Biography

      邱文林,博士。2024年6月于湖南师范大学获得博士学位,导师为徐大教授,2024年7月进入山东大学从事博士后研究,并入选山东大学2024年第三批特别资助类博士后,合作导师为郑祥成研究员。主要从事偏积分微分方程的理论与数值分析、变指标分数阶微分方程的数值分析及非线性双曲粘弹性问题的计算与分析等方面的研究,近五年来在计算与应用数学权威期刊《SIAM J. Multiscale Model. Simul.》、《Adv. Comput. Math.》、《J. Sci. Comput.》、《Fract. Calc. Appl. Anal.》、《Calcolo》、《Appl. Numer. Math.》等发表SCI论文40余篇,其中ESI高被引论文5篇,Google学术引用量900余次,H指数20。

      自2021年始担任美国数学评论《Mathematical Reviews》和德国数学文摘《zbMATH》评论员,并担任Appl. Numer. Math.、Numer. Algorithms、Chaos Solitons Fract. 等20余种SCI期刊审稿人。曾主持湖南省研究生科研创新重点项目及参与国家自然科学基金面上项目各一项,现主持国家资助博士后研究人员计划C档项目一项。

Education
  • 2014/09/01-2018/06/30
    中南林业科技大学
    信息与计算科学
  • 2018/09/01-2021/06/30
    湖南师范大学
    数学
  • 2021/09/01-2024/06/30
    湖南师范大学
    数学
Professional Experience
  • 2024-07 — Now
    山东大学数学学院
Publication
Papers

(1)Wenlin Qiu. Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping .arXiv:2412.07394 .2024

(2)Wenlin Qiu. A multiscale Abel kernel and application in viscoelastic problem .arXiv:2411.16078 .2024

(3)Xiangcheng Zheng. Numerical analysis for high-order methods for variable-exponent fractional diffusion-wave equation .arXiv:2406.02941v3 .2024

(4)Xiangcheng Zheng. Local modification of subdiffusion by initial Fickian diffusion: Multiscale modeling, analysis, and computation .SIAM Journal on Multiscale Modeling and Simulation .2024 ,22 :1534-1557

(5)Xiangyi Peng. Temporal second-order fast finite difference/compact difference schemes for time-fractional generalized Burgers' equations .Journal of Scientific Computing .2024 ,99 :52

(6)Wenlin Qiu. Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates .Calcolo .2024 ,61 :50

(7)Wenlin Qiu. Numerical approximation and analysis for partial integro-differential equation of hyperbolic type .Journal of Integral Equations and Applications .2024 ,36 :471-492

(8)Xu Xiao. Numerical approximation based on deep convolutional neural network for high-dimensional fully nonlinear merged PDEs and 2BSDEs .Mathematical Methods in the Applied Sciences .2024 ,47 :6184-6204

(9)Mingchao Zhao. Finite element approximation and analysis of damped viscoelastic hyperbolic integrodifferential equations with L1 kernel .Applied Mathematics Letters .2024 ,151 :108993

(10)Wenlin Qiu. Discrete L1 remainder stability of first and second order schemes for a Volterra integro-differential equation .Mathematics and Computers in Simulation .2024 ,219 :12-27

(11)Hao Chen. Spatial two-grid compact difference method for nonlinear Volterra integro-differential equation with Abel kernel .Numerical Algorithms .2024

(12)Xiangyi Peng. A novel temporal two-grid compact finite difference scheme for the viscous Burgers' equation .Advances in Applied Mathematics and Mechanics .2024 ,16 :1358-1380

(13)Wenlin Qiu. Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels .Advances in Computational Mathematics .2023 ,49 :43

(14)Wenlin Qiu et al.. Numerical investigation of generalized tempered-type integrodifferential equations with respect to another function .Fractional Calculus and Applied Analysis .2023 ,26 :2580-2601

(15)Wenlin Qiu. ADI finite element Galerkin methods for two-dimensional tempered fractional integro-differential equations .Calcolo .2023 ,60 :41

(16)Hao Chen. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel .Calcolo .2023 ,60 :13

(17)Yang Cao. Optimal error analysis of space–time second-order difference scheme for semi-linear non-local Sobolev-type equations with weakly singular kernel .Journal of Computational and Applied Mathematics .2023 ,431 :115287

(18)Leijie Qiao. Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion .Numerical Algorithms .2023 ,93 :1083-1104

(19)Tao Guo. Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation .Applied Mathematics Letters .2023 ,140 :108570

(20)Wenlin Qiu et al.. The efficient ADI Galerkin finite element methods for the three-dimensional nonlocal evolution problem arising in viscoelastic mechanics .Discrete and Continuous Dynamical Systems - B .2023 ,28 :3079-3106

(21)Tao Guo. Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations .Applied Numerical Mathematics .2023 ,185 :260-277

(22)Leijie Qiao. A fast numerical solution of the 3D nonlinear tempered fractional integrodifferential equation .Numerical Methods for Partial Differential Equations .2023 ,39 :1333-1354

(23)Tao Guo. Localized meshless approaches based on theta method and BDF2 for nonlinear Sobolev equation arising from fluid dynamics .Communications in Nonlinear Science and Numerical Simulation .2023 ,117 :106989

(24)Wenlin Qiu et al.. Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity .Communications in Nonlinear Science and Numerical Simulation .2023 ,116 :106804

(25)Menglian Li. An efficient localized meshless collocation method for the two-dimensional Burgers-type equation arising in fluid turbulent flows .Engineering Analysis with Boundary Elements .2022 ,144 :44-54

(26)Wenlin Qiu et al.. An efficient Sinc-collocation method via the DE transformation for eighth-order boundary value problems .Journal of Computational and Applied Mathematics .2022 ,408 :114136

(27)Wenlin Qiu et al.. A formally second‐order backward differentiation formula Sinc‐collocation method for the Volterra integro‐differential equation with a weakly singular kernel based on the double exponential transformation .Numerical Methods for Partial Differential Equations .2022 ,38 :830-847

(28)Xuehua Yang. Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space .Applied Numerical Mathematics .2022 ,172 :497-513

(29)Leijie Qiao. The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space .Applied Numerical Mathematics .2022 ,172 :359-381

(30)Leijie Qiao. A second-order ADI difference scheme based on non-uniform meshes for the three-dimensional nonlocal evolution problem .Computers & Mathematics with Applications .2021 ,102 :137-145

(31)Wenlin Qiu et al.. Numerical solution of the fourth-order partial integro-differential equation with multi-term kernels by the Sinc-collocation method based on the double exponential transformation .Applied Mathematics and Computation .2021 ,392 :125693

(32)Wenlin Qiu et al.. The Crank-Nicolson-type Sinc-Galerkin method for the fourth-order partial integro-differential equation with a weakly singular kernel .Applied Numerical Mathematics .2021 ,159 :239-258

(33)Wenlin Qiu et al.. An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile–immobile equation in two dimensions .Computers & Mathematics with Applications .2020 ,80 :3156-3172

(34)Wenlin Qiu*. A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model .Numerical Algorithms .2020 ,85 :39-58

(35)Da Xu. Time two-grid algorithm based on finite difference method for two-dimensional nonlinear fractional evolution equations .Applied Numerical Mathematics .2020 ,152 :169-184

(36)Da Xu. A compact finite difference scheme for the fourth‐order time‐fractional integro‐differential equation with a weakly singular kernel .Numerical Methods for Partial Differential Equations .2020 ,36 :439-458

(37)Wenlin Qiu. An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations .Mathematics and Computers in Simulation .2019 ,166 :298-314

Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University