Homework 7

(due Friday, May 5, 2023)

- 1. Let $v_p(x)$ be the *p*-adic valuation of $x \in \mathbb{Q}_p$.
 - 1). Show that if $v_p(x) \neq v_p(y)$,

$$v_p(x+y) = \inf(v_p(x), v_p(y)).$$

- 2). Show that every triangle is isosceles in \mathbb{Q}_p .
- 2. 1). Let p be a prime number and $q \in \mathbb{Q}$ with $v_p(q) \ge 1$. Show that

$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$$

in \mathbb{Q}_p .

- 2). Find the inverse of 6 in \mathbb{Z}_5 .
- 3. 1). Find a sequence $\{x_n\}$ in \mathbb{Q} such that $x_n \to 1$ in \mathbb{R} but $x_n \to 0$ in \mathbb{Q}_2 .
 - 2). Find a sequence $\{x_n\}$ in \mathbb{Q} such that $x_n \to 1$ in \mathbb{Q}_3 but $x_n \to 0$ in \mathbb{Q}_2 .
- 4. 1). Show that -1 is a square in \mathbb{Q}_p if and only if $p \equiv 1 \mod 4$.
 - 2). Show that -2 is a square in \mathbb{Q}_p if and only if $p \equiv 1, 3 \mod 8$.
 - 3). Show that $x^2 + y^2 + z^2 = -2$ is solvable in \mathbb{Q}_p for every prime p.
- 5. Let $p \neq 2$. Show that there are only 3 quadratic extensions (up to an isomorphism) of \mathbb{Q}_p .