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CHAPTER 1

Preliminaries to complex analysis

1. Notes

1. The geometric meaning of |f ′(z)|2. If f is a univalent holomorphic function defined
in a region Ω. Then the area of f(Ω) is

Area(f(Ω)) =
∫
Ω

|f ′(z)|2 dxdy.

2. The mean value theorem in calculus does not hold. The theorem says if f ∈ C([a, b]),
then there exits a point ξ ∈ (a, b) such that

eq:meaneq:mean (1) f ′(ξ) =
f(b)− f(a)

b− a
.

Now we consider the function eit defined on [0, 2π], which satisfies ei0 = ei2π = 1, but
|(eit)′| = |ieit| = 1. Hence (

eq:meaneq:mean
1) does not hold.

3. The trigonometric functions are unbounded, which is different from the case in R.
For instance,

cos z =
eiz + e−iz

2
,

if we choose z = ix with x ∈ R, then cos(ix) = ex+e−x

2
is unbounded.

4. We consider the exterior differential form for real variables. For x, y, z ∈ R. The
wedge of differentials dx and dy is defined as dx ∧ dy, which satisfies

dx ∧ dx = 0, dx ∧ dy = −dy ∧ dx.

Similarly, we define dx ∧ dy ∧ dz.
The exterior differential form ω is the wedge of differentials multiplied by a function.

For instance, let F is a function, then F is a exterior differential form of degree zero. Then
let A,B,C, P,Q,R,H be functions of x, y, z,

ω = Pdx+Qdy +Rdz

is the exterior differential form of degree 1.

ω = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy

is the exterior differential form of degree 2.

ω = Hdx ∧ dy ∧ dz

is the exterior differential form of degree 3.
5



6 1. PRELIMINARIES TO COMPLEX ANALYSIS

Then we define the exterior differential operator d on the exterior differential form ω.
For ω = F is a function, we define

dF =
∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz,

which is the total differentiation. For ω = Pdx+Qdy +Rdz, we define

dω = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

The we use the definition for dF ,

ω = (
∂R

∂y
− ∂Q

∂z
)dy ∧ dz + (

∂P

∂z
− ∂R

∂x
)dz ∧ dx+ (

∂Q

∂x
− ∂P

∂y
)dx ∧ dy.

Similarly, for ω = Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy,

dω = dA ∧ dy ∧ dz + dB ∧ dz ∧ dx+ dC ∧ dx ∧ dz = (
∂A

∂x
+

∂B

∂y
+

∂C

∂z
)dx ∧ dy ∧ dz.

If ω = Hdx ∧ dy ∧ dz, we clearly have

dω = dH ∧ dx ∧ dy ∧ dz = 0.

Recall Green’s theorem, Stokes theorem and Gauss’s theorem.

THEOREM 1 (Green’s theorem). Let Ω be a simply connected domain with piecewise smooth
boundary L, and P , Q ∈ C1(Ω). Then∫

L

P dx+Q dy =

∫
Ω

∂Q

∂x
− ∂P

∂y
dx dy.

THEOREM 2 (Stokes theorem). Let Σ be a surface bounded by a piecewise smooth simple
closed curve L and P , Q, R ∈ C1(Σ). Then∫

L

Pdx+Qdy +Rdz =

∫
Σ

(
∂R

∂y
− ∂Q

∂z
)dydz + (

∂P

∂z
− ∂R

∂x
)dzdx+ (

∂Q

∂x
− ∂P

∂y
)dxdy.

THEOREM 3 (Gauss’s theorem). Let Ω be a region bounded by a closed surface Σ, and P , Q,
R ∈ C1(Ω). Then∫

Σ

Pdydz +Qdzdx+Rdxdy =

∫
Ω

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
)dxdydz.

Hence, we reduce the Green’s theorem, Stokes theorem, Gauss’s theorem to the uni-
form formula ∫

∂Ω

ω =

∫
Ω

dω,

which is often called Stokes formula.
5. We now consider the exterior form in C. Consider z and z̄ as independent variables.

We define the wedge as

dz ∧ dz = 0, dz̄ ∧ dz̄ = 0, dz ∧ dz̄ = −dz̄ ∧ dz,

where
dz = dx+ idy, dz̄ = dx− idy.
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Then
dz̄ ∧ dz = 2idx ∧ dy = 2idA,

where dA is the area element.
The exterior differential form of degree zero is the function f(z, z̄). The exterior differ-

ential form of degree 1 is
ω = ω1dz + ω2dz̄,

where ω1 and ω2 are functions of z and z̄.The exterior differential form of degree 2 is

ω = ω0dz ∧ dz̄,

where ω0 is a function of z and z̄.
The exterior differential operator d is defined as

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄.

dω = dω1 ∧ dz + dω2 ∧ dz̄ = (
∂ω1

∂z̄
− ∂ω2

∂z
)dz̄ ∧ dz.

dω = dω0dz̄ ∧ dz = 0.

The we derive the Green’s theorem in complex form:

THEOREM 4. Suppose that ω = ω1dz+ω2dz̄ is an exterior differential form of degree 1, defined
on a region Ω, where Ω is bounded by a piecewise smooth curve γ, and ω1, ω2 are differentiable
functions of z, z̄ up to γ. Then ∫

γ

ω =

∫
Ω

dω.

2. Exercises

1.

SOLUTION. (a) Midperpendicular of segment z1z2.

(b) unit circle.

(c) vertical line with real part 3.
�

2

PROOF. Let z = x+ iy, w = u+ iv. Then

⟨z, w⟩ = xu+ yv.

since

(z, w) = (x+iy)(u−iv) = xu+yv+i(uy−vx), (w, z) = (u+iv)(x−iy) = ux+vy+i(vx−uy),

Thus
⟨z, w⟩ = 1

2
((z, w) + (w, z))ℜ(z, w).

�



8 1. PRELIMINARIES TO COMPLEX ANALYSIS

3.

SOLUTION.
z = s1/neiφ/n = s1/nei(φ/n+2kπi), ∀k ∈ N.

�
4

PROOF. Suppose that i ≻ 0. Then from (iii),

−1 ≻ 0,−i ≻ 0.

Then from (ii)
0 ≻ i,

This is contradict to (i). �
5

PROOF. Claim: an open set Ω is pathwise connected iff Ω is connected.
(a) Suppose first that Ω is open and pathwise connected, and that it can be written

as Ω = Ω1 ∪ Ω2, where Ω1 and Ω2 are disjoint non-empty open sets. Choose two points
w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω joining w1 and w2.

Consider a parametrization z : [0, 1] → Ω of this curve with z(0) = w1 and z(1) = w2,
and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1, for all 0 ≤ s < t}.

If z(t∗) ∈ Ω1, since Ω1 is open, then there is an open neighborhood of z(t∗) is contained
in Ω1, that is, there exists ε > 0, such that for each s ∈ (t∗−ε, t∗+ε), z(s) is contained in Ω1,
this is contradict to the supremum of t∗. Thus z(t∗) ∈ Ω2. But similarly, this is contradict
to supermum of t∗.

(b) Suppose that Ω is open and connected. Fix a point w ∈ Ω and let Ω1 ⊂ Ω denote the
set of all points that can be joined to w by a curve contained in Ω. Also, let Ω2 ⊂ Ω denote
the set of all points that cannot be joined to w by a curve in Ω.

First, Ω1 ∩ Ω2 = ∅ is clear.
Now, we prove Ω1 is open. Choose any point w1 ∈ Ω1, then w1 is joined to w by a

curve γ1. Since Ω is open, there exists a neighborhood U of w1 contained in Ω. Clearly,
every point in U could be joined to w1 by a curve γ2. Then connect the two curves γ1 and
γ2, thus very point in U can be joined to w by a curve. That is, U ⊂ Ω1, hence Ω1 is open.

Then, we prove Ω2 is open. Choose any point w2 ∈ Ω2, then there exists a neighbor-
hood of w2 contained in Ω and very point in this neighborhood is joined to w2 by a curve
γ3. If there is one point u in this neighborhood does not belong to Ω2, then there is a curve
γ4 joins w and u, then the curve consists of γ3 and γ4 joins w2 and w, that is w2 ∈ Ω1. This
is impossible, since w2 ∈ Ω2 and Ω1 ∩ Ω2 = ∅.

Ω = Ω1 ∪ Ω2. If not, there exists v ∈ Ω and a neighborhood U(v) such that v /∈ Ω1 ∪ Ω2

and U(v) ∩ Ω1 = ∅. Then v ∈ Ω2. Contradiction.
Since Ω1 is empty because of w ∈ Ω1, and Ω is connected, thus Ω = Ω1. �
7.
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PROOF. (a). Let z = |z|eiθ1 , w = |w|eiθ. Then

(2)
∣∣∣∣ w − z

1− w̄z

∣∣∣∣ = ∣∣∣∣ |w|ei(θ2−θ1) − |z|
1− |z||w|ei(θ1−θ2)

∣∣∣∣
Thus, it suffices to assume that z = r is real. We directly compute

(3) (r − w)(r − w̄) = r2 − r(w + w̄) + |w|2.
However,

(4) (1− rw)(1− rw̄) = 1− r(w + w̄) + r2|w|2.
So

(5) (1− rw)(1− rw̄)− (r − w)(r − w̄) = (1− r2)(1− |w|2) > 0,

since r < 1 and |w| < 1. In addition,

(6) (1− rw)(1− rw̄)− (r − w)(r − w̄) = 0 ⇔ r = 1 or |w| = 1.

Hence

(7)
∣∣∣∣ w − z

1− w̄z

∣∣∣∣2{ < 1, for |z| < 1 and |w| < 1

= 1, for |z| = 1 or |w| = 1

(b). From the above analysis, for |z| < 1, |F (z)| < 1 and |z = 1|, |F (z)| = 1. For any h ∈ D,
h ̸= 0 and z + h ∈ D, we have

(8)
F (z + h)− F (z)

h
=

|w|2 − 1

(1− w̄z)(1− w̄z − w̄h)
→ |w|2 − 1

(1− w̄z)2
,

so F is holomorphic. Clearly, F (0) = w and F (w) = 0. Moreover, F ◦ F = Id.
�

8.

PROOF. Let w = u+ iv = f(z) = f(x+ iy).

(9)

∂h

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
g(u(x, y), v(x, y))

=
1

2

(
∂g

∂u

∂u

∂x
+

∂g

∂v

∂v

∂x

)
+

1

2

1

i

(
∂g

∂u

∂u

∂y
+

∂g

∂v

∂v

∂y

)
=

1

2

(
∂g

∂u

1

2

(
∂f

∂x
+

∂f̄

∂x

)
+

∂g

∂v

1

2

1

i

(
∂f

∂x
− ∂f̄

∂x

))
+

1

2

1

i

(
∂g

∂u

1

2

(
∂f

∂y
+

∂f̄

∂y

)
+

∂g

∂v

1

2

1

i

(
∂f

∂y
− ∂f̄

∂y

))
=

1

2

∂g

∂u

(
∂f

∂z
+

∂f̄

∂z

)
+

1

2

1

i

∂g

∂v

(
∂f

∂z
− ∂f̄

∂z

)
=

∂g

∂w

∂f

∂z
+

∂g

∂w̄

∂f̄

∂z
.

�
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10.

PROOF. Consider the Laplace operator ∆, we need to define the domain of ∆ as {f ∈
C2}. In other words, we need to let the partial derivatives interchange, which is necessary
to obtain the equality ∂z∂z̄ = ∂z̄∂z. �

12

PROOF. Let f = u+ iv. Then u =
√
|x||y| and v = 0.

∂xu(0, 0) = lim
x→0

u(x, 0)− u(0, 0)

x
= 0, ∂yu(0, 0) = lim

y→0

u(0, y)− u(0, 0)

y
= 0.

Otherwise, ∂xv(0, 0) = ∂yv(0, 0) = 0 is trivial. Hence the Cauchy-Riemann equation at the
origin. However, for h = x+ iy,

∂zf |z=0 = lim
h→0

=
f(z)− f(0)

h
= lim

h=x+iy→0

√
|x||y|

x+ iy
,

which is 
1

1 + i
, when y = x, x > 0,

− 1

1 + i
, when y = x, x < 0.

Thus, f is not holomorphic at 0. �

21

PROOF. The partial sum

Sn =
z

1− z2
+

z2

1− z4
+ · · ·+ z2

n

1− z2n+1

=
z

1− z2
+

(
1

1− z2
− 1

1− z4
+ · · ·+

(
1

1− z2n
− 1

1− z2n+1

))
=

z

1− z2
+

1

1− z2
− 1

1− z2n+1

→ 1

1− z
− 1 =

z

1− z
, as n → ∞ and |z| < 1.

Since
2kz2

k

1 + z2k
=

2kz2
k

1 + z2k
1 + z2

k − 2z2
k

1− z2k
=

2kz2
k

1− z2k
− 2k+1z2

k+1

1− z2k+1 ,

2k+1z2
k+1

1− z2k+1 → 0, as k → ∞ and |z| < 1.
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Hence, the partial summation

Sn =
z

1 + z
+

2z2

1 + z2
+ · · ·+ 2nz2

n

1 + z2n

=
z

1− z
− 2n+1z2

n+1

1− z2n+1

→ z

1− z
, as n → ∞ and |z| < 1.

1

1 + z
+

2z

1 + z2
+ · · ·+ 2kz2

k−1

1 + z2k
+ · · · = 1

1− z
.

�
22

PROOF. Assume that S = ∪n
i=1Si. Assign each progression Si = {ai + kbi|k ∈ N},

which generates series
∞∑
d=k

zai+kbi =
zai

1− zbi
for |z| < 1.

Since Si, 1 ≤ i ≤ n, partition N,
n∑

i=1

∞∑
d=k

zai+kbi =
∞∑

m=1

zm =
1

1− z
, |z| < 1.

for this, observe that if m ∈ Si, then zm is one of terms being added in
∑∞

d=k z
ai+kbi , and

zm is not in the other series
∑∞

d=k z
aj+kbj for j ̸= i. If all the bi are different, let b = max{bi},

and ζ = e2πi/b be a primitive b-th root of 1. This means ζb = 1. If k is an integer, zk = 1 iff
k is a multiple of b. If zb = 1, then z = ζn for some integer n. Thus

n∑
k=1

zak

1− zbk
=
∑
m

zm =
z

1− z
,

the right side of which tends to ζ
1−ζ

, as z → ζ . Note that ζ ̸= 1 and b > 1. On the other
hand, if bj ̸= b, zak

1−zbk
→ ζak

1−ζbk
and ζbj ̸= 1, since bj < b. BUT if bj = b, then zak

1−zbk
→ ∞ since

ζbj = ζb = 1. Thus the left side tends to ∞. This is a contradiction. �
24

PROOF.

(10)

∫
γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt

= −
∫ a

b

f(z(t))z′(t) dt

=

∫
γ−

f(z) dz.
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�
25

SOLUTION. (a) Let z = eiθ, θ ∈ (−π, π]. Then

(11)

∫
γ

zn =

∫ π

−π

iei(n+1)θ dθ

=

{
2πi, when n = −1,

0, otherwise.

(b)

(12)
∫
γ

zn = 0, n ∈ Z.

(c)

(13)

∫
γ

1

(z − a)(z − b)
=

1

a− b

∫
γ

1

z − a
− 1

z − b

=
1

a− b
(2πi− 0) =

2πi

a− b
.

�
26

PROOF. Suppose that F1 and F2 are two primitives of f . Then we have that

(14)
d

dz
(F1 − F2) = f ′(z)− f ′(z) = 0,

which along with that F1 − F2 is holomorphic implies that F1 − F2 is a constant. �



CHAPTER 2

Cauchy’s theorem and its applications

1. Notes

2. Exercises

1.

PROOF. Consider integral of the function eiz
2 along the closed contour γ = γ1 ∪ γ2 ∪ γ3

defined by
γ1 = {(r, θ) ∈ C : r : 0 → R, θ = 0},

γ2 = {(r, θ) ∈ C : r = R, y : 0 → π

4
},

and
γ3 = {(r, θ) ∈ C : r : R → 0, θ =

π

4
}.

Then we employ Cauchy integral theorem to deduce that

0 =

∫ R

0

eix
2

dx+

∫ π
4

0

eiR
2e2iθiReiθ dθ +

∫ 0

R

eir
2ei

π
2 ei

π
4 dr = I + II + III.

Since
sin 2θ ≥ 4

π
θ, θ ∈ (0, π/4),

|II| ≤
∫ π

4

0

e−R2 sin 2θR dθ ≤
∫ π

4

0

e−R2 4
π
θR dθ =

π

4R
(1− e−R2

) → 0, R → ∞.

Hence ∫ ∞

0

eix
2

dx =

∫ ∞

0

e−r2ei
π
4 dr = ei

π
4

√
π

2
.

which implies the results. �
2

PROOF. Consider the integral of function eiz

z
along the toy contour γ = γ1∪γε∪γ2∪γR

defined by
γ1 = {(r, θ) ∈ C : r : −R → −ε, θ = 0},
γε = {(r, θ) ∈ C : r = ε, y : π → 0},
γ2 = {(r, θ) ∈ C : r : ε → R, θ = 0},

and
γR = {(r, θ) ∈ C : r = R, θ : 0 → π}.

13
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Then Cauchy integral theorem implies∫ −ε

−R

eix

x
dx+

∫
γε

eiz

z
dz +

∫ R

ε

eix

x
dx+

∫
γR

eiz

z
dz = 0.

Since
eiz

z
=

1

z
+

iz

z
+ E(z),

where E(z) is bounded near 0 and E(z) → 0 as z → 0, we have∫
γε

eiz

z
dz =

∫ 0

π

(
1

εeiθ
+ i

)
iεeiθ dθ +

∫
γε

E(z) dz

→ −iπ, as ε → 0,

since ∣∣∣∣∫
γε

E(z) dz

∣∣∣∣ ≤ sup |E(z)|πε → 0, as ε → 0.

In addition,∣∣∣∣∫
γR

eiz

z
dz

∣∣∣∣ ≤ ∫ π

0

eR sin θ dθ ≤
∫ π

0

eR
2
π
θ dθ =

π

R
(1− e−R) → 0, R → ∞.

Since ∫ −ε

−R

eix

x
dx+

∫ R

ε

eix

x
dx =

∫ R

ε

eix − e−ix

x
dx = 2i

∫ R

ε

sinx

x
dx,

Hence
2i

∫ ∞

0

sinx

x
dx = iπ,

which is exactly ∫ ∞

0

sinx

x
dx =

π

2
.

�
3.

PROOF. When b = 0, these integrals are trivial. Now suppose b ̸= 0. Consider the
integral of function e−Az along the toy contour γ = γ1 ∪ γ2 ∪ γ3 defined by

γ1 = {(r, θ) ∈ C : r : 0 → R, θ = 0},
γ2 = {(r, θ) ∈ C : r = R, y : 0 → ω},

and
γ3 = {(r, θ) ∈ C : r : R → 0, θ = ω},

where
A =

√
a2 + b2, cosω =

a

A
, sinω =

b

A
.

Then the Cauchy integral theorem reveals that∫ R

0

e−Ax dx+

∫ ω

0

e−AReiθiReiθ dθ +

∫ 0

R

∫ ω

0

e−Areiωeiω dr = 0.
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Since
|II| ≤

∫ ω

0

e−AR cos θR dθ ≤
∫ ω

0

e−aRR dθ = Re−aRω → 0, R → ∞,∫ ∞

0

e−Ax dx = eiω
∫ ∞

0

e−ax−ibx dx,

which implies ∫ ∞

0

e−ax cos bx dx =
a

A2
,

∫ ∞

0

e−ax sin bx dx =
b

A2
.

�
4.

PROOF. Note that

(15)
∫ ∞

−∞
e−πx2

e2πixξ dx = e−πξ2
∫ ∞

−∞
e−π(x−iξ)2dx.

Then we consider the contour Γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, which are defined as

(16)

γ1 = {(x, y) ∈ R2|x : −R → R, y = 0},
γ2 = {(x, y) ∈ R2|x = R, y : R → R− iξ},
γ3 = {(x, y) ∈ R2|x : R− iξ → −R− iξ, y = R− iξ},
γ4 = {(x, y) ∈ R2|x = −R, y : −R− iξ → R}.

We now consider the integral
∫
Γ
e−πz2 dz. By Cauchy integral theorem,

(17)
0 =

∫
Γ

e−πz2 dz

=

∫ R

−R

e−πx2

dx+

∫ −ξ

0

e−π(R+iy)2i dy +

∫ −R

R

e−π(x−iξ)2 dx+

∫ 0

−ξ

e−π(−R+iy)2i dy

It is evaluated that

(18)

∣∣∣∣∫ −ξ

0

e−π(R+iy)2i dy

∣∣∣∣ ≤ ∣∣∣∣∫ −ξ

0

e−πR2

e−πy2 dy

∣∣∣∣
≤
∫ ∞

0

e−πR2

e−piy2 dy =
1

2
e−πR2 → 0, as R → ∞.

Similarly,

(19)
∣∣∣∣∫ 0

−ξ

e−π(−R+iy)2i dy

∣∣∣∣→ 0, as R → ∞.

Hence

(20)
∫ ∞

−∞
e−πx2

dx =

∫ ∞

−∞
e−π(x−iξ)2 dx = 1.

�
5.
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PROOF. Let f(z) = u(x, y) + iv(x, y). Then f(z) dz = (u + iv) dx + i(u + iv) dy. Thus
from Green theorem and Cauchy-Riemann equations,∫

T

f(z) dz =

∫
T

u dx− v dy + i

∫
T

v dx+ u dy

=

∫
Tint

(−∂xv − ∂yu) + i(∂xu− ∂yv) dxdy

= 0.

(21)

�

6

PROOF. We choose the keyhole contour Γδ,ε omitting the point w. The Cauchy integral
theorem implies that ∫

Γδ,ε

f = 0.

Then taking δ → 0, we have that

(22)
∫
T

f(z) dz =

∫
Cε

f(z) dz,

where Cε = {z||z − w| = ε}. From assumption, there exists a constant M such that
|f(z)| ≤ M for z ∈ Cε. Thus

(23)
∣∣∣∣∫

Cε

f(z) dz

∣∣∣∣ ≤ 2πMε

Then letting ε → 0 implies

(24)
∫
T

f(z) dz = 0.

�

7

PROOF. Since

(25) 2f ′(0) =
1

2πi

∫
|ζ|=r

f(ζ)− f(−ζ)

ζ2
dζ whenever 0 < r < 1,

we have

(26) 2|f ′(0)| ≤ 1

2π

∫ 2π

0

d
1

r2
r2 dθ = d.

When f(z) = a0 + a1z,

(27) d = sup
z,w∈D

|f(z)− f(w)| = |a1| sup
z,w∈D

|z − w| = 2|a1|.
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On the other hand, whenever 0 < r < 1,

(28) 2f ′(0) =
1

2πi

∫
|ζ|=r

2a1
ζ

dζ =
1

2πi
= 2a1.

�

8

PROOF. For any x ∈ R, we choose the disk D1/2(x) centered at x with radius 1/2. Its
boundary is the circle C = C1/2(x). Then the Cauchy integral formula reveals that

f (n)(x) =
n!

2πi

∫
C

f(ζ)

(ζ − x)n+1
dζ.

Since
|f(ζ)| ≤ A(1 + |ζ|)η,

for any ζ in the circle C,

|f(ζ)| ≤ A(1 + |ζ − x|+ |x|)η ≤ 2ηA(1 + |x|)η.

Hence

|f (n)(x)| ≤ n!

2π

∫
C

2ηA(1 + |x|)η

(1/2)n+1
| dζ| ≤ An(1 + |x|)η.

�

9.

PROOF. We may assume that z0 = 0. Otherwise, we take the function f(z) = φ(z +
z0)− z0. Then f : Ω− {z0} → Ω− {z0} is holomorphic and satisfies

f(0) = φ(z0)− z0 = 0, f ′(0) = φ′(z0) = 1.

If not, we can assume that

φ(z) = z + anz
n +O(zn+1)

near the origin with n > 1 and an ̸= 0. Then by induction, we consider the function

φk(z) = φ ◦ · · · ◦ φ(z) = z + kanz
n +O(zn+1)

Then for Dε(0) ⊂ Ω, and φk(Ω) ⊂ Ω is holomorphic uniformly for each k, we use the
Cauchy inequality to see that

|an| ≤
φ
(n)
k (0)

kn!
≤ A

kεn
→ 0, as k → ∞,

since A and ε do not depend on k.
�

10.
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PROOF. Can every continuous function on the closed unit disk be approximated uni-
formly by polynomials in the variable of z? NO.

The counterexample is f(z) = z̄, which is continuous on the closed unit disk. How-
ever, z̄ can not be approximated by polynomials in the variable of z. The uniform limit
of polynomials in the variable of z on the closed disk is a holomorphic function, which is
guaranteed by the Weirstrass theorem. �

11.

PROOF. (1). The Cauchy integral formula implies

f(z) =
1

2πi

∫
∂DR

f(ζ)

ζ − z
dζ

=
1

2π

∫ 2π

0

f(Reiφ)
Reiφ

Reiφ − z
dφ

=
1

2π

∫ 2π

0

f(Reiφ)Reiφ + z

Reiφ − z
dφ− 1

2π

∫ 2π

0

f(Reiφ)z

Reiφ − z
dφ

=
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ

+
1

2π

∫ 2π

0

f(Reiφ)
1

2

(
Reiφ + z

Reiφ − z
− Re−iφ + z̄

Re−iφ − z̄

)
dφ

− 1

2π

∫ 2π

0

f(Reiφ)z

Reiφ − z
dφ

=
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ

− 1

2π

∫ 2π

0

f(Reiφ)
z̄

Re−iφ − z̄
dφ

=
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ

− 1

2π

∫ 2πi

0

f(Reiφ)
iReiφ

R2

z̄
−Reiφ

dφ

=
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ− 1

2πi

∫
∂DR

f(ζ)

ζ − R2

z̄

dφ

=
1

2π

∫ 2π

0

f(Reiφ)Re
(
Reiφ + z

Reiφ − z

)
dφ.

(2).

Re
(
Reiφ + z

Reiφ − z

)
�
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12.

PROOF. (a). Let g(z) = 2∂u
∂z

. Since u ∈ C2(D), Re(g) and Im(g) are continuously differ-
entiable (i.e., g ∈ C1(D)). In addition,

∂g

∂z̄
= 2

∂

∂z̄

∂

∂z
u =

1

2
∆u = 0.

Hence g ∈ H(D). Then we might use Goursat’ theorem to define the primitive F of f
in D such that F ′ = f . Then

∂zRe(F ) =
∂u

∂z
implies Re(F )− u is a constant.

�
14.

PROOF. If z0 is a pole of f with order m, then for z near z0, we have

f(z) =
c−m

(z − z0)m
+ · · ·+ c−1

z − z0
+ g(z)

where g ∈ H(D). Since g ∈ H(D), then

g(z) =
∞∑
n=0

anz
n +

c−1

z0

∞∑
n=0

zn

zn0
+ · · ·+ (−1)m−1c−m

1

zm0

∞∑
n=0

zn

zn0

=
∞∑
n=0

(
an +

c−1

zn+1
0

+ · · ·+ (−1)m−1c−m
1

zn+m
0

)
.

From the convergence of g,

an +
c−1

zn+1
0

+ · · ·+ (−1)m−1c−m
1

zn+m
0

→ 0, as n → ∞.

Hence
lim
n→∞

an
an+1

= z0.

�
15.

PROOF. We employ the maximum principle to see that

|f(z)| ≤ 1, for any z ∈ D.
Since f is non-vanishing in D, it is convinced that 1

f(z)
still satisfies the same conditions as

f . Hence, the maximum principle implies that∣∣∣∣ 1

f(z)

∣∣∣∣ ≤ 1, for any z ∈ D.

Thus |f(z)| ≥ 1 for any z ∈ D. Consequently, |f(z)| = 1 for any z ∈ D. The maximum
modulus principle guarantees that f is a constant. �





CHAPTER 3

Meromorphic functions and the logarithm

1. Notes

1. Prove that ∫ ∞

−∞
e2πixξ

sin πa

cosh πx+ cos πa
dx =

sinhπaξ

sinh aξ
,

for 0 < a < 1.

PROOF. Consider the function

f(z) = e2πizξ
sin πa

cosh πz + cos πa
.

Then we choose the contour as Γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, which are defined as

(29)

γ1 = {(x, y) ∈ R2|x : −R → R, y = 0},
γ2 = {(x, y) ∈ R2|x = R, y : 0 → 2},
γ3 = {(x, y) ∈ R2|x : R → −R, y = 2},
γ4 = {(x, y) ∈ R2|x = −R, y : 2 → 0}.

Since

cosh πz + cos πa =
e−πz

2
(e2πz + 2eπz cos πa+ 1) =

e−πz

2
(eπz + eiπa)(eπz + e−iπa),

f(z) has two simple poles at i(1 + a) and i(1− a). In addition, the residue of f at (1− a)i
is

resz=i(1−a)f = 2 lim
z→i(1−a)

e2πizξ
sin πa(z − i(1− a))

e−πz(eπz − eiπ(1+a))(eπz − eiπ(1−a))

= 2e−2π(1−a)ξ sin πa

e−i(1−a)ππei(1−a)π2i sin πa

=
e−2π(1−a)ξ

πi
,

21
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and the residue of f at (1 + a)i is

resz=i(1+a)f = 2 lim
z→i(1+a)

e2πizξ
sin πa(z − i(1 + a))

e−πz(eπz − eiπ(1+a))(eπz − eiπ(1−a))

= −2e−2π(1+a)ξ sin πa

e−i(1+a)ππei(1+a)π2i sin πa

= −e−2π(1−a)ξ

πi
.

The the residue theorem implies that∫ R

−R

e2πixξ
sin πa

cosh πx+ cos πa
dx+

∫ 2

0

e2πiR−2πy sin πa

cosh π(R + iy) + cos πa
ieiy dy

− e4πξ
∫ R

−R

e2πixξ
sin πa

cosh πx+ cos πa
dx−

∫ 2

0

e−2πiR−2πy sin πa

cosh π(−R + iy) + cos πa
ieiy dy

= 2πi

(
e−2π(1−a)ξ

πi
− e−2π(1−a)ξ

πi

)
= −4e−2πξ sinh(2πaξ).

Letting R → ∞,

(1− e4πξ)

∫ ∞

−∞
e2πixξ

sin πa

coshπx+ cos πa
dx = −4e−2πξ sinh(2πaξ),

which implies∫ ∞

−∞
e2πixξ

sin πa

cosh πx+ cos πa
dx =

4e−2πξ sinh(2πaξ)

e4πξ − 1
=

2 sinh(2πaξ)

sinh(2πξ)
.

�

2. Exercises

1.

PROOF. From the Euler’s formula, we see that

(30) sinπz = 0 ⇔ ei2πz = 1 ⇔ z = k ∈ Z.
By the Taylor’s expansion

(31) eiπz =
∞∑
n=0

inπn(−1)k(z − k)n,

we have

(32) sin πz = (z − k)
1

i

(
iπ(−1)k +

∞∑
n=1

i2n+1π2n+1(−1)k(z − k)2n+1

)
,

which implies the zeros are simple. Hence

(33) resz=n
1

sin πz
= lim

z→n

z − n

sin πz
=

(−1)n

π
.
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�

2

SOLUTION. Consider the complex function 1
1+z4

. It has four simple poles z = e±iπ
4 ,

e±i 3
4
π. Then we choose the contour Γ = γ1 ∪ γ2, where

γ1 = {z ∈ C|x : −R → R, y = 0},
γ2 = {z ∈ C||z| = R, argz : 0 → π}.

Then using residue theorem,

(34) res
z=ei

π
4
f = 2πi lim

z→ei
π
4

z − ei
π
4

1 + z4
=

π√
2(1 + i)

,

and

(35) res
z=ei

3
4πf = 2πi lim

z→ei
3
4π

z − ei
3
4
π

1 + z4
=

π√
2(1− i)

.

Thus

(36)
∫
Γ

1

1 + z4
dz =

∫
γ1

+

∫
γ2

=
π√
2
.

Otherwise, by Cauchy integral theorem

(37)
∫
Γ

1

1 + z4
dz =

∫ R

−R

1

1 + x4
dx+

∫ π

0

Rieiθ

1 +R4ei4θ
dθ.

Since ∣∣∣∣∫ π

0

Rieiθ

1 +R4ei4θ
dθ

∣∣∣∣→ 0, as R → ∞,

(38)
∫ ∞

−∞

1

1 + x4
dx =

π√
2
.

�

3.

PROOF. Consider the function

f(z) =
eiz

z2 + a2
.

Then we choose the contour Γ = [−R,R]∪CR with positive orientation, where CR = {z ∈
C|ℑz ≥ 0, |z| = R} and R > 2a. Then f(z) has a simple pole at ia in the interior of Γ. The
residue of f at z = ia is

resz=iaf = lim
z→ia

(z − ia)
eiz

z2 + a2
=

e−a

2ia
.
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The residue theorem implies that∫ R

−R

eix

x2 + a2
dx+

∫ π

0

eReiθ

R2e2iθ + a2
Rieiθ dθ = π

e−a

a
.

We estimate ∣∣∣∣∣
∫ π

0

eReiθ

R2e2iθ + a2
Rieiθ dθ

∣∣∣∣∣ ≤
∫ π

0

R

R2 − a2
dθ ≤ 2π

R
→ 0

as R → ∞. Finally, let R → ∞ and take the real part to deduce that∫ ∞

−∞

cosx

x2 + a2
dx = π

e−a

a
.

�
4.

PROOF. Consider

f(z) =
zeiz

z2 + a2
.

Then we choose the contour Γ = [−R,R]∪CR with positive orientation, where CR = {z ∈
C|ℑz ≥ 0, |z| = R} and R > 2a. Then f(z) has a simple pole at ia in the interior of Γ. The
residue of f at z = ia is

resz=iaf = lim
z→ia

(z − ia)
zeiz

z2 + a2
= e−a.

The residue theorem implies that∫ R

−R

xeix

x2 + a2
dx+

∫ π

0

ReiθeReiθ

R2e2iθ + a2
Rieiθ dθ = πie−a.

We estimate∣∣∣∣∣
∫ π

0

ReiθeReiθ

R2e2iθ + a2
Rieiθ dθ

∣∣∣∣∣ ≤
∫ π

0

R2e−R sin θ

R2 − a2
dθ ≤ 2

R2

R2 − a2

∫ π/2

0

e−2Rθ/π

=
R2

R2 − a2
π

R
(1− e−R) → 0

as R → ∞. Finally, let R → ∞ and take the imaginary part to deduce that∫ ∞

−∞

x sinx

x2 + a2
dx = πe−a.

�
5.

PROOF. Consider the function

f(z) =
e2πizξ

(1 + z2)2
,
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(1). For ξ ≥ 0, we choose the contour Γ = [−R,R] ∪ CR with positive orientation, where
CR = {z ∈ C|ℑz ≥ 0, |z| = R} and R > 2. Then f(z) has a pole of order 2 at i in the
interior of Γ. The residue of f at z = i is

resz=if = lim
z→i

d

dz
(z − i)2

e2πizξ

(z + i)2(z − i)2
= πξ

e−2πξ

2i
+

e−2πξ

4i
.

The residue theorem implies that∫ R

−R

e2πixξ

(1 + x2)2
dx+

∫ π

0

e2πiξReiθ

(R2e2iθ + 1)2
Rieiθ dθ =

π

2
(1 + 2πξ)e−2πξ.

We estimate ∣∣∣∣∣
∫ π

0

e2πiξReiθ

(R2e2iθ + 1)2
Rieiθ dθ

∣∣∣∣∣ ≤
∫ π

0

R

(R2 − 1)2
dθ ≤ 2π

R3
→ 0

as R → ∞. Finally, let R → ∞ and take the real part to deduce that∫ ∞

−∞

e2πixξ

(1 + x2)2
dx =

π

2
(1 + 2πξ)e−2πξ.

(2). For ξ < 0, we choose the contour Γ = [−R,R] ∪ CR with positive orientation, where
CR = {z ∈ C|ℑz ≤ 0, |z| = R} and R > 2. Then f(z) has a pole of order 2 at −i in the
interior of Γ. The residue of f at z = −i is

resz=−if = lim
z→−i

d

dz
(z + i)2

e2πizξ

(z + i)2(z − i)2
= πξ

e2πξ

2i
− e2πξ

4i
.

The residue theorem implies that

−
∫ R

−R

e2πixξ

(1 + x2)2
dx+

∫ 0

−π

e2πiξReiθ

(R2e2iθ + 1)2
Rieiθ dθ =

π

2
(−1 + 2πξ)e2πξ.

We estimate∣∣∣∣∣
∫ 0

−π

e2πiξReiθ

(R2e2iθ + 1)2
Rieiθ dθ

∣∣∣∣∣ ≤
∫ 0

−π

R

(R2 − 1)2
dθ ≤ 2π

R3
→ 0

as R → ∞. Finally, let R → ∞ and take the real part to deduce that∫ ∞

−∞

e2πixξ

(1 + x2)2
dx =

π

2
(1− 2πξ)e−2πξ.

�

6.

PROOF. Consider the function

f(z) =
1

(1 + z2)n+1



26 3. MEROMORPHIC FUNCTIONS AND THE LOGARITHM

with poles at z = ±i of order n+ 1. Then the residue of f at z = i is

resz=if =
1

n!
lim
z→i

dn

dzn
(z − i)n+1 1

(1 + z2)n+1
=

(n+ 1) · · · · · 2n
n!

1

22n+1i
.

Then we choose the contour Γ = γ1 ∪ γ2, where

γ1 = {z ∈ C|x : −R → R, y = 0},
γ2 = {z ∈ C||z| = R, argz : 0 → π}.

By the residue formula,∫ R

−R

1

(1 + x2)n+1
dx+

∫ π

0

1

(1 +Reiθ)n+1
Rieiθ dθ = 2πiresz=if =

(2n− 1)!!

(2n)!!
π.

Since ∣∣∣∣∫ π

0

1

(1 +R2e2iθ)n+1
Rieiθ dθ

∣∣∣∣ ≥ ∫ π

0

R

(R2 − 1)n+1
dθ → 0, as R → ∞,

letting R → ∞ implies the result. �
7.

PROOF. Consider the function

f(z) =
1

iz

1(
a+ 1

2
(z + 1

z
)
)2 =

4z

i(z2 + 2az + 1)2

which has a pole of order 2 at

z0 = −a+
√
a2 − 1 ∈ D.

Since

resz=z0f = lim
z→z0

d

dz

4z

i(z + a+
√
a2 − 1)2

=
1

i(a2 − 1)
− −a+

√
a2 − 1

i(a2 − 1)3/2

=
a

i(a2 − 1)3/2
,∫ 2π

0

dθ

(a2 + cos2 θ)2
=

∫
C

f(z) dz =
2πa

(a2 − 1)3/2
.

�
REMARK. We consider the definite integrals of the type∫ 2π

0

f(sin θ, cos θ) dθ.

we use
z = eiθ, 0 ≤ θ ≤ 2π
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to denote the unit circle C. Then we have

sin θ =
1

2i

(
z − 1

z

)
, cos θ =

1

2

(
z +

1

z

)
, dθ =

dz

iz
.

Hence ∫ 2π

0

f(sin θ, cos θ) dθ =

∫
C

f

(
z − z−1

2i
,
z + z−1

2

)
dz

iz
.

�
8.

PROOF. Consider the function

f(z) =
1

iz

1

a+ b z+z−1

2

=
2

i(bz2 + 2az + b)
,

which has a simple pole at z0 = −a+
√
a2−b2

b
in the unit disk D. Then

resz=z0f =
b

2i
√
a2 − b2

.

Then from residue theorem∫ 2π

0

dθ

a+ b cos θ
=

∫
C

f(z) dz =
πb√

a2 − b2
.

�
10.

PROOF. Let f(z) = log |z|
z2+a2

. We have that

(39)
∣∣∣∣∫

Cε

f(z)

∣∣∣∣ ≤ π
ε log(−ε)

a2 − ε2
→ 0, ε → 0,

and

(40)
∣∣∣∣∫

CR

f(z)

∣∣∣∣ ≤ π
R logR

R2 − a2
→ 0, R → ∞.

Finally, the residue formula implies the result. �
11.

PROOF. Consider the function log z in the disk Da′(1) centered at 1 with radius a′ such
that |a| < a′ < 1. Then log z ∈ Da′(1). The real part satisfies

0 = log 1 =
1

2π

∫ 2π

0

log |1 + aeiθ| for a > 0.

a = 0 is trivial. For a < 0,
1

2π

∫ 2π

0

log |e−iπ + |a|eiθ| = ℜlog(eiπ) = 0.

�
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12.

PROOF. Choose the circle C := |z| = N+ 1
2

such that N > |u| and N is an integer. Then
in the interior of this circle, f(z) has a pole of second order at z = −u and a simple pole at
the integer n with |n| ≤ N . Then from the residue formula,

0 =
1

2πi

∫
C

f(z) dz = − π2

sin(πu)2
+

N∑
n=−N

1

(u+ n)2
,

since cotπz = 0 on the circle. Then letting N → ∞ yields the result. �
13.

PROOF. Let g(z) = (z − z0)f(z). Then from |g(z)| ≤ A|z − z0|ε, we know that z0 is a
simple zero of g(z) and g is holomorphic. Then the Taylor expansion of g(z) at z = z0

g(z) = g′(z0)(z − z0) +
g′′(z0)

2
(z − z0)

2 + . . . = (z − z0)f(z)

reveals that

f(z) =
∞∑
n=1

g(n)(z0)

n!
(z − z0)

n−1

is holomorphic and f(z0) = g′(z0). �
16.

PROOF. (a). We choose ε < min|z|=1

∣∣∣f(z)g(z)

∣∣∣, so that |f(z)| > ε|g(z)| on |z| = 1. This al-
lows us to use Roućhe theorem to obtain the uniqueness of zero of fε(z) in |z| ≤ 1.

(b). Since 0 is a simple zero of f(z), there exists a holomorphic function h(z) nowhere
vanishes in |z| ≤ 1 so that f(z) = zh(z). Since

fε(zε) = zεh(zε) + εg(zε) = 0,

|zε| =
∣∣∣∣εg(zε)h(zε)

∣∣∣∣ ≤ εmax
|z=1|

∣∣∣∣g(z)h(z)

∣∣∣∣
implies that ε 7→ zε is continuous.

�
17.

PROOF. (a) It suffices to show that if |w| < 1, g(z) = f(z)−w has a zero in D. It is easy
to see that

|g(z)− f(z)| = |w| < 1 = |f(z)| on |z| = 1.

So by Rouché’s theorem, f and g have the same number of zeros in D. So it suffices to
show that f has a zero in D.

From the hypothesis of f , we employ maximum modulus principle to see that
there exists a z0 ∈ D such that f(z0) ∈ D. Let h(z) = f(z)− f(z0) so that

|h(z)− f(z)| = |f(z0)| < 1 = |f(z)| on |z| = 1.
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We again use Rouché’s theorem to see that f and h have the same number of zeros in
D. Since h has at least one zero in D, f has at least one zero in D.

(b) The proof is similar as part (a), after a slight modification.
�

22.

PROOF. Assume that f is holomorphic in D and f ∈ C(D̄). If f(z) = 1
z

on ∂D, then the
Cauchy integral theorem yields

0 =

∫
∂D

f(z) dz =

∫
∂D

1

z
dz = 2πi,

which is a contradiction. �





CHAPTER 4

The Fourier transform

1.

PROOF. (a)

A(ξ)−B(ξ) = e2πiξt
∫ ∞

−∞
f(x)e−2πiξx dx = e2πiξtf̂(ξ) = 0.

(b) The Schwarz reflection principle guarantees that F is holomorphic, and hence entire.
Then F is bounded, since f is moderate decreasing. By Liouville’s theorem, F is a
constant. In fact, letting t → ∞, for ξ ∈ R,

F (z) = A(ξ) = lim
t→∞

e2πiξt
∫ t

−∞
f(x)e−2πiξx dx = 0,

since f̂(ξ) = 0 and e2πiξt is bounded.

(c) Hence F (z) = F (0) =
∫ t

−∞ f(x) dx = 0 for each t. So for any ε > 0,∫ t+ε

t

f(x) dx = 0.

Consequently, f(t) = 0 for each t ∈ R, since f is continuous.
�

3

PROOF. Consider the integral ∫
γR

a

a2 + z2
e−2πizξ dz.

Clearly, the function a
a2+z2

e−2πizξ has two poles ±ia with the residues πe2πaξ at ia and
−πe−2πaξ. We choose the contour γR = [−R,R] ∪ C±

R , where C+
R is the large half circle on

the upper half plane with counter clockwise direction containing ia and C−
R is the large

half circle on the lower half plane with clockwise direction containing −ia.
Since |e−2πizξ| = e2πℑzξ, thus in order to make the function a

a2+z2
e−2πizξ to be integrable,

it must be that ℑzξ < 0. Thus, when we choose the contour is γR = [−R,R] ∪ C+
R , ξ < 0,

and ∫ R

−R

a

a2 + x2
e−2πixξ dx+

∫
C+

R

a

a2 + z2
e−2πizξ dz = 2πiResia

a

a2 + z2
e−2πizξ = πe2πaξ.

31
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Since ∫
C+

R

a

a2 + z2
e−2πizξ dz =

∫ π

0

a

a2 +R2e2iθ
Rieiθe−2πiReiθξ dθ → 0,

as R → ∞ because of ξ < 0, thus letting R → ∞,∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = πe2πaξ,

Similarly, when we choose the contour is γR = [−R,R] ∪ C−
R , ξ ≥ 0, and∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = πe−2πaξ.

Combining these two results,∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = πe−2πa|ξ|.

�
6

PROOF. From Poisson summation formula,

1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|.

From the convergence of power series,
∞∑

n=−∞

e−2πa|n| = coth πa.

�
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