集成电路学院副院长 山东省海外优青、山东省高层次人才、山东省海外科技人才、齐鲁青年学者
E-Mail: Hu.Li@sdu.edu.cn
李虎,无党派人士,教授、博士生导师,山东大学集成电路学院副院长,山东大学党外知识分子联谊会理事,教育部集成电路领域“101计划”建设委员会委员兼山东大学负责人,本科及硕士毕业于山东大学,博士毕业于瑞典乌普萨拉大学(软科世界大学排名第67位),之后在英国曼彻斯特大学(软科世界大学排名第33位)电子工程学院与国家石墨烯研究院(石墨烯发源地)继续博士后研究工作。2019年荣获“瑞典国家研究理事会(VR-Formas)青年学者”称号,同时被瑞典乌普萨拉大学Ångström国家实验室(Ångström为原子半径标准单位Å(埃)命名人)聘为终身职位研究员、副教授(Docent)、课题组长(PI)、博士生导师。由于领域内突出贡献,荣获2020年瑞典"I. Bergh奖"。2020年全职加入山东大学集成电路学院任教授、博士生导师,先后荣获山东省海外优青、“齐鲁青年学者”、山东省高层次人才、山东省海外科技人才、苏州创新创业领军人才等荣誉,并在2024年荣获“Wiley中国卓越青年学者”,目前担任教育部重大专项专家库专家、英国皇家化学协会(RSC)评审委员会委员、中国电子信息材料与器件专家委员会委员、SCI期刊《Crystals》编辑、EI期刊《工程科学学报》编委等。主要研究领域为碳基微电子器件、高性能光电传感芯片、先进封装材料和技术等,目前已在Applied Physics Reviews、Nature Communications、Nano Letters、Nano Research等期刊发表学术论文100余篇,专利16项,参与编写海外出版书籍3部,主持科技部、瑞典国家研究理事会、省科技厅等国家级和省部级项目二十余项。
教授、博士生导师、山东大学集成电路学院 
研究员(终身职位)、副教授、博士生导师、瑞典乌普萨拉大学 
博士后、英国曼彻斯特大学 
博士后、瑞典乌普萨拉大学 
博士、瑞典乌普萨拉大学 
硕士、山东大学 
学士、山东大学 
Category | Major | Introduction | Number of People | Year |
---|---|---|---|---|
Doctoral admissions |
微电子、物理、材料、化学 |
2 |
2025 |
|
Master students recruit students |
微电子、物理、材料、化学 |
3 |
2025 |
Undergraduate Course Name | Semester | Credit | Course Number |
---|---|---|---|
先进集成电路芯片封装技术 |
Autumn Term |
2.0 |
1111 |
电路基础 |
Autumn Term |
2.0 |
sd04031210 |
微电子封装材料与工艺 |
Autumn Term |
2.0 |
SD04031020 |
纳米材料及技术在环境和能源中的应用 |
Autumn Term |
2.0 |
SQ0401155H |
微电子类前沿讲座 |
Autumn Term |
1.0 |
sd04030370 |
Name | Introduction |
---|---|
半导体石墨烯电子器件 |
|
高性能可见光和红外光电传感器 |
|
高热导率柔性散热薄膜和TIM散热材料 |
|
先进芯片封装技术 |
|
Project Name | Project Cycle |
---|---|
科技部GJWGZJ项目(G2022150007L连续资助),主持 |
|
科技部GJWGZJ项目(DL2021150001L;DL2023150002L,连续资助),主持 |
|
山东省海外优青项目(2022HWYQ-060),主持 |
|
山东省海外科技人才项目(******),主持 |
|
山东省自然科学基金青年项目(ZR2021QE148),主持 |
|
广东省科技厅国际科技合作项目(2023A0505050087),主持 |
|
广东省自然科学基金面上项目(2022A1515011473),主持 |
|
国家青年骨干教师项目(202106225039),主持 |
|
深圳市科创委面上项目(JCYJ20230807094119040),主持 |
|
“齐鲁青年学者”项目(11500082063141 ),主持 |
|
企业横向项目一(1500022012),主持 |
|
企业横向项目二(1500022006),主持 |
|
企业横向项目三(1500023003),主持 |
|
企业横向项目四(1500023013 ),主持 |
|
瑞典国家研究理事会(VR-Formas)青年学者项目(2019-01538),主持 |
|
瑞典Åforsk基金委员会青年科学家项目(20-280),主持 |
|
瑞典Olle Engkvist基金委员会科研探索项目(211-0068),主持 |
|
瑞典科研与教育国际合作基金会(STINT)国际合作项目(IB2020-8594),主持 |
【1】SAFIA KHAN.Promotional impact of RuO2 on CuO/Al2O3 bifunctional catalyst towards electro-oxidation of hydrazine and waterInternational journal of hydrogen energy,2024.
【2】叶晓玲.High performance self-powered photodetectors based on graphene nanoribbons/Al2O3/InGaZnO heterojunctionsIEEE Photonics Journal,2024.
【3】Ahmad, Awais.Synergic impact of renewable resources and advanced technologies for green hydrogen production: Trends and perspectivesInternational journal of hydrogen energy,2024.
【4】刘文成.Nitrogen-Doped Graphene Oxide Nanoribbon Supported Cobalt Oxide Nanoparticles as High-Performance Bifunctional Catalysts for Zinc–Air BatteryADVANCED ENERGY AND SUSTAINABILITY RESEARCH,2024.
【5】叶晓玲.Graphene nanoribbons/Ru as efficient cathodic catalysts for high-performance rechargeable Li–CO2 batteriesJournal of Materials Chemistry A,2024.
【6】王名扬.Tunable photoresponse properties of CuI/Si self-powered photodetectors through Zn doping engineeringApplied Surface Science,2024.
【7】J. Josphin Mini.Investigation of antimicrobial and anti-cancer activity of thermally sensitive SnO2 nanostructures with green-synthesized cauliflower morphology at ambient weather conditionsENVIRONMENTAL RESEARCH,2024.
【8】High-Performance Photodetectors Based on Semiconducting Graphene NanoribbonsNano Letters,2023.
【9】A Universal Approach to Determine the Atomic Layer Numbers in Two-Dimensional Materials Using Dark-Field Optical Contrast. Nano Letters, 23:9170,2023.
【10】Performance enhancement of solution-processed p-type CuI TFTs by self-assembled monolayer treatment. Applied Surface Science, 638,2023.
【11】Toward High-Peak-to-Valley-Ratio Graphene Resonant Tunneling Diodes. Nano Letters, 23:8132,2023.
【12】Kinetic and thermodynamic analysis of ammonia electro-oxidation over alumina supported copper oxide (CuO/Al2O3) catalysts for direct ammonia fuel cellsInternational Journal of Hydrogen Energy,2023.
【13】High-Performance Flexible Zinc-Air Batteries Enabled by a Sodium Polyacrylate-Based Gel Electrolyte Containing Graphene Oxide and Cellulose NanofibersEnergy & Fules,2023.
【14】Synergistic Electrochemical Properties of Graphene Incorporated LCZ-Oxide Cathode for Low Temperature Solid Oxide Fuel CellCrystals,2023.
【15】Observation of defect density dependent elastic modulus of grapheneApplied physics letters:53102,2023.
【16】Advances in the Field of Graphene-Based Composites for Energy–Storage ApplicationsCrystals,2023.
【17】Compressive behavior and vibration-damping properties of porous Ti-6Al-4V alloy manufactured by laser powder bed fusionJournal of Manufacturing Processes:1,2021.
【18】A graphene-nanoribbon-based thermoelectric generatorCARBON,2023.
【19】Advances in the Field of Two-Dimensional Crystal-Based PhotodetectorsNanomaterials,2023.
【20】Synergistic Electrochemical Properties of Graphene Incorporated LCZ-Oxide Cathode for Low Temperature Solid Oxide Fuel CellCrystals,2023.
【21】Ni-intercalated Mo2TiC2Tx free-standing MXene for excellent gravimetric capacitance prepared via electrostatic self-assembly. JOURNAL OF ENERGY STORAGE, 61,2023.
【22】Ag Nanoparticle-Decorated V2CTx MXene Nanosheets as Catalysts for Water SplittingACS Applied Nano Materials,2023.
【23】Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devicesnpj 2D Materials and Applications,2023.
【24】Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion. Journal of Materials Processing Technology, 299:117366,2021.
【25】Natural fibers and zinc hydroxystannate 3D microspheres based composite paper sheets for modern bendable energy storage applicationJOURNAL OF APPLIED POLYMER SCIENCE Journal,2022.
【26】Making monolayer graphene photoluminescent by electron-beam-assisted fluorination approachApplied Surface Science,2022.
【27】Towards ballistic transport CVD graphene by controlled removal of polymer residuesNanotechnology:495704,2022.
【28】Enhanced ammona gas adsorption through site-selective fluorintion of grapheneCrystals:1117,2022.
【29】Advances in Two-Dimensional Materials for Optoelectronics ApplicationsCrystals:1087,2022.
【30】Sputtered Electrolyte-Gated Transistor with Modulated Metaplasticity BehaviorsAdvanced Electronic Materials,2022.
【31】Sputtered Electrolyte-Gated Transistor with Temperature Modulated Synaptic Plasticity BehaviorsACS Applied Electronic Materials,2022.
【32】Graphene-Oxide-Based Fluoro- and Chromo-Genic Materials and Their ApplicationsMolecules,2022.
【33】Analysis of molecular ligand functionalization process in nano-molecular electronic devices containing densely packed nano-particle functionalization shellsNanotechnology,2022.
【34】Electron-Beam-Induced Fluorination Cycle for Long-Term Preservation of Graphene under Ambient ConditionsNanomaterials,2022.
【35】Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to ApplicationsMaterials,2022.
【36】Fabrication of BP2T functionalized graphene via non-covalent pi-pi stacking interactions for enhanced ammonia detectionRSC ADVANCES:35982,2021.
【37】Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon NanotubesACS Applied Materials & Interfaces,2021.
【38】Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusionJOURNAL OF MATERIALS PROCESSING TECHNOLOGY:117366,2022.
【39】Compressive behavior and vibration-damping properties of porous Ti-6Al-4V alloy manufactured by laser powder bed fusion. Journal of Manufacturing Processes, 66:1,2021.
【40】Compressive behavior and vibration-damping properties of porous Ti-6Al-4V alloy manufactured by laser powder bed fusionJournal of Manufacturing Processes:1,2021.
【41】Click Chemistry Enabling Covalent and Non-Covalent Modifications of Graphene with (Poly)saccharidesPOLYMERS,2021.
【42】Moire patterns arising from bilayer graphone/graphene superlattice. Nano Research, 13:1060,2020.
【43】Influence of the Rear Interface on Composition and Photoluminescence Yield of CZTSSe Absorbers: A Case for an Al2O3 Intermediate Layer. ACS Applied Materials & Interfaces, 13:19487,2021.
Title of Work | Introduction | Date |
---|---|---|
Fluorescence Imaging Enhanced by Members of the Graphene Family: A Review |
2023/10/09 |
|
染料剂作为识别标签在生物传感中的应用 |
2021/02/11 |