Homework 3

(due Friday, March 31, 2023)

1. Let $\tau(n)$ denote the divisor function. Prove the following assertions:
1). For $x \geq 2$, we have

$$
\sum_{n \leq x} \tau^{2}(n) \ll x \log ^{3} x
$$

2). For $x \geq 2$, we have

$$
\sum_{n \leq x} \frac{\tau(n)}{n}=\frac{1}{2} \log ^{2} x+2 \gamma \log x+O(1)
$$

where γ is the Euler constant.
$3)$. Let $k \geq 1$ be a positive integer. Then for $x \geq 2$, we have

$$
\sum_{n \leq x} \frac{\tau^{k}(n)}{n} \ll \log ^{2^{k}} x \quad \text { and } \quad \sum_{n \leq x} \tau^{k}(n) \ll x \log ^{2^{k}-1}
$$

where the implied constants may depend on k.
2. Prove that

$$
M(x):=\sum_{n \leq x} \mu(n)=o(x), \quad(x \rightarrow+\infty)
$$

is equivalent to

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n}=0
$$

Hint: Consider the identity

$$
\sum_{n \leq x} \mu(n)\left[\frac{x}{n}\right]=1
$$

3. The goal of this exercise is to give a lower bound for $\varphi(n)$.
1). Let $\omega(n)$ denote the number of distinct prime factors of n. Show that for $n \geq 2$,

$$
\omega(n) \ll \log n
$$

$2)$. Let p_{n} denote the n-th prime number. Show that

$$
p_{n} \asymp n \log n .
$$

3). Show that for $n \geq 30$,

$$
\varphi(n) \gg \frac{n}{\log \log n} .
$$

Hint: Apply the identity

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

and Mertens' theorem.
4. Prove Selberg's identity:

$$
\psi(x) \log x+\sum_{n \leq x} \Lambda(n) \psi\left(\frac{x}{n}\right)=2 x \log x+O(x)
$$

