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ABSTRACT

A size-dependent model for bi-layered Kirchhoff micro-plate is developed based on the strain gradient
elasticity theory. The governing equations and boundary conditions are derived by using the variational
principle. To illustrate the new model, the bending problem of a simply supported bi-layered square
micro-plate subjected to constant distributed load is solved. Numerical results reveal that the deflection
and axial stress decrease remarkably compared with the classical plate results, and the zero-strain
surface deviates significantly from the conventional position, when the thickness of plate is comparable
to the material length scale parameters. The size effects, however, are almost diminishing as the thick-
ness of plate is far greater than the material length scale parameters. In addition, the bi-layered plate
can be simplified to the monolayer plate as the thickness of one layer is becoming much greater than that

of the other layer.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

MEMS (Micro-Electro-Mechanical-System) has been widely
used as resonators, biosensors and actuators for its small size,
intelligence, conveniently controlling in the field of aerospace,
electronics, machinery, medical instruments, civil engineering
and so on [1-4]|. MEMS devices, according to the geometry and
loaded forms, can be simplified to some typical micro-components,
such as micro-beam or micro-plate. Since the thicknesses of micro-
components are on the order of micron or sub-micro, their
mechanical properties are very different from those of macroscopic
devices. The mechanical behaviors in micro-structures exhibit
obvious size effect, which has been experimentally observed in
both metals and polymers [5-7]. The size-dependent behavior
cannot be explained by the conventional strain-based theories
due to the absence of the internal material length scale parameters.
The strain gradient theories have been developed to explain the
size dependence of the deformation behavior, in which the mate-
rial length scale parameters are incorporated into constitutive
relations.

* Corresponding author at: School of Mechanical Engineering, Shandong Univer-
sity, Jinan City, Shandong 250061, People’s Republic of China. Tel.: +86 531
88396708; fax: +86 531 88392700.

E-mail address: zhousj@sdu.edu.cn (S. Zhou).

http://dx.doi.org/10.1016/j.compstruct.2014.03.028
0263-8223/© 2014 Elsevier Ltd. All rights reserved.

According to the deformation metrics used, the strain gradient
theories can be classified into couple stress theories and general
strain gradient theories. The classical couple stress theory, which
uses the higher-order rotation gradients as the deformation
metrics, was presented by Mindlin and Tiersten [8] and Toupin
[9]. This theory includes two higher-order material constants in
addition to the conventional Lame constants. Yang et al. [10], intro-
ducing a higher-order equilibrium condition, developed the modi-
fied couple stress theory with only one higher-order material
parameter. The general strain gradient elasticity theory including
five higher-order material constants was firstly proposed by Mind-
lin [11], in which only the second-order deformation gradients
(first-order strain gradients) are included as additional deforma-
tion metrics. Also, by using a new set of higher-order metrics
and applying the higher-order equilibrium condition, Lam et al.
[5] modified the general strain gradient theory and reduced the
number of independent higher-order material parameters from
five to three. In addition, the simple model with only one
additional material constant in the strain gradient elasticity was
proposed by Aifantis [12].

In order to explain the size effects in micro-structures, various
strain gradient elasticity theories have been used by researchers
to develop strain gradient beam and plate theories. For example,
the classical couple stress theory has been employed by Anthoine
[13] to establish the bending model of a circular cylinder. Park
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and Gao [14] proposed a Bernoulli-Euler beam model based on the
modified couple stress theory. The strain gradient elasticity theory
has been used by Kong et al. [15] to construct the formulation of a
Bernoulli-Euler beam model. By employing the same strain gradi-
ent theory, Wang et al. [16] developed a Timoshenko beam model
to analyze its static bending and free vibration. For micro-plate, a
size-dependent model for the static analysis of Kirchhoff plate with
arbitrary shape was presented by Tsiatas [17] based on the modi-
fied couple stress theory. Ke et al. [18] and Jomehzadeh et al. [19]
employed the same couple stress theory to study the free vibra-
tions of Mindlin micro-plate and Kirchhoff micro-plate, respec-
tively. Based on the strain gradient elasticity theory, a Kirchhoff
plate model was developed by Ashoori Movassagh and Mahmoodi
[20] and Wang et al. [21].

All above researches are aimed at monolayer micro-compo-
nents. However, the micro-components are usually bilayered or
multilayered structures due to their special micro-machining tech-
nology, such as physical and electrochemical depositions [22-24].
Hence, it is essential to develop similar size-dependent models
highlighting the laminated micro-components. Zhang et al. [25]
studied elastic bending problems of bi-layered micro-cantilever
beams subjected to a transverse concentrated load based on the
Aifantis’ strain gradient elasticity theory. A size-dependent
bi-layered microbeam model was developed by Li et al. [26]
employing the strain gradient elasticity theory. Researchers further
extended the isotropic modified couple stress theory to anisotropic
modified couple stress theory and employed this theory to analyze
the bending and free vibration of composite laminated beam and
plate. Khandan et al. [27] reviewed the development of composite
laminated plate theories from very basic classical laminated plate
theory to more complicated and higher-order shear deformation
theory. The first order shear deformation theory with constant
transverse shear stress was proposed by Mindlin [28] and Reissner
[29]. Reddy [30] presented a third-order shear deformation theory
accounting for parabolic distribution of the transverse shear strains
through the thickness of the plate. A model of composite laminated
beam based on the global-local theory for new modified couple
stress theory was developed by Chen and Si [31]. Roque et al.
[32] used the modified couple stress theory to study the bending
of simply supported laminated composite Timoshenko beams sub-
jected to transverse loads. The models for composite laminated
Reddy beam [33] and plate [34] were developed by Chen et al.
employing the modified couple stress theory, respectively. More-
over, for functionally graded beam and plate, Asghari et al. [35],
Akgoz and Civalek [36], Reddy and Berry [37], Sahmani and Ansari
[38] investigated the static bending and free vibration of FGM
micro-beams and micro-plates based on the modified couple stress
theory.

In this paper, the bi-layered micro-plate model is developed
based on the strain gradient elasticity theory proposed by Lam.
The governing equations and boundary conditions are derived by

a X

using the variational principle. To illustrate the new model, a
boundary value problem of simply supported bi-layered micro-
plate is solved. The influences of thicknesses of two layers on the
deflection are analyzed. The size effects on deflection, axial stress
and location of zero-strain surface are discussed.

2. Size-dependent bi-layered Kirchhoff micro-plate model
2.1. Strain gradient elasticity theory

Lam et al. [5] developed a strain gradient elasticity theory with
three independent material length scale parameters. In this theory,
the dilatation gradient tensor 7);, the deviatoric stretch gradient
tensor 17,8.1,{’ and the symmetric rotation gradient tensor y;; are intro-
duced except the classical strain tensor &;. These deformation mea-
sures are defined as

1
&jj :i(aiuj+8jui), (1)
Vi = Oi€mm, 2)

1 1
1’]5}1,() =3 (0i&jk + Oj&xi + Ok&y) — 15 [0 (OkEmm + 20mEmk)
+ 0k (Oi&mm + 20mEmi) + Oki(Oj€mm + 20mEmj)), (3)

1
X = ) (€ipgOpEqj + €jpqOpqi); (4)

where u; is the displacement vector, 9; is the differential operator,
emm 1s the dilatation strain, d; is the Kronecker symbol and e, is
the alternate symbol.

For the isotropic linear elastic material, the strain energy den-
sity wy is given as
wo = 5 deiey + ey + by + pEnny + gz, (5)
where / and p are the Lame constants, Iy, [; and [, are the indepen-
dent material length scale parameters associated with the dilation
gradients, deviatoric stretch gradients and symmetric rotation gra-
dients, respectively.

2.2. Governing equation and boundary conditions

Consider a bi-layered rectangular elastic micro-plate subjected
to a static transverse load q(x,y) distributed in the x-y plane as
shown in Fig. 1. The length and width of the plate are a, b, and
the thicknesses of the lower and upper layers are h; and h,, respec-
tively. The properties of materials are E¢y), 91y, loc1y li¢1) 21y and
E2y, v2) lo)y liy lae) where E is the Young's modulus, v is the
poisson’s ratio and subscripts 1 and 2 in brackets denote the lower
and upper layers, respectively. The position of neutral surface is
assumed to be deviated d from the interface between two layers.

For the Kirchhoff plate, where xg-yo plane is coincident with the
neutral surface, the displacement components are taking as

, q(x.y)
hy interface~ X
)| neutral surface”” 1d | o

Fig. 1. Schematic of a bilayered micro-plate with distributed load.
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u(X,y,Z) = _Zawé);y)
v(x,y,2) = —z%}i’y) (6)

W(X,y,2) = w(X,y)

in which u, »and w are displacement components along x, y, z direc-
tions. When the xo-yo plane is translated d from the neutral surface
to the interface, the displacement components of plate can be ex-
pressed as

uRx,y,z) = —(d+2) awg)cgy)’
v +Z)%y7y)7 w(x,y,2) = w(x,y). (7)

This displacement field can be considered as the displacement field
of bi-layered plates when the location of neutral surface cannot be
known in advance. In this case, the x-y coordinate plane can be
established at the interface. Considering the in-plane displacement
at the interface, ug=—d - ow/dx, vo = —d - Ow/dy, the displacement
field of plate Eq. (7) can also be written as

u(x,y,2) = o(x,y) — zw
V(%,Y,2) = Vo(X,y) — Z%’;J’) @

WX, y,z) = W(X,y).

The non-zero strain components obtained from Eqs. (1) and (8) are
written as

_M_ Fw o _Ow  Ow o
T ox Toxx) W T gy Top W™
1(ouy 0dvo or*w
L e T ) . 9
2<8y+8x “ oxay 9)

By substituting Eq. (9) into Egs. (2)-(4), the strain gradient tensors
Vi My 1 are obtained and presented in Appendix A. Subse-
quently, the strain and strain gradient tensors can be substituted
into Eq. (5), and then the strain energy density of monolayer plate
is calculated and expressed as
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in which the parameters ¢; (i=1,2,3...,15) are given as
2 4 2 1 2 1 E
v =ply + gl A5, =570,
2
€5 = 20l — g 1l — 1y
Ev 2 2
=1 65:§u1f+2ul§, Co = 211, c7=,ul§+§ulf,
12
Cszﬂlé-‘r?ﬂﬁ
6 4 1 2
C9:2H1§—§.“1f7 ClOZﬁﬂlﬁg/ﬂ; Cn:—glﬂf:
16
C12 Zglv‘l%*zﬂlg
16 1 4
C13 = plg + e Hb + gl Cra = 2plg — g by,
16, 1,
€15 = 75 Ml — z 1 (11)

For the bi-layered plate composed of two different materials, the
parameters c;1yand ¢y (i=1,2,3 ..., 15) associated with the low-
er and upper layers can be obtained by substituting E), vy, 1)
10(1), 11(1),12(1) and E(z), Y2y H2) 10(2), 11(2), 12(2) for E, v, U, 10, l1, 12 in
Eq. (11), respectively. Moreover, the strain energy densities of the
lower and upper layers, wo(1) and wy(2), can be obtained by substi-
tuting cj1y and ¢z for ¢; (i=1,2,3...,15) in Eq. (10), respectively.

The total strain energy can be obtained by integrating strain en-
ergy densities on the total plate. It can be written as

0 hy
U://< Wg(])dZ)dXdy-‘r// (/ Wode)dXd}l
A \J-n A \Jo
- / / Fdxdy, (12)
A

in which the specific form of lagrange function F is presented in
Appendix A. The total work done by the external distributed force
q(x,y) are given as

a b
W= /0 /0 q(x.y)w(x.y)dxdy. (13)
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The governing equation as well as boundary conditions of a plate in
bending can be derived by using the principle of minimum potential
energy.
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Substituting the lagrange function F into Eq. (14), the governing
equations are given by

> u o >
0 12 Up 8 Up 4 Vg
x> ox30y? 8x8y4 x40y
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12 851/0 +851/0 —2a 63U0+ (93110 n (?32)0 +831/o —q
ox2oy3 = 0y ox3  oxoyr  ox*9y  0y3
(16)
—2a 85—W+2 oW + ow +2as ow +=5 ow
x5 T “ox3ay? T oxoy* ox3 " oxoy?
(?4 Up 84 Up (94 Vo (94 Vo
+ 2(110W + 2((117 -+ (120) W + ((121 + (123) m + 8x8y3
*ug &ug o ug
+2(115 ay4 —2a ay — p%) (a5 +2ag)8xay 2a ag—- ay =0 (17)
g, (W, Ow  Fw) L (Pw ow
M oy5 ox20y3 ~ 0x*dy \oy3 " ox2oy
84 Vo (94 Vo (94 Up 841,!0
+2a10 i +2(a17 + da0) K20y + (@21 + a23) a3y + 0y
vy &’ vo & uo o
+ 2016 —— Y — 20y —— oy —(as +2a8)axay 2ag el 0 (18)
in which
4 4 4
v4 _ 8_ 9 + a_
ox* ox20y2 = oyt
6 6 6 6 (19)
v 78_4_38__,_30_4_8_
T Ox6 T T ox49y? T Ox20yt T 0yS
The boundary conditions are written as
Bxi(a,y)éw(a,y) — Bx1(0,y)ow(0,y) = 0,
By1(x,b)ow(x, b) — By (x,0)0w(x,0) =0
Bxa(a,y)owx(a,y) — Bx2(0,y)owx(0,y) = 0,
By, (x,b)owy(x,b) — By2(x,0)owy(x,0) = 0
BX3(aay)6WXX( ) BX3(O7y)5WXX(O .V) >
Bys(x, b)dwyy (x,b) — Bys(x, 0)owy,(x,0) =
Bxa(a,y)ouo(a,y) — Bxa(0,¥)duo(0,y) = 07
B\/4(X7 b)allo( s ) By4(X,O)51}0(X,O) 0
Bxs(a,y)0vo(a,y) — Bxs(0,y)0v0(0,y) = 0,
Bys(x,b)dug(x,b) — Bys(x,0)due(x,0) =0
Bxs(a,y)ovox(a,y) — Bxs(0,¥)dv0x(0,y) = 0,
BYG(X, b)élloy()(7 b) Bys(x 0)5“0y(x7 0) =0
Bx7(a,y)ouox(a,y) — Bx7(0,y)ouo(0,y) = 0,
By7(x,b)dvoy(x,b) — By7(x,0)0vgy(x,0) =0 (20)

in which the specific forms of Bx;(x,y) and Byi(x,y) (i=1,2,...,7) are
shown in Appendix A. When the materials and thicknesses of the
lower and upper layers are the same, the governing equations and
boundary conditions Eqs. (16)-(20) reduce to that of the monolayer
plate [20,21].

3. Static bending of simply supported bi-layered Kirchhoff
micro-plate

3.1. Solutions of a simply supported bi-layered Kirchhoff micro-plate

For simply supported plate, deflection w is constant and identi-
cal to zero at all edges. Hence, the slope of w in the y direction, ow/
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dy, along the edges x =0, a, and the slope of w in the x direction,
Ow|dx, along the edges y =0, b are equal to zero. Considering ug -
=—d - 0w[Ox, vo=—d - Ow/dy, the displacement 7y along the edges
x=0, a, and the displacement uq along the edges y =0, b, are also
constant and zero. The slope of v, in the y direction, dvo/dy, along
the edges x =0, a, and the slope of ug in the x direction, dug/ox,
along the edges y =0, b, are also equal to zero. Consequently, the
following equalities can be obtained.

x=0 aw=0, Y_0 =0 P_y
ay ay 21)
_ _ ow _ Ouyg
y=0,b w=0, a70, Uy =0, T =0.

Based on Eq. (21), the boundary conditions Eq. (20) can be simpli-
fied. From Eq. (20), the first and fifth equations are simplified as

w(0,y) =w(a,y) =0, w(x,0)=w(x,b)=0

20(0,y) = 06(a.y) = 0, uo(x,0) = up(x,b) = 0, @2)

and Bx;(x,y) and By{(x,y) (i =2, 3, 4, 6, 7) in the remaining five equa-
tions are simplified to By(x,y) and By(x,y) (i=2, 3, 4, 6, 7), which
have been presented in Appendix A. Eventually, the boundary con-
ditions are given as

w(0,y) =w(a,y) =0, w(x,0)=w(x,b)=0

20(0,y) = vo(a,y) =0, uo(x,0) = uo(x,b) =0

WXX(07y) = WXX(avy) = WYJ’(X7 O) = Wyy(xﬁ b) =0

Uox(0,y) = Uox(a,y) = voy(x,0) = voy(x,b) = 0 (23)
By (a,y) = B (0,y) = By2(x,b) = B)2(x,0) = 0
B(a,y) = Bu(0,y) = Bya(x,b) = Bya(x,0) =0
Bw(a,y) = Bxs(0,y) = Bys(x,b) = Bys(x,0) = 0.

To solve the governing Eqs. (16)-(18) under the boundary con-
ditions Eq. (23), the following Fourier series is assumed.

WX, y) = iif\mn sin (?) sin (?)

m=1n=1
Up(x,y) = gg&m cos (?) sin (?) 24)
Vo(X,y) = gngn sin (?) cos (?)

where Apn, Bmn, Cnn are the Fourier coefficients to be determined by
m and n. It is obvious that Eq. (24) satisfies all the boundary condi-
tions in Eq. (23). And the distributed transverse load q(x,y) can also
be expressed as Fourier series:

qx,y) = zo:ian sin (?) sin (rLbry> (25)

For the uniformly distributed load q(x,y) = o, Qmn iS expressed as
[39]

_16q,
an - mnTC2

Substituting Eqs. (24) and (25) into Eqgs. (16)-(18), Fourier coef-
ficients can be deduced as

mn=1,3,5,... (26)

Pz — P4Ps
Amn = an %) 2 2
P2P, — P1P4Ps — 2P,PsPg + P, P2 + P2P;
PsPs — P,P
an = an 2 28 2.3 ) 2 (27)
P5P4 — P1P4Ps — 2P,P3Pg + P1P; + P5Ps
P,Ps — PP
Cmn = an s >4

P3Py — PyP4Ps — 2P,P3Ps + P1P; + P3Ps

in which

2o () (5)) 2 () (7))

P2 () <205 (5) 5 (5))
(5 7 (5))

() <27 () (7))

b b
Py = 2am<$>4 +2as6 %)4 +2(a17 + azo) (n;n)z (%)2
+20,(") 20, (1

3.2. Numerical results

For simplification, three material length scale parameters are
taken the same for the same materials, Iloc1)=li1)=ba)=1l1),
lo2y = li2) = b2) = l2). To illustrate the solutions of the simply sup-
ported bi-layered micro-plate, some numerical results are shown
under the conditions of Ey=130GPa, Ep)=85GPa, v=0.3,
l1y=2l2y=2l, a=b =30 um, q = 10 uN. Enough precise results can
be achieved with m=31 and n=31 in the calculation. Conse-
quently, for this square plate, the x- and y-directions are relative
and interchangeable. The maximum deflection appears at the cen-
ter point (x=15 and y = 15) and the deflection on the center sec-
tions (x =15 or y = 15) is the greatest among all the sections.

In order to reveal the effect of thickness ratio of the upper layer
to the lower layer, e = h,/hq, on the deflection, the dimensionless
relative thickness t is introduced

_h]*hz_efl
Vhih, Ve

Assuming the total thickness of the bi-layered plate, h=h; + hy,
equals 2.4 um, the deflection of the plate at central point varying
with dimensionless relative thickness is shown in Fig. 2. It reveals
that the deflection increases as the dimensionless relative thickness
increases. When the thickness of one layer is much greater than that
of the other layer, the deflection of the bi-layered plate approaches
to that of the monolayer plate.

By using e=0.2, the deflection on the center section of
x =15 pum is shown in Fig. 3, and the normalized deflection at cen-
tral point w/w,, where w, is the deflection in the classical theory, is
shown in Fig. 4. From Figs. 3 and 4, it can be seen that the deflec-
tion decreases significantly in comparison with the classical one
when the plate thickness is close to the material length scale
parameters. But the size effect is almost diminishing as the thick-
ness of the plate is far greater than the material length scale
parameters.

The distribution of axial stress at central point, gy, is shown in
Fig. 5. From Fig. 5, it can be found that the axial stress is piecewise
linear and it jumps at the interface between the upper and lower
layers because of their differences of material properties. On the
other hand, the total axial stress decreases significantly in compar-
ison with the classical one when the beam thickness is close to the

t

(29)
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material length scale parameters. But the axial stress is close to the
classical one as the thickness of the beam is far greater than the
material length scale parameters.
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Based on ¢y, =0, the location of zero-strain surface, on the
center section of x =15 pum, varying with coordinate y is shown
in Fig. 6. From the curves in Fig. 6, it can be observed that the loca-
tion of zero-strain surface predicted by the classical theory remains
unchanged along the coordinate y. While based on the present
strain gradient elasticity theory, the location of zero-strain surface
moves along the coordinate y. Furthermore, when the thickness of
plate is comparable to the material length scale parameters, the
zero-strain surface deviates remarkably from that predicted by
the classical theory. It gradually approaches to that predicted by
the classical theory as the thickness of plate is far greater than
the material length scale parameters. In brief, the location of
zero-strain surface exhibits obvious size effect.

Fig. 7 shows the distribution of axial strain, ¢,,, near the zero-
strain surface on the center section of x = 15 um. For the present
boundary conditions, 7,(x,0) = vg,(x,b) =0, wy,(x,0) =w,,(x,b) =0,
the axial strains equal zero at the both ends and it can be clearly
seen in the present figure. For the bi-layered strain gradient mi-
cro-plate, the gradients of axial strain are not equal to zero and
the zero-strain surface is a curved surface. Moreover, due to the
differences of material properties of the lower and upper layers,
especially the differences of material length scale parameters,
there is three extreme values of axial strains near the zero-strain
surface. Accordingly, the axial strains at a plane do not equal zero
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at the same time. However, for the monolayer strain gradient mi-
cro-plate and bi-layered conventional plate, although the gradients
of axial strain do not equal zero, there is only one extreme value of
axial strain. Thus, the zero-strain surface is a plane.

4. Conclusion

In this paper, the strain gradient elasticity theory presented by
Lam is employed to establish an analytical model for the elastic
bending problem of a bi-layered micro-plate. The governing equa-
tions and boundary conditions are derived by using the variational
principle. This new model can be degenerated to that in the classi-
cal theory when the high order material constants equal zero. A
simply supported bi-layered square micro-plate subjected to a
constant distributed load is solved and some numerical results
are presented. The results show that the deflection and axial stress
of plate and locations of zero-strain surface exhibit obvious size ef-
fect. And the results of bi-layered plate approach to that of mono-
layer plate as the thickness of one layer is becoming much greater
than that of the other layer.
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Appendix A

The dilatation gradient tensor, y; (i=1, 2, 3), is
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The deviatoric stretch gradient tensor, 1) (i =1,2,3), is
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The symmetric rotation gradient tensor, xj (i = 1,2,3), is
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in which parameters q; (i=1,2,3...,23) are given as
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