Biography

山东大学威海前沿交叉科学研究院 澳国立联合理学院 教授 

山东大学空间科学与技术学院《空间大数据与人工智能》课程教授

泰山学者特聘专家

中国科学院拔尖青年科学家

山东大学杰出中青年学者

中国科学技术大学翟光龙学者


2005年7月  获 北京大学 物理学 学士学位 (首届元培计划)

2012年7月  获 北京大学 等离子体物理 博士学位

2010年5月至2012年4月 普林斯顿大学 联合培养博士


主要研究领域为:等离子体人工智能、保结构算法、大规模数值模拟、等离子体理论、聚变能物理、行星物理等;推动等离子体物理、人工智能、计算数学、高性能计算、空间物理等多学科交叉融合。在等离子体相关领域的深度学习、几何算法与理论、MHD-动理学混合模拟、PIC算法及应用、射频波与等离子体相互作用、高能量粒子过程、先进模拟程序开发、多尺度动力学系统、长程强耦合复杂系统、大科学装置智能化平台等方向完成了一系列原创性工作。


2014年起,组织发起几何算法等离子体物理模拟器(Geo-Algorithm Plasma Simulator)先进软件开发项目。2014年,在科技部项目支持下发起建立磁约束聚变能源计算中心。2015年,因“充分利用世界顶尖超级计算机系统研究多尺度、非线性射频波物理过程,在算法构造、大规模模拟及物理上均具有创新性和重要价值”,以“辛PIC算法在射频波大规模并行模拟中的应用”获“中国科学院超级计算最佳应用奖”。2016年,利用自主开发的APT程序在当时世界排名top1的“神威-太湖之光”超级计算机上完成千万核规模、超千亿时间步的大规模粒子长期模拟,发现逃逸电子无碰撞投掷角散射规律和磁波纹场对逃逸电流约束等一系列新物理。2016年夏,受邀访问巴基斯坦,在诺贝尔奖获得者Salam博士发起的暑期学校讲授等离子体几何算法、高性能计算与科学数据挖掘等系列前沿讲座,接受侯赛因总统颁发聘书。2017年获得首批中国科学院前沿科学重点研究项目“拔尖青年科学家”项目的支持。2022年获中国发明协会发明创业成果一等奖。获2022年度中国科学技术大学翟光龙学者。近十年,与合作者系统发展了以辛PIC算法、洛伦兹协变算法、导心系统保结构算法为代表的等离子体先进几何算法,构建了Particle-in-cell算法、洛伦兹协变算法等几何算法的理论基础。在射频波与磁化等离子体相互作用、逃逸电子物理、等离子体大规模数值模拟与高性能计算等方面做出了原创性工作。将物理系统的自身结构与机器学习相结合,推动人工智能与数据挖掘在等离子体领域的应用,发展基于数据的等离子体物理和聚变能研究。2021年起兼任国家超级计算济南中心先进算法联合实验室主任。2023年5月受邀在香山科学会议做大科学装置软件与AI平台建设的专题报告。担任 2023 全国高性能计算学术年会“等离子体高性能计算”主题论坛主席。2023年起,担任磁约束聚变集成模拟开放平台协调组成员。


主持科技部国家重点研发专项、国家自然基金、中国科学院前沿科学重点研究项目等项目15项。参与多个大科学工程项目。多次在重要国际会议上做特邀报告。已在国际主流SCI期刊上发表论文80余篇。拥有论著和专利。担任多个专业学术期刊审稿人。


Education
  • 2010/05/01-2012/04/29
    普林斯顿大学
    等离子体物理
  • 2006/09/01-2012/07/02
    北京大学
    等离子体物理
  • 2001/09/01-2005/07/01
    北京大学
    物理学(元培计划)
Professional Experience
  • 2024-08 — Now
    前沿交叉科学研究院
  • 2024-06 — Now
    山东大学澳国立联合理学院
  • 2024-06 — Now
    山大澳国立联合理学院山东大学
    教授
  • 2017-04 — 2024-06
    物理学院、核科学技术学院中国科学技术大学
    副教授
  • 2014-05 — 2017-03
    物理学院中国科学技术大学
    副研究员
Publication
Research direction
Papers

(1) Is the guiding-center radiation model applicable to runaway electron dynamics? .Nuclear Fusion .2025

(2) Thermal Damage detection of EAST internal component based on machine learning .Machine Learning: Science and Technology .2025

(3) Gamma Ray Spectrum Inversion Based on Master-Secondary Encoder-Decoder Network .Compt. Phys. Comm. .2025

(4) High resolution simulations of nonlinear electromagnetic turbulence in tokamak devices .Eur. Phys. J. Spec. Top. .2025

(5) Giant Undulations Driven by Pitch‐Angle Scattering of Time Domain Structures Modulated by Plasmapause Surface Wave .Geophysical Research Letters .2025 ,52 ::111782

(6) Parallel Bayesian optimization of free-electron lasers based on laser wakefield accelerators .Plasma Physics and Controlled Fusion .2025 ,67 ::025031

(7) Ultralow-frequency Waves in Jupiter’s Magnetopause Boundary Layer, .The Astrophysical Journal, .2024 ,976 ::92

(8) Optimization of pellet design parameters to achieve deep fueling depth in EAST plasma with PAM code .Nuclear Fusion .2024 ,64 :076012

(9) Experimental and simulation analysis of Weakly Coherent Modes in the I-mode discharges on EAST .Nuclear Fusion .2024 ,64 :076045

(10) Structure-preserving algorithm and its error estimate for the relativistic charged-particle dynamics under the strong magnetic field .Journal of Scientific Computing .2024 ,100 :70

(11) Neural network identification of the weakly coherent mode in I-mode discharge on EAST .Nuclear Fusion .2024 ,64 (01):016035

(12) Explicit K-symplectic-like algorithms for guiding center system .Physica Scripta .2023 ,98 (12):125607

(13) Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet .The Astrophysical Journal Letters .2023 ,954 (2):L36

(14) Weakly Convergent Stochastic Simulation of Electron Collisions in Plasmas, Wentao Wu .Compt. Phys. Commun. .2023 ,289 (08)::108758

(15) Adaptive energy-preserving algorithms for guiding center system .Plasma Science and Technology .2023 ,25 (4)::045102

(16) Automated Classification of Aurora Images with Deep Neural Networks .Universe .2023 ,9 (2)::96

(17) Linearized single-scattering property database for hexagonal prism ice particles .Remote Sensing .2022 ,14 (23):: 6138

(18) VPNets: Volume-preserving neural networks for learning source-free dynamics .Journal of Computational and Applied Mathematics .2022 ,416 (15)::114523

(19) Calculation of collisionless pitch-angle scattering of runaway electrons with synchrotron radiation via high-order guiding-centre equation .Journal of Plasma Physics .2022 ,88 (5)::905880505

(20) Capability and convergence of linearized invariant-imbedding T-matrix and physical-geometric optics methods for light scattering .Optics Express .2022 ,30 (21)::37769-37785

(21) Multi-scale structures of electric current generated by collisionless trapped electron mode turbulence .Plasma Phys. Control. Fusion .2022 ,64 (8):: 115008

(22) Pinching arc plasmas by high-frequency alternating longitudinal magnetic field .Physics of Plasmas .2022 ,29

(23) Energy-preserving methods for guiding center system based on averaged vector field .Physics of Plasmas .2022 ,29 :: 032501

(24)Ruili Zhang. On the structure of the two-stream instability -- complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes .Physics of Plasmas .2017 ,23 (7):072111

(25) High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields .Physics of Plasmas .2016 ,23 (09):092109

(26)Yang He. Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations .Physics of Plasmas .2016 ,23 (09):092108

(27)Ruili Zhang. Explicit symplectic algorithms based on generating functions for charged particle dynamics .Physical Review E .2016 ,94 :013205

(28)Ting Lan. Design of geometric phase measurement in EAST Tokamak .Physics of Plasmas .2016 ,23 (07):072109

(29)Yulei Wang. Multi-scale Full-orbit Analysis on Phase-space Behavior of Runaway Electrons in Tokamak Fields with Synchrotron Radiation .Physics of Plasmas .2016 ,23 (06):062505

(30)Jian Liu. Collisionless pitch-angle scattering of runaway electrons .Nuclear Fusion .2016 ,56 :064002

(31)Jian Liu *. Largest Particle Simulations Downgrade the Runaway Electron Risk for ITER .Plasma Physics .2016 ,8

(32) Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics .Commun. Comput. Phys. .2016 ,19 (5):1397-1408

(33)Ruili Zhang. Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics .Commun. Comput. Phys. .2016 ,19 (5):1397-1408

(34)Yang He. Higher order volume-preserving schemes for charged particle dynamics .Journal of Computational Physics .2016 ,305 :172-184

(35)Ting Lan. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak .Journal of Instrumentation .2015 ,10 :C12017

(36)Yang He. Hamiltonian time integrators for Vlasov-Maxwell equations .Physics of Plasmas .2015 ,22 (12):124503

(37) Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov- Maxwell systems .Physics of Plasmas .2015 ,22 (11):112504

(38)Yang He. Hamiltonian integration methods for Vlasov-Maxwell equations .Computational Physics .2015 ,2015.

(39)Jian Liu. Neoclassical Pitch-Angle Scattering of Runaway Electrons .Arxiv: Physics .2015 ,2015.

(40)Jianyuan Xiao. Variational symplectic Particle-in-cell simulation of nonlinear mode conversion from Extraordinary waves to Bernstein waves .Physcis of Plasmas .2015 ,22 (09):092305

(41)Hong Qin. Comment on `Hamiltonian splitting for the Vlasov-Maxwell equations' .Journal of Computational Physics .2015 ,287 :721-723

(42)Ruili Zhang. Volume-preserving algorithm for secular relativistic dynamics of charged particles .Physics of Plasmas .2015 ,22 (04):044501

(43)Yang He. Volume-preserving algorithms for charged particle dynamics .Journal of Computational Physics .2015 ,281 (01):135-147

(44)Ting Lan. Study of the propagation properties of 432μm laser reflected by retro reflector array .Infrared Physics & Technology .2014 ,67 (11):121-125

(45)Jian Liu. What is the fate of runaway positrons in tokamaks? .Physics of Plasmas .2014 ,21 (06):064503

(46)Jian Liu. A Nonlinear PIC algorithm for high frequency waves in magnetized plasmas based on gyrocenter gauge kinetic theory .Communications in Computational Physics .2014 ,15 (04):1167-1183

(47)Ruili Zhang. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields .Physics of Plasma .2014 ,21 (03):032504

(48)Xiaoyin Guan. On plasma rotation induced by waves in tokamaks .Physics of Plasmas .2013 ,20 (10):102105

(49)Jianyuan Xiao. A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system .Physics of plasmas .2013 ,20 (10):102517

(50)Hong Qin. Why is Boris Algorithm so good? .Physics of plasmas .2013 ,20 (08):084503

(51)Xiaoyin Guan. On the toroidal plasma rotations induced by lower hybrid waves .Physics of Plasmas .2013 ,20 (02):022502

(52)Jian Liu. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas .Physics of Plasmas .2012 ,19 (10):102107

(53)Jian Liu. Response to “Comment on ‘Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field’ ” [Phys. Plasmas 19, 094701 (2012)] .Physics of Plasmas .2012 ,19 (9):094702

(54)Jian Liu. Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field .Physics of Plasmas .2011 ,18 (7):072505

(55)Yian Lei. Implosion of a large spherical void .Journal of Physics .2010 ,244 :022005

(56)Shafiq Rehman. A Numerical Fluid Analysis For Early Nonlinear Mode Evolution of Fast Electron Beams in Dense Plasmas .Plasma Science and Technology .2009 ,11 (6):661

(57)Jian Liu. Acceleration of Macroscopic Particle to Hypervelocity By High Intensity Beams .IEEE Transactions on Plasma Science .2009 ,37 (10):1993-1997

(58)Jian Liu. One Dimensional Simulation of Diamond DT Methane Impact Fusion .Nuclear Fusion .2009 ,49 (05):065021

(59) Hypervelocity Macroscopic Particle Impact Fusion with DT Methane .Nucl. Instrum. Meth. A .2009 ,606 (03):157-160

Patens
Research Projects

1. 太阳风动态仿真模拟, 2024/10/01

2. 等离子体压强剖面控制人工智能算法与策略系统研究, 2025/01/01, 在研

3. “基于深度学习的射线能谱数据处理算法开发”, 2022/09/01-2023/06/01, --合肥综合性国家科学中心能源研究院项目,58万

4. “带轨道角动量的射频波在磁约束聚变能研究中的应用”, 2018/01/01-2021/12/31, --11775222, 国家自然基金,面上项目,72万

5. “KTX装置科学实验数据挖掘与机器学习研究”, 2017/01/01-2019/12/31, --WK2150110008,中国科学院创新团队培育基金,200万

6. “磁约束聚变能研究中的先进几何方法及应用”, 2016/08/17-2021/12/31, --QYZDB-SSW-SYS004, 中国科学院,前沿科学重点研究项目——拔尖青年科学家项目,50万

7. “磁约束聚变装置中逃逸电子长期动力学模拟研究”, 2016/01/01-2019/12/31, 完成, --11575185,国家自然基金,面上项目,76.8万

8. “磁约束聚变装置中逃逸电子关键物理问题研究”, National science and technology major project, 2015/01/01-2019/12/31, 完成, --2015GB111003, 科技部,国家磁约束聚变重点研发专项,1199.4万

9. “磁约束聚变关键科学技术问题的研究”, 2015/01/01-2019/12/31, 完成, --中国科学院,中科院重点部署课题,100万

10. “磁化等离子体物理中的几何相位现象研究”, 2014/01/01, --11305171, 国家自然基金,青年基金,26W

11. “磁约束聚变等离子体模拟的几何方法及理论”, 科技部ITER专项, 2014/01/01-2018/12/31, 完成, --项目编号2013GB111000,科技部,国家磁约束聚变重点研发专项,人才专项,108万

12. “撕裂模中带电粒子运动的辛算法模拟”, 2013/07/01-2104/06/30, 完成, 四川大学横向

13. “高性能等离子体稳态维持中的关键物理问题研究”, 2013/07/01-2018/06/30, 完成, --11261140328,国家自然基金,A3项目,100万

14. “基于回旋规范动理学的非线性集成射频波模拟研究”, 2013/01/01, --项目编号2013M530296, 中国博士后基金会,博士后面上项目,一等资助,8万

15. “基于回旋规范动理学理论的射频波数值模拟研究”, 2013/01/01-2014/12/31, --项目编号WK2030020022,教育部,中央高校基本科研项目,10万

16. “托卡马克大规模数值模拟”, 2013/01/01-2017/12/31, 完成, --项目编号2013GB111000,科技部,国家磁约束聚变重点研发专项,240万

Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University