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a b s t r a c t

The general isotropic strain gradient elasticity theory with five higher-order elastic constants is reformu-

lated by introducing two different orthogonal decompositions of the strain gradient tensor. Just applying the

mathematical reformulations, no extra conditions needed, the constitutive relations, equilibrium equation

and boundary conditions are reformulated. In the reformulated theory, the number of independent higher-

order elastic constants is proved to be three for isotropic materials, which indicates that the five higher-order

elastic constants in the general isotropic strain gradient elasticity theory are dependent with each other.

Therefore, the general strain gradient elasticity theory contains only three independent material length-scale

parameters for isotropic materials in addition to the Lame constants. The new theory is different from the ex-

isted strain gradient elasticity theory with one or three material length-scale parameters, which introduces

extra conditions during deriving process. Moreover, the reformulated theory can be directly reduced to that

of incompressible materials by assuming the terms associated with hydrostatic strains to be zero. Some ex-

amples, such as torsion of cylindrical bars, shearing of fixed-end layers, and pure bending of thin beams, are

performed to reveal the necessity of including multi-length-scale parameters in the strain gradient elasticity

theory to predict size effects at micron scale.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Many experiments have shown the size-dependent deformation

behaviors in micron scale. In the non-uniform plastic deformation,

the size effects have been observed in the experiments of measur-

ing micro-indentation hardness of metallic materials (Ma and Clarke,

1995), shear strength of copper wires in torsion (Fleck et al., 1994),

and bend moments of ultra-thin beams (Stolken and Evans, 1998).

By contrast, in elastic deformation, the size dependence of the nor-

malized bending rigidity exists in micro-beams of both metals and

polymers (Guo et al., 2005; Tang and Alici, 2011a, 2011b; Lam et al.,

2003). Because of the lack of internal length-scale parameters, the

classical elasticity and plasticity theories fail to describe such a be-

havior in the micron scale. Meanwhile, load or geometrically induced

stress singularities cannot be properly accounted by the standard

continuum mechanical models. However, this is possible with the use

of higher-order continuum mechanics theories, where intrinsic pa-

rameters correlating the microstructure and the macrostructure are
∗ Corresponding author at: School of Mechanical Engineering, Shandong University,

Jinan, Shandong 250061, People’s Republic of China. Tel.: +86 531 88396708; fax: +86

531 88392700.
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nvolved in the constitutive relations. Different versions of higher-

rder continuum mechanics have been developed by many authors.

elationships between those theories have been discussed by Tekoglu

nd Onck (2008).

Generally, higher-order theories can be classified into couple

tress theories and general strain gradient theories, according to

he deformation metrics used. In the classical couple stress theory

Toupin, 1962; Mindlin and Tiersten, 1962; Koiter, 1964), only the

radient of the rotation vector enters the strain energy density func-

ion, and, hence, two additional material parameters are introduced

esides the Lame constants for isotropic materials. By introducing

so-called equilibrium condition of moments of couples (the cou-

le of force couples) to force the couple stress tensor to be symmet-

ic, Yang et al. (2002) modified the classical couple stress theory to

nclude only one additional material parameter. Recently, however,

adjesfandiari and Dargush (2011) came to a contrary conclusion that

he couple stress tensor is of the skew-symmetric character.

The more general strain gradient elastic theory including all com-

onents of the higher-order deformation is proposed by Mindlin

1964) to describe the linear elastic behavior of microstructures.

his theory requires 16 additional length constants for isotropic ma-

erials in addition to two Lame constants. The application of this

heory is limited as it requires the formidable task of determining,

http://dx.doi.org/10.1016/j.ijsolstr.2015.10.018
http://www.ScienceDirect.com
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heoretically or experimentally, 16 additional constants. For practical

urposes, Mindlin and Eshel (1968) further formulated three simpler

ersions of the general isotropic theory, utilizing only two material

nd five internal length-scale constants in the final constitutive re-

ation rather than 18 used in Mindlin’s initial model. One of these

ersions uses the classical strains and the second-order gradient of

isplacement as the deformation metrics. In the second version, the

econd-order gradient of displacement is replaced by the gradient of

train, and in the third version, the deformation variables include the

lassical strains, the gradient of rotation, and the fully symmetric part

f the gradient of strain. Although the simpler versions reduce inde-

endent length-scale parameters from 16 to five for isotropic mate-

ials, the application of this theory in engineering is limited as five

ength-scale parameters are still very difficult to be determined ex-

erimentally. Fleck and Hutchinson (1993, 2001) extended the first

ersion of Mindlin theory to plasticity and proposed a deformation

heory of strain gradient plasticity, which involves three length-scale

arameters. Lam et al. (2003) reformulated the theory by applying

set of higher-order metrics to characterize strain gradient behav-

ors, and proposed a isotropic strain gradient elasticity theory. In their

heory, the equilibrium condition of moments of couples is applied

o force the symmetric character of the couple stress tensor and re-

uce the number of elastic length-scale parameters from five to three.

owever, in our opinion, the mechanical effect of the moment cou-

le is unable to be comprehended for the free character of moment

ectors.

In addition to the simplified model of the general strain gradient

lasticity theory developed by Mindlin, a simple model of isotropic

train gradient elasticity with only one length-scale parameter has

een formulated by Aifantis (1992), in which classical stresses are re-

ated to classical strains and the Laplacian gradient of strains. Subse-

uently, this theory has been extended with additional terms to ac-

ount for surface effects (Vardoulakis and Sulem, 1995; Vardoulakis

t al., 1996; Exadaktylos, 1998). The theory proposed by Aifantis can

e formally obtained as a special case of the Mindlin theory (Li et al,

004; Lazar and Maugin, 2005; Askes and Aifantis, 2011). Although

ne length-scale parameter can be expediently determined by simple

ending or torsion test, it has been demonstrated that the strain gra-

ient plasticity theory with a single length parameter does not have a

cope to include the wide range of small-scale phenomena (Fleck and

utchinson, 2001). Therefore, the strain gradient theory with multi-

le length parameters is necessary to capture the size effects of me-

hanic behaviors at the micron scale.

Recently, strain gradient theory has new development. Polizzotto

2012) proposed a gradient elasticity theory for continua featured

y not only a strain energy depending on the strain and the first-

rder strain gradient, but also a kinetic energy depending on the ve-

ocity and the first-order velocity gradient, in which the effects of

oth strain gradient and higher-order inertia are combined. Further,

his theory has been even extended to the second-order strain gradi-

nt elasticity with second-order velocity gradient inertia (Polizzotto,

013). Moreover, Auffray et al. (2013) derived and provided the ex-

licit matrix representations of the sixth-order elastic tensor for all

he three-dimensional (3D) anisotropic cases in a compact and well-

tructured manner. In addition, Mühlich et al. (2012) developed an al-

ernative method for the approximation of the material properties in

inear elastic strain gradient effective media. Bacca et al. (2013) pro-

ided an analytical approach to the determination of the parameters

efining an elastic higher-order (Mindlin) material as the homoge-

ization of a heterogeneous Cauchy elastic material. Although many

ew achievements have been made, the strain gradient theory should

e contributed more as the basis to form a unified and effective the-

ry for application.

The purpose of this article is to propose a general strain gradient

lasticity theory by reformulating the constitutive relations in terms

f two sets of independent higher-order metrics and determine the
umber of independent material constants needed for an isotropic

aterial in the general strain gradient elasticity theory. The rest is

rganized as follows. Section 2 reviews the general isotropic strain

radient theory. In Section 3, two new sets of independent higher-

rder deformation metrics are developed to split the strain gradi-

nt tensor into mutually independent parts and the corresponding

ork-conjugated higher-order stress tensors are defined. In Section 4,

he constitutive relations are reformulated and the number of inde-

endent higher-order material constants is proved to be three for

sotropic linear elastic materials. Then, the general isotropic strain

radient elasticity theory containing three higher-order elastic con-

tants is re-expressed in the form of strain gradient components, and

he equilibrium relations and boundary conditions are derived by ap-

lying the variational principle of the strain gradient theory. Section 5

resents the contribution of each strain gradient component and the

nfluence of higher-order length-scale parameters through three ba-

ic problems. Finally, conclusions are summarized in Section 6.

. Review of general strain gradient elasticity theory

In the general strain gradient elasticity theory (Mindlin and Eshel,

968), the total strain energy density is a function of strain and its

rst-order gradient, given by

= w(εi j, ηi jk), (1)

here ɛij is the symmetric strain tensor and ηijk is the strain gradient

ensor with the minor symmetry in the last two indices. The strain

ensor and strain gradient tensor are defined, respectively, as

i j = 1

2
(ui, j + uj,i), (2)

i jk = εk j,i, (3)

here ui is the displacement vector and a comma denotes the dif-

erentiation with respect to the coordinates. Then, the corresponding

tress σ ij and the higher-order stress τi jk( = τik j) work-conjugated to

he strain ɛij and the strain gradient ηijk, respectively, can be written

s

i j = ∂w

∂εi j

, τi jk = ∂w

∂ηi jk

. (4)

For a volume V of a solid with boundary S and sharp edge C, the

rinciple of virtual work for the strain gradient theory is

V

(σi jδεi j + τi jkδηi jk)dV =
∫

V

b̄kδukdV +
∫

S

(
t̄kδuk + r̄kDδuk

)
dS

+
∮

C

f̄kδukdC, (5)

here b̄k is the body force per unit volume, t̄k is the surface traction,

¯k is the surface double-force traction, f̄k is the line load along the

harp edge, and D = ni∂i denotes the normal gradient operator. The

quilibrium equation in the body V can be derived using the virtual

ork principle as

ik,i − τi jk,i j + b̄k = 0, (6)

nd the boundary conditions on S and along C are, respectively,

k̄ = ni

(
σik − τi jk, j

)
+ (Dpnp)nin jτi jk − Di

(
njτi jk

)
or ūk = uk, (7)

¯k = nin jτi jk or Duk = Duk, (8)

nd

f̄k = [nik jτi jk] or ūk = uk, (9)

here ni is a unit vector normal to the boundary surface S, Di =
δik − nink)∂k is the surface gradient operator, and kj is the outer co-

ormal vector satisfying the following relation

j = eik jsink, (10)
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with the alternating tensor eikj and the unit vector si tangent to the

edge C. The square brackets in Eq. (9) represent the difference be-

tween the values of the enclosed quantity on the two sides of the

edge.

3. Development of independent higher-order metrics

In this section, two sets of independent higher-order deformation

metrics will be developed by introducing two different orthogonal

decompositions of the strain gradient tensor, of which one is based

on a hydrostatic/deviatoric splitting, the other on a symmetric/anti-

symmetric splitting.

For the hydrostatic/deviatoric splitting, it is known that the strain

tensor can be expressed as its spherical and deviatoric parts

εi j = 1

3
δi jεnn + ε′

i j, (11)

where δij is the Kronecker delta, 1
3 εnn is the mean or hydrostatic

strain associated with a change in volume, and ε′
i j

is the deviatoric

strain tensor associated with a change in shape. Following Eq. (11),

the strain gradient tensor ηijk can also be decomposed into a hydro-

static part ηh
i jk

and a deviatoric part η′
i jk

as

ηi jk = ηh
i jk + η′

i jk, (12)

where

ηh
i jk = 1

3
δ jkεnn,i = 1

3
δ jkηinn, η′

i jk = ηi jk − ηh
i jk = ε′

k j,i. (13)

Here, the deviatoric part η′
i jk

is the deviatoric strain gradient ε′
k j,i

associated with the shape change in strain gradient, and, in fact,

equals the plastic strain gradient introduced by Fleck and Hutchinson

(2001). In accordance with the decomposition of plastic strain gradi-

ents into three parts proposed by Fleck and Hutchinson (2001), the

strain gradient ηijk can be decomposed into four independent com-

ponents as

ηi jk = ηh
i jk + η′(1)

i jk
+ η′as

i jk + η′(2)
i jk

, (14)

with

η′(1)
i jk

= η′s
i jk − 2

15

(
δi jekpq + δ jkeipq + δkie jpq

)
χ ′a

pq, (15)

η′as
i jk = 1

3
ei jpχ

′s
pk + 1

3
eikpχ

′s
p j, (16)

η′(2)
i jk

= 1

3
ei jpχ

′a
pk + 1

3
eikpχ

′a
p j + 2

15

(
δi jekpq + δ jkeipq + δkie jpq

)
χ ′a

pq,

(17)

where

η′s
i jk = 1

3

(
η′

i jk + η′
ki j + η′

jki

)
, χ ′

i j = eipqη
′
pq j = eipqε

′
jq,p

χ ′s
i j = 1

2

(
χ ′

i j + χ ′
ji

)
, χ ′a

i j = 1

2

(
χ ′

i j − χ ′
ji

)
. (18)

Accordingly, the decomposition of the higher-order stress tensor

τ ijk, work-conjugate to the strain gradient tensor ηijk, can be written

as

τi jk = τ h
i jk + τ ′(1)

i jk
+ τ ′as

i jk + τ ′(2)
i jk

, (19)

where the components τ h
i jk

, τ ′(1)
i jk

, τ ′as
i jk

, and τ ′(2)
i jk

, work-conjugate to

the strain gradient components, ηh
i jk

, η′(1)
i jk

, η′as
i jk

, and η′(2)
i jk

, respectively,

are defined as

τ h
i jk = 1

3
δ jkτinn, (20)
′(1)
i jk

= τ ′s
i jk − 1

5

(
δi jτ

′s
mmk + δ jkτ

′s
mmi + δkiτ

′s
mm j

)
, (21)

′as
i jk = 1

6

(
2τ ′

i jk − τ ′
jik − τ ′

k ji + ei jpektsτ
′
tsp + eikpe jtsτ

′
tsp

)
, (22)

′(2)
i jk

= 1

5

(
δi jτ

′s
mmk + δ jkτ

′s
mmi + δkiτ

′s
mm j

)
+ 1

6

(
2τ ′

i jk − τ ′
jik − τ ′

k ji − ei jpektsτ
′
tsp − eikpe jtsτ

′
tsp

)
, (23)

ith

′s
i jk = 1

3

(
τ ′

i jk + τ ′
jki + τ ′

ki j

)
, τ ′

i jk = τi jk − τ h
i jk, (24)

here τ ′s
i jk

is the symmetric component of the deviatoric higher-order

tress tensor, and the deviatoric part τ ′
i jk

of higher-order stress is

ork-conjugate to the deviatoric strain gradient η′
i jk

.

For the symmetric/anti-symmetric splitting, the strain gradient

ensor ηijk can be directly decomposed into its symmetric and anti-

ymmetric parts, ηs
i jk

and ηa
i jk

, (Fleck and Hutchinson, 1997), respec-

ively, as follows:

s
i jk = 1

3

(
ηi jk + η jki + ηki j

)
, ηa

i jk = ηi jk − ηs
i jk

= 1

3
ei jpχpk + 1

3
eikpχp j, (25)

here χi j = eipqηpq j is the curvature tensor. Then, the symmetric part

s
i jk

can be further split into a trace part, η(0)
i jk

, and a traceless part,

(1)
i jk

, (Lam et al., 2003) and, moreover, new independent strain gradi-

nt metrics can be obtained by splitting the anti-symmetric part ηa
i jk

nto two independent parts, ηas
i jk

and ηaa
i jk

, according to the decompo-

ition of the curvature tensor χ ij into its symmetric part χ s
i j

and anti-

ymmetric part χ a
i j

. Thus, the new set of independent components is

iven by

i jk = η(0)
i jk

+ η(1)
i jk

+ ηas
i jk + ηaa

i jk, (26)

here

(0)
i jk

= 1

5

(
δi jη

s
mmk + δ jkη

s
mmi + δkiη

s
mm j

)
, (27)

(1)
i jk

= ηs
i jk − η(0)

i jk
, (28)

as
i jk = 1

3
ei jpχ

s
pk + 1

3
eikpχ

s
p j, (29)

nd

aa
i jk = 1

3
ei jpχ

a
pk + 1

3
eikpχ

a
p j, (30)

ith

s
i j = 1

2

(
χi j + χ ji

)
, χ a

i j = 1

2

(
χi j − χ ji

)
. (31)

By defining the corresponding higher-order stress components
(0)
i jk

, τ (1)
i jk

, τ as
i jk

, and τ aa
i jk

, work-conjugate to the set of higher-order de-

ormation metrics η(0)
i jk

, η(1)
i jk

, ηaa
i jk

, and ηas
i jk

, respectively, the higher-

rder stress tensor can also be expressed as

i jk = τ (0)
i jk

+ τ (1)
i jk

+ τ as
i jk + τ aa

i jk, (32)

here τ (0)
i jk

and τ (1)
i jk

are the trace and traceless parts, respectively,

plit from the symmetric part of the higher-order stress tensor τ s
i jk

=
1
3 (τi jk + τ jki + τki j), which is work-conjugate to the symmetric part

f strain gradient tensor ηs
i jk

. While τ as
i jk

and τ aa
i jk

are other two inde-

endent parts split from the anti-symmetric part of the higher-order
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tress tensor τ a
i jk

= τi jk − τ s
i jk

, which is work-conjugate to the anti-

ymmetric part of strain gradient tensor ηa
i jk

.

In the above-presented discussions, the two sets of higher-order

eformation metrics have been given in the form of different orthog-

nal components in Eqs. (14) and (26). The difference between them

s that the latter three terms in the first set are independent of the di-

atational deformation, but the first term depends on dilatational de-

ormation; nevertheless, the second and third terms in the second set

re independent of the dilatational deformation, but the first and last

erms are related to the dilatational deformation. With the help of the

elations εk j,i = ε′
k j,i

+ 1
3 δ jkεnn,i, εni,n = ε′

ni,n
+ 1

3 εnn,i, and χ s
i j

= χ ′s
i j

,

t is found that the components η(1)
i jk

and ηas
i jk

of the strain gradient

ensor are equal to the components η′(1)
i jk

and η′as
i jk

of the deviatoric

train gradient tensor, respectively, that is η′(1)
i jk

= η(1)
i jk

and η′as
i jk

= ηas
i jk

.

orrespondingly, the components τ (1)
i jk

and τ as
i jk

of the higher-order

tress tensor are equal to the components τ ′(1)
i jk

and τ ′as
i jk

of the de-

iatoric higher-order stress tensor, respectively, that is τ ′(1)
i jk

= τ (1)
i jk

nd τ ′as
i jk

= τ as
i jk

. And, hence, no differentiation will be made between

′(1)
i jk

and η(1)
i jk

, η′as
i jk

and ηas
i jk

, τ ′(1)
i jk

and τ (1)
i jk

, τ ′as
i jk

and τ as
i jk

in the rest of

he current paper. Moreover, it is confirmed that the traceless part,
(1)
i jk

of the strain gradient tensor is the same as provided by Lam et

l. (2003), who refer to it as the deviatoric stretch gradient. In addi-

ion, it is also shown that all independent components of both strain

radient tensor and the higher-order stress tensor carry the minor

ymmetry of the strain gradient tensor.

. Reformulation of constitutive relations

.1. Independent higher-order material constants

For linear elastic isotropic materials, the total strain energy den-

ity in the strain gradient theory (Eq. (1)) consists of the conventional

art wc, depending on strains, and the higher-order part wh, depend-

ng on strain gradients. Thus, the total strain energy density can be

xpressed as

= wc + wh = 1

2
Ci jklεi jεkl + 1

2
Fi jklpqηi jkηl pq, (33)

here Ci jkl = λδi jδkl + μ(δilδ jk + δikδ jl) is the conventional elastic

ensor with the Lame constants λ and μ, and Fijklpq is the sixth-

rder isotropic elastic tensor obeying the symmetry Fi jklpq = Fl pqi jk

nd, moreover, requires the symmetries Fi jklpq = Fik jlpq = Fi jklqp be-

ause of the minor symmetry of the strain gradient tensor ηijk. The

esulting constitutive relations can be derived using Eq. (4), as fol-

ows:

σi j = Ci jklεkl = λδi jεnn + 2μεi j

i jk = Fi jklpqηl pq. (34)

Because of the development of the new independent higher-order

etrics, the higher-order part wh in the total strain energy density

an be expressed in terms of the differential independent compo-

ents of the strain gradient tensor. On the one hand, for the hydro-

tatic and deviatoric parts of the strain gradient tensor in Eq. (12), the

igher-order part has the following form:

h = 1

2
F h

i jklpqη
h
lpqη

h
i jk + 1

2
F d

i jklpqη
′
l pqη

′
i jk, (35)

here the sixth-order isotropic tensors F h
i jklpq

and F d
i jklpq

have a sym-

etry similar to that of Fijklpq; however, in addition, the minor sym-

etric property of the hydrostatic strain gradient tensor ηh
i jk

enforces

hat the symmetry of the tensor F h
i jklpq

with respect to its indices (j, k)
epends on δjk, and the property of the deviatoric tensor η′
i jk

requires

he tensor F d
i jkl pq

has F d
isslpq

= 0.

On the other hand, according to the symmetric and anti-

ymmetric parts of the strain gradient tensor in Eq. (25), the higher-

rder part of strain energy density can also be written as

h = 1

2
F s

i jklpqη
s
lpqη

s
i jk + 1

2
F a

i jklpqη
a
lpqη

a
i jk, (36)

n which the sixth-order isotropic tensors F s
i jkl pq

and F a
i jklpq

have

he major symmetry, F s
i jkl pq

= Fs
ki jl pq

= F s
jkilpq

, and the major anti-

ymmetry, Fa
i jkl pq

+ Fa
ki jl pq

+ F a
jkilpq

= 0, in addition to obeying the sym-

etry of Fijklpq.

The sixth-order isotropic tensors having their own properties on

he symmetries or anti-symmetries can be read as a linear combi-

ation of their basic tensors provided in Appendix. From Eqs. (A.5)–

A.9), the sixth-order isotropic tensors, Fijklpq, F h
i jkl pq

, Fd
i jklpq

, F s
i jklpq

, and
a

i jkl pq
can be expressed, respectively, using their own basic tensors,

s

i jklpq = a1(S1)i jklpq + a2(S2)i jklpq + a3(S3)i jklpq + a4(S4)i jklpq

+ a5(S5)i jklpq, (37)

h
i jklpq = d(S3)i jklpq, (38)

d
i jklpq = d1(D1)i jklpq + d2(D2)i jklpq + d3(D3)i jklpq, (39)

s
i jklpq = b1(K1)i jklpq + b2(K2)i jklpq, (40)

a
i jklpq = c1(A1)i jklpq + c2(A2)i jklpq, (41)

here an(n = 1, . . . , 5), d, dn(n = 1, 2, 3), bn, and cn(n = 1, 2) are the

igher-order material constants, and the tensor Sn(n = 1, . . . , 5), S3,

n(n = 1, 2, 3), K1 and K2, A1 and A2 are the basic tensors provided

n Appendix for the elasticity tensors Fijklpq, Fh
i jkl pq

, F d
i jklpq

, F s
i jklpq

, and
a

i jkl pq
, respectively.

Substituting Eq. (37) into Eq. (34), the constitutive relations for the

igher-order metrics are written as

i jk = Fi jklpqηl pq = 1

4
a1

(
δi jηknn + δikη jnn + 2δ jkηnni

)
+1

2
a2

(
δi jηnnk + δikηnn j

)
+ a3δ jkηinn + a4ηi jk

+1

2
a5

(
ηki j + η jki

)
, (42)

hich is similar to the form presented by Mindlin (1964). Considering

he relations,

nni = 1

3
ηinn + ε′

ni,n, ηi jk = 1

3
δ jkηinn + ε′

jk,i, (43)

t can be recognized that the terms in Eq. (42) are coupled, that is,

he five higher-order constants are not independent. The relationship

etween these five constants will be found by expressing the consti-

utive relations in terms of the components of higher-order metrics.

rom the expression of higher-order strain energy density in Eq. (35),

he higher-order constitutive relations can be obtained as

h
i jk = F h

i jklpqη
h
lpq, τ

′
i jk = F d

i jklpqη
′
l pq. (44)

Another form of higher-order constitutive relations can be ob-

ained from Eq. (36), as follows

s
i jk = F s

i jklpqη
s
lpq, τ

a
i jk = F a

i jklpqη
a
lpq. (45)

Applying the decomposing relations and the orthogonal proper-

ies of the higher-order components, the higher-order stress can also

e expressed in terms of the above-described elasticity tensors as

i jk = τ s + τ a =
(
F s + F a

)
ηl pq, (46)
i jk i jk i jklpq i jklpq
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τi jk = τ h
i jk + τ ′

i jk =
(
F h

i jklpq + F d
i jklpq

)
ηl pq. (47)

Thus, had the hydrostaic/deviatoric model in Eq. (44) and the

symmetric/antisymmetric model in Eq. (45), together with the gen-

eral five-constants one in Eq. (42), to represent a same isotropic strain

gradient material, that is Eq. (42) equals Eqs. (46) and (47), the rela-

tionship between these sixth-order isotropic tensors is obtained as

follows:

Fi jklpq = F s
i jklpq + F a

i jklpq = F h
i jklpq + F d

i jklpq. (48)

By suing the relationships between these basic tensors provided in

Appendix, we can obtain the relationships between the higher-order

material constants for the strain gradient tensor as

a1 = −2

3
(a2 + a5), a3 = 2

3
a2 + 1

6
a5, (49)

for the hydrostatic and deviatoric components as

d = 5

9
d1 + 1

3
d2 + 1

18
d3, (50)

and for the symmetric and anti-symmetric parts as

b1 = 4

5
c1 − 6

5
(b2 − c2). (51)

These relations show that any expressed form of the constitutive re-

lations using either the strain gradient tensor or its components con-

tains only three independent higher-order constants. We can con-

clude that there are only three independent higher-order material

constants involved in the general isotropic strain gradient elastic-

ity theory. This conclusion is different from that drawn by both Lam

et al. (2003) and Fleck and Hutchinson (2001). In the theory by Lam

et al., the symmetric character is enforced to the couple stress ten-

sor, whereas the theory by Fleck and Hutchinson is plasticity theory

only for incompressible materials. The demonstration procedure of

independent higher-order constants as presented in this section can

be similarly applied to the reformulation of the nonlinear second-

gradient model proposed by Dell’lsola et al. (2009).

4.2. Constitutive relations

According to Eqs. (34), (42) and (49), the constitutive equations of

isotropic strain gradient elasticity theories are rewritten as

σi j = λδi jεnn + 2μεi j, (52)

and

τi jk = 1

2
a2

(
δi jηnnk + δikηnn j

)
−1

6
(a2 + a5)

(
δi jηkmm + δikη jmm + 2δ jkηnni

)
+1

6
(4a2 + a5)δ jkηinn + a4ηi jk + 1

2
a5

(
ηki j + η jki

)
, (53)

with three independent higher-order elastic constants in addition

to the traditional Lame constants. Further, in order to identify the

specific corresponding relationship between solids deformation and

its strain gradient components, constitutive relations in the form of

higher-order strain and stress components are obtained from Eq. (53),

according to the first set of higher-order metrics in Eqs. (14)–(24), as

follows:

τ h
i jk =

(
5

3
a2 + a4 + 1

6
a5

)
ηh

i jk, (54)

τ (1)
ijk

= (a4 + a5)η
(1)
ijk

, (55)

τ as
ijk =

(
a4 − 1

2
a5

)
ηas

ijk, (56)
′(2)
i jk

=
(

5

3
a2 + a4 + 1

6
a5

)
η′(2)

i jk
. (57)

Therefore, the strain energy density can be rewritten as

= 1

2
σijεij + 1

2
τ h

ijkη
h
ijk + 1

2
τ (1)

ijk
η(1)

ijk
+ 1

2
τ as

ijkη
as
ijk + 1

2
τ ′(2)

ijk
η′(2)

ijk

= 1

2
λεiiεjj + μεijεij + 1

2

(
5

3
a2 + a4 + 1

6
a5

)
ηh

ijkη
h
ijk

+ 1

2
(a4 + a5)η

(1)
ijk

η(1)
ijk

+ 1

2

(
a4 − 1

2
a5

)
ηas

ijkη
as
ijk

+ 1

2

(
5

3
a2 + a4 + 1

6
a5

)
η′(2)

ijk
η′(2)

ijk
. (58)

The last two invariants of Eq. (58) are

ηas
ijkη

as
ijk = 2

3
χ s

ijχ
s
ij = 2

3
χ ′s

ij χ
′s
ij = 1

3

(
χ ′

ijχ
′
ij + χ ′

ijχ
′
ji

)
, and

η′(2)
ijk

η′(2)
ijk

= 6

5
χ ′a

ij χ ′a
ij = 3

5

(
χ ′

ijχ
′
ij − χ ′

ijχ
′
ji

)
. (59)

In order to evaluate the contribution of each strain gradient com-

onent intuitively, the constants are defined as,

1

2

(
5

3
a2 + a4 + 1

6
a5

)
= 3μl2

0 ,
1

2
(a4 + a5)

= μl2
1 , and

1

2

(
a4 − 1

2
a5

)
= 3μl2

2 , (60)

here ln(n = 0, 1, 2) are three length-scale parameters with the di-

ension of length. Therefore, the strain energy density is rewritten

s

= 1

2
kεiiε j j + με′

i jε
′
i j + μl2

0εnn,iεmm,i + μl2
1η

(1)
i jk

η(1)
i jk

+ μ
(

l2
2 + 9

5
l2
0

)
χ ′

i jχ
′
i j + μ

(
l2
2 − 9

5
l2
0

)
χ ′

i jχ
′

ji,

(61)

here k and μ are the bulk and shear modulus, respectively. The con-

titutive relations of the general strain gradient elasticity are obtained

rom Eq. (61), as follows:

i j = ∂w

∂εi j

= kδi jεnn + 2με′
i j, (62)

pi = ∂w

∂εnn,i

= 2μl2
0εnn,i, (63)

(1)
i jk

= ∂w

∂η(1)
i jk

= 2μl2
1η

(1)
i jk

, (64)

′
i j = ∂w

∂χ ′
i j

= 2μ
(

l2
2 + 9

5
l2
0

)
χ ′

i j + 2μ
(

l2
2 − 9

5
l2
0

)
χ ′

ji, (65)

here pi, τ
(1)
i jk

, and m′
i j

are work-conjugates to ɛnn, i, η
(1)
i jk

, and χ ′
i j

, re-

pectively.

For the incompressible material in which the hydrostatic defor-

ation vanishes, Eq. (61) simplifies to

= με′
i jε

′
i j + μl2

1η
(1)
i jk

η(1)
i jk

+ μ
(

l2
2 + 9

5
l2
0

)
χ ′

i jχ
′
i j

+μ
(

l2
2 − 9

5
l2
0

)
χ ′

i jχ
′
ji. (66)

he number of length-scale parameters is equal to that of the strain

radient plasticity by Fleck and Hutchinson (1997). In the strain gra-

ient plasticity, the effect of the term χ ′
i j
χ ′

ji
in the effective plas-

ic strain is usually excluded, because no example has been identi-

ed yet for which this invariant plays a particularly important role
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Begley and Hutchinson, 1998; Fleck and Hutchinson, 2001). Here,

f we exclude any dependence on this invariant in the deformation

nergy density function for the elasticity theory by assuming l2 =
/
√

5 l0, the number of length parameters will further reduce to two

rom three, resulting in the modification of the strain energy density

42) as

= 1

2
kεiiε j j + με′

i jε
′
i j + μl2

0εnn,iεkk,i + μl2
1η

(1)
i jk

η(1)
i jk

+ 18

5
μl2

0χ
′
i jχ

′
i j.

(67)

hus, experimental data from two different types of micro-scale test

re able to independently determine the length parameters l0 and l1,

uch as torsion and bending tests.

.3. Governing equations and boundary conditions

According to Eqs. (13)–(18), the strain energy density in Eq. (61)

an also be rewritten as

= 1

2
kεiiε j j + με′

i jε
′
i j + μ

(
9

5
l2
0 − 4

15
l2
1 − l2

2

)
ηiikη j jk

−μ
(

6

5
l2
0 + 4

15
l2
1 − 2l2

2

)
ηk j jηiik + μ

(
6

5
l2
0 − 1

15
l2
1 − l2

2

)
ηkiiηk j j

+μ
(

1

3
l2
1 + 2l2

2

)
ηi jkηi jk + μ

(
2

3
l2
1 − 2l2

2

)
ηki jηi jk, (68)

hich is similar to that of Mindlin (1965), but the independent

igher-order constants are three in the current theory rather than

ve. Then, the constitutive relations are derived as

i j = kδi jεnn + 2με′
i j, (69)

ijk = μ
(

9

5
l2
0 − 4

15
l2
1 − l2

2

)(
δijηnnk + δikηnnj

)
− μ

(
3

5
l2
0 + 2

15
l2
1 − l2

2

)(
δijηkmm + δikηjmm + 2δjkηnni

)
+μ

(
12

5
l2
0 − 2

15
l2
1 − 2l2

2

)
δjkηinn + μ

(
2

3
l2
1 + 4l2

2

)
ηijk

+μ
(

2

3
l2
1 − 2l2

2

)(
ηkij + ηjki

)
. (70)

n addition, the equilibrium equation and boundary conditions have

een provided in Eqs. (6)–(10). Although the equilibrium equation

nd boundary conditions listed in Eqs. (6)–(10) are simple and easy to

pply, the equilibrium equation and boundary conditions in the form

f higher-order stress components are also essential for the sake of

dentifying the contribution of each component. Applying the princi-

le of the virtual work,

V

(
σi jδεi j + piδε,i + τ (1)

i jk
δη(1)

i jk
+ m′

i jδχ
′
i j

)
dV =

∫
V

bkδukdV

+
∫

S

(
t̄kδuk + μ̄k(δkl − nknl)δθl + r̄δεN

)
dS +

∮
C

f̄kδukdC, (71)

he equilibrium equation in the volume V is given as

ik,i − pi,ik − τ (1)
i jk, ji

− 1

2
eilkm′

i j,l j + 1

3
eil jm

′
i j,lk + bk = 0, (72)

s well as, the boundary conditions on the surface S are

k̄ = ni[σik − pn,nδik − τ (1)
i jk, j

− 1

2
elikm′

l j, j + 1

3
el jsm

′
ls, jδik]

+(Dpnp)
(

nkni pi + nin jτ
(1)
i jk

+ niτ
(1)
i js

n jnkns − 1

3
ei jsnkn jm

′
is

)
− Ds

(
1

2
e jskninlm

′
iln j + niτ

(1)
sik

+ niτ
(1)
i js

n jnk

)

−Dk

(
ni pi − 1

3
ei jsm

′
isn j

)
or ūk = uk, (73)

¯ k = nlm
′
kl − 2eslkniτ

(1)
i js

n jnl or θ̄k = (δki − nkni)θi, (74)

¯ = ni pi + niτ
(1)
i jk

n jnk − 1

3
eis jnsm

′
i j or ε̄N = nin jεi j, (75)

nd along the edge C of the piece-wise smooth surface is

f̄k =
[

kk(ni pi) + kjniτ
(1)
jik

+ 1

2
e jsk

(
nim

′
ilnl

)
ksn j + nin jklτ

(1)
i jl

nk

− 1

3
kk

(
ei jln jm

′
il

)]
or ūk = uk, (76)

here θ i is the rotation vector. θ̄k and ε̄Nare the given rotation tan-

ential to the surface and the given normal strain, respectively. New

quilibrium and boundary conditions in terms of the independent

etrics are now established for the present theory. These equations

an directly reduce to the case of incompressible materials when the

erms associated with the hydrostatic strain vanish.

. Solutions to simple problems

The general isotropic strain gradient elasticity theory in the form

f strain gradient components offers a good opportunity to identify

he contribution of each strain gradient component. In this section,

hree basic problems are considered within the framework of the

resent theory with three length-scale parameters and the simple

heory with single parameter. The results of present three-parameter

heory will reveal which strain gradient component enters the cor-

esponding problem and controls its size effect. Comparison of solu-

ions from the three-parameter and one-parameter versions allows

ne to draw conclusions about the necessary of including multiple

aterial length parameters in strain gradient theory. For the simple

heory without surface energy by Vardoulakis et al. (1996), the strain

nergy density has the form as

s = 1

2
λεiiε j j + μεi jεi j + l2

(
1

2
ληinnηikk + μηi jkηi jk

)
, (77)

hich is a special case of the Mindlin theory. Obviously, the strain

nergy density (77) contains only one length-scale parameter l with

he dimension of length.

.1. Torsion of bar

Consider a cylindrical bar with constant radius R, whose axis is as-

umed to be the z-axis. When the bar twists, the displacement com-

onents, same as those in classical theory, are expressed as

1 = −θyz, u2 = θxz, u3 = 0, (78)

here θ is the constant angle of twist per unit length. The derived

train is identical to that in the classical theory. The hydrostatic strain

quals zero, and the non-zero deviatoric strains are

′
13 = ε′

31 = −1

2
θy, ε′

23 = ε′
32 = 1

2
θx. (79)

For the three-parameter version, the dilatation gradient and the

eviatoric stretch gradient vanish, and the deviatoric rotation gradi-

nt components, the only non-vanishing strain gradient quantities,

re

′
11 = −1

2
θ, χ ′

22 = −1

2
θ, and χ ′

33 = θ . (80)

From Eq. (61), the strain energy density can be obtained as

= 1
μθ2

(
R2 + 6l2

2

)
. (81)
2
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Fig. 1. Size effect of the normalized torsion rigidity.

Fig. 2. Simple shear problem.
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On the basis of the work-energy principle,∫ L

0

∫
A

wdAdz = 1

2
TθL, (82)

the twist angle is derived as

θ = T

μ
(
Ip + 6Al2

2

) , (83)

where T denotes the torque, L denotes the length of the bar, A denotes

the area of cross section, and Ip denotes the polar moment of inertia

of the cross section. Therefore, the torsion rigidity is obtained from

the above relation as

S = μ
(
Ip + 6Al2

2

)
. (84)

For the one-parameter version, the torsion rigidity is given by

S = μ
(
Ip + 2Al2

)
. (85)

Considering the torsion rigidity for the classical theory, Sc = μIp,

the torsion rigidities for both versions can be normalized as

S

Sc
= 1 + 12

l2
∗

R2
, (86)

where l∗ depends on the formulation according to l2∗ = l2
2

for the

three-parameter version and l2∗ = 1/3 l2 for the one-parameter ver-

sion.

From the formulation of the three-parameter version, one knows

that only the length parameter l2 determines the size effect in bar

torsion, and the other length parameters l0 and l1 do not enter this

problem. The contribution of the three-parameter version to the size

effect of the torsion rigidity is 6μAl2
2

, while the simple version has

2μAl2 as its contribution to the torsion rigidity. The results from the

two theories in the form of normalized torsion rigidities as a func-

tion of the ratio of radius to length parameter are compared in Fig. 1.

It is seen that the size-dependencies of normalized torsion rigidities

from gradient effects predicted in the two versions are obviously dif-

ferent. Identical gradient effects from the two versions would be ex-

pected when l2 = 3l2
2

. Nevertheless, the factor is strongly problem-

dependent, which will be seen in the following shear and pure bend-

ing problems.

5.2. Shearing of fixed-end layers

Consider a block of width b, length L and height h undergoing

a shear deformation, as shown in Fig. 2. Assume b and L are much
arger than h. The Cartesian coordinate system shown in the fig-

re is adopted in the formulation below. The only non-vanishing x-

omponent u(y) of the displacement vector is induced by a shear

orce P acting on the top surface y = h. The hydrostatic strain equals

ero, and the non-zero deviatoric strains are

′
xy = ε′

yx = 1

2

du

dy
. (87)

In the three-parameter version, the dilatation gradient vanishes.

he non-zero strain gradient quantities are the deviatoric stretch gra-

ient and the deviatoric rotation gradient, which are given as

(1)
111

= −1

5

d2u

dy2
, η(1)

221
= η(1)

212
= η(1)

122
= 4

15

d2u

dy2
, η(1)

331
= η(1)

313
= η(1)

133

= − 1

15

d2u

dy2
, (88)

′
32 = −1

2

d2u

dy2
. (89)

The work-conjugated stress and higher-order stress quantities ob-

ained from Eqs. (62)–(65) are listed as

xy = σyx = μ
du

dy
, (90)

′
32 = −μ

(
l2
2 + 9

5
l2
0

)
d2u

dy2
, m′

23 = −μ
(

l2
2 − 9

5
l2
0

)
d2u

dy2
, (91)

(1)
111

= −2

5
μl2

1

d2u

dy2
, τ (1)

221
= τ (1)

122
= τ (1)

212
= 8

15
μl2

1

d2u

dy2
, τ (1)

331
= τ (1)

313

= τ (1)
133

= − 2

15
μl2

1

d2u

dy2
. (92)

Substituting Eqs. (90)–(92) into Eq. (72) leads to the governing

quation,

2 d4u

dy4
− d2u

dy2
= 0, (93)

n which g2 = 8
15 l2

1
+ 1

2 l2
2

+ 9
10 l2

0
. According to the boundary condi-

ions of the current problem

(0) = 0, εxy(0) = 0,
du(h)

dy
− g2 d3u(h)

dy3
= P

μbL
,

d2u(h)

dy2
= 0,

(94)

he solution of Eq. (93) can be readily obtained as

(y) = P

μbL
[y + g

sinh[(1 − ξ) h
g

]

cosh
(

h
g

) − g tanh

(
h

g

)
], (95)
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Fig. 3. Distribution of normalized shear strain with different characteristic size.
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Fig. 4. Size effect of normalized bending rigidity.
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here the normalized coordinate ξ = y/h. The non-vanishing strain,

ence, is found to be

xy = 1

2

P

μbL

(
1 −

cosh
[
(1 − ξ) h

g

]
cosh

(
h
g

)
)

, (96)

nd the corresponding strain for the one-parameter version is

xy = 1

2

P

μbL

(
1 −

cosh
[
(1 − ξ) h

l

]
cosh

(
h
l

)
)

. (97)

Considering the non-vanishing strain in the classical theory, εc
xy =

1
2

P
μbL

, the non-vanishing strains in the two versions can be normal-

zed as

εxy

εc
xy

= 1 −
cosh[(1 − ξ) h

l∗
]

cosh
(

h
l∗

) , (98)

here l∗ depends on the formulation according to l∗ = g for the three-

arameter version and l∗ = l for the one-parameter version.

The distribution of the normalized shear strain along the height of

he block in Eq. (98) is shown in Fig. 3 for various values of h/l∗. The

ize-dependent normalized shear strain is seen in the shear problem.

ize effects of shear strain predicted in the two formulations are ex-

ected to be identical when l2 = 8
15 l2

1 + 1
2 l2

2 + 9
10 l2

0 . Thus, the corre-

ponding factor is 1/2 if l0 = l1 = 0, which is different from the fac-

or in the torsion problem. One knows that the equivalent relations

n the torsion and shear problems are strongly problem-dependent

ather than only the deformation of materials. If each of the two for-

ulations were to be calibrated by the torsion problem such that
2 = 3l2

2 , then at least one of the versions must clearly be signifi-

antly erroneous in predicting shear problem. This strong problem

ependence of the size effect is the essence underlying the necessity

f the multiple-parameter theory to predict the size effect in micro-

tructures. Here, we arrive at the same conclusion as in the plastic

eformation theory (Fleck and Hutchinson, 2001).

.3. Pure bending of thin beams

Consider a rectangular beam with height h, width b and length

. The Cartesian coordinate system is used. We assume the x-axis to

oincide with the centerline of the beam and the other axes parallel

o the sides of the cross section. The displacement components are

1 = 1
xz, u2 = − v

yz, u3 = v (
y2 − z2

)
− 1

x2, (99)

R R 2R 2R
here R denotes the radius of curvature of the central axis of the

eam after bending in the xz-plane. Then, the strains can be written

s

11 = z

R
, ε22 = − v

R
z, ε33 = − v

R
z. (100)

For the three-parameter version, the high-order deformation

uantities are given as

nn,3 = 1

R
(1 − 2v), (101)

′
12 = 1

3

1 + v
R

, χ ′
21 = 2

3

1 + v
R

, (102)

(1)
333

= −1

5

1

R
(1 + v), (103)

(1)
113

= η(1)
131

= η(1)
311

= 4

15

1

R
(1 + v), η(1)

223
= η(1)

232
= η(1)

322

= − 1

15

1

R
(1 + v). (104)

From Eq. (61), the strain energy density can be obtained as

= 1

2

1

R2

{
Ez2 + 2μ

[
l2
0(1 − 2v)2 +

(
1

5
l2
0 + 4

15
l2
1 + l2

2

)
(1 + v)2

]}
.

(105)

On the basis of the work-energy principle,

L

0

∫
A

wdAdx = 1

2
M

L

R
, (106)

he curvature of the central axis of the beam after bending is obtained

s

1

R
= M

D
, (107)

here M denotes the bending moment and D denotes the bending

igidity expressed as

= EI + 2μA

[
l2
0(1 − 2v)2 +

(
1

5
l2
0 + 4

15
l2
1 + l2

2

)
(1 + v)2

]
, (108)

here E is the Young’s modulus, v is the Poisson ratio, and I is the

oment of inertia. The corresponding bending rigidity for the one-

arameter version is

= EI + EAl2. (109)
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The bending rigidities, including gradient effects, in the two ver-

sions are normalized using the bending rigidity of the classical the-

ory, EI, as follows

D

EI
= 1 + 12

l2
∗

h2
, (110)

where l2∗ depends on the formulation according to l2∗ = l2
0

(1−2v)2

1+ν +
( 1

5 l2
0

+ 4
15 l2

1
+ l2

2
)(1 + v) for the three-parameter version and l2∗ = l2

for the one-parameter version. The size-dependent bending rigid-

ity of pure bending of a thin beam with rectangular cross-section is

shown in Fig. 4. It is seen that only if the parameters in the three- and

one-parameter versions hold the equivalent relation l2 = l2
0

(1−2v)2

1+ν +
( 1

5 l2
0

+ 4
15 l2

1
+ l2

2
)(1 + v), the two versions will predict the same size

effects for the pure bending problem. The equivalent relation is differ-

ent from the bar torsion and shear problem. The different equivalent

relation between the three- and one-parameter versions in the pure

bending problem further shows the necessity of using the multiple-

parameter theory to predict size effects.

6. Conclusion

By applying two sets of orthogonal decompositions of the

strain gradient tensor, the general isotropic strain gradient elastic-

ity theory with only three independent length-scale parameters is

reformulated. In the reformulated frame, the total deformation en-

ergy density is a function of four parts: the symmetric strain tensor,

the dilatation gradient vector, the deviatoric stretch gradient tensor,

and the deviatoric curvature tensor. The independent strain gradient

parts and the corresponding work-conjugated stress tensors are de-

fined. After strict derivations, the constitutive equations, equilibrium

equation and boundary conditions are obtained subsequently. In ad-

dition, the deformation energy density, equilibrium equations, and

boundary conditions can directly reduce to the case of incompress-

ible materials by assuming the dilatation gradient to be zero.

Three simple examples are studied based on the present strain

gradient elasticity theory. The results reveal that the dilatation gra-

dient, the deviatoric stretch gradient, and the deviatoric rotation gra-

dient control different higher-order deformation in isotropic solids.

The nonvanishing higher-order deformation in torsion is the devia-

toric rotation gradient. The dilatation gradient vanishes in the shear

problem. All the higher-order deformations enter the pure bending

problem. By comparing the present solutions of three examples with

those of the simple strain gradient theory containing only one higher-

order length-scale parameter, the necessity of including more than

one length-scale parameters in the strain gradient theory to consider

size effects in the micron scale has been explained. The present strain

gradient theory can provide effective descriptions of size-dependent

behaviors in wide micron-scale isotropic elastic problems.
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Appendix. The basic tensors of sixth-order isotropic tensors

In the higher-order elasticity theory, both the theories by Mindlin

and Eshel (1968) and Dell’lsola et al. (2009), the constitutive equa-

tions for linear isotropic materials are a linear relation between two

third-order tensors, denoted by aijk and bijk, which is expressed as

ai jk = Ai jklpqblpq, (A.1)
here Aijklpq is the sixth-order elasticity tensor. The property required

y isotropic materials implies the elasticity tensor to conform

i jklpq = Ahmnrst QhiQm jQnkQrlQpsQtq, (A.2)

or every orthogonal transformation Qij. The tensor Aijklpq can be read

s a linear combination of sixth-order isotropic components Tn(n =
...15), which are called as basic tensors, given by (Monchiet and Bon-

et, 2011; Suiker and Chang, 2000)

(T1)i jklpq = δi jδklδpq, (T2)i jklpq = δi jδkpδlq, (T3)i jklpq = δi jδkqδl p,

(T4)i jklpq = δikδ jlδpq, (T5)i jklpq = δikδ jpδlq, (T6)i jklpq = δikδ jqδl p,

(T7)i jklpq = δilδ jkδpq, (T8)i jklpq = δilδ jpδkq, (T9)i jklpq = δilδ jqδkp,

(T10)i jklpq = δipδ jkδlq, (T11)i jklpq = δipδ jlδkq, (T12)i jklpq = δipδ jqδkl,

T13)i jklpq = δiqδ jkδl p, (T14)i jklpq = δiqδ jlδkp, (T15)i jklpq = δiqδ jpδkl .

(A.3)

If the sixth-order tensor Aijklpq satisfies some special symmetry,

hen its basic tensors can be simplified. For a tensor having the

ajor symmetries, Ai jkl pq = Al pqi jk, only 11 basic tensors denoted

n(n = 1...11) are needed. They are given by

1 = 1

2
(T1 + T13), M2 = 1

2
(T2 + T6), M3 = T3, M4

= 1

2
(T4 + T10), M5 = T5M6 = T7, M7 = T8, M8 = T9,

9 = T11, M10 = 1

2
(T12 + T14), M11 = T15. (A.4)

Furthermore, if a tensor has the additional minor symmetries,

i jkl pq = Aik jl pq = Ai jklqp, in addition to the major symmetries, the

umber of basic tensors reduces from 11 to five. These basic tensors

re

1 = 1

4
(T1 + T10 + T13 + T4), S2 = 1

4
(T2 + T3 + T5 + T6)

3 = T7, S4 = 1

2
(T8 + T9), S5 = 1

4
(T11 + T12 + T14 + T15). (A.5)

However, a case of the minor symmetries depending on a Kro-

ecker symbol needs only the basic tensor S3; whereas, for a case

hat the components contracting two minor symmetric indices van-

sh, only three basic tensors are needed, given as

1 = S2 − 2

3
S1 + 1

9
S3, D2 = S4 − 1

3
S3, D3 = 1

9
S3 + S5 − 2

3
S1.

(A.6)

When a tensor has either the additional symmetric properties

i jkl pq = Aki jl pq = A jkilpq, or the additional anti-symmetric properties

i jkl pq + Aki jl pq + A jkilpq = 0, in addition to the major and minor sym-

etries, only two basic tensors are needed. They are

1 = 1

9
(4S1 + S3 + 4S2)

= 1

9
(T1 + T10 + T13 + T4 + T7 + T2 + T3 + T5 + T6), (A.7)

nd

2 = 1

3
(2S4 + 4S5)

= 1

3
(T8 + T9 + T11 + T12 + T14 + T15), (A.8)

or the additional symmetric conditions, and

1 = 4

9
(S3 + S2 − 2S1)

= 1
(4T7+T2 + T5 + T3 + T6 − 2T1 − 2T4 − 2T10 − 2T13), (A.9)
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nd

2 = 4

3
(S4 − S5)

= 1

3
(2T8 + 2T9 − T11 − T12 − T14 − T15) (A.10)

or the additional anti-symmetric conditions. Finally, these sixth-

rder tensors with special symmetry can be read as a linear combi-

ation of their basic tensors.
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