本人的专业方向主要是计算机代数(Computer Algebra)。计算机代数在很多时候又被理解为“符号计算”(Symbolic Computation),是与“数值计算”(Numerical Computation)相对的概念。主要是利用计算机的智能化计算。研究的对象是整数,有理数,实数和复数,或者是多项式,函数,以及集合,群,环,代数等等。利用计算机代数,可以对一些代数方程组进行精确的求解,对多项式进行因子分解,对复杂代数表达式进行化简规约,对函数进行符号积分(求出原函数),对微分方程求出精确解等等。
1. 黄巧龙. A New Sparse Polynomial GCD by Separating Terms .2024
2. 黄巧龙. New Sparse Multivariate Polynomial Factorization Algorithms over Integers .2023 :315-324
3. 黄巧龙. Skew-polynomial-sparse matrix multiplication .JOURNAL OF SYMBOLIC COMPUTATION.2024,121
4. . Sparse multiplication for skew polynomials .2020
5. . Sparse Multiplication of Multivariate Linear Differential Operators .2021
7. Sparse Polynomial Interpolation over Fields with Large or Zero Characteristic. .ISSAC.2019
9. Sparse polynomial interpolation based on diversification .Science China Mathematics.2020
10. Mark Giesbrecht. Sparse multiplication for skew polynomials .2020
11. Mark Giesbrecht. Sparse Multiplication of Multivariate Linear Differential Operators .2021