Chapter 3

Average orders

We first introduce some notations. Let $f(x)$ and $g(x)$ be functions. We use interchangeably Landau's notation

$$
f(x)=O(g(x))
$$

and Vinogradov's notaion

$$
f(x) \ll g(x)
$$

to both mean that

$$
|f(x)| \leq C|g(x)|
$$

for some positive constant C. Sometimes, the implied constant C may depend on other parameters. For example, for any $A>0$ and $x \geq 2$, we have

$$
\log ^{A} x=O(x)
$$

which means there exists a positive constant C s.t.

$$
\log ^{A} x \leq C x
$$

holds for all $x \in[2,+\infty)$. However, this inequality could not hold uniformly for all $A>0$, so the constant C depends on A. We indicate this dependence in subscript, e.g. $\log ^{A} x=O_{A}(x)$ or $\log ^{A} x<_{A} x$. Moreover, we write $f \asymp g$ to indicate that $f \ll g$ and $g \ll f$ hold simultaneously.

3.1 Introduction

We are concerned about the asymptotic behaviour of arithmetic functions. However, arithmetic functions usually have very erratic behaviour. For example, the divisor function $\tau(n)=2$ if n is a prime number. But $\tau(n)$ could be larger than $\log ^{A} n$ for any $A>0$:

Proposition 3.1. We have $\tau(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)$ for arbitrary $\varepsilon>0$. However, the estimation $\tau(n)=O\left(\log ^{A} n\right)$ fails to hold for any $A>0$.
Proof. Let $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ be the prime factorization of n. Then we have

$$
\frac{\tau(n)}{n^{\varepsilon}}=\prod_{j=1}^{k} \frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}}=\prod_{\substack{j=1 \\ p_{j} \leq 2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}} \prod_{\substack{j=1 \\ p_{j}>2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}} .
$$

For those p_{j} with $p_{j}>2^{1 / \varepsilon}$, we have

$$
\frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}} \leq \frac{1+\alpha_{j}}{2^{\alpha_{j}}} \leq 1
$$

So it suffices to bound

$$
\prod_{\substack{j=1 \\ p_{j} \leq 2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}} .
$$

The number of p_{j} 's with $p_{j} \leq 2^{1 / \varepsilon}$ does not exceed $2^{1 / \varepsilon}$ and we can bound this part trivially by

$$
\prod_{\substack{j=1 \\ p_{j} \leq 2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{p_{j}^{\alpha_{j} \varepsilon}}=\prod_{\substack{j=1 \\ p_{j} \leq 2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{e^{\alpha_{j} \varepsilon \log p_{j}}} \leq \prod_{\substack{j=1 \\ p_{j} \leq 2^{1 / \varepsilon}}}^{k} \frac{1+\alpha_{j}}{\alpha_{j} \varepsilon \log p_{j}} \leq\left(\frac{2}{\varepsilon \log 2}\right)^{2^{1 / \varepsilon}}
$$

So we obtain $\tau(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)$ with a possible choice of implied constant given by

$$
C(\varepsilon)=\left(\frac{2}{\varepsilon \log 2}\right)^{2^{1 / \varepsilon}}
$$

To show that $\tau(n)=O\left(\log ^{A} n\right)$ fails to hold, it suffices to find a sequence $\left\{n_{k}\right\}$ with $n_{k} \rightarrow \infty$ s.t.

$$
\frac{\tau\left(n_{k}\right)}{\log ^{A} n_{k}}
$$

is unbonded. Let $m>A$ be a positive integer and we arbitrarily choose m distinct (and fixed) prime numbers p_{1}, \ldots, p_{m}. Let

$$
n_{k}=\left(p_{1} \cdots p_{m}\right)^{k}
$$

Then we have

$$
k=\frac{\log n_{k}}{\log \left(p_{1} \cdots p_{m}\right)} \gg \log n_{k}
$$

where the implied constant depends on p_{1}, \ldots, p_{m} but is independent of k. For this n_{k}, we have

$$
\tau\left(n_{k}\right)=(k+1)^{m} \gg \log ^{m} n_{k} .
$$

Since $m>A$, it is clear that

$$
\lim _{k \rightarrow \infty} \frac{\tau\left(n_{k}\right)}{\log ^{A} n_{k}}=+\infty
$$

This completes the proof.
We will see soon that "in average", we have $\tau(n) \approx \log n$. More precisely, we have

$$
\frac{1}{N} \sum_{n \leq N} \tau(n) \sim \frac{1}{N} \sum_{n \leq N} \log n \quad \text { as } \quad N \rightarrow \infty
$$

This inspires us to investigate the average behaviour of an arithmetic function.

3.2 Summation formulae

In practice, we often need to consider the relationship between the sum $\sum f(n)$ with the weighted sum $\sum w(n) f(n)$ where $w(x)$ is a smooth function. On the other hand, we also need to know the relationship between the sum of a smooth function and its integral. Both of the above can be treated using the partial integration of Stieltjes integrals.
Theorem 3.2 (Partial summation). Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. Let

$$
A(x)=\sum_{n \leq x} a_{n} .
$$

Let $f(x)$ be a continuously differentiable function on the interval $[1, x]$. Then for any $1 \leq a<b \leq x$, we have

$$
\sum_{a<n \leq b} a_{n} f(n)=A(b) f(b)-A(a) f(a)-\int_{a}^{b} f^{\prime}(x) A(x) \mathrm{d} x
$$

Proof. By the partial integration of Stieltjes integrals, we have

$$
\begin{aligned}
\sum_{a<n \leq b} a_{n} f(n) & =\int_{a}^{b} f(x) \mathrm{d} A(x)=\left.A(x) b(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) A(x) \mathrm{d} x \\
& =A(b) f(b)-A(a) f(a)-\int_{a}^{b} f^{\prime}(x) A(x) \mathrm{d} x
\end{aligned}
$$

Theorem 3.3 (Euler-Maclaurin summation formula). Let $f(x)$ be a continuously differentiable function on $[a, b]$. Let $\rho(x)$ be the "saw function" defined by

$$
\rho(x)=\frac{1}{2}-\{x\} .
$$

Then we have

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(x) \mathrm{d} x+\left.\rho(x) f(x)\right|_{a} ^{b}-\int_{a}^{b} \rho(x) f^{\prime}(x) \mathrm{d} x
$$

Moreover, if $f(x)$ is twice continuously differentiable on $[a, b]$, we have

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(x) \mathrm{d} x+\left.\rho(x) f(x)\right|_{a} ^{b}-\left.\sigma(x) f^{\prime}(x)\right|_{a} ^{b}+\int_{a}^{b} \sigma(x) f^{\prime \prime}(x) \mathrm{d} x
$$

where

$$
\sigma(x)=\int_{0}^{x} \rho(t) \mathrm{d} t
$$

Proof. The sum of $f(n)$ can be written as the Stieltjes integral.

$$
\sum_{a<n \leq b} f(n)=\int_{a}^{b} f(x) \mathrm{d}[x]=\int_{a}^{b} f(x) \mathrm{d}(x+\rho(x))=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} f(x) \mathrm{d} \rho(x)
$$

By partial integration, we have

$$
\int_{a}^{b} f(x) \mathrm{d} \rho(x)=\left.\rho(x) f(x)\right|_{a} ^{b}-\int_{a}^{b} \rho(x) f^{\prime}(x) \mathrm{d} x
$$

This proves the first assertion. If $f(x)$ is twice continuously differentiable, we can continue to use partial integration for the last integral to obtain the second assertion.

Theorem 3.4. For $x \geq 2$, we have

$$
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+O\left(\frac{1}{x}\right)
$$

where

$$
\gamma=\lim _{N \rightarrow+\infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\log N\right)
$$

is the Euler constant.
Proof. We apply Theorem 3.3 for $f(x)=1 / x$ to obtain that

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n} & =1+\sum_{1<n \leq x} \frac{1}{n} \\
& =1+\int_{1}^{x} \frac{1}{t} \mathrm{~d} t+\frac{\rho(x)}{x}-\rho(1)+\int_{1}^{x} \frac{\rho(t)}{t^{2}} \mathrm{~d} t \\
& =\log x+\frac{1}{2}+\int_{1}^{\infty} \frac{\rho(t)}{t^{2}} \mathrm{~d} t+O\left(\frac{1}{x}\right)
\end{aligned}
$$

Let $x \rightarrow+\infty$, we find that the constant

$$
\frac{1}{2}+\int_{1}^{\infty} \frac{\rho(t)}{t^{2}} \mathrm{~d} t=\lim _{x \rightarrow+\infty}\left(\sum_{n \leq x} \frac{1}{n}-\log x\right)=\gamma
$$

Theorem 3.5. For $x \geq 2$, we have

$$
\sum_{n \leq x} \log n=x \log x-x+O(\log x)
$$

Proof. By the Euler-Maclaurin summation formula, we have

$$
\begin{aligned}
\sum_{n \leq x} \log n & =\int_{1}^{x} \log t \mathrm{~d} t+\rho(x) \log x-\rho(1) \log 1-\int_{1}^{x} \frac{\rho(t)}{t} d t \\
& =x \log x-x+O(\log x)
\end{aligned}
$$

Some summation formulae can not simply verified by a combinatorial argument, e.g. the Poisson summation formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n)
$$

Such formulae usually appear in the automorphic theory.

3.3 Average orders of some arithmetic functions

We use the Euler-Maclaurin summation formula to investigate the average orders of some arithmetic functions.

Theorem 3.6. For $x \geq 2$, we have

$$
\sum_{n \leq x} \tau(n)=x \log x+O(x)
$$

Proof. We exchange the order of summations to obtain that

$$
\begin{align*}
\sum_{n \leq x} \tau(n) & =\sum_{n \leq x} \sum_{d \mid n} 1=\sum_{d \leq x} \sum_{\substack{n \leq x \\
d \mid n}} 1=\sum_{d \leq x}\left[\frac{x}{d}\right] \tag{3.1}\\
& =\sum_{d \leq x}\left(\frac{x}{d}-\left\{\frac{x}{d}\right\}\right)=x \sum_{d \leq x} \frac{1}{d}+O(x)
\end{align*}
$$

By Theorem 3.4, we have

$$
\begin{equation*}
\sum_{d \leq x} \frac{1}{d}=\log x+O(1) \tag{3.2}
\end{equation*}
$$

Substituting (3.2) into (3.1), we get the desired result.

Remark. In fact, we have not exactly found the correct main term. In next section, we will show that

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O(\sqrt{x})
$$

Theorem 3.7. For $x \geq 2$, we have

$$
\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \log x)
$$

Proof. By Theorem 2.9, we have

$$
\begin{aligned}
\sum_{n \leq x} \varphi(n) & =\sum_{n \leq x} \sum_{d \mid n} \mu(d) \frac{n}{d}=\sum_{d \leq x} \frac{\mu(d)}{d} \sum_{\substack{n \leq x \\
d \mid n}} n \\
& =\frac{1}{2} \sum_{d \leq x} \mu(d)\left[\frac{x}{d}\right]\left(\left[\frac{x}{d}\right]+1\right) \\
& =\frac{1}{2} \sum_{d \leq x} \mu(d)\left(\frac{x}{d}+O(1)\right)^{2} \\
& =\frac{x^{2}}{2} \sum_{d \leq x} \frac{\mu(d)}{d^{2}}+O\left(x \sum_{d \leq x} \frac{1}{d}\right) .
\end{aligned}
$$

By Theorem 2.12, we see that

$$
\sum_{d \leq x} \frac{\mu(d)}{d^{2}}=\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(\frac{1}{x}\right)=\frac{1}{\zeta(2)}+O\left(\frac{1}{x}\right)=\frac{6}{\pi^{2}}+O\left(\frac{1}{x}\right)
$$

By Theorem 3.4, we have

$$
x \sum_{d \leq x} \frac{1}{d} \ll x \log x
$$

The desired result follows.
Theorem 3.8. For $x \geq 2$, we have

$$
\sum_{n \leq x} \sigma(n)=\frac{\pi^{2}}{12} x^{2}+O(x \log x)
$$

Proof. We have

$$
\begin{aligned}
\sum_{n \leq x} \sigma(n) & =\sum_{n \leq x} \sum_{d \mid n} \frac{n}{d}=\sum_{d \leq x} \frac{1}{d} \sum_{\substack{n \leq x \\
d \mid n}}=\frac{1}{2} \sum_{d \leq x}\left[\frac{x}{d}\right]\left(\left[\frac{x}{d}\right]+1\right) \\
& =\frac{1}{2} \sum_{d \leq x}\left(\frac{x}{d}+O(1)\right)^{2}=\frac{x^{2}}{2} \sum_{d \leq x} \frac{1}{d^{2}}+O\left(x \sum_{d \leq x} \frac{1}{d}\right)
\end{aligned}
$$

We have

$$
\sum_{d \leq x} \frac{1}{d^{2}}=\zeta(2)+O\left(\frac{1}{x}\right)=\frac{\pi^{2}}{6}+O\left(\frac{1}{x}\right)
$$

and

$$
x \sum_{d \leq x} \frac{1}{d} \ll x \log x
$$

The desired result follows.
Theorem 3.9. Let $Q(x)$ denote the number of square-free integers not exceeding x. Then for $x \geq 2$, we have

$$
Q(x)=\frac{6}{\pi^{2}} x+O(\sqrt{x})
$$

Proof. Let $g(n)$ denote the characteristic functions of square-free numbers, i.e.

$$
g(n)= \begin{cases}1, & n \text { is square free } \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
g(n)=\sum_{d^{2} \mid n} \mu(d)
$$

So

$$
\begin{aligned}
Q(x) & =\sum_{n \leq x} g(n)=\sum_{n \leq x} \sum_{d^{2} \mid n} \mu(d)=\sum_{d \leq \sqrt{x}} \mu(d) \sum_{\substack{n \leq x \\
d^{2} \mid n}}=\sum_{d \leq \sqrt{x}} \mu(d)\left[\frac{x}{d^{2}}\right] \\
& =x \sum_{d \leq \sqrt{x}} \frac{\mu(d)}{d^{2}}+O(\sqrt{x})=\frac{x}{\zeta(2)}+O(\sqrt{x})=\frac{6}{\pi^{2}} x+O(\sqrt{x}) .
\end{aligned}
$$

Remark. The error terms in Theorem 3.7- Theorem 3.9 can be improved (Walfisz, 1963):

$$
\begin{aligned}
\sum_{n \leq x} \varphi(n) & =\frac{3}{\pi^{2}} x^{2}+O\left(x(\log x)^{2 / 3}(\log \log x)^{4 / 3}\right) \\
\sum_{n \leq x} \sigma(n) & =\frac{\pi^{2}}{12} x^{2}+O\left(x(\log x)^{2 / 3}\right) \\
Q(x) & =\frac{6}{\pi^{2}} x+O\left(\sqrt{x} \exp \left\{-c \frac{(\log x)^{3 / 5}}{(\log \log x)^{1 / 5}}\right\}\right)
\end{aligned}
$$

3.4 Dirichlet's hyperbola method

We improve the result of Theorem 3.6.
Theorem 3.10. For $x \geq 2$, we have

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O(\sqrt{x})
$$

Proof. We have

$$
\sum_{d \leq x} \tau(d)=\sum_{d \leq x} \sum_{m n=d} 1=\sum_{m n \leq x} 1
$$

By symmetry, we have

$$
\begin{align*}
\sum_{m n \leq x} 1 & =\sum_{m \leq \sqrt{x}} \sum_{n \leq \frac{x}{m}} 1+\sum_{n \leq \sqrt{x}} \sum_{m \leq \frac{x}{n}} 1-\sum_{n \leq \sqrt{x}} \sum_{m \leq \sqrt{x}} 1 \\
& =2 \sum_{n \leq \sqrt{x}}\left[\frac{x}{n}\right]-[\sqrt{x}]^{2} \tag{3.3}
\end{align*}
$$

We apply Theorem 3.4 to obtain that

$$
2 \sum_{n \leq \sqrt{x}}\left[\frac{x}{n}\right]=2 x \sum_{n \leq \sqrt{x}} \frac{1}{n}+O(\sqrt{x})=x \log x+2 \gamma+O(\sqrt{x}) .
$$

Substituting this into (3.3), we get the desired result.
The trick used in the proof of Theorem 3.10 is called Dirichlet's hyperbola method. We summarize its general form as follows:

Theorem 3.11 (Dirichlet's hyperbola method). Let f, g be two arithmetic functions. Let F, G be their summatory functions respectively, i.e.

$$
F(x)=\sum_{n \leq x} f(n), \quad G(x)=\sum_{n \leq x} g(n) .
$$

Then for any positive number a and b with $a b=x$, we have

$$
\sum_{n \leq x}(f * g)(n)=\sum_{n \leq a} f(n) G(x / n)+\sum_{n \leq b} g(n) F(x / n)-F(a) G(b) .
$$

Proof. Since $a b=x$, we have

$$
\begin{aligned}
\sum_{n \leq x}(f * g)(n) & =\sum_{n \leq x} \sum_{m k=n} f(m) g(k)=\sum_{\substack{m \\
m k \leq x}} \sum_{\substack{k}} f(m) g(k) \\
& =\sum_{m \leq a} \sum_{k} f(m) g(k)+\sum_{\substack{m \\
m k \leq x \\
m k \leq x}} \sum_{\substack{k \leq b}} f(m) g(k)-\sum_{\substack{m \leq a \\
m k \leq x}} \sum_{\substack{k \leq b \\
m k \leq x}} f(m) g(k) \\
& =\sum_{m \leq a} f(m) G(x / m)+\sum_{k \leq b} g(k) F(x / k)-F(a) G(b) .
\end{aligned}
$$

This trick will be useful when we discuss equivalent forms of the prime number theorem.

3.5 Dirichlet's divisor problem

Let

$$
\Delta(x)=\sum_{n \leq x} \tau(n)-x(\log x+2 \gamma-1)
$$

Let α be the infimum of the set of exponents ξ such that

$$
\Delta(x) \ll x^{\xi}
$$

Theorem 3.10 implies that $\alpha \leq 1 / 2$. The exact value of α remains unknown and it is generally conjectured that $\alpha=1 / 4$. In 1915, Hardy and Landau proved independently that $\Delta(x)$ is not $o\left(x^{1 / 4}\right)$, which implies that $\alpha \geq 1 / 4$. The best upper bound known to date is given by Huxley in 1993:

$$
\alpha \leq 23 / 73=0.31506849 \ldots
$$

This problem is called Dirichlet's divisor problem. We will give the proof of the following result:

Theorem 3.12 (Voronoï,1903). For $x \geq 2$, we have

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 3} \log x\right)
$$

The method we will use is due to van der Corput. More precisely, our proof is based on estimations for the so-called trigonometric sums:

$$
\sum_{a<n \leq b} e(f(n))
$$

where $f(x)$ is a "well-behaved" real-valued function and $e(x)=e^{2 \pi i x}$. This method is basic but quite effective in analytic number theory. We will use the following theorem without proof.

Theorem 3.13 (van der Corput). Let $b-a \geq 1$. Let $f(x)$ be a real function on $[a, b]$ such that $\Lambda \leq f^{\prime \prime}(x) \leq \eta \Lambda$ with $\Lambda>0, \eta \geq 1$. Then

$$
\sum_{a<n \leq b} e(f(n)) \ll \eta \Lambda^{1 / 2}(b-a)+\Lambda^{-1 / 2}
$$

Proof. See Corollary 8.13 in the book Analytic Number Theory by Iwaniec and Kowalski.

Proof of Theorem 3.12. We can use the Euler-Maclaurin summation formula to deduce the following refined version of Theorem 3.4:

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+\frac{\rho(x)}{x}+O\left(\frac{1}{x^{2}}\right) \tag{3.4}
\end{equation*}
$$

Then we repeat the process in the proof of Theorem 3.10 to obtain that

$$
\begin{aligned}
\sum_{n \leq x} \tau(n) & =x \log x+(2 \gamma-1) x+\sqrt{x}-2 \sum_{n \leq \sqrt{x}}\left\{\frac{x}{n}\right\}+O(1) \\
& =x \log x+(2 \gamma-1) x+2 \sum_{n \leq \sqrt{x}} \rho\left(\frac{x}{n}\right)+O(1)
\end{aligned}
$$

So it suffices to prove

$$
\sum_{n \leq \sqrt{x}} \rho\left(\frac{x}{n}\right) \ll x^{1 / 3} \log x
$$

To apply the van der Corput method, we need to expand $\rho(x / d)$ as a Fourier series. However, the Fourier series of $\rho(t)$ is not absolutely convergent since $\rho(t)$ is not continuous. We overcome this difficulty by replacing $\rho(t)$ by

$$
\bar{\rho}_{\delta}(t):=\frac{1}{2 \delta} \int_{-\delta}^{\delta} \rho(t+u) \mathrm{d} u
$$

Here $0<\delta<1 / 2$ is a small quantity, which will be specified later. To investigate the difference between ρ and $\bar{\rho}_{\delta}$, we introduce

$$
h(t)=\left|\rho(t)-\bar{\rho}_{\delta}(t)\right| .
$$

It is not hard to see that both $\bar{\rho}_{\delta}(t)$ and $h(t)$ are Lipschitz continuous. So their Fourier series are absolutely convergent. We can calculate their Fourier series:

$$
\begin{aligned}
\bar{\rho}_{\delta}(t) & =\sum_{k=1}^{\infty} a_{k} \sin (2 \pi k x), & a_{k} & =\frac{1}{2 \delta \pi^{2} k^{2}} \sin (2 \delta \pi k), \\
h(t) & =\frac{\delta}{2}+\sum_{k=1}^{\infty} b_{k} \cos (2 \pi k x), & b_{k} & =\frac{1}{\delta \pi^{2} k^{2}} \sin ^{2}(\delta \pi k) .
\end{aligned}
$$

Then we have

$$
\left|a_{k}\right|+\left|b_{k}\right| \ll \min \left(\frac{1}{k}, \frac{1}{\delta k^{2}}\right)= \begin{cases}1 / k, & k \leq 1 / \delta \tag{3.5}\\ 1 /\left(\delta k^{2}\right), & k>1 / \delta\end{cases}
$$

To make the full use of Theorem 3.13, we apply the following dyadic decomposition:

$$
\sum_{n \leq \sqrt{x}} \rho\left(\frac{x}{n}\right) \ll(\log x) \sup _{1 \leq y \leq \sqrt{x}}|T(y)|
$$

where

$$
T(y)=\sum_{y / 2<n \leq y} \rho\left(\frac{x}{n}\right)
$$

So it suffices to prove

$$
T(y) \ll x^{1 / 3}
$$

uniformly for $y \in[1, \sqrt{x}]$.
We have

$$
\left|T(y)-\sum_{y / 2<n \leq y} \bar{\rho}_{\delta}\left(\frac{x}{n}\right)\right| \leq \sum_{y / 2<n \leq y} h\left(\frac{x}{n}\right) .
$$

So

$$
|T(y)| \leq\left|\sum_{y / 2<n \leq y} \bar{\rho}_{\delta}\left(\frac{x}{n}\right)\right|+\left|\sum_{y / 2<n \leq y} h\left(\frac{x}{n}\right)\right|
$$

We substitute the Fourier expansions to obtain that

$$
\begin{aligned}
|T(y)| & \leq\left|\sum_{y / 2<n \leq y} \sum_{k=1}^{\infty} a_{k} \sin \left(2 \pi k \frac{x}{n}\right)\right|+\left|\frac{\delta y}{4}+\sum_{y / 2<n \leq y} \sum_{k=1}^{\infty} b_{k} \cos \left(2 \pi k \frac{x}{n}\right)\right| \\
& \ll \delta y+\sum_{k=1}^{\infty}\left|a_{k}\right|\left|\sum_{y / 2<n \leq y} \sin \left(\frac{2 \pi k x}{n}\right)\right|+\sum_{k=1}^{\infty}\left|b_{k}\right|\left|\sum_{y / 2<n \leq y} \cos \left(\frac{2 \pi k x}{n}\right)\right|
\end{aligned}
$$

Now we apple Theorem 3.13 with $f(t)=x k / t$ to obtain that

$$
\begin{equation*}
\left|\sum_{y / 2<n \leq y} e\left(\frac{x k}{n}\right)\right| \ll y \frac{(x k)^{1 / 2}}{y^{3 / 2}}+\frac{y^{3 / 2}}{(x k)^{1 / 2}} \asymp\left(\frac{x k}{y}\right)^{\frac{1}{2}}+\left(\frac{y^{3}}{x k}\right)^{\frac{1}{2}} \tag{3.6}
\end{equation*}
$$

Certainly, the same estimate holds for

$$
\sum_{y / 2<n \leq y} \sin \left(\frac{2 \pi k x}{n}\right) \quad \text { and } \sum_{y / 2<n \leq y} \cos \left(\frac{2 \pi k x}{n}\right) .
$$

Finally, we substitute the estimates (3.5) and (3.6) into $T(y)$ to obtain that

$$
\begin{aligned}
T(y) & \ll \delta y+\sum_{k=1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right)\left\{\left(\frac{x k}{y}\right)^{\frac{1}{2}}+\left(\frac{y^{3}}{x k}\right)^{\frac{1}{2}}\right\} \\
& \ll \delta y+\sum_{k \leq 1 / \delta} \frac{1}{k}\left\{\left(\frac{x k}{y}\right)^{\frac{1}{2}}+\left(\frac{y^{3}}{x k}\right)^{\frac{1}{2}}\right\}+\sum_{k>1 / \delta} \frac{1}{\delta k^{2}}\left\{\left(\frac{x k}{y}\right)^{\frac{1}{2}}+\left(\frac{y^{3}}{x k}\right)^{\frac{1}{2}}\right\} \\
& \ll \delta y+\frac{x^{1 / 2}}{y^{1 / 2}} \cdot \frac{1}{\delta^{1 / 2}}+\frac{y^{3 / 2}}{x^{1 / 2}}+\frac{x^{1 / 2}}{y^{1 / 2}} \cdot \frac{1}{\delta} \cdot \delta^{1 / 2}+\frac{y^{3 / 2}}{x^{1 / 2}} \cdot \frac{1}{\delta} \cdot \delta^{3 / 2} \\
& \ll \delta y+\left(\frac{x}{\delta y}\right)^{\frac{1}{2}}+\left(\frac{y^{3}}{x}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Since $y \leq \sqrt{x}$, the third term is admissible. To balance the first two terms, we specify $\delta=x^{1 / 3} / y$. Then we find that the first two terms are bounded by $x^{1 / 3}$. One may notice that the above argument is valid only when $y>2 x^{1 / 3}$ (i.e. $\delta<1 / 2$). However, in the complementary case, the estimate

$$
T(y) \ll x^{1 / 3}
$$

holds trivially. So we complete the proof.

