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a b s t r a c t

A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing
equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton’s
principle. The new model incorporated with Poisson effect contains three material length scale
parameters and can consequently capture the size effect. This model can degenerate into the modified
couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all
material length scale parameters are taken to be zero respectively. In addition, the newly developed
model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To
illustrate the new model, the static bending and free vibration problems of a simply supported micro
scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the
deflection, rotation and natural frequency predicted by the present model and the other two reduced
Timoshenko models are large as the beam thickness is comparable to the material length scale
parameter. These differences, however, are decreasing or even diminishing with the increase of the beam
thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an
interesting ‘‘extreme point’’ phenomenon, which is quite different from that predicted by the classical
Timoshenko beam model.

Crown Copyright � 2009 Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Micro scale beams are widely used in microstructure devices
and systems such as sensors (Pei et al., 2004; Hall et al., 2006; Faris
and Nayfeh, 2007; Moser and Gijs, 2007) and actuators (Hung and
Senturia, 1999; De Boer et al., 2004), in which thickness of beams is
typically on the order of microns and sub-microns. The size
dependence of deformation behavior in micro scale beams had
been experimentally observed in metals (Nix, 1989; Fleck et al.,
1994; Poole et al., 1996), polymers (Lam and Chong, 1999; Lam et al.,
2003; McFarland and Colton, 2005) and polysilicon (Chasiotis and
Knauss, 2003). Due to lacking intrinsic length scales, conventional
strain-based mechanical theories fail to interpret and predict such
a size dependent phenomenon. Recently, higher-order continuum
theories have been developed to predict these size dependences, in
which strain gradient or nonlocal terms are involved and additional
material length scale parameters are consequently introduced in
addition to the classical material constants.

As one of the higher-order continuum theories, the classical
couple stress elasticity theory, originated by Mindlin and Tiersten
(1962), Mindlin (1964, 1965) and Toupin (1962), contains four
material constants (two classical and two additional) for an isotropic
x: þ86 531 88392700.
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elastic material. Some related research work has been performed to
model the static and dynamic problems based on the classical couple
stress elasticity theory (Zhou and Li, 2001; Kang and Xi, 2007). Based
on the elastic theory, Yang et al. (2002) proposed a modified couple
stress theory for elasticity by introducing the concept of the repre-
sentative volume element, in which only symmetric rotation
gradient tensor is considered and constitutive equations involve only
one additional material length scale parameter besides two classical
material constants. The theory had been applied to analyze static and
dynamic problems of micro scale Bernoulli–Euler and Timoshenko
beams (Park and Gao, 2006; Kong et al., 2008a; Ma et al., 2008).

Fleck and Hutchinson (1993, 1997, 2001) extended and refor-
mulated the Mindlin’s theory and renamed it the strain gradient
theory, in which for homogeneous isotropic and incompressible
materials, the second-order deformation gradient tensor is
decomposed into two independent parts: the stretch gradient
tensor and the rotation gradient tensor. In this formulation,
conventional equilibrium relations are used and higher equilibrium
conditions governing the behavior of higher-order stresses are
ignored. As one of the most successful higher-order continuum
theories, strain gradient elasticity theory proposed by Lam et al.
(2003) introduces three material length scale parameters to char-
acterize the dilatation gradient tensor, the deviatoric stretch
gradient tensor and the symmetric rotation gradient tensor. The
higher-order stress tensor work-conjugate to the new higher-order
SAS. All rights reserved.
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deformation metrics and the corresponding constitutive relations
are defined. The theory has been used to analyze the static and
dynamic problems of micro scale Bernoulli–Euler beam by Kong
et al. (2008b). It should be noted that strain gradient elasticity
theory of Lam et al. (2003) can degenerate into the modified couple
stress theory of Yang et al. (2002) by setting two of the three
material length scale parameters to be zero.

The size effect of Bernoulli–Euler beam model has also been
studied by Tsepoura et al. (2002) and Papargyri-Beskou et al.
(2003a,b). It should be noted that Papargyri-Beskou et al. (2003a,b)
derived all possible boundary and initial conditions of the static and
dynamic beam problems by variational principles. Papargyri-Beskou
et al. (2003a,b) developed a higher-order Bernoulli–Euler beam
model based on the gradient elasticity theory with surface energy of
Vardoulakis and Sulem (1995), which involves four elastic constants
(two classical and two non-classical). This strain gradient beam
model has been explored further by Giannakopoulos and Stamoulis
(2007), where the problems of bending of a cantilever beam and
stretching of a cracked bar are analytically solved. The nonlocal
continuum theory, suggested by Eringen (1983), is also used to
predict the small scale effect by specifying the stress state at a given
point to be a function of the strain states at all points in the body.

The classical Timoshenko beam theory, considering the effect of
shear deformation, is used to model the short and stubby beam
problems. Salvetat et al. (1999) mentioned that shear deformation
in single-walled carbon nanotube rope becomes important when
the ratio of length to radius is small. Some micro scale Timoshenko
models have been developed via nonlocal continuum theory to
study carbon nanotubes or other small beam-like members by
Wang (2005), Wang et al. (2006, 2007), Lu et al. (2007), and
Heireche et al. (2008). Ma et al. (2008) developed a microstructure-
dependent Timoshenko beam model based on the modified couple
stress theory due to Yang et al. (2002), which contains a material
length scale parameter and can capture the size effect.

The object of this work is to develop a micro scale Timoshenko
beam model by using both the basic equations of strain gradient
elasticity theory and Hamilton’s principle. The outline of this paper is
organized as follows. In Section 2, the variational formulations of the
micro scale Timoshenko beam based on the strain gradient elasticity
theory are in detail deduced by using the Hamilton’s principle. Then
governing equations, initial conditions and all possible boundary
conditions are obtained simultaneously. Subsequently, in Sections 3
and 4, the static bending and free vibration problems for a simple
supported beam are solved respectively; corresponding numerical
results for both problems are analyzed and discussed. Finally, some
major conclusions are summarized in Section 5.

2. Model formulation

Compared to the modified couple stress theory of Yang et al.
(2002), the strain gradient elasticity theory proposed by Lam et al.
(2003) introduces additional dilatation gradient tensor and the
deviatoric stretch gradient tensor in addition to the symmetric
rotation gradient tensor. In order to characterize these tensors, there
are three independent material length scale parameters in addition
to two classical material constants for isotropic linear elastic mate-
rials. Then the strain energy U in a deformed isotropic linear elastic
material occupying region U (with a volume element V) is given by

U ¼ 1
2

Z
U

�
sij3ij þ pigi þ sð1Þijk hð1Þijk þms

ijc
s
ij

�
dV (1)

where the deformed measures: the strain tensor, 3ij, the dilatation
gradient tensor, gi, the deviatoric stretch gradient tensor, hijk

(1), and
the symmetric rotation gradient tensor, cij

s , are defined by
3ij ¼
1
2

�
vjui þ viuj

�
(2)

gi ¼ vi3mm (3)

h
ð1Þ
ijk ¼ hs

ijk �
1
5

�
dijh

s
mmk þ djkhs

mmi þ dkih
s
mmj

�
(4)

and

cs
ij ¼

1
4

�
eipqvp3qj þ ejpqvp3qi

�
(5)

where vi is the differential operator, ui is the displacement vector,
3mm is the dilatation strain, and hijk

s is the symmetric part of second-
order displacement gradient tensor defined by,

hs
ijk ¼

1
3

�
ui;jk þ uj;ki þ uk;ij

�
(6)

dij and eijk are the Knocker symbol and the alternate symbol
respectively. Here it should be noted that the index notation will
always be used with repeated indices denoting summation from 1
to 3.

The stress measures: the classical stress tensor, sij, and the
higher-order stresses, pi, sijk

(1), and mij
s , are the work-conjugate to the

deformation measures, given by

sij ¼
vw
v3ij

; pi ¼
vw
vgi

; sð1Þijk ¼
vw

vh
ð1Þ
ijk

; ms
ij ¼

vw
vcs

ij
(7)

where the deformation energy density is a function of the strain
and the higher-order deformations.

The corresponding stress measures, respectively, are given by
the following constitutive relations,

sij ¼ kdij3mm þ 2m30ij (8)

pi ¼ 2ml20gi (9)

sð1Þijk ¼ 2ml21hð1Þijk (10)

ms
ij ¼ 2ml22cs

ij (11)

where 3ij
0

is the deviatoric strain defined as

30ij ¼ 3ij �
1
3

3mmdij (12)

k and m are bulk and shear modules, respectively, l0, l1, and l2 are the
additional independent material length scale parameters associ-
ated with the dilatation gradients, deviatoric stretch gradients and
symmetric rotation gradients respectively.

Consider a straight beam subjected to a static lateral load q(x)
distributed along the longitudinal axis x of the beam, as shown in
Fig. 1. The loading plane coincides with the xz plane, and the cross-
section of the beam parallels to the yz plane. The displacement fields
in a Timoshenko beam can be described by (Dym and Shames,1973)

u1ðx; y; z; tÞ ¼ �zjðx; tÞ
u2ðx; y; z; tÞ ¼ 0
u3ðx; y; z; tÞ ¼ wðx; tÞ

(13)

where

jðx; tÞ ¼ vwðx; tÞ
vx

� bðx; tÞ (14)

RAY
Pencil



Fig. 1. Geometry and loading of the Timoshenko beam.
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and t is time, j(x,t) is the rotation of line elements along the
centerline due to bending only; b(x,t) is the rotation of line
elements tangent to the centerline due to additional shear defor-
mation. Here, we assume that the shear strain is the same at all
points over a given cross-section of the beam. That is, the angle
b(x,t), used heretofore for rotation of elements along the centerline,
is considered to measure the shear angle at all points in the cross-
section of the beam at position x.

By substituting Eqs. (13) and (14) into Eq. (2), the non-zero
strains 3ij are

3xx ¼ �z
�v2w

vx2 �
vb

vx

!

3xz ¼ 1
2b

(15)

And from Eqs. (3) and (15), it follows that

gx ¼ �z

 
v3w
vx3 �

v2b

vx2

!
; gy ¼ 0; gz ¼ �

v2w
vx2 þ

vb

vx
(16)

By inserting Eq. (15) into Eq. (5), the non-zero strain gradients cij
s are

cs
xy ¼ cs

yx ¼
1
4

 
� 2

v2w
vx2 þ

vb

vx

!
(17)

By using Eqs. (6) and (13), Eq. (4) gives

hð1Þ111 ¼ �
2
5

z

 
v3w
vx3 �

v2b

vx2

!
; hð1Þ333 ¼

1
5

 
v2w
vx2 �2

vb

vx

!

hð1Þ113 ¼ �
4

15

 
v2w
vx2 �2

vb

vx

!
; hð1Þ221 ¼

1
5

z

 
v3w
vx3 �

v2b

vx2

!

h
ð1Þ
223 ¼

1
15

 
v2w
vx2 �2

vb

vx

!
; h
ð1Þ
331 ¼

1
5

z

 
v3w
vx3 �

v2b

vx2

!

hð1Þ311 ¼ hð1Þ131 ¼ �
4

15

 
v2w
vx2 �2

vb

vx

!
; hð1Þ322 ¼ hð1Þ232 ¼

1
15

 
v2w
vx2 �2

vb

vx

!

hð1Þ122 ¼ hð1Þ212 ¼
1
5

z

 
v3w
vx3 �

v2b

vx2

!
; hð1Þ133 ¼ hð1Þ313 ¼

1
5

z

 
v3w
vx3 �

v2b

vx2

!

(18)
From Eqs. (15) and (12) it follows that

30xx ¼
2

3xx; 30yy ¼ 30zz ¼ �
1

3xx; 30xz ¼ 3xz ¼
1

b (19)

3 3 2

The non-zero stresses sij is obtained by substituting Eqs. (15) and
(19) into Eq. (8)

sxx ¼ �
�
kþ 4

3m
�
z

 
v2w
dx2 �

vb

dx

!
; syy ¼ �

�
k� 2

3
m

�
z

 
v2w
vx2 �

vb

vx

!

szz ¼ �
�
k� 2

3m
�
z

 
v2w
vx2
� vb

vx

!
; sxz ¼ mb ð20Þ

The last term in Eq. (20) indicates that the variation of sxz

depends only on x. In order to account for the non-uniformity of the
shear strain over the beam cross-section, a correction factor ks,
which varies with the shape of beam section, is introduced to the
stress component sxz as follow (Hutchinson, 2001; Wang, 1995)

sxz ¼ ksmb (21)

The use of Eq. (16) in Eq. (9) gives

px ¼ �2ml20z

 
v3w
vx3 �

v2b

vx2

!
; py ¼ 0;

pz ¼ �2ml20

 
v2w
vx2 �

vb

vx

!
(22)

And by inserting Eq. (17) into Eq. (11), the non-zero higher-order
stresses mij

s are

ms
xy ¼ ms

yx ¼
1
2

ml22

 
� 2

v2w
vx2
þ vb

vx

!
(23)

Similarly, substituting Eq. (18) into Eq. (10), the non-zero higher-
order stresses sijk

(1) are

sð1Þ111¼�
4
5

ml21z

 
v3w
vx3
�v2b

vx2

!
; sð1Þ333¼

2
5

ml21

 
v2w
vx2
�2

vb

vx

!

sð1Þ113¼�
8

15
ml21

 
v2w
vx2 �2

vb

vx

!
; sð1Þ221¼

2
5

ml21z

 
v3w
vx3 �

v2b

vx2

!

sð1Þ223¼
2

15
ml21

 
v2w
vx2 �2

vb

vx

!
; sð1Þ331¼

2
5

ml21z

 
v3w
vx3 �

v2b

vx2

!

sð1Þ311¼sð1Þ131¼�
8

15
ml21

 
v2w
vx2 �2

vb

vx

!
; sð1Þ322¼sð1Þ232¼

2
15

ml21

 
v2w
vx2 �2

vb

vx

!

sð1Þ122¼sð1Þ212¼
2
5

ml21z

 
v3w
vx3
�v2b

vx2

!
; sð1Þ133¼sð1Þ313¼

2
5

ml21z

 
v3w
vx3
�v2b

vx2

!

(24)

By substituting Eqs. (15)–(18) and (20)–(24) into Eq. (1) and
with the help of Eq. (14), the strain energy U is rewritten as

U ¼ 1
2

ZL

0

h
k1
�
w% � b00

�2þk2
�
w00 � b0

�2þk3
�
2w00 � b0

�2

þk4
�
w00 � 2b0

�2þk5b2
i
dx

¼ 1
2

ZL

0

h
k1j002 þ k2j02 þ k3

�
w00 þ j0

�2þk4
�
�w00 þ 2j0

�2

þk5ðw0 � jÞ2
i
dx (25)
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where

k1 ¼ I
�

2ml20 þ
4
5ml21

�
; k2 ¼ I

�
kþ 4

3m
�
þ 2mAl20

k3 ¼
1
4

mAl22; k4 ¼
8

15
mAl21; k5 ¼ ksmA

(26)

and I¼ Iy¼ !Az2 dA is the inertia moment of the beam, A and L are
the cross-section area and the length of the beam respectively. The
prime indicates partial derivative with respect to x.

From Eq. (25), the first variant of the strain energy U takes the
following form,

dU ¼
ZL

0

h
ðk3 þ k4ÞwIV þ ðk3 � 2k4Þj% � k5

�
w00 � j0

�i
dwdx

þ
ZL

0

h
k1jIV � ðk3 � 2k4Þw% � ðk2 þ k3 þ 4k4Þj00

� k5 ðw0 � jÞ
i

dj dx þ
�
� ðk3 þ k4Þw% � ðk3 � 2k4Þj00

þk5ðw0 � jÞ
	
dwjL0 þ �ðk3 þ k4Þw00 þ ðk3 � 2k4Þj0

	
dw0jL0

þ
h
� k1j% þ ðk3 � 2k4Þw00 þ ðk2 þ k3 þ 4k4Þj0

i
djjL0

þ
�
k1j00

�
dj0jL0 (27)

where

wIV ¼ v4w
vx4 ; jIV ¼ v4j

vx4 (28)

On the other hand, the first variant of kinetic energy of the beam
has the form

dT ¼ d

Z
V

1
2

r

"�
vu1

vt

�2

þ
�

vu2

vt

�2

þ
�

vu3

vt

�2
#

dv

¼ r

ZL

0

�
A _wd _wþ I _jd _j

�
dx (29)

where r is the material density, and a superimposed dot indicates
the time derivative.

Then the first variations of the work done by the external force
q(x), the boundary shear force V and the boundary classical and
double moments M and Mh, respectively, read

dW ¼
ZL

0

qðxÞdw dxþ VdwjL0 þMdw0jL0 þMhdj0jL0 (30)

According to Hamilton’s principle, the actual motion minimizes
the difference of the kinetic energy and total potential energy for
a system with prescribed configurations at t1 and t2. That is

d

Zt2

t1

½T � ðU �WÞ�dt ¼ 0 (31)

Substituting Eqs. (27), (29) and (30) into Eq. (31), it takes the
form as
Zt2

t1

ZL

0

�rA €wþ q�
h
ðk3 þ k4ÞwIV þ ðk3 � 2k4Þj%

�k5
�
w00 � j0

�i
dw dx dt þ

Zt2

t1

ZL

0

�rI€j�
h
k1jIV � ðk3 � 2k4Þw%

�ðk2 þ k3 þ 4k4Þj00 � k5ðw0 � jÞ
i
dj dx dt

þ
ZL

0

rA _wdwjt2

t1
dxþ

ZL

0

rI _jdjjt2

t1
dx�

Zt2

t1

n�
� V � ðk3 þ k4Þw%

�ðk3 � 2k4Þj00 þ k5ðw0 � jÞ
	
dwjL0

o
dt

�
Zt2

t1

n�
�M þ ðk3 þ k4Þw00 þ ðk3 � 2k4Þj0

	
dw0jL0

o
dt

�
Zt2

t1

nh
� k1j% þ ðk3 � 2k4Þw00 þ ðk2 þ k3 þ 4k4Þj0

i
djjL0

o
dt

�
Zt2

t1

h�
�Mh þ k1j00

�
dj0jL0

i
dt ¼ 0 (32)

Due to the fundamental lemma of the calculus of variation with the
arbitrariness of dw and dj for given x ˛ [0, L] and t ˛ [t1,t2],
the governing equations (i.e. the Euler–Lagrange equations) of the
beam in bending are given by

rA €w� qþðk3 þ k4ÞwIV þðk3� 2k4Þj% � k5
�
w00 �j0

�
¼ 0

rI€jþ k1jIV �ðk3� 2k4Þw%�ðk2þ k3þ 4k4Þj00 � k5ðw0 �jÞ ¼ 0

(33)

the initial conditions can be written as

�
rA _wdw

�jt2

t1
¼ 0�

rI _jdj
�


t2

t1
¼ 0

(34)

and the boundary conditions read,

ðk3 þ k4Þw% þ ðk3 � 2k4Þj00 � k5ðw0 � jÞ ¼ �V or

w ¼ w at x ¼ 0 and x ¼ Lðk3 þ k4Þw00 þ ðk3 � 2k4Þj0

¼ M or w0 ¼ w0 at x ¼ 0 and x ¼ L� k1j%

þðk3 � 2k4Þw00 þ ðk2 þ k3 þ 4k4Þj0 ¼ 0 or

j ¼ j at x ¼ 0 and x ¼ Lk1j00 ¼ Mh or j0 ¼ j0 at x

¼ 0 and x ¼ L

(35)

where the overbar represents the prescribed value. Solving the
governing equations (33) with the initial conditions of Eq. (34) and
proper boundary conditions of Eq. (35), w(x,t) and j(x,t) will be
determined.

It is clearly seen from Eqs. (33)–(35) that the present model
contains three material length scale parameters (l0, l1 and l2), which
enables the model to predict the size effect. However, when the
material length scale parameters l0 and l1 are equal to zero, the
governing equations and boundary conditions will reduce to those
of the modified couple stress model (Ma et al., 2008). Furthermore,
if all the material length scale parameters l0, l1 and l2 are equal to
zero, the governing equations and boundary conditions will
directly degenerate to those of the classical Timoshenko beam
model. In addition, the governing equations and boundary condi-
tions degenerate to those of the micro scale Bernoulli–Euler beam
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Fig. 2. Schematic figure of the simply supported beam.

Fig. 3. Deflection of the simply supported Timoshenko beam based on three different
models with h¼ l, 2l, 4l.
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model based on strain gradient elasticity theory when shear
deformation is neglected (Kong et al., 2008b).

3. Static bending of a simply supported beam

Assuming a simply supported beam subjected to a concentrated
force, as shown in Fig. 2, where the loading, geometry, and cross-
sectional shape are also shown, the boundary conditions of the
static bending problem can be simplified as (Ma et al., 2008)

wjx¼0 ¼ wjx¼L ¼ 0; w00jx¼0 ¼ w00jx¼L ¼ 0; j0jx¼0 ¼ j0jx¼L ¼ 0

(36)

For a static bending problem, the time derivatives are set to zero
in Eq. (33) and then the governing equations for static problems are
given by

ðk3 þ k4ÞwIV þ ðk3 � 2k4Þj% � k5
�
w00 � j0

�
¼ q

k1jIV � ðk3 � 2k4Þw% � ðk2 þ k3 þ 4k4Þj00 � k5ðw0 � jÞ ¼ 0

(37)

In order to derive the solutions, w(x) and j(x) can be expanded
as the following Fourier series

wðxÞ ¼
XN
n¼1

Wnsin
�npx

L

�
; jðxÞ ¼

XN
n¼1

Fncos
�npx

L

�
(38)

where Wn and Fn are Fourier coefficients to be determined for each
n. It is obvious that the expansions in Eq. (38) satisfy the boundary
conditions in Eq. (36) for any Wn and Fn.

Based on Eq. (38), the applied load q(x) can also be expanded in
a Fourier series as

qðxÞ ¼
XN
n¼1

Qnsin
�npx

L

�
(39)

For a given q(x), Qn in Eq. (39) can be readily determined to be

Qn ¼
2
L

ZL

0

qðxÞsin
�npx

L

�
dx (40)

In the present investigation as shown in Fig. 2, q(x)¼ Pd(x� L/2),
where d(,) is the Dirac delta function and P is the concentrated
force. Substituting q(x) of Eq. (39) into Eq. (40), then it gives

Qn ¼
2
L

P sin
�np

2

�
(41)
Substituting Eqs. (38) and (39) into Eq. (37) gives

�
a4ðk3þk4Þþa2k5 a3ðk3�2k4Þ�ak5
a3ðk3�2k4Þ�ak5 a4k1þa2ðk2þk3þ4k4Þþk5

�
Wn
Fn

�
¼


Qn
0

�
(42)

where a¼ npL.
Solving the above linear algorithm sets of Eq. (42), Wn and Fn

can be determined as

Wn ¼ a4k1þa2ðk2þk3þ4k4Þþk5

½a4ðk3þk4Þþa2k5�½a4k1þa2ðk2þk3þ4k4Þþk5 ��½a3ðk3�2k4Þ�ak5�2
Qn

Fn ¼
�ða3ðk3�2k4Þ�ak5Þ

½a4ðk3þk4Þþa2k5�½a4k1þa2ðk2þk3þ4k4Þþk5��½a3ðk3�2k4Þ�ak5�2
Qn

(43)

With Wn and Fn determined from Eq. (43), the analytical solu-
tions of w(x) and j(x) for the static bending of the simply supported
Timoshenko beam subjected to the concentrated force P are
determined by substituting Eq. (43) into Eq. (38). After somewhat
lengthy but straightforward manipulations, all other physical
quantities can be subsequently determined without any difficulty.

Some numerical results have been obtained and presented in
Figs. 3–6 to demonstrate the behavior of static bending of the micro
scale Timoshenko beam subjected to a concentrated force. For the
purpose of illustration, the beam considered here is taken to be
made of epoxy with the following properties: the elastic modulus



Fig. 4. Rotation of the simply supported Timoshenko beam based on three different
models with h¼ l, 2l, 4l.

Fig. 6. Poisson effect on the maximum rotation of the Timoshenko beam based on
three different models with h¼ l, 2l.
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E¼ 1.44 GPa, the Poisson’s ratio v¼ 0.38 and the material length
scale parameter l¼ 17.6 mm (Lam et al., 2003). The cross-sectional
shape is kept to be the same by letting b/h¼ 2 and the length of the
beam is selected to be L/h¼ 20 for all cases, as shown in Fig. 2. The
values of P and h are chosen in such a way that the beam remains
elastic everywhere (Park and Gao, 2006; Ma et al., 2008). The shear
coefficient of Timoshenko beam ks is taken to be (5þ 5v)/(6þ 5v),
which was shown to be the best expression for a rectangular cross-
section beam (Kaneko, 1975). For simplification, we assume that all
three material length scale parameters are the same, i.e.,
l0¼ l1¼ l2¼ l within the micro scale Timoshenko beam model.
Numerical results for the present model are plotted in Figs. 3–6, in
which those for the modified couple stress Timoshenko beam
model (l0¼ l1¼0, l2¼ l) and the classical Timoshenko beam model
(l0¼ l1¼ l2¼ 0) are also plotted.

Figs. 3 and 4 show the deflection w(x) and the corresponding
rotation j(x) (due to bending only) for three sets of geometries of
Fig. 5. Poisson effect on the maximum deflection of the Timoshenko beam based on
three different models with h¼ l, 2l.
the micro scale Timoshenko beam shown in Table 1. It is clearly
observed from Fig. 3 that the deflection predicted by the present
model is not only smaller than that by the classical model but also
smaller than that by the modified couple stress model for three set
of geometries. This indicates that the present model exhibits
increased bending rigidity due to the fact that strain gradient
elasticity theory introduces additional dilatation gradient tensor
and the deviatoric stretch gradient tensor in addition to the
symmetric rotation gradient tensor. The absolute values of the
rotation for three models in Fig. 4 show the similar trend as shown
in Fig. 3. Furthermore, it is seen from Figs. 3 and 4 that there are
large differences in the deflection and rotation for the three
different models when the beam thickness h is approximately equal
to the material length scale length parameter (with h¼ l¼ 17.6 mm).
However, such differences are decreasing or even diminishing as
thickness of the beam becomes greater e.g., h¼ 4l¼ 70.4 mm. It
indicates that the size effect is only significant when the beam
thickness is comparable to the material length scale parameter. This
agrees with what was observed experimentally (McFarland and
Colton, 2005). So we can conclude that the increased stiffening
effect for the static deformation is due to the microstructure, which
is also observed in Papargyri-Beskou et al. (2003a,b).

For further observations on Poisson effect, the variable
tendencies of maximum deflection and maximum rotation with
Poisson ratio varying from 0 to 0.5 are quantitatively shown in Figs.
5 and 6 respectively. Both cases of beam thickness (h¼ l and h¼ 2l)
are considered. Fig. 5 illustrates that the maximum deflection
predicted by the classical model decreases gradually with Poisson’s
ratio. However, there is a noticeable trend that the results predicted
by the present model increase firstly and then decrease with
Poisson’s ratio increasing, which is quite different from that pre-
dicted by the classical model. Further investigations in Fig. 5 show
that results predicted by the modified couple stress model exhibit
Table 1
Sets of geometries configurations for a micro scale Timoshenko beam.

Sets 1 2 3

Thickness, h (mm) 17.6 35.2 70.4
Width, b¼ 2h (mm) 35.2 70.4 140.8
Length, L¼ 20h (mm) 352.0 704.0 1408.0



Fig. 7. Natural frequency varying with dimensionless thickness based on three
different models with n¼ 0, 0.38.
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the same trend as those by the present model. A similar phenom-
enon is also observed for the maximum rotation in Fig. 6. This
variable tendency may be named as a maximum ‘‘extreme point’’
phenomenon, which is the result of the introduction of the material
length scale parameters for the micro scale Timoshenko models. As
typically micro scale models, both the present model and the
modified couple stress model have extreme points for different
beam thicknesses (h¼ l and h¼ 2l), while the classical model
exhibits a monotonically decreasing trend with Poisson’s ratio as
shown in Figs. 5 and 6, indicating having no such ‘extreme point’
phenomenon.

4. Free vibration of a simply supported beam

For the free vibration problem of a simply supported beam
shown in Fig. 2, the external force q(x) in Eq. (33) vanishes and
V¼ 0, M¼ 0 and Mh¼ 0 in boundary conditions of Eq. (35). Similar
to the procedure of static bending problem, the following Fourier
series solutions for w(x,t) and j(x,t) are employed

wðx; tÞ ¼
XN
n¼1

WD
n sin

�npx
L

�
eiunt ; jðx; tÞ ¼

XN
n¼1

FD
n cos

�npx
L

�
eiunt

(44)

where Wn
D and Fn

D are Fourier coefficients, the superscript ‘‘D’’
denotes dynamic problem, un is the vibration frequency, and i is the
usual imaginary number defined by i2¼�1. Similarly, the expan-
sions in Eq. (44) satisfy the boundary conditions in Eq. (36) for any
Wn

D and Fn
D.

Using the expansions in Eq. (44), the governing equations in Eq.
(33) can be rewritten as"

a4ðk3þk4Þþa2k5�rAu2
n a3ðk3�2k4Þ�ak5

a3ðk3�2k4Þ�ak5 a4k1þa2ðk2þk3þ4k4Þþk5�rIu2
n

#

�
(

WD
n

FD
n

)
¼ 0 ð45Þ

For a non-trivial solution of Wn
D (s0) and Fn

D (s0), it is required
that the determinant of the coefficient matrix of Eq. (45) vanishes,
which leads to

e1u4
n þ e2u2

n þ e3 ¼ 0 (46)

where

e1 ¼ r2AI
e2 ¼ �rI

�
a4ðk3þk4Þþa2k5

	
� rA

�
a4k1þa2ðk2þk3þ4k4Þþk5

	
e3 ¼

�
a4ðk3þk4Þþa2k5

	�
a4k1þa2ðk2þk3þ4k4Þþk5

	
�
h
a3ðk3�2k4Þ�ak5

i2
(47)

The equation of un
2 can be easily obtained by solving the

quadratic Eq. (46),

u2
n ¼

�e2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

2 � 2e1e3

q
2e1

(48)

which is the smaller of two roots for un
2. The positive solution of un

determined from Eq. (48) is the natural frequency of the simply
supported beam for different order number n. Once un is deter-
mined, the Fourier coefficients un

D and Fn
D will be obtained by Eq.

(45) and w(x) and j(x) are further determined by Eq. (44). It should
be noted that un in Eq. (48) degenerates into the natural frequency
predicted by the modified couple stress model by Ma et al. (2008)
when two material length scale parameters equal to zero (i.e.,
l0¼ l1¼0).

Fig. 7 shows how the first order natural frequency predicted by
three Timoshenko beam models (the present model, the modified
couple stress model and the classical model) change with dimen-
sionless thickness of the beam (h/l) for different values of Poisson’s
ratio (n¼ 0.0 and n¼ 0.38). For the purpose of illustration, the beam
considered here is also taken to be made of epoxy and material
properties used in the calculations are the same as those in static
bending problem, and material density is taken to be r¼ 1.22 kg/m3

(Maneschy et al., 1986).
For the microstructure, the increased stiffening effect for static

problem can result in the increased natural frequency for the
dynamic problem. It is seen from Fig. 7 that the natural frequency
predicted by the present model is not only larger than that by the
classical model but also larger than that by the modified couple
stress model for two different values of Poisson’s ratio especially
when the beam thickness is approximately equal to the material
length scale parameter. This is due to the increased bending rigidity
introduced by the present model as shown in Fig. 3. Moreover, for
both cases of n¼ 0.0 and n¼ 0.38, the differences in natural
frequency for three models are large when the dimensionless
thickness of the beam is small (e.g., h/l< 2), whereas they are
decreasing or even diminishing with the dimensionless thickness
increasing. This indicates that the size effect is prominent only
when the beam thickness is as small as the material length scale
parameter. It is noted that the natural frequency with n¼ 0.0 is
always smaller than that with n¼ 0.38 for the classical beam model.
However, it is not true when h/l< 2.61 for the present model and h/
l< 1.37 for the modified couple stress model. Therefore, Poisson
effect on the natural frequency is more complicated than on the
deflection and rotation in the static bending problem and will be
discussed below.

The tendency of natural frequency predicted by the present
model and the other two reduced Timoshenko beam models with
Poisson’s ratio are shown in Fig. 8, in which both cases of beam
thickness h¼ l and h¼ 2l are considered. It is observed that the
natural frequency predicted by the modified couple stress model is
smaller than that by the present model, while larger than that by
the classical model with Poisson’s ratio varying, which is consistent
with that the present model exhibits increased bending rigidity, as



Fig. 8. Poisson effect on the natural frequency of the beam based on three different
models with h¼ l, 2l.

B. Wang et al. / European Journal of Mechanics A/Solids 29 (2010) 591–599598
observed in static bending problem. It is also shown in Fig. 8 that
results predicted by the present model and the modified couple
stress model have minimum extreme points with Poisson’s ratio
increasing, indicating a similar ‘‘extreme point’’ phenomenon for
the natural frequency as for the maximum deflection and rotation
in Figs. 5 and 6. Meanwhile, it is observed that each Poisson’s ratio
where the minimum value of natural frequency occurs in Fig. 7
corresponds to that where the maximum deflection and maximum
rotation occurs in Figs. 5 and 6, due to the fact that larger deflection
results in smaller natural frequency and vice versa.

5. Conclusions

A micro scale Timoshenko beam model is developed based on
strain gradient elasticity theory and Hamilton’s principle. The new
model incorporated with Poisson effect can capture the size effect
due to containing material length scale parameters. Moreover, the
model can reduce to the modified couple stress Timoshenko beam
model or even the classical Timoshenko beam model. In addition,
the newly developed model can also degenerate into the micro
scale Bernoulli–Euler beam model based on strain gradient elas-
ticity theory if shear deformation is ignored. Both static bending
and free vibration problems of a simply supported beam are solved
based on the currently developed model. Numerical results of the
deflection, rotation and natural frequency predicted by the new
model are compared with those by the modified couple stress
Timoshenko beam model and the classical Timoshenko beam
model with different conditions. The differences of results pre-
dicted by three models are quite large when the beam thickness is
approximately as small as the material length scale parameter.
These differences, however, are decreasing and diminishing with
beam thickness increasing. Finally, Poisson effect on the results of
static bending and free vibration problems possesses an interesting
‘‘extreme point’’ phenomenon, which is quite different from that
predicted by the classical Timoshenko beam model.
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