
Chapter 3

Average orders

We first introduce some notations. Let f(x) and g(x) be functions. We use inter-
changeably Landau’s notation

f(x) = O(g(x))

and Vinogradov’s notaion
f(x) � g(x)

to both mean that
|f(x)| ≤ C|g(x)|

for some positive constant C. Sometimes, the implied constant C may depend on
other parameters. For example, for any A > 0 and x ≥ 2, we have

logA x = O(x),

which means there exists a positive constant C s.t.

logA x ≤ Cx

holds for all x ∈ [2,+∞). However, this inequality could not hold uniformly for all
A > 0, so the constant C depends on A. We indicate this dependence in subscript,
e.g. logA x = OA(x) or logA x �A x. Moreover, we write f � g to indicate that
f � g and g � f hold simultaneously.
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3.1 Introduction
We are concerned about the asymptotic behaviour of arithmetic functions. However,
arithmetic functions usually have very erratic behaviour. For example, the divisor
function τ(n) = 2 if n is a prime number. But τ(n) could be larger than logA n for
any A > 0:

Proposition 3.1. We have τ(n) = Oε(n
ε) for arbitrary ε > 0. However, the

estimation τ(n) = O(logA n) fails to hold for any A > 0.

Proof. Let n = pα1
1 · · · pαk

k be the prime factorization of n. Then we have

τ(n)

nε
=

k∏
j=1

1 + αj

p
αjε
j

=
k∏

j=1
pj≤21/ε

1 + αj

p
αjε
j

k∏
j=1

pj>21/ε

1 + αj

p
αjε
j

.

For those pj with pj > 21/ε, we have
1 + αj

p
αjε
j

≤ 1 + αj

2αj
≤ 1.

So it suffices to bound
k∏

j=1
pj≤21/ε

1 + αj

p
αjε
j

.

The number of pj’s with pj ≤ 21/ε does not exceed 21/ε and we can bound this part
trivially by

k∏
j=1

pj≤21/ε

1 + αj

p
αjε
j

=
k∏

j=1
pj≤21/ε

1 + αj

eαjε log pj
≤

k∏
j=1

pj≤21/ε

1 + αj

αjε log pj
≤
(

2

ε log 2

)21/ε

.

So we obtain τ(n) = Oε(n
ε) with a possible choice of implied constant given by

C(ε) =

(
2

ε log 2

)21/ε

.

To show that τ(n) = O(logA n) fails to hold, it suffices to find a sequence {nk}
with nk → ∞ s.t.

τ(nk)

logA nk

.
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is unbonded. Let m > A be a positive integer and we arbitrarily choose m distinct
(and fixed) prime numbers p1, . . . , pm. Let

nk = (p1 · · · pm)k.

Then we have
k =

log nk

log(p1 · · · pm)
� log nk

where the implied constant depends on p1, . . . , pm but is independent of k. For this
nk, we have

τ(nk) = (k + 1)m � logm nk.

Since m > A, it is clear that

lim
k→∞

τ(nk)

logA nk

= +∞.

This completes the proof.

We will see soon that “in average”, we have τ(n) ≈ log n. More precisely, we
have

1

N

∑
n≤N

τ(n) ∼ 1

N

∑
n≤N

log n as N → ∞.

This inspires us to investigate the average behaviour of an arithmetic function.

3.2 Summation formulae
In practice, we often need to consider the relationship between the sum

∑
f(n) with

the weighted sum
∑
w(n)f(n) where w(x) is a smooth function. On the other hand,

we also need to know the relationship between the sum of a smooth function and its
integral. Both of the above can be treated using the partial integration of Stieltjes
integrals.
Theorem 3.2 (Partial summation). Let {an}∞n=1 be a sequence of complex numbers.
Let

A(x) =
∑
n≤x

an.

Let f(x) be a continuously differentiable function on the interval [1, x]. Then for any
1 ≤ a < b ≤ x, we have∑

a<n≤b

anf(n) = A(b)f(b)− A(a)f(a)−
∫ b

a

f ′(x)A(x) dx.
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Proof. By the partial integration of Stieltjes integrals, we have∑
a<n≤b

anf(n) =

∫ b

a

f(x) dA(x) = A(x)b(x)
∣∣∣b
a
−
∫ b

a

f ′(x)A(x) dx

= A(b)f(b)− A(a)f(a)−
∫ b

a

f ′(x)A(x) dx.

Theorem 3.3 (Euler–Maclaurin summation formula). Let f(x) be a continuously
differentiable function on [a, b]. Let ρ(x) be the “saw function” defined by

ρ(x) =
1

2
− {x}.

Then we have ∑
a<n≤b

f(n) =

∫ b

a

f(x) dx+ ρ(x)f(x)
∣∣∣b
a
−
∫ b

a

ρ(x)f ′(x) dx.

Moreover, if f(x) is twice continuously differentiable on [a, b], we have∑
a<n≤b

f(n) =

∫ b

a

f(x) dx+ ρ(x)f(x)
∣∣∣b
a
− σ(x)f ′(x)

∣∣∣b
a
+

∫ b

a

σ(x)f ′′(x) dx,

where
σ(x) =

∫ x

0

ρ(t) dt.

Proof. The sum of f(n) can be written as the Stieltjes integral.∑
a<n≤b

f(n) =

∫ b

a

f(x) d[x] =

∫ b

a

f(x) d (x+ ρ(x)) =

∫ b

a

f(x) dx+

∫ b

a

f(x) dρ(x).

By partial integration, we have∫ b

a

f(x) dρ(x) = ρ(x)f(x)
∣∣∣b
a
−
∫ b

a

ρ(x)f ′(x) dx.

This proves the first assertion. If f(x) is twice continuously differentiable, we can
continue to use partial integration for the last integral to obtain the second assertion.
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Theorem 3.4. For x ≥ 2, we have∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

where

γ = lim
N→+∞

(
N∑

n=1

1

n
− logN

)
is the Euler constant.
Proof. We apply Theorem 3.3 for f(x) = 1/x to obtain that∑

n≤x

1

n
= 1 +

∑
1<n≤x

1

n

= 1 +

∫ x

1

1

t
dt+

ρ(x)

x
− ρ(1) +

∫ x

1

ρ(t)

t2
dt

= log x+
1

2
+

∫ ∞

1

ρ(t)

t2
dt+O

(
1

x

)
.

Let x→ +∞, we find that the constant

1

2
+

∫ ∞

1

ρ(t)

t2
dt = lim

x→+∞

(∑
n≤x

1

n
− log x

)
= γ.

Theorem 3.5. For x ≥ 2, we have∑
n≤x

log n = x log x− x+O(log x).

Proof. By the Euler–Maclaurin summation formula, we have∑
n≤x

log n =

∫ x

1

log t dt+ ρ(x) log x− ρ(1) log 1−
∫ x

1

ρ(t)

t
dt

= x log x− x+O(log x).

Some summation formulae can not simply verified by a combinatorial argument,
e.g. the Poisson summation formula∑

n∈Z

f(n) =
∑
n∈Z

f̂(n).

Such formulae usually appear in the automorphic theory.
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3.3 Average orders of some arithmetic functions

We use the Euler–Maclaurin summation formula to investigate the average orders of
some arithmetic functions.

Theorem 3.6. For x ≥ 2, we have

∑
n≤x

τ(n) = x log x+O(x)

Proof. We exchange the order of summations to obtain that

∑
n≤x

τ(n) =
∑
n≤x

∑
d|n

1 =
∑
d≤x

∑
n≤x
d|n

1 =
∑
d≤x

[x
d

]

=
∑
d≤x

(x
d
−
{x
d

})
= x

∑
d≤x

1

d
+O(x).

(3.1)

By Theorem 3.4, we have ∑
d≤x

1

d
= log x+O(1). (3.2)

Substituting (3.2) into (3.1), we get the desired result.

Remark. In fact, we have not exactly found the correct main term. In next section,
we will show that ∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(
√
x).

Theorem 3.7. For x ≥ 2, we have

∑
n≤x

φ(n) =
3

π2
x2 +O(x log x).
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Proof. By Theorem 2.9, we have∑
n≤x

φ(n) =
∑
n≤x

∑
d|n

µ(d)
n

d
=
∑
d≤x

µ(d)

d

∑
n≤x
d|n

n

=
1

2

∑
d≤x

µ(d)
[x
d

] ([x
d

]
+ 1
)

=
1

2

∑
d≤x

µ(d)
(x
d
+O(1)

)2
=
x2

2

∑
d≤x

µ(d)

d2
+O

(
x
∑
d≤x

1

d

)
.

By Theorem 2.12, we see that∑
d≤x

µ(d)

d2
=

∞∑
d=1

µ(d)

d2
+O

(
1

x

)
=

1

ζ(2)
+O

(
1

x

)
=

6

π2
+O

(
1

x

)
.

By Theorem 3.4, we have
x
∑
d≤x

1

d
� x log x.

The desired result follows.

Theorem 3.8. For x ≥ 2, we have∑
n≤x

σ(n) =
π2

12
x2 +O(x log x).

Proof. We have∑
n≤x

σ(n) =
∑
n≤x

∑
d|n

n

d
=
∑
d≤x

1

d

∑
n≤x
d|n

=
1

2

∑
d≤x

[x
d

] ([x
d

]
+ 1
)

=
1

2

∑
d≤x

(x
d
+O(1)

)2
=
x2

2

∑
d≤x

1

d2
+O

(
x
∑
d≤x

1

d

)
.

We have ∑
d≤x

1

d2
= ζ(2) + O

(
1

x

)
=
π2

6
+O

(
1

x

)
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and
x
∑
d≤x

1

d
� x log x.

The desired result follows.

Theorem 3.9. Let Q(x) denote the number of square-free integers not exceeding x.
Then for x ≥ 2, we have

Q(x) =
6

π2
x+O(

√
x).

Proof. Let g(n) denote the characteristic functions of square-free numbers, i.e.

g(n) =

{
1, n is square free
0, otherwise.

Then
g(n) =

∑
d2|n

µ(d).

So
Q(x) =

∑
n≤x

g(n) =
∑
n≤x

∑
d2|n

µ(d) =
∑
d≤

√
x

µ(d)
∑
n≤x
d2|n

=
∑
d≤

√
x

µ(d)
[ x
d2

]

= x
∑
d≤

√
x

µ(d)

d2
+O(

√
x) =

x

ζ(2)
+O(

√
x) =

6

π2
x+O(

√
x).

Remark. The error terms in Theorem 3.7 – Theorem 3.9 can be improved (Walfisz,
1963):

∑
n≤x

φ(n) =
3

π2
x2 +O

(
x(log x)2/3(log log x)4/3

)
.

∑
n≤x

σ(n) =
π2

12
x2 +O

(
x(log x)2/3

)
.

Q(x) =
6

π2
x+O

(√
x exp

{
−c (log x)3/5

(log log x)1/5

})
.
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3.4 Dirichlet’s hyperbola method
We improve the result of Theorem 3.6.

Theorem 3.10. For x ≥ 2, we have∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(
√
x).

Proof. We have ∑
d≤x

τ(d) =
∑
d≤x

∑
mn=d

1 =
∑
mn≤x

1.

By symmetry, we have∑
mn≤x

1 =
∑

m≤
√
x

∑
n≤ x

m

1 +
∑
n≤

√
x

∑
m≤ x

n

1−
∑
n≤

√
x

∑
m≤

√
x

1

= 2
∑
n≤

√
x

[x
n

]
− [

√
x]2.

(3.3)

We apply Theorem 3.4 to obtain that

2
∑
n≤

√
x

[x
n

]
= 2x

∑
n≤

√
x

1

n
+O(

√
x) = x log x+ 2γ +O

(√
x
)
.

Substituting this into (3.3), we get the desired result.

The trick used in the proof of Theorem 3.10 is called Dirichlet’s hyperbola
method. We summarize its general form as follows:

Theorem 3.11 (Dirichlet’s hyperbola method). Let f, g be two arithmetic functions.
Let F,G be their summatory functions respectively, i.e.

F (x) =
∑
n≤x

f(n), G(x) =
∑
n≤x

g(n).

Then for any positive number a and b with ab = x, we have∑
n≤x

(f ∗ g)(n) =
∑
n≤a

f(n)G(x/n) +
∑
n≤b

g(n)F (x/n)− F (a)G(b).
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Proof. Since ab = x, we have∑
n≤x

(f ∗ g)(n) =
∑
n≤x

∑
mk=n

f(m)g(k) =
∑
m

∑
k

mk≤x

f(m)g(k)

=
∑
m≤a

∑
k

mk≤x

f(m)g(k) +
∑
m

∑
k≤b

mk≤x

f(m)g(k)−
∑
m≤a

∑
k≤b

mk≤x

f(m)g(k)

=
∑
m≤a

f(m)G(x/m) +
∑
k≤b

g(k)F (x/k)− F (a)G(b).

This trick will be useful when we discuss equivalent forms of the prime number
theorem.

3.5 Dirichlet’s divisor problem
Let

∆(x) =
∑
n≤x

τ(n)− x(log x+ 2γ − 1).

Let α be the infimum of the set of exponents ξ such that

∆(x) � xξ.

Theorem 3.10 implies that α ≤ 1/2. The exact value of α remains unknown and it
is generally conjectured that α = 1/4. In 1915, Hardy and Landau proved indepen-
dently that ∆(x) is not o(x1/4), which implies that α ≥ 1/4. The best upper bound
known to date is given by Huxley in 1993:

α ≤ 23/73 = 0.31506849 . . .

This problem is called Dirichlet’s divisor problem. We will give the proof of the
following result:

Theorem 3.12 (Voronoï,1903). For x ≥ 2, we have∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O
(
x1/3 log x

)
.
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The method we will use is due to van der Corput. More precisely, our proof is
based on estimations for the so-called trigonometric sums:∑

a<n≤b

e(f(n))

where f(x) is a “well-behaved” real-valued function and e(x) = e2πix. This method
is basic but quite effective in analytic number theory. We will use the following
theorem without proof.

Theorem 3.13 (van der Corput). Let b−a ≥ 1. Let f(x) be a real function on [a, b]
such that Λ ≤ f ′′(x) ≤ ηΛ with Λ > 0, η ≥ 1. Then∑

a<n≤b

e (f(n)) � ηΛ1/2(b− a) + Λ−1/2.

Proof. See Corollary 8.13 in the book Analytic Number Theory by Iwaniec and
Kowalski.

Proof of Theorem 3.12. We can use the Euler–Maclaurin summation formula to
deduce the following refined version of Theorem 3.4:∑

n≤x

1

n
= log x+ γ +

ρ(x)

x
+O

(
1

x2

)
. (3.4)

Then we repeat the process in the proof of Theorem 3.10 to obtain that∑
n≤x

τ(n) = x log x+ (2γ − 1)x+
√
x− 2

∑
n≤

√
x

{x
n

}
+O(1)

= x log x+ (2γ − 1)x+ 2
∑
n≤

√
x

ρ
(x
n

)
+O(1).

So it suffices to prove ∑
n≤

√
x

ρ
(x
n

)
� x1/3 log x.

To apply the van der Corput method, we need to expand ρ(x/d) as a Fourier series.
However, the Fourier series of ρ(t) is not absolutely convergent since ρ(t) is not
continuous. We overcome this difficulty by replacing ρ(t) by

ρ̄δ(t) :=
1

2δ

∫ δ

−δ

ρ(t+ u) du.
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Here 0 < δ < 1/2 is a small quantity, which will be specified later. To investigate
the difference between ρ and ρ̄δ, we introduce

h(t) = |ρ(t)− ρ̄δ(t)| .

It is not hard to see that both ρ̄δ(t) and h(t) are Lipschitz continuous. So their
Fourier series are absolutely convergent. We can calculate their Fourier series:

ρ̄δ(t) =
∞∑
k=1

ak sin(2πkx), ak =
1

2δπ2k2
sin(2δπk),

h(t) =
δ

2
+

∞∑
k=1

bk cos(2πkx), bk =
1

δπ2k2
sin2(δπk).

Then we have

|ak|+ |bk| � min

(
1

k
,
1

δk2

)
=

{
1/k, k ≤ 1/δ,

1/(δk2), k > 1/δ.
(3.5)

To make the full use of Theorem 3.13, we apply the following dyadic decomposition:∑
n≤

√
x

ρ
(x
n

)
� (log x) sup

1≤y≤
√
x

|T (y)|

where
T (y) =

∑
y/2<n≤y

ρ
(x
n

)
.

So it suffices to prove
T (y) � x1/3

uniformly for y ∈ [1,
√
x].

We have ∣∣∣∣∣∣T (y)−
∑

y/2<n≤y

ρ̄δ

(x
n

)∣∣∣∣∣∣ ≤
∑

y/2<n≤y

h
(x
n

)
.

So

|T (y)| ≤

∣∣∣∣∣∣
∑

y/2<n≤y

ρ̄δ

(x
n

)∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

y/2<n≤y

h
(x
n

)∣∣∣∣∣∣
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We substitute the Fourier expansions to obtain that

|T (y)| ≤

∣∣∣∣∣∣
∑

y/2<n≤y

∞∑
k=1

ak sin
(
2πk

x

n

)∣∣∣∣∣∣+
∣∣∣∣∣∣δy4 +

∑
y/2<n≤y

∞∑
k=1

bk cos
(
2πk

x

n

)∣∣∣∣∣∣
� δy +

∞∑
k=1

|ak|

∣∣∣∣∣∣
∑

y/2<n≤y

sin

(
2πkx

n

)∣∣∣∣∣∣+
∞∑
k=1

|bk|

∣∣∣∣∣∣
∑

y/2<n≤y

cos

(
2πkx

n

)∣∣∣∣∣∣ .
Now we apple Theorem 3.13 with f(t) = xk/t to obtain that∣∣∣∣∣∣

∑
y/2<n≤y

e

(
xk

n

)∣∣∣∣∣∣� y
(xk)1/2

y3/2
+

y3/2

(xk)1/2
�
(
xk

y

) 1
2

+

(
y3

xk

) 1
2

. (3.6)

Certainly, the same estimate holds for∑
y/2<n≤y

sin

(
2πkx

n

)
and

∑
y/2<n≤y

cos

(
2πkx

n

)
.

Finally, we substitute the estimates (3.5) and (3.6) into T (y) to obtain that

T (y) � δy +
∞∑
k=1

(|ak|+ |bk|)

{(
xk

y

) 1
2

+

(
y3

xk

) 1
2

}

� δy +
∑
k≤1/δ

1

k

{(
xk

y

) 1
2

+

(
y3

xk

) 1
2

}
+
∑
k>1/δ

1

δk2

{(
xk

y

) 1
2

+

(
y3

xk

) 1
2

}

� δy +
x1/2

y1/2
· 1

δ1/2
+
y3/2

x1/2
+
x1/2

y1/2
· 1
δ
· δ1/2 + y3/2

x1/2
· 1
δ
· δ3/2

� δy +

(
x

δy

) 1
2

+

(
y3

x

) 1
2

.

Since y ≤
√
x, the third term is admissible. To balance the first two terms, we

specify δ = x1/3/y. Then we find that the first two terms are bounded by x1/3. One
may notice that the above argument is valid only when y > 2x1/3 (i.e. δ < 1/2).
However, in the complementary case, the estimate

T (y) � x1/3

holds trivially. So we complete the proof.
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