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The general isotropic strain gradient elasticity theory with five higher-order elastic constants is reformu-
lated by introducing two different orthogonal decompositions of the strain gradient tensor. Just applying the
mathematical reformulations, no extra conditions needed, the constitutive relations, equilibrium equation
and boundary conditions are reformulated. In the reformulated theory, the number of independent higher-
order elastic constants is proved to be three for isotropic materials, which indicates that the five higher-order
elastic constants in the general isotropic strain gradient elasticity theory are dependent with each other.
Therefore, the general strain gradient elasticity theory contains only three independent material length-scale
parameters for isotropic materials in addition to the Lame constants. The new theory is different from the ex-
isted strain gradient elasticity theory with one or three material length-scale parameters, which introduces
extra conditions during deriving process. Moreover, the reformulated theory can be directly reduced to that
of incompressible materials by assuming the terms associated with hydrostatic strains to be zero. Some ex-
amples, such as torsion of cylindrical bars, shearing of fixed-end layers, and pure bending of thin beams, are
performed to reveal the necessity of including multi-length-scale parameters in the strain gradient elasticity
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1. Introduction

Many experiments have shown the size-dependent deformation
behaviors in micron scale. In the non-uniform plastic deformation,
the size effects have been observed in the experiments of measur-
ing micro-indentation hardness of metallic materials (Ma and Clarke,
1995), shear strength of copper wires in torsion (Fleck et al., 1994),
and bend moments of ultra-thin beams (Stolken and Evans, 1998).
By contrast, in elastic deformation, the size dependence of the nor-
malized bending rigidity exists in micro-beams of both metals and
polymers (Guo et al., 2005; Tang and Alici, 2011a, 2011b; Lam et al.,
2003). Because of the lack of internal length-scale parameters, the
classical elasticity and plasticity theories fail to describe such a be-
havior in the micron scale. Meanwhile, load or geometrically induced
stress singularities cannot be properly accounted by the standard
continuum mechanical models. However, this is possible with the use
of higher-order continuum mechanics theories, where intrinsic pa-
rameters correlating the microstructure and the macrostructure are
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involved in the constitutive relations. Different versions of higher-
order continuum mechanics have been developed by many authors.
Relationships between those theories have been discussed by Tekoglu
and Onck (2008).

Generally, higher-order theories can be classified into couple
stress theories and general strain gradient theories, according to
the deformation metrics used. In the classical couple stress theory
(Toupin, 1962; Mindlin and Tiersten, 1962; Koiter, 1964), only the
gradient of the rotation vector enters the strain energy density func-
tion, and, hence, two additional material parameters are introduced
besides the Lame constants for isotropic materials. By introducing
a so-called equilibrium condition of moments of couples (the cou-
ple of force couples) to force the couple stress tensor to be symmet-
ric, Yang et al. (2002) modified the classical couple stress theory to
include only one additional material parameter. Recently, however,
Hadjesfandiari and Dargush (2011) came to a contrary conclusion that
the couple stress tensor is of the skew-symmetric character.

The more general strain gradient elastic theory including all com-
ponents of the higher-order deformation is proposed by Mindlin
(1964) to describe the linear elastic behavior of microstructures.
This theory requires 16 additional length constants for isotropic ma-
terials in addition to two Lame constants. The application of this
theory is limited as it requires the formidable task of determining,
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theoretically or experimentally, 16 additional constants. For practical
purposes, Mindlin and Eshel (1968) further formulated three simpler
versions of the general isotropic theory, utilizing only two material
and five internal length-scale constants in the final constitutive re-
lation rather than 18 used in Mindlin’s initial model. One of these
versions uses the classical strains and the second-order gradient of
displacement as the deformation metrics. In the second version, the
second-order gradient of displacement is replaced by the gradient of
strain, and in the third version, the deformation variables include the
classical strains, the gradient of rotation, and the fully symmetric part
of the gradient of strain. Although the simpler versions reduce inde-
pendent length-scale parameters from 16 to five for isotropic mate-
rials, the application of this theory in engineering is limited as five
length-scale parameters are still very difficult to be determined ex-
perimentally. Fleck and Hutchinson (1993, 2001) extended the first
version of Mindlin theory to plasticity and proposed a deformation
theory of strain gradient plasticity, which involves three length-scale
parameters. Lam et al. (2003) reformulated the theory by applying
a set of higher-order metrics to characterize strain gradient behav-
iors, and proposed a isotropic strain gradient elasticity theory. In their
theory, the equilibrium condition of moments of couples is applied
to force the symmetric character of the couple stress tensor and re-
duce the number of elastic length-scale parameters from five to three.
However, in our opinion, the mechanical effect of the moment cou-
ple is unable to be comprehended for the free character of moment
vectors.

In addition to the simplified model of the general strain gradient
elasticity theory developed by Mindlin, a simple model of isotropic
strain gradient elasticity with only one length-scale parameter has
been formulated by Aifantis (1992), in which classical stresses are re-
lated to classical strains and the Laplacian gradient of strains. Subse-
quently, this theory has been extended with additional terms to ac-
count for surface effects (Vardoulakis and Sulem, 1995; Vardoulakis
et al., 1996; Exadaktylos, 1998). The theory proposed by Aifantis can
be formally obtained as a special case of the Mindlin theory (Li et al,
2004; Lazar and Maugin, 2005; Askes and Aifantis, 2011). Although
one length-scale parameter can be expediently determined by simple
bending or torsion test, it has been demonstrated that the strain gra-
dient plasticity theory with a single length parameter does not have a
scope to include the wide range of small-scale phenomena (Fleck and
Hutchinson, 2001). Therefore, the strain gradient theory with multi-
ple length parameters is necessary to capture the size effects of me-
chanic behaviors at the micron scale.

Recently, strain gradient theory has new development. Polizzotto
(2012) proposed a gradient elasticity theory for continua featured
by not only a strain energy depending on the strain and the first-
order strain gradient, but also a kinetic energy depending on the ve-
locity and the first-order velocity gradient, in which the effects of
both strain gradient and higher-order inertia are combined. Further,
this theory has been even extended to the second-order strain gradi-
ent elasticity with second-order velocity gradient inertia (Polizzotto,
2013). Moreover, Auffray et al. (2013) derived and provided the ex-
plicit matrix representations of the sixth-order elastic tensor for all
the three-dimensional (3D) anisotropic cases in a compact and well-
structured manner. In addition, Miihlich et al. (2012) developed an al-
ternative method for the approximation of the material properties in
linear elastic strain gradient effective media. Bacca et al. (2013) pro-
vided an analytical approach to the determination of the parameters
defining an elastic higher-order (Mindlin) material as the homoge-
nization of a heterogeneous Cauchy elastic material. Although many
new achievements have been made, the strain gradient theory should
be contributed more as the basis to form a unified and effective the-
ory for application.

The purpose of this article is to propose a general strain gradient
elasticity theory by reformulating the constitutive relations in terms
of two sets of independent higher-order metrics and determine the

number of independent material constants needed for an isotropic
material in the general strain gradient elasticity theory. The rest is
organized as follows. Section 2 reviews the general isotropic strain
gradient theory. In Section 3, two new sets of independent higher-
order deformation metrics are developed to split the strain gradi-
ent tensor into mutually independent parts and the corresponding
work-conjugated higher-order stress tensors are defined. In Section 4,
the constitutive relations are reformulated and the number of inde-
pendent higher-order material constants is proved to be three for
isotropic linear elastic materials. Then, the general isotropic strain
gradient elasticity theory containing three higher-order elastic con-
stants is re-expressed in the form of strain gradient components, and
the equilibrium relations and boundary conditions are derived by ap-
plying the variational principle of the strain gradient theory. Section 5
presents the contribution of each strain gradient component and the
influence of higher-order length-scale parameters through three ba-
sic problems. Finally, conclusions are summarized in Section 6.

2. Review of general strain gradient elasticity theory

In the general strain gradient elasticity theory (Mindlin and Eshel,
1968), the total strain energy density is a function of strain and its
first-order gradient, given by

w = W(gjj, Niji)- (1)
where g;; is the symmetric strain tensor and 7, is the strain gradient

tensor with the minor symmetry in the last two indices. The strain
tensor and strain gradient tensor are defined, respectively, as

1
&ij = i(ui,j +Uji), (2)

Nijk = Ekjis (3)
where u; is the displacement vector and a comma denotes the dif-
ferentiation with respect to the coordinates. Then, the corresponding
stress o; and the higher-order stress t;;,( = 7j ;) work-conjugated to
the strain ¢; and the strain gradient 7y, respectively, can be written
as
ow ow
e, Tijle = FIe
ij T’th
For a volume V of a solid with boundary S and sharp edge C, the
principle of virtual work for the strain gradient theory is

‘/‘;(O}jSSU + t,-jk8n,-jk)dV = /v I_Jk(Sude +/5(Ek8uk +F,<D8uk)d5

(4)

O’,‘j =

+ %f_k(sukdc’ (5)
C

where by, is the body force per unit volume, f, is the surface traction,
r;. is the surface double-force traction, f is the line load along the
sharp edge, and D = n;d; denotes the normal gradient operator. The
equilibrium equation in the body V can be derived using the virtual
work principle as

Oiki — Tijk,ij + bk =0, (6)
and the boundary conditions on S and along C are, respectively,

£ = (i — Tijej) + (Dpp)min;Tyje — Dy Tyje) or e =, (7)

i = nin;Tyj or Duy = Duy, (8)
and
fe= [nik;Tiji ] or ty, = uy, (9)

where n; is a unit vector normal to the boundary surface S, D; =
(8i — niny) 0y is the surface gradient operator, and k; is the outer co-
normal vector satisfying the following relation

kj = eikjs,-nk, (10)
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with the alternating tensor ey; and the unit vector s; tangent to the
edge C. The square brackets in Eq. (9) represent the difference be-
tween the values of the enclosed quantity on the two sides of the
edge.

3. Development of independent higher-order metrics

In this section, two sets of independent higher-order deformation
metrics will be developed by introducing two different orthogonal
decompositions of the strain gradient tensor, of which one is based
on a hydrostatic/deviatoric splitting, the other on a symmetric/anti-
symmetric splitting.

For the hydrostatic/deviatoric splitting, it is known that the strain
tensor can be expressed as its spherical and deviatoric parts

1
Eij— 5115nn+5 (11)

ij»
where 8,-j is the Kronecker delta, %snn is the mean or hydrostatic
strain associated with a change in volume, and ¢;; is the deviatoric
strain tensor associated with a change in shape. Following Eq. (11),
the strain gradient tensor 7 can also be decomposed into a hydro-
static part ’71' . and a deviatoric part n/ i

Nijk = n,]k + ﬁ,]kv (12)

where

1
ﬂ,Jk 8]I<5nnz = *‘Sjknmn’ TY,Jk = Nijk — ﬂ,hjk = 8,2],1. (13)

Here, the deviatoric part nijk is the deviatoric strain gradient sl/q.’i
associated with the shape change in strain gradient, and, in fact,
equals the plastic strain gradient introduced by Fleck and Hutchinson
(2001). In accordance with the decomposition of plastic strain gradi-
ents into three parts proposed by Fleck and Hutchinson (2001), the
strain gradient 7, can be decomposed into four independent com-
ponents as

Mije = Ml + M+ 058+ 155 o
with
T),/](/:) = '7uk 15 (Sfjekpq + 8 jk€ipg + ‘SkiejPlJ)Xl/Jz’ (15)
Mijke = 38iip Xpk + 3Cikp X "

/(2) ra 1 /a 2 I} ) 8 pa
nijk — §eiijpk + §e,-kp)(pj + ﬁ( ij€kpg t OjkCipg + kiejPLI) Xpgs

(17)

where

’s 1., / ! ! ' '
Nijk = §(71 ik 1 kg + 10 j10)- X4y = €ipal paj = €ipaiaup

1 1

Xz"jS = Q(X/ij + X/ji)’ Xi/f = §(X/ij - X,ﬁ)' e

Accordingly, the decomposition of the higher-order stress tensor
Tk, work-conjugate to the strain gradient tensor 73, can be written
as

/(1) /as /(2)
Tijk = ‘Ct]k + Tz]k + Tuk + Tuk ) (19)
/(1) _ras /(2) ~ ;
where the components ruk, Tk ik and Tiik » , work-conjugate to

the strain gradient components, ’7: ik ’71/](11)' n{}",ﬁ and nlf;k), respectively,
are defined as

1
oh

ik = §5jk7:innv (20)

/(1 _ s s IS
T = Tije — (‘Su Tk + kT + S1a T ) (21)
1
ras = / . / o . /
Tijk = 5 (277 ]lk = Tkji T CijpChesTesp T elkpe]tSTtsp)7 (22)

n2) _ 1 e /s Is
Tijk 5 (81} Tinmk + SJkTmmi + 8kitmmj)
1 2 ! / ’ / /
+ 6( Thijk = Tjik — T'kji — CijpChesT 'tsp — CikpClitsT tsp), (23)

with

1
s 2+ ’ /
e = 3 (T + T + i)

where Tl’sk is the symmetric component of the deviatoric higher-order
stress tensor, and the deviatoric part tz‘/jk of higher-order stress is
work-conjugate to the deviatoric strain gradient ’7,{ i

For the symmetric/anti-symmetric splitting, the strain gradient
tensor 7 can be directly decomposed into its symmetric and anti-
symmetric parts, r)fjk and nfjk, (Fleck and Hutchinson, 1997), respec-
tively, as follows:

/o _ .. _ h
Tijk = Tijk — T

b (24)

S ] S
Mijk = §(77ijk + Njki + nkij) 77,ﬂ< Nijk — Mijk
=3 ijpXpk T §eikpo]’ (25)
where y;; = ejpq1pq; 1S the curvature tensor. Then the symmetric part

can be further split into a trace part, n and a traceless part,

nl]k Uk
'71(;113 (Lam et al., 2003) and, moreover, new independent strain gradi-
ent metrics can be obtained by splitting the anti-symmetric part n,‘f’k
into two independent parts, 77?, . and nuk' according to the decompo-
sition of the curvature tensor x ; into its symmetric part x? 7 and anti-
symmetric part XS Thus, the new set of independent components is

given by

nuk 77,(1(;3 + 771‘(]‘113 + nfljsk + n?ﬁ(’ (26)
where
1
n,‘ﬁ) =z (8ii e + S Mumi + Sy ) (27)
1 _ )
nz]k - nuk nijk’ (28)
as N l N
Mijk = 3CiipXpk + 3 Cikp Xpj> (29)
and
aa a l a
Mijk = 3CiipXpk + 3 Cikp Xpj> (30)
with
S ] a 1
Xij = E(Xij'i'in)v Xij = i(Xij—in) (31)

By defining the corresponding higher-order stress components

0) (1) ; i
ik Tijk > ‘L’l'ﬁ( ,and rl‘}ﬁ, work-conjugate to the set of higher-order de-

; © (1) as
formation metrics M Mije» Mo and R
order stress tensor can also be expressed as

(0) (1)
Tijke = Tijk + Tijk + rl]k + Tuk’ (32)

respectively, the higher-

where f,ﬁ) and 1(1) are the trace and traceless parts, respectively,

split from the symmetric part of the higher-order stress tensor risjk =
%(r,-jk + Tjki + Tkij)» which is work-conjugate to the symmetric part
of strain gradient tensor nfjk While rfﬁ{ and ra“ are other two inde-
pendent parts split from the anti-symmetric part of the higher-order
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stress tensor ri‘]?k = Tjjk — tfjk, which is work-conjugate to the anti-
symmetric part of strain gradient tensor nl.ajk.

In the above-presented discussions, the two sets of higher-order
deformation metrics have been given in the form of different orthog-
onal components in Eqs. (14) and (26). The difference between them
is that the latter three terms in the first set are independent of the di-
latational deformation, but the first term depends on dilatational de-
formation; nevertheless, the second and third terms in the second set
are independent of the dilatational deformation, but the first and last
terms are related to the dilatational deformation. With the help of the
relations eyj; = &}, + $8jkEmnis Enin = Epip + FEmnio and x5 = X/5,

it is found that the components ’71'(1'113 and nffk of the strain gradient

tensor are equal to the components nlf;;) and nl/]ali of the deviatoric
strain gradient tensor, respectively, that is 77,8(-;1) = ni(;k) and n{ﬁ = n?jsk.

(1
jk
stress tensor are equal to the components 7:[;(,3) and rlfﬁf of the de-

Correspondingly, the components 7’ and ri‘ﬁ( of the higher-order

viatoric higher-order stress tensor, respectively, that is r,.’j(lj) = rig.})

and 7/% = t%. And, hence, no differentiation will be made between

ijk = “ijk:
17;](,,1) and n&), njs% and nf. Ti;(lg) and Tiﬁ)ﬂ t/% and 7 in the rest of
the current paper. Moreover, it is confirmed that the traceless part,
’71'(;1/3 of the strain gradient tensor is the same as provided by Lam et
al. (2003), who refer to it as the deviatoric stretch gradient. In addi-
tion, it is also shown that all independent components of both strain
gradient tensor and the higher-order stress tensor carry the minor

symmetry of the strain gradient tensor.
4. Reformulation of constitutive relations
4.1. Independent higher-order material constants

For linear elastic isotropic materials, the total strain energy den-
sity in the strain gradient theory (Eq. (1)) consists of the conventional
part we, depending on strains, and the higher-order part wy, depend-
ing on strain gradients. Thus, the total strain energy density can be
expressed as

W=W+Ww, = %Cijklgijgkl + %F;‘jklpqnijknlpqs (33)
where Gy = A8;j0k + 1 (838 ji + 8 dj1) is the conventional elastic
tensor with the Lame constants A and wu, and Fjjp, is the sixth-
order isotropic elastic tensor obeying the symmetry Fjypq = Fpqiji
and, moreover, requires the symmetries Fjpq = Fixjipg = Fijkigp De-
cause of the minor symmetry of the strain gradient tensor 7;;. The
resulting constitutive relations can be derived using Eq. (4), as fol-
lows:

0ij = Gjuu = Adijem + 2/L&i;
Tijk = FjripgMipq- (34)

Because of the development of the new independent higher-order
metrics, the higher-order part wy, in the total strain energy density
can be expressed in terms of the differential independent compo-
nents of the strain gradient tensor. On the one hand, for the hydro-
static and deviatoric parts of the strain gradient tensor in Eq. (12), the
higher-order part has the following form:

1 1
— h h ,h d A
W = EFijklqu]lpqnijk + jﬁ'jklpqnlpqnijk’ (35)
where the sixth-order isotropic tensors Fi?klp g and Fi?k, - have a sym-
metry similar to that of Fj,e; however, in addition, the minor sym-
metric property of the hydrostatic strain gradient tensor ng.k enforces

that the symmetry of the tensor F"

kipq with respect to its indices (j, k)

depends on §;, and the property of the deviatoric tensor r]lfjk requires

d d _
the tensor Fijk,pq has Fiss,pq =0.
On the other hand, according to the symmetric and anti-
symmetric parts of the strain gradient tensor in Eq. (25), the higher-

order part of strain energy density can also be written as

1 s 1
Wh = §Fij‘klpqnlpq’7fjk + il:i?klpqnqun%k’ (36)
M M 1 M H S a
in which the sixth-order isotropic tensors Fijklpqand Fijklpq have
the major symmetry, F3

— FES _ FES o i
Tikipg _Fkiﬂpq _ijnpq, and the major anti
a a
symmetry, F, kipg T Fkiﬂpq

+F¢. = 0,inaddition to obeying the sym-
metry of Fipg-

Jjkilpgq

The sixth-order isotropic tensors having their own properties on
the symmetries or anti-symmetries can be read as a linear combi-
nation of their basic tensors provided in Appendix. From Egs. (A.5)-

. _ . . » h d S

(A.9), the sixth-order isotropic tensors, Fijjq, Fijklpq, F,.jk]pq, FUk,pq, and
Fi?k,pq can be expressed, respectively, using their own basic tensors,
as

Ejkipg = a1(81)ijuapg + 02(52)ijtapg + a3 (S3)ijkipg + 04 (54) jiapg

+ a5(s5)ijk1pq’ (37)

h
Ejkipg = A(S3)ijkipg: (38)

d
Fijklpq =d (Dl)ijklpq + dZ(DZ)ijklpq + d3(D3)ijklpq’ (39)
P;‘;klpq = bl (Kl)ijklpq + b2 (KZ)ijklpq’ (40)
Fikipg = €1(A1)ijkapg + C2(A2)juapg- (41)
wherea,(n=1,...,5),d,d,(n=1,2,3), by, and ¢c,(n = 1, 2) are the
higher-order material constants, and the tensor S,(n=1,...,5), S3,

D,(n=1,2,3), K; and K;, A and A, are the basic tensors provided

in Appendix for the elasticity tensors Fijypq, Fl.?klpq, Fl.j.’,dpq, ESpg and
Fi?k, o0’ respectively.
Substituting Eq. (37) into Eq. (34), the constitutive relations for the

higher-order metrics are written as
1
Tijk = FijrapgMipg = 701 (8iiienn + ik jnn + 28 Nnni)

1
+§az (aijnnnk + 5ik’7nnj) + 035jk77inn + A4M;jk

1
+50s (Ukij + njki)’ (42)
which is similar to the form presented by Mindlin (1964). Considering
the relations,

1 1
Nnni = §77im1 + 8;/11',,17 77ijk = §8jk77inn + 8;,{_,', (43)

it can be recognized that the terms in Eq. (42) are coupled, that is,
the five higher-order constants are not independent. The relationship
between these five constants will be found by expressing the consti-
tutive relations in terms of the components of higher-order metrics.
From the expression of higher-order strain energy density in Eq. (35),
the higher-order constitutive relations can be obtained as

h _ rh h / _ pd /
Tiik = EiupaMipg: Tijk = EjtapgMipg- (44)

Another form of higher-order constitutive relations can be ob-
tained from Eq. (36), as follows

Tisjk = F;'j'klpq nlqu’ Titjl'k = P;'?klpq nlapq‘ (45)
Applying the decomposing relations and the orthogonal proper-

ties of the higher-order components, the higher-order stress can also
be expressed in terms of the above-described elasticity tensors as

_ s a _ (gs a
Tijk = Tijk + Tijk = (F;'jklpq + P;'jklpq) Nipqg» (46)
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Tijk = ti’;k + ri/jk = (F;‘?klpq + F;‘j‘jklpq) Nipq- (47)
Thus, had the hydrostaic/deviatoric model in Eq. (44) and the
symmetric/antisymmetric model in Eq. (45), together with the gen-
eral five-constants one in Eq. (42), to represent a same isotropic strain
gradient material, that is Eq. (42) equals Eqs. (46) and (47), the rela-
tionship between these sixth-order isotropic tensors is obtained as
follows:
Eijiipa = Ejipg + Fiipg = Fi;'lklpq + Fijklpq' (48)
By suing the relationships between these basic tensors provided in
Appendix, we can obtain the relationships between the higher-order
material constants for the strain gradient tensor as

2 2 1

a = —§((12 =+ (15), as = §(12 =+ 6(15, (49)
for the hydrostatic and deviatoric components as

5 1 1
d= §d1 + §d2 + ﬁd3’ (50)
and for the symmetric and anti-symmetric parts as

4 6

= -1 — =(hy— ). 1

b 5012 (b2 —2) (51)

These relations show that any expressed form of the constitutive re-
lations using either the strain gradient tensor or its components con-
tains only three independent higher-order constants. We can con-
clude that there are only three independent higher-order material
constants involved in the general isotropic strain gradient elastic-
ity theory. This conclusion is different from that drawn by both Lam
et al. (2003) and Fleck and Hutchinson (2001). In the theory by Lam
et al., the symmetric character is enforced to the couple stress ten-
sor, whereas the theory by Fleck and Hutchinson is plasticity theory
only for incompressible materials. The demonstration procedure of
independent higher-order constants as presented in this section can
be similarly applied to the reformulation of the nonlinear second-
gradient model proposed by Dell’lsola et al. (2009).

4.2. Constitutive relations

According to Eqs. (34), (42) and (49), the constitutive equations of
isotropic strain gradient elasticity theories are rewritten as

0ij = Adijenn + 2u8i;, (52)

and
1
Tijk = 502 (8ijnnk + SikTnnj)
1
—6(02 + aS) (Sijnkmm + Siknjmm + 28jknnni)

1 1
+g(4az + a5)8 jkMinn + AaMijic + 505 (Ukij + njki)’ (53)

with three independent higher-order elastic constants in addition
to the traditional Lame constants. Further, in order to identify the
specific corresponding relationship between solids deformation and
its strain gradient components, constitutive relations in the form of
higher-order strain and stress components are obtained from Eq. (53),
according to the first set of higher-order metrics in Eqs. (14)-(24), as
follows:

5 1
Til}k = (§a2 +as + 6(15)17?]»,{, (54)
1 1
T = (as+as)nf), (55)

1
78 = <a4 - §a5>n;;, (56)

5 1
rl.’j(kz) = (§a2 +a,+ 6a5) nl’](,f) (57)

Therefore, the strain energy density can be rewritten as

1 1 h.h 1 1 1 1 1 1(2) (2

W= 5048 + 5 Tl + EIU(' )’715-/() + jf&fn?}i + jrijl(c )nij(k)
1 1/5 1 bk
= j)\.é‘,‘,‘&ﬁ + L€ + E (§(12 + a4+ 6a5)nijk’7ijk

1 1 1
+ 5@ )+ 5 (o - s )i

1/5 1
+y (30 et gas)und (58)
The last two invariants of Eq. (58) are
2 2 1
Mg = 306 = 346545 = 3 (x5 + Xjxi)- and
6 3
mienie = S xi = 5 (Xixh = xixf)- (59)

In order to evaluate the contribution of each strain gradient com-
ponent intuitively, the constants are defined as,

1/5 1 1
i(gaz +ag4+ ga5> =3ul3, 5 (a4 +as)

= ul?, and%(a4 - %as) =3ul3, (60)

where [,(n =0, 1, 2) are three length-scale parameters with the di-
mension of length. Therefore, the strain energy density is rewritten
as

1
w= ik&‘,‘,‘&‘j]‘ + /LS/ije/ij + I/Llégnn,igmm.i + Mllznz(;lgnl(_;llg
9 9
+ M(l% + 515>X/in/ij + M(g - 515>X/ijx/ﬁ’
(61)

where k and p are the bulk and shear modulus, respectively. The con-
stitutive relations of the general strain gradient elasticity are obtained
from Eq. (61), as follows:

oy = gTW] — KSyem + 2], (62)
pi= % = 2pulgem.i, (63)
W = gy 2R o
m, = %",V] :2M(1§+gl§)xi’j+zu(1§ - glg)xjf,., (65)

where p;, riﬁ), and mlfj are work-conjugates to e, ;, nf};, and X,/J re-
spectively.

For the incompressible material in which the hydrostatic defor-
mation vanishes, Eq. (61) simplifies to

9
w = pefyel; + witnny) + (B + 28) X1

9 /
‘HL(I% - glg)Xi/iji- (66)

The number of length-scale parameters is equal to that of the strain
gradient plasticity by Fleck and Hutchinson (1997). In the strain gra-
dient plasticity, the effect of the term Xi/j X]{i in the effective plas-
tic strain is usually excluded, because no example has been identi-
fied yet for which this invariant plays a particularly important role
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(Begley and Hutchinson, 1998; Fleck and Hutchinson, 2001). Here,
if we exclude any dependence on this invariant in the deformation
energy density function for the elasticity theory by assuming I, =
3/+/5 1y, the number of length parameters will further reduce to two
from three, resulting in the modification of the strain energy density
(42) as

1 1
W = ke + MeEl + G Em e + 1B ) - //«lo XX

(67)

Thus, experimental data from two different types of micro-scale test
are able to independently determine the length parameters Iy and I,
such as torsion and bending tests.

4.3. Governing equations and boundary conditions

According to Eqgs. (13)-(18
can also be rewritten as

), the strain energy density in Eq. (61)

1 9, 4
w = Skeiiejj + pe'ijelij + u(glé 151 lz)nukm,k
6 4 1
M(glé 151 -2l )ﬁkjj’?iik + M(glé - ﬁl% - l%)nkiinkjj
1 2
M(gl% + 21§>77ijk77ijk + M(gl% - ZIg)nkijnijkv (68)
which is similar to that of Mindlin (1965), but the independent

higher-order constants are three in the current theory rather than
five. Then, the constitutive relations are derived as

0ij = kdijenn + Zueu, (69)
9 4 ,
Tijk = M(glg 151 lz) (83 nnkc + SikTTnnj)
2
( 10 + 151 12) (Sijnkmm + 8iknjmm + 28jknnni)
12 2 2
+u(§zo b 212)5,~,<n,~nn +u(§l% +41§)n,~,~k
2
+ M<§l12 - 21%) (nkij + ﬂjk,'). (70)

In addition, the equilibrium equation and boundary conditions have
been provided in Eqs. (6)-(10). Although the equilibrium equation
and boundary conditions listed in Eqgs. (6)-(10) are simple and easy to
apply, the equilibrium equation and boundary conditions in the form
of higher-order stress components are also essential for the sake of
identifying the contribution of each component. Applying the princi-
ple of the virtual work,

/ (0,188,1 +pide; + ts}()sni(jl,f + m’,-j(SX’,-j>dV = /V by Su,dv

+ / (fkéuk + llk((skl — len,)591 + f(SEN)dS + ‘¢. f_kSude, (7])

s c
the equilibrium equation in the volume V is given as
1 1

Oik,i — Diik — f&?ﬁ zezlkmu Tha §€iljm§j,1k + by =0, (72)
as well as, the boundary conditions on the surface S are
- ) 1 12 ] /
te = M0 — Prndit — Ty — 5 im’sjj + e 15.j0ik]

D M D — Yoo non s
+(Dpnp) ( ngnip; + n; iMjTe + M Njns 3eUsnknJm is

1 ' M M
7Ds(§€j5knin1m anj +mty +n; TUS njnk)

1 _
( iDi — el]Sm 15”]) Oruy = Uy, (73)
[ = MMy — 2egn; Tlgs)”j”z or bty = (8 — men;)6;, (74)
- ( ) 1 ’ -
T =n;p; +n; iTiji MMk — §ei5jnsmij oréy = nin;&j, (75)

and along the edge C of the piece-wise smooth surface is
1
fi = [kk(n,p ) +kjn; ﬂk )+ 2ejsk(n mjny)ksn;j + n; nikt') e
1 _
- §kk(eijlnjml/‘1):| or iy = Uy, (76)

where 6; is the rotation vector. 6 and &yare the given rotation tan-
gential to the surface and the given normal strain, respectively. New
equilibrium and boundary conditions in terms of the independent
metrics are now established for the present theory. These equations
can directly reduce to the case of incompressible materials when the
terms associated with the hydrostatic strain vanish.

5. Solutions to simple problems

The general isotropic strain gradient elasticity theory in the form
of strain gradient components offers a good opportunity to identify
the contribution of each strain gradient component. In this section,
three basic problems are considered within the framework of the
present theory with three length-scale parameters and the simple
theory with single parameter. The results of present three-parameter
theory will reveal which strain gradient component enters the cor-
responding problem and controls its size effect. Comparison of solu-
tions from the three-parameter and one-parameter versions allows
one to draw conclusions about the necessary of including multiple
material length parameters in strain gradient theory. For the simple
theory without surface energy by Vardoulakis et al. (1996), the strain
energy density has the form as

1 1
Ws = i)\giiejj + peijei + 2 (iknmnﬂikk + Mnijknijk)s (77)

which is a special case of the Mindlin theory. Obviously, the strain
energy density (77) contains only one length-scale parameter [ with
the dimension of length.

5.1. Torsion of bar

Consider a cylindrical bar with constant radius R, whose axis is as-
sumed to be the z-axis. When the bar twists, the displacement com-
ponents, same as those in classical theory, are expressed as

u; =—-0yz, u,=6xz, u3=0, (78)

where 6 is the constant angle of twist per unit length. The derived

strain is identical to that in the classical theory. The hydrostatic strain

equals zero, and the non-zero deviatoric strains are

’ / 1 / ! l

€13 = &% = —iey, £h3 = &4y = i@x. (79)
For the three-parameter version, the dilatation gradient and the

deviatoric stretch gradient vanish, and the deviatoric rotation gradi-

ent components, the only non-vanishing strain gradient quantities,

are

X =—

1 1
50, X3 =—50, and 33 = 0. (80)

From Eq. (61), the strain energy density can be obtained as

w= %MGZ(RZ +613). (81)
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12 Three-parameter theory
—-—- One-parameter theory

4
/1, (R11)

Fig. 1. Size effect of the normalized torsion rigidity.

On the basis of the work-energy principle,

L
/ / wdAdz = 1T6?L, (82)
0 Ja 2
the twist angle is derived as
T
= (83)
M(Ip + 6Al§)

where T denotes the torque, L denotes the length of the bar, A denotes
the area of cross section, and I, denotes the polar moment of inertia
of the cross section. Therefore, the torsion rigidity is obtained from
the above relation as

S = u(Ip + 6AL3). (84)
For the one-parameter version, the torsion rigidity is given by
S = (I, + 2A1). (85)

Considering the torsion rigidity for the classical theory, Sc = ulp,
the torsion rigidities for both versions can be normalized as

S I2

—=1+12= 86
5. = 1+ 125 (86)
where [, depends on the formulation according to 12 = l% for the

three-parameter version and 2 = 1/3 2 for the one-parameter ver-
sion.

From the formulation of the three-parameter version, one knows
that only the length parameter [, determines the size effect in bar
torsion, and the other length parameters Iy and [; do not enter this
problem. The contribution of the three-parameter version to the size
effect of the torsion rigidity is 6ptAlZ, while the simple version has
21LAI% as its contribution to the torsion rigidity. The results from the
two theories in the form of normalized torsion rigidities as a func-
tion of the ratio of radius to length parameter are compared in Fig. 1.
It is seen that the size-dependencies of normalized torsion rigidities
from gradient effects predicted in the two versions are obviously dif-
ferent. Identical gradient effects from the two versions would be ex-
pected when [2 = 3l%. Nevertheless, the factor is strongly problem-
dependent, which will be seen in the following shear and pure bend-
ing problems.

5.2. Shearing of fixed-end layers

Consider a block of width b, length L and height h undergoing
a shear deformation, as shown in Fig. 2. Assume b and L are much

P
- — 7
/ /
/ /
/ /
h / /
/ /
/ y /
/ X 7
L

Fig. 2. Simple shear problem.

larger than h. The Cartesian coordinate system shown in the fig-
ure is adopted in the formulation below. The only non-vanishing x-
component u(y) of the displacement vector is induced by a shear
force P acting on the top surface y = h. The hydrostatic strain equals
zero, and the non-zero deviatoric strains are
1du

/ !
Eyy =Ep = 55— 87

Xy yX 2 dy ( )

In the three-parameter version, the dilatation gradient vanishes.

The non-zero strain gradient quantities are the deviatoric stretch gra-
dient and the deviatoric rotation gradient, which are given as

m_ 1du o o a_4dPu a o

N = T5d2 M21 =12 =2 = 15 az M331 = 313 = "33
1 d2u
R (88)
1d%u
X3 = T2d2 (89)

The work-conjugated stress and higher-order stress quantities ob-
tained from Eqs. (62)—(65) are listed as

du
Oxy = Oyx = M@, (90)
d2u d2u
mj, = —,u(l§ 12) I My = —[,L(l% 12) I (91)
) 2 Pu o_o_o_8 pdu o
T = —z 1l — a2 o1 =T =Tn = M112 a2 T331 = T3p3
2 d2u
- rgg pi2=—= 7 (92)
Substituting Eqgs. (90)-(92) into Eq. (72) leads to the governing
equation,
d*u  du
bl Y ) 93
g T (93)
in which g2 = £12 + 112 + %12, According to the boundary condi-

tions of the current problem

_ _ o du(h) d3u(h) P d?u(h) _
u(O) - Ov SXy(O) - 0’ dy _82 dy3 - ms dyz - 07
(94)
the solution of Eq. (93) can be readily obtained as
P sinh[(1 - £)"] h
uy)=——[y+g———~—= —gtanh | = ||, 95
) PR cosh (%) g 2 ] (95)
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Fig. 3. Distribution of normalized shear strain with different characteristic size.

where the normalized coordinate & = y/h. The non-vanishing strain,
hence, is found to be

_g)h
1P (1_cosh[(1 s)g]) 96)

9= 2 ubL cosh (1)

and the corresponding strain for the one-parameter version is

h
1P (1_cosh[(l—é)l]>. ©7)

B = 2 pubL cosh (9)

Considering the non-vanishing strain in the classical theory, &5, =

%ﬁ, the non-vanishing strains in the two versions can be normal-
ized as

h
Exy cosh[(1-§)7]
< =l (98)
Exy cosh ()

where [, depends on the formulation according to [, = g for the three-
parameter version and [, = [ for the one-parameter version.

The distribution of the normalized shear strain along the height of
the block in Eq. (98) is shown in Fig. 3 for various values of h/l,. The
size-dependent normalized shear strain is seen in the shear problem.
Size effects of shear strain predicted in the two formulations are ex-
pected to be identical when 12 = &12 + 113 + 212 Thus, the corre-
sponding factor is 1/2 if Iy = [; = 0, which is different from the fac-
tor in the torsion problem. One knows that the equivalent relations
in the torsion and shear problems are strongly problem-dependent
rather than only the deformation of materials. If each of the two for-
mulations were to be calibrated by the torsion problem such that
2= 3!%, then at least one of the versions must clearly be signifi-
cantly erroneous in predicting shear problem. This strong problem
dependence of the size effect is the essence underlying the necessity
of the multiple-parameter theory to predict the size effect in micro-
structures. Here, we arrive at the same conclusion as in the plastic
deformation theory (Fleck and Hutchinson, 2001).

5.3. Pure bending of thin beams

Consider a rectangular beam with height h, width b and length
L. The Cartesian coordinate system is used. We assume the x-axis to
coincide with the centerline of the beam and the other axes parallel
to the sides of the cross section. The displacement components are

1 v Vs 5 1,
U = —p¥Z u3_ﬁ(y —z)—ﬁx, (99)

12 4

10 +

h/lx

Fig. 4. Size effect of normalized bending rigidity.

where R denotes the radius of curvature of the central axis of the
beam after bending in the xz-plane. Then, the strains can be written
as

z v v
&N =5, 80 =—5Z, E33=—5Z. (100)

R R R

For the three-parameter version, the high-order deformation
quantities are given as

Emn3 = %(1 —20), (101)
{2_%%, Xa1 =§%, (102)
W= —%%(1 +v), (103)

1B = 0l = 1) = 1 (1), 0 = Yy = nih

= —%%(1 +v). (104)

From Eq. (61), the strain energy density can be obtained as

11 1 4
w= iﬁ{Ezz +2M[lc2)(1 -20)* + (EIS + EI% +l§)(1 +V)2]}'

(105)
On the basis of the work-energy principle,
/L/wdAdx = 1M£ (106)
0 Ja T2 KR

the curvature of the central axis of the beam after bending is obtained
as

1 M

- == 107
R D’ (107)
where M denotes the bending moment and D denotes the bending
rigidity expressed as

D=EI+ ZMA[Ig(l —2v)% + (%IS + 14—5112 + l%)(l + v)z], (108)

where E is the Young’s modulus, v is the Poisson ratio, and I is the
moment of inertia. The corresponding bending rigidity for the one-
parameter version is

D = EI + EAI%. (109)
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The bending rigidities, including gradient effects, in the two ver-
sions are normalized using the bending rigidity of the classical the-
ory, EI, as follows

D 12
5 =1+t12:5 (110)

2
where [2 depends on the formulation according to 12 = 20207
(12 + 12 + 3)(1 +v) for the three-parameter version and 12 = I?
for the one-parameter version. The size-dependent bending rigid-
ity of pure bending of a thin beam with rectangular cross-section is
shown in Fig. 4. It is seen that only if the parameters in the three- and

2
one-parameter versions hold the equivalent relation 2 = I2 (11_33) +

(12 + {12 + 2)(1 + v), the two versions will predict the same size
effects for the pure bending problem. The equivalent relation is differ-
ent from the bar torsion and shear problem. The different equivalent
relation between the three- and one-parameter versions in the pure
bending problem further shows the necessity of using the multiple-
parameter theory to predict size effects.

6. Conclusion

By applying two sets of orthogonal decompositions of the
strain gradient tensor, the general isotropic strain gradient elastic-
ity theory with only three independent length-scale parameters is
reformulated. In the reformulated frame, the total deformation en-
ergy density is a function of four parts: the symmetric strain tensor,
the dilatation gradient vector, the deviatoric stretch gradient tensor,
and the deviatoric curvature tensor. The independent strain gradient
parts and the corresponding work-conjugated stress tensors are de-
fined. After strict derivations, the constitutive equations, equilibrium
equation and boundary conditions are obtained subsequently. In ad-
dition, the deformation energy density, equilibrium equations, and
boundary conditions can directly reduce to the case of incompress-
ible materials by assuming the dilatation gradient to be zero.

Three simple examples are studied based on the present strain
gradient elasticity theory. The results reveal that the dilatation gra-
dient, the deviatoric stretch gradient, and the deviatoric rotation gra-
dient control different higher-order deformation in isotropic solids.
The nonvanishing higher-order deformation in torsion is the devia-
toric rotation gradient. The dilatation gradient vanishes in the shear
problem. All the higher-order deformations enter the pure bending
problem. By comparing the present solutions of three examples with
those of the simple strain gradient theory containing only one higher-
order length-scale parameter, the necessity of including more than
one length-scale parameters in the strain gradient theory to consider
size effects in the micron scale has been explained. The present strain
gradient theory can provide effective descriptions of size-dependent
behaviors in wide micron-scale isotropic elastic problems.
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Appendix. The basic tensors of sixth-order isotropic tensors

In the higher-order elasticity theory, both the theories by Mindlin
and Eshel (1968) and Dell'lsola et al. (2009), the constitutive equa-
tions for linear isotropic materials are a linear relation between two
third-order tensors, denoted by @ and by, which is expressed as

ik = Aijkipgbipg- (A1)

where Ajjy,q is the sixth-order elasticity tensor. The property required
by isotropic materials implies the elasticity tensor to conform

Aijklpq = AhmnrstthQijnerlstths (A~2)

for every orthogonal transformation Q;;. The tensor Ay, can be read
as a linear combination of sixth-order isotropic components Ty(n =
1...15), which are called as basic tensors, given by (Monchiet and Bon-
net, 2011; Suiker and Chang, 2000)

(T1)ijkipg = 8ij0k10pq. (T2)ijkipg = SijOkpSiq. (T3)ijkipg = 6ijOkgOip-
(T4)ijkipg = SikS10pq. (T5)ijkipg = SikSjpdig. (T6)ijkipg = SikSjqdip-
(T7)ijkipg = 3i8;kSpq> (T8)ijkipg = Sit8jpdq (To)ijkipg = 818 jqOp-
(T10)ijkipg = SipdikSig> (T11)ijkipg = SipdiSkq (T12)ijiipg = GipdjqSi-
(T13)ijkipg = igdjkO1p (T1a)ijkipg = 8igdji0kp- (T15)ijkipg = SigdjpOii-
(A.3)
If the sixth-order tensor Ajj,, satisfies some special symmetry,
then its basic tensors can be simplified. For a tensor having the

major symmetries, Ajjxpq = Ajpgijk» Only 11 basic tensors denoted
M;(n = 1...11) are needed. They are given by

1 1
M; = j(Tl +Ti3). My = §(T2 +T6), M3 = T3, My
1
= §(T4 +Tyo), M5 = TsMg = T;, M; = Tg, Mg = Ty,
1
Mgy =Ty, My = E(Tu +Tis), My = Tys. (A4)
Furthermore, if a tensor has the additional minor symmetries,
Aijkipg = Aikjlpg = Aijkigp» I addition to the major symmetries, the
number of basic tensors reduces from 11 to five. These basic tensors
are

1 1
S = Z(T1 +Tio+Ti3+T4).S; = Z(Tz +T3+T5 +Tes)

1 1
S3=T;,84= §(Ts +Tg), S5 = Z(T“ + T2 + Ti4 + Tis). (A5)

However, a case of the minor symmetries depending on a Kro-
necker symbol needs only the basic tensor S3; whereas, for a case
that the components contracting two minor symmetric indices van-
ish, only three basic tensors are needed, given as

2 1
D =S -5+ §53,

1 1 2
3 D, =S4 — =83, D3=§S3+S5—7S1.

3 3
(A.6)

When a tensor has either the additional symmetric properties
Aijkipg = Axijipg = Ajkilpg> OF the additional anti-symmetric properties
Ajjtipg + Akijipg + Ajkitpg = 0, in addition to the major and minor sym-
metries, only two basic tensors are needed. They are

1
K1 = §(4S1 =+ S3 =+ 452)
1

= §(T1+T10+T13 +Ts+T7 4+ T2+ T3+ Ts +Ts), (A7)

and
1

K, = §(ZS4 + 455)
1

= §(Ts +Tg + Tt + Tiz + Tig + Tis), (A.8)
for the additional symmetric conditions, and

4
Al = §(53 +S; —28;)

1
= 5(4T7+T2 +Ts + T3 4+ Tg — 2T; — 2T4 — 2T — 2T13), (A.9)
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and

4
A; = §(S4 —Ss)

1
= §(2T8 +2Tg — Ty; — Tio — T14 — Tis) (A10)

for the additional anti-symmetric conditions. Finally, these sixth-
order tensors with special symmetry can be read as a linear combi-
nation of their basic tensors.
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