Notes on complex analysis

Author: Yunrui, Zheng

Textbook: Complex Analysis, Stein \& Shakarchi.
References:

1. Concise Complex Analysis, Sheng Gong.
2. Complex Analysis, Ahlfors.
3. Complex variables and applications, Brown\& Churchill.

Contents

Chapter 1. Preliminaries to complex analysis 5

1. Notes 5
2. Exercises 7
Chapter 2. Cauchy's theorem and its applications 13
3. Notes 13
4. Exercises 13
Chapter 3. Meromorphic functions and the logarithm 21
5. Notes 21
6. Exercises 22
Chapter 4. The Fourier transform 31

CHAPTER 1

Preliminaries to complex analysis

1. Notes

1. The geometric meaning of $\left|f^{\prime}(z)\right|^{2}$. If f is a univalent holomorphic function defined in a region Ω. Then the area of $f(\Omega)$ is

$$
\operatorname{Area}(f(\Omega))=\int_{\Omega}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

2. The mean value theorem in calculus does not hold. The theorem says if $f \in C([a, b])$, then there exits a point $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Now we consider the function $e^{i t}$ defined on $[0,2 \pi]$, which satisfies $e^{i 0}=e^{i 2 \pi}=1$, but $\left|\left(e^{i t}\right)^{\prime}\right|=\left|i e^{i t}\right|=1$. Hence (1) does not hold.
3. The trigonometric functions are unbounded, which is different from the case in \mathbb{R}. For instance,

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}
$$

if we choose $z=i x$ with $x \in \mathbb{R}$, then $\cos (i x)=\frac{e^{x}+e^{-x}}{2}$ is unbounded.
4. We consider the exterior differential form for real variables. For $x, y, z \in \mathbb{R}$. The wedge of differentials $d x$ and $d y$ is defined as $d x \wedge d y$, which satisfies

$$
d x \wedge d x=0, \quad d x \wedge d y=-d y \wedge d x
$$

Similarly, we define $d x \wedge d y \wedge d z$.
The exterior differential form ω is the wedge of differentials multiplied by a function. For instance, let F is a function, then F is a exterior differential form of degree zero. Then let A, B, C, P, Q, R, H be functions of x, y, z,

$$
\omega=P d x+Q d y+R d z
$$

is the exterior differential form of degree 1.

$$
\omega=A d y \wedge d z+B d z \wedge d x+C d x \wedge d y
$$

is the exterior differential form of degree 2.

$$
\omega=H d x \wedge d y \wedge d z
$$

is the exterior differential form of degree 3.

Then we define the exterior differential operator d on the exterior differential form ω. For $\omega=F$ is a function, we define

$$
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial z} d z
$$

which is the total differentiation. For $\omega=P d x+Q d y+R d z$, we define

$$
d \omega=d P \wedge d x+d Q \wedge d y+d R \wedge d z
$$

The we use the definition for $d F$,

$$
\omega=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y \wedge d z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z \wedge d x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x \wedge d y
$$

Similarly, for $\omega=A d y \wedge d z+B d z \wedge d x+C d x \wedge d y$,

$$
d \omega=d A \wedge d y \wedge d z+d B \wedge d z \wedge d x+d C \wedge d x \wedge d z=\left(\frac{\partial A}{\partial x}+\frac{\partial B}{\partial y}+\frac{\partial C}{\partial z}\right) d x \wedge d y \wedge d z
$$

If $\omega=H d x \wedge d y \wedge d z$, we clearly have

$$
d \omega=d H \wedge d x \wedge d y \wedge d z=0
$$

Recall Green's theorem, Stokes theorem and Gauss's theorem.
THEOREM 1 (Green's theorem). Let Ω be a simply connected domain with piecewise smooth boundary L, and $P, Q \in C^{1}(\bar{\Omega})$. Then

$$
\int_{L} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{\Omega} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \mathrm{~d} x \mathrm{~d} y
$$

THEOREM 2 (Stokes theorem). Let Σ be a surface bounded by a piecewise smooth simple closed curve L and $P, Q, R \in C^{1}(\bar{\Sigma})$. Then

$$
\int_{L} P d x+Q d y+R d z=\int_{\Sigma}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) d y d z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) d z d x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

THEOREM 3 (Gauss's theorem). Let Ω be a region bounded by a closed surface Σ, and P, Q, $R \in C^{1}(\bar{\Omega})$. Then

$$
\int_{\Sigma} P d y d z+Q d z d x+R d x d y=\int_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d x d y d z
$$

Hence, we reduce the Green's theorem, Stokes theorem, Gauss's theorem to the uniform formula

$$
\int_{\partial \Omega} \omega=\int_{\Omega} d \omega
$$

which is often called Stokes formula.
5. We now consider the exterior form in \mathbb{C}. Consider z and \bar{z} as independent variables. We define the wedge as

$$
d z \wedge d z=0, \quad d \bar{z} \wedge d \bar{z}=0, \quad d z \wedge d \bar{z}=-d \bar{z} \wedge d z
$$

where

$$
d z=d x+i d y, \quad d \bar{z}=d x-i d y
$$

Then

$$
d \bar{z} \wedge d z=2 i d x \wedge d y=2 i d A
$$

where $d A$ is the area element.
The exterior differential form of degree zero is the function $f(z, \bar{z})$. The exterior differential form of degree 1 is

$$
\omega=\omega_{1} d z+\omega_{2} d \bar{z}
$$

where ω_{1} and ω_{2} are functions of z and \bar{z}.The exterior differential form of degree 2 is

$$
\omega=\omega_{0} d z \wedge d \bar{z}
$$

where ω_{0} is a function of z and \bar{z}.
The exterior differential operator d is defined as

$$
\begin{gathered}
d f=\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial \bar{z}} d \bar{z} \\
d \omega=d \omega_{1} \wedge d z+d \omega_{2} \wedge d \bar{z}=\left(\frac{\partial \omega_{1}}{\partial \bar{z}}-\frac{\partial \omega_{2}}{\partial z}\right) d \bar{z} \wedge d z \\
d \omega=d \omega_{0} d \bar{z} \wedge d z=0
\end{gathered}
$$

The we derive the Green's theorem in complex form:
THEOREM 4. Suppose that $\omega=\omega_{1} d z+\omega_{2} d \bar{z}$ is an exterior differential form of degree 1 , defined on a region Ω, where Ω is bounded by a piecewise smooth curve γ, and ω_{1}, ω_{2} are differentiable functions of z, \bar{z} up to γ. Then

$$
\int_{\gamma} \omega=\int_{\Omega} d \omega
$$

2. Exercises

1.

SOLUTION. (a) Midperpendicular of segment $z_{1} z_{2}$.
(b) unit circle.
(c) vertical line with real part 3.

2
Proof. Let $z=x+i y, w=u+i v$. Then

$$
\langle z, w\rangle=x u+y v .
$$

since
$(z, w)=(x+i y)(u-i v)=x u+y v+i(u y-v x),(w, z)=(u+i v)(x-i y)=u x+v y+i(v x-u y)$,
Thus

$$
\langle z, w\rangle=\frac{1}{2}((z, w)+(w, z)) \Re(z, w) .
$$

3.

SOLUTION.

$$
z=s^{1 / n} e^{i \varphi / n}=s^{1 / n} e^{i(\varphi / n+2 k \pi i)}, \quad \forall k \in \mathbb{N} .
$$

4
Proof. Suppose that $i \succ 0$. Then from (iii),

$$
-1 \succ 0,-i \succ 0 .
$$

Then from (ii)

$$
0 \succ i
$$

This is contradict to (i).
5
Proof. Claim: an open set Ω is pathwise connected iff Ω is connected.
(a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega=\Omega_{1} \cup \Omega_{2}$, where Ω_{1} and Ω_{2} are disjoint non-empty open sets. Choose two points $w_{1} \in \Omega_{1}$ and $w_{2} \in \Omega_{2}$ and let γ denote a curve in Ω joining w_{1} and w_{2}.

Consider a parametrization $z:[0,1] \rightarrow \Omega$ of this curve with $z(0)=w_{1}$ and $z(1)=w_{2}$, and let

$$
t^{*}=\sup _{0 \leq t \leq 1}\left\{t: z(s) \in \Omega_{1}, \text { for all } 0 \leq s<t\right\}
$$

If $z\left(t^{*}\right) \in \Omega_{1}$, since Ω_{1} is open, then there is an open neighborhood of $z\left(t^{*}\right)$ is contained in Ω_{1}, that is, there exists $\varepsilon>0$, such that for each $s \in\left(t^{*}-\varepsilon, t^{*}+\varepsilon\right), z(s)$ is contained in Ω_{1}, this is contradict to the supremum of t^{*}. Thus $z\left(t^{*}\right) \in \Omega_{2}$. But similarly, this is contradict to supermum of t^{*}.
(b) Suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_{1} \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω. Also, let $\Omega_{2} \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω.

First, $\Omega_{1} \cap \Omega_{2}=\emptyset$ is clear.
Now, we prove Ω_{1} is open. Choose any point $w_{1} \in \Omega_{1}$, then w_{1} is joined to w by a curve γ_{1}. Since Ω is open, there exists a neighborhood U of w_{1} contained in Ω. Clearly, every point in U could be joined to w_{1} by a curve γ_{2}. Then connect the two curves γ_{1} and γ_{2}, thus very point in U can be joined to w by a curve. That is, $U \subset \Omega_{1}$, hence Ω_{1} is open.

Then, we prove Ω_{2} is open. Choose any point $w_{2} \in \Omega_{2}$, then there exists a neighborhood of w_{2} contained in Ω and very point in this neighborhood is joined to w_{2} by a curve γ_{3}. If there is one point u in this neighborhood does not belong to Ω_{2}, then there is a curve γ_{4} joins w and u, then the curve consists of γ_{3} and γ_{4} joins w_{2} and w, that is $w_{2} \in \Omega_{1}$. This is impossible, since $w_{2} \in \Omega_{2}$ and $\Omega_{1} \cap \Omega_{2}=\emptyset$.
$\Omega=\Omega_{1} \cup \Omega_{2}$. If not, there exists $v \in \Omega$ and a neighborhood $U(v)$ such that $v \notin \Omega_{1} \cup \Omega_{2}$ and $U(v) \cap \Omega_{1}=\emptyset$. Then $v \in \Omega_{2}$. Contradiction.

Since Ω_{1} is empty because of $w \in \Omega_{1}$, and Ω is connected, thus $\Omega=\Omega_{1}$.
7.

PROOF. (a). Let $z=|z| e^{i \theta_{1}}, w=|w| e^{i \theta}$. Then

$$
\begin{equation*}
\left|\frac{w-z}{1-\bar{w} z}\right|=\left|\frac{|w| e^{i\left(\theta_{2}-\theta_{1}\right)}-|z|}{1-|z||w| e^{i\left(\theta_{1}-\theta_{2}\right)}}\right| \tag{2}
\end{equation*}
$$

Thus, it suffices to assume that $z=r$ is real. We directly compute

$$
\begin{equation*}
(r-w)(r-\bar{w})=r^{2}-r(w+\bar{w})+|w|^{2} \tag{3}
\end{equation*}
$$

However,

$$
\begin{equation*}
(1-r w)(1-r \bar{w})=1-r(w+\bar{w})+r^{2}|w|^{2} . \tag{4}
\end{equation*}
$$

So

$$
\begin{equation*}
(1-r w)(1-r \bar{w})-(r-w)(r-\bar{w})=\left(1-r^{2}\right)\left(1-|w|^{2}\right)>0, \tag{5}
\end{equation*}
$$

since $r<1$ and $|w|<1$. In addition,

$$
\begin{equation*}
(1-r w)(1-r \bar{w})-(r-w)(r-\bar{w})=0 \Leftrightarrow r=1 \text { or }|w|=1 . \tag{6}
\end{equation*}
$$

Hence

$$
\left|\frac{w-z}{1-\bar{w} z}\right|^{2} \begin{cases}<1, & \text { for }|z|<1 \text { and }|w|<1 \tag{7}\\ =1, & \text { for }|z|=1 \text { or }|w|=1\end{cases}
$$

(b). From the above analysis, for $|z|<1,|F(z)|<1$ and $|z=1|,|F(z)|=1$. For any $h \in \mathbb{D}$, $h \neq 0$ and $z+h \in \mathbb{D}$, we have

$$
\begin{equation*}
\frac{F(z+h)-F(z)}{h}=\frac{|w|^{2}-1}{(1-\bar{w} z)(1-\bar{w} z-\bar{w} h)} \rightarrow \frac{|w|^{2}-1}{(1-\bar{w} z)^{2}} \tag{8}
\end{equation*}
$$

so F is holomorphic. Clearly, $F(0)=w$ and $F(w)=0$. Moreover, $F \circ F=I d$.
8.

PROOF. Let $w=u+i v=f(z)=f(x+i y)$.

$$
\begin{aligned}
\frac{\partial h}{\partial z}= & \frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{1}{i} \frac{\partial}{\partial y}\right) g(u(x, y), v(x, y)) \\
= & \frac{1}{2}\left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial x}\right)+\frac{1}{2} \frac{1}{i}\left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial g}{\partial v} \frac{\partial v}{\partial y}\right) \\
= & \frac{1}{2}\left(\frac{\partial g}{\partial u} \frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial \bar{f}}{\partial x}\right)+\frac{\partial g}{\partial v} \frac{1}{2} \frac{1}{i}\left(\frac{\partial f}{\partial x}-\frac{\partial \bar{f}}{\partial x}\right)\right) \\
& +\frac{1}{2} \frac{1}{i}\left(\frac{\partial g}{\partial u} \frac{1}{2}\left(\frac{\partial f}{\partial y}+\frac{\partial \bar{f}}{\partial y}\right)+\frac{\partial g}{\partial v} \frac{1}{2} \frac{1}{i}\left(\frac{\partial f}{\partial y}-\frac{\partial \bar{f}}{\partial y}\right)\right) \\
= & \frac{1}{2} \frac{\partial g}{\partial u}\left(\frac{\partial f}{\partial z}+\frac{\partial \bar{f}}{\partial z}\right)+\frac{1}{2} \frac{1}{i} \frac{\partial g}{\partial v}\left(\frac{\partial f}{\partial z}-\frac{\partial \bar{f}}{\partial z}\right) \\
= & \frac{\partial g}{\partial w} \frac{\partial f}{\partial z}+\frac{\partial g}{\partial \bar{w}} \frac{\partial \bar{f}}{\partial z} .
\end{aligned}
$$

10.

Proof. Consider the Laplace operator Δ, we need to define the domain of Δ as $\{f \in$ $\left.C^{2}\right\}$. In other words, we need to let the partial derivatives interchange, which is necessary to obtain the equality $\partial_{z} \partial_{\bar{z}}=\partial_{\bar{z}} \partial_{z}$.

12
Proof. Let $f=u+i v$. Then $u=\sqrt{|x||y|}$ and $v=0$.

$$
\partial_{x} u(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}=0, \quad \partial_{y} u(0,0)=\lim _{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}=0
$$

Otherwise, $\partial_{x} v(0,0)=\partial_{y} v(0,0)=0$ is trivial. Hence the Cauchy-Riemann equation at the origin. However, for $h=x+i y$,

$$
\left.\partial_{z} f\right|_{z=0}=\lim _{h \rightarrow 0}=\frac{f(z)-f(0)}{h}=\lim _{h=x+i y \rightarrow 0} \frac{\sqrt{|x||y|}}{x+i y}
$$

which is

$$
\left\{\begin{array}{l}
\frac{1}{1+i}, \quad \text { when } y=x, x>0 \\
-\frac{1}{1+i}, \quad \text { when } y=x, x<0
\end{array}\right.
$$

Thus, f is not holomorphic at 0 .

21

Proof. The partial sum

$$
\begin{aligned}
S_{n} & =\frac{z}{1-z^{2}}+\frac{z^{2}}{1-z^{4}}+\cdots+\frac{z^{2^{n}}}{1-z^{2^{n+1}}} \\
& =\frac{z}{1-z^{2}}+\left(\frac{1}{1-z^{2}}-\frac{1}{1-z^{4}}+\cdots+\left(\frac{1}{1-z^{2^{n}}}-\frac{1}{1-z^{2^{n+1}}}\right)\right) \\
& =\frac{z}{1-z^{2}}+\frac{1}{1-z^{2}}-\frac{1}{1-z^{2^{n+1}}} \\
& \rightarrow \frac{1}{1-z}-1=\frac{z}{1-z}, \quad \text { as } n \rightarrow \infty \text { and }|z|<1 .
\end{aligned}
$$

Since

$$
\begin{gathered}
\frac{2^{k} z^{2^{k}}}{1+z^{2^{k}}}=\frac{2^{k} z^{2^{k}}}{1+z^{2^{k}}} \frac{1+z^{2^{k}}-22^{2^{k}}}{1-z^{2^{k}}}=\frac{2^{k} z^{2^{k}}}{1-z^{2^{k}}}-\frac{2^{k+1} z^{2^{k+1}}}{1-z^{2^{k+1}}} \\
\frac{2^{k+1} z^{2^{k+1}}}{1-z^{2^{k+1}}} \rightarrow 0, \quad \text { as } k \rightarrow \infty \text { and }|z|<1
\end{gathered}
$$

Hence, the partial summation

$$
\begin{aligned}
S_{n} & =\frac{z}{1+z}+\frac{2 z^{2}}{1+z^{2}}+\cdots+\frac{2^{n} z^{2^{n}}}{1+z^{2^{n}}} \\
& =\frac{z}{1-z}-\frac{2^{n+1} z^{2^{n+1}}}{1-z^{2^{n+1}}} \\
& \rightarrow \frac{z}{1-z}, \quad \text { as } n \rightarrow \infty \text { and }|z|<1 \\
\frac{1}{1+z}+ & \frac{2 z}{1+z^{2}}+\cdots+\frac{2^{k} z^{2^{k}-1}}{1+z^{2^{k}}}+\cdots=\frac{1}{1-z} .
\end{aligned}
$$

22
Proof. Assume that $S=\cup_{i=1}^{n} S_{i}$. Assign each progression $S_{i}=\left\{a_{i}+k b_{i} \mid k \in \mathbb{N}\right\}$, which generates series

$$
\sum_{d=k}^{\infty} z^{a_{i}+k b_{i}}=\frac{z^{a_{i}}}{1-z^{b_{i}}} \quad \text { for }|z|<1
$$

Since $S_{i}, 1 \leq i \leq n$, partition \mathbb{N},

$$
\sum_{i=1}^{n} \sum_{d=k}^{\infty} z^{a_{i}+k b_{i}}=\sum_{m=1}^{\infty} z^{m}=\frac{1}{1-z}, \quad|z|<1
$$

for this, observe that if $m \in S_{i}$, then z^{m} is one of terms being added in $\sum_{d=k}^{\infty} z^{a_{i}+k b_{i}}$, and z^{m} is not in the other series $\sum_{d=k}^{\infty} z^{a_{j}+k b_{j}}$ for $j \neq i$. If all the b_{i} are different, let $b=\max \left\{b_{i}\right\}$, and $\zeta=e^{2 \pi i / b}$ be a primitive b-th root of 1 . This means $\zeta^{b}=1$. If k is an integer, $z^{k}=1 \mathrm{iff}$ k is a multiple of b. If $z^{b}=1$, then $z=\zeta^{n}$ for some integer n. Thus

$$
\sum_{k=1}^{n} \frac{z^{a_{k}}}{1-z^{b_{k}}}=\sum_{m} z^{m}=\frac{z}{1-z}
$$

the right side of which tends to $\frac{\zeta}{1-\zeta}$, as $z \rightarrow \zeta$. Note that $\zeta \neq 1$ and $b>1$. On the other hand, if $b_{j} \neq b, \frac{z^{a_{k}}}{1-z^{b_{k}}} \rightarrow \frac{\zeta^{a_{k}}}{1-\zeta^{b_{k}}}$ and $\zeta^{b_{j}} \neq 1$, since $b_{j}<b$. BUT if $b_{j}=b$, then $\frac{z^{a_{k}}}{1-z^{b_{k}}} \rightarrow \infty$ since $\zeta^{b_{j}}=\zeta^{b}=1$. Thus the left side tends to ∞. This is a contradiction.

24
Proof.

$$
\begin{align*}
\int_{\gamma} f(z) \mathrm{d} z & =\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t \\
& =-\int_{b}^{a} f(z(t)) z^{\prime}(t) \mathrm{d} t \tag{10}\\
& =\int_{\gamma^{-}} f(z) \mathrm{d} z
\end{align*}
$$

25
SOLUTION. (a) Let $z=e^{i \theta}, \theta \in(-\pi, \pi]$. Then

$$
\begin{align*}
\int_{\gamma} z^{n} & =\int_{-\pi}^{\pi} i e^{i(n+1) \theta} \mathrm{d} \theta \\
& = \begin{cases}2 \pi i, \quad \text { when } n=-1, \\
0, & \text { otherwise } .\end{cases} \tag{11}
\end{align*}
$$

(b)

$$
\begin{equation*}
\int_{\gamma} z^{n}=0, n \in \mathbb{Z} \tag{12}
\end{equation*}
$$

(c)

$$
\begin{align*}
\int_{\gamma} \frac{1}{(z-a)(z-b)} & =\frac{1}{a-b} \int_{\gamma} \frac{1}{z-a}-\frac{1}{z-b} \tag{13}\\
& =\frac{1}{a-b}(2 \pi i-0)=\frac{2 \pi i}{a-b}
\end{align*}
$$

26
Proof. Suppose that F_{1} and F_{2} are two primitives of f. Then we have that

$$
\begin{equation*}
\frac{d}{d z}\left(F_{1}-F_{2}\right)=f^{\prime}(z)-f^{\prime}(z)=0 \tag{14}
\end{equation*}
$$

which along with that $F_{1}-F_{2}$ is holomorphic implies that $F_{1}-F_{2}$ is a constant.

CHAPTER 2

Cauchy's theorem and its applications

1. Notes

2. Exercises

1.

Proof. Consider integral of the function $e^{i z^{2}}$ along the closed contour $\gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$ defined by

$$
\begin{aligned}
& \gamma_{1}=\{(r, \theta) \in \mathbb{C}: r: 0 \rightarrow R, \theta=0\}, \\
& \gamma_{2}=\left\{(r, \theta) \in \mathbb{C}: r=R, y: 0 \rightarrow \frac{\pi}{4}\right\}
\end{aligned}
$$

and

$$
\gamma_{3}=\left\{(r, \theta) \in \mathbb{C}: r: R \rightarrow 0, \theta=\frac{\pi}{4}\right\}
$$

Then we employ Cauchy integral theorem to deduce that

$$
0=\int_{0}^{R} e^{i x^{2}} \mathrm{~d} x+\int_{0}^{\frac{\pi}{4}} e^{i R^{2} e^{2 i \theta}} i R e^{i \theta} \mathrm{~d} \theta+\int_{R}^{0} e^{i r^{2} e^{i \frac{\pi}{2}}} e^{i \frac{\pi}{4}} \mathrm{~d} r=I+I I+I I I
$$

Since

$$
\begin{gathered}
\sin 2 \theta \geq \frac{4}{\pi} \theta, \quad \theta \in(0, \pi / 4) \\
|I I| \leq \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} R \mathrm{~d} \theta \leq \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \frac{4}{\pi} \theta} R \mathrm{~d} \theta=\frac{\pi}{4 R}\left(1-e^{-R^{2}}\right) \rightarrow 0, R \rightarrow \infty
\end{gathered}
$$

Hence

$$
\int_{0}^{\infty} e^{i x^{2}} \mathrm{~d} x=\int_{0}^{\infty} e^{-r^{2}} e^{i \frac{\pi}{4}} \mathrm{~d} r=e^{i \frac{\pi}{4}} \frac{\sqrt{\pi}}{2}
$$

which implies the results.
2
PROOF. Consider the integral of function $\frac{e^{i z}}{z}$ along the toy contour $\gamma=\gamma_{1} \cup \gamma_{\varepsilon} \cup \gamma_{2} \cup \gamma_{R}$ defined by

$$
\begin{gathered}
\gamma_{1}=\{(r, \theta) \in \mathbb{C}: r:-R \rightarrow-\varepsilon, \theta=0\}, \\
\gamma_{\varepsilon}=\{(r, \theta) \in \mathbb{C}: r=\varepsilon, y: \pi \rightarrow 0\}, \\
\gamma_{2}=\{(r, \theta) \in \mathbb{C}: r: \varepsilon \rightarrow R, \theta=0\},
\end{gathered}
$$

and

$$
\gamma_{R}=\{(r, \theta) \in \mathbb{C}: r=R, \theta: 0 \rightarrow \pi\} .
$$

Then Cauchy integral theorem implies

$$
\int_{-R}^{-\varepsilon} \frac{e^{i x}}{x} \mathrm{~d} x+\int_{\gamma_{\varepsilon}} \frac{e^{i z}}{z} \mathrm{~d} z+\int_{\varepsilon}^{R} \frac{e^{i x}}{x} \mathrm{~d} x+\int_{\gamma_{R}} \frac{e^{i z}}{z} \mathrm{~d} z=0
$$

Since

$$
\frac{e^{i z}}{z}=\frac{1}{z}+\frac{i z}{z}+E(z)
$$

where $E(z)$ is bounded near 0 and $E(z) \rightarrow 0$ as $z \rightarrow 0$, we have

$$
\begin{aligned}
\int_{\gamma_{\varepsilon}} \frac{e^{i z}}{z} \mathrm{~d} z & =\int_{\pi}^{0}\left(\frac{1}{\varepsilon e^{i \theta}}+i\right) i \varepsilon e^{i \theta} \mathrm{~d} \theta+\int_{\gamma_{\varepsilon}} E(z) \mathrm{d} z \\
& \rightarrow-i \pi, \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

since

$$
\left|\int_{\gamma_{\varepsilon}} E(z) \mathrm{d} z\right| \leq \sup |E(z)| \pi \varepsilon \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0
$$

In addition,

$$
\left|\int_{\gamma_{R}} \frac{e^{i z}}{z} \mathrm{~d} z\right| \leq \int_{0}^{\pi} e^{R \sin \theta} \mathrm{~d} \theta \leq \int_{0}^{\pi} e^{R \frac{2}{\pi} \theta} \mathrm{~d} \theta=\frac{\pi}{R}\left(1-e^{-R}\right) \rightarrow 0, R \rightarrow \infty
$$

Since

$$
\int_{-R}^{-\varepsilon} \frac{e^{i x}}{x} \mathrm{~d} x+\int_{\varepsilon}^{R} \frac{e^{i x}}{x} \mathrm{~d} x=\int_{\varepsilon}^{R} \frac{e^{i x}-e^{-i x}}{x} \mathrm{~d} x=2 i \int_{\varepsilon}^{R} \frac{\sin x}{x} \mathrm{~d} x
$$

Hence

$$
2 i \int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=i \pi
$$

which is exactly

$$
\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}
$$

3.

Proof. When $b=0$, these integrals are trivial. Now suppose $b \neq 0$. Consider the integral of function $e^{-A z}$ along the toy contour $\gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$ defined by

$$
\begin{aligned}
\gamma_{1} & =\{(r, \theta) \in \mathbb{C}: r: 0 \rightarrow R, \theta=0\} \\
\gamma_{2} & =\{(r, \theta) \in \mathbb{C}: r=R, y: 0 \rightarrow \omega\}
\end{aligned}
$$

and

$$
\gamma_{3}=\{(r, \theta) \in \mathbb{C}: r: R \rightarrow 0, \theta=\omega\}
$$

where

$$
A=\sqrt{a^{2}+b^{2}}, \quad \cos \omega=\frac{a}{A}, \quad \sin \omega=\frac{b}{A}
$$

Then the Cauchy integral theorem reveals that

$$
\int_{0}^{R} e^{-A x} \mathrm{~d} x+\int_{0}^{\omega} e^{-A R e^{i \theta}} i R e^{i \theta} \mathrm{~d} \theta+\int_{R}^{0} \int_{0}^{\omega} e^{-A r e^{i \omega}} e^{i \omega} \mathrm{~d} r=0
$$

Since

$$
\begin{gathered}
|I I| \leq \int_{0}^{\omega} e^{-A R \cos \theta} R \mathrm{~d} \theta \leq \int_{0}^{\omega} e^{-a R} R \mathrm{~d} \theta=R e^{-a R} \omega \rightarrow 0, \quad R \rightarrow \infty \\
\int_{0}^{\infty} e^{-A x} \mathrm{~d} x=e^{i \omega} \int_{0}^{\infty} e^{-a x-i b x} \mathrm{~d} x
\end{gathered}
$$

which implies

$$
\int_{0}^{\infty} e^{-a x} \cos b x \mathrm{~d} x=\frac{a}{A^{2}}, \quad \int_{0}^{\infty} e^{-a x} \sin b x \mathrm{~d} x=\frac{b}{A^{2}}
$$

4.

Proof. Note that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\pi x^{2}} e^{2 \pi i x \xi} \mathrm{~d} x=e^{-\pi \xi^{2}} \int_{-\infty}^{\infty} e^{-\pi(x-i \xi)^{2}} \mathrm{~d} x \tag{15}
\end{equation*}
$$

Then we consider the contour $\Gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \gamma_{4}$, which are defined as

$$
\begin{align*}
& \gamma_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x:-R \rightarrow R, y=0\right\}, \\
& \gamma_{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=R, y: R \rightarrow R-i \xi\right\}, \tag{16}\\
& \gamma_{3}=\left\{(x, y) \in \mathbb{R}^{2} \mid x: R-i \xi \rightarrow-R-i \xi, y=R-i \xi\right\}, \\
& \gamma_{4}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=-R, y:-R-i \xi \rightarrow R\right\} .
\end{align*}
$$

We now consider the integral $\int_{\Gamma} e^{-\pi z^{2}} \mathrm{~d} z$. By Cauchy integral theorem,

$$
\begin{align*}
0 & =\int_{\Gamma} e^{-\pi z^{2}} \mathrm{~d} z \\
& =\int_{-R}^{R} e^{-\pi x^{2}} \mathrm{~d} x+\int_{0}^{-\xi} e^{-\pi(R+i y)^{2}} i \mathrm{~d} y+\int_{R}^{-R} e^{-\pi(x-i \xi)^{2}} \mathrm{~d} x+\int_{-\xi}^{0} e^{-\pi(-R+i y)^{2}} i \mathrm{~d} y \tag{17}
\end{align*}
$$

It is evaluated that

$$
\begin{align*}
\left|\int_{0}^{-\xi} e^{-\pi(R+i y)^{2}} i \mathrm{~d} y\right| & \leq\left|\int_{0}^{-\xi} e^{-\pi R^{2}} e^{-\pi y^{2}} \mathrm{~d} y\right| \tag{18}\\
& \leq \int_{0}^{\infty} e^{-\pi R^{2}} e^{-p i y^{2}} \mathrm{~d} y=\frac{1}{2} e^{-\pi R^{2}} \rightarrow 0, \text { as } R \rightarrow \infty
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|\int_{-\xi}^{0} e^{-\pi(-R+i y)^{2}} i \mathrm{~d} y\right| \rightarrow 0, \text { as } R \rightarrow \infty \tag{19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\pi x^{2}} \mathrm{~d} x=\int_{-\infty}^{\infty} e^{-\pi(x-i \xi)^{2}} \mathrm{~d} x=1 \tag{20}
\end{equation*}
$$

5.

Proof. Let $f(z)=u(x, y)+i v(x, y)$. Then $f(z) \mathrm{d} z=(u+i v) \mathrm{d} x+i(u+i v) \mathrm{d} y$. Thus from Green theorem and Cauchy-Riemann equations,

$$
\begin{align*}
\int_{T} f(z) \mathrm{d} z & =\int_{T} u \mathrm{~d} x-v \mathrm{~d} y+i \int_{T} v \mathrm{~d} x+u \mathrm{~d} y \\
& =\int_{T_{\text {int }}}\left(-\partial_{x} v-\partial_{y} u\right)+i\left(\partial_{x} u-\partial_{y} v\right) \mathrm{d} x \mathrm{~d} y \tag{21}\\
& =0
\end{align*}
$$

6
Proof. We choose the keyhole contour $\Gamma_{\delta, \varepsilon}$ omitting the point w. The Cauchy integral theorem implies that

$$
\int_{\Gamma_{\delta, \varepsilon}} f=0 .
$$

Then taking $\delta \rightarrow 0$, we have that

$$
\begin{equation*}
\int_{T} f(z) \mathrm{d} z=\int_{C_{\varepsilon}} f(z) \mathrm{d} z \tag{22}
\end{equation*}
$$

where $C_{\varepsilon}=\{z| | z-w \mid=\varepsilon\}$. From assumption, there exists a constant M such that $|f(z)| \leq M$ for $z \in C_{\varepsilon}$. Thus

$$
\begin{equation*}
\left|\int_{C_{\varepsilon}} f(z) \mathrm{d} z\right| \leq 2 \pi M \varepsilon \tag{23}
\end{equation*}
$$

Then letting $\varepsilon \rightarrow 0$ implies

$$
\begin{equation*}
\int_{T} f(z) \mathrm{d} z=0 \tag{24}
\end{equation*}
$$

7
Proof. Since

$$
\begin{equation*}
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{f(\zeta)-f(-\zeta)}{\zeta^{2}} \mathrm{~d} \zeta \text { whenever } 0<r<1 \tag{25}
\end{equation*}
$$

we have

$$
\begin{equation*}
2\left|f^{\prime}(0)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \frac{1}{r^{2}} r^{2} \mathrm{~d} \theta=d . \tag{26}
\end{equation*}
$$

When $f(z)=a_{0}+a_{1} z$,

$$
\begin{equation*}
d=\sup _{z, w \in \mathbb{D}}|f(z)-f(w)|=\left|a_{1}\right| \sup _{z, w \in \mathbb{D}}|z-w|=2\left|a_{1}\right| \tag{27}
\end{equation*}
$$

On the other hand, whenever $0<r<1$,

$$
\begin{equation*}
2 f^{\prime}(0)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{2 a_{1}}{\zeta} \mathrm{~d} \zeta=\frac{1}{2 \pi i}=2 a_{1} . \tag{28}
\end{equation*}
$$

Proof. For any $x \in \mathbb{R}$, we choose the disk $D_{1 / 2}(x)$ centered at x with radius $1 / 2$. Its boundary is the circle $C=C_{1 / 2}(x)$. Then the Cauchy integral formula reveals that

$$
f^{(n)}(x)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-x)^{n+1}} \mathrm{~d} \zeta
$$

Since

$$
|f(\zeta)| \leq A(1+|\zeta|)^{\eta}
$$

for any ζ in the circle C,

$$
|f(\zeta)| \leq A(1+|\zeta-x|+|x|)^{\eta} \leq 2^{\eta} A(1+|x|)^{\eta}
$$

Hence

$$
\left|f^{(n)}(x)\right| \leq \frac{n!}{2 \pi} \int_{C} \frac{2^{\eta} A(1+|x|)^{\eta}}{(1 / 2)^{n+1}}|\mathrm{~d} \zeta| \leq A_{n}(1+|x|)^{\eta}
$$

9.

Proof. We may assume that $z_{0}=0$. Otherwise, we take the function $f(z)=\varphi(z+$ $\left.z_{0}\right)-z_{0}$. Then $f: \Omega-\left\{z_{0}\right\} \rightarrow \Omega-\left\{z_{0}\right\}$ is holomorphic and satisfies

$$
f(0)=\varphi\left(z_{0}\right)-z_{0}=0, \quad f^{\prime}(0)=\varphi^{\prime}\left(z_{0}\right)=1 .
$$

If not, we can assume that

$$
\varphi(z)=z+a_{n} z^{n}+O\left(z^{n+1}\right)
$$

near the origin with $n>1$ and $a_{n} \neq 0$. Then by induction, we consider the function

$$
\varphi_{k}(z)=\varphi \circ \cdots \circ \varphi(z)=z+k a_{n} z^{n}+O\left(z^{n+1}\right)
$$

Then for $D_{\varepsilon}(0) \subset \Omega$, and $\varphi_{k}(\Omega) \subset \Omega$ is holomorphic uniformly for each k, we use the Cauchy inequality to see that

$$
\left|a_{n}\right| \leq \frac{\varphi_{k}^{(n)}(0)}{k n!} \leq \frac{A}{k \varepsilon^{n}} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

since A and ε do not depend on k.
10.

Proof. Can every continuous function on the closed unit disk be approximated uniformly by polynomials in the variable of z ? NO.

The counterexample is $f(z)=\bar{z}$, which is continuous on the closed unit disk. However, \bar{z} can not be approximated by polynomials in the variable of z. The uniform limit of polynomials in the variable of z on the closed disk is a holomorphic function, which is guaranteed by the Weirstrass theorem.
11.

Proof. (1). The Cauchy integral formula implies

$$
\begin{aligned}
f(z)= & \frac{1}{2 \pi i} \int_{\partial D_{R}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \frac{R e^{i \varphi}}{R e^{i \varphi}-z} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(R e^{i \varphi}\right) R e^{i \varphi}+z}{R e^{i \varphi}-z} \mathrm{~d} \varphi-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(R e^{i \varphi}\right) z}{R e^{i \varphi}-z} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) \mathrm{d} \varphi \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \frac{1}{2}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}-\frac{R e^{-i \varphi}+\bar{z}}{R e^{-i \varphi}-\bar{z}}\right) \mathrm{d} \varphi \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(R e^{i \varphi}\right) z}{R e^{i \varphi}-z} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) \mathrm{d} \varphi \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \frac{\bar{z}}{R e^{-i \varphi}-\bar{z}} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) \mathrm{d} \varphi \\
& -\frac{1}{2 \pi} \int_{0}^{2 \pi i} f\left(R e^{i \varphi}\right) \frac{i R e^{i \varphi}}{\frac{R^{2}}{\bar{z}}-R e^{i \varphi}} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) \mathrm{d} \varphi-\frac{1}{2 \pi i} \int_{\partial D_{R}}^{\frac{L^{i}}{\zeta}-\frac{R^{2}}{\bar{z}}} \mathrm{~d} \varphi \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) \mathrm{d} \varphi .
\end{aligned}
$$

(2).

$$
\operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right)
$$

12.

PROOF. (a). Let $g(z)=2 \frac{\partial u}{\partial z}$. Since $u \in C^{2}(\mathbb{D}), \operatorname{Re}(g)$ and $\operatorname{Im}(g)$ are continuously differentiable (i.e., $g \in C^{1}(\mathbb{D})$). In addition,

$$
\frac{\partial g}{\partial \bar{z}}=2 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} u=\frac{1}{2} \Delta u=0
$$

Hence $g \in H(\mathbb{D})$. Then we might use Goursat' theorem to define the primitive F of f in \mathbb{D} such that $F^{\prime}=f$. Then

$$
\partial_{z} \operatorname{Re}(F)=\frac{\partial u}{\partial z}
$$

implies $\operatorname{Re}(F)-u$ is a constant.
14.

Proof. If z_{0} is a pole of f with order m, then for z near z_{0}, we have

$$
f(z)=\frac{c_{-m}}{\left(z-z_{0}\right)^{m}}+\cdots+\frac{c_{-1}}{z-z_{0}}+g(z)
$$

where $g \in H(\mathbb{D})$. Since $g \in H(\mathbb{D})$, then

$$
\begin{array}{r}
g(z)=\sum_{n=0}^{\infty} a_{n} z^{n}+\frac{c_{-1}}{z_{0}} \sum_{n=0}^{\infty} \frac{z^{n}}{z_{0}^{n}}+\cdots+(-1)^{m-1} c_{-m} \frac{1}{z_{0}^{m}} \sum_{n=0}^{\infty} \frac{z^{n}}{z_{0}^{n}} \\
=\sum_{n=0}^{\infty}\left(a_{n}+\frac{c_{-1}}{z_{0}^{n+1}}+\cdots+(-1)^{m-1} c_{-m} \frac{1}{z_{0}^{n+m}}\right)
\end{array}
$$

From the convergence of g,

$$
a_{n}+\frac{c_{-1}}{z_{0}^{n+1}}+\cdots+(-1)^{m-1} c_{-m} \frac{1}{z_{0}^{n+m}} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=z_{0}
$$

15.

Proof. We employ the maximum principle to see that

$$
|f(z)| \leq 1, \quad \text { for any } z \in \mathbb{D}
$$

Since f is non-vanishing in \mathbb{D}, it is convinced that $\frac{1}{f(z)}$ still satisfies the same conditions as f. Hence, the maximum principle implies that

$$
\left|\frac{1}{f(z)}\right| \leq 1, \quad \text { for any } z \in \mathbb{D}
$$

Thus $|f(z)| \geq 1$ for any $z \in \mathbb{D}$. Consequently, $|f(z)|=1$ for any $z \in \mathbb{D}$. The maximum modulus principle guarantees that f is a constant.

CHAPTER 3

Meromorphic functions and the logarithm

1. Notes

1. Prove that

$$
\int_{-\infty}^{\infty} e^{2 \pi i x \xi} \frac{\sin \pi a}{\cosh \pi x+\cos \pi a} \mathrm{~d} x=\frac{\sinh \pi a \xi}{\sinh a \xi}
$$

for $0<a<1$.

Proof. Consider the function

$$
f(z)=e^{2 \pi i z \xi} \frac{\sin \pi a}{\cosh \pi z+\cos \pi a} .
$$

Then we choose the contour as $\Gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \gamma_{4}$, which are defined as

$$
\begin{align*}
\gamma_{1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x:-R \rightarrow R, y=0\right\}, \\
\gamma_{2} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x=R, y: 0 \rightarrow 2\right\}, \tag{29}\\
\gamma_{3} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x: R \rightarrow-R, y=2\right\}, \\
\gamma_{4} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x=-R, y: 2 \rightarrow 0\right\} .
\end{align*}
$$

Since

$$
\cosh \pi z+\cos \pi a=\frac{e^{-\pi z}}{2}\left(e^{2 \pi z}+2 e^{\pi z} \cos \pi a+1\right)=\frac{e^{-\pi z}}{2}\left(e^{\pi z}+e^{i \pi a}\right)\left(e^{\pi z}+e^{-i \pi a}\right)
$$

$f(z)$ has two simple poles at $i(1+a)$ and $i(1-a)$. In addition, the residue of f at $(1-a) i$ is

$$
\begin{aligned}
\operatorname{res}_{z=i(1-a)} f & =2 \lim _{z \rightarrow i(1-a)} e^{2 \pi i z \xi} \frac{\sin \pi a(z-i(1-a))}{e^{-\pi z}\left(e^{\pi z}-e^{i \pi(1+a)}\right)\left(e^{\pi z}-e^{i \pi(1-a)}\right)} \\
& =2 e^{-2 \pi(1-a) \xi} \frac{\sin \pi a}{e^{-i(1-a) \pi} \pi e^{i(1-a) \pi} 2 i \sin \pi a} \\
& =\frac{e^{-2 \pi(1-a) \xi}}{\pi i}
\end{aligned}
$$

and the residue of f at $(1+a) i$ is

$$
\begin{aligned}
\operatorname{res}_{z=i(1+a)} f & =2 \lim _{z \rightarrow i(1+a)} e^{2 \pi i z \xi} \frac{\sin \pi a(z-i(1+a))}{e^{-\pi z}\left(e^{\pi z}-e^{i \pi(1+a)}\right)\left(e^{\pi z}-e^{i \pi(1-a)}\right)} \\
& =-2 e^{-2 \pi(1+a) \xi} \frac{\sin \pi a}{e^{-i(1+a) \pi} \pi e^{i(1+a) \pi} 2 i \sin \pi a} \\
& =-\frac{e^{-2 \pi(1-a) \xi}}{\pi i}
\end{aligned}
$$

The the residue theorem implies that

$$
\begin{aligned}
& \int_{-R}^{R} e^{2 \pi i x \xi} \frac{\sin \pi a}{\cosh \pi x+\cos \pi a} \mathrm{~d} x+\int_{0}^{2} e^{2 \pi i R-2 \pi y} \frac{\sin \pi a}{\cosh \pi(R+i y)+\cos \pi a} i e^{i y} \mathrm{~d} y \\
& -e^{4 \pi \xi} \int_{-R}^{R} e^{2 \pi i x \xi} \frac{\sin \pi a}{\cosh \pi x+\cos \pi a} \mathrm{~d} x-\int_{0}^{2} e^{-2 \pi i R-2 \pi y} \frac{\sin \pi a}{\cosh \pi(-R+i y)+\cos \pi a} i e^{i y} \mathrm{~d} y \\
& =2 \pi i\left(\frac{e^{-2 \pi(1-a) \xi}}{\pi i}-\frac{e^{-2 \pi(1-a) \xi}}{\pi i}\right)=-4 e^{-2 \pi \xi} \sinh (2 \pi a \xi) .
\end{aligned}
$$

Letting $R \rightarrow \infty$,

$$
\left(1-e^{4 \pi \xi}\right) \int_{-\infty}^{\infty} e^{2 \pi i x \xi} \frac{\sin \pi a}{\cosh \pi x+\cos \pi a} \mathrm{~d} x=-4 e^{-2 \pi \xi} \sinh (2 \pi a \xi)
$$

which implies

$$
\int_{-\infty}^{\infty} e^{2 \pi i x \xi} \frac{\sin \pi a}{\cosh \pi x+\cos \pi a} \mathrm{~d} x=\frac{4 e^{-2 \pi \xi} \sinh (2 \pi a \xi)}{e^{4 \pi \xi}-1}=\frac{2 \sinh (2 \pi a \xi)}{\sinh (2 \pi \xi)}
$$

2. Exercises

1.

Proof. From the Euler's formula, we see that

$$
\begin{equation*}
\sin \pi z=0 \Leftrightarrow e^{i 2 \pi z}=1 \Leftrightarrow z=k \in \mathbb{Z} \tag{30}
\end{equation*}
$$

By the Taylor's expansion

$$
\begin{equation*}
e^{i \pi z}=\sum_{n=0}^{\infty} i^{n} \pi^{n}(-1)^{k}(z-k)^{n} \tag{31}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sin \pi z=(z-k) \frac{1}{i}\left(i \pi(-1)^{k}+\sum_{n=1}^{\infty} i^{2 n+1} \pi^{2 n+1}(-1)^{k}(z-k)^{2 n+1}\right) \tag{32}
\end{equation*}
$$

which implies the zeros are simple. Hence

$$
\begin{equation*}
\operatorname{res}_{z=n} \frac{1}{\sin \pi z}=\lim _{z \rightarrow n} \frac{z-n}{\sin \pi z}=\frac{(-1)^{n}}{\pi} \tag{33}
\end{equation*}
$$

SOLUTION. Consider the complex function $\frac{1}{1+z^{4}}$. It has four simple poles $z=e^{ \pm i \frac{\pi}{4}}$, $e^{ \pm i \frac{3}{4} \pi}$. Then we choose the contour $\Gamma=\gamma_{1} \cup \gamma_{2}$, where

$$
\begin{aligned}
& \gamma_{1}=\{z \in \mathbb{C} \mid x:-R \rightarrow R, \quad y=0\} \\
& \gamma_{2}=\{z \in \mathbb{C}| | z \mid=R, \quad \arg z: 0 \rightarrow \pi\}
\end{aligned}
$$

Then using residue theorem,

$$
\begin{equation*}
\operatorname{res}_{z=e^{i \frac{\pi}{4}}} f=2 \pi i \lim _{z \rightarrow e^{i \frac{\pi}{4}}} \frac{z-e^{i \frac{\pi}{4}}}{1+z^{4}}=\frac{\pi}{\sqrt{2}(1+i)}, \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{res}_{z=e^{i \frac{3}{4} \pi}} f=2 \pi i \lim _{z \rightarrow e^{i \frac{3}{4} \pi}} \frac{z-e^{i \frac{3}{4} \pi}}{1+z^{4}}=\frac{\pi}{\sqrt{2}(1-i)} . \tag{35}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int_{\Gamma} \frac{1}{1+z^{4}} \mathrm{~d} z=\int_{\gamma_{1}}+\int_{\gamma_{2}}=\frac{\pi}{\sqrt{2}} \tag{36}
\end{equation*}
$$

Otherwise, by Cauchy integral theorem

$$
\begin{equation*}
\int_{\Gamma} \frac{1}{1+z^{4}} \mathrm{~d} z=\int_{-R}^{R} \frac{1}{1+x^{4}} \mathrm{~d} x+\int_{0}^{\pi} \frac{R i e^{i \theta}}{1+R^{4} e^{i 4 \theta}} \mathrm{~d} \theta \tag{37}
\end{equation*}
$$

Since

$$
\begin{gather*}
\left|\int_{0}^{\pi} \frac{R i e^{i \theta}}{1+R^{4} e^{i 4 \theta}} \mathrm{~d} \theta\right| \rightarrow 0, \quad \text { as } R \rightarrow \infty \\
\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} \mathrm{~d} x=\frac{\pi}{\sqrt{2}} \tag{38}
\end{gather*}
$$

3.

Proof. Consider the function

$$
f(z)=\frac{e^{i z}}{z^{2}+a^{2}}
$$

Then we choose the contour $\Gamma=[-R, R] \cup C_{R}$ with positive orientation, where $C_{R}=\{z \in$ $\mathbb{C}|\Im z \geq 0,|z|=R\}$ and $R>2 a$. Then $f(z)$ has a simple pole at $i a$ in the interior of Γ. The residue of f at $z=i a$ is

$$
\operatorname{res}_{z=i a} f=\lim _{z \rightarrow i a}(z-i a) \frac{e^{i z}}{z^{2}+a^{2}}=\frac{e^{-a}}{2 i a}
$$

The residue theorem implies that

$$
\int_{-R}^{R} \frac{e^{i x}}{x^{2}+a^{2}} \mathrm{~d} x+\int_{0}^{\pi} \frac{e^{R e^{i \theta}}}{R^{2} e^{2 i \theta}+a^{2}} R i e^{i \theta} \mathrm{~d} \theta=\pi \frac{e^{-a}}{a}
$$

We estimate

$$
\left|\int_{0}^{\pi} \frac{e^{R e^{i \theta}}}{R^{2} e^{2 i \theta}+a^{2}} R i e^{i \theta} \mathrm{~d} \theta\right| \leq \int_{0}^{\pi} \frac{R}{R^{2}-a^{2}} \mathrm{~d} \theta \leq \frac{2 \pi}{R} \rightarrow 0
$$

as $R \rightarrow \infty$. Finally, let $R \rightarrow \infty$ and take the real part to deduce that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} \mathrm{~d} x=\pi \frac{e^{-a}}{a}
$$

4.

Proof. Consider

$$
f(z)=\frac{z e^{i z}}{z^{2}+a^{2}}
$$

Then we choose the contour $\Gamma=[-R, R] \cup C_{R}$ with positive orientation, where $C_{R}=\{z \in$ $\mathbb{C}|\Im z \geq 0,|z|=R\}$ and $R>2 a$. Then $f(z)$ has a simple pole at $i a$ in the interior of Γ. The residue of f at $z=i a$ is

$$
\operatorname{res}_{z=i a} f=\lim _{z \rightarrow i a}(z-i a) \frac{z e^{i z}}{z^{2}+a^{2}}=e^{-a}
$$

The residue theorem implies that

$$
\int_{-R}^{R} \frac{x e^{i x}}{x^{2}+a^{2}} \mathrm{~d} x+\int_{0}^{\pi} \frac{R e^{i \theta} e^{R e^{i \theta}}}{R^{2} e^{2 i \theta}+a^{2}} R i e^{i \theta} \mathrm{~d} \theta=\pi i e^{-a}
$$

We estimate

$$
\begin{aligned}
\left|\int_{0}^{\pi} \frac{R e^{i \theta} e^{R e^{i \theta}}}{R^{2} e^{2 i \theta}+a^{2}} R i e^{i \theta} \mathrm{~d} \theta\right| & \leq \int_{0}^{\pi} \frac{R^{2} e^{-R \sin \theta}}{R^{2}-a^{2}} \mathrm{~d} \theta \leq 2 \frac{R^{2}}{R^{2}-a^{2}} \int_{0}^{\pi / 2} e^{-2 R \theta / \pi} \\
& =\frac{R^{2}}{R^{2}-a^{2}} \frac{\pi}{R}\left(1-e^{-R}\right) \rightarrow 0
\end{aligned}
$$

as $R \rightarrow \infty$. Finally, let $R \rightarrow \infty$ and take the imaginary part to deduce that

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} \mathrm{~d} x=\pi e^{-a}
$$

5.

Proof. Consider the function

$$
f(z)=\frac{e^{2 \pi i z \xi}}{\left(1+z^{2}\right)^{2}},
$$

(1). For $\xi \geq 0$, we choose the contour $\Gamma=[-R, R] \cup C_{R}$ with positive orientation, where $C_{R}=\{z \in \mathbb{C}|\Im z \geq 0,|z|=R\}$ and $R>2$. Then $f(z)$ has a pole of order 2 at i in the interior of Γ. The residue of f at $z=i$ is

$$
\operatorname{res}_{z=i} f=\lim _{z \rightarrow i} \frac{d}{d z}(z-i)^{2} \frac{e^{2 \pi i z \xi}}{(z+i)^{2}(z-i)^{2}}=\pi \xi \frac{e^{-2 \pi \xi}}{2 i}+\frac{e^{-2 \pi \xi}}{4 i} .
$$

The residue theorem implies that

$$
\int_{-R}^{R} \frac{e^{2 \pi i x \xi}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x+\int_{0}^{\pi} \frac{e^{2 \pi i \xi R e^{i \theta}}}{\left(R^{2} e^{2 i \theta}+1\right)^{2}} \operatorname{Rie}^{i \theta} \mathrm{~d} \theta=\frac{\pi}{2}(1+2 \pi \xi) e^{-2 \pi \xi}
$$

We estimate

$$
\left|\int_{0}^{\pi} \frac{e^{2 \pi i \xi R e^{i \theta}}}{\left(R^{2} e^{2 i \theta}+1\right)^{2}} R i e^{i \theta} \mathrm{~d} \theta\right| \leq \int_{0}^{\pi} \frac{R}{\left(R^{2}-1\right)^{2}} \mathrm{~d} \theta \leq \frac{2 \pi}{R^{3}} \rightarrow 0
$$

as $R \rightarrow \infty$. Finally, let $R \rightarrow \infty$ and take the real part to deduce that

$$
\int_{-\infty}^{\infty} \frac{e^{2 \pi i x \xi}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x=\frac{\pi}{2}(1+2 \pi \xi) e^{-2 \pi \xi}
$$

(2). For $\xi<0$, we choose the contour $\Gamma=[-R, R] \cup C_{R}$ with positive orientation, where $C_{R}=\{z \in \mathbb{C}|\Im z \leq 0,|z|=R\}$ and $R>2$. Then $f(z)$ has a pole of order 2 at $-i$ in the interior of Γ. The residue of f at $z=-i$ is

$$
\operatorname{res}_{z=-i} f=\lim _{z \rightarrow-i} \frac{d}{d z}(z+i)^{2} \frac{e^{2 \pi i z \xi}}{(z+i)^{2}(z-i)^{2}}=\pi \xi \frac{e^{2 \pi \xi}}{2 i}-\frac{e^{2 \pi \xi}}{4 i} .
$$

The residue theorem implies that

$$
-\int_{-R}^{R} \frac{e^{2 \pi i x \xi}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x+\int_{-\pi}^{0} \frac{e^{2 \pi i \xi R e^{i \theta}}}{\left(R^{2} e^{2 i \theta}+1\right)^{2}} R i e^{i \theta} \mathrm{~d} \theta=\frac{\pi}{2}(-1+2 \pi \xi) e^{2 \pi \xi}
$$

We estimate

$$
\left|\int_{-\pi}^{0} \frac{e^{2 \pi i \xi R e^{i \theta}}}{\left(R^{2} e^{2 i \theta}+1\right)^{2}} R i e^{i \theta} \mathrm{~d} \theta\right| \leq \int_{-\pi}^{0} \frac{R}{\left(R^{2}-1\right)^{2}} \mathrm{~d} \theta \leq \frac{2 \pi}{R^{3}} \rightarrow 0
$$

as $R \rightarrow \infty$. Finally, let $R \rightarrow \infty$ and take the real part to deduce that

$$
\int_{-\infty}^{\infty} \frac{e^{2 \pi i x \xi}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x=\frac{\pi}{2}(1-2 \pi \xi) e^{-2 \pi \xi}
$$

6.

Proof. Consider the function

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{n+1}}
$$

with poles at $z= \pm i$ of order $n+1$. Then the residue of f at $z=i$ is

$$
\operatorname{res}_{z=i} f=\frac{1}{n!} \lim _{z \rightarrow i} \frac{d^{n}}{d z^{n}}(z-i)^{n+1} \frac{1}{\left(1+z^{2}\right)^{n+1}}=\frac{(n+1) \cdots \cdots 2 n}{n!} \frac{1}{2^{2 n+1} i} .
$$

Then we choose the contour $\Gamma=\gamma_{1} \cup \gamma_{2}$, where

$$
\begin{aligned}
& \gamma_{1}=\{z \in \mathbb{C} \mid x:-R \rightarrow R, \quad y=0\} \\
& \gamma_{2}=\{z \in \mathbb{C}| | z \mid=R, \quad \arg z: 0 \rightarrow \pi\}
\end{aligned}
$$

By the residue formula,

$$
\int_{-R}^{R} \frac{1}{\left(1+x^{2}\right)^{n+1}} \mathrm{~d} x+\int_{0}^{\pi} \frac{1}{\left(1+R e^{i \theta}\right)^{n+1}} \text { Rie }^{i \theta} \mathrm{~d} \theta=2 \pi \operatorname{ires}_{z=i} f=\frac{(2 n-1)!!}{(2 n)!!} \pi
$$

Since

$$
\left|\int_{0}^{\pi} \frac{1}{\left(1+R^{2} e^{2 i \theta}\right)^{n+1}} R i e^{i \theta} \mathrm{~d} \theta\right| \geq \int_{0}^{\pi} \frac{R}{\left(R^{2}-1\right)^{n+1}} \mathrm{~d} \theta \rightarrow 0, \quad \text { as } R \rightarrow \infty
$$

letting $R \rightarrow \infty$ implies the result.
7.

Proof. Consider the function

$$
f(z)=\frac{1}{i z} \frac{1}{\left(a+\frac{1}{2}\left(z+\frac{1}{z}\right)\right)^{2}}=\frac{4 z}{i\left(z^{2}+2 a z+1\right)^{2}}
$$

which has a pole of order 2 at

$$
z_{0}=-a+\sqrt{a^{2}-1} \in \mathbb{D}
$$

Since

$$
\begin{aligned}
& \operatorname{res}_{z=z_{0}} f=\lim _{z \rightarrow z_{0}} \frac{d}{d z} \frac{4 z}{i\left(z+a+\sqrt{a^{2}-1}\right)^{2}} \\
&=\frac{1}{i\left(a^{2}-1\right)}-\frac{-a+\sqrt{a^{2}-1}}{i\left(a^{2}-1\right)^{3 / 2}} \\
&=\frac{a}{i\left(a^{2}-1\right)^{3 / 2}}, \\
& \int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{\left(a^{2}+\cos ^{2} \theta\right)^{2}}=\int_{C} f(z) \mathrm{d} z=\frac{2 \pi a}{\left(a^{2}-1\right)^{3 / 2}} .
\end{aligned}
$$

REMARK. We consider the definite integrals of the type

$$
\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) \mathrm{d} \theta
$$

we use

$$
z=e^{i \theta}, \quad 0 \leq \theta \leq 2 \pi
$$

to denote the unit circle C. Then we have

$$
\sin \theta=\frac{1}{2 i}\left(z-\frac{1}{z}\right), \quad \cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \mathrm{d} \theta=\frac{\mathrm{dz}}{i z} .
$$

Hence

$$
\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) \mathrm{d} \theta=\int_{C} f\left(\frac{z-z^{-1}}{2 i}, \frac{z+z^{-1}}{2}\right) \frac{\mathrm{d} z}{i z}
$$

8.

Proof. Consider the function

$$
f(z)=\frac{1}{i z} \frac{1}{a+b \frac{z+z^{-1}}{2}}=\frac{2}{i\left(b z^{2}+2 a z+b\right)},
$$

which has a simple pole at $z_{0}=\frac{-a+\sqrt{a^{2}-b^{2}}}{b}$ in the unit disk \mathbb{D}. Then

$$
\operatorname{res}_{z=z_{0}} f=\frac{b}{2 i \sqrt{a^{2}-b^{2}}} .
$$

Then from residue theorem

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{a+b \cos \theta}=\int_{C} f(z) \mathrm{d} z=\frac{\pi b}{\sqrt{a^{2}-b^{2}}}
$$

10.

PROOF. Let $f(z)=\frac{\log |z|}{z^{2}+a^{2}}$. We have that

$$
\begin{equation*}
\left|\int_{C_{\varepsilon}} f(z)\right| \leq \pi \frac{\varepsilon \log (-\varepsilon)}{a^{2}-\varepsilon^{2}} \rightarrow 0, \quad \varepsilon \rightarrow 0 \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\int_{C_{R}} f(z)\right| \leq \pi \frac{R \log R}{R^{2}-a^{2}} \rightarrow 0, \quad R \rightarrow \infty \tag{40}
\end{equation*}
$$

Finally, the residue formula implies the result.
11.

Proof. Consider the function $\log z$ in the disk $D_{a^{\prime}}(1)$ centered at 1 with radius a^{\prime} such that $|a|<a^{\prime}<1$. Then $\log z \in D_{a^{\prime}}(1)$. The real part satisfies

$$
0=\log 1=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|1+a e^{i \theta}\right| \quad \text { for } a>0
$$

$a=0$ is trivial. For $a<0$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{-i \pi}+|a| e^{i \theta}\right|=\Re \log \left(e^{i \pi}\right)=0
$$

12.

Proof. Choose the circle $C:=|z|=N+\frac{1}{2}$ such that $N>|u|$ and N is an integer. Then in the interior of this circle, $f(z)$ has a pole of second order at $z=-u$ and a simple pole at the integer n with $|n| \leq N$. Then from the residue formula,

$$
0=\frac{1}{2 \pi i} \int_{C} f(z) \mathrm{d} z=-\frac{\pi^{2}}{\sin (\pi u)^{2}}+\sum_{n=-N}^{N} \frac{1}{(u+n)^{2}}
$$

since $\cot \pi z=0$ on the circle. Then letting $N \rightarrow \infty$ yields the result.
13.

PROOF. Let $g(z)=\left(z-z_{0}\right) f(z)$. Then from $|g(z)| \leq A\left|z-z_{0}\right|^{\varepsilon}$, we know that z_{0} is a simple zero of $g(z)$ and g is holomorphic. Then the Taylor expansion of $g(z)$ at $z=z_{0}$

$$
g(z)=g^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{g^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2}+\ldots=\left(z-z_{0}\right) f(z)
$$

reveals that

$$
f(z)=\sum_{n=1}^{\infty} \frac{g^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n-1}
$$

is holomorphic and $f\left(z_{0}\right)=g^{\prime}\left(z_{0}\right)$.
16.

Proof. (a). We choose $\varepsilon<\min _{|z|=1}\left|\frac{f(z)}{g(z)}\right|$, so that $|f(z)|>\varepsilon|g(z)|$ on $|z|=1$. This allows us to use Roućhe theorem to obtain the uniqueness of zero of $f_{\varepsilon}(z)$ in $|z| \leq 1$.
(b). Since 0 is a simple zero of $f(z)$, there exists a holomorphic function $h(z)$ nowhere vanishes in $|z| \leq 1$ so that $f(z)=z h(z)$. Since

$$
\begin{aligned}
& f_{\varepsilon}\left(z_{\varepsilon}\right)=z_{\varepsilon} h\left(z_{\varepsilon}\right)+\varepsilon g\left(z_{\varepsilon}\right)=0 \\
& \left|z_{\varepsilon}\right|=\left|\varepsilon \frac{g\left(z_{\varepsilon}\right)}{h\left(z_{\varepsilon}\right)}\right| \leq \varepsilon \max _{|z=1|}\left|\frac{g(z)}{h(z)}\right|
\end{aligned}
$$

implies that $\varepsilon \mapsto z_{\varepsilon}$ is continuous.
17.

Proof. (a) It suffices to show that if $|w|<1, g(z)=f(z)-w$ has a zero in \mathbb{D}. It is easy to see that

$$
|g(z)-f(z)|=|w|<1=|f(z)| \quad \text { on }|z|=1
$$

So by Rouché's theorem, f and g have the same number of zeros in \mathbb{D}. So it suffices to show that f has a zero in \mathbb{D}.

From the hypothesis of f, we employ maximum modulus principle to see that there exists a $z_{0} \in \mathbb{D}$ such that $f\left(z_{0}\right) \in \mathbb{D}$. Let $h(z)=f(z)-f\left(z_{0}\right)$ so that

$$
|h(z)-f(z)|=\left|f\left(z_{0}\right)\right|<1=|f(z)| \quad \text { on }|z|=1
$$

We again use Rouché's theorem to see that f and h have the same number of zeros in \mathbb{D}. Since h has at least one zero in \mathbb{D}, f has at least one zero in \mathbb{D}.
(b) The proof is similar as part (a), after a slight modification.
22.

Proof. Assume that f is holomorphic in \mathbb{D} and $f \in C(\overline{\mathbb{D}})$. If $f(z)=\frac{1}{z}$ on $\partial \mathbb{D}$, then the Cauchy integral theorem yields

$$
0=\int_{\partial \mathbb{D}} f(z) \mathrm{d} z=\int_{\partial \mathbb{D}} \frac{1}{z} \mathrm{~d} z=2 \pi i,
$$

which is a contradiction.

CHAPTER 4

The Fourier transform

1.

Proof. (a)

$$
A(\xi)-B(\xi)=e^{2 \pi i \xi t} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i \xi x} \mathrm{~d} x=e^{2 \pi i \xi t} \hat{f}(\xi)=0
$$

(b) The Schwarz reflection principle guarantees that F is holomorphic, and hence entire. Then F is bounded, since f is moderate decreasing. By Liouville's theorem, F is a constant. In fact, letting $t \rightarrow \infty$, for $\xi \in \mathbb{R}$,

$$
F(z)=A(\xi)=\lim _{t \rightarrow \infty} e^{2 \pi i \xi t} \int_{-\infty}^{t} f(x) e^{-2 \pi i \xi x} \mathrm{~d} x=0
$$

since $\hat{f}(\xi)=0$ and $e^{2 \pi i \xi t}$ is bounded.
(c) Hence $F(z)=F(0)=\int_{-\infty}^{t} f(x) \mathrm{d} x=0$ for each t. So for any $\varepsilon>0$,

$$
\int_{t}^{t+\varepsilon} f(x) \mathrm{d} x=0
$$

Consequently, $f(t)=0$ for each $t \in \mathbb{R}$, since f is continuous.

3
Proof. Consider the integral

$$
\int_{\gamma_{R}} \frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi} \mathrm{~d} z
$$

Clearly, the function $\frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi}$ has two poles $\pm i a$ with the residues $\pi e^{2 \pi a \xi}$ at $i a$ and $-\pi e^{-2 \pi a \xi}$. We choose the contour $\gamma_{R}=[-R, R] \cup C_{R}^{ \pm}$, where C_{R}^{+}is the large half circle on the upper half plane with counter clockwise direction containing $i a$ and C_{R}^{-}is the large half circle on the lower half plane with clockwise direction containing -ia.

Since $\left|e^{-2 \pi i z \xi}\right|=e^{2 \pi \Im z \xi}$, thus in order to make the function $\frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi}$ to be integrable, it must be that $\Im z \xi<0$. Thus, when we choose the contour is $\gamma_{R}=[-R, R] \cup C_{R}^{+}, \xi<0$, and

$$
\int_{-R}^{R} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} \mathrm{~d} x+\int_{C_{R}^{+}} \frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi} \mathrm{~d} z=2 \pi i \operatorname{Res}_{i a} \frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi}=\pi e^{2 \pi a \xi}
$$

Since

$$
\int_{C_{R}^{+}} \frac{a}{a^{2}+z^{2}} e^{-2 \pi i z \xi} \mathrm{~d} z=\int_{0}^{\pi} \frac{a}{a^{2}+R^{2} e^{2 i \theta}} R_{i} e^{i \theta} e^{-2 \pi i R e^{i \theta} \xi} \mathrm{~d} \theta \rightarrow 0
$$

as $R \rightarrow \infty$ because of $\xi<0$, thus letting $R \rightarrow \infty$,

$$
\int_{-\infty}^{\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} \mathrm{~d} x=\pi e^{2 \pi a \xi}
$$

Similarly, when we choose the contour is $\gamma_{R}=[-R, R] \cup C_{R}^{-}, \xi \geq 0$, and

$$
\int_{-\infty}^{\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} \mathrm{~d} x=\pi e^{-2 \pi a \xi}
$$

Combining these two results,

$$
\int_{-\infty}^{\infty} \frac{a}{a^{2}+x^{2}} e^{-2 \pi i x \xi} \mathrm{~d} x=\pi e^{-2 \pi a|\xi|}
$$

6
Proof. From Poisson summation formula,

$$
\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{a}{a^{2}+n^{2}}=\sum_{n=-\infty}^{\infty} e^{-2 \pi a|n|}
$$

From the convergence of power series,

$$
\sum_{n=-\infty}^{\infty} e^{-2 \pi a|n|}=\operatorname{coth} \pi a
$$

