
Chapter 6

The analytic continuation of ζ(s)

Throughout this chapter. The letter s denotes a complex variable. The real numbers
σ and t are implicitly defined by s = σ + it.

6.1 Analytic continuation of ζ(s) in Re s > 0

Theorem 6.1. For Re s > 1, we have

ζ(s) =
(
21−s − 1

)−1
∞∑
n=1

(−1)n

ns
. (6.1)

The series in the right-side of (6.1) is uniformly convergent in any compact subset
of Re s > 0. As a consequence, (6.1) gives the analytic continuation of ζ(s) to the
half-plane Re s > 0.

Proof. For Re s > 1, we have

2−sζ(s) =
1

2s

∞∑
n=1

1

ns
=

∞∑
n=1

1

(2n)s
=

∑
n=1

n is even

1

ns
.

Therefore,

(1− 21−s)ζ(s) =
∞∑
n=1

1

ns
− 2

∑
n=1

n is even

1

ns
=

∞∑
n=1

(−1)n+1

ns
.

This gives (6.1).
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Now we fix a compact subset D of Re s > 0. For s = σ+ it ∈ D, we have σ > σ0
for some σ0 > 0 and |s| ≤ C for some constant C. For integers N < M , we have∣∣∣∣∣ ∑

N≤n≤M

(−1)n

ns

∣∣∣∣∣ ≤ 1

Nσ
+

∑
N≤n≤M

∣∣∣∣ 1ns
− 1

(n+ 1)s

∣∣∣∣
≤ 1

Nσ
+

∑
n≤n≤M

∣∣∣∣s ∫ n+1

n

dx

xs+1

∣∣∣∣
� 1

Nσ
+

∫ M+1

N

dx

xσ+1

� 1

Nσ
+

1

σ

1

Nσ

� 1

Nσ0

where the implied constant depends on D. Thus the series
∞∑
n=1

(−1)n

ns

is uniformly convergent in D hence defines a holomorphic function.
Corollary 6.2. The Riemann zeta function ζ(s) has a simple pole at s = 1 with
residue 1, and ζ(s) is negative on the segment 0 < σ < 1, t = 0.
Proof. For s→ 1, we have

21−s − 1 = (log 2)(1− s) +O
(
|s− 1|2

)
.

Thus as s→ 1,

(s− 1)ζ(s) =
s− 1

1− 21−s

∞∑
n=1

(−1)n+1

ns
=

log 2

log 2 + O (|s− 1|)
→ 1

where we haved used the fact that
∞∑
n=1

(−1)n+1

n
= log 2.

This implies that s = 1 is a simple pole of ζ(s) with residue 1.
For the second assertion, we need only to notice that for 0 < σ < 1, we have

21−σ − 1 > 0 and
∞∑
n=1

(−1)n

nσ
< 0.
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6.2 Analytic continuation of ζ(s) in Re s > −1

By the Euler–Maclaurin formula, we can give the analytic continuation of ζ(s) on
Re s > 0 in another way. For Re s > 1 (in fact, we can assume Re s is sufficiently
large, e.g. Re s > 100), by the Euler–Maclaurin summation formula (Theorem 3.3),
we have

ζ(s) =
∞∑
n=1

1

ns
= 1 +

∑
n>1

1

ns

= 1 +

∫ ∞

1

dx

xs
− 1

2
+ s

∫ ∞

1

ρ(x)

xs+1
dx

=
1

2
+

1

s− 1
+ s

∫ ∞

1

ρ(x)

xs+1
dx.

(6.2)

The last integral is absolutely and uniformly convergent in any compact subset of
Re s > 0, so we regain the analytic continuation of ζ(s) in Re s > 0. Furthermore,
we can immediately see that s = 1 is a simple pole of ζ(s) with residue 1. Write

σ(x) =

∫ x

0

ρ(t) dt.

We again use the partial integral for the last integration, getting

ζ(s) =
1

2
+

1

s− 1
+ s(s+ 1)

∫ ∞

1

σ(x)

xs+2
dx. (6.3)

The last integral is absolutely convergent for Re s > −1. So (6.3) gives the analytic
continuation of ζ(s) in Re s > −1. Actually, we can repeat the above process to give
the analytic continuation of ζ(s) in any right half-plane.

Corollary 6.3. We have ζ(0) = −1/2.

Proof. Take s = 0 in (6.3).

Corollary 6.4. We have

lim
s→1

(
ζ(s)− 1

s− 1

)
= γ,

where γ is the Euler constant defined by

γ = lim
N→∞

(∑
n≤N

1

n
− logN

)
.
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Therefore, as s→ 1, we have

ζ(s) =
1

s− 1
+ γ +O(|s− 1|).

Proof. By (6.2), we have

lim
s→1

(
ζ(s)− 1

s− 1

)
=

1

2
+

∫ ∞

1

ρ(x)

x2
dx

=
1

2
+ lim

N→∞

∫ N

1

1
2
− x+ [x]

x2
dx

=
1

2
+ lim

N→∞

(
1

2
− 1

2N
− logN +

N−1∑
n=1

n

∫ n+1

n

dx

x2

)

= 1 + lim
N→∞

(
N−1∑
n=1

n

(
1

n
− 1

n+ 1

)
− logN

)

= 1 + lim
N→∞

(
N∑

n=1

1

n
− N − 1

N
− 1

N
− logN

)

= lim
N→∞

(∑
n≤N

1

n
− logN

)
= γ.

6.3 Estimate of ζ(s) in the critical strip
If we start summing from n = N , we can get a variant of (6.3):

ζ(s) =
∑
n≤N

1

ns
+

∫ ∞

N

dx

xs
+
ρ(x)

xs

∣∣∣∣∞
N

+ s

∫ ∞

N

ρ(x)

xs+1
dx

=
∑
n≤N

1

ns
+
N1−s

s− 1
− 1

2
N−s + s(s+ 1)

∫ ∞

N

σ(x)

xs+2
dx.

(6.4)

The advantage of this formula is that the parameter N can be freely selected. Triv-
ially estimate the last integral, we obtain the following estimate for ζ(s):
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Theorem 6.5. For σ > −1 and N ≥ 1, we have

ζ(s) =
∑
n≤N

1

ns
+
N1−s

s− 1
− 1

2
N−s +O

(
|s(s+ 1)|
σ + 1

N−σ−1

)
,

where the implied constant is absolute.

In practice, the growth of ζ(s) as |t| → ∞ is critical. However, the above estimate
can not provide a satisfactory result. The following formula, which can be considered
as the prototype of the so-called approximate functional equation, gives a better
estimate.

Theorem 6.6. For s = σ + it with σ ≥ 0, |t| ≤ 2T and T ≥ 1 we have

ζ(s) =
∑
n≤T

n−s +
T 1−s

s− 1
+O(T−σ),

where the implied constant is absolute.

To prove Theorem 6.6, we need a result on exponential sums.

Lemma 6.7. Let f(x) be a real function with |f ′(x)| ≤ 1− θ and f ′′(x) 6= 0 on [a, b].
We then have ∑

a<n≤b

g(n)e(f(n)) =

∫ b

a

g(x)e(f(x)) dx+O(Gθ−1)

where
G = |g(b)|+

∫ b

a

|g′(t)| dt.

Proof. This is Lemma 8.8 in Analytic Number Theory by Iwaniec and Kowalski.

Proof of Theorem 6.6. Taking N = [T 2] in Theorem 6.5, we obtain that

ζ(s) =
∑
n≤N

1

ns
+
N1−s

s− 1
− 1

2
N−s +O

(
|s(s+ 1)|
σ + 1

N−σ−1

)
=
∑
n≤N

1

ns
+
N1−s

s− 1
+O(T−σ)

=
∑
n≤T

1

ns
+

∑
T<n≤N

1

ns
+
N1−s

s− 1
+O(T−σ).

(6.5)
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Now we use Lemma 6.7 to deal with the sum∑
T<n≤N

1

ns
.

Apply Lemma 6.7 for

g(x) =
1

xσ
and f(x) = − t

2π
log x.

Then we have
G� T−σ and |f ′(x)| ≤ 1

π

for x ∈ [T,N ]. Notice that
1

xs
= g(x)e(f(x)).

So by Lemma 6.7, we have∑
T<n≤N

1

ns
=

∫ N

T

1

xs
dx+O(T−σ) =

T 1−s −N1−s

1− s
+O(T−σ). (6.6)

Substituting (6.6) into (6.5), we complete the proof.

Corollary 6.8. Let T ≥ 2 and let s = σ + it be such that

1− 1

log T
≤ σ ≤ 2, |t| ≤ T.

Then we have
ζ(s)− 1

s− 1
= O (log T )

and
ζ ′(s) +

1

(s− 1)2
= O(log2 T ).

Proof. By Theorem 6.6, we have

ζ(s) =
∑
n≤T

n−s +
T 1−s − 1

s− 1
+O(T−σ).

We estimate each terms. One has

T 1−s − 1

s− 1
=

∫ T

1

dx

xs
.
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By the Euler–Macluarion formula, we have∑
n≤T

n−s =

∫ T

1

dx

xs
+O(1) + O

(
|s|
∫ T

1

dx

xσ+1

)
=

∫ T

1

dx

xs
+O(T 1−σ).

Since σ > 1− 1/ log T , the O-term is

� T 1/ log T � 1.

So it remains to bound ∫ T

1

dx

xs
.

We have ∣∣∣∣∫ T

1

dx

xs

∣∣∣∣ ≤ ∫ T

1

dx

xσ
≤
∫ T

1

dx

x1−1/ log T
� log T.

This completes the proof of the first assertion.
For the second assertion, we first notice that the constants are not necessary in

the condition
1− 1

log T
≤ σ ≤ 2, |t| ≤ T.

We can replace this condition by

1− C1

log T
≤ σ ≤ C2, |t| ≤ T.

with any positive constant C1 and C2 > 1. Then the conclusion is still valid (of
course, the implied constant in the error term may depend on C). By differentiating
(6.2), we see that

ζ ′(s) +
1

(s− 1)2

is holomorphic in Re s > 0. So for |t| ≤ 3, we have

ζ ′(s) +
1

(s− 1)2
= O(1).

Thus it suffices to prove
ζ ′(s) = O(log2 T ).

for
1− 1

log T
≤ σ ≤ 2, 3 ≤ |t| ≤ T.
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By Cauchy’s formula, we have

ζ ′(s) =
1

2πi

∫
|z−s|=r

ζ(z)

(z − s)2
dz

for any r > 0. We specify r = 1/ log T . Then the variable z in the integral satisfies

1− 2

log T
≤ Re z ≤ 3, 2 ≤ | Im z| ≤ T + 1.

So by the first assertion, we have

ζ(s) =
1

s− 1
+O(log T ) = O(log T ).

Thus
|ζ ′(s)| �

∫
|z−s|=r

|ζ(z)|
|z − s|2

dz � 1

log T
· log T

1/ log2 T
= log2 T.
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