Chapter 6

The analytic continuation of $\zeta(s)$

Throughout this chapter. The letter s denotes a complex variable. The real numbers σ and t are implicitly defined by $s=\sigma+i t$.

6.1 Analytic continuation of $\zeta(s)$ in $\operatorname{Re} s>0$

Theorem 6.1. For $\operatorname{Re} s>1$, we have

$$
\begin{equation*}
\zeta(s)=\left(2^{1-s}-1\right)^{-1} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} \tag{6.1}
\end{equation*}
$$

The series in the right-side of (6.1) is uniformly convergent in any compact subset of $\operatorname{Re} s>0$. As a consequence, (6.1) gives the analytic continuation of $\zeta(s)$ to the half-plane $\operatorname{Re} s>0$.

Proof. For Re $s>1$, we have

$$
2^{-s} \zeta(s)=\frac{1}{2^{s}} \sum_{n=1}^{\infty} \frac{1}{n^{s}}=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{s}}=\sum_{\substack{n=1 \\ n \text { is even }}} \frac{1}{n^{s}}
$$

Therefore,

$$
\left(1-2^{1-s}\right) \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}-2 \sum_{\substack{n=1 \\ n \text { is even }}} \frac{1}{n^{s}}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}
$$

This gives (6.1).

Now we fix a compact subset D of $\operatorname{Re} s>0$. For $s=\sigma+i t \in D$, we have $\sigma>\sigma_{0}$ for some $\sigma_{0}>0$ and $|s| \leq C$ for some constant C. For integers $N<M$, we have

$$
\begin{aligned}
\left|\sum_{N \leq n \leq M} \frac{(-1)^{n}}{n^{s}}\right| & \leq \frac{1}{N^{\sigma}}+\sum_{N \leq n \leq M}\left|\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right| \\
& \leq \frac{1}{N^{\sigma}}+\sum_{n \leq n \leq M}\left|s \int_{n}^{n+1} \frac{\mathrm{~d} x}{x^{s+1}}\right| \\
& \ll \frac{1}{N^{\sigma}}+\int_{N}^{M+1} \frac{\mathrm{~d} x}{x^{\sigma+1}} \\
& \ll \frac{1}{N^{\sigma}}+\frac{1}{\sigma} \frac{1}{N^{\sigma}} \\
& \ll \frac{1}{N^{\sigma_{0}}}
\end{aligned}
$$

where the implied constant depends on D. Thus the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}
$$

is uniformly convergent in D hence defines a holomorphic function.
Corollary 6.2. The Riemann zeta function $\zeta(s)$ has a simple pole at $s=1$ with residue 1 , and $\zeta(s)$ is negative on the segment $0<\sigma<1, t=0$.
Proof. For $s \rightarrow 1$, we have

$$
2^{1-s}-1=(\log 2)(1-s)+O\left(|s-1|^{2}\right)
$$

Thus as $s \rightarrow 1$,

$$
(s-1) \zeta(s)=\frac{s-1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}=\frac{\log 2}{\log 2+O(|s-1|)} \rightarrow 1
$$

where we haved used the fact that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\log 2
$$

This implies that $s=1$ is a simple pole of $\zeta(s)$ with residue 1 .
For the second assertion, we need only to notice that for $0<\sigma<1$, we have

$$
2^{1-\sigma}-1>0 \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{\sigma}}<0
$$

6.2 Analytic continuation of $\zeta(s)$ in $\operatorname{Re} s>-1$

By the Euler-Maclaurin formula, we can give the analytic continuation of $\zeta(s)$ on $\operatorname{Re} s>0$ in another way. For $\operatorname{Re} s>1$ (in fact, we can assume $\operatorname{Re} s$ is sufficiently large, e.g. Re $s>100$), by the Euler-Maclaurin summation formula (Theorem 3.3), we have

$$
\begin{align*}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}=1+\sum_{n>1} \frac{1}{n^{s}} \\
& =1+\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{s}}-\frac{1}{2}+s \int_{1}^{\infty} \frac{\rho(x)}{x^{s+1}} \mathrm{~d} x \tag{6.2}\\
& =\frac{1}{2}+\frac{1}{s-1}+s \int_{1}^{\infty} \frac{\rho(x)}{x^{s+1}} \mathrm{~d} x .
\end{align*}
$$

The last integral is absolutely and uniformly convergent in any compact subset of $\operatorname{Re} s>0$, so we regain the analytic continuation of $\zeta(s)$ in $\operatorname{Re} s>0$. Furthermore, we can immediately see that $s=1$ is a simple pole of $\zeta(s)$ with residue 1 . Write

$$
\sigma(x)=\int_{0}^{x} \rho(t) \mathrm{d} t
$$

We again use the partial integral for the last integration, getting

$$
\begin{equation*}
\zeta(s)=\frac{1}{2}+\frac{1}{s-1}+s(s+1) \int_{1}^{\infty} \frac{\sigma(x)}{x^{s+2}} \mathrm{~d} x \tag{6.3}
\end{equation*}
$$

The last integral is absolutely convergent for $\operatorname{Re} s>-1$. So (6.3) gives the analytic continuation of $\zeta(s)$ in $\operatorname{Re} s>-1$. Actually, we can repeat the above process to give the analytic continuation of $\zeta(s)$ in any right half-plane.

Corollary 6.3. We have $\zeta(0)=-1 / 2$.
Proof. Take $s=0$ in (6.3).
Corollary 6.4. We have

$$
\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right)=\gamma
$$

where γ is the Euler constant defined by

$$
\gamma=\lim _{N \rightarrow \infty}\left(\sum_{n \leq N} \frac{1}{n}-\log N\right) .
$$

Therefore, as $s \rightarrow 1$, we have

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O(|s-1|)
$$

Proof. By (6.2), we have

$$
\begin{aligned}
\lim _{s \rightarrow 1}\left(\zeta(s)-\frac{1}{s-1}\right) & =\frac{1}{2}+\int_{1}^{\infty} \frac{\rho(x)}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{2}+\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{\frac{1}{2}-x+[x]}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{2}+\lim _{N \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2 N}-\log N+\sum_{n=1}^{N-1} n \int_{n}^{n+1} \frac{\mathrm{~d} x}{x^{2}}\right) \\
& =1+\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N-1} n\left(\frac{1}{n}-\frac{1}{n+1}\right)-\log N\right) \\
& =1+\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} \frac{1}{n}-\frac{N-1}{N}-\frac{1}{N}-\log N\right) \\
& =\lim _{N \rightarrow \infty}\left(\sum_{n \leq N} \frac{1}{n}-\log N\right) \\
& =\gamma .
\end{aligned}
$$

6.3 Estimate of $\zeta(s)$ in the critical strip

If we start summing from $n=N$, we can get a variant of (6.3):

$$
\begin{align*}
\zeta(s) & =\sum_{n \leq N} \frac{1}{n^{s}}+\int_{N}^{\infty} \frac{\mathrm{d} x}{x^{s}}+\left.\frac{\rho(x)}{x^{s}}\right|_{N} ^{\infty}+s \int_{N}^{\infty} \frac{\rho(x)}{x^{s+1}} \mathrm{~d} x \\
& =\sum_{n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}-\frac{1}{2} N^{-s}+s(s+1) \int_{N}^{\infty} \frac{\sigma(x)}{x^{s+2}} \mathrm{~d} x \tag{6.4}
\end{align*}
$$

The advantage of this formula is that the parameter N can be freely selected. Trivially estimate the last integral, we obtain the following estimate for $\zeta(s)$:

Theorem 6.5. For $\sigma>-1$ and $N \geq 1$, we have

$$
\zeta(s)=\sum_{n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}-\frac{1}{2} N^{-s}+O\left(\frac{|s(s+1)|}{\sigma+1} N^{-\sigma-1}\right)
$$

where the implied constant is absolute.
In practice, the growth of $\zeta(s)$ as $|t| \rightarrow \infty$ is critical. However, the above estimate can not provide a satisfactory result. The following formula, which can be considered as the prototype of the so-called approximate functional equation, gives a better estimate.

Theorem 6.6. For $s=\sigma+$ it with $\sigma \geq 0,|t| \leq 2 T$ and $T \geq 1$ we have

$$
\zeta(s)=\sum_{n \leq T} n^{-s}+\frac{T^{1-s}}{s-1}+O\left(T^{-\sigma}\right)
$$

where the implied constant is absolute.
To prove Theorem 6.6, we need a result on exponential sums.
Lemma 6.7. Let $f(x)$ be a real function with $\left|f^{\prime}(x)\right| \leq 1-\theta$ and $f^{\prime \prime}(x) \neq 0$ on $[a, b]$.
We then have

$$
\sum_{a<n \leq b} g(n) e(f(n))=\int_{a}^{b} g(x) e(f(x)) \mathrm{d} x+O\left(G \theta^{-1}\right)
$$

where

$$
G=|g(b)|+\int_{a}^{b}\left|g^{\prime}(t)\right| \mathrm{d} t
$$

Proof. This is Lemma 8.8 in Analytic Number Theory by Iwaniec and Kowalski.
Proof of Theorem 6.6. Taking $N=\left[T^{2}\right]$ in Theorem 6.5, we obtain that

$$
\begin{align*}
\zeta(s) & =\sum_{n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}-\frac{1}{2} N^{-s}+O\left(\frac{|s(s+1)|}{\sigma+1} N^{-\sigma-1}\right) \\
& =\sum_{n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}+O\left(T^{-\sigma}\right) \tag{6.5}\\
& =\sum_{n \leq T} \frac{1}{n^{s}}+\sum_{T<n \leq N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}+O\left(T^{-\sigma}\right) .
\end{align*}
$$

Now we use Lemma 6.7 to deal with the sum

$$
\sum_{T<n \leq N} \frac{1}{n^{s}}
$$

Apply Lemma 6.7 for

$$
g(x)=\frac{1}{x^{\sigma}} \quad \text { and } \quad f(x)=-\frac{t}{2 \pi} \log x
$$

Then we have

$$
G \ll T^{-\sigma} \quad \text { and } \quad\left|f^{\prime}(x)\right| \leq \frac{1}{\pi}
$$

for $x \in[T, N]$. Notice that

$$
\frac{1}{x^{s}}=g(x) e(f(x))
$$

So by Lemma 6.7, we have

$$
\begin{equation*}
\sum_{T<n \leq N} \frac{1}{n^{s}}=\int_{T}^{N} \frac{1}{x^{s}} \mathrm{~d} x+O\left(T^{-\sigma}\right)=\frac{T^{1-s}-N^{1-s}}{1-s}+O\left(T^{-\sigma}\right) \tag{6.6}
\end{equation*}
$$

Substituting (6.6) into (6.5), we complete the proof.
Corollary 6.8. Let $T \geq 2$ and let $s=\sigma+$ it be such that

$$
1-\frac{1}{\log T} \leq \sigma \leq 2, \quad|t| \leq T
$$

Then we have

$$
\zeta(s)-\frac{1}{s-1}=O(\log T)
$$

and

$$
\zeta^{\prime}(s)+\frac{1}{(s-1)^{2}}=O\left(\log ^{2} T\right)
$$

Proof. By Theorem 6.6, we have

$$
\zeta(s)=\sum_{n \leq T} n^{-s}+\frac{T^{1-s}-1}{s-1}+O\left(T^{-\sigma}\right)
$$

We estimate each terms. One has

$$
\frac{T^{1-s}-1}{s-1}=\int_{1}^{T} \frac{\mathrm{~d} x}{x^{s}}
$$

By the Euler-Macluarion formula, we have

$$
\sum_{n \leq T} n^{-s}=\int_{1}^{T} \frac{\mathrm{~d} x}{x^{s}}+O(1)+O\left(|s| \int_{1}^{T} \frac{\mathrm{~d} x}{x^{\sigma+1}}\right)=\int_{1}^{T} \frac{\mathrm{~d} x}{x^{s}}+O\left(T^{1-\sigma}\right)
$$

Since $\sigma>1-1 / \log T$, the O-term is

$$
\ll T^{1 / \log T} \ll 1
$$

So it remains to bound

$$
\int_{1}^{T} \frac{\mathrm{~d} x}{x^{s}}
$$

We have

$$
\left|\int_{1}^{T} \frac{\mathrm{~d} x}{x^{s}}\right| \leq \int_{1}^{T} \frac{\mathrm{~d} x}{x^{\sigma}} \leq \int_{1}^{T} \frac{\mathrm{~d} x}{x^{1-1 / \log T}} \ll \log T
$$

This completes the proof of the first assertion.
For the second assertion, we first notice that the constants are not necessary in the condition

$$
1-\frac{1}{\log T} \leq \sigma \leq 2, \quad|t| \leq T
$$

We can replace this condition by

$$
1-\frac{C_{1}}{\log T} \leq \sigma \leq C_{2}, \quad|t| \leq T
$$

with any positive constant C_{1} and $C_{2}>1$. Then the conclusion is still valid (of course, the implied constant in the error term may depend on C). By differentiating (6.2), we see that

$$
\zeta^{\prime}(s)+\frac{1}{(s-1)^{2}}
$$

is holomorphic in $\operatorname{Re} s>0$. So for $|t| \leq 3$, we have

$$
\zeta^{\prime}(s)+\frac{1}{(s-1)^{2}}=O(1)
$$

Thus it suffices to prove

$$
\zeta^{\prime}(s)=O\left(\log ^{2} T\right)
$$

for

$$
1-\frac{1}{\log T} \leq \sigma \leq 2, \quad 3 \leq|t| \leq T
$$

By Cauchy's formula, we have

$$
\zeta^{\prime}(s)=\frac{1}{2 \pi i} \int_{|z-s|=r} \frac{\zeta(z)}{(z-s)^{2}} \mathrm{~d} z
$$

for any $r>0$. We specify $r=1 / \log T$. Then the variable z in the integral satisfies

$$
1-\frac{2}{\log T} \leq \operatorname{Re} z \leq 3, \quad 2 \leq|\operatorname{Im} z| \leq T+1
$$

So by the first assertion, we have

$$
\zeta(s)=\frac{1}{s-1}+O(\log T)=O(\log T)
$$

Thus

$$
\left|\zeta^{\prime}(s)\right| \ll \int_{|z-s|=r} \frac{|\zeta(z)|}{|z-s|^{2}} \mathrm{~d} z \ll \frac{1}{\log T} \cdot \frac{\log T}{1 / \log ^{2} T}=\log ^{2} T
$$

