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A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity
theory. The model contains three material length scale parameters, which may effectively capture the
size effect. The model can also degenerate into the modified couple stress plate model or the classical
plate model, if two or all of the material length scale parameters are taken to be zero. The static bending,
instability and free vibration problems of a rectangular micro-plate with all edges simple supported are
carried out to illustrate the applicability of the present size-dependent model. The results are compared
with the reduced models. The present model can predict prominent size-dependent normalized stiffness,
buckling load, and natural frequency with the reduction of structural size, especially when the plate

thickness is on the same order of the material length scale parameter.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recent technological developments have opened up promising
research opportunities and engineering priorities in micro-plate
based micromechanics (Batra et al., 2007), in which the plate thick-
ness is typically on the order of microns or sub-microns. The size-
dependent behavior of micron-scale structures has been proven
experimentally in metals (Nix, 1989; Fleck et al,, 1994; Poole et al.,
1996), geomaterials and brittle materials (Vardoulakis et al., 1998),
polymers (Lam and Chong, 1999; Lam et al.,, 2003; McFarland and
Colton, 2005) and polysilicon (Chasiotis and Knauss, 2003). The
classical theory of linear elasticity is characterized by the local char-
acter of stress without any internal (material) length scale, which is
inadequate for predicting the mechanical behavior of small material
structures, whose behavior is characterized by non-local stresses and
the existence of an internal length scale.

Higher-order continuum theories have recently raised the interest
of many scientists (Batra, 1987; Fleck et al., 1994; Vardoulakis et al.,
1998; Lam et al., 2003; Papargyri-Beskou et al., 2003, 2010; Reddy,
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2007a; Papargyri-Beskou and Beskos, 2008; Kong et al., 2009; Wang
et al., 2010), in which strain gradient or non-local terms are involved
and additional material length scale parameters are consequently
introduced to complement the classical material constants. A review
of the high order elasticity theories can be found in the works of
(Vardoulakis and Sulem, 1995; Exadaktylos and Vardoulakis, 2001;
Papargyri-Beskou and Beskos, 2008).

Based on the aforementioned higher-order continuum theories,
several micro-plate models have been developed by many
researchers based on micropolar theory (Ariman, 1968a,b); the
simplest version of the simplified form-II theory of strain gradient
linear elasticity due to Mindlin (1964) (Papargyri-Beskou and
Beskos, 2009; Vavva et al., 2009; Papargyri-Beskou et al., 2010);
gradient elastic theory (Lazopoulos, 2004, 2009); and couple stress
theory (Hoffman, 1964; Ellis and Smith, 1967; Tsiatas, 2009).
Ariman (1968a,b) studied the circular micropolar plate and dis-
cussed some problems in the model. Lazopoulos (2004) established
a strain gradient elasticity theory of plates, based on the gradient
elasticity theory proposed by Altan and Aifantis (1997) which can
be traced back to Mindlin (1965). The theory is applied to the study
of the buckling behavior of a long rectangular plate under uniaxial
compression and small lateral load, supported on a rigid plane
foundation. Recently, Lazopoulos (2009) studied the bending of
strain gradient elastic thin plates, adopting a simple version of
Mindlin’s linear theory of elasticity with microstructure, in which
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the intrinsic bulk length g and the directional surface energy length
I are introduced to characterize the strain gradient in addition to
the classical Lame constants. Tsiatas (2009) presented a micro
Kirchhoff plate model for the static analysis of isotropic micro-
plates with arbitrary shape based on the simplified couple stress
theory of Yang et al. (2002) containing only one material length
scale parameter, rendering a relatively simple formulation of the
size-dependent plate model. Vavva et al. (2009) studied the
velocity dispersion curves of guided modes propagating in an
isotropic micro-plate based on the simplified Mindlin (1964, 1965)
form-II gradient elastic theory. Very recently, Papargyri-Beskou
et al. (2010) studied the gradient elastic flexural Kirchhoff plates
under static loading via variational method, and derived the exact
boundary condition for any plate form and showed validated the
effectiveness of the approximate boundary conditions proposed by
Papargyri-Beskou and Beskos (2008).

Shu and Fleck (1998) pointed out that the couple stress theory
(Fleck and Hutchinson, 1993), which is a general form of the modi-
fied couple stress theory (Yang et al., 2002) used by Tsiatas (2009) to
predict the size effect of micro-plate, usually under-predicts the size
effect because the couple stress theory only employs the rotation
gradient and neglects the other gradients (e.g. stretch gradient).
Therefore, to more effectively account for the size effect, a general
strain gradient theory, incorporating not only the rotation gradient
but also stretch gradient or other gradients, should be introduced.

Among the higher-order continuum theories, the strain gradient
elasticity theory proposed by Lam et al. (2003) was successfully
applied to predict the size-dependent properties for small scale
structures. Three material length scale parameters are introduced
to characterize the dilatation gradient tensor, the deviatoric stretch
gradient tensor, and the symmetric rotation gradient tensor,
respectively. Through work conjugation, the higher-order stress
tensors are related to the higher-order deformation metrics. The
theory has been used to analyze the static and dynamic problems of
micro scale Bernoulli—Euler beam (Kong et al., 2009) and Timo-
shenko beam (Wang et al., 2010). Moreover, it should be noted that
strain gradient elasticity theory of Lam et al. (2003) can degenerate
into the modified couple stress theory of Yang et al. (2002) by
setting two of the three material length scale parameters to zero;
thus, the strain gradient elasticity theory (Lam et al., 2003) may be
regarded as a much wider extension of the modified couple stress
theory (Yang et al., 2002).

The objective of this work is to develop a size-dependent Kirchhoff
plate model based on the strain gradient elasticity theory (Lam et al.,
2003). In Section 2, the governing equation of the size-dependent
Kirchhoff micro-plate is derived. In subsequent Sections 3—5, the
size-dependence of the normalized stiffness, critical load, and natural
frequency for the simple supported plate are described and discussed.
Conclusions are summarized in Section 6.

2. Governing equations of size-dependent flexural plate

Based on the higher-order stress theory (Mindlin, 1965), Lam
et al. (2003) proposed the strain gradient elasticity theory, in
which a new additional equilibrium equation governing the
behavior of higher-order stresses, the equilibrium of moments of
couples, is introduced in addition to the classical equilibrium
equations of forces and moments. There are three material length
scale parameters for isotropic linear elastic materials.

According to the theory, the total deformation energy density is
a function of the symmetric strain tensor, the dilatation gradient
vector, the deviatoric stretch gradient tensor and the symmetric
rotation gradient tensor. The strain energy U in a deformed
isotropic linear elastic material occupying region W (with a volume
element V) is given by

1
U= z/udlI/:

/// T dxdydz 1)

in which u is the strain energy density, defined by

u= Oijéjj + DiYi + Tf]k)ngj]k) + m;xz (2)

For the indices (subscripts) throughout this paper, the repeated
indices denote summation from 1 to 3. And the deformation
measures, i.e., the strain tensor, &;;, the dllatatlon gradient tensor, v;,
the deviatoric stretch gradient tensor, nuk( and the symmetric
rotation gradient tensor, x;?, are defined by

1

& = i(aju,» + a,-uj) (3)

1 1
nf]k) Mk — g(%ﬂfmk + O My + 5ki7lfnmj) (4)
Yi = 0i€mm (5)
and

s 1
Xij = Z(eipqapfqi + €jpgdpegi) (6)

respectively. Here, 9; is the differential operator, u; is the displace-
ment vector, eym is the dilatation strain, and ﬂijks is the symmetric
part of the second order displacement gradient tensor defined by

1
M = §(uijk + Ujgi + ukij) (7)

where d;; and e are the Knocker delta and permutation tensor,
respectively.

The stress measures (detailed physical interpretation of the
higher-order stresses can be found in Lam et al. (2003)) include the
classical stress tensor, ¢, and the higher-order stresses, p;, ’L'ijk“),
and m;’, which are the work-conjugate to the deformation
measures, are given by the following constitutive relations,

7 = Kdgemm + 2puej; (8)
pi = 2ul3y; (9)
,]k = 2/~le,],< (10)

= 2uB3x (11)

where ¢ is the deviatoric strain defined as

1
& = & — zemm0y (12)

k and u are the bulk and shear modulus, respectively. lp, [; and I, are
the additional independent material length scale parameters
associated with the dilatation gradients, deviatoric stretch gradi-
ents, and symmetric rotation gradients, respectively.

qx.y)

Fig. 1. Schematic of a micro-plate with distributed load.
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Consider an initially flat thin rectangular elastic plate of thick-
ness h, subjected to a static transverse load q(x, y) distributed in the
x—y plane as depicted in Fig. 1. The length and width of the plate are
a and b. The plate is made by homogeneous linearly elastic material.
According to Kirchhoff's plate theory, the displacement field can be
described as

inya A
Uy(x,y,z) = — 6wg<} ¥) (13)

uz(xmyvz) = W(X,y)

where u;(x, y, z) (i=x, y, z)are displacement components along X, Y,
Z directions.

Substituting Eq. (13) into Eq.(3), the nonzero components of the
strain tensor are written as

b = W

%)
62

oo — 7 (14)
02w

& = Zoxay

where ¢ (i=X, y, z) are strain components.

The other three gradient tensors 7;, nf k), xl are deduced by
substituting Eqgs. (13) and (14) into Egs. (4)— (6) and the results are
presented in Appendlx Subsequently, the work-conjugate stress
tensors aij, pj, T k ) and m;; jj are calculated by substituting these strain
tensors into Eqs. (8)—(11), respectively. Finally, when the strain and
stress tensors are substituted into Eqs. (1) and (2), we obtain the
strain energy density u by taking somewhat lengthy but straight-
forward manipulations:

20\ 2 /a2 2 2,002
U= (c +c zz> ow) (oW +<C3+C4ZZ> Fworw
172 ox2 oy? ox2 ay?
2 2 2
+<c +¢ zz> Pw +¢72° Pw + Pw
3T axay / ox3 ay3
2 2
e 3w N >w
8 0x0y2 ox2oy

e rPw oPw  Pw oPw
97\ ax3 axay2 " ay3 ax2oy

(15)

9% [ oF 82 [ oF o3
5U — / / A (L R -
ax2 awxx 0y2 \dwyy X0y \ OWxy ax3 awxxx

in which
4
= 2ulf + 5,ull +ul3; o = (k+3u)

4
2 2 2.
c3 = 4ulg — 15,ul —2ul5; ¢4 = (21 3k )

4
Cs = §/«Ll% +4u12; Cg = 4,LL (16)
4 24
c; = 2ul3 +§u12; cg = 2ul3 —i——ul2
co = 4ul2 12 uB
Assuming the following integral relations,
h/2
h3

/// zzdxdydz:l//dxdy I = / Pdz =

Vv A i (17)
/// dxdydz — h// dxdy

v A

The variation of strain energy can be written as
oU = // ou dxdydz = / OF dxdy
1% S
oF oF oF
/ / ( anx5WXX + v 5wyy + v 5wxy + awxxxéwxxx
oF oF (18)
o Wy OWyyy + P 6nyy + a 6Wxxy dxdy
in which
2w\’ (02w’

F :(C1h+C21) <<(')X2> +(ay2> >

02w 92w

2w\’
+ (C3h + ¢4l) <W ay—z) + (Csh + cgl) (%)

3\ 2 /a3 2 3\ 2 3.\ 2
ol (ZX) H(Z9) ) e[ (2] (2w
7 ox3 oy3 87\ \oxay2 ox2oy

+c91<a3—w Pw | Tw 63‘”) (19)
ox3 axay2  oy3 ox20y

and

W L P

M2 T T gy YT axay (20)
Won = Wy, 2 OW L OwW o PwW

XET k30 T T Y3t Y T ax2gy” Y T axay2

By applying the rules of integration by parts, Eq. (18) is rewritten
as

o> [ oF o> [ oF o> [ oF
- - - ow dxdy
ay3 \dwyyy 0x0y2 \ OWyyy ax29y \ OWxxy

Y N e (. Y o (. P
awyy |y ay\awyy o 0x\Owxy o Wy o ay\awyy ) g T ay2 \awyyy 0 X\awyy ) Y
+—az oF 5wb+£ oF 6wb dx+/ —aF ow, a—g oF (SwaJr3 oF 6wa+ oF — 0w, a—i oF ow, ’
0xdy \ OWxyy o 0x2\OWxy 0 Wxx o 0X\OWxx o 0y \owyy W o X\OWxxx) o

2 a a a a2 a
+a—2< oF )(5w +a—2( oF )éw —i( oF )(3w o ( oF >6W dy (21)
32 \owee ) "o oy \owy ) o Ty \owy /¥ T ax0y \ oy ) ",
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The first variation of the work done by the external force, q(x, y),
takes the form

a b
oW = [ [ a@.yiwixy) dudy (22)

Substituting Egs. (21) and (22) into the following expression of
principle of minimum potential energy,

SU-W) =0 (23)

Due to the variational principle for arbitrary éw, the governing
equation is finally obtained by taking somewhat lengthy but
straightforward manipulations:

—p1 VoW + poViw = q(x,y) (24)
in which
4
p1 = m(zlg +§l%)
2, 80 4 (25)

py = ph (210 +EI1 + 12) + (k+§u)1
and

0w 0w ®w  ow
vow = —— — 4

ox6 ox4oy?  Tox2oy4  0yb

4 4 4 (26)
iy = B dtwotw

ox4 oxZoy? = oy*

The corresponding exact boundary conditions at the edges can
also be obtained:

= Bx1(0,y)0w(0,y) = 0
— Bx2(0,y)0wx(0,y) = 0
_BX3(07y)6WXX(an) =0

Bx1(a,y)ow(a.y)
BXZ(avy)(SWX(avy)
BX3 (a7 Y)(SWxx (a7 y)
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Cq

I

P, = c3h +@: P3 = csh + cgl,
Ps = cgl, Pg = cgl

and
Py = cth+cl,
Py = 71,

Solving the governing equation (24) which satisfies the exact
boundary conditions Eq. (27), the two-dimensional micro-plate
problem will be solved.

It is clearly seen from Eqs. (24) and (25) that the present model
contains all three independent material length scale parameters (lo,
l; and 1), which enables the model to effectively predict the size
effect. However, when two of the material length scale parameters
(lpand 1) are equal to zero, the sixth-order term vanishes, then the
governing equations will directly degenerate into those of the
modified couple stress model (Tsiatas, 2009). Furthermore it will
degenerate into the classical plate model ((k + (4/3)u)IV*w = q(x,
y)) if all of the three material length scale parameters (lp, [; and I»)
are ignored (Timoshenko and Woinowsky-Krieger, 1959).

3. Static bending of simple supported size-dependent plate

Firstly, to verify the newly developed model, the static problem
of a rectangular micro-plate with all edges simple supported is
considered. The micro-plate is subjected to a lateral uniformly
distributed load q(x, y), as shown in Fig. 1.

For simple supported plate, the first, third, fourth and sixth
equations in Eq. (27) are

w(0,y) =0, w(ay) =0
wxx(0,y) = 0, wx(a,y) =0
w(x,0) = 0, w(x,b) =0
Wyy(x,0) = 0, wyy(x,b) =0

(30)

which are the classical boundary conditions.
The higher-order boundary conditions can be obtained from the
second and fifth equations in Eq. (27), that is,

(27)
By1(x,b)ow(x,b) — By1(x,0)0w(x,0) = 0 Bx2(0,y) = 0, Bxy(a,y) = 0 (31)
gyz(X, l};)gwy(& b[), —Bgz(?‘v 035:;\’)/(& 0)0: 00 By(x,0) = 0, Byy(x,b) =0
x,b)owyy(x,b) — x,0)0wyy (x,0) =
v3 (X, b)owyy (x,b) = By3(x, 0)owyy(x, 0) By substituting Eq. (28) into Eq. (31), the higher-order boundary
in which conditions are expressed as
Pw Pw
Bx1 (X,y) 2P1 (P2+ P3) ox ay2+2P4 5 +(2P5+2P6) ay2+(2P5 +P6)W
62 0’w a4 otw a“
Bxa(x,y) =2P1—— a2 P2y 32 2P4 —(2Ps +P6)a 20y2 gyt
a3 o*w
Bxs3(x,y) = 2P4 3 Poayavz
oxoy (28)
B 22, W (py 2P 2P 2P +2g) W (2ps 4 pg)- LW
y1(X.y)=— 17—( 2 +2P3) x26y+ 4ay5 ¥ (2Ps+ 6)W+( 5+ G)W
’w  o*w otw otw otw
By, (x.y) =2P1— 32 7Py —2P4 (2P5+P6)ax26y2_ 6 axd
*w a3
By3(x,y) =2Ps—— o3 +P66x26y
PwO.y) o, PwOy) ., o w<0 y) d*w(0.y) , 3*w(0.y)
2P 02 + Py ay2 — 2P, — (2P5 + Pg) n2ay? - oy =0
rway) o, way ., o w(a y) dwia,y) , o'w(ay)
Pa T P 2P o —@Ps+Pe) oo —Peg s = 0 .
®w(x,0) _ 8*w(x,0) w(x,0) ?*w(x,0) 4w(x,0)
2P 9y2 P~ 4 oyt (2Ps +Ps) axZoyz O oaxd 0
8*w(x, b) 82w(x,b) ?*w(x, b) o*w(x,b) _ o*w(x,b)
2P ayz + P, ) — 2P, ay4 — (2P5 + Pg) 6X26y2 — Pg ol =0
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To solve the governing equation (24) subjected to the boundary
conditions in Egs. (30) and (32), the following Fourier series is
assumed for w=w(x, y) in accordance with the classical case
(Timoshenko and Woinowsky-Krieger, 1959) and previous work
(Papargyri-Beskou and Beskos, 2009),

w(x,y) = i: i:Amnmn(mﬁx)sin(%) (33)

where A;;;;, are the Fourier coefficients to be determined for each m
and n. It is obvious that Eq. (33) satisfies the boundary conditions in
Eqgs. (30) and (32). And the distributed transverse load q(x, y) can
also be expressed as Fourier series:

Z Z Qmnsin (mﬁx) sin (?) (34)

m=1n=1

qx.y)

For the uniformly distributed load q(x, y) =
as (Reddy, 2007b)

qo,» Qmn is expressed

1640
mnr2

Qmn = mn = 1,3,5,... (35)

Substituting Egs. (33) and (34) into Eq. (24), one can deduce An,
of the form

Qmn

Am =GPy + G, oo
in which,

mm2 mm 2\ >
G = ((T) (%) ) (37

mm\2  mmy 2\ 2
G = ((7) (%) )

In the following verification, without losing generality and for
convenience, we assume that all the material length scale param-
eters in Eq. (25) are the same, i.e., [y =1 = I, = Cl, implying that the
three introduced strain gradient tensors contribute equally to the
size effect. In practice, the material length scale parameter Cl/ may
be determined from fundamental mechanical tests (e.g. axial
tension/compression, bending or torsion test) for specimens of
different sizes. In this article, the material length scale parameter Cl
is assumed to be 0.5 pm.! Convergence, with a tolerance of 107, can
be achieved with m =30 and n =30 in the calculation.

The size effect of micro-plate is illustrated below through
several examples. In what follows, we keep the aspect ratio of the
plate to be the same, i.e., fixing b/h = 50 and a/h = 50, and the plate
Young’s Modulus E=1.44 GPa and Poisson’s ratio »=0.3 unless
specified otherwise. To better describe the size effect, a dimen-
sionless size scale k is introduced, which is defined as the ratio of
the plate thickness to the material length scale parameter (k = h/Cl).

The variation of the normalized micro-plate stiffness (abqo/
Wmax) With the size scale (k) is shown in Fig. 2, where wp,y is the
plate deformation of central point (x =a/2, y = b/2). Results pre-
dicted by the present model are compared with those predicted by

! The three material length scale parameters may take different values and they
can be substituted into our model independently. However, the main purpose of the
present paper is to establish the theoretical framework, and the main focus is not to
discuss the effect of the specific value of the length scale parameters (in part due to
the lack of experiments to compare with such a variation). The easiest demon-
stration of the application of the framework, is therefore, assign the same value for
the three length scale parameters. It is emphasized again that our model incor-
porates all three independent length scale parameters. The effect of the specific
variation of the values of the length scale parameters will be discussed elsewhere
(and hopefully better connect with experimental results where available).

80

70
—e— the classical model

—a4—the couple stress model

= —e+— the present model

50 4

(N/m)

X

40 4

30

o] \ N
1 -
10+ o T T D .

abg, /w,

Fig. 2. Normalized stiffness with size scale.

the modified couple stress model (Tsiatas, 2009) and the classical
model (Timoshenko and Woinowsky-Krieger, 1959).

It is seen from Fig. 2 that the normalized stiffness keeps constant
for the classical model (since it has no built-in size scale), while for the
present model and the modified couple stress model, the normalized
stiffness increases nonlinearly as the size scale decreases. These three
models show almost no difference of the normalized stiffness if the
plate thickness is more than 15 times larger than the material length
scale parameter; while with a smaller size scale (i.e., smaller plate
dimension for the same material) the present model shows strong
size effect, and that leads to a higher normalized stiffness. Although
the modified couple stress model (Tsiatas, 2009) can also predict the
size effect-induced increase of stiffness, the size-dependence is
smaller than the present model. Specifically, when the size scale
k = 1.2, the normalized stiffness predicted by the present model and
modified couple stress model (Tsiatas, 2009) are 9.4 and 3.4 times of
that by the classical model, respectively. Fundamentally speaking, the
increased stiffness predicted by the present model is contributed by
the three strain gradient tensors of the strain gradient elasticity theory
which underpins our model, while the couple stress model (Tsiatas,
2009) introduces only the symmetric rotation gradient tensor.

The analysis indicates that for the micro-plate stiffness, the size
effect may be neglected if k is larger than about 15 (and one can
apply the classical model to predict the stiffness, and the present
model can be reduced the classic one if the material length scale
parameters are set to be zero); however, when the material length
scale parameter becomes more prominent comparing with the
plate thickness, in another words, when the plate is of micron
dimension or smaller, the size-dependence may become strong.

4. Stability analysis of simple supported size-dependent plate

Next, we consider a rectangular micro-plate with all edges simple
supported, subjecting to in-plane compressive loads P = (Py, Pyy, Py)
and out-plane load q(x, y). Px is the load along x-axis direction, Py is
the load along y-axis direction, and Pyy is the in-plane shear load.
According to the classical plate theory, there exists a critical buckling
load P... The governing equation is expressed as

02w 2w

axay+Py oy qx,y)  (38)

—p1 VoW + poviw + Px o2 W 2Py

For simplification, in what follows, we only consider the in-plane
load component py, i.e., P=(py, 0, 0) and assuming q(x, y) = 0. Thus,
Eq. (38) is rewritten as
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24
21 4
] —e— the classical model
18 —— the couple stress model
| —+— the present modle
15 -
z
X 12—
-3
o
9
6 -
34
0 T T T T T T T | T
0 2 4 6 8 10 12 14 16 18 20
k
Fig. 3. Normalized critical buckling load with size scale.
6 4 2W
—p1V°W + poV w+PX =0 (39)

The Fourier series solutions of Eq. (33), which satisfies with the
boundary conditions in Egs. (30) and (32), is also assumed here, and
then it is substituted to Eq. (39) and is solved as

. C1P1 + Csz
n mry 2
(T)
The critical buckling load P, is obtained as the minimum of Py in
Eq. (40) for appropriate positive integer values of m and n. For

a square plate, in particular, the critical load P is obtained with
m=1 and n = 1. That is,

2 2\ 2 2 2
Pcr = <<g) Jr(g) > [Pl(lJr(%) )JFPZ(%) :| (41)

Fig. 3 shows how the normalized critical load (P./k) varies with
the size scale (k), where results of three models are presented. The
parameters used are the same as those in the static problem
mentioned above. In the classical theory, the critical load (P) is
proportional to the size scale (k), and thus the normalized critical
load (P./k) keeps a constant for the classical model as shown in
Fig. 3. In the solutions developed from the higher-order bending
theory, i.e., the present model and modified couple stress model
(Tsiatas, 2009), the normalized critical load depends on the size
scale of the micro-plate. The variation trend of the normalized
critical load is similar to that of the normalized stiffness, and the
present model predicts a larger size effect than the couple stress
model does, because it introduces not only the symmetric rotation
gradient tensor, but also the dilatation gradient tensor and the
deviatoric stretch gradient tensor, indicating that the present
model is perhaps more general and versatile than the modified
couple stress model (Tsiatas, 2009).

In terms of the critical buckling load, there is almost no differ-
ence between the three models when plate thickness is more than
15 times of the material length scale parameter (Cl). While as the
structure size decreases, the normalized critical load increases
nonlinearly especially when the structure thickness is comparable
with the material length scale parameter. The increased normalized
critical load predicted by the present model indicates that the size
effect is prominent as the characteristic thickness of the plate is in
the order of micron or sub-micron.

(40)

] —»— the classical model
16 —— the couple stress model
1 —+— the present model

Fig. 4. Normalized natural frequency with size scale.

5. Free vibration of simple supported size-dependent plate

Finally, we demonstrate the application of the strain gradient
elasticity theory to the free flexural vibration problem of a simple
supported rectangular plate. No external force is applied on the
structure. Based on Eq. (24), the governing equation is written as,

phw — p1Vow + poviw = 0 (42)

in which w is dependent with the time scale t. Similar to the
procedure of classical model (Timoshenko and Woinowsky-Krieger,
1959), the following Fourier series solutions for w(x, y, t) is
employed, which incorporates the spatial and temporal parts.

vern = £ ST o

where By, is Fourier coefficient, wpy, is the vibration frequency, and
i is the usual imaginary number defined by i = —1. Eq. (43) satisfies
the boundary conditions in Egs. (30) and (32) for any Bpp.

By substituting Eq. (43) into Eq. (42), wZn is expressed as
a simple form,

w2 = QP+ GP
mn ph

The positive solution of wy,, determined from Eq. (44) is the
natural frequency of the simple supported plate for different order
number m and n. It should be noted that w, can degenerate into
the natural frequency predicted by the modified couple stress
model (Tsiatas, 2009) or the classical model (Timoshenko and
Woinowsky-Krieger, 1959) when two (I, I1) or all (lp, I, 1) of the
material length scale parameters equal to zero.

In what follows, the fundamental natural frequency for m =1
and n=1 is studied. The material density is set to be
p=2.0x 10> kg/m>, and other parameters remain the same as
those in Sections 3 and 4. Fig. 4 illustrates the variation of the
normalized natural frequency (kwy1) with size scale (k). For
comparison purpose, results from the other two reduced models
are also given in Fig. 4. The normalized natural frequency exhibits
similar size-dependent trends with that of the normalized stiffness
(Section 3) and normalized critical load (Section 4). With the
reduction of size scale, the normalized natural frequency always
keeps constant for the classical model, while the present model
predicts a nonlinearly increased normalized natural frequency.
Specifically, as the size scale k= 1.2 and 2.7, the normalized natural

(44)
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frequency predicted by the present model is 3.1 and 1.6 times of
that by the classical model, respectively. The size dependency of the
present model is more prominent than that of the modified couple
stress model (Tsiatas, 2009).

Although many researchers have developed different size-
dependent models to study the dynamic problems of micro-
beams (Kong et al., 2009; Ma et al., 2008; Wang et al., 2010) and
micro-plate (Papargyri-Beskou and Beskos, 2008), however, to the
best of authors’ knowledge, the study of the size-dependent
normalized natural frequency have yet not been reported in
studies for micro-plate.

6. Concluding remarks

In this paper, a new size-dependent Kirchhoff micro-plate
model, which contains three independent material length scale
parameters, is developed. The model can reduce to the modified
couple stress model and the classical model if two or all material
length scale parameters are ignored. The static bending, instability
and natural frequency analyses are carried out for a simple sup-
ported micro-plate to verify the new model. Numerical results
reveal that the normalized stiffness, normalized critical load, and
normalized natural frequency exhibit strong size-dependence. The
differences of results predicted by the present model and the other
two reduced models are quite large when the plate thickness is on
the same order of the material length scale parameter (microns or
sub-microns). These size effects are not prominent if the charac-
teristic plate thickness is about 15 times larger than the material
length scale parameter.

Note that there are several limits of the present model. First, the
configuration is assumed initially stress-free; however residual
stress may present in micro-devices. The incorporation of the effect
of residual stress into our model will be carried out in future.
Second, due to the lack of available experimental studies of the
same kind, the model needs to be validated by parallel experiments
in future. Moreover, different boundary constraints (other than
simple supported) may be explored.
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Appendix

The dilatation gradient tensor, v; (i =1, 2, 3), is expressed as

_ 63wJr o*w
1= ox3 ' oxoy?

Pw  Pw
Y AL 45
Y2 <ay3 + ax26y> ( )
_ (2w, Pw
73 = X2 0y?

The deviatoric stretch gradient tensor, x;* (ij=1, 2, 3), is
expressed as

s ’w ’w o 1[{*w Pw
X1 =gz X2 = 5= X2 = 3|70 7
11~ 3xay oxoy 2 a2 ox2 (46)
X33 = Xi3 = X31 = X33 = X32 = 0
The symmetric rotation gradient tensor, "E’}k) (i, j, k=1,2,3),is
expressed as

3 3
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