Chapter 7

The prime number theorem

In this section, we prove the prime number theorem (Theorem 1.4). The key to the proof is to show that $\zeta(s)$ has no zero on $\operatorname{Re} s=1$.

7.1 An elementary identity

We begin with an elementary identity.
Lemma 7.1. For any $\theta \in \mathbb{R}$, we have

$$
3+4 \cos \theta+\cos 2 \theta \geq 0
$$

Proof. We have

$$
3+4 \cos \theta+\cos 2 \theta=2(1+\cos \theta)^{2} \geq 0
$$

Theorem 7.2. For $s=\sigma+$ it with $\sigma>1, t \neq 0$, we have

$$
\operatorname{Re}\left(\frac{3 \zeta^{\prime}(\sigma)}{\zeta(\sigma)}+\frac{4 \zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}\right) \geq 0
$$

Proof. We have

$$
-\operatorname{Re} \frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}=\operatorname{Re} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma+i t}}=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \operatorname{Re}\left(e^{-i t \log n}\right)=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}} \cos (t \log n)
$$

So by Lemma 7.1,

$$
\begin{aligned}
& -\operatorname{Re}\left(\frac{3 \zeta^{\prime}(\sigma)}{\zeta(\sigma)}+\frac{4 \zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}\right) \\
= & \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}}(3+4 \cos (t \log n)+\cos (2 t+\log n)) \geq 0
\end{aligned}
$$

7.2 Non-vanishing of $\zeta(s)$ on $\operatorname{Re} s=1$

Theorem 7.3. We have $\zeta(1+i t) \neq 0$ for any $t \in \mathbb{R}$.
Proof. Suppose on the contrary that $\zeta(1+i t)=0$ for some $t \in \mathbb{R}$. Then $t \neq 0$ since $s=1$ is a pole of $\zeta(s)$. We consider the behaviour of

$$
\frac{3 \zeta^{\prime}(\sigma)}{\zeta(\sigma)}+\frac{4 \zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}
$$

as $\sigma \rightarrow 1^{+}$.
Since $s=1$ is a simple pole of $\zeta(s)$, we have

$$
\frac{\zeta^{\prime}(\sigma)}{\zeta(\sigma)}=-\frac{1}{\sigma-1}+O(1)
$$

as $\sigma \rightarrow 1^{+}$. Suppose $s=1+i t$ is a zero of $\zeta(s)$ of order k. Then we have

$$
\frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}=\frac{k}{\sigma-1}+O(1)
$$

as $\sigma \rightarrow 1^{+}$. Finally, we do not know whether $s=1+2 i t$ is a zero of $\zeta(s)$ or not. But anyway we have

$$
\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}=\frac{l}{\sigma-1}+O(1)
$$

for some non-negative integer l.
Therefore, as $\sigma \rightarrow 1^{+}$, we have

$$
\frac{3 \zeta^{\prime}(\sigma)}{\zeta(\sigma)}+\frac{4 \zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}=\frac{l+4 k-3}{\sigma-1}+O(1)
$$

But $l+4 k-3 \geq 4-3 \geq 1$. So we have

$$
-\operatorname{Re}\left(\frac{3 \zeta^{\prime}(\sigma)}{\zeta(\sigma)}+\frac{4 \zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}\right) \rightarrow+\infty
$$

as $\sigma \rightarrow 1^{+}$. This contradicts Theorem 7.2.
Actually, Theorem 7.3 is sufficient for proving the prime number theorem. However, in order to not make the proof too technical, we choose to give a quantitative version of Theorem 7.3.

7.3 Lower bound for $\zeta(s)$ near $\operatorname{Re} s=1$

We first prove a variant of Theorem 7.2.
Theorem 7.4. For $s=\sigma+$ it with $\sigma>1, t \neq 0$, we have

$$
\zeta^{3}(\sigma)|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1
$$

Proof. The conclusion is equivalent to

$$
\operatorname{Re}\{3 \log \zeta(\sigma)+4 \log \zeta(\sigma+i t)+\zeta(\sigma+2 i t)\} \geq 0
$$

By Taylor's expansion, for $\sigma>1$, we have

$$
\begin{aligned}
\log \zeta(\sigma) & =\log \prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=-\sum_{p} \log \left(1-\frac{1}{p^{s}}\right) \\
& =-\sum_{p} \sum_{k=1}^{\infty}(-1)^{k+1}\left(-\frac{1}{p^{s}}\right)=\sum_{p} \sum_{k=1}^{\infty} \frac{1}{p^{k s}} \\
& =\sum_{n=1}^{\infty} \frac{c_{n}}{n^{s}}
\end{aligned}
$$

where

$$
c_{n}= \begin{cases}1, & n \text { is a prime power } \\ 0, & \text { otherwise }\end{cases}
$$

Since c_{n} is non-negative, we can use the same argument as that of Theorem 7.2.
Now we can prove the key theorem of this chapter:

Theorem 7.5. There exists a constant $c>0$ such that

$$
|\zeta(s)| \gg \log ^{-7}(|t|+2)
$$

whenever

$$
1-\frac{c}{\log ^{9}(|t|+2)}<\sigma<1 .
$$

Proof. Since $\zeta(1)=\infty$, we can assume that $|t| \neq 0$. Moreover, for $0<|t| \ll 1$, the conclusion is trivial. So we can assume $|t| \geq 100$. Now we fix t. We first consider $s_{1}=\sigma_{1}+i t$ with

$$
\sigma_{1}=1+\frac{c}{\log ^{9}(|t|+2)},
$$

where $c>0$ is sufficiently small. By Corollary 6.8, we have

$$
\begin{aligned}
\zeta\left(\sigma_{1}\right) & =\frac{1}{\sigma_{1}-1}+O(\log (|t|+2)) \ll \log ^{9}(|t|+2) \\
\zeta\left(\sigma_{1}+2 i t\right) & =\frac{1}{\sigma_{1}+2 i t-1}+O(\log (|t|+2)) \ll \log (|t|+2) .
\end{aligned}
$$

So by Theorem 7.4, we have

$$
\left|\zeta\left(\sigma_{1}+i t\right)\right| \geq \zeta\left(\sigma_{1}\right)^{-\frac{3}{4}}\left|\zeta\left(\sigma_{1}+2 i t\right)\right|^{-\frac{1}{4}} \gg \log ^{-7}(|t|+2)
$$

Now we consider $\zeta\left(\sigma_{2}+i t\right)$ where

$$
\sigma_{2}=1-\frac{c}{\log ^{9}(|t|+2)} .
$$

Since $\left|\zeta^{\prime}(\sigma+i t)\right| \ll \log ^{2}(|t|+2)$ for $\sigma_{1}<\sigma<\sigma_{2}$ (Corollary 6.8), by the mean value theorem, we still have

$$
\left|\zeta\left(\sigma_{2}+i t\right)\right| \gg \log ^{-7}(|t|+2)
$$

provided that c is sufficiently small.
Corollary 7.6. The function $\zeta^{\prime}(s) / \zeta(s)$ is holomorphic in the region

$$
1-\frac{c}{\log ^{9}(|t|+2)}<\sigma<1, \quad|t| \geq 2
$$

Furthermore, in this region, we have

$$
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right| \ll \log ^{9}(|t|+2)
$$

Proof. It follows from Corollary 6.8 and Theorem 7.5.

7.4 The prime number theorem

Now we can prove the prime number theorem.
Theorem 7.7 (The prime number theorem). For $x \geq 2$, we have

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)=x+O\left(x \exp \left(-c(\log x)^{1 / 10}\right)\right)
$$

for some $c>0$.
Proof. Recall the effective Perron formula (Theorem 5.11):

$$
\sum_{n \leq x} \Lambda(n)=\frac{1}{2 \pi i} \int_{a-i T}^{a+i T}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s+O\left(\frac{x A(x) \log x}{T}\right)+O\left(\frac{x^{a} B(a)}{T}\right)
$$

where

$$
A(x)=\max _{x / 2 \leq n \leq 3 x / 2} \Lambda(n), \quad B(\sigma)=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma}}=-\frac{\zeta^{\prime}(\sigma)}{\zeta(\sigma)} .
$$

Let $2 \leq T \leq x$ be a parameter specified later. We choose

$$
a=1+\frac{c}{\log ^{9} T}
$$

where $c>0$ is the constant in Theorem 7.5 and Corollary 7.6. With this choice of a, we have

$$
\frac{x^{a} B(a)}{T} \ll \frac{x \log ^{9} T}{T} \exp \left(c \frac{\log x}{\log ^{9} T}\right)
$$

and trivially we have

$$
\frac{x A(x) \log x}{T} \ll \frac{x \log ^{2}}{T}
$$

Now we use Cauchy; s theorem to evaluate

$$
\frac{1}{2 \pi i} \int_{a-i T}^{a+i T}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s
$$

Let

$$
b=1-\frac{c}{\log ^{9} T}
$$

We move the contour to $T_{1} \cup T_{2} \cup T_{3}$ where

$$
T_{1}=[a-i T, b-i T], \quad T_{2}=[b-i T, b+i T], \quad T_{3}=[b+i T, a+i T] .
$$

By Corollary 7.6, the only pole in this region is at $s=1$ with the residue

$$
\operatorname{Res}_{s=1}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s}=\lim _{s \rightarrow 1}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) x^{s}=x
$$

So we have

$$
\frac{1}{2 \pi i} \int_{a-i T}^{a+i T}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s=x+\frac{1}{2 \pi i}\left\{\int_{T_{1}}+\int_{T_{2}}+\int_{T_{3}}\right\}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s
$$

Now x is the desired main term, so it remains to estimate the three integrals:

- On $T_{1} \cup T_{2}$, we have

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)} \frac{x^{s}}{s} \ll \frac{x \log ^{9} T}{T} \exp \left(c \frac{\log x}{\log ^{9} T}\right)
$$

and

$$
\left|T_{1}\right|+\left|T_{3}\right| \ll \frac{1}{\log ^{9} T} .
$$

So

$$
\left\{\int_{T_{1}}+\int_{T_{3}}\right\}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s \ll \frac{x}{T} \exp \left(c \frac{\log x}{\log ^{9} T}\right) .
$$

- For the integral on T_{2}, since now

$$
\sigma=b=1-\frac{c}{\log ^{9} T}
$$

we have

$$
\left|x^{s}\right|=x \exp \left(-c \frac{\log x}{\log ^{9} T}\right) .
$$

Therefore,

$$
\begin{aligned}
\int_{T_{2}}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \frac{x^{s}}{s} \mathrm{~d} s & \ll x \log ^{9} T \exp \left(-c \frac{\log x}{\log ^{9} T}\right) \int_{1 / 2}^{T} \frac{\mathrm{~d} t}{t} \\
& \ll x \log ^{10} T \exp \left(-c \frac{\log x}{\log ^{9} T}\right)
\end{aligned}
$$

In summary, we have shown that

$$
\begin{aligned}
\psi(x)=x & +O\left(\frac{x \log ^{2} x}{T}\right)+O\left(x \log ^{10} T \exp \left(-c \frac{\log x}{\log ^{9} T}\right)\right) \\
& +O\left(\frac{x \log ^{9} T}{T} \exp \left(c \frac{\log x}{\log ^{9} T}\right)\right) .
\end{aligned}
$$

Now we specify T by $\log ^{10} T=\log x$, i.e.

$$
T=\exp \left((\log x)^{1 / 10}\right)
$$

Note that this quantity is larger than any power of $\log x$ but is smaller than any power of x. So $\log x$ can be absorbed by $\exp \left(\alpha(\log x)^{1 / 10}\right)$ for any $\alpha>0$. Therefore, with this choice of T, the above error terms can be estimated as follows:

- $\frac{x \log ^{2}}{T}=x \log ^{2} \exp \left(-(\log x)^{1 / 10}\right) \ll x \exp \left(-\frac{1}{2}(\log x)^{1 / 10}\right)$.
- $x \log ^{10} T \exp \left(-c \frac{\log x}{\log ^{9} T}\right)=x \log x \exp \left(-c(\log x)^{1 / 10}\right) \ll x \exp \left(-\frac{c}{2}(\log x)^{1 / 10}\right)$.
- $\frac{x \log ^{9} T}{T} \exp \left(c \frac{\log x}{\log ^{9} T}\right) \ll x \log x \exp \left((c-1)(\log x)^{1 / 10}\right)$.

We can assume that $c<1$ (since Theorem 7.5 and Corollary 7.6 clearly hold for smaller c), so the last quantity is

$$
\ll x \exp \left(-c^{\prime}(\log x)^{1 / 10}\right)
$$

with $c^{\prime}=(1-c) / 2$.
Remark. The key point in the identity

$$
3+4 \cos \theta+\cos 2 \theta \geq 0
$$

is $3<4$. By replacing this by other trigonometric identities, we may obtain a better error term in the prime number theorem. However, our method can not get a zero-free region larger than

$$
1-\frac{c}{\log ^{2}(|t|+2)}<\sigma<1
$$

because we have used the mean value theorem and the growth rating of $\zeta^{\prime}(s)$ is $\log ^{2}|t|$. One may check that this means we could not get an error term better that $O\left(x \exp \left(-c(\log x)^{1 / 3}\right)\right)$ via this method.

