Notes on complex analysis

Author: Yunrui, Zheng

Textbook: Complex Analysis, Stein & Shakarchi. References:

- 1. Concise Complex Analysis, Sheng Gong.
- 2. Complex Analysis, Ahlfors.
- 3. Complex variables and applications, Brown& Churchill.

Contents

Chapter 1. Preliminaries to complex analysis	5
1. Notes	5
2. Exercises	7
Chapter 2. Cauchy's theorem and its applications	13
1. Notes	13
2. Exercises	13
Chapter 3. Meromorphic functions and the logarithm	21
1. Notes	21
2. Exercises	22
Chapter 4. The Fourier transform	31

CHAPTER 1

Preliminaries to complex analysis

1. Notes

1. The geometric meaning of $|f'(z)|^2$. If *f* is a univalent holomorphic function defined in a region Ω . Then the area of $f(\Omega)$ is

Area
$$(f(\Omega)) = \int_{\Omega} |f'(z)|^2 \, \mathrm{d}x \mathrm{d}y$$

2. The mean value theorem in calculus does not hold. The theorem says if $f \in C([a, b])$, then there exits a point $\xi \in (a, b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Now we consider the function e^{it} defined on $[0, 2\pi]$, which satisfies $e^{i0} = e^{i2\pi} = 1$, but $|(e^{it})'| = |ie^{it}| = 1$. Hence (1) does not hold.

3. The trigonometric functions are unbounded, which is different from the case in \mathbb{R} . For instance,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2},$$

if we choose z = ix with $x \in \mathbb{R}$, then $\cos(ix) = \frac{e^x + e^{-x}}{2}$ is unbounded.

4. We consider the exterior differential form for real variables. For $x, y, z \in \mathbb{R}$. The wedge of differentials dx and dy is defined as $dx \wedge dy$, which satisfies

$$dx \wedge dx = 0, \quad dx \wedge dy = -dy \wedge dx.$$

Similarly, we define $dx \wedge dy \wedge dz$.

The exterior differential form ω is the wedge of differentials multiplied by a function. For instance, let *F* is a function, then *F* is a exterior differential form of degree zero. Then let *A*, *B*, *C*, *P*, *Q*, *R*, *H* be functions of *x*, *y*, *z*,

$$\omega = Pdx + Qdy + Rdz$$

is the exterior differential form of degree 1.

$$\omega = Ady \wedge dz + Bdz \wedge dx + Cdx \wedge dy$$

is the exterior differential form of degree 2.

$$\omega = Hdx \wedge dy \wedge dz$$

is the exterior differential form of degree 3.

Then we define the exterior differential operator d on the exterior differential form ω . For $\omega = F$ is a function, we define

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy + \frac{\partial F}{\partial z}dz$$

which is the total differentiation. For $\omega = Pdx + Qdy + Rdz$, we define

$$d\omega = dP \wedge dx + dQ \wedge dy + dR \wedge dz$$

The we use the definition for dF,

$$\omega = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})dy \wedge dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})dz \wedge dx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dx \wedge dy.$$

Similarly, for $\omega = Ady \wedge dz + Bdz \wedge dx + Cdx \wedge dy$,

$$d\omega = dA \wedge dy \wedge dz + dB \wedge dz \wedge dx + dC \wedge dx \wedge dz = \left(\frac{\partial A}{\partial x} + \frac{\partial B}{\partial y} + \frac{\partial C}{\partial z}\right) dx \wedge dy \wedge dz$$

If $\omega = Hdx \wedge dy \wedge dz$, we clearly have

$$d\omega = dH \wedge dx \wedge dy \wedge dz = 0$$

Recall Green's theorem, Stokes theorem and Gauss's theorem.

THEOREM 1 (Green's theorem). Let Ω be a simply connected domain with piecewise smooth boundary L, and $P, Q \in C^1(\overline{\Omega})$. Then

$$\int_{L} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{\Omega} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, \mathrm{d}x \, \mathrm{d}y$$

THEOREM 2 (Stokes theorem). Let Σ be a surface bounded by a piecewise smooth simple closed curve L and P, Q, $R \in C^1(\overline{\Sigma})$. Then

$$\int_{L} Pdx + Qdy + Rdz = \int_{\Sigma} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})dydz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})dzdx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dxdy.$$

THEOREM 3 (Gauss's theorem). Let Ω be a region bounded by a closed surface Σ , and P, Q, $R \in C^1(\overline{\Omega})$. Then

$$\int_{\Sigma} P dy dz + Q dz dx + R dx dy = \int_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz$$

Hence, we reduce the Green's theorem, Stokes theorem, Gauss's theorem to the uniform formula

$$\int_{\partial\Omega}\omega=\int_{\Omega}d\omega,$$

which is often called Stokes formula.

5. We now consider the exterior form in \mathbb{C} . Consider *z* and \overline{z} as independent variables. We define the wedge as

$$dz \wedge dz = 0, \quad d\bar{z} \wedge d\bar{z} = 0, \quad dz \wedge d\bar{z} = -d\bar{z} \wedge dz,$$

where

$$dz = dx + idy, \quad d\bar{z} = dx - idy.$$

Then

$$d\bar{z} \wedge dz = 2idx \wedge dy = 2idA,$$

where dA is the area element.

The exterior differential form of degree zero is the function $f(z, \bar{z})$. The exterior differential form of degree 1 is

$$\omega = \omega_1 dz + \omega_2 d\bar{z},$$

where ω_1 and ω_2 are functions of z and \bar{z} . The exterior differential form of degree 2 is

$$\omega = \omega_0 dz \wedge d\bar{z},$$

where ω_0 is a function of *z* and \bar{z} .

The exterior differential operator d is defined as

$$df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}.$$

$$d\omega = d\omega_1 \wedge dz + d\omega_2 \wedge d\bar{z} = \left(\frac{\partial \omega_1}{\partial \bar{z}} - \frac{\partial \omega_2}{\partial z}\right) d\bar{z} \wedge dz.$$

$$d\omega = d\omega_0 d\bar{z} \wedge dz = 0.$$

The we derive the Green's theorem in complex form:

THEOREM 4. Suppose that $\omega = \omega_1 dz + \omega_2 d\bar{z}$ is an exterior differential form of degree 1, defined on a region Ω , where Ω is bounded by a piecewise smooth curve γ , and ω_1 , ω_2 are differentiable functions of z, \bar{z} up to γ . Then

$$\int_{\gamma} \omega = \int_{\Omega} d\omega.$$

2. Exercises

1.

SOLUTION. (a) Midperpendicular of segment $z_1 z_2$.

(b) unit circle.

(c) vertical line with real part 3.

2

PROOF. Let z = x + iy, w = u + iv. Then

$$\langle z, w \rangle = xu + yv.$$

since

(z,w)=(x+iy)(u-iv)=xu+yv+i(uy-vx), (w,z)=(u+iv)(x-iy)=ux+vy+i(vx-uy), Thus

$$\langle z, w \rangle = \frac{1}{2}((z, w) + (w, z))\Re(z, w).$$

3.

SOLUTION.

$$z = s^{1/n} e^{i\varphi/n} = s^{1/n} e^{i(\varphi/n + 2k\pi i)}, \quad \forall k \in \mathbb{N}.$$

4

PROOF. Suppose that
$$i \succ 0$$
. Then from (iii),

$$-1 \succ 0, -i \succ 0$$

Then from (ii)

 $0 \succ i$,

This is contradict to (i).

5

PROOF. Claim: an open set Ω is pathwise connected iff Ω is connected.

(a) Suppose first that Ω is open and pathwise connected, and that it can be written as $\Omega = \Omega_1 \cup \Omega_2$, where Ω_1 and Ω_2 are disjoint non-empty open sets. Choose two points $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let γ denote a curve in Ω joining w_1 and w_2 .

Consider a parametrization $z : [0,1] \to \Omega$ of this curve with $z(0) = w_1$ and $z(1) = w_2$, and let

$$t^* = \sup_{0 \le t \le 1} \{ t : z(s) \in \Omega_1, \text{ for all } 0 \le s < t \}.$$

If $z(t^*) \in \Omega_1$, since Ω_1 is open, then there is an open neighborhood of $z(t^*)$ is contained in Ω_1 , that is, there exists $\varepsilon > 0$, such that for each $s \in (t^* - \varepsilon, t^* + \varepsilon)$, z(s) is contained in Ω_1 , this is contradict to the supremum of t^* . Thus $z(t^*) \in \Omega_2$. But similarly, this is contradict to supermum of t^* .

(b) Suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω .

First, $\Omega_1 \cap \Omega_2 = \emptyset$ is clear.

Now, we prove Ω_1 is open. Choose any point $w_1 \in \Omega_1$, then w_1 is joined to w by a curve γ_1 . Since Ω is open, there exists a neighborhood U of w_1 contained in Ω . Clearly, every point in U could be joined to w_1 by a curve γ_2 . Then connect the two curves γ_1 and γ_2 , thus very point in U can be joined to w by a curve. That is, $U \subset \Omega_1$, hence Ω_1 is open.

Then, we prove Ω_2 is open. Choose any point $w_2 \in \Omega_2$, then there exists a neighborhood of w_2 contained in Ω and very point in this neighborhood is joined to w_2 by a curve γ_3 . If there is one point u in this neighborhood does not belong to Ω_2 , then there is a curve γ_4 joins w and u, then the curve consists of γ_3 and γ_4 joins w_2 and w, that is $w_2 \in \Omega_1$. This is impossible, since $w_2 \in \Omega_2$ and $\Omega_1 \cap \Omega_2 = \emptyset$.

 $\Omega = \Omega_1 \cup \Omega_2$. If not, there exists $v \in \Omega$ and a neighborhood U(v) such that $v \notin \Omega_1 \cup \Omega_2$ and $U(v) \cap \Omega_1 = \emptyset$. Then $v \in \Omega_2$. Contradiction.

Since Ω_1 is empty because of $w \in \Omega_1$, and Ω is connected, thus $\Omega = \Omega_1$.

7.

PROOF. (a). Let $z = |z|e^{i\theta_1}$, $w = |w|e^{i\theta}$. Then

(2)
$$\left|\frac{w-z}{1-\bar{w}z}\right| = \left|\frac{|w|e^{i(\theta_2-\theta_1)}-|z|}{1-|z||w|e^{i(\theta_1-\theta_2)}}\right|$$

Thus, it suffices to assume that z = r is real. We directly compute

(3)
$$(r-w)(r-\bar{w}) = r^2 - r(w+\bar{w}) + |w|^2.$$

However,

(4)
$$(1-rw)(1-r\bar{w}) = 1 - r(w+\bar{w}) + r^2|w|^2.$$

So

(5)
$$(1 - rw)(1 - r\bar{w}) - (r - w)(r - \bar{w}) = (1 - r^2)(1 - |w|^2) > 0,$$

since r < 1 and |w| < 1. In addition,

(6)
$$(1-rw)(1-r\bar{w}) - (r-w)(r-\bar{w}) = 0 \Leftrightarrow r = 1 \text{ or } |w| = 1.$$

Hence

(7)
$$\left|\frac{w-z}{1-\bar{w}z}\right|^2 \begin{cases} <1, & \text{for } |z|<1 \text{ and } |w|<1 \\ =1, & \text{for } |z|=1 \text{ or } |w|=1 \end{cases}$$

(b). From the above analysis, for |z| < 1, |F(z)| < 1 and |z = 1|, |F(z)| = 1. For any $h \in \mathbb{D}$, $h \neq 0$ and $z + h \in \mathbb{D}$, we have

(8)
$$\frac{F(z+h) - F(z)}{h} = \frac{|w|^2 - 1}{(1 - \bar{w}z)(1 - \bar{w}z - \bar{w}h)} \to \frac{|w|^2 - 1}{(1 - \bar{w}z)^2},$$

so *F* is holomorphic. Clearly, F(0) = w and F(w) = 0. Moreover, $F \circ F = Id$.

8.

PROOF. Let
$$w = u + iv = f(z) = f(x + iy)$$
.

$$\frac{\partial h}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) g(u(x, y), v(x, y))$$

$$= \frac{1}{2} \left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial x} \right) + \frac{1}{2} \frac{1}{i} \left(\frac{\partial g}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial g}{\partial v} \frac{\partial v}{\partial y} \right)$$

$$= \frac{1}{2} \left(\frac{\partial g}{\partial u} \frac{1}{2} \left(\frac{\partial f}{\partial x} + \frac{\partial \bar{f}}{\partial x} \right) + \frac{\partial g}{\partial v} \frac{1}{2} \frac{1}{i} \left(\frac{\partial f}{\partial x} - \frac{\partial \bar{f}}{\partial x} \right) \right)$$

$$+ \frac{1}{2} \frac{1}{i} \left(\frac{\partial g}{\partial u} \frac{1}{2} \left(\frac{\partial f}{\partial y} + \frac{\partial \bar{f}}{\partial y} \right) + \frac{\partial g}{\partial v} \frac{1}{2} \frac{1}{i} \left(\frac{\partial f}{\partial y} - \frac{\partial \bar{f}}{\partial y} \right) \right)$$

$$= \frac{1}{2} \frac{\partial g}{\partial u} \left(\frac{\partial f}{\partial z} + \frac{\partial \bar{f}}{\partial z} \right) + \frac{1}{2} \frac{1}{i} \frac{\partial g}{\partial v} \left(\frac{\partial f}{\partial z} - \frac{\partial \bar{f}}{\partial z} \right)$$

$$= \frac{\partial g}{\partial w} \frac{\partial f}{\partial z} + \frac{\partial g}{\partial \bar{w}} \frac{\partial \bar{f}}{\partial z}.$$

10.

PROOF. Consider the Laplace operator Δ , we need to define the domain of Δ as $\{f \in C^2\}$. In other words, we need to let the partial derivatives interchange, which is necessary to obtain the equality $\partial_z \partial_{\bar{z}} = \partial_{\bar{z}} \partial_z$.

12

PROOF. Let f = u + iv. Then $u = \sqrt{|x||y|}$ and v = 0.

$$\partial_x u(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = 0, \quad \partial_y u(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y} = 0.$$

Otherwise, $\partial_x v(0,0) = \partial_y v(0,0) = 0$ is trivial. Hence the Cauchy-Riemann equation at the origin. However, for h = x + iy,

$$\partial_z f|_{z=0} = \lim_{h \to 0} = \frac{f(z) - f(0)}{h} = \lim_{h=x+iy \to 0} \frac{\sqrt{|x||y|}}{x + iy},$$

which is

$$\begin{cases} \frac{1}{1+i}, & \text{when } y = x, x > 0, \\ -\frac{1}{1+i}, & \text{when } y = x, x < 0. \end{cases}$$

Thus, f is not holomorphic at 0.

21

PROOF. The partial sum

$$S_n = \frac{z}{1-z^2} + \frac{z^2}{1-z^4} + \dots + \frac{z^{2^n}}{1-z^{2^{n+1}}}$$

= $\frac{z}{1-z^2} + \left(\frac{1}{1-z^2} - \frac{1}{1-z^4} + \dots + \left(\frac{1}{1-z^{2^n}} - \frac{1}{1-z^{2^{n+1}}}\right)\right)$
= $\frac{z}{1-z^2} + \frac{1}{1-z^2} - \frac{1}{1-z^{2^{n+1}}}$
 $\rightarrow \frac{1}{1-z} - 1 = \frac{z}{1-z}, \text{ as } n \rightarrow \infty \text{ and } |z| < 1.$

Since

$$\begin{aligned} \frac{2^k z^{2^k}}{1+z^{2^k}} &= \frac{2^k z^{2^k}}{1+z^{2^k}} \frac{1+z^{2^k}-2z^{2^k}}{1-z^{2^k}} = \frac{2^k z^{2^k}}{1-z^{2^k}} - \frac{2^{k+1} z^{2^{k+1}}}{1-z^{2^{k+1}}},\\ &\frac{2^{k+1} z^{2^{k+1}}}{1-z^{2^{k+1}}} \to 0, \quad \text{as } k \to \infty \text{ and } |z| < 1. \end{aligned}$$

Hence, the partial summation

$$S_n = \frac{z}{1+z} + \frac{2z^2}{1+z^2} + \dots + \frac{2^n z^{2^n}}{1+z^{2^n}}$$

= $\frac{z}{1-z} - \frac{2^{n+1} z^{2^{n+1}}}{1-z^{2^{n+1}}}$
 $\rightarrow \frac{z}{1-z}, \text{ as } n \rightarrow \infty \text{ and } |z| < 1.$
 $\frac{1}{1+z} + \frac{2z}{1+z^2} + \dots + \frac{2^k z^{2^k-1}}{1+z^{2^k}} + \dots = \frac{1}{1-z}.$

22

PROOF. Assume that $S = \bigcup_{i=1}^{n} S_i$. Assign each progression $S_i = \{a_i + kb_i | k \in \mathbb{N}\}$, which generates series

$$\sum_{d=k}^{\infty} z^{a_i + kb_i} = \frac{z^{a_i}}{1 - z^{b_i}} \quad \text{for } |z| < 1.$$

Since S_i , $1 \le i \le n$, partition \mathbb{N} ,

$$\sum_{i=1}^{n} \sum_{d=k}^{\infty} z^{a_i + kb_i} = \sum_{m=1}^{\infty} z^m = \frac{1}{1 - z}, \quad |z| < 1.$$

for this, observe that if $m \in S_i$, then z^m is one of terms being added in $\sum_{d=k}^{\infty} z^{a_i+kb_i}$, and z^m is not in the other series $\sum_{d=k}^{\infty} z^{a_j+kb_j}$ for $j \neq i$. If all the b_i are different, let $b = \max\{b_i\}$, and $\zeta = e^{2\pi i/b}$ be a primitive *b*-th root of 1. This means $\zeta^b = 1$. If *k* is an integer, $z^k = 1$ iff *k* is a multiple of *b*. If $z^b = 1$, then $z = \zeta^n$ for some integer *n*. Thus

$$\sum_{k=1}^{n} \frac{z^{a_k}}{1 - z^{b_k}} = \sum_{m} z^m = \frac{z}{1 - z},$$

the right side of which tends to $\frac{\zeta}{1-\zeta}$, as $z \to \zeta$. Note that $\zeta \neq 1$ and b > 1. On the other hand, if $b_j \neq b$, $\frac{z^{a_k}}{1-z^{b_k}} \to \frac{\zeta^{a_k}}{1-\zeta^{b_k}}$ and $\zeta^{b_j} \neq 1$, since $b_j < b$. BUT if $b_j = b$, then $\frac{z^{a_k}}{1-z^{b_k}} \to \infty$ since $\zeta^{b_j} = \zeta^b = 1$. Thus the left side tends to ∞ . This is a contradiction.

24

Proof.

(10)
$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$
$$= -\int_{b}^{a} f(z(t))z'(t) dt$$
$$= \int_{\gamma^{-}} f(z) dz.$$

25

SOLUTION. (a) Let
$$z = e^{i\theta}$$
, $\theta \in (-\pi, \pi]$. Then

$$\int_{\gamma} z^n = \int_{-\pi}^{\pi} i e^{i(n+1)\theta} d\theta$$
(11)
$$= \begin{cases} 2\pi i, & \text{when } n = -1, \\ 0, & \text{otherwise.} \end{cases}$$

(b)

(12)
$$\int_{\gamma} z^n = 0, \ n \in \mathbb{Z}.$$

(c)

(13)
$$\int_{\gamma} \frac{1}{(z-a)(z-b)} = \frac{1}{a-b} \int_{\gamma} \frac{1}{z-a} - \frac{1}{z-b} = \frac{1}{a-b} (2\pi i - 0) = \frac{2\pi i}{a-b}.$$

26

PROOF. Suppose that F_1 and F_2 are two primitives of f. Then we have that

(14)
$$\frac{d}{dz}(F_1 - F_2) = f'(z) - f'(z) = 0,$$

which along with that $F_1 - F_2$ is holomorphic implies that $F_1 - F_2$ is a constant.

CHAPTER 2

Cauchy's theorem and its applications

1. Notes

2. Exercises

1.

PROOF. Consider integral of the function e^{iz^2} along the closed contour $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$ defined by

$$\gamma_1 = \{ (r, \theta) \in \mathbb{C} : r : 0 \to R, \ \theta = 0 \},$$

$$\gamma_2 = \{ (r, \theta) \in \mathbb{C} : r = R, \ y : 0 \to \frac{\pi}{4} \},$$

and

$$\gamma_3 = \{ (r, \theta) \in \mathbb{C} : r : R \to 0, \ \theta = \frac{\pi}{4} \}.$$

Then we employ Cauchy integral theorem to deduce that

$$0 = \int_0^R e^{ix^2} \,\mathrm{d}x + \int_0^{\frac{\pi}{4}} e^{iR^2 e^{2i\theta}} iRe^{i\theta} \,\mathrm{d}\theta + \int_R^0 e^{ir^2 e^{i\frac{\pi}{2}}} e^{i\frac{\pi}{4}} \,\mathrm{d}r = I + II + III.$$

Since

$$\sin 2\theta \ge \frac{4}{\pi}\theta, \quad \theta \in (0, \pi/4),$$

$$|II| \le \int_0^{\frac{\pi}{4}} e^{-R^2 \sin 2\theta} R \,\mathrm{d}\theta \le \int_0^{\frac{\pi}{4}} e^{-R^2 \frac{4}{\pi}\theta} R \,\mathrm{d}\theta = \frac{\pi}{4R} (1 - e^{-R^2}) \to 0, \ R \to \infty.$$

Hence

$$\int_0^\infty e^{ix^2} \, \mathrm{d}x = \int_0^\infty e^{-r^2} e^{i\frac{\pi}{4}} \, \mathrm{d}r = e^{i\frac{\pi}{4}} \frac{\sqrt{\pi}}{2}.$$

which implies the results.

2

PROOF. Consider the integral of function $\frac{e^{iz}}{z}$ along the toy contour $\gamma = \gamma_1 \cup \gamma_{\varepsilon} \cup \gamma_2 \cup \gamma_R$ defined by

$$\gamma_1 = \{ (r, \theta) \in \mathbb{C} : r : -R \to -\varepsilon, \ \theta = 0 \}, \gamma_\varepsilon = \{ (r, \theta) \in \mathbb{C} : r = \varepsilon, \ y : \pi \to 0 \}, \gamma_2 = \{ (r, \theta) \in \mathbb{C} : r : \varepsilon \to R, \ \theta = 0 \},$$

and

$$\gamma_R = \{ (r, \theta) \in \mathbb{C} : r = R, \ \theta : 0 \to \pi \}.$$

Then Cauchy integral theorem implies

$$\int_{-R}^{-\varepsilon} \frac{e^{ix}}{x} \,\mathrm{d}x + \int_{\gamma_{\varepsilon}} \frac{e^{iz}}{z} \,\mathrm{d}z + \int_{\varepsilon}^{R} \frac{e^{ix}}{x} \,\mathrm{d}x + \int_{\gamma_{R}} \frac{e^{iz}}{z} \,\mathrm{d}z = 0.$$

Since

$$\frac{e^{iz}}{z} = \frac{1}{z} + \frac{iz}{z} + E(z),$$

where E(z) is bounded near 0 and $E(z) \rightarrow 0$ as $z \rightarrow 0$, we have

$$\int_{\gamma_{\varepsilon}} \frac{e^{iz}}{z} \, \mathrm{d}z = \int_{\pi}^{0} \left(\frac{1}{\varepsilon e^{i\theta}} + i \right) i\varepsilon e^{i\theta} \, \mathrm{d}\theta + \int_{\gamma_{\varepsilon}} E(z) \, \mathrm{d}z$$
$$\to -i\pi, \quad \text{as } \varepsilon \to 0,$$

since

$$\int_{\gamma_{\varepsilon}} E(z) \, \mathrm{d}z \bigg| \leq \sup |E(z)| \pi \varepsilon \to 0, \quad \text{as } \varepsilon \to 0.$$

In addition,

$$\left| \int_{\gamma_R} \frac{e^{iz}}{z} \, \mathrm{d}z \right| \le \int_0^\pi e^{R\sin\theta} \, \mathrm{d}\theta \le \int_0^\pi e^{R\frac{2}{\pi}\theta} \, \mathrm{d}\theta = \frac{\pi}{R} (1 - e^{-R}) \to 0, \ R \to \infty.$$

Since

$$\int_{-R}^{-\varepsilon} \frac{e^{ix}}{x} \,\mathrm{d}x + \int_{\varepsilon}^{R} \frac{e^{ix}}{x} \,\mathrm{d}x = \int_{\varepsilon}^{R} \frac{e^{ix} - e^{-ix}}{x} \,\mathrm{d}x = 2i \int_{\varepsilon}^{R} \frac{\sin x}{x} \,\mathrm{d}x,$$

Hence

$$2i\int_0^\infty \frac{\sin x}{x}\,\mathrm{d}x = i\pi,$$

 $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}.$

which is exactly

$$\square$$

3.

PROOF. When b = 0, these integrals are trivial. Now suppose $b \neq 0$. Consider the integral of function e^{-Az} along the toy contour $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$ defined by

$$\gamma_1 = \{ (r, \theta) \in \mathbb{C} : r : 0 \to R, \ \theta = 0 \},\$$

$$\gamma_2 = \{ (r, \theta) \in \mathbb{C} : r = R, \ y : 0 \to \omega \},\$$

and

$$\gamma_3 = \{(r, \theta) \in \mathbb{C} : r : R \to 0, \ \theta = \omega\}$$

where

$$A = \sqrt{a^2 + b^2}, \quad \cos \omega = \frac{a}{A}, \quad \sin \omega = \frac{b}{A}.$$

Then the Cauchy integral theorem reveals that

$$\int_0^R e^{-Ax} \,\mathrm{d}x + \int_0^\omega e^{-ARe^{i\theta}} iRe^{i\theta} \,\mathrm{d}\theta + \int_R^0 \int_0^\omega e^{-Are^{i\omega}} e^{i\omega} \,\mathrm{d}r = 0.$$

Since

$$\begin{split} |II| &\leq \int_0^\omega e^{-AR\cos\theta} R \,\mathrm{d}\theta \leq \int_0^\omega e^{-aR} R \,\mathrm{d}\theta = R e^{-aR} \omega \to 0, \quad R \to \infty, \\ &\int_0^\infty e^{-Ax} \,\mathrm{d}x = e^{i\omega} \int_0^\infty e^{-ax - ibx} \,\mathrm{d}x, \end{split}$$
 blies

which implies

$$\int_0^\infty e^{-ax} \cos bx \, \mathrm{d}x = \frac{a}{A^2}, \quad \int_0^\infty e^{-ax} \sin bx \, \mathrm{d}x = \frac{b}{A^2}.$$

4.

PROOF. Note that

(15)
$$\int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x\xi} \, \mathrm{d}x = e^{-\pi \xi^2} \int_{-\infty}^{\infty} e^{-\pi (x-i\xi)^2} \, \mathrm{d}x.$$

Then we consider the contour $\Gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, which are defined as

(16)

$$\gamma_{1} = \{(x, y) \in \mathbb{R}^{2} | x : -R \to R, y = 0\},$$

$$\gamma_{2} = \{(x, y) \in \mathbb{R}^{2} | x = R, y : R \to R - i\xi\},$$

$$\gamma_{3} = \{(x, y) \in \mathbb{R}^{2} | x : R - i\xi \to -R - i\xi, y = R - i\xi\},$$

$$\gamma_{4} = \{(x, y) \in \mathbb{R}^{2} | x = -R, y : -R - i\xi \to R\}.$$

We now consider the integral $\int_{\Gamma} e^{-\pi z^2} dz$. By Cauchy integral theorem,

(17)

$$\begin{aligned}
0 &= \int_{\Gamma} e^{-\pi z^{2}} dz \\
&= \int_{-R}^{R} e^{-\pi x^{2}} dx + \int_{0}^{-\xi} e^{-\pi (R+iy)^{2}} i dy + \int_{R}^{-R} e^{-\pi (x-i\xi)^{2}} dx + \int_{-\xi}^{0} e^{-\pi (-R+iy)^{2}} i dy
\end{aligned}$$

It is evaluated that

(18)
$$\begin{aligned} \left| \int_{0}^{-\xi} e^{-\pi (R+iy)^{2}} i \, \mathrm{d}y \right| &\leq \left| \int_{0}^{-\xi} e^{-\pi R^{2}} e^{-\pi y^{2}} \, \mathrm{d}y \right| \\ &\leq \int_{0}^{\infty} e^{-\pi R^{2}} e^{-piy^{2}} \, \mathrm{d}y = \frac{1}{2} e^{-\pi R^{2}} \to 0, \text{ as } R \to \infty. \end{aligned}$$

Similarly,

(19)
$$\left| \int_{-\xi}^{0} e^{-\pi (-R+iy)^2} i \, \mathrm{d}y \right| \to 0, \text{ as } R \to \infty.$$

Hence

(20)
$$\int_{-\infty}^{\infty} e^{-\pi x^2} \, \mathrm{d}x = \int_{-\infty}^{\infty} e^{-\pi (x-i\xi)^2} \, \mathrm{d}x = 1$$

5.

PROOF. Let f(z) = u(x, y) + iv(x, y). Then f(z) dz = (u + iv) dx + i(u + iv) dy. Thus from Green theorem and Cauchy-Riemann equations,

(21)

$$\int_{T} f(z) dz = \int_{T} u dx - v dy + i \int_{T} v dx + u dy$$

$$= \int_{T_{int}} (-\partial_{x}v - \partial_{y}u) + i(\partial_{x}u - \partial_{y}v) dxdy$$

$$= 0.$$

6

PROOF. We choose the keyhole contour $\Gamma_{\delta,\varepsilon}$ omitting the point w. The Cauchy integral theorem implies that

$$\int_{\Gamma_{\delta,\varepsilon}} f = 0.$$

Then taking $\delta \rightarrow 0$, we have that

(22)
$$\int_T f(z) \, \mathrm{d}z = \int_{C_{\varepsilon}} f(z) \, \mathrm{d}z,$$

where $C_{\varepsilon} = \{z | |z - w| = \varepsilon\}$. From assumption, there exists a constant M such that $|f(z)| \leq M$ for $z \in C_{\varepsilon}$. Thus

(23)
$$\left| \int_{C_{\varepsilon}} f(z) \, \mathrm{d}z \right| \le 2\pi M \varepsilon$$

Then letting $\varepsilon \to 0$ implies

(24)
$$\int_T f(z) \, \mathrm{d}z = 0.$$

7

PROOF. Since

(25)
$$2f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(\zeta) - f(-\zeta)}{\zeta^2} \,\mathrm{d}\zeta \text{ whenever } 0 < r < 1,$$

we have

(26)
$$2|f'(0)| \le \frac{1}{2\pi} \int_0^{2\pi} d\frac{1}{r^2} r^2 \,\mathrm{d}\theta = d.$$

When $f(z) = a_0 + a_1 z$,

(27)
$$d = \sup_{z,w\in\mathbb{D}} |f(z) - f(w)| = |a_1| \sup_{z,w\in\mathbb{D}} |z - w| = 2|a_1|.$$

On the other hand, whenever 0 < r < 1,

(28)
$$2f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{2a_1}{\zeta} \,\mathrm{d}\zeta = \frac{1}{2\pi i} = 2a_1.$$

8

PROOF. For any $x \in \mathbb{R}$, we choose the disk $D_{1/2}(x)$ centered at x with radius 1/2. Its boundary is the circle $C = C_{1/2}(x)$. Then the Cauchy integral formula reveals that

$$f^{(n)}(x) = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - x)^{n+1}} \,\mathrm{d}\zeta.$$

Since

$$|f(\zeta)| \le A(1+|\zeta|)^{\eta},$$

for any ζ in the circle *C*,

$$f(\zeta)| \le A(1+|\zeta-x|+|x|)^{\eta} \le 2^{\eta}A(1+|x|)^{\eta}.$$

Hence

$$|f^{(n)}(x)| \le \frac{n!}{2\pi} \int_C \frac{2^{\eta} A (1+|x|)^{\eta}}{(1/2)^{n+1}} |d\zeta| \le A_n (1+|x|)^{\eta}.$$

റ	
/	٠
/	٠

PROOF. We may assume that $z_0 = 0$. Otherwise, we take the function $f(z) = \varphi(z + z_0) - z_0$. Then $f : \Omega - \{z_0\} \to \Omega - \{z_0\}$ is holomorphic and satisfies

$$f(0) = \varphi(z_0) - z_0 = 0, \quad f'(0) = \varphi'(z_0) = 1.$$

If not, we can assume that

$$\varphi(z) = z + a_n z^n + O(z^{n+1})$$

near the origin with n > 1 and $a_n \neq 0$. Then by induction, we consider the function

$$\varphi_k(z) = \varphi \circ \cdots \circ \varphi(z) = z + ka_n z^n + O(z^{n+1})$$

Then for $D_{\varepsilon}(0) \subset \Omega$, and $\varphi_k(\Omega) \subset \Omega$ is holomorphic uniformly for each k, we use the Cauchy inequality to see that

$$|a_n| \leq \frac{\varphi_k^{(n)}(0)}{kn!} \leq \frac{A}{k\varepsilon^n} \to 0, \quad \text{as } k \to \infty,$$

since *A* and ε do not depend on *k*.

10.

PROOF. Can every continuous function on the closed unit disk be approximated uniformly by polynomials in the variable of *z*? **NO**.

The counterexample is $f(z) = \overline{z}$, which is continuous on the closed unit disk. However, \overline{z} can not be approximated by polynomials in the variable of z. The uniform limit of polynomials in the variable of z on the closed disk is a holomorphic function, which is guaranteed by the Weirstrass theorem.

11.

PROOF. (1). The Cauchy integral formula implies

$$\begin{split} f(z) &= \frac{1}{2\pi i} \int_{\partial D_R} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \frac{Re^{i\varphi}}{Re^{i\varphi} - z} \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\varphi})Re^{i\varphi} + z}{Re^{i\varphi} - z} \,\mathrm{d}\varphi - \frac{1}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\varphi})z}{Re^{i\varphi} - z} \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &+ \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \frac{1}{2} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z} - \frac{Re^{-i\varphi} + \bar{z}}{Re^{-i\varphi} - \bar{z}}\right) \,\mathrm{d}\varphi \\ &- \frac{1}{2\pi} \int_0^{2\pi} \frac{f(Re^{i\varphi})Re}{Re^{i\varphi} - z} \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &- \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi}) \mathrm{Re} \left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right) \,\mathrm{d}\varphi. \end{split}$$

 $\operatorname{Re}\left(\frac{Re^{i\varphi}+z}{Re^{i\varphi}-z}\right)$

(2).

12.

PROOF. (a). Let $g(z) = 2\frac{\partial u}{\partial z}$. Since $u \in C^2(\mathbb{D})$, $\operatorname{Re}(g)$ and $\operatorname{Im}(g)$ are continuously differentiable (i.e., $g \in C^1(\mathbb{D})$). In addition,

$$\frac{\partial g}{\partial \bar{z}} = 2\frac{\partial}{\partial \bar{z}}\frac{\partial}{\partial z}u = \frac{1}{2}\Delta u = 0.$$

Hence $g \in H(\mathbb{D})$. Then we might use Goursat' theorem to define the primitive F of f in \mathbb{D} such that F' = f. Then

$$\partial_z \operatorname{Re}(F) = \frac{\partial u}{\partial z}$$

implies Re(F) - u is a constant.

14.

PROOF. If z_0 is a pole of f with order m, then for z near z_0 , we have

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \frac{c_{-1}}{z - z_0} + g(z)$$

where $g \in H(\mathbb{D})$. Since $g \in H(\mathbb{D})$, then

$$g(z) = \sum_{n=0}^{\infty} a_n z^n + \frac{c_{-1}}{z_0} \sum_{n=0}^{\infty} \frac{z^n}{z_0^n} + \dots + (-1)^{m-1} c_{-m} \frac{1}{z_0^m} \sum_{n=0}^{\infty} \frac{z^n}{z_0^n}$$
$$= \sum_{n=0}^{\infty} \left(a_n + \frac{c_{-1}}{z_0^{n+1}} + \dots + (-1)^{m-1} c_{-m} \frac{1}{z_0^{n+m}} \right).$$

From the convergence of g,

$$a_n + \frac{c_{-1}}{z_0^{n+1}} + \dots + (-1)^{m-1} c_{-m} \frac{1}{z_0^{n+m}} \to 0, \text{ as } n \to \infty.$$

Hence

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0$$

15.

PROOF. We employ the maximum principle to see that

$$|f(z)| \le 1$$
, for any $z \in \mathbb{D}$.

Since *f* is non-vanishing in \mathbb{D} , it is convinced that $\frac{1}{f(z)}$ still satisfies the same conditions as *f*. Hence, the maximum principle implies that

$$\left|\frac{1}{f(z)}\right| \le 1$$
, for any $z \in \mathbb{D}$.

Thus $|f(z)| \ge 1$ for any $z \in \mathbb{D}$. Consequently, |f(z)| = 1 for any $z \in \mathbb{D}$. The maximum modulus principle guarantees that f is a constant.

CHAPTER 3

Meromorphic functions and the logarithm

1. Notes

1. Prove that

 $\int_{-\infty}^{\infty} e^{2\pi i x\xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} \, \mathrm{d}x = \frac{\sinh \pi a\xi}{\sinh a\xi},$

for 0 < a < 1.

PROOF. Consider the function

$$f(z) = e^{2\pi i z\xi} \frac{\sin \pi a}{\cosh \pi z + \cos \pi a}$$

•

Then we choose the contour as $\Gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3 \cup \gamma_4$, which are defined as

(29)

$$\gamma_{1} = \{(x, y) \in \mathbb{R}^{2} | x : -R \to R, y = 0\},$$

$$\gamma_{2} = \{(x, y) \in \mathbb{R}^{2} | x = R, y : 0 \to 2\},$$

$$\gamma_{3} = \{(x, y) \in \mathbb{R}^{2} | x : R \to -R, y = 2\},$$

$$\gamma_{4} = \{(x, y) \in \mathbb{R}^{2} | x = -R, y : 2 \to 0\}.$$

Since

$$\cosh \pi z + \cos \pi a = \frac{e^{-\pi z}}{2} (e^{2\pi z} + 2e^{\pi z} \cos \pi a + 1) = \frac{e^{-\pi z}}{2} (e^{\pi z} + e^{i\pi a}) (e^{\pi z} + e^{-i\pi a}),$$

f(z) has two simple poles at i(1 + a) and i(1 - a). In addition, the residue of f at (1 - a)i is

$$res_{z=i(1-a)}f = 2\lim_{z \to i(1-a)} e^{2\pi i z\xi} \frac{\sin \pi a (z - i(1-a))}{e^{-\pi z} (e^{\pi z} - e^{i\pi(1+a)}) (e^{\pi z} - e^{i\pi(1-a)})}$$
$$= 2e^{-2\pi(1-a)\xi} \frac{\sin \pi a}{e^{-i(1-a)\pi} \pi e^{i(1-a)\pi} 2i \sin \pi a}$$
$$= \frac{e^{-2\pi(1-a)\xi}}{\pi i},$$

and the residue of f at (1 + a)i is

$$res_{z=i(1+a)}f = 2\lim_{z \to i(1+a)} e^{2\pi i z\xi} \frac{\sin \pi a (z - i(1+a))}{e^{-\pi z} (e^{\pi z} - e^{i\pi(1+a)}) (e^{\pi z} - e^{i\pi(1-a)})}$$
$$= -2e^{-2\pi(1+a)\xi} \frac{\sin \pi a}{e^{-i(1+a)\pi} \pi e^{i(1+a)\pi} 2i \sin \pi a}$$
$$= -\frac{e^{-2\pi(1-a)\xi}}{\pi i}.$$

The the residue theorem implies that

$$\int_{-R}^{R} e^{2\pi i x\xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} \, \mathrm{d}x + \int_{0}^{2} e^{2\pi i R - 2\pi y} \frac{\sin \pi a}{\cosh \pi (R + iy) + \cos \pi a} i e^{iy} \, \mathrm{d}y$$
$$- e^{4\pi\xi} \int_{-R}^{R} e^{2\pi i x\xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} \, \mathrm{d}x - \int_{0}^{2} e^{-2\pi i R - 2\pi y} \frac{\sin \pi a}{\cosh \pi (-R + iy) + \cos \pi a} i e^{iy} \, \mathrm{d}y$$
$$= 2\pi i \left(\frac{e^{-2\pi (1 - a)\xi}}{\pi i} - \frac{e^{-2\pi (1 - a)\xi}}{\pi i} \right) = -4e^{-2\pi\xi} \sinh(2\pi a\xi).$$

Letting $R \to \infty$,

$$(1 - e^{4\pi\xi}) \int_{-\infty}^{\infty} e^{2\pi i x\xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} \, \mathrm{d}x = -4e^{-2\pi\xi} \sinh(2\pi a\xi),$$

which implies

$$\int_{-\infty}^{\infty} e^{2\pi i x\xi} \frac{\sin \pi a}{\cosh \pi x + \cos \pi a} \, \mathrm{d}x = \frac{4e^{-2\pi\xi} \sinh(2\pi a\xi)}{e^{4\pi\xi} - 1} = \frac{2\sinh(2\pi a\xi)}{\sinh(2\pi\xi)}.$$

2. Exercises

1.

PROOF. From the Euler's formula, we see that

(30)
$$sin\pi z = 0 \Leftrightarrow e^{i2\pi z} = 1 \Leftrightarrow z = k \in \mathbb{Z}.$$

By the Taylor's expansion

(31)
$$e^{i\pi z} = \sum_{n=0}^{\infty} i^n \pi^n (-1)^k (z-k)^n,$$

we have

(32)
$$\sin \pi z = (z-k)\frac{1}{i} \left(i\pi (-1)^k + \sum_{n=1}^{\infty} i^{2n+1} \pi^{2n+1} (-1)^k (z-k)^{2n+1} \right),$$

which implies the zeros are simple. Hence

(33)
$$\operatorname{res}_{z=n} \frac{1}{\sin \pi z} = \lim_{z \to n} \frac{z-n}{\sin \pi z} = \frac{(-1)^n}{\pi}.$$

2

SOLUTION. Consider the complex function $\frac{1}{1+z^4}$. It has four simple poles $z = e^{\pm i\frac{\pi}{4}}$, $e^{\pm i\frac{3}{4}\pi}$. Then we choose the contour $\Gamma = \gamma_1 \cup \gamma_2$, where

$$\gamma_1 = \{ z \in \mathbb{C} | x : -R \to R, \quad y = 0 \},$$

$$\gamma_2 = \{ z \in \mathbb{C} | |z| = R, \quad argz : 0 \to \pi \}.$$

Then using residue theorem,

(34)
$$res_{z=e^{i\frac{\pi}{4}}}f = 2\pi i \lim_{z \to e^{i\frac{\pi}{4}}} \frac{z - e^{i\frac{\pi}{4}}}{1 + z^4} = \frac{\pi}{\sqrt{2}(1+i)}$$

and

(35)
$$res_{z=e^{i\frac{3}{4}\pi}}f = 2\pi i \lim_{z \to e^{i\frac{3}{4}\pi}} \frac{z - e^{i\frac{3}{4}\pi}}{1 + z^4} = \frac{\pi}{\sqrt{2}(1-i)}$$

Thus

(36)
$$\int_{\Gamma} \frac{1}{1+z^4} \, \mathrm{d}z = \int_{\gamma_1} + \int_{\gamma_2} = \frac{\pi}{\sqrt{2}}.$$

Otherwise, by Cauchy integral theorem

(37)
$$\int_{\Gamma} \frac{1}{1+z^4} \, \mathrm{d}z = \int_{-R}^{R} \frac{1}{1+x^4} \, \mathrm{d}x + \int_{0}^{\pi} \frac{Rie^{i\theta}}{1+R^4 e^{i4\theta}} \, \mathrm{d}\theta.$$

Since

$$\left|\int_0^\pi \frac{Rie^{i\theta}}{1+R^4e^{i4\theta}}\,\mathrm{d}\theta\right|\to 0,\quad \text{as }R\to\infty,$$

(38)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \frac{\pi}{\sqrt{2}}.$$

3.

PROOF. Consider the function

$$f(z) = \frac{e^{iz}}{z^2 + a^2}.$$

Then we choose the contour $\Gamma = [-R, R] \cup C_R$ with positive orientation, where $C_R = \{z \in \mathbb{C} | \Im z \ge 0, |z| = R\}$ and R > 2a. Then f(z) has a simple pole at ia in the interior of Γ . The residue of f at z = ia is

$$\operatorname{res}_{z=ia} f = \lim_{z \to ia} (z - ia) \frac{e^{iz}}{z^2 + a^2} = \frac{e^{-a}}{2ia}.$$

The residue theorem implies that

$$\int_{-R}^{R} \frac{e^{ix}}{x^2 + a^2} \, \mathrm{d}x + \int_{0}^{\pi} \frac{e^{Re^{i\theta}}}{R^2 e^{2i\theta} + a^2} Rie^{i\theta} \, \mathrm{d}\theta = \pi \frac{e^{-a}}{a}.$$

We estimate

$$\left| \int_0^\pi \frac{e^{Re^{i\theta}}}{R^2 e^{2i\theta} + a^2} Rie^{i\theta} \,\mathrm{d}\theta \right| \le \int_0^\pi \frac{R}{R^2 - a^2} \,\mathrm{d}\theta \le \frac{2\pi}{R} \to 0$$

as $R \to \infty$. Finally, let $R \to \infty$ and take the real part to deduce that

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \, \mathrm{d}x = \pi \frac{e^{-a}}{a}.$$

4.

PROOF. Consider

$$f(z) = \frac{ze^{iz}}{z^2 + a^2}$$

Then we choose the contour $\Gamma = [-R, R] \cup C_R$ with positive orientation, where $C_R = \{z \in \mathbb{C} | \Im z \ge 0, |z| = R\}$ and R > 2a. Then f(z) has a simple pole at ia in the interior of Γ . The residue of f at z = ia is

$$\operatorname{res}_{z=ia} f = \lim_{z \to ia} (z - ia) \frac{ze^{iz}}{z^2 + a^2} = e^{-a}.$$

The residue theorem implies that

$$\int_{-R}^{R} \frac{xe^{ix}}{x^2 + a^2} \, \mathrm{d}x + \int_{0}^{\pi} \frac{Re^{i\theta}e^{Re^{i\theta}}}{R^2e^{2i\theta} + a^2} Rie^{i\theta} \, \mathrm{d}\theta = \pi i e^{-a}.$$

We estimate

$$\left| \int_{0}^{\pi} \frac{Re^{i\theta} e^{Re^{i\theta}}}{R^{2} e^{2i\theta} + a^{2}} Rie^{i\theta} \, \mathrm{d}\theta \right| \leq \int_{0}^{\pi} \frac{R^{2} e^{-R\sin\theta}}{R^{2} - a^{2}} \, \mathrm{d}\theta \leq 2 \frac{R^{2}}{R^{2} - a^{2}} \int_{0}^{\pi/2} e^{-2R\theta/\pi} d\theta$$
$$= \frac{R^{2}}{R^{2} - a^{2}} \frac{\pi}{R} (1 - e^{-R}) \to 0$$

as $R \to \infty$. Finally, let $R \to \infty$ and take the imaginary part to deduce that

$$\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} \, \mathrm{d}x = \pi e^{-a}.$$

5.

PROOF. Consider the function

$$f(z) = \frac{e^{2\pi i z\xi}}{(1+z^2)^2},$$

(1). For $\xi \ge 0$, we choose the contour $\Gamma = [-R, R] \cup C_R$ with positive orientation, where $C_R = \{z \in \mathbb{C} | \Im z \ge 0, |z| = R\}$ and R > 2. Then f(z) has a pole of order 2 at *i* in the interior of Γ . The residue of *f* at z = i is

$$\operatorname{res}_{z=i} f = \lim_{z \to i} \frac{d}{dz} (z-i)^2 \frac{e^{2\pi i z\xi}}{(z+i)^2 (z-i)^2} = \pi \xi \frac{e^{-2\pi\xi}}{2i} + \frac{e^{-2\pi\xi}}{4i}.$$

The residue theorem implies that

$$\int_{-R}^{R} \frac{e^{2\pi i x\xi}}{(1+x^2)^2} \,\mathrm{d}x + \int_{0}^{\pi} \frac{e^{2\pi i\xi Re^{i\theta}}}{(R^2 e^{2i\theta} + 1)^2} Rie^{i\theta} \,\mathrm{d}\theta = \frac{\pi}{2} (1+2\pi\xi)e^{-2\pi\xi}.$$

We estimate

$$\left| \int_0^{\pi} \frac{e^{2\pi i \xi R e^{i\theta}}}{(R^2 e^{2i\theta} + 1)^2} Ri e^{i\theta} \, \mathrm{d}\theta \right| \le \int_0^{\pi} \frac{R}{(R^2 - 1)^2} \, \mathrm{d}\theta \le \frac{2\pi}{R^3} \to 0$$

as $R \to \infty$. Finally, let $R \to \infty$ and take the real part to deduce that

$$\int_{-\infty}^{\infty} \frac{e^{2\pi i x\xi}}{(1+x^2)^2} \,\mathrm{d}x = \frac{\pi}{2} (1+2\pi\xi) e^{-2\pi\xi}.$$

(2). For $\xi < 0$, we choose the contour $\Gamma = [-R, R] \cup C_R$ with positive orientation, where $C_R = \{z \in \mathbb{C} | \Im z \le 0, |z| = R\}$ and R > 2. Then f(z) has a pole of order 2 at -i in the interior of Γ . The residue of f at z = -i is

$$\operatorname{res}_{z=-i} f = \lim_{z \to -i} \frac{d}{dz} (z+i)^2 \frac{e^{2\pi i z\xi}}{(z+i)^2 (z-i)^2} = \pi \xi \frac{e^{2\pi\xi}}{2i} - \frac{e^{2\pi\xi}}{4i}.$$

The residue theorem implies that

$$-\int_{-R}^{R} \frac{e^{2\pi i x\xi}}{(1+x^2)^2} \,\mathrm{d}x + \int_{-\pi}^{0} \frac{e^{2\pi i\xi Re^{i\theta}}}{(R^2 e^{2i\theta}+1)^2} Rie^{i\theta} \,\mathrm{d}\theta = \frac{\pi}{2}(-1+2\pi\xi)e^{2\pi\xi}.$$

We estimate

$$\left| \int_{-\pi}^{0} \frac{e^{2\pi i\xi Re^{i\theta}}}{(R^2 e^{2i\theta} + 1)^2} Rie^{i\theta} \,\mathrm{d}\theta \right| \le \int_{-\pi}^{0} \frac{R}{(R^2 - 1)^2} \,\mathrm{d}\theta \le \frac{2\pi}{R^3} \to 0$$

as $R \to \infty$. Finally, let $R \to \infty$ and take the real part to deduce that

$$\int_{-\infty}^{\infty} \frac{e^{2\pi i x\xi}}{(1+x^2)^2} \, \mathrm{d}x = \frac{\pi}{2} (1-2\pi\xi) e^{-2\pi\xi}.$$

6.

PROOF. Consider the function

$$f(z) = \frac{1}{(1+z^2)^{n+1}}$$

with poles at $z = \pm i$ of order n + 1. Then the residue of f at z = i is

$$res_{z=i}f = \frac{1}{n!}\lim_{z \to i} \frac{d^n}{dz^n} (z-i)^{n+1} \frac{1}{(1+z^2)^{n+1}} = \frac{(n+1)\cdots 2n}{n!} \frac{1}{2^{2n+1}i}.$$

Then we choose the contour $\Gamma = \gamma_1 \cup \gamma_2$, where

$$\gamma_1 = \{ z \in \mathbb{C} | x : -R \to R, \quad y = 0 \},$$

$$\gamma_2 = \{ z \in \mathbb{C} | |z| = R, \quad argz : 0 \to \pi \}.$$

By the residue formula,

$$\int_{-R}^{R} \frac{1}{(1+x^2)^{n+1}} \,\mathrm{d}x + \int_{0}^{\pi} \frac{1}{(1+Re^{i\theta})^{n+1}} Rie^{i\theta} \,\mathrm{d}\theta = 2\pi i res_{z=i} f = \frac{(2n-1)!!}{(2n)!!} \pi.$$

Since

$$\left| \int_0^\pi \frac{1}{(1+R^2 e^{2i\theta})^{n+1}} Rie^{i\theta} \,\mathrm{d}\theta \right| \ge \int_0^\pi \frac{R}{(R^2-1)^{n+1}} \,\mathrm{d}\theta \to 0, \quad \text{as } R \to \infty,$$

letting $R \to \infty$ implies the result.

7.

PROOF. Consider the function

$$f(z) = \frac{1}{iz} \frac{1}{\left(a + \frac{1}{2}\left(z + \frac{1}{z}\right)\right)^2} = \frac{4z}{i(z^2 + 2az + 1)^2}$$

which has a pole of order 2 at

$$z_0 = -a + \sqrt{a^2 - 1} \in \mathbb{D}.$$

Since

$$res_{z=z_0} f = \lim_{z \to z_0} \frac{d}{dz} \frac{4z}{i(z+a+\sqrt{a^2-1})^2}$$
$$= \frac{1}{i(a^2-1)} - \frac{-a+\sqrt{a^2-1}}{i(a^2-1)^{3/2}}$$
$$= \frac{a}{i(a^2-1)^{3/2}},$$
$$\int_0^{2\pi} \frac{d\theta}{(a^2+\cos^2\theta)^2} = \int_C f(z) \, dz = \frac{2\pi a}{(a^2-1)^{3/2}}.$$

REMARK. We consider the definite integrals of the type

$$\int_0^{2\pi} f(\sin\theta,\cos\theta) \,\mathrm{d}\theta.$$

we use

$$z = e^{i\theta}, \quad 0 \le \theta \le 2\pi$$

to denote the unit circle C. Then we have

$$\sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right), \quad \cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right), \quad \mathrm{d}\theta = \frac{\mathrm{d}z}{iz}.$$

Hence

$$\int_0^{2\pi} f(\sin\theta, \cos\theta) \,\mathrm{d}\theta = \int_C f\left(\frac{z-z^{-1}}{2i}, \frac{z+z^{-1}}{2}\right) \frac{\mathrm{d}z}{iz}.$$

8.

PROOF. Consider the function

$$f(z) = \frac{1}{iz} \frac{1}{a + b^{\frac{z+z^{-1}}{2}}} = \frac{2}{i(bz^2 + 2az + b)},$$

which has a simple pole at $z_0 = \frac{-a + \sqrt{a^2 - b^2}}{b}$ in the unit disk \mathbb{D} . Then

$$res_{z=z_0}f = \frac{b}{2i\sqrt{a^2 - b^2}}$$

Then from residue theorem

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{a+b\cos\theta} = \int_C f(z)\,\mathrm{d}z = \frac{\pi b}{\sqrt{a^2 - b^2}}.$$

10.

PROOF. Let $f(z) = \frac{\log |z|}{z^2 + a^2}$. We have that

(39)
$$\left| \int_{C_{\varepsilon}} f(z) \right| \le \pi \frac{\varepsilon \log(-\varepsilon)}{a^2 - \varepsilon^2} \to 0, \quad \varepsilon \to 0.$$

and

(40)
$$\left| \int_{C_R} f(z) \right| \le \pi \frac{R \log R}{R^2 - a^2} \to 0, \quad R \to \infty.$$

Finally, the residue formula implies the result.

11.

PROOF. Consider the function $\log z$ in the disk $D_{a'}(1)$ centered at 1 with radius a' such that |a| < a' < 1. Then $\log z \in D_{a'}(1)$. The real part satisfies

$$0 = \log 1 = \frac{1}{2\pi} \int_0^{2\pi} \log |1 + ae^{i\theta}| \quad \text{for } a > 0.$$

a = 0 is trivial. For a < 0,

$$\frac{1}{2\pi} \int_0^{2\pi} \log |e^{-i\pi} + |a|e^{i\theta}| = \Re \log(e^{i\pi}) = 0.$$

12.

PROOF. Choose the circle $C := |z| = N + \frac{1}{2}$ such that N > |u| and N is an integer. Then in the interior of this circle, f(z) has a pole of second order at z = -u and a simple pole at the integer n with $|n| \le N$. Then from the residue formula,

$$0 = \frac{1}{2\pi i} \int_C f(z) \, \mathrm{d}z = -\frac{\pi^2}{\sin(\pi u)^2} + \sum_{n=-N}^N \frac{1}{(u+n)^2},$$

since $\cot \pi z = 0$ on the circle. Then letting $N \to \infty$ yields the result.

13.

PROOF. Let $g(z) = (z - z_0)f(z)$. Then from $|g(z)| \le A|z - z_0|^{\varepsilon}$, we know that z_0 is a simple zero of g(z) and g is holomorphic. Then the Taylor expansion of g(z) at $z = z_0$

$$g(z) = g'(z_0)(z - z_0) + \frac{g''(z_0)}{2}(z - z_0)^2 + \ldots = (z - z_0)f(z)$$

reveals that

$$f(z) = \sum_{n=1}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n-1}$$

is holomorphic and $f(z_0) = g'(z_0)$.

16.

PROOF. (a). We choose $\varepsilon < \min_{|z|=1} \left| \frac{f(z)}{g(z)} \right|$, so that $|f(z)| > \varepsilon |g(z)|$ on |z| = 1. This allows us to use Rouche theorem to obtain the uniqueness of zero of $f_{\varepsilon}(z)$ in $|z| \le 1$.

(b). Since 0 is a simple zero of f(z), there exists a holomorphic function h(z) nowhere vanishes in $|z| \le 1$ so that f(z) = zh(z). Since

$$f_{\varepsilon}(z_{\varepsilon}) = z_{\varepsilon}h(z_{\varepsilon}) + \varepsilon g(z_{\varepsilon}) = 0,$$
$$|z_{\varepsilon}| = \left|\varepsilon \frac{g(z_{\varepsilon})}{h(z_{\varepsilon})}\right| \le \varepsilon \max_{|z=1|} \left|\frac{g(z)}{h(z_{\varepsilon})}\right|$$

implies that $\varepsilon \mapsto z_{\varepsilon}$ is continuous.

17.

PROOF. (a) It suffices to show that if |w| < 1, g(z) = f(z) - w has a zero in \mathbb{D} . It is easy to see that

$$g(z) - f(z)| = |w| < 1 = |f(z)|$$
 on $|z| = 1$.

So by Rouché's theorem, f and g have the same number of zeros in \mathbb{D} . So it suffices to show that f has a zero in \mathbb{D} .

From the hypothesis of f, we employ maximum modulus principle to see that there exists a $z_0 \in \mathbb{D}$ such that $f(z_0) \in \mathbb{D}$. Let $h(z) = f(z) - f(z_0)$ so that

$$|h(z) - f(z)| = |f(z_0)| < 1 = |f(z)|$$
 on $|z| = 1$.

28

2. EXERCISES

We again use Rouché's theorem to see that f and h have the same number of zeros in \mathbb{D} . Since h has at least one zero in \mathbb{D} , f has at least one zero in \mathbb{D} .

(b) The proof is similar as part (a), after a slight modification.

22.

PROOF. Assume that f is holomorphic in \mathbb{D} and $f \in C(\overline{\mathbb{D}})$. If $f(z) = \frac{1}{z}$ on $\partial \mathbb{D}$, then the Cauchy integral theorem yields

$$0 = \int_{\partial \mathbb{D}} f(z) \, \mathrm{d}z = \int_{\partial \mathbb{D}} \frac{1}{z} \, \mathrm{d}z = 2\pi i,$$

which is a contradiction.

CHAPTER 4

The Fourier transform

1.

PROOF. (a)

$$A(\xi) - B(\xi) = e^{2\pi i\xi t} \int_{-\infty}^{\infty} f(x)e^{-2\pi i\xi x} \, \mathrm{d}x = e^{2\pi i\xi t} \hat{f}(\xi) = 0.$$

(b) The Schwarz reflection principle guarantees that *F* is holomorphic, and hence entire. Then *F* is bounded, since *f* is moderate decreasing. By Liouville's theorem, *F* is a constant. In fact, letting $t \to \infty$, for $\xi \in \mathbb{R}$,

$$F(z) = A(\xi) = \lim_{t \to \infty} e^{2\pi i \xi t} \int_{-\infty}^{t} f(x) e^{-2\pi i \xi x} \, \mathrm{d}x = 0,$$

since $\hat{f}(\xi) = 0$ and $e^{2\pi i \xi t}$ is bounded.

(c) Hence $F(z) = F(0) = \int_{-\infty}^{t} f(x) dx = 0$ for each t. So for any $\varepsilon > 0$, $\int_{t}^{t+\varepsilon} f(x) dx = 0.$

Consequently, f(t) = 0 for each $t \in \mathbb{R}$, since f is continuous.

3

PROOF. Consider the integral

$$\int_{\gamma_R} \frac{a}{a^2 + z^2} e^{-2\pi i z\xi} \,\mathrm{d}z.$$

Clearly, the function $\frac{a}{a^2+z^2}e^{-2\pi i z\xi}$ has two poles $\pm ia$ with the residues $\pi e^{2\pi a\xi}$ at ia and $-\pi e^{-2\pi a\xi}$. We choose the contour $\gamma_R = [-R, R] \cup C_R^{\pm}$, where C_R^+ is the large half circle on the upper half plane with counter clockwise direction containing ia and C_R^- is the large half circle on the lower half plane with clockwise direction containing -ia.

Since $|e^{-2\pi i z\xi}| = e^{2\pi \Im z\xi}$, thus in order to make the function $\frac{a}{a^2+z^2}e^{-2\pi i z\xi}$ to be integrable, it must be that $\Im z\xi < 0$. Thus, when we choose the contour is $\gamma_R = [-R, R] \cup C_R^+, \xi < 0$, and

$$\int_{-R}^{R} \frac{a}{a^2 + x^2} e^{-2\pi i x\xi} \, \mathrm{d}x + \int_{C_R^+} \frac{a}{a^2 + z^2} e^{-2\pi i z\xi} \, \mathrm{d}z = 2\pi i \mathrm{Res}_{ia} \frac{a}{a^2 + z^2} e^{-2\pi i z\xi} = \pi e^{2\pi a\xi}.$$

Since

$$\int_{C_R^+} \frac{a}{a^2 + z^2} e^{-2\pi i z\xi} \, \mathrm{d}z = \int_0^\pi \frac{a}{a^2 + R^2 e^{2i\theta}} Rie^{i\theta} e^{-2\pi i Re^{i\theta}\xi} \, \mathrm{d}\theta \to 0,$$

as $R \to \infty$ because of $\xi < 0$, thus letting $R \to \infty$,

$$\int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x\xi} \, \mathrm{d}x = \pi e^{2\pi a\xi},$$

Similarly, when we choose the contour is $\gamma_R = [-R, R] \cup C_R^-$, $\xi \ge 0$, and

$$\int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} \, \mathrm{d}x = \pi e^{-2\pi a \xi}.$$

Combining these two results,

$$\int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x\xi} \, \mathrm{d}x = \pi e^{-2\pi a |\xi|}.$$

6

PROOF. From Poisson summation formula,

$$\frac{1}{\pi} \sum_{n = -\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n = -\infty}^{\infty} e^{-2\pi a|n|}.$$

From the convergence of power series,

$$\sum_{n=-\infty}^{\infty} e^{-2\pi a|n|} = \coth \pi a.$$