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A B S T R A C T

Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and
numerous models have been proposed to study this mechanism. However, the contribution of strain gradient
elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model
developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution
of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and
could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we
carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the
strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electro-
mechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency,
indicating their importance and necessity. This work may be helpful in understanding the mechanism of flex-
oelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.
1. Introduction

Piezoelectricity, one of most important electromechanical coupling
phenomena in dielectric materials, has received wide attention in mul-
tiple fields including energy harvesting, sensing and actuation, artificial
muscles, advanced microscopes among others [1–3]. For a piezoelectric
material, the induced polarization (P) is related to the strain ðεÞ through a
third-order piezoelectric tensor (d):

Pi ¼ dijkεjk (1)

For the dielectric structures in the sub-micron or nano-scale, flex-
oelectricity, an interesting electro-mechanical coupling phenomenon,
has received much attention in the past recent years. Flexoelectricity [4]
is a type of electro-mechanical coupling mechanism that provides a
linkage between the mechanical strain gradient ðrεÞ and the polarization
(P), namely

Pi ¼ dijkεjk þ fijkl
∂εjk
∂xl

(2)

where fijkl is the fourth-order flexoelectric tensor.
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In the field of piezoelectricity, much effort has been devoted to
improving the piezoelectric coefficient so as to maximize the piezoelec-
tric response. Such efforts have largely been exhausted. Flexoelectricity,
however, is relatively still unexplored and has promise in enhancing
polarization due to its ubiquitous existence in all dielectric materials
regardless of their crystal structure because the presence of strain
gradient breaks the inversion symmetry of the material [5]. Furthermore,
this effect is noteworthy at the nanoscale since the strain gradient is
inversely proportional to the feature scale of the structures [4]. Flex-
oelectricity has been observed experimentally in liquid crystals [6],
polymers [7], crystalline materials [8], and biomembranes [4]. There-
fore, in the past few decades, flexoelectricity has been intensively studied
theoretically [9–13], or numerically [14,15] and experimentally [8,16]
from both fundamental and applicable points of view. Recently, Krichen
and Sharma [17] wrote a perspective on an unusual electro-mechanical
coupling called flexoelectricity that has tantalizing implications in
topics ranging from biophysics to the design of next-generation multi-
functional nanomaterials.

Some efforts have been devoted to establishing theoretical frame-
works for dielectrics with the consideration of electromechanical
coupling in soft dielectrics due to their conceptual foundation and
hina.
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essential application including the instability and energy harvesting [13,
18–21]. To interpret flexoelectricity in dielectrics theoretically, Kogan
[22] formulated the first phenomenological theory of flexoelectricity in
1964 and estimated the value range of flexoelectric coefficients. Sharma
et al. [13] developed a theory considering first gradients of the strain and
the polarization and analyzed the size-dependent mechanical and elec-
trical behavior of piezoelectric and non-piezoelectric nanostructures
theoretically and numerically. Shen and Hu [10] established a compre-
hensive framework for nanoscale dielectrics to study the flexoelectric
response with consideration of the surface effect. Recently, Liu And
Sharma [23] succeeded in establishing emergent electromechanical
coupling of electrets and some exact relations - the effective properties of
soft materials with embedded external charges and dipoles.

As flexoelectricity is mathematically related to strain gradients, to
better understand flexoelectricity, it is best first to allude to the tradi-
tional strain gradient elasticity theory (or the non-local theory). The
background of introducing the strain gradient elasticity theory is based
on two facts. Firstly, size-dependent physical properties of micro/nano-
scale structures are observed experimentally in metals [24,25], brittle
materials [26], polymers [27] and polysilicon [28], which cannot be
explained using the classical continuum theory, which has no material
length scale parameters. Of course, similar to the strain gradient elasticity
theory, some other theories like couple stress theory, nonlocal theory,
surface energy theory are also used to capture the size effects. For the
discussions and comparisons among these theories, the interested reader
is referred to a related work [29] for details. Secondly, the variable in
energy density for the conventional continuum theory is only the strain
(first gradient of deformation). According to the Taylor series expansion
mathematically, the strain gradient (second gradient of deformation) is
reasonable to be included in energy density to characterize the
size-dependent properties since the classical continuum theory fails. The
strain gradient elasticity theory was firstly proposed by Mindlin [30] to
describe the linear elastic behavior of microstructures. This theory re-
quires 16 additional independent length-scale parameters for isotropic
materials in addition to two Lame constants. Then, Mindlin and Eshel
[31] further formulated it to be a simpler version, which reduces the
length-scale parameters from 16 to 5 for isotropic materials. However,
the application of this theory in engineering is limited as five length-scale
parameters are difficult to be determined experimentally. Recently, Zhou
and his co-workers [32] proved that only three length-scale parameters
are independent by applying two sets of orthogonal decompositions of
the strain gradient tensor. While the nonlocal theory [33], couple stress
theory [34] and surface energy theory [35] have one length-scale
parameter respectively.

Actually, one length-scale parameter can be experimentally deter-
mined by a simple bending or torsion test. For example, it has been
demonstrated by Fleck and Hutchinson [36] that a single length-scale
parameter does not have a scope to include the wide range of
small-scale phenomena. Therefore, the strain gradient theory with mul-
tiple length-scale parameters is necessary to capture the size effects of
mechanical and electric behavior at micro/nano-scale structures.

A recent work by Deng [5] pointed out that most of the previous
works ignored the effect of strain gradient elasticity (the term
1
2rru⋅grru in energy density) that restricts the further increasing of
strain gradients in flexoelectricity. It is well accepted that the material
would become harder to deform as the decrease of the sample size due to
the strain gradient elasticity. In the works of Yan and Jiang [37,38], the
flexoelectric response of electroelastic and dynamic piezoelectric nano-
beams are studied. The Timoshenko dielectric beam and piezoelectric
nano-plate with flexoelectricity are also conducted by Zhang et al. [39].
These works, however, did not consider the effect of strain gradient
elasticity theory. Deng and Sharma [19] are the first to study the energy
harvesting of the nano-beam and truncated cone due to flexoelectricity
with consideration of the strain gradient theory, in which the one
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length-scale parameter strain gradient model is used. This may lack the
ability to capture the wide range of small-scale phenomena [32].

The rest of the paper is organized as follows. In Section 2, we recall
the formulations of dielectric structures and followed by deriving the
piezoelectric and flexoelectric nanobeammodel with reformulated strain
gradient elasticity theory included in Section 3. Subsequently, numerical
results and discussions are then given in Section 4. Finally, some major
conclusions are summarized in section 5.

2. Recalling the formulations of dielectric structure

For the electrostatic field of dielectric materials, the Gauss's law is
given as

div D ¼ ρf (3)

Where D is electric displacement vector, ρf is density of free charges (per
unit volume). In vacuum ρf ¼ 0, while in dielectric materials ρf 6¼ 0. In a
polarized material, the electric polarization P is defined by

P ¼ D� e0E (4)

Where E is electric field, e0¼ 8.85� 10�12 F/m is the permittivity of the
vacuum or air.

Neglecting fringing fields, Hamilton's principle for a dielectric struc-
ture occupying the domain Ω with flexoelectricity can be written as [5].

δ∫ t1
t0
dt∫ Ω

�
1
2
ρj _uj2 � Uþ e0

2
jEj2 þ E⋅P

�
dV þ ∫ t1

t0
dt∫ Ω

�
q⋅δuþ E0⋅δP

�
dV

þ ∫ t1
t0
dt∫ ∂Ωt0⋅δuda ¼ 0

(5)

where u is displacement vector, E is electric field, P is polarization
density, U is the internal energy density, q and E0 are the external body
force and external electric field, t0 is surface traction.

In dealing with the problem of piezoelectric nanobeam with the
consideration of the flexoelectricity, our mathematical modeling is based
on the extended liner theory of piezoelectricity, in which the strain
gradient elasticity is incorporated. The general expression for the internal
energy density U can be written as

U ¼ 1
2
ε⋅cεþ 1

2
P⋅aPþ 1

2
rru⋅grruþ ε⋅dPþ P⋅frru (6)

where εij and Pi are the components for the strain tensor and polarization
vector, while ui are the components for the displacement vector. cijkl, akl
and dijk are the components of the fourth-order elastic coefficient, second-
order reciprocal dielectric susceptibility and three-order piezoelectric
coefficient tensors respectively. These material constant tensors are
exactly the same as those in the liner piezoelectricity theory. fijkl are the
components in the polarization and strain gradient coupling tensor, i.e.,
the flexo-coupling coefficient. The components gijklmn represents the
purely nonlocal elastic effects and relates to the strain gradient elasticity
theory.

Thus, the independent variables in the internal energy density U are
strain, strain gradient and polarization. The corresponding stress, higher
order stress and electric field, which are work-conjugated to strain, strain
gradient and polarization, are expressed as

σij ¼ ∂U
∂εij

¼ cijklεkl þ dijkPk (7)

σijm ¼ ∂U
∂ui;jm

¼ fijmkPk þ gijmknluk;nl (8)



Fig. 1. Schematic of piezoelectric nanobeams with various boundary condi-
tions (a) Cantilever beam, (b) Clamped-Clamped beam, and (c) Simply sup-
ported beam.
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Ei ¼ ∂U
∂Pi

¼ aijPj þ djkiεjk þ fijkluj;kl (9)

where a comma followed by a subscript denotes differentiation with
respect to the subscript. σij is the traditional stress tensor, and σijm is
defined as the higher order stress or the moment stress, which is induced
by the flexoelectric and strain gradient effects while does not exist in the
classical theory of piezoelectricity. By the way, the strain ε is defined as

εij ¼ 1
2

�
ui;j þ uj;i

�
(10)

According to the reformulated strain gradient theory [32], the higher
order stress can be divided into two parts:

σ1
ijm ¼ fijmkPk (11)

σ2
ijm ¼ gijmknluk;nl ¼ pi þ τð1Þijm þ m0

ij (12)

And pi, τijm(1) and mij
' are respectively defined as

pi ¼ ∂U
∂εnn;i

¼ 2μl20εnn;i (13)

τð1Þijk ¼ ∂U
∂ηð1Þijk

¼ 2μl21η
ð1Þ
ijk (14)

m0
ij ¼

∂U
∂χ0ij

¼ 2μ
�
l22 þ

9
5
l20

�
χ0ij þ 2μ

�
l22 �

9
5
l20

�
χ0ji (15)

where μ is the shear modulus, l0, l1, and l2 are the additional independent
material length scale parameters associated with the dilatation gradients,
deviatoric stretch gradients, and symmetric rotation gradients,
respectively.

While the deviatoric stretch gradient tensor ηijk
(1) and the symmetric

rotation tensor χij' are defined by

ηð1Þijk ¼ ηsijk � ηð0Þijk

¼ 1
3

�
εij;k þ εjk;i þ εki;j

�� 1
15

�
δijð2εmk;m þ εmm;kÞ þ δjkð2εmi;m þ εmm;iÞ

þ δki
�
2εmj;m þ εmm;j

��
(16)

χ 0ij ¼ eipqη0pqj ¼ eipqε0jq;p ¼ eipq

�
εjq;p � 1

3
δqjεnn;p

�
(17)

where δij and eijk are the Kronecker symbol and the alternating symbol,
respectively.

3. Formulation of a dielectric nanobeam

In this paper, attention is focused on the bending behavior of a
piezoelectric nanobeam of length L, thickness h, and width b with
external transverse force (F) applied at the central or end points and
different boundary conditions, as shown in Fig. 1. A Cartesian coordinate
system is used to describe the beam with the x-axis being the centroidal
axis of the undeformed beam, and the z-axis being along the thickness
direction. A constant electric potential V is applied between the upper
surface (z¼ h/2) and the lower surface (z¼ -h/2) of the beam and the
beam is polarized along the z axis. Assuming the transverse displacement
of the bending beam is denoted as w(x), the displacement at any point of
the piezoelectric beam can be expressed under the Euler beam hypoth-
eses as
150
u1ðx; zÞ ¼ u0ðxÞ � z
dwðxÞ
dx
u2ðx; zÞ ¼ 0

u3ðx; zÞ ¼ wðxÞ

(18)

Where u0(x) is the axial displacement along the centroidal axis of the
beam, which may be induced by the applied mechanical load, the applied
electrical load due to the electromechanical coupling, or the flexoelectric
effect.

By substituting Eq. (18) into Eq. (10), then the non-zero strain εij is

ε11 ¼ ∂u0
∂x � z

∂2w
∂x2 (19)

and the dilatation gradient vector εij,k is

ε11;1 ¼ ∂2u0
∂x2

� z
∂3w
∂x3

ε11;3 ¼ �∂2w
∂x2

(20)

Here, ε11;1 can be ignored as it is sufficiently small compared with ε11;3
[19]. Then by substituting Eq. (19) and Eq. (20) into Eq. (16) and Eq.
(17), the non-zero components of the deviatoric stretch gradient tensor
ηijk
(1) and the symmetric rotation tensor χij' are

ηð1Þ333 ¼
1
5
∂2w
∂x2

ηð1Þ113 ¼ ηð1Þ131 ¼ ηð1Þ311 ¼ � 4
15

∂2w
∂x2

ηð1Þ223 ¼ ηð1Þ232 ¼ ηð1Þ322 ¼
1
15

∂2w
∂x2

(21)

χ012 ¼ �1
3
∂2w
∂x2

χ021 ¼ �2
3
∂2w
∂x2

(22)
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The electric field is assumed to exist only in the beam thickness di-
rection [37], in which the electric field component in the length direction
was negligible compared with that in the thickness direction for a
piezoelectric nanobeam under an electric potential across its thickness.
That means E1¼ E2¼ 0. In the formulation of what followed, the matrix
notations are introduced for convenience, i.e., c11¼ c1111 and d31¼ d311.
From Eqs. (9), (18)–(20), the electric field in z-direction can be written as

E3 ¼ a33P3 þ d31

�
∂u0
∂x � z

∂2w
∂x2

�
� f13

d2w
dx2

(23)

in which the extra term �f13d2w=dx2 is different from the linear piezo-
electricity theory and attributes to the flexoelectric effect.

In the absence of free body charges, Gauss's law is reformulated as

�e0
∂2Φ
∂z2 þ ∂P3

∂z ¼ 0 (24)

where Φ is the electric potential and is related to the electric field by

E3 ¼ �∂Φ
∂z (25)

with the consideration of the electric boundary conditions

Φðh=2Þ ¼ ΔV and Φð � h=2Þ ¼ 0 (26)

The polarization and the electric field can be determined in terms of
u0 and w from Eqs. (23)–(26) as

P3 ¼ e0d31
e0a33 þ 1

z
∂2w
∂x2

� d31
a33

∂u0
∂x þ f13

a33

d2w
dx2

� ΔV
a33h

E3 ¼ � zd31
e0a33 þ 1

∂2w
∂x2

� ΔV
h

(27)

By substituting Eqs. (19) and (27) into Eq. (7), the axial stress σ11 can
be written as

σ11 ¼
�
c11 � d231

a33

�
∂u0
∂x �

�
c11 � e0d2

31

e0a33 þ 1

�
z
∂2w
∂x2 þ d31f13

a33

∂2w
∂x2 � d31

a33

ΔV
h

(28)

Then an axial force can be written as

T1 ¼ b∫
h
2

�h
2
σ11dz ¼ bh

��
c11 � d231

a33

�
∂u0
∂x þ d31f13

a33

∂2w
∂x2 � d31

a33

ΔV
h

�
(29)

which originates from the strain, the electromechanical couplings
induced by the strain gradient, and the applied electrical load. For a
Clamped-Clamped (C-C) or Simply supported-Simply supported (S-S)
beam, the axial displacement is restricted to be zero (u0¼ 0). Thus the
resultant force becomes

T1 ¼ bh
�
d31f13
a33

∂2w
∂x2 � d31

a33

ΔV
h

�
(30)

which is expected to influence the bending behavior of the C-C and S-S
beams. It is noted that mechanical buckling may occur when the axial
force is compressive and increases beyond a critical value. This point is
out of the scope of this work. While for the cantilever (C-F) beam, the
axial force is ignored due to the free end constraint.

By substituting Eq. (27) into Eq. (11), the higher order stress σijm
1
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induced by flexoelectricity can be written as

σ1
113 ¼ f13

��
e0d31

e0a33 þ 1
zþ f13

a33

�
∂2w
∂x2 � d31

a33

∂u0
∂x � ΔV

a33h

�
(31)

By substituting Eqs. (20)–(22) into Eqs. (13)–(15), pi, τijk1 and mij
' can

be written as

p3 ¼ �2μl20
∂2w
∂x2 (32)

τð1Þ333 ¼
2
5
μl21

∂2w
∂x2

τð1Þ113 ¼ τð1Þ131 ¼ τð1Þ311 ¼ � 8
15

μl21
∂2w
∂x2

τð1Þ223 ¼ τð1Þ232 ¼ τð1Þ322 ¼
2
15

μl21
∂2w
∂x2

(33)

m0
12 ¼ μ

�
� 2l22 þ

6
5
l20

�
∂2w
∂x2

m0
21 ¼ �μ

�
2l22 þ

6
5
l20

�
∂2w
∂x2

(34)

The energy method is used to obtain the governing equations of the
bending piezoelectric nanobeam with the consideration of the flex-
oelectricity. From Eqs. (6)–(9), the internal energy density function is
given as

U ¼ 1
2

�
σijεij þ σijmuij;m þ EiPi

� ¼ 1
2
ðσ11ε11 þ σ113ε11;3 þ E3P3Þ (35)

On the other hand, the variation of the work done by the external
distributed force ~qðxÞ, the boundary shear force F, and the boundary-
bending moments M, respectively, reads

δ ~W ¼ ∫ l
0~qðxÞδwðxÞdxþ

�
Fδw

	jl0 þ �Mδw0	jl0 (36)

Moreover, the virtual work done by the resultant axial force for the C-
C and S-S beams are defined as

δW ¼ �1
2
δ∫ L

0T1

�
∂w
∂x

�2

dx (37)

By neglecting the kinetic energy and substituting Eqs. (35)–(37) into
Eq. (5), the governing equations and boundary conditions of the bending
piezoelectric beams will be given as (please refer Appendix for detail).

3.1. Cantilever beam

The governing equations:

8>>><
>>>:

d31f13
a33

A
∂3u0
∂x3

þ
��

c11 � e0d2
31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A
�

∂4w
∂x4

¼ ~qðxÞ
�
c11 � d231

a33

�
A
∂2u0
∂x2

þ d31f13
a33

A
∂3w
∂x3

¼ 0

(38)

and the boundary conditions:

RAY
高亮

Ray
高亮

Ray
高亮

Ray
高亮

Ray
高亮
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d31f13
a

A
∂2u0
∂x2 þ

��
c11 � e0d2

31

e a þ 1

�
I þ ΓA� f 213

a
A
�

∂3w
∂x3 � F ¼ 0
33 0 33 33

or δw ¼ 0 for x ¼ 0; L

d31f13
a33

A
∂u0
∂x þ

��
c11 � e0d2

31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A
�

∂2w
∂x2 þ ΔVf13

a33h
A�M ¼ 0

or δ
∂w
∂x ¼ 0 for x ¼ 0; L��

c11 � d231
a33

�
∂2u0
∂x2 þ d31f13

a33

∂3w
∂x3 � ΔVd31

a33h

�
A ¼ 0

or δ
∂u0
∂x ¼ 0 for x ¼ 0; L

(39)
8>>>>>>>>>>>><
>>>>>>>>>>>>:

w ¼ 0 for x ¼ 0

∂w
∂x ¼ 0 for x ¼ 0"�

c11 � e0d2
31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A� f 213d

2
31

a33
�
a33c11 � d2

31

�A
#
∂3w
∂x3

¼ F for x ¼ L

"�
c11 � e0d2

31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A� f 213d

2
31

a33
�
a33c11 � d2

31

�A
#
∂2w
∂x2

þ c11f13ΔVb
a33c11 � d231

¼ 0 for x ¼ L

(44)
where Γ ¼
�

12
5 μl20 þ 8

15 μl
2
1 þ 2μl22

�

3.2. C-C and S-S beams

The governing equation

��
c11 � e0d2

31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A
�
∂4w
∂x4 þ b

d31
a33

ΔV
∂2w
∂x2 ¼ ~qðxÞ (40)

and the boundary conditions

��
c11 � e0d231

e0a33 þ 1

�
I þ ΓA� f 213

a33
A
�
∂3w
∂x3

þ b
d31
a33

ΔV
∂w
∂x δw� F ¼ 0

or δw ¼ 0 for x ¼ 0;L��
c11 � e0d231

e0a33 þ 1

�
I þ ΓA� f 213

a33
A
�
∂2w
∂x2

þ ΔVf13
a33h

A

þ1
2
bh

d31f13
a33

�
∂w
∂x

�2

�M ¼ 0

or δ
∂w
∂x ¼ 0 for x ¼ 0;L

(41)

Obviously, ΓA is included in the effective bending rigidity for both
beam models, which originates from the strain gradient elasticity effect,
while Af 213=a33 originates from the flexoelectricity. In another word, both
strain gradient and flexoelectricity affect the bending rigidity, which will
be discussed later.
3.3. Solution of boundary value problems in static bending

This sub-section deals with the solution of a boundary value problem
for static bending. Assuming the three different beams subjected to a
concentrated force F, as shown in Fig. 1.

For C-F beam, the concentrated force F at the end of beam, on the
other hand, haven't any applied mechanical loads in the axial direction,
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so the force T1¼ 0. By substituting T1 into Eq. (29), the relaxation strain
can be obtained as

∂u0
∂x ¼ � d31

a33c11 � d2
31

�
f13
∂2w
∂x2 � ΔV

h

�
(42)

The transverse displacement and slope at the end x¼ 0 are zeros,
w¼ dw/dx¼ 0. The boundary condition at x¼ L can be obtained from Eq.
(39). By substituting Eq. (42)into Eqs. (38) and (39), the C-F beam's
governing equation and boundary conditions will be given as

"�
c11 � e0d2

31

e0a33 þ 1

�
I þ ΓA� f 213

a33
A� f 213d

2
31

a33
�
a33c11 � d2

31

�A
#
∂4w
∂x4 ¼ 0 (43)
Solving governing equation (43) with consideration of the beam
boundary conditions as stated Eq. (44), the explicit expressions of the
transverse deflections for the C-F beam is derived as

w ¼ a33
�
a33c11 � d2

31

�
Fðx� 3LÞ � 3a33c11f13ΔVb

6
�
ΓA� f 213

a33
A� f 213d

2
31

a33ða33c11�d231ÞA
�
a33
�
a33c11 � d2

31

�� f 213d
2
31bh

x2 (45)

For S-S and C-C beam, the applied load ~qðxÞ can be expanded in a
Fourier series as

~qðxÞ ¼
X∞
n¼1

Qn sin

nπx

L

�
(46)

For a given ~qðxÞ, Qn in Eq. (46) can be readily determined to be

Qn ¼ 2
L
∫ L
0~qðxÞsin


nπx
L

�
dx (47)

In the present investigation as shown in Fig. 1, ~qðxÞ ¼ Fδðx � L=2Þ, where
δ(⋅) is the Dirac delta function and F is the concentrated force.
Substituting ~qðxÞ of Eq. (47) into Eq. (46), then it gives

Qn ¼ 2
L
F sin


nπ
2

�
(48)

For an S-S beam, the boundary condition can be written as

8><
>:

w ¼ 0 for x ¼ 0 and x ¼ L

EI
∂2w
∂x2

þ ΔVf13b
a33

þ f13d31A
2a33

�
∂w
∂x

�2

¼ 0 for x ¼ 0 and x ¼ L
(49)

in which EI ¼
 
c11 � e0d231

e0a33þ1

!
I þ ΓA� f 213

a33
A and the term f13d31A

2a33

�
∂w
∂x

�2

can

be neglected under the infinitesimal deformation assumption. By
substituting Eq. (46) into Eq. (40) and combining with Eq. (49), the
transverse deflections for the S-S beam is derived as



w ¼

ΔVf13b
a33EIs20

�
1þ coshðs0L� 1Þ

sinhðs0LÞ sinhðs0xÞ � coshðs0xÞ
�
þ
X∞
n¼1

Bn sin
nπx
L

forΔV < 0

�ΔVf13b
a33EIs21

�
1þ cosðs1L� 1Þ

sinðs1LÞ sinðs1xÞ � cosðs1xÞ
�
þ
X∞
n¼1

Bn sin
nπx
L

forΔV > 0

X∞
n¼1

Bn sin
nπx
L

forΔV ¼ 0

(50)
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where

Bn ¼ Qn

EIa4n � k5a2n
; k5 ¼ ΔVd31b

a33
; an ¼ nπ=L; s0 ¼

ffiffiffiffiffiffiffiffiffi
�k5
EI

r
; s1 ¼

ffiffiffiffiffi
k5
EI

r

For a C-C beam, the boundary condition is the same as that for a C-F
beam at x¼ 0, the boundary condition at x¼ L is the same as that the
boundary condition at x¼ 0. So the boundary condition for a C-C beam
can be written as

8<
:

w ¼ 0 for x ¼ 0 or x ¼ L
∂w
∂x ¼ 0 for x ¼ 0 or x ¼ L

(51)

By substituting Eq. (46) into Eq. (40) and combing with Eq. (51), the
transverse deflections for the C-C beam is derived as
w ¼

8>>>>>>>>>><
>>>>>>>>>>:

C1 þ C2xþ C3 coshðs0xÞ þ C4 sinhðs0xÞ þ
X∞
n¼1

Bn sin

nπx

L

�
ΔV < 0

D1 þ D2xþ D3 cosðs1xÞ þ D4 sinðs1xÞ þ
X∞
n¼1

Bn sin

nπx

L

�
ΔV > 0

�x
X∞
n¼1

Bnan þ
2
P∞
n¼1

Bnan þ
P∞
n¼1

BnancosðnπÞ
L

x2 �
P∞
n¼1

Bnan þ
P∞
n¼1

BnancosðnπÞ
L2 x3 ΔV ¼ 0

(52)
where Ci and Di are given in Appendix.

4. Numerical results

In this section, the electroelastic responses of a piezoelectric nano-
beam loaded with a concentrated force F¼ 1 nN and an electric potential
ΔV under different boundary constraints are investigated to study the
flexoelectric effect. The geometry of the beam is set as L¼ 20h and b¼ h.
The material is taken as BaTiO3. For a narrow beam, the material pa-
rameters are calculated as c11¼ 131GPa, d31¼ 1.87� 108 V/m, and
a33¼ 0.79� 108 V ⋅m/C. While the three internal material length scale
parameters are taken as the same, i.e. l0¼ l1¼ l2¼ 10 nm. Here the beam
thickness is taken as h¼ 2l0 and the applied electrical load isΔV¼ -0.1 V.
The Poisson's ratio v¼ 0.38, Young's module is E¼ 1.44GPa and f13¼ 5 V
is adopted in the simulation. Use these parameters, all others physical
quantities can be subsequently determined without any difficulty.

For simplification, for different boundary conditions (CF, CC, SS), we
show the results of three models: (i) the model with both strain gradient
elasticity and flexoelectricity included is called the SFmodel, which is the
current model developed in this paper; (ii) the model with only flex-
oelectricity included is called the FL model and (iii) the model without
both strain gradient elasticity and flexoelectricity included is called the
NF model.

Firstly, the transverse displacements of C-F, S-S and C-C beams for
different models (SF and FL) are plotted in Fig. 2. It is observed from
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Fig. 2 that the displacement of SF model is less than that of FL model,
which means the strain gradient terms can decrease the displacement. It
is due to the strain gradient term ΓA in the effective bending rigidity EI
shown in Eqs. (38) and (40). The discrepancy of maximum displacement
between the two models is almost 8%. The effect of strain gradient
elasticity is also discussed in Deng's recent work [5], where the strain
gradient has great effect on the normalized effective piezoelectricity and
concluded that the strain gradient is significant when the sample size is
small enough especially in nanoscale. The similar conclusion of the effect
of the strain gradient elasticity is also observed in the work [29].

Secondly, in Fig. 3, the flexoelectric effect on the beam bending
behavior can also be shown by the normalized contact stiffness k/k0,
where k is defined as the ratio of the applied force to the induced
displacement where force applied and k0 is the contact stiffness for an NF
model [37]. It is shown that the normalized contact stiffness k/k0 in-
creases with the scaling up of the beam thickness for the beams with
different boundary conditions and different models.

Moreover, no matter what kind of boundary conditions, the value of
k/k0 of the twomodels (SF and FL) will become closer and closer with the
beam thickness increasing, which is attributed to the diminishing of the
strain gradient effect for large-scale structures. Alternatively, the differ-
ences between the two models are reduced with the size scale increasing.
With a smaller size scale (i.e., smaller beam dimension for the same
material), the present model (SF) shows strong size effect especially in
nanoscale, which, again, confirms the significant effect of strain gradient
elasticity. For a C-C beam, k/k0 approaches one due to the diminishing of
the effect, while k/k0 approaches to 1.9 and 0.34 under bias electric
loading �0.1 V for the C-F and S-S beams. Such difference is the result of
the non-homogeneous boundary conditions for C-F and S-S beams as
shown in Eqs. (39) and (41), where ΔV is embedded. It means that the
non-homogeneous condition is not only associated with the flexoelec-
tricity, but also with the applied electrical load. Furthermore, there are
no non-homogeneous boundary conditions for the C-F and S-S beams if
the electrical potential equals zero, which results in the normalized
contact stiffness approaching to one for all three kinds of beams with
sufficiently large thickness.

Thirdly, for a C-F beam, there is no axial force along the beam, which
means that Eq. (29) is equal to zero. Then, the relaxation strain is
expressed as



Fig. 2. Transverse displacement of C-F, S-S and C-C beams for different models.

Fig. 3. Variation of normalized contact stiffness with beam thickness for
beams with different boundary conditions (ΔV¼�0.1 V).
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ε0 ¼ � d31
a c � d2

�
f13
∂2w
∂x2 � ΔV

h

�
(53)
33 11 31

It is obvious that the relaxation strain depends on not only the applied
electric force but also on the longitudinal position x with flexoelectricity
included. However, the relaxation strain will be independent of the
longitudinal position x without considering the flexoelectricity, which
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results in constant relaxation strain along longitudinal position under the
applied electrical loads. Therefore, to study the axial relaxation strain
effect, the variation of this axial relaxation strain with beam thickness h
at both ends of the beam for three models under different electrical loads
are plotted in Fig. 4. Since the NF model is absent of the flexoelectricity,
the relaxation strain keeps constant along the beam and there is no dif-
ference at x¼ 0 and L as shown in Fig. 4.

It is observed from Fig. 4 that the difference of relaxation strain from
the SF and FL models is getting smaller with beam thickness increasing
and the difference almost diminishes when h/l0 greater than 7, which
indicates that the strain gradient elasticity effect can be ignored for large
h/l0. Whereas the strain gradient cannot be ignored for the beam with its
thickness is comparable to the internal material length scale parameters.
It is also found in Fig. 4 that the five curves approach the same value for
large beam scale, which indicates that both strain gradient elasticity and
flexoelectricity effects diminish for large-scale structures. The most
interesting phenomenon in Fig. 4 is that, for FL and SF models, the
relaxation strain at x¼ 0 increases firstly and then decreases with hwhen
negative voltage applied, while for other cases only monotonous values
are observed. In fact, whether the relaxation strain is positive or negative
depends on the values in parentheses in Eq. (53).

Fourthly, for the S-S beam and C-C beam, the axial displacement is
restricted, which results in the axial force (T1) along the beam as shown
in Eq. (30). Similar to the normalized contact stiffness, Fig. 5 plots the
normalized axial force T1=T0

1 versus the beam thickness h at x¼ 0 and L/
2 for both the C-C and S-S beams in order to observe the flexoelectric
effect, where T0

1 , independent of boundary conditions, is the axial force
from NF model.



Fig. 4. Variation of relaxation strain with beam thickness for C-F beam with different electrical loads (a) ΔV¼�0.1 V and (b) ΔV¼ 0.1 V.

Fig. 5. Variation of normalized axial force with beam thickness for both C-C
and S-S beams (△V¼�0.1 V).
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It is observed from Fig. 5 that the absolute values of normalized axial
force from SF model are less than those from FL model due to the in-
clusion of strain gradient elasticity, which is consistent with what shows
in Fig. 2. It is also found that the normalized axial force for S-S beam is
greater than that for the C-C beam at x¼ 0 or L/2. This may arise from the
Fig. 6. Variation of polarization with beam thickness for C-F beam fo
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fact that the S-S beam undergoes greater displacement (proven in Fig. 2)
and bears greater axial force consequently for the same mechanical and/
or electric loading. And, as expected, all the curves approach to 1.0 with
the increasing of the beam thickness h due to diminishing of the flex-
oelectricity and the strain gradient effects for large-scale beams.

Next, we move the focus on the electric response of the electrome-
chanical coupling beam. The polarization of the C-F beam of different
electrical loads is presented for various models as shown in Fig. 6. The
electric polarization is given in Eq. (27), where the first term e0d31h

2ðe0a33þ1Þ in

Eq. (27) is 10�4~10�3 times of f13/a33 with the considered range of the
beam thickness h and the material properties. Thus, the first term in P3
can be neglected and the polarization can be regarded as uniformly
distributed across the beam thickness in the bending nanobeam. And the
polarization will further keep constant if flexoelectricity is ignored in Eq.
(27), which is the NF model. Therefore, there is no difference along the
beam at x¼ 0 and L. While the polarization are different between the FL
and SF models for the same position and loading as shown in Fig. 6.
However, such difference is getting smaller with beam thickness
increasing. It is also noticed from Fig. (a) and (b) that the polarizations
from different models approaches to the same value for the same load
case, which means that the effects of strain gradient elasticity and flex-
oelectricity is neglectable for large h/l0 but it is notable for nanoscale
beam.

Finally, the energy efficiency Q/F for C-F beam is studied in Fig. 7,
where Q ¼ ∫ PðxÞdA is the induced charge between the bottom and upper
surface of the beam with mechanical F applied only. As discussed in
Fig. 6, the first term in P3 can be neglected, which results in the much
r different electrical loads (a) △V¼�0.1 V and (b) △V¼ 0.1 V.

RAY
Highlight



Fig. 7. Energy efficiency with beam thickness for C-F beam.
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smaller energy efficiency (in the order of 10�11) in Fig. 7 for the NF
model compared to the SF and the FL models.

Moreover, for the SF and FL models, the energy efficiency is notable
when the beam thickness is comparable to the material length scale
parameter (l0) while it decays quickly with the beam thickness increases,
which means that the strain gradient effect can be neglected for large h/
l0. This phenomenon has been confirmed in the Figures discussed above.
It is also found that the energy efficiency of SF model is less than that of
FL model, especially for lower h/l0. In another word, the strain gradient
terms can decrease the energy efficiency slightly. The same phenomenon
has also been observed in a recent work [5]. In that work, the effective
piezoelectricity deff with strain gradient elasticity included is nonlinear
and less than that from the simplified model without including strain
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gradient elasticity. The work indicated the strain gradient elasticity is
important. Inspired by Qian's work [5], the strain gradient term in this
paper is from a strain gradient elasticity theory with three material length
scale parameters.

5. Conclusion

To accurately predict the flexoelectric response of nanobeam-based
energy harvesting, a reformulated strain gradient elasticity theory is
employed to derive an electromechanical model of nanobeam. The
governing equations and boundary conditions are derived for the canti-
lever, both end-clamped and both end-simply supported beams sepa-
rately. The closed-form analytical solutions are obtained for the bending
response of a nanobeam subject to electromechanical loads. We find that
the effect of strain gradient, as well as the effect of flexoelectricity, may
decay gradually with beam thickness increasing to submicron or micron.
These results agree well with those from the reduced models in the case
of large-scale structures, which verify that the strain gradient can be
omitted. In contrast, when the thickness of beam is comparable to the
material length scale parameters, we show the critical role of the strain
gradient elasticity in the electromechanical coupling. This highly
nonlinear coupling would significantly impact the displacement, contact
stiffness, relaxation strain, axial force, polarization, and energy efficiency
of a dielectric nanobeam incorporating the flexoelectricity. We hope this
paper can make a good understanding of the fundamental issue of flex-
oelectricity and can be helpful for the design of nanoscale flexoelectric
energy harvesters.
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Appendix

The variation terms in Eq. (35) when deriving the governing equations and boundary conditions are listed as follows,

δ ∫
Ω

σ11ε11dΩ ¼ δ ∫
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The coefficients Ci and Di in Eq. (52) are:
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�P∞
n¼1

Bnan

�
s0Lðcoshðs0LÞ � 1Þ þ

" X∞
n¼1

Bnan cosðnπÞ
!
�
 X∞

n¼1

Bnan

!#
ðsinhðs0LÞ � s0LÞ

s0
�ðcoshðs0LÞ � 1Þ2 � sinhðs0LÞðsinhðs0LÞ � s0LÞ

	

C2 ¼

�P∞
n¼1

Bnan

�
ðsinh2ðs0LÞ � cosh2ðs0LÞ

�þ
" X∞

n¼1

Bnan cosðnπÞ
!

þ
 X∞

n¼1

Bnan

!#
coshðs0LÞ � 1

ðcoshðs0LÞ � 1Þ2 � sinhðs0LÞðsinhðs0LÞ � s0LÞ

C3 ¼

�P∞
n¼1

Bnan

�
s0Lðcoshðs0LÞ � 1Þ þ

" X∞
n¼1

Bnan cosðnπÞ
!
�
 X∞

n¼1

Bnan

!#
ðsinhðs0LÞ � s0LÞ

s0
�ðcoshðs0LÞ � 1Þ2 � sinhðs0LÞðsinhðs0LÞ � s0LÞ

	

C4 ¼

��P∞
n¼1

Bnan

�
�
�P∞

n¼1
Bnan cosðnπÞ

!#
ðcoshðs0LÞ � 1Þ �

 X∞
n¼1

Bnan

!
s0L sinhðs0LÞ

s0
�ðcoshðs0LÞ � 1Þ2 � sinhðs0LÞðsinhðs0LÞ � s0LÞ

	

(A5)

D1 ¼

��P∞
n¼1

Bnan

�
�
�P∞

n¼1
Bnan cosðnπÞ

!#
sinðs1LÞ þ s1L

" X∞
n¼1

Bnan cosðnπÞ
!

�
 X∞

n¼1

Bnan

!
cosðs1LÞ

#

s1
�ðcosðs1LÞ � 1Þ2 � sinðs1LÞðs1L� sinðs1LÞÞ

	

D2 ¼

��P∞
n¼1

Bnan cosðnπÞ
!

�
 X∞

n¼1

Bnan

!
cosðs1LÞ

#
½cosðs1LÞ � 1� �

 X∞
n¼1

Bnan

!
sin2ðs1LÞ

ðcosðs1LÞ � 1Þ2 � sinðs1LÞðs1L� sinðs1LÞÞ

D3 ¼ �

��P∞
n¼1

Bnan

�
�
�P∞

n¼1
Bnan cosðnπÞ

!#
sinðs1LÞ þ s1L

" X∞
n¼1

Bnan cosðnπÞ
!

�
 X∞

n¼1

Bnan

!
cosðs1LÞ

#

s1
�ðcosðs1LÞ � 1Þ2 � sinðs1LÞðs1L� sinðs1LÞÞ

	

D4 ¼

��P∞
n¼1

Bnan

�
�
�P∞

n¼1
Bnan cosðnπÞ

!#
½sinðs1LÞ � 1� þ

 X∞
n¼1

Bnan

!
s1L sinðs1LÞ

s1
�ðcosðs1LÞ � 1Þ2 � sinðs1LÞðs1L� sinðs1LÞÞ

	

(A6)
References

[1] X. Wang, J. Song, F. Zhang, C. He, Z. Hu, Z. Wang, Electricity generation based on
one-dimensional group-III nitride nanomaterials, Adv. Mater. 22 (2010)
2155–2158.

[2] J.D. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G. Madden, A. Takshi, R.Z. Pytel,
S.R. Lafontaine, P.A. Wieringa, I.W. Hunter, Artificial muscle technology: physical
principles and naval prospects, IEEE J. Ocean. Eng. 29 (2004) 706–728.

[3] M. Labanca, F. Azzola, R. Vinci, L.F. Rodella, Piezoelectric surgery: twenty years of
use, Br. J. Oral Maxillofac. Surg. 46 (2008) 265–269.

[4] Q. Deng, L. Liu, P. Sharma, Flexoelectricity in soft materials and biological
membranes, J. Mech. Phys. Solid. 62 (2014) 209–227.

[5] Q. Deng, Size-dependent flexoelectric response of a truncated cone and the
consequent ramifications for the experimental measurement of flexoelectric
properties, J. Appl. Mech. 84 (2017), 101007.

[6] R.B. Meyer, Piezoelectric effects in liquid crystals, Phys. Rev. Lett. 22 (1969)
918–921.

[7] B. Chu, D. Salem, Flexoelectricity in several thermoplastic and thermosetting
polymers, Appl. Phys. Lett. 101 (2012), 103905.

[8] W. Ma, L.E. Cross, Strain-gradient-induced electric polarization in lead zirconate
titanate ceramics, Appl. Phys. Lett. 82 (2003) 3293–3295.
157
[9] N.D. Sharma, R. Maranganti, P. Sharma, On the possibility of piezoelectric
nanocomposites without using piezoelectric materials, J. Mech. Phys. Solid. 55
(2007) 2328–2350.

[10] S.P. Shen, S.L. Hu, A theory of flexoelectricity with surface effect for elastic
dielectrics, J. Mech. Phys. Solid. 58 (2010) 665–677.

[11] M. Gharbi, Z.H. Sun, P. Sharma, K. White, The origins of electromechanical
indentation size effect in ferroelectrics, Appl. Phys. Lett. 95 (2009), 142901.

[12] M. Gharbi, Z.H. Sun, P. Sharma, K. White, S. El-Borgi, Flexoelectric properties of
ferroelectrics and the nanoindentation size-effect, Int. J. Solid Struct. 48 (2011)
249–256.

[13] M.S. Majdoub, P. Sharma, T. Cagin, Enhanced size-dependent piezoelectricity and
elasticity in nanostructures due to the flexoelectric effect, Phys. Rev. B 77 (2008),
125424.

[14] J.W. Hong, D. Vanderbilt, First-principles theory and calculation of flexoelectricity,
Phys. Rev. B 88 (2013), 174107.

[15] F. Deng, Q. Deng, W. Yu, S. Shen, Mixed finite elements for flexoelectric solids,
J. Appl. Mech. 84 (2017) 081004–081012.

[16] Z. Shuwen, L. Xu, X. Minglong, F. Bo, S. Shengping, Shear flexoelectric response
along 3121 direction in polyvinylidene fluoride, Appl. Phys. Lett. 107 (2015),
142902.

[17] S. Krichen, P. Sharma, Flexoelectricity: a perspective on an unusual
electromechanical coupling, J. Appl. Mech.-Trans. ASME 83 (2016) 5.

http://refhub.elsevier.com/S1386-9477(17)31794-0/sref1
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref1
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref1
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref1
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref2
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref2
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref2
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref2
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref3
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref3
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref3
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref4
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref4
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref4
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref5
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref5
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref5
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref6
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref6
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref6
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref7
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref7
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref8
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref8
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref8
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref9
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref9
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref9
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref9
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref10
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref10
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref10
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref11
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref11
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref12
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref12
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref12
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref12
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref13
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref13
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref13
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref14
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref14
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref15
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref15
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref15
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref16
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref16
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref16
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref17
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref17


Y. Zhou et al. Physica E: Low-dimensional Systems and Nanostructures 98 (2018) 148–158
[18] P. Mohammadi, L.P. Liu, P. Sharma, A theory of flexoelectric membranes and
effective properties of heterogeneous membranes, J. Appl. Mech.-Trans. ASME 81
(2014), 011007.

[19] Q. Deng, M. Kammoun, A. Erturk, P. Sharma, Nanoscale flexoelectric energy
harvesting, Int. J. Solid Struct. 51 (2014) 3218–3225.

[20] S. Yang, X. Zhao, P. Sharma, Revisiting the instability and bifurcation behavior of
soft dielectrics, J. Appl. Mech. 84 (2017) 031008.

[21] S. Yang, X. Zhao, P. Sharma, Avoiding the pull-in instability of a dielectric elastomer
film and the potential for increased actuation and energy harvesting, Soft Matter 13
(2017) 4552–4558.

[22] S.M. Kogan, Piezoelectric effect during inhomogeneous deformation and acoustic
scattering of carriers in crystals, Sov. Phys. Solid State 5 (1964) 2069–2070.

[23] L. Liu, P. Sharma, Emergent electromechanical coupling of electrets and some exact
relations — the effective properties of soft materials with embedded external
charges and dipoles, J. Mech. Phys. Solid. 112 (2018) 1–24.

[24] N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity-
theory and experiment, Acta Metall. Mater. 42 (1994) 475–487.

[25] J. Lei, Y. He, S. Guo, Z. Li, D. Liu, Size-dependent vibration of nickel cantilever
microbeams: experiment and gradient elasticity, AIP Adv. 6 (2016), 105202.

[26] I. Vardoulakis, G. Exadaktylos, S.K. Kourkoulis, Bending of marble with intrinsic
length scales: a gradient theory with surface energy and size effects, J. Phys. IV Fr. 8
(1998) 399–406.

[27] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in
strain gradient elasticity, J. Mech. Phys. Solid. 51 (2003) 1477–1508.

[28] H. Sadeghian, H. Goosen, A. Bossche, B. Thijsse, F. van Keulen, On the size-
dependent elasticity of silicon nanocantilevers: impact of defects, J. Phys. Appl.
Phys. 44 (2011), 072001.
158
[29] L. Zhang, B. Wang, S. Zhou, Y. Xue, Modeling the size-dependent nanostructures:
incorporating the bulk and surface effects, J. Nanomech. Micromech. 7 (2017),
04016012.

[30] R.D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal. 16
(1964) 51–78.

[31] R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J.
Solid Struct. 4 (1968) 109–124.

[32] S. Zhou, A. Li, B. Wang, A reformulation of constitutive relations in the strain
gradient elasticity theory for isotropic materials, Int. J. Solid Struct. 80 (2016)
28–37.

[33] A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of screw
dislocation and surface-waves, J. Appl. Phys. 54 (1983) 4703–4710.

[34] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient
theory for elasticity, Int. J. Solid Struct. 39 (2002) 2731–2743.

[35] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Arch.
Ration. Mech. Anal. 57 (1975) 291–323.

[36] N. Fleck, J. Hutchinson, A reformulation of strain gradient plasticity, J. Mech. Phys.
Solid. 49 (2001) 2245–2271.

[37] Z. Yan, L.Y. Jiang, Flexoelectric effect on the electroelastic responses of bending
piezoelectric nanobeams, J. Appl. Phys. 113 (2013), 194102.

[38] Z. Yan, Modeling of a nanoscale flexoelectric energy harvester with surface effects,
Phys. E Low-dimens. Syst. Nanostruct. 88 (2017) 125–132.

[39] R. Zhang, X. Liang, S. Shen, A Timoshenko dielectric beam model with flexoelectric
effect, Meccanica 51 (2016) 1181–1188.

http://refhub.elsevier.com/S1386-9477(17)31794-0/sref18
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref18
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref18
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref19
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref19
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref19
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref20
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref20
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref21
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref21
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref21
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref21
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref22
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref22
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref22
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref23
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref23
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref23
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref23
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref23
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref24
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref24
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref24
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref25
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref25
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref26
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref26
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref26
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref26
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref27
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref27
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref27
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref28
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref28
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref28
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref29
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref29
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref29
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref30
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref30
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref30
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref31
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref31
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref31
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref32
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref32
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref32
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref32
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref33
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref33
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref33
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref34
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref34
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref34
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref35
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref35
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref35
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref36
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref36
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref36
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref37
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref37
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref38
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref38
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref38
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref39
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref39
http://refhub.elsevier.com/S1386-9477(17)31794-0/sref39

	Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams
	1. Introduction
	2. Recalling the formulations of dielectric structure
	3. Formulation of a dielectric nanobeam
	3.1. Cantilever beam
	3.2. C-C and S-S beams
	3.3. Solution of boundary value problems in static bending

	4. Numerical results
	5. Conclusion
	Acknowledgements
	Appendix A. Supplementary data
	Appendix A. Supplementary data
	References




