董人豪
教授
所属院部: 化学与化工学院
访问次数:
基本信息
  • 教师拼音名称:
    Dong Renhao
  • 电子邮箱:
    renhaodong@sdu.edu.cn
  • 所在单位:
    化学与化工学院
  • 学历:
    研究生(博士)毕业
  • 办公地点:
    中心校区生科北楼547
  • 性别:
  • 学位:
    理学博士学位
  • 在职信息:
    在职
  • 毕业院校:
    山东大学
  • 博士生导师
  • 硕士生导师
科研成果
论文

1.  On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks.  Nature Synthesis,  10.1038/s44160-024-00513-9, 2024. 

2.  Benzenehexol-Based 2D Conjugated Metal–Organic Frameworks with Kagome Lattice Exhibiting a Metallic State.  Advanced Functional Materials,  2404680, 2024. 

3.  Control of the Hydroquinone/Benzoquinone Redox State in High‐Mobility Semiconducting Conjugated Coordination Polymers.  Angew. Chem. Int. Ed.,  e202320091, 2024. 

4.  On-Water Surface Synthesis of Vinylene-Linked Cationic Two- Dimensional Polymer Films as the Anion-Selective Electrode Coating.  Angew. Chem. Int. Ed.,  e202316299, 2024. 

5.  A Cu3BHT‐Graphene van der Waals Heterostructure with Strong Interlayer Coupling for Highly Efficient Photoinduced Charge Separation.  Adv. Mater.,  2311454, 2024. 

6.  Controlling Film Formation and Host‐Guest Interactions to Enhance the Thermoelectric Properties of Nickel‐Nitrogen‐Based Two‐Dimensional Conjugated Coordination Polymers.  Adv. Mater.,  2312325, 2024. 

7.  Tunable Charge Transport and Spin Dynamics in Two-Dimensional Conjugated Metal–Organic Frameworks.  J. Am. Chem. Soc.,  146,  2574-2582, 2024. 

8.  Site-selective chemical reactions by on-water surface sequential assembly.  Nat. Commun.,  14,  8313, 2023. 

9.  A General Synthesis of Nanostructured Conductive MOFs from Insulating MOF Precursors for Supercapacitors and Chemiresistive Sensors.  Angew. Chem. Int. Ed.,  e202313591, 2023. 

10.  Poly (benzimidazobenzophenanthroline)‐Ladder‐Type Two‐Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage.  Angew. Chem. Int. Ed.,  e202310937, 2023. 

11.  Wavy Two-Dimensional Conjugated Metal–Organic Framework with Metallic Charge Transport.  J. Am. Chem. Soc.,  145,  23630–23638, 2023. 

12.  Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties.  Nature Protocols,  18,  2459–2484, 2023. 

13.  A Quasi-2D Polypyrrole Film with Band-Like Transport Behavior and High Charge-Carrier Mobility.  Adv. Mater.,  2303288, 2023. 

14.  Poly(benzimidazobenzophenanthroline)-Ladder-Type Two-Dimensional Conjugated Covalent Organic Framework for Fast Proton Storage.  Angew. Chem. Int. Ed.,  e202310937, 2023. 

15.  Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer.  Nat. Commun.,  14,  3850, 2023. 

16.  Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers.  Nature Materials,  22,  880-887, 2023. 

17.  Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks.  Nat. Commun.,  13,  7240, 2022. 

18.  Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis (dithiolene) Linkages.  J. Am. Chem. Soc.,  2023. 

19.  Near IR bandgap semiconducting 2D conjugated metal‐organic framework with rhombic lattice and high mobility.  Angew. Chem. Int. Ed.,  e202300186, 2023. 

20.  Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries.  Nat. Commun.,  14,  760, 2023. 

21.  Semiconducting Conjugated Coordination Polymer with High Charge Mobility Enabled by “4+ 2” Phenyl Ligands.  J. Am. Chem. Soc.,  145,  2430-2438, 2023. 

22.  Chemical Vapor Deposition and High-Resolution Patterning of a Highly Conductive Two-Dimensional Coordination Polymer Film.  J. Am. Chem. Soc.,  145,  152-159, 2022. 

23.  sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation.  Angew. Chem. Int. Ed.,  61,  e202208163, 2022. 

24.  Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion.  Nat. Commun.,  13,  3935, 2022. 

25.  Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films.  Nat. Commun.,  13,  3948, 2022. 

26.  Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Opto-)electronics.  Small Structures,  3,  2100210, 2022. 

27.  Two-dimensional conjugated metal–organic frameworks for electrocatalysis: opportunities and challenges.  ACS Nano,  16,  1759–1780, 2022. 

28.  On-water surface synthesis of charged two dimensional polymer single crystals via the irreversible Katritzky reaction.  Nature Synthesis,  1,  69-76, 2022. 

29.  Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-based Two-Dimensional Conjugated Co-valent Organic Frameworks.  J. Am. Chem. Soc.,  143,  19992–20000, 2021. 

30.  Mass Transfer in Boronate Ester 2D COF Single Crystals.  Small,  17,  2104392, 2021. 

31.  Viologen-Immobilized Two-Dimensional Polymer Film Enabling Highly Efficient Electrochromic Device for Solar-Powered Smart Window.  Adv. Mater.,  34,  2106073, 2021. 

32.  Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer.  Chem,  7,  2758-2770, 2021. 

33.  Band-Like Charge Transport in Phytic Acid-Doped Polyaniline Thin Films.  Adv. Funct. Mater.,  31,  2105184, 2021. 

34.  Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal–Organic Framework Films toward Directional Charge Transport.  J. Am. Chem. Soc.,  143,  13624–13632, 2021. 

35.  Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window.  J. Am. Chem. Soc.,  143,  10168-10176, 2021. 

36.  Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes.  J. Am. Chem. Soc.,  144,  9101–9112, 2021. 

37.  Surface‐Modified Phthalocyanine‐Based Two‐Dimensional Conjugated Metal‐Organic Framework Films for Polarity‐Selective Chemiresistive Sensing.  Angew. Chem. Int. Ed.,  60,  18666-18672, 2021. 

38.  A Two‐Dimensional Polyimide‐Graphene Heterostructure with Ultra‐fast Interlayer Charge Transfer.  Angew. Chem. Int. Ed.,  60,  13859-13864, 2021. 

39.  Making large single crystals of 2D MOFs.  Nature Materials,  20,  122-123, 2021. 

40.  Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics.  Chem. Soc. Rev.,  50,  2764-2793, 2021. 

41.  High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with p-Type Doping.  J. Am. Chem. Soc.,  142,  21622-21627, 2020. 

42.  Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer.  Sci. Adv.,  6,  eabb5976, 2020. 

43.  Electronic Devices Using Open Framework Materials.  Chem. Rev.,  120,  8581-8640, 2020. 

44.  Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications.  J. Am. Chem. Soc.,  142,  12903–12915, 2020. 

45.  Phthalocyanine‐Based 2D Conjugated Metal‐Organic Framework Nanosheets for High‐Performance Micro‐Supercapacitors.  Adv. Func. Mater.,  30,  2002664, 2020. 

46.  Two-Dimensional Conjugated Polymer Films via Liquid-Interface-Assisted Synthesis toward Organic Electronic Devices.  J. Mater. Chem. C,  8,  10696-10718, 2020. 

47.  Ultrathin Two-Dimensional Conjugated Metal-Organic Framework Single-Crystalline Nanosheets Enabled by Surfactant-Assisted Synthesis.  Chem. Sci.,  11,  7665-7671, 2020. 

48.  Synergistic Electroreduction of Carbon Dioxide to Carbon Monoxide on Bimetallic Layered Conjugated Metal-Organic Frameworks.  Nat. Commun.,  11,  1409, 2020. 

49.  Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for Neuromorphic Memory Device.  Angew. Chem. Int. Ed.,  132,  8295-8301, 2020. 

50.  Demonstration of a Broadband Photodetector Based on a Two-Dimensional Metal-Organic Framework.  Adv. Mater.,  32,  1907063, 2020. 

51.  Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis.  Angew. Chem. Int. Ed.,  59,  6028-6036, 2020. 

52.  Fully Conjugated Phthalocyanine Copper Metal–Organic Frameworks for Sodium–Iodine Batteries with Long-Time-Cycling Durability.  Adv. Mater.,  32,  1905361, 2019. 

53.  Unveiling Electronic Properties in Metal-Phthalocyanine-based Pyrazine-linked Conjugated Two-Dimensional Covalent Organic Frameworks.  J. Am. Chem. Soc.,  141,  16810–16816, 2019. 

54.  On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers.  Nature Chemistry,  11,  994-1000, 2019. 

55.  Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances.  Nat. Commun.,  10,  4225, 2019. 

56.  A semiconducting layered metal-organic framework magnet.  Nat. Commun.,  10,  3260, 2019. 

57.  Phthalocyanine-based Layered Two-Dimensional Conjugated Metal-Organic Framework as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction.  Angew. Chem. Int. Ed.,  58,  10677-10682, 2019. 

58.  High-Mobility Band-Like Charge Transport in a Semiconducting Two-Dimensional Metal-Organic Framework.  Nature Materials,  17,  1027-1032, 2018. 

59.  A Coronene-Based Semiconducting Two-Dimensional Metal-Organic Framework with Ferromagnetic Behavior.  Nat. Commun.,  9,  2637, 2018. 

60.  Liquid-Interface-Assisted Synthesis of Covalent- and Metal-Organic Two-Dimensional Crystalline Polymers.  npj 2D Materials and Applications,  2,  26, 2018. 

61.  Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.  Chem. Rev.,  118,  6189–6235, 2018. 

62.  Ultrafast Delamination of Graphite into High‐Quality Graphene Using Alternating Currents.  Angew. Chem. Int. Ed.,  56,  6669-6675, 2017. 

63.  Coordination Polymer Framework Based On‐Chip Micro‐Supercapacitors with AC Line‐Filtering Performance.  Angew. Chem. Int. Ed.,  56,  3920-3924, 2017. 

64.  Persulfurated Coronene: A New Generation of “Sulflower”.  J. Am. Chem. Soc.,  139,  2168–2171, 2017. 

65.  Stimulus‐Responsive Micro‐Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window.  Adv. Mater.,  29,  1604491, 2016. 

66.  Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness.  Nat. Commun.,  7,  13461, 2016. 

67.  Immobilizing Molecular Metal Dithiolene–Diamine Complexes on 2D Metal–Organic Frameworks for Electrocatalytic H2 Production.  Chem. Eur. J.,  23,  2255-2260, 2016. 

68.  Two-Dimensional Mesoscale-Ordered Conducting Polymers.  Angew. Chem. Int. Ed.,  55,  12516 –12521, 2016. 

69.  Dual‐Template Synthesis of 2D Mesoporous Polypyrrole Nanosheets with Controlled Pore Size.  Adv. Mater.,  28,  8365-8370, 2016. 

70.  Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall‐Water‐Splitting Activity.  Angew. Chem. Int. Ed.,  55,  6702-6707, 2016. 

71.  Ultraflexible in‐plane micro‐supercapacitors by direct printing of solution‐processable electrochemically exfoliated graphene.  Adv. Mater.,  28,  2217-2222, 2016. 

72.  Free-standing monolayer two-dimensional supramolecular organic framework with good internal order.  J. Am. Chem. Soc.,  137,  14525–14532, 2015. 

73.  Hierarchical Transition‐Metal Dichalcogenide Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution.  Adv. Mater.,  27,  7426-7431, 2015. 

74.  Controlled Synthesis of N‐Doped Carbon Nanospheres with Tailored Mesopores through Self‐Assembly of Colloidal Silica.  Angew. Chem. Int. Ed.,  54,  15191-15196, 2015. 

75.  Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene..  J. Am. Chem. Soc.,  137,  13927–13932, 2015. 

76.  Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution.  Nat. Commun.,  6,  7992, 2015. 

77.  Large‐area, free‐standing, two‐dimensional supramolecular polymer single‐layer sheets for highly efficient electrocatalytic hydrogen evolution.  Angew. Chem. Int. Ed.,  54,  12058-12063, 2015. 

78.  Transparent conductive electrodes from graphene/PEDOT: PSS hybrid inks for ultrathin organic photodetectors.  Adv. Mater.,  27,  669-675, 2014. 

团队成员
团队名称:
功能界面与高分子材料 (FILM)
团队介绍:
团队目前包括1名教授、1名副研究员、1名高级实验员、1名行政秘书、3名博士后、3名科研助理、3名博士、9名硕士和8名本科生。
团队成员:
授课信息
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室