Chapter 6

The analytic continuation of ((s)

Throughout this chapter. The letter s denotes a complex variable. The real numbers
o and t are implicitly defined by s = o + it.

6.1 Analytic continuation of ((s) in Res > 0

Theorem 6.1. For Res > 1, we have

3

((s) = (2" —1) 12 ns (6.1)

n=1

The series in the right-side of ( is uniformly convergent in any compact subset
of Res > 0. As a consequence, (p.1) gives the analytic continuation of ((s) to the
half-plane Re s > 0.

Proof. For Res > 1, we have
le1 <« 1 1
@egyloy oy L

n=1 n=1 n=1
n is even

Therefore,

1270 =3 -2 30 =D

n=1

o n+1

n is even

This gives (@) .
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Now we fix a compact subset D of Res > 0. For s = o+t € D, we have 0 > 0
for some og > 0 and |s| < C for some constant C'. For integers N < M, we have

(=" 1 1 1
< — _
Z ns - No + Z ns (n+ 1)3
N<n<M N<n<M
n+1 dr
Sy Tt ) 5/ o)
n<n<M n
< 1 +/M+1 dzx
NO' N xo—i—l
< 1 n 11
N° N°
1
< ¥os

where the implied constant depends on D. Thus the series

o0 _11’L
$SCD

n=1

is uniformly convergent in D hence defines a holomorphic function. [

Corollary 6.2. The Riemann zeta function ((s) has a simple pole at s = 1 with
residue 1, and ((s) is negative on the segment 0 < o < 1, t = 0.

Proof. For s — 1, we have
2'7° —1=(log2)(1 —s)+ O (|s — 1)
Thus as s — 1,

s—1 & (_1)n+1 log 2
-1 = = 1
(s —1)¢(s) 1_21752 ns log2+ O (|s — 1|) ”

n=1

where we haved used the fact that

0 -1 n—+1
E (=1) = log 2.
n

n=1

This implies that s = 1 is a simple pole of {(s) with residue 1.
For the second assertion, we need only to notice that for 0 < o < 1, we have

2177 _1>0 d (Glls < 0.
an ; —
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6.2 Analytic continuation of ((s) in Res > —1

By the Euler-Maclaurin formula, we can give the analytic continuation of ((s) on
Res > 0 in another way. For Res > 1 (in fact, we can assume Res is sufficiently
large, e.g. Res > 100), by the Euler-Maclaurin summation formula (Theorem B.3),
we have

n=1 n>1
Cdr 1 < p(z)
=1 — B2ld (6.2)
+/1 e 2—1—8/1 pore x
11 = p(x)
= — dz.
2+s—1+8/1 pov] T

The last integral is absolutely and uniformly convergent in any compact subset of
Res > 0, so we regain the analytic continuation of ((s) in Res > 0. Furthermore,
we can immediately see that s = 1 is a simple pole of ((s) with residue 1. Write

We again use the partial integral for the last integration, getting

<(3)=1+L+s(s+1)/lm@dx (6.3)

2 s—1 xst2

The last integral is absolutely convergent for Res > —1. So (@) gives the analytic
continuation of {(s) in Res > —1. Actually, we can repeat the above process to give
the analytic continuation of {(s) in any right half-plane.

Corollary 6.3. We have ((0) = —1/2.
Proof. Take s =0 in (@) O
Corollary 6.4. We have

1
£1_I>I% <C<S) s — 1) -

where v is the Euler constant defined by

. 1
(5 )

n<N



68 CHAPTER 6. THE ANALYTIC CONTINUATION OF ((S5)

Therefore, as s — 1, we have

Proof. By (), we have
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6.3 Estimate of ((s) in the critical strip
If we start summing from n = N, we can get a variant of (@)
1 [e’e) d o o]
(=3 o [ e [
“—mn N 5 |y N

_ 1 N7 1 *o(x) (6.4)

-y = _IN"® 1 da.

n<NnS+S_1 5 + s(s + )/N e de

The advantage of this formula is that the parameter N can be freely selected. Triv-
ially estimate the last integral, we obtain the following estimate for ((s):
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Theorem 6.5. For o > —1 and N > 1, we have

(=L M Iy (—'S(S i 1)’N—”—1) :

nSNnS s—1 2 oc+1

where the implied constant is absolute.

In practice, the growth of ((s) as |t| — oo is critical. However, the above estimate
can not provide a satisfactory result. The following formula, which can be considered
as the prototype of the so-called approximate functional equation, gives a better
estimate.

Theorem 6.6. For s = o +it with o >0, |[t| < 2T and T > 1 we have

C(s) =S n+ I o),

s—1
n<T
where the implied constant is absolute.
To prove Theorem @, we need a result on exponential sums.
Lemma 6.7. Let f(x) be a real function with |f'(x)] < 1—0 and f"(x) # 0 on [a, b].
We then have
b

S glmelsm) = [ glale(rla))de+ OGO

a<n<b a
where ,

G=lot®)l+ [ g (o)l

Proof. This is Lemma 8.8 in Analytic Number Theory by Iwaniec and Kowalski. []
Proof of Theorem . Taking N = [T?] in Theorem @, we obtain that

1 N'=s 1 1
C(S): — __Nfs_i_O |S(S+ )|N70'71
n® s—1 2 o+1
n<N
1 Nl—s Y
_ZE+S_1+O(T ) (6.5)
n<N
1 1 N1=s
=y = — o=
Dot D 0T
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Now we use Lemma @ to deal with the sum

Apply Lemma @ for

Then we have 1
G<T7 and |f'(2) <=
T

for x € [T, N]. Notice that

So by Lemma @, we have

T<n<N
Substituting (@) into (@), we complete the proof.
Corollary 6.8. Let T' > 2 and let s = o + it be such that

=7 So<2 t| <T.
Then we have )
((s) ~ — = O (logT)
and .
C'(s)+ 1) = O(log®T).

Proof. By Theorem @, we have

((s) =) _n—+ et +0(T™).

s—1
n<T
We estimate each terms. One has

T =5 — 1 T Az

s—1 . T8

1 N 1 Tlfs _ les
> o= :/ —dz+O0(T%) = ————— + O(T7).
ns T X°

(6.6)
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By the Euler—-Macluarion formula, we have

Soe [ om o (i [ 25 - [ o

Since 0 > 1 —1/log T, the O-term is

< TH1oeT « 1.
/de
1 xS
/ / pores 1/1 = L logT.

This completes the proof of the first assertion.
For the second assertion, we first notice that the constants are not necessary in
the condition

So it remains to bound

We have

<o<2, t| <T.
logT_U 1=

We can replace this condition by

- <o <Oy, t<T.

logT — — 2 1=
with any positive constant C; and Cy > 1. Then the conclusion is still valid (of
course, the implied constant in the error term may depend on C'). By differentiating

(6.2), we see that
1

(s— 1

is holomorphic in Re s > 0. So for |t| < 3, we have

¢'(s) +

Thus it suffices to prove

for
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By Cauchy’s formula, we have

gy L (=)

B 2_7” |z—s|=r (Z - 8)2

dz

for any r > 0. We specify r = 1/logT. Then the variable z in the integral satisfies

1 < Rez <3, 2<|Imz| <T+1.

B log T’
So by the first assertion, we have

1
((s) = 1T O(logT) = O(logT).

Thus |C( )| . oo T
z og 2
"(s)] < / dz < . =log*T.
K (8)‘ |z—s|=r ‘Z - 5’2 : log T 1/10g2T o
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