Chapter 7

The prime number theorem

In this section, we prove the prime number theorem (Theorem ) The key to the
proof is to show that ((s) has no zero on Res = 1.

7.1 An elementary identity
We begin with an elementary identity.
Lemma 7.1. For any 0 € R, we have

3+4cosf + cos20 > 0.

Proof. We have
3+ 4cosf + cos20 =2(1 +cosf)* >0

O
Theorem 7.2. For s = o + it with o > 1, t # 0, we have
Re 3¢ (o) N 4¢' (o —l—'z't) N (o + 2@)) >
C(o) C(o+1it) C(o + 2it)
Proof. We have
C o+ Zt —ztlo n =
_Refa—i—zt Zna+zt Z & Z cos (tlogn).

=1 n=1 n=1
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So by Lemma @,

4(’ o+it) ('(o+ 2it)
< C(o +1it) * g(a+2z't))

A
Z () (3+ 4 cos (tlogn) + cos (2t +logn)) > 0.
nO'

n=1

7.2 Non-vanishing of ((s) on Res =1

Theorem 7.3. We have ((1 +it) # 0 for any t € R.

Proof. Suppose on the contrary that ((1 + it) = 0 for some ¢t € R. Then ¢ # 0 since
s =1 is a pole of ((s). We consider the behaviour of
3¢'(o) A (o +it)  ('(o+ 2it)
¢(o) C(o +it) C(o + 2it)

as o — 17,
Since s = 1 is a simple pole of ((s), we have
('(o) 1
= — O(1
¢(o) o—1 +0(1)

as 0 — 11. Suppose s = 1 + it is a zero of ((s) of order k. Then we have

((o+it)  k
((o+it) o—1

+0(1)

as 0 — 17. Finally, we do not know whether s = 1+ 2it is a zero of ((s) or not. But
anyway we have
('(o+2it) 1
Clo+2it)  o—1
for some non-negative integer [.
Therefore, as o — 17, we have

+0(1)

3¢'(0)  4l'(o+it) (o +2it) 1+4k—3
(o) Clo+it)  ((o+2it)  o-—1

+0(1).
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Butl+4k—-3>4—3 > 1. So we have

p (K)o i) | Clo+2it) N
t (<<a> MNCET) +¢<a+2it>>%+

as 0 — 17. This contradicts Theorem @ O

Actually, Theorem @ is sufficient for proving the prime number theorem. How-
ever, in order to not_make the proof too technical, we choose to give a quantitative
version of Theorem [7.3.

7.3 Lower bound for ((s) near Res =1
We first prove a variant of Theorem @
Theorem 7.4. For s = o + it with o > 1, t # 0, we have
CHo)l¢(o + i) C(o + 2it)] > 1.
Proof. The conclusion is equivalent to
Re {3log((0) +4log ((o +it) + ((o + 2it)} > 0.

By Taylor’s expansion, for o > 1, we have

-1

log¢(0) =log ] | <1 - pi) =2 log (1 - pi)
=Ty () -TY

p k=1 p k=1
00
Cn
T Ly
n=1

where
{1, n is a prime power,
Cp =

0, otherwise.
Since ¢, is non-negative, we can use the same argument as that of Theorem @ [

Now we can prove the key theorem of this chapter:
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Theorem 7.5. There exists a constant ¢ > 0 such that
C(s)] > log™" (|t| +2)

whenever c

l——F——7— <
log”(|t] +2)
Proof. Since ((1) = oo, we can assume that |t| # 0. Moreover, for 0 < |t| < 1, the

conclusion is trivial. So we can assume [t| > 100. Now we fix t. We first consider
$1 = o1 + it with

o < 1.

c

14—
log” (|t + 2)

where ¢ > 0 is sufficiently small. By Corollary 6.8, we have

o1 =

((01) = ——— + O (o[t + 2)) < log’ ([ + 2)

1
%NNt) = —
(o1 +2it) o+ 2it — 1

So by Theorem @, we have

+ O (log([t] + 2)) < log(|t] +2).

(o1 +it)] > C(00) "7 |C(oy + 2it)| 75 > log T ([t] + 2).

Now we consider ((o9 + it) where

C

gg=1—— "
2 logg(\tl +2)

Since |¢'(0 + it)| < log?(|t| + 2) for o1 < o < oy (Corollary @), by the mean value
theorem, we still have
¢z + it)] > log ™ (|t] +2)

provided that c is sufficiently small. ]
Corollary 7.6. The function ('(s)/((s) is holomorphic in the region

c
1 - -
log”([t] +2)
Furthermore, in this region, we have
¢'(s)
¢(s)
Proof. 1t follows from Corollary @ and Theorem @ O

<o<l, [t>2

< log?(1] +2)



7.4. THE PRIME NUMBER THEOREM 7

7.4 The prime number theorem

Now we can prove the prime number theorem.

Theorem 7.7 (The prime number theorem). For z > 2, we have

P(x) = Z Aln) =240 (33 exp (—C(IOg x)l/lO))

n<x
for some ¢ > 0.

Proof. Recall the effective Perron formula (Theorem ):

- (55)Foeo(45) o (42

Ar)= max A(m), Blo)=3 2 _ @

/2<n<3z/2 ne ¢(o)

Let 2 < T < x be a parameter specified later. We choose

n=1

where ¢ > 0 is the constant in Theorem @ and Corollary @ With this choice of
a, we have

*Bla) _ xlog’ T log x
T < T exp Clogg T

and trivially we have

zA(z)lo log?
(z)logz  zlog”

T T
Now we use Cauchy;s theorem to evaluate

1 a+iT (_C/(S>> x_sds

2mi a—iT C(s) /) s

Let
c

b=1— ——.
log” T
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We move the contour to 77 U Ty U T3 where
Ty =la—1iT,b—iT], To=1[b—iT,b+iT], T3=1[b+iT,a+iT].

By Corollary @, the only pole in this region is at s = 1 with the residue

e ()% ()
So we have
g@) 7 g,

sl (Ca) T { L L LR

Now x is the desired main term, so it remains to estimate the three integrals:

e On Ty UT,, we have

C('(s)x®  wlog’T log
(s o1 P\ T
and

Ty + | T3] <

log” T

U L) T o< fom (i)

o For the integral on 75, since now

pobo1- S
log™ T
we have
2] ( log x )
x| =xexp | —c .
P log” T
Therefore,

' s 1 Tat
/ (—C (S)) L ds <xlog? T exp (—c%) / —
T ((s)) s log”T' ) Jij2 1

log x
<zlog Texp | —c—2— ) .
xXr g Xp< cloggT)
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In summary, we have shown that

2
Y(x) =2+ 0O (IlOTg x) +0 (xlongexp <—c log @ ))

log® T
zlog” T log x
O .
ro (Bt (CloggT»

Now we specify T by log!® T = log z, i.e.
T = exp ((log $)1/10) .

Note that this quantity is larger than any power of logx but is smaller than any
power of z. So logz can be absorbed by exp (a(log z)"/!°) for any a > 0. Therefore,
with this choice of T', the above error terms can be estimated as follows:

log? 1
.z ;g = zlog® exp(—(log 2)*/1%) <« zexp (—E(log x)l/lo).
|
« zlog"’ T exp <_Cl Ogng) = zlogzexp (—c(logz)/!’) < wexp (—g(log :z:)l/m).
0og

zlog” T log x 1
. 1 —1)(1 /10y,
T eXP (CloggT) < xlogxexp ((c )(log x) )

We can assume that ¢ < 1 (since Theorem @ and Corollary @ clearly hold for
smaller ¢), so the last quantity is

< wexp (= (log )10
with ¢ = (1 —¢)/2. O
Remark. The key point in the identity

3+4cosf +cos20 >0

is 3 < 4. By replacing this by other trigonometric identities, we may obtain a
better error term in the prime number theorem. However, our method can not get a
zero-free region larger than

c
1
log?(|t| + 2)

because we have used the mean value theorem and the growth rating of ('(s) is
log? |t|. One may check that this means we could not get an error term better that
O(z exp(—c(log x)'/3)) via this method.

<o<1
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