Homework 7

(due Friday, May 5, 2023)

1. Let $v_{p}(x)$ be the p-adic valuation of $x \in \mathbb{Q}_{p}$.
1). Show that if $v_{p}(x) \neq v_{p}(y)$,

$$
v_{p}(x+y)=\inf \left(v_{p}(x), v_{p}(y)\right) .
$$

2). Show that every triangle is isosceles in \mathbb{Q}_{p}.
2. 1). Let p be a prime number and $q \in \mathbb{Q}$ with $v_{p}(q) \geq 1$. Show that

$$
\sum_{i=0}^{\infty} q^{i}=\frac{1}{1-q}
$$

in \mathbb{Q}_{p}.
2). Find the inverse of 6 in \mathbb{Z}_{5}.
3. 1). Find a sequence $\left\{x_{n}\right\}$ in \mathbb{Q} such that $x_{n} \rightarrow 1$ in \mathbb{R} but $x_{n} \rightarrow 0$ in \mathbb{Q}_{2}.
2). Find a sequence $\left\{x_{n}\right\}$ in \mathbb{Q} such that $x_{n} \rightarrow 1$ in \mathbb{Q}_{3} but $x_{n} \rightarrow 0$ in \mathbb{Q}_{2}.
4. 1). Show that -1 is a square in \mathbb{Q}_{p} if and only if $p \equiv 1 \bmod 4$.
2). Show that -2 is a square in \mathbb{Q}_{p} if and only if $p \equiv 1,3 \bmod 8$.
3). Show that $x^{2}+y^{2}+z^{2}=-2$ is solvable in \mathbb{Q}_{p} for every prime p.
5. Let $p \neq 2$. Show that there are only 3 quadratic extensions (up to an isomorphism) of \mathbb{Q}_{p}.

