
it is equivalent to the prime number theorem. We begin with a simple lemma.

Lemma 4.14. Let
H(x) =

∑
n≤x

µ(n) log n.

Then H(x) = o(x log x) is equivalent to M(x) = o(x).

Proof. By partial summation, we have

H(x) =

∫ x

1

log u dπ(u) = π(x) log x−
∫ x

1

π(u)

u
du = π(x) log x+O(x).

Therefore, we have
H(x)

x log x
=
M(x)

x
+O

(
1

log x

)
.

The desired result follows.

Theorem 4.15. The prime number theorem is equivalent to M(x) = o(x).

Proof. Suppose that ψ(x) = o(x). By Theorem 2.10 and the Möbius inversion for-
mula (Theorem 2.6), we have

−µ(n) log n =
∑
d|n

µ(d)Λ
(n
d

)
.

By Dirichlet’s hyperbola method (Theorem 3.11), we see for any 1 ≤ y ≤ x that,

−H(x) = −
∑
n≤x

µ(n) log n =
∑
n≤y

µ(n)ψ
(x
n

)
+
∑
n≤x/y

Λ(n)M
(x
n

)
−M(y)ψ

(
x

y

)
.

We specify y = x/ log x and estimate the above three terms.
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• The estimate of M(y)ψ(x/y) is easy. We use the trivial bound for M(y) and
use Chebyshev’s estimate for ψ(x/y) to obtain that

M(y)ψ

(
x

y

)
� y · x

y
= x = o(x log x).

• To estimate the second term, we trivially bound M(x/n) by x/n and apply
(4.4) to obtain that∑

n≤x/y

Λ(n)M
(x
n

)
≤ x

∑
n≤x/y

Λ(n)

n
� x log

x

y
= x log log x = o(x log x).

• Finally, we estimate
∑

n≤y µ(n)ψ(x/n). Since ψ(x) ∼ x, we can write

ψ(x) = x(1 + R(x))

where R(x) → 0 as x→ +∞. So we have

∑
n≤y

µ(n)ψ
(x
n

)
= x

∑
n≤y

µ(n)

n
+O

(
x
∑
n≤y

R(x/n)

n

)
.

By Corollary 2.8, we have

x
∑
n≤y

µ(n)

n
= O(x).

For the O-term, we have

x
∑
n≤y

R(x/n)

n
≤ x

(
sup

x/y≤u≤x

|R(u)|

)(∑
n≤y

1

n

)
� x log x

(
sup

x/y≤u≤x

|R(u)|

)
.

Since y = log x, we have x/y → +∞ as x→ +∞. Thus

lim
x→+∞

sup
x/y≤u≤x

|R(u)| = 0.

Therefore, ∑
n≤y

µ(n)ψ
(x
n

)
= o(x log x).
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In summary, we have deduced that H(x) = o(x log x). So by Lemma 4.14, we have
M(x) = o(x).

Conversely, assuming that M(x) = o(x), we would like to prove ψ(x) ∼ x. We
first claim the following identity:

ψ(x) = x−
∑
mn≤x

µ(m)f(n) +O(1), (4.8)

where
f(n) = τ(n)− log n− 2γ.

This identity can be easily deduced from the following Dirichlet convolutions:

• µ ∗ τ = µ ∗ 1 ∗ 1 = δ ∗ 1 = 1.

• µ ∗ log = Λ.

• µ ∗ 1 = δ.

Moreover, by Theorem 3.10 and Theorem 3.7, we have

F (x) :=
∑
n≤x

f(n) = O
(√

x
)
. (4.9)

By (4.8), it suffices to show∑
mn≤x

µ(m)f(n) = o(x).

We again apply Dirichlet’s hyperbola method. For any 1 ≤ y ≤ x, we have∑
mn≤x

µ(m)f(n) =
∑
n≤y

µ(n)F
(x
n

)
+
∑
n≤x/y

f(n)M
(x
n

)
−M(y)F

(
x

y

)
.

We estimate these three terms.

• For the first term, we apply (4.9) to obtain that∑
n≤y

µ(n)F
(x
n

)
�

√
x
∑
n≤y

1√
n
� √

xy. (4.10)

• For the third term, we again use (4.9) and estimate M(y) trivially to obtain
that

M(y)F

(
x

y

)
� y

√
x

y
=

√
xy. (4.11)
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• The main difficulty comes from the second term. We are going to show that
for any ε > 0, ∣∣∣∣∣ ∑

mn≤x

µ(m)f(n)

∣∣∣∣∣ ≤ εx.

So we need to specify the implied constants in (4.10) and (4.11): Let C1 > 0
be such that

max

(∣∣∣∣∣∑
n≤y

µ(n)F
(x
n

)∣∣∣∣∣ ,
∣∣∣∣M(y)F

(
x

y

)∣∣∣∣
)

≤ C1
√
xy.

By Proposition 3.1 and the definition of f(n), we have

f(n) �
√
n.

Since now we assume that M(x) = o(x), we can write M(x) = xR(x) with
R(x) → 0 as x→ +∞. Therefore, we have∑

n≤x/y

f(n)M
(x
n

)
= x

∑
n≤x/y

f(n)

n
R
(x
n

)
≤ C2x

√
x

y
sup

y≤u≤x
|R(u)|

for some absolute constant C2 > 0.

Now we fix an arbitrarily small positive number ε. Since R(x) → 0, there exists
some X0 > 0 such that for any x > X0, we have

|R(x)| ≤ ε2

9C1C2

.

Set
y =

(
ε

3C1

)2

x.

Then for any x > (3C1/ε)
2X0, we have

max

(∣∣∣∣∣∑
n≤y

µ(n)F
(x
n

)∣∣∣∣∣ ,
∣∣∣∣M(y)F

(
x

y

)∣∣∣∣
)

≤ C1
√
xy ≤ ε

3
x

and ∑
n≤x/y

f(n)M
(x
n

)
≤ C2x

√
x

y
sup

y≤u≤x
|R(u)| ≤ C2x

3C1

ε
· ε2

9C1C2

=
ε

3
x.

The proof is complete.
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Remark. Similarly, we can prove that the estimate

L(x) :=
∑
n≤x

= o(x)

is equivalent to the prime number theorem.
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