
Chapter 7

The prime number theorem

In this section, we prove the prime number theorem (Theorem 1.4). The key to the
proof is to show that ζ(s) has no zero on Re s = 1.

7.1 An elementary identity
We begin with an elementary identity.

Lemma 7.1. For any θ ∈ R, we have

3 + 4 cos θ + cos 2θ ≥ 0.

Proof. We have
3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Theorem 7.2. For s = σ + it with σ > 1, t 6= 0, we have

Re

(
3ζ ′(σ)

ζ(σ)
+

4ζ ′(σ + it)

ζ(σ + it)
+
ζ ′(σ + 2it)

ζ(σ + 2it)

)
≥ 0.

Proof. We have

−Re
ζ ′(σ + it)

ζ(σ + it)
= Re

∞∑
n=1

Λ(n)

nσ+it
=

∞∑
n=1

Λ(n)

nσ
Re
(
e−it logn

)
=

∞∑
n=1

Λ(n)

nσ
cos(t log n).
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So by Lemma 7.1,

− Re

(
3ζ ′(σ)

ζ(σ)
+

4ζ ′(σ + it)

ζ(σ + it)
+
ζ ′(σ + 2it)

ζ(σ + 2it)

)
=

∞∑
n=1

Λ(n)

nσ
(3 + 4 cos (t log n) + cos (2t+ log n)) ≥ 0.

7.2 Non-vanishing of ζ(s) on Re s = 1

Theorem 7.3. We have ζ(1 + it) 6= 0 for any t ∈ R.

Proof. Suppose on the contrary that ζ(1 + it) = 0 for some t ∈ R. Then t 6= 0 since
s = 1 is a pole of ζ(s). We consider the behaviour of

3ζ ′(σ)

ζ(σ)
+

4ζ ′(σ + it)

ζ(σ + it)
+
ζ ′(σ + 2it)

ζ(σ + 2it)

as σ → 1+.
Since s = 1 is a simple pole of ζ(s), we have

ζ ′(σ)

ζ(σ)
= − 1

σ − 1
+O(1)

as σ → 1+. Suppose s = 1 + it is a zero of ζ(s) of order k. Then we have

ζ ′(σ + it)

ζ(σ + it)
=

k

σ − 1
+O(1)

as σ → 1+. Finally, we do not know whether s = 1+2it is a zero of ζ(s) or not. But
anyway we have

ζ ′(σ + 2it)

ζ(σ + 2it)
=

l

σ − 1
+O(1)

for some non-negative integer l.
Therefore, as σ → 1+, we have

3ζ ′(σ)

ζ(σ)
+

4ζ ′(σ + it)

ζ(σ + it)
+
ζ ′(σ + 2it)

ζ(σ + 2it)
=
l + 4k − 3

σ − 1
+O(1).
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But l + 4k − 3 ≥ 4− 3 ≥ 1. So we have

−Re

(
3ζ ′(σ)

ζ(σ)
+

4ζ ′(σ + it)

ζ(σ + it)
+
ζ ′(σ + 2it)

ζ(σ + 2it)

)
→ +∞

as σ → 1+. This contradicts Theorem 7.2.

Actually, Theorem 7.3 is sufficient for proving the prime number theorem. How-
ever, in order to not make the proof too technical, we choose to give a quantitative
version of Theorem 7.3.

7.3 Lower bound for ζ(s) near Re s = 1

We first prove a variant of Theorem 7.2.

Theorem 7.4. For s = σ + it with σ > 1, t 6= 0, we have

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

Proof. The conclusion is equivalent to

Re {3 log ζ(σ) + 4 log ζ(σ + it) + ζ(σ + 2it)} ≥ 0.

By Taylor’s expansion, for σ > 1, we have

log ζ(σ) = log
∏
p

(
1− 1

ps

)−1

= −
∑
p

log

(
1− 1

ps

)

= −
∑
p

∞∑
k=1

(−1)k+1

(
− 1

ps

)
=
∑
p

∞∑
k=1

1

pks

=
∞∑
n=1

cn
ns

where

cn =

{
1, n is a prime power,
0, otherwise.

Since cn is non-negative, we can use the same argument as that of Theorem 7.2.

Now we can prove the key theorem of this chapter:
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Theorem 7.5. There exists a constant c > 0 such that

|ζ(s)| � log−7 (|t|+ 2)

whenever
1− c

log9(|t|+ 2)
< σ < 1.

Proof. Since ζ(1) = ∞, we can assume that |t| 6= 0. Moreover, for 0 < |t| � 1, the
conclusion is trivial. So we can assume |t| ≥ 100. Now we fix t. We first consider
s1 = σ1 + it with

σ1 = 1 +
c

log9(|t|+ 2)
,

where c > 0 is sufficiently small. By Corollary 6.8, we have

ζ(σ1) =
1

σ1 − 1
+O (log(|t|+ 2)) � log9(|t|+ 2),

ζ(σ1 + 2it) =
1

σ1 + 2it− 1
+O (log(|t|+ 2)) � log(|t|+ 2).

So by Theorem 7.4, we have

|ζ(σ1 + it)| ≥ ζ(σ1)
− 3

4 |ζ(σ1 + 2it)|−
1
4 � log−7(|t|+ 2).

Now we consider ζ(σ2 + it) where

σ2 = 1− c

log9(|t|+ 2)
.

Since |ζ ′(σ + it)| � log2(|t|+ 2) for σ1 < σ < σ2 (Corollary 6.8), by the mean value
theorem, we still have

|ζ(σ2 + it)| � log−7(|t|+ 2)

provided that c is sufficiently small.

Corollary 7.6. The function ζ ′(s)/ζ(s) is holomorphic in the region

1− c

log9(|t|+ 2)
< σ < 1, |t| ≥ 2.

Furthermore, in this region, we have∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣� log9(|t|+ 2).

Proof. It follows from Corollary 6.8 and Theorem 7.5.
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7.4 The prime number theorem
Now we can prove the prime number theorem.

Theorem 7.7 (The prime number theorem). For x ≥ 2, we have

ψ(x) =
∑
n≤x

Λ(n) = x+O
(
x exp

(
−c(log x)1/10

))
for some c > 0.

Proof. Recall the effective Perron formula (Theorem 5.11):

∑
n≤x

Λ(n) =
1

2πi

∫ a+iT

a−iT

(
−ζ

′(s)

ζ(s)

)
xs

s
ds+O

(
xA(x) log x

T

)
+O

(
xaB(a)

T

)
where

A(x) = max
x/2≤n≤3x/2

Λ(n), B(σ) =
∞∑
n=1

Λ(n)

nσ
= −ζ

′(σ)

ζ(σ)
.

Let 2 ≤ T ≤ x be a parameter specified later. We choose

a = 1 +
c

log9 T

where c > 0 is the constant in Theorem 7.5 and Corollary 7.6. With this choice of
a, we have

xaB(a)

T
� x log9 T

T
exp

(
c
log x

log9 T

)
and trivially we have

xA(x) log x

T
� x log2

T
.

Now we use Cauchy;s theorem to evaluate

1

2πi

∫ a+iT

a−iT

(
−ζ

′(s)

ζ(s)

)
xs

s
ds.

Let
b = 1− c

log9 T
.
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We move the contour to T1 ∪ T2 ∪ T3 where

T1 = [a− iT, b− iT ], T2 = [b− iT, b+ iT ], T3 = [b+ iT, a+ iT ].

By Corollary 7.6, the only pole in this region is at s = 1 with the residue

Ress=1

(
−ζ

′(s)

ζ(s)

)
xs

s
= lim

s→1

(
−ζ

′(s)

ζ(s)

)
xs = x.

So we have

1

2πi

∫ a+iT

a−iT

(
−ζ

′(s)

ζ(s)

)
xs

s
ds = x+

1

2πi

{∫
T1

+

∫
T2

+

∫
T3

}(
−ζ

′(s)

ζ(s)

)
xs

s
ds.

Now x is the desired main term, so it remains to estimate the three integrals:

• On T1 ∪ T2, we have

ζ ′(s)

ζ(s)

xs

s
� x log9 T

T
exp

(
c
log x

log9 T

)
and

|T1|+ |T3| �
1

log9 T
.

So {∫
T1

+

∫
T3

}(
−ζ

′(s)

ζ(s)

)
xs

s
ds� x

T
exp

(
c
log x

log9 T

)
.

• For the integral on T2, since now

σ = b = 1− c

log9 T
,

we have
|xs| = x exp

(
−c log x

log9 T

)
.

Therefore, ∫
T2

(
−ζ

′(s)

ζ(s)

)
xs

s
ds�x log9 T exp

(
−c log x

log9 T

)∫ T

1/2

dt

t

�x log10 T exp

(
−c log x

log9 T

)
.



7.4. THE PRIME NUMBER THEOREM 79

In summary, we have shown that

ψ(x) = x+O

(
x log2 x

T

)
+O

(
x log10 T exp

(
−c log x

log9 T

))
+O

(
x log9 T

T
exp

(
c
log x

log9 T

))
.

Now we specify T by log10 T = log x, i.e.

T = exp
(
(log x)1/10

)
.

Note that this quantity is larger than any power of log x but is smaller than any
power of x. So log x can be absorbed by exp

(
α(log x)1/10

)
for any α > 0. Therefore,

with this choice of T , the above error terms can be estimated as follows:

• x log2

T
= x log2 exp(−(log x)1/10) � x exp

(
−1

2
(log x)1/10

)
.

• x log10 T exp

(
−c log x

log9 T

)
= x log x exp

(
−c(log x)1/10

)
� x exp

(
− c
2
(log x)1/10

)
.

• x log9 T

T
exp

(
c
log x

log9 T

)
� x log x exp

(
(c− 1)(log x)1/10

)
.

We can assume that c < 1 (since Theorem 7.5 and Corollary 7.6 clearly hold for
smaller c), so the last quantity is

� x exp
(
−c′(log x)1/10

)
with c′ = (1− c)/2.

Remark. The key point in the identity

3 + 4 cos θ + cos 2θ ≥ 0

is 3 < 4. By replacing this by other trigonometric identities, we may obtain a
better error term in the prime number theorem. However, our method can not get a
zero-free region larger than

1− c

log2(|t|+ 2)
< σ < 1

because we have used the mean value theorem and the growth rating of ζ ′(s) is
log2 |t|. One may check that this means we could not get an error term better that
O(x exp(−c(log x)1/3)) via this method.
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