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a b s t r a c t 

The influences of surface mechanical properties effects on the dynamic characteristics of 

a circular micro-diaphragm with a partially uniformly distributed mass are investigated. 

Surface mechanical properties effects on two sides are considered to be different as one 

side of the diaphragm contacts with biochemical media. A size-dependent analytical model 

is developed based on the thin plate theory and surface elasticity theory for the micro- 

diaphragm with a partially uniformly distributed mass. The Galerkin procedure is used 

to solve the governing equation. The size-dependence of the natural frequency and mass 

sensitivity of the micro-diaphragm with different surface mechanical properties effects is 

discussed. Results show that the influences of different surface mechanical properties ef- 

fects on the natural frequency and mass sensitivity are more significant for thinner micro- 

diaphragms. The influences depend on the differences in the surface mechanical properties 

effects of the two surfaces. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Resonant micro-biochemical sensors play important roles in a wide range of emerging applications to detect biochemical

molecules, such as environment monitoring and medical home care [1–4] . As the resonators of micro-biochemical sensors,

micro-diaphragms are used to detect biological targets by measuring the shift of the natural frequencies [5–7] . The dynamic

characteristics of micro-diaphragms can be influenced by multiple effects including coupling effects of media, changing in

surface mechanical properties induced by biochemical media, mass loading of adsorbates and surface effects for micro-

components. The influences of one or more effects on the dynamic characteristics of macro/micro diaphragms are investi-

gated by many researchers. 

The coupling vibration of an elastic plate contacting with water on one side was studied by Lamb [8] , in which the as-

sumed mode shapes approach was used and only two mode shapes were adopted. Considering all mode shapes, Amabili and

Kwak [9] revised Lamb’s model to analyze the free vibration of circular plates in contact with water. Wu et al. [10] extended

Lamb’s fluid-solid coupled model in analyzing the effects of a distributed mass on dynamic characteristics of rectangular

plates in fluid. 
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The free vibration of a simply supported rectangular plate with a uniformly distributed mass in different locations was

analyzed by Kopmaz and Telli [11] . Wong [12] analyzed the effects of the size and location of a distributed mass on the

frequencies and mode shapes of a simply supported rectangular plate. The forced vibration of viscoelastically supported

plates with a distributed mass was also be studied by many researchers [13–15] . These studies were performed for macro-

plates. 

For micro-plates, surface effects are prominent due to the increasing surface-to-bulk ratio [16] . To research the influence

of surface effects on the free vibration of micro-plates, Lim and He [17] developed a thin plate theory based on the surface

elasticity theory [18,19] . In this theory, the surface equilibrium relations could not be satisfied because of neglecting the

normal stress along the surface of the bulk. Lu et al. [16] modified this model by introducing a linear normal stress in

studying the size-dependent static and dynamic analysis of micro-plates. The modified model was applied to FGM plates

with different surface properties by Lü et al . [20,21] . The influence of surface stresses on the vibration of circular nano-

plates under various boundary conditions was analyzed applying the surface elasticity theory by Ansari et al . [22] . Using

the same theory, a size-dependent analytical model for the forced vibration of rectangular nano-plates were developed [23] .

Some other models based on this theory was proposed in analyzing the influence of surface effects on the deformation and

vibration of nano-plates [24,25] . The shear deformation and rotational inertia were taken into account in studying the size-

dependent vibration behaviors of nano-plates by Ansari and Sahmani [26] based on the surface elasticity theory. Assadi and

Farshi [27] developed a size-dependent model for circular nano-plates by applying the modified laminated plate theory in

studying the influence of surface effects on vibration behaviors. In above studies, the combined influences of surface effects

and distributed mass, especially the different surface effects, on the dynamic characteristics of micro-components remain

insufficiently investigated. 

The purpose of this study is to develop an analytical model including different surface mechanical properties on two sur-

faces of a micro-diaphragm with a partially uniformly distributed mass. The governing equation is derived in Section 2 based

on the thin plate theory and surface elasticity theory. In Section 3 , the Galerkin method is introduced to solve the dynamic

problem of the micro-diaphragm with surface mechanical properties effects and a distributed mass, and the approximate

solution is obtained. The numerical results for natural frequency and mass sensitivity are presented in Section 4 . The re-

sults of the new model are compared with the results of existing models. The size-dependent natural frequency and mass

sensitivity of a circular micro-diaphragm with different material properties on top and bottom surfaces are discussed, re-

spectively. The influence of the region of distributed mass on mass sensitivity is also discussed. Finally some concluding

remarks are summarized in Section 5 . 

2. Equations of motion 

A circular micro-diaphragm with radius a and thickness h is considered here. The elasticity modulus, Poisson’s ratio, and

mass density of the bulk material of the micro-diaphragm are E, v and ρ , respectively. Surface elasticity modulus E + 
0 

, E −
0 

are

used to model the surface mechanical properties effects of top and bottom surfaces. For simplicity, the residual surface stress

τ 0 , Poisson’s ratio ν0 and density ρ0 of the top and bottom surfaces are considered to have the same value. The partially

uniformly distributed mass m d with a radius of r 0 is considered to represent the adsorbates, which is located in the centre

of the top surface, as shown in Fig. 1. 

A dynamic equation including different surface mechanical properties on the top and bottom surfaces of a micro-

diaphragm with a partially uniformly distributed mass can be developed based on Kirchhoff’s plate theory. Considering

the middle plane deformation induced by the same residual surface stress of the top and bottom surfaces, the displacement

components including the elongation or compression of the middle plane are adopted. 

u α = u 

0 
α − z u 3 ,α, u 3 = w (r, θ, t) , (1)

where u α are the displacement components, u 0 α are the middle plane displacements induced by the residual surface stress

and w ( r , θ , t ) is the deflection of the middle plane in the plate along z-axis. In Eq. (1) and followings, the Greek subscripts

represent 1 and 2, while the Latin subscripts represent 1, 2 and 3. The corresponding non-zero strain components are given

by 

ε αβ = ε 0 αβ − z u 3 ,αβ, ε 0 αβ = 

1 

2 

(u 

0 
α,β + u 

0 
β,α ) , (2)

As surface mechanical properties effects are considered, the constitutive relations of the bulk and surface materials are

different. For isotropic materials, the constitutive relations of the bulk are expressed as 

σi j = λ(ε 0 kk − z u 3 ,kk ) δi j + 2 μ(ε 0 i j − z u 3 ,i j ) , (3)

where σ ij are the stress components, λ and μ are the Lame’s constants of the bulk material and δij is the Kronecker delta.

The constitutive relations of the surface are given by [18,19,28] 

σ+ 
αβ

= τ0 δαβ + (μ+ 
0 − τ0 )(u 

+ 
α,β

+ u 

+ 
β,α

) + (λ+ 
0 + τ0 ) u 

+ 
γ ,γ δαβ + τ0 u 

+ 
α,β

, σ+ 
α3 = τ0 u 

+ 
3 ,α, (4)

σ−
αβ

= τ0 δαβ + (μ−
0 − τ0 )(u 

−
α,β

+ u 

−
β,α

) + (λ−
0 + τ0 ) u 

−
γ ,γ δαβ + τ0 u 

−
α,β

, σ−
α3 = τ0 u 

−
3 ,α, (5)
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Fig. 1. Circular micro-diaphragm with surface mechanical properties and a partially uniformly distributed mass. 

 

 

 

 

 

where μ0 and λ0 are surface Lame’s constants, the superscripts ‘ + ’ and ‘ −’ denote the stresses and displacements on the

top and bottom surfaces, respectively. 

The equilibrium relations for the body of the micro-diaphragm without body forces are given by 

σi j, j = ρü i . (6) 

The equilibrium equations of surfaces are different from those of the body because of surface mechanical properties

effects [18,28] . 

σ+ 
iβ,β

− σ+ 
i 3 

= ρ0 ̈u 

+ 
i 

at z = h/ 2 . (7) 

σ−
iβ,β

+ σ−
i 3 

= ρ0 ̈u 

−
i 

at z = −h / 2 . (8) 

The surface equilibrium Eqs. (7) and (8) will not be satisfied for the thin plate theory, because the normal stress is

assumed to be zero. To modify this problem, the normal stress σ 33 is assumed to be [16] 

σ33 = 

1 

2 

(σ+ 
3 β,β

− σ−
3 β,β

− ρ0 ̈u 

+ 
3 + ρ0 ̈u 

−
3 ) + 

1 

h 

(σ+ 
3 β,β

+ σ−
3 β,β

− ρ0 ̈u 

+ 
3 − ρ0 ̈u 

−
3 ) z. (9) 

Considering the normal stress, the bulk constitutive relations can be simplified as 

σiβ = 

E 

1 + v 
[(ε 0 iβ − z u 3 ,iβ ) + 

v 
1 − v 

(ε 0 αα − z u 3 ,αα) δiβ ] + 

v 
1 − v 

σ33 δiβ . (10) 

By multiplying the body equilibrium relation Eq. (6) by dz and zdz , respectively, and integrating on the thickness, the

equilibrium equations expressed by the resultant forces and moments can be obtained. 

Q iα,α + σ+ 
i 3 

− σ−
i 3 

= 

∫ h/ 2 

−h/ 2 

ρü i dz, (11) 

M iα,α −
∫ h/ 2 

−h/ 2 

σi 3 dz + 

h 

2 

(σ+ 
i 3 

− σ−
i 3 

) = 

∫ h/ 2 

−h/ 2 

ρü i dz, (12) 

in which Q iα = 

∫ h/ 2 
−h/ 2 

σiαdz are the resultant forces and M iα = 

∫ h/ 2 
−h/ 2 

σiαzdz are the resultant moments. For simplicity, the

generalized resultant forces Q i 
∗
α and resultant moments M 

∗
iα are introduced in the following form [16] . 

Q 

∗
iα = Q iα + σ+ 

iα + σ−
iα, (13) 

M 

∗
αβ = M αβ + 

h 

(σ+ 
αβ

−σ−
αβ

) . (14) 

2 
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With the help of surface equilibrium Eqs. (7) and (8) , the equilibrium Eqs. (11) and (12) for the resultant forces and

moments can be expressed by the generalized resultant forces and moments. 

Q 

∗
iα,α = 

∫ h/ 2 

−h / 2 

ρü i dz + ρ0 ( ̈u 

+ 
i 

+ ü 

−
i 
) , (15)

M 

∗
αβ,β − Q 

∗
3 α + σ+ 

3 α + σ−
3 α = 

∫ h/ 2 

−h / 2 

ρü αzdz + 

h 

2 

ρ0 ( ̈u 

+ 
α − ü 

−
α ) . (16)

By using the constitutive relations of the surface and bulk, the resultant forces Q αβ and resultant moments M αβ can be

obtained, then the generalized resultant forces Q 

∗
αβ

and resultant moments M 

∗
αβ

are expressed as 

Q 

∗
αβ = 2 τ0 ( δαβ + u 

0 
α,β ) + 

[
Eh 

1 + v 
+ 2(μ+ 

0 + μ−
0 − 2 τ0 ) 

]
ε 0 αβ + 

[
Eh v 

1 − v 2 
+ (λ+ 

0 + λ−
0 + 2 τ0 ) 

]
ε 0 ααδαβ, (17)

M 

∗
αβ = −

[
E h 

3 

12(1 + v ) 
+ 

(μ+ 
0 

+ μ−
0 
) h 

2 

4 

]
u 3 ,αβ −

[
(λ+ 

0 
+ λ−

0 
) 

4 

+ 

τ0 (3 − 4 v ) 
6(1 − v ) 

]
h 

2 u 3 ,γ γ δαβ − h 

2 v 
6(1 − v ) 

ρ0 ̈u 3 δαβ . (18)

Substituting Eqs. (17) and (18) into the equilibrium Eqs. (15) and (16) , the equations can be expressed by displacements

as [
Eh 

2(1 + v ) 
+ (μ+ 

0 + μ−
0 − 2 τ0 ) 

]
(u 

0 
α,ββ + u 

0 
β,αβ ) + 

[
Eh v 

(1 − v 2 ) 
+ (λ+ 

0 + λ−
0 + 2 τ0 ) 

]
u 

0 
α,αβδαβ, 

+2 τ0 u 

0 
α,ββ = (ρh + 2 ρ0 ) ̈u 

0 
α, (19)

−
[

E h 

3 

12(1 + v ) 
+ 

(μ+ 
0 

+ μ−
0 
) h 

2 

4 

]
u 3 ,αβαβ −

[
(λ+ 

0 
+ λ−

0 
) 

4 

+ 

τ0 (3 − 4 v ) 
6(1 − v ) 

]
h 

2 u 3 ,γ γ αβδαβ + 2 τ0 u 3 ,αα. 

= (ρh + 2 ρ0 ) ̈u 3 −
[
ρh 

3 

12 

+ 

(3 − 4 v ) ρ0 h 

2 

6(1 − v ) 

]
ü 3 ,αα (20)

The middle plane elongation or compression u 0 α induced by the residual surface stress τ 0 can be obtained by solving

Eqs. (19) , and (20) is the transverse dynamic equation including surface mechanical properties effects. If the top and bottom

surfaces have the same material parameters, the equilibrium Eqs. (19) and (20) will reduce to the model without external

forces and moments given by Lu et al. [16] . It can be seen that Eqs. (19) and (20) are uncoupled, that is, the initial deforma-

tion induced by the residual surface stress has no effect on the transverse vibration. For a micro-diaphragm with a partially

uniformly distributed mass, the effect of the mass can be equivalent to a transverse inertia force. Thus, by introducing the

transverse inertia force into Eq. (20) , the governing equation that includes the partially uniformly distributed mass in the

form of deflection for micro-diaphragms can be obtained. 

D 

∗∇ 

4 w − 2 τ0 ∇ 

2 w + 

[
ρh + 2 ρ0 + 

m d 

π r 2 
0 

H(ξ , ξ0 ) 

]
∂ 2 w 

∂ t 2 
−

[
ρh 

3 

12 

+ 

(3 − 4 v ) ρ0 h 

2 

6(1 − v ) 

]
∇ 

2 ẅ = 0 , (21)

where H( ξ , ξ 0 ) is the Heaviside function used to define the region of the distributed mass 

H(ξ , ξ0 ) = 

{
0 ξ > ξ0 

1 ξ ≤ ξ0 
, (22)

the non-dimensional parameters ξ and ξ 0 are defined as 

ξ = 

r 

a 
, ξ0 = 

r 0 
a 

(0 ≤ ξ0 ≤ 1 , 0 ≤ ξ ≤ 1) , (23)

the symbols ∇ 

4 and ∇ 

2 are the biharmonic operator and Laplace operator in non-dimensional polar coordinates. D 

∗ is the

effective flexural rigidity including surface mechanical properties effects 

D 

∗ = D + 

h 

2 

4 

(μ+ 
0 + μ−

0 ) + 

h 

2 

4 

(λ+ 
0 + λ−

0 ) −
h 

2 

6 

(3 − 4 v ) τ0 

(1 − v ) 
, (24)

where D = E h 3 / 12(1 − v 2 ) is the flexural rigidity in classical continuum plate theory. 

The governing Eq. (21) describes the influences of the partially uniformly distributed mass and different surface mechan-

ical properties on the dynamic characteristics of the micro-diaphragm. When the distributed mass m d is equal to zero and

the top and bottom surfaces have the same material properties, the present model will reduce to the model without exter-

nal forces and moments developed by Lu et al . [16] . While the distributed mass m d and surface material parameters E 0 , v 0
and ρ0 are equal to zero, the present model will reduce to the classical plate model [29] . The present model can be used to

analyze the dynamic characteristics of circular micro-diaphragms with different surface mechanical properties on top and

bottom surfaces and a distributed mass. 
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3. Approximate solution 

A clamped micro-diaphragm is considered here. The boundary conditions are as follows 

W (1 , θ ) = 

∂W 

∂ξ

∣∣∣∣
ξ=1 

= 0 . (25) 

The solution of Eq. (21) can be expressed by summing a series of eigenfunctions for each separated mode as follows 

w (ξ , θ, t) = 

N m ∑ 

m =0 

N n ∑ 

n =0 

W mn (ξ , θ ) q mn (t) , (26) 

where q mn ( t ) are the functions of time t . The modal functions W mn for a clamped circular plate are taken as [30] 

W mn (ξ , θ ) = α[ J m 

( λmn ξ ) − 1 

2 

λmn ξ
m (1 − ξ 2 ) J m +1 ( λmn )] cos mθ, (27) 

in which λmn are the n -th positive roots of the Bessel function J m 

(x) and α is 

α = 

{
1 m � = 0 

1 / 2 m = 0 

. (28) 

By substituting Eq. (27) into Eq. (21) , the governing equation can be obtained as 

D 

∗

a 4 

N m ∑ 

m =0 

N n ∑ 

n =1 

q mn ( λmn ) 
4 
J m 

( λmn ξ ) cos mθ

+ 

2 τ0 

a 2 

N m ∑ 

m =0 

N n ∑ 

n =1 

q mn [ ( λmn ) 
2 
J m 

( λmn ξ ) − 2 λmn ξ
m (1 + m ) J m +1 ( λmn )] cos mθ

− (ρh + 2 ρ0 ) ω 

2 
N m ∑ 

m =0 

N n ∑ 

n =1 

q mn 

[ 
J m 

( λmn ξ ) − 1 

2 

λmn ξ
m (1 − ξ 2 ) J m +1 ( λmn ) 

] 
cos mθ

− m d 

π r 0 2 
ω 

2 H 

N m ∑ 

m =0 

N n ∑ 

n =1 

q mn 

[ 
J m 

( λmn ξ ) − 1 

2 

λmn ξ
m (1 − ξ 2 ) J m +1 ( λmn ) 

] 
cos mθ

+ 

ω 

2 

a 2 

[
ρh 

3 

12 

+ 

(3 − 4 v ) ρ0 h 

2 

6(1 − v ) 

]
N m ∑ 

m =0 

N n ∑ 

n =1 

q mn [ ( λmn ) 
2 
J m 

( λmn ξ ) − 2 λmn ξ
m (1 + m ) J m +1 ( λmn )] cos mθ = 0 . (29) 

The analytical solution of the governing Eq. (29) can not be obtained. The Galerkin procedure is used to obtain the

approximate solution. The weight functions are selected in the following form [30] . 

W m 0 n 0 (ξ , θ ) = ξ J m 0 
( λm 0 n 0 ξ ) cos m 0 θ, m 0 = 0 , 1 , 2 , ..., N m 

; n 0 = 0 , 1 , 2 , ..., N n . (30)

By multiplying each term by the weight functions, integrating the equation over the domain (0, 1), (0, 2 π ) and using the

orthogonality of trigonometric functions and Bessel functions, Eq. (29) can be rewritten as 

C 1 ( m 0 , n 0 ) q m 0 n 0 + C 2 ( m 0 , n 0 ) q m 0 n 0 −
N n ∑ 

n =0 

C 3 ( m 0 , n 0 , n ) q mn − ω 

2 ρh C 4 ( m 0 , n 0 ) q m 0 n 0 

+ ω 

2 ρh 

N n ∑ 

n =0 

C 5 ( m 0 , n 0 , n ) q mn − m d ω 

2 

π r 0 2 
C 6 ( m 0 , n 0 ) q m 0 n 0 + 

m d ω 

2 

π r 0 2 

N n ∑ 

n =0 

C 7 ( m 0 , n 0 , n ) q mn , 

+ ω 

2 C 8 ( m 0 , n 0 ) q m 0 n 0 − ω 

2 
N n ∑ 

n =0 

C 9 ( m 0 , n 0 , n ) q mn = 0 (31) 

in which the coefficients C p ( p = 1, 2, 3..., 9) is presented in Appendix. 

To reduce the indices in Eq. (31) , indices i, j and N are taken as 

i = N m 

m 0 + n 0 , ( m 0 = 0 , 1 , 2 , ..., N m 

, n 0 = 0 , 1 , 2 , ..., N n ) 

j = N n m + n, (m = 0 , 1 , 2 , ..., N m 

, n = 0 , 1 , 2 , ..., N n ) . 

N = N m 

N n (i, j = 0 , 1 , 2 , ..., N) (32) 

Therefore, Eq. (31) can be simplified as 
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[ C 1 (i ) + C 2 (i )] q i −
N ∑ 

j=1 

C 3 (i, j) q j −ω 

2 q i [ ρh C 4 (i ) + 

m d 

π r 0 2 
C 6 (i ) − C 8 (i )] . 

+ ω 

2 q j [ ρh 

N ∑ 

j=1 

C 5 (i, j) + 

m d 

π r 0 2 

N ∑ 

j=1 

C 7 (i, j) −
N n ∑ 

n =0 

C 9 (i, j) ] = 0 (33)

Further, Eq. (33) can be expressed in matrix form as follows 

{ ω 

2 [[ Q ] − [ I ] + [ M ]] }{ q } = { 0 } , (34)

where [ I ] is the unit matrix, [ M ] is the diagonal matrix and [ Q ] is the N ×N square matrix. The elements M i and Q ij of matrix

[ M ] and matrix [ Q ] are 

M i = 

C 1 (i ) + C 2 (i ) − C 3 (i, j) 

[ ρh C 4 (i ) + 

m d 

π r 0 2 
C 6 (i ) − C 8 (i )] 

, (36)

and 

Q i j = 

[ ρh C 5 (i, j) + 

m d 

π r 0 2 
C 7 (i, j) − C 9 (i, j)] 

[ ρh C 4 (i ) + 

m d 

π r 0 2 
C 6 (i ) − C 8 (i )] 

. (37)

For the non-trivial solutions of { q } in Eq. (35), the determinant of the coefficients matrix must be zero. The explicit form

of this characteristic determinant can be expressed as follow ∣∣∣∣∣∣∣∣∣∣∣

( Q 11 − 1) ω 

2 + M 1 Q 12 ω 

2 Q 13 ω 

2 ... Q 1 N ω 

2 

Q 21 ω 

2 ( Q 22 − 1) ω 

2 + M 2 Q 23 ω 

2 ... Q 2 N ω 

2 

. . . 

. . . 

Q N1 ω 

2 Q N2 ω 

2 Q N3 ω 

2 ... ( Q NN − 1) ω 

2 + M N 

∣∣∣∣∣∣∣∣∣∣∣
= 0 . (38)

The natural frequency of the micro-diaphragm with surface mechanical properties effects and a partially uniformly dis-

tributed mass can be obtained by solving the characteristic equation. 

4. Numerical results and discussions 

The numerical results of Eq. (38) become more accurate with the increase of N . The numerical result of a circu-

lar plate with free boundary conditions is sufficiently accurate when N n = N m 

= 10 [30] . Thus, the values N m 

= 10, N n = 10,

N = N m 

N n = 100 are adopted. 

4.1. Size dependence of natural frequency 

Firstly, to evaluate the validity, the reduced model of present study, in which the distributed mass is equal to zero

and two surfaces have the same surface properties, is compared with the model of Assadi and Farshi [27] . The material

parameters and geometric dimension are the same as those of Assadi and Farshi [27] . A comparison is shown in Fig. 2 ,

where ω s and ω 0 are the natural frequencies of micro-diaphragms with and without surface mechanical properties effects,

respectively. It can be seen that the two models predict the same tendency of size-dependent natural frequency. In other

words, the size-dependence of natural frequency can be predicted by both the present model and the model of Assadi

and Farshi [27] . However, the result of the reduced model is a little smaller than that of modified laminated plate theory,

because the influence of residual surface stress on the effective flexural rigidity is not introduced in the modified laminated

plate theory. This results in a larger effective flexural rigidity of the model of Assadi and Farshi [27] than the reduced model.

Therefore, the results of the reduced model are smaller. 

In what follows, the influence of surface mechanical properties on the first order natural frequency and mass sen-

sitivity of the micro-diaphragm is analyzed. The diaphragm made of silicon is considered as the example. For silicon

( E = 210 ×10 9 N/m 

2 , E 0 = −10.036N/m and ρ= 2331 kg/m 

3 ), the residual surface stress and surface density are given as

τ 0 =0.605N/m and ρ0 =3.17×10 −7 kg/m 

2 [31] . The radius of the circular micro-diaphragm is taken as a = 4 ×10 −4 m [32] .

The Poisson’s ratio v 0 of the surface layers material is taken to be equal to that of the bulk material: v 0 = v = 0.24 [27,33,34] . 

For the top and bottom surfaces with the same surface mechanical properties, the natural frequencies of the micro-

diaphragm with the varying thickness for different E 0 are shown in Fig. 3 . Compared with the results of classical plate

model without surface effects [29] , for both the stiffened ( E 0 > 0) and softened ( E 0 < 0) surfaces, if the thickness h is

smaller than about 1 ×10 −8 m , the natural frequencies have stronger size-dependence. The natural frequencies increase with

the decrease of thickness for the stiffened surfaces. While for the softened surfaces, the natural frequencies decrease with

the decrease of thickness. Moreover, the stiffened surface can increase the natural frequency, and the influence is more
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Fig. 2. Size-dependent natural frequency of the micro-diaphragm ( m = 1, n = 1). 

Fig. 3. Size-dependent natural frequency of the micro-diaphragm for the case of top and bottom surfaces with the same surface mechanical properties 

( m d =0 kg). 

 

 

 

 

 

 

significant for larger E 0 . The softened surface can decrease the natural frequency, and the influence is more significant for

smaller E 0 . 

Different surface mechanical properties on two sides are considered as the top surface of the micro-diaphragm contacts

with biochemical media. For the top and bottom surfaces with different surface mechanical properties, the natural frequen-

cies of the micro-diaphragm with the varying thickness for different �E 0 are shown in Fig. 4 , where the difference in surface

elasticity modulus �E 0 = E + 
0 

− E −
0 

is defined. As seen in Fig. 4 , the direction of the variation depends on the sign of �E 0 .

The natural frequencies increase for �E > 0, and increase with the decrease of thickness. While for �E < 0, the natural
0 0 
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Fig. 4. Size-dependent natural frequency of the micro-diaphragm for the case of top and bottom surfaces with different surface mechanical properties 

( m d =0kg). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frequencies decrease with the decrease of thickness. In addition, the natural frequencies increase with the increase of �E 0
for both the stiffened and softened surfaces. 

4.2. Size dependence of mass sensitivity 

Mass sensitivity is an important performance index of resonant micro-biochemical sensors. Considering surface mechan-

ical properties effects, the mass sensitivity has the following form [35] . 

S m 

= 

�ω 

m d 

, (39)

in which �ω = | ω a −ω b | is the adsorption-induced frequency shift of the circular micro-diaphragm. ω a and ω b are the nat-

ural frequencies measured after and before the partially uniformly distributed mass m d adsorbed, respectively. For the case

of no surface mechanical properties effects, the mass sensitivity is denoted as S 0 m 

. 

When the top and bottom surfaces have the same surface mechanical properties, the variations of the normalized mass

sensitivity with respect to the thickness for different E 0 are shown in Fig. 5 . The results predicated by the present model

are compared with that of the classical plate model [29] that has no surface mechanical properties effects. For the present

model, the stiffened surface can increase the mass sensitivity, while the softened surface can decrease it. For stiffened

surfaces, the mass sensitivity increases with the decrease of thickness. For softened surfaces, the mass sensitivity decreases

with the decrease of thickness. If the thickness h is smaller than about 1 ×10 −8 m , the normalized mass sensitivity has

stronger size-dependence for both the stiffened and softened surfaces; however, as the thickness increases its influence

diminishes and the normalized mass sensitivity tends to get closer to results of classical plate model. It indicates that the

influence of surface mechanical properties on the mass sensitivity of the micro-diaphragm is more significant in thinner

micro-diaphragms for both stiffened and softened surfaces. 

For the top and bottom surfaces with different surface mechanical properties, the normalized mass sensitivities of the

micro-diaphragm versus thickness with different �E 0 are shown in Fig. 6 . It can be seen that the tendencies of the size-

dependent mass sensitivity in Fig. 6 are similar to the tendencies of the size-dependent natural frequency in Fig. 4 . For

surfaces with �E 0 > 0, mass sensitivity increases with the decrease of thickness. For surfaces with �E 0 < 0, mass sensitivity

decreases with the decrease of thickness. Moreover, mass sensitivity increases with the increase of �E 0 for both �E 0 > 0

and �E 0 < 0. The influence of different surface mechanical properties on the mass sensitivity is also more obvious for

thinner micro-diaphragms. 

The influence of the non-dimensional distributed radius on the mass sensitivity for stiffened and softened surfaces is

discussed in Fig. 7 . Compared with the classical plate model [29] that has no surface mechanical properties effects, the

surface with �E > 0 can increase the mass sensitivity while the surface with �E < 0 can decrease it. These results can
0 0 
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Fig. 5. Size-dependent mass sensitivity of the micro-diaphragm for the case of top and bottom surfaces with the same surface mechanical properties 

( m d = 3 ×10 −9 kg, ξ 0 = 0.5). 

Fig. 6. Size-dependent mass sensitivity of the micro-diaphragm for the case of top and bottom surfaces with different surface mechanical properties 

( m d = 3 ×10 −9 kg, ξ 0 = 0.5). 

 

 

 

 

 

be also observed in Fig. 5 . Moreover, for the surfaces with both �E 0 > 0 and �E 0 < 0, the mass sensitivity increases as the

non-dimensional distributed radius decreases. 

5. Conclusion 

The dynamic characteristics of a circular micro-diaphragm with a partially uniformly distributed mass are analyzed to-

gether with different surface mechanical properties effects. The different surface mechanical properties effects are taken into

account based on the surface elasticity theory. The approximate solution is obtained through the Galerkin procedure. The

present model can reduced to the existing models. The influence of different surface mechanical properties on the natural
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Fig. 7. Mass sensitivity varying with the non-dimensional distributed radius in the cases of stiffened and softened surfaces ( h = 1 ×10 −8 m, m d = 3 ×10 −9 kg). 

 

 

 

 

 

 

 

 

 

 

frequency and mass sensitivity is discussed. The results show that compared with the classical model, the influences of

the stiffened and softened surfaces on the natural frequency and mass sensitivity depend on the surface elasticity modulus

E 0 and the difference in surface elasticity modulus �E 0 . Compared with the results of two surfaces with the same surface

mechanical properties, different surface mechanical properties of the top and bottom surfaces result in the different size-

dependence. For both stiffened and softened surfaces, mass sensitivity increased as the non-dimensional distributed radius

decreased. 
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Appendix A 

The coefficients C p ( p = 1, 2, 3..., 9) are expressed as 

C 1 ( m 0 , n 0 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

πD 

∗

4 a 4 
( λ

0 n 0 ) 
4 J 1 

2 ( λ0 n 0 ) m = m 0 = 0 , n = n 0 

πD 

∗

2 a 4 
( λm 0 n 0 ) 

4 J m 0 +1 
2 ( λm 0 n 0 ) m = m 0 � = 0 , n = n 0 

, (A1)

C 2 ( m 0 , n 0 ) = 

⎧ ⎨ 

⎩ 

τ0 π

a 2 
( λ

0 n 0 ) 
2 J 1 

2 ( λ0 n 0 ) m = m 0 = 0 , n = n 0 

τ0 π

a 2 
( λm 0 n 0 ) 

2 J m 0 +1 
2 ( λm 0 n 0 ) m = m 0 � = 0 , n = n 0 

, (A2)

C 3 ( m 0 , n 0 , n ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

4 τ0 π

a 2 
J 1 ( λ0 n 0 ) 

λ0 n 0 

λ0 n J 1 ( λ0 n ) m = m 0 = 0 

4 τ0 π

a 2 
( m 0 + 1) 

J m 0 +1 ( λm 0 n 0 ) 

λm n 
λm 0 n J m 0 +1 ( λm 0 n ) m = m 0 � = 0 

, (A3)
0 0 
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C 4 ( m 0 , n 0 ) = 

⎧ ⎨ 

⎩ 

π

2 

J 1 
2 ( λ0 n 0 ) m = m 0 = 0 , n = n 0 

π

2 

J m 0 +1 
2 ( λm 0 n 0 ) m = m 0 � = 0 , n = n 0 

, (A4) 

C 5 ( m 0 , n 0 , n ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

π

2 

J 1 ( λ0 n ) λ0 n 

∫ 1 

0 

ξ (1 − ξ 2 ) J 0 ( λ0 n 0 ξ ) dξ m = m 0 = 0 

2 π( m 0 + 1) 

( λm 0 n 0 ) 
3 

J m 0 +1 ( λm 0 n 0 ) λm 0 n J m 0 +1 ( λm 0 n ) m = m 0 � = 0 

, (A5) 

C 6 ( m 0 , n 0 ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

π

∫ ξ0 

0 

ξ J 0 
2 ( λ0 n 0 ξ ) dξ m = m 0 = 0 , n = n 0 

π

∫ ξ0 

0 

ξ J m 0 

2 ( λm 0 n 0 ξ ) dξ m = m 0 � = 0 , n = n 0 

, (A6) 

C 7 ( m 0 , n 0 , n ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

π

2 

( λ0 n ) J 1 ( λ0 n ) 

[∫ ξ0 

0 

ξ (1 − ξ 2 ) J 0 ( λ0 n 0 ξ ) 

]
dξ m = m 0 = 0 

π

2 

( λm 0 n ) J m 0 +1 ( λm 0 n ) 

[∫ ξ0 

0 

ξm 0 +1 (1 − ξ 2 ) J m 0 
( λm 0 n 0 ξ ) 

]
dξ m = m 0 � = 0 

, (A7) 

C 8 ( m 0 , n 0 ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

π

2 a 2 

[
ρh 

3 

12 

+ 

v ρ0 h 

2 

6(1 − v ) 

]
( λ

0 n 0 ) 
2 J 1 

2 ( λ0 n 0 ) m = m 0 = 0 , n = n 0 

π

2 a 2 

[
ρh 

3 

12 

+ 

v ρ0 h 

2 

6(1 − v ) 

]
( λm 0 n 0 ) 

2 J m 0 +1 
2 ( λm 0 n 0 ) m = m 0 � = 0 , n = n 0 

, (A8) 

C 9 ( m 0 , n 0 , n ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

2 π

a 2 

[
ρh 

3 

12 

+ 

(3 − 4 v ) ρ0 h 

2 

6(1 − v ) 

]
J 1 ( λ0 n 0 ) 

λ0 n 0 

λ0 n J 1 ( λ0 n ) m = m 0 = 0 

2 π

a 2 

[
ρh 

3 

12 

+ 

(3 − 4 v ) ρ0 h 

2 

6(1 − v ) 

]
( m 0 + 1) 

J m 0 +1 ( λm 0 n 0 ) 

λm 0 n 0 

λm 0 n J m 0 +1 ( λm 0 n ) m = m 0 � = 0 

, (A9) 
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