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Abstract: To precisely model the size dependencies in nanostructures, the surface effect and bulk effect are incorporated. From the physical
point of view, size dependencies stem from not only the surface, but also the bulk. The surface energy theory and strain gradient elasticity
theory are introduced to characterize the surface effect and bulk effect, respectively. The new models for Bernoulli-Euler and Timoshenko
beams are developed. Governing equations, initial conditions, and boundary conditions are derived simultaneously by using Hamilton’s
principle. The new models, incorporating the Poisson effect, contain three material length scale parameters and three surface elasticity con-
stants to capture the size effect in the bulk and surface layer of the beam, respectively. The models recover the models, where either the bulk
effect or the surface effect is considered, and also can degenerate into the corresponding modified couple stress models or the classical models
when some constants are ignored. In addition, the new Timoshenko beam model recovers the new Bernoulli-Euler beam when shear
deformation is ignored. To illustrate the new models, the static bending and free vibration problems of the simply supported nanoscale
Bernoulli-Euler and Timoshenko beams are solved, respectively. Numerical results reveal that the differences in the deflection, rotation,
and natural frequency predicted by the present model and the other models are large when the beam thickness is small. These differences,
however, are decreasing or even diminishing with the increase in the size of the beams. The models may guide the precise design of nano-
beam-based devices for a wide range of potential applications. DOI: 10.1061/(ASCE)NM.2153-5477.0000117.© 2016 American Society of
Civil Engineers.
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Introduction

Micro/nanostructures such as beams and plates have been widely
used in microelectromechanical system (MEMS) and nanoelectro-
mechanical system (NEMS) devices. Numerous experiments
have observed the size-dependent behaviors in metals (Poole et al.
1996), brittle materials (Vardoulakis et al. 1998), polymers (Lam
and Chong 1999; Lam et al. 2003; McFarland and Colton 2005),
and polysilicon (Chasiotis and Knauss 2003; Sadeghian et al.
2011). These behaviors cannot be explained using the classical
continuum theory, which has no material length scale parameters.
Recently, size-dependent continuum theories have thus received in-
creasing attention in modeling micro/nanostructures and devices,
such as nonlocal continuum theory (Eringen 1983), surface energy
theory (Gurtin andMurdoch 1975), couple stress theory (Yang et al.
2002), and strain gradient elasticity theory (Lam et al. 2003).

When applying the nonlocal theory (Eringen 1983), a paradoxi-
cal conclusion arises: The small length-scale effect vanishes in the
bending deflection for the Euler-Bernoulli cantilever nanobeam
under a transverse point load (Liang et al. 2015). Moreover, the
nonlocal theory predicts a softening effect, which is inconsistent
with the stiffening effect observed in experiments (Lam et al. 2003).

For surface energy theory, it is considered that the surface prop-
erties cannot be overlooked in the study of nanostructures and
nanomaterials due to the large value of surface area to volume ratios
in nanoscale structures (Gurtin and Murdoch 1975). A number of
works have been conducted to study the size-dependent behaviors
in nanostructures (Jiang and Yan 2010; Koochi et al. 2013). With
surface energy effects considered, the general Euler-Bernoulli and
Timoshenko models based on the Gurtin–Murdoch continuum
theory were presented to analyze thick and thin nanoscale beams
with an arbitrary cross section (Chang and Rajapakse 2010). Gao’s
group also proposed beam and plate models with microstructure
and surface energy to study the size-dependent mechanical proper-
ties (Gao 2015; Gao and Mahmoud 2014; Shaat et al. 2014).

The couple stress theory is a nonclassical continuum theory in
which higher-order stresses, known as the couple stresses (Koiter
1964) exist. Afterward, Yang et al. (2002) modified the classical
couple stress theory and proposed a modified couple stress theory
involving only one additional material length scale parameter
(MLSP). Since then, numerous works have emerged and been
developed to study the size effect of the linear and nonlinear
Bernoulli–Euler beam (Fathalilou et al. 2014; Park and Gao 2006;
Xia et al. 2010), the linear and nonlinear Timoshenko beam
(Asghari et al. 2010b; Ma et al. 2008), the linear functionally graded
Euler-Bernoulli beam (Asghari et al. 2010a), the Timoshenko beam
(Asghari et al. 2011), the Kirchhoff plate (Tsiatas 2009), and pull-in
phenomena in MEMS (Yin et al. 2011).

The strain gradient elasticity theory (Lam et al. 2003), which
can reduce to the modified couple stress theory (Yang et al. 2002)
previously mentioned, introduces three MLSPs to capture the size
effects. In other words, the strain gradient elasticity theory is a more
general theory than the modified couple stress theory as the au-
thors’ previous work has pointed out (Wang et al. 2010). Strain
gradient elasticity theory has been applied to study the linear
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(Kong et al. 2009) and nonlinear (Zhao et al. 2012) Euler beam,
linear (Wang et al. 2010) and nonlinear (Asghari et al. 2010b)
Timoshenko beam, and Reddy-Levinson beam (Wang et al. 2014),
and is also employed to investigate the size-dependent pull-in phe-
nomena in MEMS (Liang et al. 2015; Wang et al. 2011c, 2012).

The modified couple stress theory only introduces symmetric
rotation gradient tensor, resulting in one length scale. While the
strain gradient theory introduces not only the symmetric rotation
gradient tensor but also the dilatation gradient tensor and the de-
viatoric stretch gradient tensor, resulting in three length scales.
These length scales are internal parameters for a given material
and should be determined from experiments with different sizes,
e.g., axial, uniaxial, tensile or compressive, torsional, or bending ex-
periments. The strain gradient theory can degenerate into the modi-
fied couple stress theory. That is, themodified couple stress theory is
a special case of the strain gradient theory. Compared with the modi-
fied couple stress theory, the strain gradient theory is more versatile.

It is noted that the surface energy theory characterizes the
size effect, considering only the effect of the surface layer; and
the modified couples stress theory and strain gradient theory char-
acterize the size effect, considering only the effect of the bulk
material. In other words, these theories characterize the size effect
either from the bulk part or from the surface part: the surface energy
theory is the former, while the modified couple stress theory and
strain gradient theory are the latter. In the current literatures, size
effect in miniaturized structures has been studied either from the
point of the bulk or from the surface, why not from both? Although
these theories are widely applied to study the size-dependent
behaviors individually, one has to admit that the mechanical proper-
ties are not only relative to the surface part but also relative to the
bulk part because the characteristic length is in the bulk, such as the
grain size or atomic lattice spacing. In literature, almost all the
works characterize the size effect either from the surface or from
the bulk (Wang et al. 2010, 2011a). Few works are carried out to
study the size effect with both effects included (Gao 2015; Gao and
Mahmoud 2014). The couple stress theory introduces only one
MLSP, while the strain gradient theory introduces three MLSPs.
Compared with the couple stress theory, the strain gradient theory
is versatile. But no work has been developed to study the size effect
based on the surface energy theory and strain gradient theory.

The paper aims to close the aforementioned gap by establishing
versatile size-dependent beam models incorporating the surface
and bulk effect. The rest of the paper is organized as follows.
In section “Formulation,” the variational formulations of the nano-
scale Bernoulli-Euler and Timoshenko beams based on the strain
gradient elasticity theory and surface energy theory are in detail
deduced by using the Hamilton’s principle. Then governing equa-
tions, initial conditions, and all possible boundary conditions are
obtained simultaneously. Subsequently, the static bending and free
vibration problems for the simply supported Bernoulli-Euler and
Timoshenko beams are solved respectively, and the corresponding
numerical results for both problems are analyzed and discussed in
section “Case Study for a Simply Supported Nanobeam.” Finally,
some major conclusions are summarized in section “Conclusions.”

Formulation

According to the strain gradient theory proposed by Lam et al.
(2003), the strain energy UB in a deformed isotropic linear elastic
material occupying region Ω is written as

UB ¼ 1

2

Z
Ω
ðσijεij þ piγi þ τ ð1Þijkη

ð1Þ
ijk þms

ijχ
s
ijÞdV ð1Þ

where

εij ¼
1

2
ðui;j þ uj;iÞ ð2Þ

γi ¼ εmm;i ð3Þ

ηð1Þijk ¼ ηsijk − 1

5
ðδijηsmmk þ δjkηsmmi þ δkiηsmmjÞ ð4Þ

χs
ij ¼

1

2
ðeipqεqj;p þ ejpqεqi;pÞ ð5Þ

where εij = strain tensor; γi = dilatation gradient tensor; ηð1Þijk =
deviatoric stretch gradient tensor; χs

ij = symmetric rotation gradient
tensor; ui = displacement vector; εmm = dilatation strain tensor;
δij, and eijk are the Knocker symbol and the alternate symbol, re-
spectively; and ηsijk = symmetric part of second-order displacement
gradient tensor, given by

ηsijk ¼
1

3
ðui;jk þ uj;ki þ uk;ijÞ ð6Þ

In the subsequent equations, unless otherwise stated, the index
notation will be used with repeated indices denoting summation
from 1 to 3.

And the corresponding stress measures are respectively given as

σij ¼ λδijεmm þ 2μεij ð7Þ

pi ¼ 2μl20γi ð8Þ

τ ð1Þijk ¼ 2μl21η
ð1Þ
ijk ð9Þ

ms
ij ¼ 2μl22χ

s
ij ð10Þ

where l0, l1, l2 = additional independent MLSPs associated with
the dilatation gradients, deviatoric stretch gradients, and symmetric
rotation gradients, respectively. The parameters λ and μ in the con-
stitutive equation of the classical stress σij are Lamé constants.
They can be written in terms of the Young modulus E and the Pois-
son’s ratio v as

λ ¼ Ev
ð1þ vÞð1 − 2vÞ ; μ ¼ E

2ð1þ vÞ ð11Þ

On the other hand, based on the surface elasticity theory
(Gurtin and Murdoch 1978), the in-plane components of the sur-
face stress tensor ταβ are given by

ταβ ¼ ½τ0 þ ðλ0 þ τ0Þuγ;γ �δαβ þ μ0ðuα;β þ uβ;αÞ − τ 0uβ;α ð12Þ

where τ 0 = residual surface stress (i.e., the surface stress at zero
strain), and μ0 and λ0 are the surface elastic constants, which
can be determined by atomistic simulations (Shenoy 2005). Obvi-
ously, Eq. (12) shows that ταβ is not symmetric.

The out-plane components of the surface stress tensor are given
by (Gurtin and Murdoch 1978)

τnα ¼ τ 0un;α ð13Þ

where n = direction of the outward unit normal n on the surface.

© ASCE 04016012-2 J. Nanomech. Micromech.
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Model of the Bernoulli-Euler Nanobeam

Consider a straight Bernoulli-Euler beam subjected to a static
lateral load qðxÞ, as shown in Fig. 1, in which the loading plane
coincides with the x-z plane, and the cross section of the beam par-
allels to the y-z plane. As shown in Fig. 1, the beam is considered to
have an elastic surface (mathematically zero thickness) perfectly
bonded to its bulk material. The surface layer has distinct material
properties and accounts for the surface energy effects (Gurtin and
Murdoch 1975, 1978).

According to the Bernoulli-Euler hypothesis, the displace field
of the beam can be expressed as

u1ðx; y; z; tÞ ¼ −z ∂wðx; tÞ∂x ; u2ðx; y; z; tÞ ¼ 0;

u3ðx; y; z; tÞ ¼ wðx; tÞ ð14Þ

Using Eqs. (2) and (14), the nonzero strain εij can be obtained as

ε11 ¼ −z ∂
2w
∂x2 ð15Þ

Substituting Eq. (15) into Eq. (3), it then follows that

γ1 ¼ −z ∂
3w
∂x3 ; γ3 ¼ −∂2w

∂x2 ð16Þ

From Eqs. (5) and (15), it leads to

χs
12 ¼ χs

21 ¼ − 1

2

∂2w
∂x2 ð17Þ

By using Eqs. (4), (6), and (14), it leads to

ηð1Þ111 ¼ − 2

5
z
∂3w
∂x3 ; ηð1Þ333 ¼

1

5

∂2w
∂x2 ;

ηð1Þ113 ¼ ηð1Þ311 ¼ ηð1Þ131 ¼ − 4

15

∂2w
∂x2

ηð1Þ221 ¼ ηð1Þ122 ¼ ηð1Þ212 ¼ ηð1Þ331 ¼ ηð1Þ133 ¼ ηð1Þ313 ¼
1

5
z
∂3w
∂x3

ηð1Þ223 ¼ ηð1Þ322 ¼ ηð1Þ232 ¼
1

15

∂2w
∂x2 ð18Þ

By substituting Eq. (15) into Eq. (7), the nonzero components of
stresses σij can be achieved

σ11 ¼ −ðλþ 2μÞz ∂
2w
∂x2 ; σ22 ¼ σ33 ¼ −λz ∂

2w
∂x2 ð19Þ

By using Eqs. (8)–(10) and (16)–(18), the nonzero components
of the stress measures pi, ms

ij, and τ ð1Þijk are respectively

p1 ¼ −2μl20z ∂
3w
∂x3 ; p3 ¼ −2μl20 ∂

2w
∂x2 ð20Þ

ms
12 ¼ ms

21 ¼ −μl22 ∂
2w
∂x2 ð21Þ

τ ð1Þ111 ¼ − 4

5
μl21z

∂3w
∂x3 ; τ ð1Þ333 ¼

2

5
μl21

∂2w
∂x2

τ ð1Þ113 ¼ τ ð1Þ311 ¼ τ ð1Þ131 ¼ − 8

15
μl21

∂2w
∂x2

τ ð1Þ221 ¼ τ ð1Þ122 ¼ τ ð1Þ212 ¼ τ ð1Þ331 ¼ τ ð1Þ133 ¼ τ ð1Þ313 ¼
2

5
μl21z

∂3w
∂x3

τ ð1Þ223 ¼ τ ð1Þ322 ¼ τ ð1Þ232 ¼
2

15
μl21

∂2w
∂x2 ð22Þ

From Eqs. (12)–(14), it follows that

τ xx ¼ τ0 − ðλ0 þ 2μ0Þz
∂2w
∂x2 ; τnx ¼ τ0nz

∂w
∂x ð23Þ

where nz ¼ z-component of the unit outward normal vector n to the
beam lateral surface.

The total strain energy in the elastically deformed beam is given
by

UT ¼ UB þUS ¼
1

2

Z
L

0

ZZ
A
ðσijεij þ piγi þ τ ð1Þijkη

ð1Þ
ijk þms

ijχ
s
ijÞ

× dAdxþ 1

2

Z
L

0

⨖ ∂Aτ ijεijdsdx ð24Þ

where UB = strain energy in the bulk of the beam based on the
strain gradient elasticity theory; andUS = strain energy in the surface
layer based on the surface elasticity theory. L = length of the beam,
A = cross-sectional area of the beam, and ∂A = boundary of A.

By using Eqs. (15)–(24), the first variation of the total strain
energy in the beam in the time interval ½0;T� can be determined
as [the superscript (i) denotes ith differentiation with respect to x]

δUT¼δUBþδUS

¼
Z

T

0

Z
L

0

½Swð4Þþðλ0þ2μ0ÞIPwð4Þ−Kwð6Þ−τ0SPw00�δwdxdt

þ
Z

T

0

½−Swð3ÞþKwð5Þ−ðλ0þ2μ0ÞIPwð3Þþτ0SPw0�δwjL0dt

þ
Z

T

0

�
Sw00−Kwð4Þþðλ0þ2μ0ÞIPw00−1

2
τ 0PA

�
δw0jL0dt

þ
Z

T

0

Kwð3Þδw00jL0dt ð25Þ

Fig. 1. Schematic of a nanobeam with surface layer

© ASCE 04016012-3 J. Nanomech. Micromech.
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where

K ¼ Ið2μl20 þ
4

5
μl21Þ;

S ¼ ðλþ 2μÞI þ 2μl20Aþ 8

15
μl21Aþ μl22A ð26Þ

in which

I ¼
Z
A
z2dA ð27Þ

and SP is defined as

SP ¼ ⨖ ∂An2zds ð28Þ
and PA, IP are the first and second moment of beam cross-sectional
perimeter, respectively, defined by

PA ¼ ⨖ ∂Azds ð29Þ

IP ¼ ⨖ ∂Az2ds ð30Þ

The first variation of the work can be written as

δW ¼
Z

L

0

qδwdxþ VδwjL0 þMδw 0jL0 þMhδw 0 0jL0 ð31Þ

where q = external force, V = boundary shear force, M and Mh are
the boundary classical and nonclassical moments, respectively.

The first variation of the kinetic energy of the beam, in the time
interval ½0;T�, can be determined to be

Z
T

0

δTdt ¼ δ
Z

T

0

Z
V

1

2
ρ

�∂w
∂t

�
2

dVdt

¼
Z

T

0

Z
L

0

ð−m0ẅδwÞdxdt þ
Z

L

0

ðm0ẇδwÞjt¼T
t¼0dx ð32Þ

where

m0 ¼ ρA; ẅ ¼ ∂2w
∂t2 ; ẇ ¼ ∂w

∂t ð33Þ

It is noted that some works (e.g., Kong et al. 2009) ignored
the kinetic energy corresponding to the velocity of u1, so it is
not considered here.

According to Hamilton’s principle

δ
Z

t2

t1

½T − ðUT −WÞ�dt ¼ 0 ð34Þ

by substituting Eqs. (25), (31), and (32) into Eq. (34), it then leads
to

Z
T

0

Z
L

0

½Swð4Þ þ ðλ0 þ 2μ0ÞIPwð4Þ − Kwð6Þ − τ0SPw 0 0 þm0ẅ − q�δwdxdt

þ
Z

T

0

½−Swð3Þ þ Kwð5Þ − ðλ0 þ 2μ0ÞIPwð3Þ þ τ0SPw 0 − V�δwjL0dt

þ
Z

T

0

�
Sw 0 0 − Kwð4Þ þ ðλ0 þ 2μ0ÞIPw 0 0 − 1

2
τ0PA −M

�
δw 0jL0dt

þ
Z

T

0

½Kwð3Þ −Mh�δw 0 0jL0dtþ
Z

L

0

�
m0

∂w
∂t δw

�
jt¼T
t¼0dx ¼ 0 ð35Þ

The preceding variation equation implies that each term must be equal to zero, so the governing equation of the beam is given by

Swð4Þ þ ðλ0 þ 2μ0ÞIPwð4Þ − Kwð6Þ − τ 0SPw 0 0 þm0ẅ − q ¼ 0 ð36Þ

The boundary conditions can be written as

½−Swð3Þ þ Kwð5Þ − ðλ0 þ 2μ0ÞIPwð3Þ þ τ0SPw 0 − V�jL0 ¼ 0 or w ¼ w̄ at x ¼ 0 and x ¼ L�
Sw 0 0 − Kwð4Þ þ ðλ0 þ 2μ0ÞIPw 0 0 − 1

2
τ 0PA −M

�����
L

0

¼ 0 or w 0 ¼ w̄ 0 at x ¼ 0 and x ¼ L

½Kwð3Þ −Mh�jL0 ¼ 0 or w 0 0 ¼ w̄ 0 0 at x ¼ 0 and x ¼ L ð37Þ

where the overbar represents the prescribed value.

And the initial conditions can be written as

ðm0ẇδwÞjt¼T
t¼0 ¼ 0 ð38Þ

Model of the Timoshenko Nanobeam

Consider a straight Timoshenko beam, which is subjected to dis-
tributed loads q, fu, and fϕ through the longitudinal axis x of the
beam, as shown in Fig. 1, in which the loading plane coincides with
the x-z plane, and the cross section of the beam parallels to the y-z
plane. As shown in Fig. 1, the beam also is considered to have an

elastic surface (mathematically zero thickness) perfectly bonded to
its bulk material. The surface layer has distinct material properties
and accounts for the surface energy effects.

The displacement fields based on the Timoshenko beam theory
can be given by (Dym and Shames 1973)

u1ðx; y; z; tÞ ¼ uðx; tÞ − zϕðx; tÞ; u2ðx; y; z; tÞ ¼ 0;

u3ðx; y; z; tÞ ¼ wðx; tÞ ð39Þ

By using Eqs. (2) and (39), the nonzero components of strain
tensor are

© ASCE 04016012-4 J. Nanomech. Micromech.
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ε11 ¼
∂u
∂x − z

∂ϕ
∂x ; ε13 ¼ ε31 ¼

1

2

�∂w
∂x − ϕ

�
ð40Þ

Substituting Eq. (40) into Eq. (3) then leads to

γ1 ¼
∂2u
∂x2 − z

∂2ϕ
∂x2 ; γ3 ¼ −∂ϕ

∂x ð41Þ

From Eqs. (5) and (40), it follows that

χs
12 ¼ χs

21 ¼ − 1

4

�∂2w
∂x2 þ ∂ϕ

∂x
�

ð42Þ

By using Eqs. (4), (6), and (39), it follows that

ηð1Þ111 ¼
2

5

�∂2u
∂x2 − z

∂2ϕ
∂x2

�
; ηð1Þ333 ¼ − 1

5

�∂2w
∂x2 − 2

∂ϕ
∂x

�

ηð1Þ113 ¼ ηð1Þ311 ¼ ηð1Þ131 ¼
4

15

�∂2w
∂x2 − 2

∂ϕ
∂x

�

ηð1Þ221 ¼ ηð1Þ122 ¼ ηð1Þ212 ¼ ηð1Þ331 ¼ ηð1Þ133 ¼ ηð1Þ313 ¼ − 1

5

�∂2u
∂x2 − z

∂2ϕ
∂x2

�

ηð1Þ223 ¼ ηð1Þ322 ¼ ηð1Þ232 ¼ − 1

15

�∂2w
∂x2 − 2

∂ϕ
∂x

�
ð43Þ

By substituting Eq. (40) into Eq. (7), the nonzero components of
stresses σij can be achieved

σ11 ¼ ðλþ 2μÞ
�∂u
∂x − z

∂ϕ
∂x

�
; σ22 ¼ σ33 ¼ λ

�∂u
∂x − z

∂ϕ
∂x

�
;

σ13 ¼ σ31 ¼ μ

�∂w
∂x − ϕ

�
ð44Þ

It is worth noting that the variation of σ13 and σ31 depends only
on x. In order to take the nonuniformity of the shear strain into
account over the beam cross section, a correction factor ks, which
depends on the shape of the beam cross section, is introduced to the
stress component σ13 and σ31 as follows:

σ13 ¼ σ31 ¼ ksμ

�∂w
∂x − ϕ

�
ð45Þ

By using Eqs. (8)–(10) and (41)–(43), the nonzero components
of the stress measures pi, ms

ij, and τ ð1Þijk are, respectively

p1 ¼ 2μl20

�∂2u
∂x2 − z

∂2ϕ
∂x2

�
; p3 ¼ −2μl20 ∂ϕ∂x ð46Þ

ms
12 ¼ ms

21 ¼ − 1

2
μl22

�∂2w
∂x2 þ

∂ϕ
∂x

�
ð47Þ

τ ð1Þ111 ¼
4

5
μl21

�∂2u
∂x2 − z

∂2ϕ
∂x2

�
; τ ð1Þ333 ¼ − 2

5
μl21

�∂2w
∂x2 − 2

∂ϕ
∂x

�

τ ð1Þ113 ¼ τ ð1Þ311 ¼ τ ð1Þ131 ¼
8

15
μl21

�∂2w
∂x2 − 2

∂ϕ
∂x

�

τ ð1Þ221 ¼ τ ð1Þ122 ¼ τ ð1Þ212 ¼ τ ð1Þ331 ¼ τ ð1Þ133 ¼ τ ð1Þ313 ¼ − 2

5
μl21

�∂2u
∂x2 − z

∂2ϕ
∂x2

�

τ ð1Þ223 ¼ τ ð1Þ322 ¼ τ ð1Þ232 ¼ − 2

15
μl21

�∂2w
∂x2 − 2

∂ϕ
∂x

�
ð48Þ

From Eqs. (12), (13), and (39), it follows that, with α, β ∈ fx; sg
on the beam lateral surface

τ xx ¼ τ 0 þ ðλ0 þ 2μ0Þ
�∂u
∂x − z

∂ϕ
∂x

�
;

τ xs ¼
�
ðμ0 − τ0Þ

∂w
∂x − μ0ϕ

�
ny ≡ τ xzny

τ sx ¼
�
μ0

∂w
∂x − ðμ0 − τ0Þϕ

�
ny ≡ τ xzny;

τnx ¼ τ 0nz
∂w
∂x ð49Þ

where ny and nz = y- and z-components of the unit outward normal
vector n to the beam lateral surface, respectively
(i.e., ny ¼ cos θ and nz ¼ sin θ). In addition, θ = angle between
the y-axis and the normal vector n, which is shown in Fig. 1,
and s denotes the direction of the unit tangent vector s on the boun-
dary of the beam cross section. When θ ¼ 0, τ xz and τ zx = the
values of τ xs and τ sx, respectively.

The total strain energy in the elastically deformed beam is
given by

UT ¼ UB þUS ¼
1

2

Z
L

0

ZZ
A
ðσijεij þ piγi þ τ ð1Þijkη

ð1Þ
ijk þms

ijχ
s
ijÞ

× dAdxþ 1

2

Z
L

0

⨖ ∂Aτ ijεijdsdx ð50Þ

where UB = strain energy in the bulk of the beam based on the
strain gradient elasticity theory; and US = strain energy in the sur-
face layer based on the surface elasticity theory. L = length of the
beam, A = cross-sectional area of the beam, and ∂A = boundary
of A.

By using Eqs. (40)–(50), the total strain energy is

UT ¼ UB þUS ¼
1

2

Z
L

0

ZZ
A
ðσijεij þ piγi þ τ ð1Þijkη

ð1Þ
ijk þms

ijχ
s
ijÞdAdxþ

1

2

Z
L

0

⨖ ∂Aτ ijεijdsdx

¼ 1

2

Z
L

0

ZZ
A
ðσ11ε11 þ 2σ13ε13 þ p1γ1 þ p3γ3 þ τ ð1Þ111η

ð1Þ
111 þ τ ð1Þ333η

ð1Þ
333 þ 3τ ð1Þ113η

ð1Þ
113 þ 3τ ð1Þ223η

ð1Þ
223 þ 6τ ð1Þ221η

ð1Þ
221 þ 2ms

12χ
s
12ÞdAdx

þ 1

2

Z
L

0

⨖ ∂Aðτ xxεxx þ τ xsεxs þ τ sxεsx þ 2τnxεnxÞdsdx ð51Þ

where

εsx ¼
1

2

�
−ϕþ ∂w

∂x
�
ny ¼ εxs; εnx ¼

1

2

∂w
∂x nz ¼ εxn ð52Þ

© ASCE 04016012-5 J. Nanomech. Micromech.
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By using Eqs. (40)–(52), the first variation of the total strain energy in the beam in the time interval ½0;T� can be determined as follows
[with the superscript (i) denoting the ith differentiation with respect to x]:

δ
Z

T

0

UTdt ¼ δ
Z

T

0

ðUB þUSÞdt ¼
Z

T

0

Z
L

0

ðfðuÞδuþ fðwÞδwþ fðϕÞδϕÞdxdt þ
Z

T

0

�
k2u 0 − k1uð3Þ þ Ns − 1

2
τ0Cp

�
δujx¼L

x¼0dt

þ
Z

T

0

k1u 0 0δu 0jx¼L
x¼0dtþ

Z
T

0

�
−k7wð3Þ þ k5w 0 þ k6ϕ 0 0 − k5ϕþ 1

2
Qs1 þ

1

2
Qs2 þ τ 0SPw 0

�
δwjx¼L

x¼0dt

þ
Z

T

0

ðk7w 0 0 − k6ϕ 0Þδw 0jx¼L
x¼0dtþ

Z
T

0

�
k4ϕ 0 − k6w 0 0 − k3ϕð3Þ −Ms þ

1

2
τ0PA

�
δϕjx¼L

x¼0dtþ
Z

T

0

k3δϕ 0jx¼L
x¼0dt ð53Þ

where

fðuÞ ¼ k1uð4Þ − k2u 0 0 − ∂Ns

∂x
fðwÞ ¼ k7wð4Þ − k6ϕð3Þ þ k5ð−w 0 0 þ ϕ 0Þ − 1

2

∂Qs1

∂x − 1

2

∂Qs2

∂x − τ0SPw 0 0

fðϕÞ ¼ k3ϕð4Þ þ k6wð3Þ − k4ϕ 0 0 þ k5ð−w 0 þ ϕÞ þ ∂Ms

∂x − 1

2
Qs1 − 1

2
Qs2 ð54Þ

and

k1 ¼ μA

�
2l20 þ

4

5
l21

�
; k2 ¼ Aðλþ 2μÞ; k3 ¼ μI

�
2l20 þ

4

5
l21

�

k4 ¼
�
μA

�
2l20 þ

32

15
l21 þ

1

4
l22

�
þ Iðλþ 2μÞ

�
; k5 ¼ ksμA

k6 ¼ μA

�
16

15
l21 − 1

4
l22

�
; k7 ¼ μA

�
8

15
l21 þ

1

4
l22

�
ð55Þ

where

I ¼
Z
A
z2dA ð56Þ

and

Ns ≡ ⨖ ∂Aτ xxds; Ms ≡ ⨖ ∂Aτ xxzds; Qs1 ≡ ⨖ ∂Aτ xzn2yds; Qs2 ≡ ⨖ ∂Aτ zxn2yds ð57Þ

and

SP ≡ ⨖ ∂An2zds; CP ≡ ⨖ ∂Ads; PA ≡ ⨖ ∂Azds ð58Þ

From Eqs. (49), (57), and (58), it leads to

Ns ¼
�
τ0 þ ðλ0 þ 2μ0Þ

∂u
∂x

�
CP − ðλ0 þ 2μ0ÞPA

∂ϕ
∂x

Ms ¼
�
τ0 þ ðλ0 þ 2μ0Þ

∂u
∂x

�
PA − ðλ0 þ 2μ0ÞIP

∂ϕ
∂x

Qs1 ¼
�
ðμ0 − τ0Þ

∂w
∂x − μ0ϕ

�
Tp; Qs2 ¼

�
μ0

∂w
∂x − ðμ0 − τ0Þϕ

�
Tp ð59Þ

where

IP ¼ ⨖ ∂Az2ds; TP ¼ ⨖ ∂An2yds ð60Þ

The first variation of the kinetic energy of the beam, in the time interval ½0;T� can be determined to be
Z

T

0

δTdt ¼ δ
Z

T

0

Z
V

1

2
ρ

��∂u1
∂t

�
2

þ
�∂u2

∂t
�

2

þ
�∂u3

∂t
�

2
�
dVdt

¼ −
Z

T

0

Z
L

0

�
m0

∂2u
∂t2 δuþm0

∂2w
∂t2 δwþm2

∂2ϕ
∂t2 δϕ

�
dxdtþ

Z
L

0

�
m0

∂u
∂t δuþm0

∂w
∂t δwþm2

∂ϕ
∂t δϕ

�����
t¼T

t¼0

dx ð61Þ

where

© ASCE 04016012-6 J. Nanomech. Micromech.
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m0 ¼ ρA; m2 ¼ ρI ð62Þ

The first variations of the work done by the forces applied on the beam in the time interval ½0;T� can be expressed as

δ
Z

T

0

Wdt ¼
Z

T

0

Z
L

0

ðfuδuþ qδwþ fϕδϕÞdxdtþ
Z

T

0

ðN0
uδuþ N1

uδu 0 þ N0
wδwþ N1

wδw 0 þ N0
ϕδϕþ N1

ϕδϕ
0Þjx¼L

x¼0dt ð63Þ

where fu and q are the x- and z-components of the body forces per unit length, respectively; and fϕ = body couple per unit length.
N0

u;N1
u;N0

w;N1
w;N0

ϕ;N
1
ϕ are external forces work conjugate to δu; δu 0; δw; δw 0; δϕ; δϕ 0, respectively

According to Hamilton’s principle

δ
Z

t2

t1

½T − ðUT −WÞ�dt ¼ 0 ð64Þ

By using Eqs. (53), (61), (63), and (64), it can be achieved

Z
T

0

Z
L

0

��
fu − fðuÞ −m0

∂2u
∂t2

�
δuþ

�
q − fðwÞ −m0

∂2w
∂t2

�
δwþ

�
fϕ − fðϕÞ −m2

∂2ϕ
∂t2

�
δϕ

�
dxdt

−
Z

T

0

��
k2u 0 − k1uð3Þ þ Ns − 1

2
τ 0Cp − N0

u

�
δuþ ðk1u 0 0 − N1

uÞδu 0 þ
�
k4ϕ 0 − k6w 0 0 − k3ϕð3Þ −Ms þ

1

2
τ 0PA − N0

ϕ

�
δϕ

þ ðk3 − N1
ϕÞδϕ 0 þ

�
1

2
Qs1 þ

1

2
Qs2 þ τ0SPw 0 − N0

w

�
δwþ ðk7w 0 0 − k6ϕ 0 − N1

wÞδw 0
�����

x¼L

x¼0

dt

þ
Z

L

0

�
m0

∂u
∂t δuþm0

∂w
∂t δwþm2

∂ϕ
∂t δϕ

�����
t¼T

t¼0

dx ¼ 0 ð65Þ

Due to the variation, Eq. (65) implies that each term must be equal to zero, it then leads to

fðuÞ ¼ fu −m0

∂2u
∂t2 ; fðwÞ ¼ q −m0

∂2w
∂t2 ; fðϕÞ ¼ fϕ −m2

∂2ϕ
∂t2 ð66Þ

By substituting Eq. (54) into Eq. (66), the governing equations of the beam are given by

k1uð4Þ − ½k2 þ ðλ0 þ 2μ0ÞCP�u 0 0 þ ðλ0 þ 2μ0ÞPAϕ 0 0 ¼ fu −m0

∂2u
∂t2

k7wð4Þ − k6ϕð3Þ þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
ð−w 0 0 þ ϕ 0Þ − τ0SPw 0 0 ¼ q −m0

∂2w
∂t2

k3ϕð4Þ þ k6wð3Þ − k4ϕ 0 0 þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
ð−w 0 þ ϕÞ þ ðλ0 þ 2μ0ÞPAu 0 0 − ðλ0 þ 2μ0ÞIPϕ 0 0 ¼ fϕ −m2

∂2ϕ
∂t2 ð67Þ

The boundary conditions can be written as

k2u 0 − k1uð3Þ þ Ns − 1

2
τ 0Cp ¼ N0

u or u ¼ ū at x ¼ 0 and x ¼ L

k1u 0 0 ¼ N1
u or u 0 ¼ ū 0 at x ¼ 0 and x ¼ L

1

2
Qs1 þ

1

2
Qs2 þ τ0SPw 0 ¼ N0

w or w ¼ w̄ at x ¼ 0 and x ¼ L

k7w 0 0 − k6ϕ 0 ¼ N1
w or w 0 ¼ w̄ 0 at x ¼ 0 and x ¼ L

k4ϕ 0 − k6w 0 0 − k3ϕð3Þ −Ms þ
1

2
τ0PA ¼ N0

ϕ or ϕ ¼ ϕ̄ at x ¼ 0 and x ¼ L

k3 ¼ N1
ϕ or ϕ 0 ¼ ϕ̄ 0 at x ¼ 0 and x ¼ L ð68Þ

where the overbar represents the prescribed value.

And the initial conditions can be written as

�
m0

∂u
∂t δu

�����
t¼T

t¼0

¼ 0;

�
m0

∂w
∂t δw

�����
t¼T

t¼0

¼ 0;

�
m2

∂ϕ
∂t δϕ

�����
t¼T

t¼0

¼ 0 ð69Þ

Actually, the governing equations and boundary conditions of
the new Timoshenko nanobeam model can degenerate into those

of the new Bernoulli-Euler model if the shear deformation is
ignored. Moreover, the new models can reduce to the correspond-
ing models, in which size effects either only from the surface or
only from the bulk are considered. These models can further reduce
to the models that are based on the modified couple stress theory
and the classical continuum theory. For clarity, the new models and
the reduced models are summarized in Table 1. (Note: CT, CS, and
SG represent the classical continuum model, the model based on
modified couple stress theory, and the model based on strain gra-
dient elasticity theory, respectively; SE represents surface effect.)

© ASCE 04016012-7 J. Nanomech. Micromech.
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Case Study for a Simply Supported Nanobeam

In order to illustrate the new size-dependent Bernoulli-Euler and
Timoshenko nanobeam models developed in section “Formu-
lation,” the static bending and free vibration problems of a simply
supported beam shown in Fig. 2 are solved in this section. For
simplicity, axial deformation is not considered in the following ex-
amples. The simply supported beam is subject to a concentrated
force at center point, and the geometrical parameters are given
in Fig. 2. Unless otherwise indicated, the beam studied here is taken
to be made of aluminum with the following properties (Liu and
Rajapakse 2010): the elastic modulus E ¼ 90 Gpa; the density
ρ ¼ 2,700 kg=m3; Poisson’s ratio v ¼ 0.23; the material length
scale parameter l ¼ 3 nm; l0 ¼ l1 ¼ l2 ¼ l, h0 ¼ 6 nm; the
thickness of the beam h ¼ k · h0; k is the dimensionless size
scale; b ¼ 0.5h; L ¼ 20h; P0 ¼ 1.0 nN; the concentrated force
P ¼ k · P0; and the surface material properties are μ0 ¼−5.4251 N=m, λ0 ¼ 3.4939 N=m, and τ0 ¼ 0.5689 N=m.

The boundary conditions of the static bending problem can
be identified as (Ma et al. 2008)

ujx¼0 ¼ ujx¼L ¼ 0; wjx¼0 ¼ wjx¼L ¼ 0

w 0 0jx¼0 ¼ w 0 0jx¼L ¼ 0; ϕ 0jx¼0 ¼ ϕ 0jx¼L ¼ 0 ð70Þ
For a rectangular cross section with height h and width b, using

Eqs. (56), (58), and (60), the following can be achieved:

I ¼ 1

12
bh3; IP ¼ 1

6
h3 þ 1

2
bh2; CP ¼ 2ðbþ hÞ;

SP ¼ 2b; TP ¼ 2h; PA ¼ 0 ð71Þ

Static Bending of Simply Supported Bernoulli-Euler
Nanobeam

For the static bending problem, the time derivatives are set to
zero in Eq. (36), then the governing equations for static problems
are given by

Swð4Þ þ ðλ0 þ 2μ0ÞIPwð4Þ − Kwð6Þ − τ0SPw 0 0 − q ¼ 0 ð72Þ

To derive the solutions, wðxÞ can be expanded as the following
Fourier series:

wðxÞ ¼
X∞
n¼1

WB
n sin

�
nπx
L

�
ð73Þ

where WB
n = Fourier coefficients. It is clear that the expansions

in Eq. (73) satisfy the boundary conditions in Eq. (70) for any WB
n.

Based on Eq. (73), the applied load qðxÞ can also be expanded in
a Fourier series as

qðxÞ ¼
X∞
n¼1

QB
n sin

�
nπx
L

�
ð74Þ

For a given qðxÞ, QB
n in Eq. (74) can be readily attained as

QB
n ¼ 2

L

Z
L
qðxÞ sin

�
nπx
L

�
dx ð75Þ

For the present problem as shown in Fig. 2,
qðxÞ ¼ Pδðx − L=2Þ, where δð·Þ is the Dirac delta function and
P is the concentrated force that has been given earlier. By substi-
tuting qðxÞ of Eq. (74) into Eq. (75), it then leads to

QB
n ¼ 2

L
P sin

�
nπ
2

�
ð76Þ

Substituting Eqs. (73) and (74) into Eq. (72), then, leads to

SWB
n

�
nπ
L

�
4

þ ðλ0 þ 2μ0ÞIPWB
n

�
nπ
L

�
4

þ KWB
n

�
nπ
L

�
6

þ τ 0SpWB
n

�
nπ
L

�
2

¼ QB
n ð77Þ

Solving the preceding linear equation [Eq. (77)], WB
n can be

calculated as

WB
n ¼ QB

n

SðnπL Þ4 þ ðλ0 þ 2μ0ÞIPðnπL Þ4 þ KðnπL Þ6 þ τ0SpðnπL Þ2
ð78Þ

The analytical solutions of wðxÞ for the static bending of the
simply supported Bernoulli-Euler beam subjected to the concen-
trated force P are determined by substituting Eq. (78) into Eq. (73).

Table 1. References for Different Beam Models

Different models

Bernoulli-Euler BEAM Timoshenko BEAM

Without SE With SE Without SE With SE

CT Dym and Shames (1973) Chang and Rajapakse (2010) Dym and Shames (1973) Chang and Rajapakse (2010)
CS Park and Gao (2006) Gao and Mahmoud (2014) Ma et al. (2008) Gao (2015)
SG Kong et al. (2009) Present work Wang et al. (2010) Present work

Fig. 2. Geometry and loading of a simply supported nanobeam

© ASCE 04016012-8 J. Nanomech. Micromech.
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The deflection wðxÞ of a Bernoulli-Euler beam is plotted in
Fig. 3. Here, k ¼ 1; the other parameters have been given earlier.
From Fig. 3, it can be seen that the size effect is rather obvious. The
deflection predicted by the present model is smaller than that pre-
dicted by the other five models. When the surface energy effects are
considered, the deflection is smaller than that predicted by the cor-
responding models without considering surface energy effects.

Fig. 4 shows the variation of displacement of the simply sup-
ported Bernoulli-Euler beam with the size scale of the beam for
different models. Here, the dimensionless size scale k is the ab-
scissa in Fig. 4, and the other parameters have been given earlier.
For the classical model, the normalized stiffness remains un-
changed as the size scale increases. And for the other five models,
apart from the classical model, the normalized stiffness increases
nonlinearly as the size scale increases. The differences between
these models are reduced with the size scale increasing, while with
a smaller size scale (i.e., smaller beam dimension for the same
material), the present model shows strong size effect, and that leads
to a higher normalized stiffness. Although the modified couple

stress model and strain gradient model can also predict the size
effect-induced increase of stiffness, the size-dependence is smaller
than the present model. The couple stress theory considers the ef-
fect of the symmetric rotation gradient tensor, while the strain gra-
dient theory considers the effects of the dilatation gradient tensor,
the deviatoric stretch gradient tensor, and the symmetric rotation
gradient tensor. Compared with the other models, the strain gra-
dient theory model is more versatile because it is more physical.
Fundamentally speaking, the increased stiffness predicted by the
present model is contributed by the surface energy effects and
the three strain gradient tensors of the strain gradient elasticity
theory that underpins this model.

Free Vibration of Simply Supported Bernoulli-Euler
Nanobeam

Considering the free vibration problem of a simply supported
Bernoulli-Euler beam shown in Fig. 2, all of the external force
vanishes. Then the equation of motion of the beam satisfies

Swð4Þ þ ðλ0 þ 2μ0ÞIPwð4Þ − Kwð6Þ − τ0SPw 0 0 þm0ẅ ¼ 0 ð79Þ

Similar to the procedure of a static bending problem, wðxÞ can
be expanded as the following Fourier series:

wðx; tÞ ¼
X∞
n¼1

WV
n sin

�
nπx
L

�
eiωnt ð80Þ

where ωn = vibration frequency; i = usual imaginary number; and
WV

n = Fourier coefficient. Clearly, the expansion in Eq. (80) satis-
fies the boundary conditions in Eq. (70) for any WV

n .
Substituting Eq. (80) into Eq. (79), then leads to

�
S

�
nπ
L

�
4

þ ðλ0 þ 2μ0ÞIP
�
nπ
L

�
4

þ K

�
nπ
L

�
6

þ τ 0SP

�
nπ
L

�
2 −m0ω2

n

�
WV

n ¼ 0 ð81Þ

For a nonzero solution of WV
n , it is required that

S

�
nπ
L

�
4

þ ðλ0 þ 2μ0ÞIP
�
nπ
L

�
4

þ K

�
nπ
L

�
6

þ τ 0SP

�
nπ
L

�
2

−m0ω2
n ¼ 0 ð82Þ

which leads to

ω2
n ¼

SðnπL Þ4 þ ðλ0 þ 2μ0ÞIPðnπL Þ4 þ KðnπL Þ6 þ τ0SPðnπL Þ2
m0

ð83Þ

ωn can be easily obtained:

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðnπL Þ4 þ ðλ0 þ 2μ0ÞIPðnπL Þ4 þ KðnπL Þ6 þ τ0SPðnπL Þ2

q
ffiffiffiffiffiffi
m0

p ð84Þ

Fig. 5 shows the change of the first order natural frequency of
the simply supported Bernoulli-Euler beam predicted by six models
with dimensionless thickness of the beam (k). From Fig. 5, it can be
seen that the natural frequency predicted by the present model is
larger than that predicted by the other five models. The results pre-
dicted by the models considering surface energy effects are larger
than those predicted by the corresponding models neglecting sur-
face energy effects. It is known that the higher frequency represents
the higher stiffness, which results in the smaller deflection, so that
shown in Fig. 5 is consistent with that shown in Fig. 4. With the

Fig. 3. Deflection of simply supported Timoshenko nanobeam based
on different models

Fig. 4. Deflection varying with dimensionless size scale k

© ASCE 04016012-9 J. Nanomech. Micromech.
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dimensionless size scale increasing, those differences gradually de-
crease. This illustrates that the size effect is prominent when the
beam thickness is very small.

Static Bending of Simply Supported Timoshenko
Nanobeam

For the static bending problem, the time derivatives are set to zero
in Eq. (67), the shear coefficient of Timoshenko beam ks is taken to
be ð5þ 5vÞ=ð6þ 5vÞ, and for simplicity, the axial deformation is
not considered here (fu ¼ 0), then the governing equations for
static problems are given by

k7wð4Þ − k6ϕð3Þ þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
ð−w 0 0 þ ϕ 0Þ − τ0SP ¼ q

k3ϕð4Þ þ k6wð3Þ − k4ϕ 0 0 þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�

× ð−w 0 þ ϕÞ þ ðλ0 þ 2μ0ÞPAu 0 0 − ðλ0 þ 2μ0ÞIPϕ 0 0 ¼ 0 ð85Þ

To derive the solutions, wðxÞ and ϕðxÞ can be expanded as the
following Fourier series:

wðxÞ ¼
X∞
n¼1

WT
n sin

�
nπx
L

�
; ϕðxÞ ¼

X∞
n¼1

ΦT
n cos

�
nπx
L

�
ð86Þ

where WT
n and ΦT

n = Fourier coefficients. It is clear that the expan-
sions in Eq. (86) satisfy the boundary conditions in Eq. (70) for
any WT

n and ΦT
n .

Based on Eq. (86), the applied load qðxÞ can also be expanded
in a Fourier series as

qðxÞ ¼
X∞
n¼1

QT
n sin

�
nπx
L

�
ð87Þ

For a given qðxÞ, QT
n in Eq. (87) can be readily attained as

QT
n ¼ 2

L

Z
L
qðxÞ sin

�
nπx
L

�
dx ð88Þ

For the present problem, qðxÞ ¼ Pδðx − L=2Þ, where P =
concentrated force, which has been given before and δð·Þ = Dirac
delta function. By substituting qðxÞ of Eq. (87) into Eq. (88), then it
leads to

QT
n ¼ 2

L
P sin

�
nπ
2

�
ð89Þ

Substituting Eqs. (86) and (87) into Eq. (85), then, leads to�
k7

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ τ0SP

	�
nπ
L

�
2

WT
n −

�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ 0ÞTp

�	
nπ
L

ΦT
n ¼ QT

n

�
k3

�
nπ
L

�
4

þ k4

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ ðλ0 þ 2μ0ÞIP

�
nπ
L

�
2
	
ΦT

n −
�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	
nπ
L

WT
n ¼ 0

ð90Þ
Solving the linear equation [Eq. (90)], WT

n and ΦT
n can be achieved:

WT
n ¼ fk3ðnπL Þ4 þ k4ðnπL Þ2 þ ½k5 þ 1

2
ð2μ0 − τ0ÞTp� þ ðλ0 þ 2μ0ÞIPðnπL Þ2gQT

n

Δ

ΦT
n ¼ fk6ðnπL Þ2 þ ½k5 þ 1

2
ð2μ0 − τ0ÞTp�g nπ

L QT
n

Δ
ð91Þ

where

Δ ¼
�
k7

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ τ0SP

	��
k3

�
nπ
L

�
2

þ k4 þ ðλ0 þ 2μ0ÞIP
��

nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ 0ÞTp

�	�
nπ
L

�
2

−
�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	�
nπ
L

�
2

ð92Þ

The analytical solutions of wðxÞ and ϕðxÞ for the static
bending of the simply supported Timoshenko beam subjected
to the concentrated force P are determined by using Eqs. (86),
(91), and (92).

Using the newly developed Timoshenko beam model, the static
bending problem of a simply supported Timoshenko beam is inves-
tigated. Here, k ¼ 1, and for simplicity, parameters have been given
earlier. Figs. 6 and 7 show the deflection and the corresponding

Fig. 5. Normalized natural frequency varying with size scale for dif-
ferent models
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rotation of the simply supported Timoshenko beam, respectively. It
can be clearly observed that the deflection predicted by the present
model is smaller than that of the other five models. The absolute
values of the rotation of the simply supported Timoshenko beam
predicted by three models in Fig. 7, show the similar trend as shown
in Fig. 6.

Fig. 8 shows the variation of displacement of the simply sup-
ported Timoshenko beam with the dimensionless size scale of
the beam. For the classical model, the normalized stiffness remains
unchanged as the size scale increases. And for the other five mod-
els, apart from the classical model, the normalized stiffness in-
creases nonlinearly as the size scale increases. The differences
between these models reduce with the size scale increasing, while
with a smaller size scale the present model shows strong size effect,
and that leads to a higher normalized stiffness. Although the modi-
fied couple stress model and strain gradient model can also predict
the size effect-induced increase of stiffness, the size-dependence is
smaller than the present model. Compared to the modified couple
stress theory, the strain gradient elasticity theory introduces addi-
tional dilatation gradient tensor and the deviatoric stretch gradient
tensor in addition to the symmetric rotation gradient tensor. So the
strain gradient theory is more versatile. Fundamentally speaking,

the increased stiffness predicted by the present model is contributed
by the surface energy effects and the three strain gradient tensors of
the strain gradient elasticity theory that underpins this model.

Free Vibration of Simply Supported Timoshenko
Nanobeam

Considering the free vibration problem of a simply supported
Timoshenko beam shown in Fig. 2, all of the external force
vanishes. Then the equations of motion of the beam satisfies

k7wð4Þ − k6ϕð3Þ þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
ð−w 0 0 þ ϕ 0Þ − τ0SPw 0 0

¼ −m0

∂2w
∂t2

k3ϕð4Þ þ k6wð3Þ − k4ϕ 0 0 þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
ð−w 0 þ ϕÞ

þ ðλ0 þ 2μ0ÞPAu 0 0 − ðλ0 þ 2μ0ÞIPϕ 0 0 ¼ −m2

∂2ϕ
∂t2 ð93Þ

Similar to the procedure of the static bending problem, wðxÞ and
ϕðxÞ can be expanded as the following Fourier series:

wðx; tÞ ¼
X∞
n¼1

WD
n sin

�
nπx
L

�
eiωnt;

ϕðx; tÞ ¼
X∞
n¼1

ΦD
n cos

�
nπx
L

�
eiωnt ð94Þ

where ωn = vibration frequency; i = usual imaginary number; WD
n

and ΦD
n = Fourier coefficients. Clearly, the expansions in Eq. (94)

satisfy the boundary conditions in Eq. (70) for any WD
n and ΦD

n .
Substituting Eq. (94) into Eq. (93), then leads to

�
a1 a2

a3 a4

��
WD

n

ΦD
n

	
¼ 0 ð95Þ

where

Fig. 6. Deflection of simply supported Timoshenko beam

Fig. 7. Rotation of simply supported Timoshenko beam

Fig. 8. Deflection varying with dimensionless size scale
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a1 ¼ k7

�
nπ
L

�
4

þ
�
k5 þ

1

2
ð2μ0 − τ 0ÞTp

��
nπ
L

�
2

þ τ0SP

�
nπ
L

�
2 −m0ω2

n

a2 ¼ −
�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	
nπ
L

a3 ¼ −
�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	
nπ
L

a4 ¼ k3

�
nπ
L

�
4

þ k4

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ ðλ0 þ 2μ0ÞIP

�
nπ
L

�
2 −m2ω2

n ð96Þ

For a nonzero solution of WD
n and ΦD

n , it is required that the determinant of the coefficients matrix of Eq. (95) vanishes, which leads to

e1ω4
n þ e2ω2

n þ e3 ¼ 0 ð97Þ
where

e1 ¼ m0m2

e2 ¼ −
�
k7

�
nπ
L

�
4

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

��
nπ
L

�
2

þ τ0SP

�
nπ
L

�
2
	
m2

−m0

�
k3

�
nπ
L

�
4

þ k4

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ ðλ0 þ 2μ0ÞIP

�
nπ
L

�
2
	

e3 ¼
�
k7

�
nπ
L

�
4

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

��
nπ
L

�
2

þ τ0SP

�
nπ
L

�
2
	�

k3

�
nπ
L

�
4

þ k4

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�
þ ðλ0 þ 2μ0ÞIP

�
nπ
L

�
2
	
−
�
k6

�
nπ
L

�
2

þ
�
k5 þ

1

2
ð2μ0 − τ0ÞTp

�	
2
�
nπ
L

�
2

ð98Þ

The equation of ω2
n can be easily obtained by solving the quad-

ratic equation [Eq. (97)]:

ω2
n ¼

−e2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e22 − 4e1e3

p
2e1

ð99Þ

Fig. 9 shows the change of the first order natural frequency of
the simply supported Timoshenko beam predicted by different
models with the dimensionless size scale of the beam. From Fig. 9,
it can be seen that the natural frequency predicted by the present

model is larger than that predicted by the other five models. The
results predicted by the models considering surface energy effects
are larger than those predicted by the corresponding models ne-
glecting surface energy effects. The higher frequency represents
the higher stiffness, which results in the smaller deflection, so that
shown in Fig. 9 is consistent with that shown in Fig. 8. With the
dimensionless thickness increasing, those differences gradually de-
crease, which illustrates that the size effect is prominent when the
beam thickness is very small.

Conclusions

With size effect originating from the surface and bulk included, the
size-dependent nanoscale Bernoulli-Euler and Timoshenko beam
models are developed based on surface elasticity theory and strain
gradient elasticity theory by a variational method. The new models,
containing three material length scale parameters and three surface
elasticity constants, can capture the size effect in the bulk and sur-
face layer of the beam. These two models recover the models con-
sidering only the microstructure dependence or the surface energy
effect. And these two models also can degenerate into the modified
couple stress models or the classical models as limiting cases. In
addition, the new Timoshenko beam model recovers the new Ber-
noulli-Euler beam when shear deformation is ignored. The static
bending and free vibration problems of a simply supported nano-
scale Bernoulli-Euler beam and Timoshenko beam are solved re-
spectively to illustrate the new models. Numerical results reveal
that the differences in the deflection, rotation, and natural frequency
predicted by the present model and the other models are large when
the size of the beam is small. These differences, however, are de-
creasing or even diminishing with the increase of the size of
the beam.

Fig. 9. Normalized natural frequency varying with dimensionless size
scale for different models
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