李志华
教授
所属院部: 海洋学院
访问次数:
基本信息
  • 教师拼音名称:
    lizhihua
  • 入职时间:
    2018-06-08
  • 所在单位:
    海洋学院
  • 学历:
    博士研究生毕业
  • 办公地点:
    山东大学海洋学院120室
  • 性别:
  • 联系方式:
    lzhyfi@126.com;lizh@sdu.edu.cn
  • 学位:
    博士生
  • 在职信息:
    在职
  • 毕业院校:
    捷克南波西米亚大学
  • 博士生导师
  • 硕士生导师
曾获荣誉:

2024-10-02    2024年全球前2%顶尖科学家榜单;
2024-02-02    2023年全球前2%顶尖科学家榜单;
2023-01-02    2022年度“全球顶尖前10万科学家排名”榜单;
2016-05-02    中国水产青年科技奖;
2011-10-12    南波西米亚大学优秀科技成果校长奖;
2010-03-17    国家优秀自费留学生奖学金;
2009-10-01    南波西米亚大学35岁以下青年优秀科研成果一等奖;
2005-05-01    河北省优秀毕业生,河北省优秀三好学生;
教师简介

现为山东大学海洋学院 教授(三级),博士生导师,湖北省杰出青年基金获得者,入选武汉市青年科技晨光计划和中国水产科学研究院百名英才人才计划。入选20242023年全球前2%顶尖科学家榜单和2022年度全球顶尖前10万科学家排名榜单。博士毕业于捷克南波希米亚大学,长期从事水生态毒理学与环境健康风险评估研究。2010年赴美国加州大学河滨分校访问交流。2011-2012年期间,在新加坡国立大学从事博后研究。截止目前以第一作者(或通讯)Journal of Hazardous MaterialsWater ResearchScience of the Total Environment等学术刊物发表120多篇,H-index=38 (https://www.scopus.com/authid/detail.uri?authorId=55707231300)目前担任SCI刊物Environmental Toxicology and ChemistryBulletin of Environmental Contamination and ToxicologyFishes的编委和Frontiers in Environmental ScienceFrontiers in Marine ScienceWater专刊的客座主编,并担任 Environmental Science & Technology31种该领域SCI期刊的独立审稿人。申报获得授权专利11项。主要学术兼职包括韩国高丽大学生态领导者教育专家委员会委员,中国水产学会青年工作委员会委员,国家自然基金通讯评审专家,教育部长江学者奖励计划通讯评审专家,科技部创新人才推进计划评审专家,科技部国际合作专项会评专家,中科院百人计划评审专家,中国水产科学研究院渔业生态学科学术委员以及湖北贵州浙江等省科技项目评审专家等。

 

教育经历
  • 1998-9 — 2002-6
    河北大学
    生物学
    理学学士学位
  • 2002-9 — 2005-6
    河北大学
    水生生物学
    理学硕士学位
  • 2007-9 — 2013-6
    西南大学
    水产养殖
    农学博士学位
  • 2008-9 — 2011-9
    捷克布杰约维采南波西米亚大学
    水产
    哲学博士学位
工作经历
  • 2018-06-至今
    山东大学(威海)海洋学院
  • 2017-07 — 2018-06
    大连理工大学
  • 2011-11 — 2012-11
    新加坡国立大学
  • 2005-07 — 2017-07
    中国水产科学研究院长江水产研究所
科研成果
论文

1.  Multigenerational effects of combined exposure of triphenyltin and micro/nanoplastics on marine medaka (Oryzias melastigma):From molecular regulation to behavioral response..  Journal of Hazardous Materials,  480,  136365, 2024. 

2.  Mechanisms of eco-corona effects on micro(nano)plastics in marine medaka: Insights into translocation, immunity, and energy metabolism.  Journal of Hazardous Materials,  480,  136236, 2024. 

3.  Seasonal variations of microbial communities and viral diversity in fishery-enhanced marine ranching sediments: Insights into metabolic potentials and ecological interactions.  Microbiome,  12,  209, 2024. 

4.  Phthalates released from microplastics can’t be ignored: Sources, fate, ecological risks, and human exposure risks..  TrAC Trends in Analytical Chemistry,  179,  117870, 2024. 

5.  First Insights into the bioaccumulation, biotransformation and trophic transfer of typical tetrabromobisphenol A (TBBPA) analogues along a simulated aquatic food chain.  Journal of Hazardous Materials,  464,  133390, 2024. 

6.  Biodegradation of sulfadiazine by ryegrass (Lolium perenne L.) in a soil system: Analysis of detoxification mechanisms, transcriptome, and bacterial communities.  Journal of Hazardous Materials,  462,  132811, 2024. 

7.  Ecological influences of sulfadiazine on rhizosphere soil microbial communities in ryegrass (Lolium perenne L.)-soil potting systems: perspectives on diversity, co-occurrence networks, and assembly processes.  Science of The Total Environment,  955,  177324, 2024. 

8.  Ocean acidification alters shellfish-algae nutritional value and delivery.  Science of The Total Environment,  918,  170841, 2024. 

9.  Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: a two-generation study of marine medaka (Oryzias melastigma).  Science of the Total Environment,  912,  169344, 2024. 

10.  The inputs of autochthonous organic carbon driven by mangroves reduce metal mobility and bioavailability in intertidal regions.  Science of The Total Environment,  931,  172964, 2024. 

11.  Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: a review.  Environmental Research,  263,  120267, 2024. 

12.  Decrypting the skeletal toxicity of vertebrates caused by environmental pollutants from an evolutionary perspective: From fish to mammals.  Environmental Research,  255,  119173, 2024. 

13.  Micro(nano)plastics in marine medaka: entry pathways and cardiotoxicity with triphenyltin.  Environmental Pollution,  342,  123079, 2024. 

14.  Effects of single or combined exposure to tralopyril and ocean acidification on energy metabolism response and sex development in Pacific oysters (Crassostrea gigas.  Marine Pollution Bulletin,  209,  117209, 2024. 

15.  Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma)..  Environmental Pollution,  356,  124334, 2024. 

16.  TPT disrupts early embryonic development and glucose metabolism of marine medaka in different salinites.  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  287,  110035, 2024. 

17.  Exploring seasonal variations, relationships, and environmental impacts of bacterial communities in different habitats of marine ranching.  Marine Pollution Bulletin,  205,  116658, 2024. 

18.  A latest progress in the study of fish behavior: cross-generational effects of behavior under pollution pressure and new technologies for behavior monitoring.  Environmental Science and Pollution Research,  31,  11529-11542, 2024. 

19.  The influence of triphenyltin exposure on the osmoregulatory capacity of marine medaka (Oryzias melastigma) at different salinities..  Water,  16,  921, 2024. 

20.  A latest review on micro- and nanoplastics in the aquatic environment: the comparative impact of size on environmental behavior and toxic effect.  Bulletin of Environmental Contamination and Toxicology,  112,  36, 2024. 

21.  Whole-transcriptome analysis reveals the RNA profiles in mouse bone marrow mesenchymal stem cells or zebrafish embryos, after acute exposure to environmental level of tributyltin.  Bulletin of Environmental Contamination and Toxicology,  112,  34, 2024. 

22.  Physiological and molecular responses in the silver carp (Hypophthalmichthys molitrix) larvae after acute mercury exposure.  Environmental Science and Pollution Research,  30,  49760–49770, 2023. 

23.  Physiological responses of marine Chlorella sp. exposed to environmental levels of triphenyltin.  Environmental Science and Pollution Research,  30,  26387–26396, 2023. 

24.  Deciphering characterization of seasonal variations in microbial communities of marine ranching: diversity, co-occurrence network patterns, and assembly processes.  Marine Pollution Bulletin,  197,  115739, 2023. 

25.  NMR technique revealed the metabolic interference mechanism of the combined exposure to cadmium and tributyltin in grass carp larvae.  Environmental Science and Pollution Research,  30,  17828–17838, 2023. 

26.  Evaluation of Physiological Stress of Grass Carp Chronically Exposed to Enrofloxacin Based on IBR Index.  Water, Air, & Soil Pollution,  234,  548, 2023. 

27.  Combined effect of microplastic and triphenyltin: Insights from gut-brain axis.  Environmental Science and Ecotechnology,  16,  100266, 2023. 

28.  Metagenomics analysis reveals the effects of norfloxacin on the gut microbiota of juvenile common carp (Cyprinus carpio).  Chemosphere,  325,  138389, 2023. 

29.  Systematic toxicological analysis of the effect of salinity on the physiological stress induced by triphenyltin in Nile tilapia (Oreochromis niloticus).  Aquatic Toxicology,  257,  106441, 2023. 

30.  Assessing the ecotoxicity of combined exposure to triphenyltin and norfloxacin at environmental levels: a case study of immunotoxicity and metabolic regulation in Carp (Cyprinus carpio).  Chemosphere,  313,  137381, 2023. 

31.  Shellfish-algal systems as important components of fisheries carbon sinks: their contribution and response to climate change.  Environmental Research,  224,  115511, 2023. 

32.  A new perspective on endocrine disrupting effects of triphenyltin on marine medaka: From brain transcriptome, gut content metabolome and behaviour.  Chemosphere,  307,  136190, 2022. 

33.  Response of growth performance, serum biochemical parameters, antioxidant capacity, and digestive enzyme activity to different feeding strategies in common carp (Cyprinus carpio) under high-temperature stress.  Aquaculture,  548,  737636, 2022. 

34.  Effects of tralopyril on histological, biochemical and molecular impacts in Pacific oyster, Crassostrea gigas.  Chemosphere,  289,  133157, 2022. 

35.  Effects of long-term exposure of norfloxacin on the the HPG and HPT axes in juvenile common carp.  Environmental Science and Pollution Research,  29,  44513-44522, 2022. 

36.  Effects of ocean acidification and tralopyril on bivalve biomineralization and carbon cycling: a study of the Pacific Oyster (Crassostrea gigas).  Environmental Pollution,  313,  120161, 2022. 

37.  Chronic toxic effects of waterborne mercury on Silver carp (Hypophthalmichthys molitrix) larvae.  Water,  14,  1774, 2022. 

38.  Chronic toxic effects of polystyrene micro-plastics, DCOIT and their combination on Marine Chlorella sp..  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  261,  109426, 2022. 

39.  Physiological responses in Nile tilapia (Oreochromis niloticus) induced by combined stress of environmental salinity and triphenyltin.  Marine Environmental Research,  180,  105736, 2022. 

40.  Transcriptomic and proteomic analysis of Chinese rare minnow (Gobiocypris rarus) larvae in response to acute waterborne cadmium or mercury stress.  Aquatic Toxicology,  246,  106134, 2022. 

41.  A mini-review of the toxicity of pollutants to fish under different salinities.  Bulletin of Environmental Contamination and Toxicology,  108,  1001-1005, 2022. 

42.  Effects of short-term exposure to tralopyril on physiological indexes and endocrine function in turbot (Scophthalmus maximus).  Aquatic Toxicology,  245,  106118, 2022. 

43.  Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review.  Environmental Research,  214,  114202, 2022. 

44.  Chronic exposure to Tralopyril induced abnormal growth and calcium regulation of turbot (Scophthalmus maximus).  Chemosphere,  299,  134405, 2022. 

45.  Acute toxicity of a novel anti-fouling material additive DCOIT to Marine Chlorella sp..  Bulletin of Environmental Contamination and Toxicology,  109,  1018-1022, 2022. 

46.  Phytotoxicity of environmental norfloxacin concentrations on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, photosynthetic toxicity and biochemical traits.  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  258,  109365, 2022. 

47.  Exposure to enrofloxacin and depuration: Endocrine disrupting effect in juvenile grass carp (Ctenopharyngodon idella).  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  257,  109358, 2022. 

48.  Reproductive toxicity of environmental levels of triphenyltin to the marine rotifer, Brachionus plicatilis.  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  254,  109272, 2022. 

49.  Effects of temperature fluctuation on endocrine disturbance of grass carp Ctenopharyngodon idella under mercury chloride stress.  Chemosphere,  263,  128137, 2021. 

50.  Triphenyltin exposure causes changes in the health-associated gut microbiome and metabolites in marine medaka.  Environmental Pollution,  288,  117751, 2021. 

51.  Interactive effects of temperature and mercury exposure on the stress-related responses in the freshwater fish Ctenopharyngodon idella.  Aquaculture Research,  52,  2070–2077, 2021. 

52.  Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans.  Environmental Pollution,  287,  117612, 2021. 

53.  Regulation of glutathione-dependent antioxidant defense system of fish Ctenopharyngodon idella under the combined stress of mercury and temperature.  Environmental Science and Pollution Research,  28,  1689–1696, 2021. 

54.  Toxicity of organotin compounds and the ecological risk of organic tin with co-existing contaminants in aquatic organisms.  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  246,  109054, 2021. 

55.  Effects of the tributyltin on the blood parameters, immune responses and thyroid hormone system in zebrafish.  Environmental Pollution,  268,  115707, 2021. 

56.  Hepatotoxicity in carp (Cyprinus carpio) exposed to environmental levels of norfloxacin (NOR): Some latest evidences from transcriptomics analysis, biochemical parameters and histopathological changes.  Chemosphere,  283,  131210, 2021. 

57.  Distribution and risk assessment of toxic pollutants in surface water of the lower Yellow river, China.  Water,  13,  1582, 2021. 

58.  A latest review on the application of microcosm model in environmental research.  Environmental Science and Pollution Research,  28,  60438–60447, 2021. 

59.  Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian.  Chemosphere,  269,  128711, 2021. 

60.  Effects of waterborne mercury at different temperature on hematology and energy metabolism in grass carp (Ctenopharyngodon idella)..  International Journal of Environmental Science and Technology,  18,  1489–1498, 2021. 

61.  Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin.  Journal of Toxicology and Environmental Health, Part A Current Issues,  84,  20-30, 2021. 

62.  Toxicity evaluation of triphenyltin in zebrafish larvae by embryonic malformation, retinal development, and GH/IGF axis.  Fish Physiology and Biochemistry,  46,  2101-2107, 2020. 

63.  Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment..  Environmental Pollution,  259,  113868, 2020. 

64.  Parental exposure to triphenyltin inhibits growth and disrupts thyroid function in zebrafish larvae.  Chemosphere,  240,  124936, 2020. 

65.  Tributyltin induces the tissue-specific stresses in zebrafish, a study in various tissues of muscle, gill and intestine.  Bulletin of Environmental Contamination and Toxicology,  105,  847–852, 2020. 

66.  Triphenyltin exposure alters the antioxidant system, energy metabolism and the expression of genes related to physiological stress in zebrafish (Danio rerio).  Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,  225,  108581, 2019. 

67.  Effects of low concentrations of triphenyltin on neurobehavior and the thyroid endocrine system in zebrafish.  Ecotoxicology and Environmental Safety,  186,  109776, 2019. 

专利
版权所有   ©山东大学 地址:中国山东省济南市山大南路27号 邮编:250100 
查号台:(86)-0531-88395114
值班电话:(86)-0531-88364731 建设维护:山东大学信息化工作办公室