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Size-dependent characteristics have been widely observed in microscale devices. For the
electrostatically actuated circular microplate-based MEMS, we propose a new model
to predict the size-dependent pull-in instability based on the strain gradient elasticity
theory. The model embeds three material length scale parameters (MLSPs), which can
effectively predict the size-dependent pull-in voltage. The model can be reduced to the
classical continuum model when MLSPs are ignored. The results show that the nor-
malized pull-in voltage predicted by the present model increases nonlinearly with the
decrease of the size scale of the plate, and the size effect becomes prominent if the char-
acteristic dimension (plate thickness) is on the order of microns or smaller. The effects
of the plate thickness and gap on the pull-in voltage are also investigated.

Keywords: Size effect; strain gradient elasticity; circular microplate; pull-in voltage.

1. Introduction

MEMS-based electrostatic devices are essentially simple capacitors composed of two
parallel microplates, usually with a square, circular or beam-type configuration. One
of the two microplates is fixed and the other is deformable as shown in Fig. 1. Under
an applied voltage, the upper movable electrode deflects towards the fixed electrode
due to electrostatic attraction. As the voltage increases beyond a critical value,
the movable electrode becomes unstable and collapses onto the fixed electrode.
The critical displacement and the critical voltage associated with this instability
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Fig. 1. Schematic of electrostatically actuated circular microplate-based MEMS (the edge of the
upper plate is fixed).

are referred to as the pull-in displacement and the pull-in voltage, respectively.
In microresonators (e.g., microphones and microsensors) the designer should avoid
such instability in order to achieve stable motions; however, in switching applica-
tions the designer takes advantage of this effect to optimize the performance of the
device.

Among various types of MEMS devices, the circular-plate-based ones yield better
structural reliability than rectangular plates, since the corner and/or sharp edges in
rectangular plates may induce high residual stress after multiple depositions [Liao
et al., 2010]. An analytical reduced-order model (macromodel) for an electrically
actuated clamped circular plate was presented by Vogl and Nayfeh [2005], which
accounts for both residual stress and strain hardening. Batra et al. [2008] developed
a different macromodel (where the bending stiffness was neglected and the plate
was taken to be a membrane) to study the effect of the Casimir force. Liao et al.
[2010] developed a continuum model to analyze the “pull-in” effect in the circular
microplate, where only first-order deflection mode was considered and closed-form
solutions were obtained for both the position and voltage of the static pull-in event.
Bertarelli et al. [2011] studied the mechanical response of circular microplates under-
going electrostatic actuation. A one degree-of-freedom model and Finite Element
approaches were exploited in a nondimensional framework.

All previous models were based on conventional elasticity and there was no
size effect. When the size of the device continues to decrease, the size-dependent
behavior has been experimentally observed in microstructures made of metal [Fleck
et al., 1994; Poole et al., 1996], polymer [Lam and Chong, 1999; Lam et al., 2003;
McFarland and Colton, 2005] and polysilicon [Aifantis, 2009; Chasiotis and Knauss,
2003]. For example, Chasiotis and Knauss [2003] observed that the failure stress at
the tip of a perforated MEMS polycrystalline silicon exhibits strong size effect:
The nominal average failure stress increased nonlinearly as the hole radius was
decreased from 16µm to 1µm, however according to the classical mechanics theory,
the nominal average failure stress should be a constant; this size-dependent behavior
was successfully simulated using the gradient elastic theory by Aifantis [2009].
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Various higher-order microscale theories have been developed since 1960s. Some
of them were applied to study the microscale circular plate, including the micropolar
theory [Ariman, 1968], the gradient elastic theory [Duan et al., 2007], and the non-
local theory [Papargyri-Beskou et al., 2010]. These theories, however, either contain
too many variables (thus not convenient) or do not have explicit physical back-
ground. Comparing with other higher-order microscale continuum theories (where
often only one material length scale parameter (MLSP) is included), the strain gra-
dient elasticity theory proposed by Lam et al. [2003] contains three material length
scale parameters which correspond to the dilatation gradient tensor, the deviatoric
stretch gradient tensor, and the symmetric rotation gradient tensor, so as to take full
advantage of the higher-order items. The theory has been used to analyze the static
and dynamic behaviors of the microscale Bernoulli–Euler beam [Kong et al., 2009]
and Timoshenko beam [Wang et al., 2010]. Nevertheless, the mechanical–electrical
coupled properties of the microscale axisymmetric circular plate have not yet been
studied to the best of our knowledge.

The paper aims to fill this gap by developing a size-dependent mechanical–
electrical coupled circular plate model based on strain gradient elasticity, and as an
illustration for evaluating the mechanical integrity of MEMS; the model is employed
to study the pull-in instability of electrostatically actuated circular microplate-based
device.

2. The Size-Dependent Model

Figure 1 shows a typical circular-plate-based electrostatically actuated device, which
consists of a fixed electrode and a deformable microplate with density ρ, radius R
and thickness h, separated by a dielectric spacer with an initial gap d. With an
applied voltage V , the upper plate deflects towards the fixed electrode under the
combined action of the distributed electrostatic load Fe and elastic restoring force.
At a critical pull-in voltage, the microplate loses its stability and spontaneously
collapses onto the fixed electrode.

The strain gradient elasticity theory, proposed by Lam et al. [2003], can pre-
dict the size effect of micron and submicron devices. Three independent MLSPs
are introduced to characterize the size effect. The strain energy U in a deformed
isotropic linear elastic material occupying region ψ (with a volume element Ω) is
given by

U =
1
2

∫
ψ

(σijεij + piγi + τ
(1)
ijkη

(1)
ijk +ms

ijχ
s
ij)dΩ, (1)

where the strain tensor, εij , the dilatation gradient tensor, γi, the deviatoric stretch
gradient tensor, η(1)

ijk , and the symmetric rotation gradient tensor, χsij , are defined by

εij =
1
2
(∂jui + ∂iuj), (2)
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η
(1)
ijk = ηsijk −

1
5
(δijηsmmk + δjkη

s
mmi + δkiη

s
mmj), (3)

γi = ∂iεmm, (4)

χsij =
1
4
(eipq∂pεqj + ejpq∂pεqi), (5)

respectively. Here, ∂i is the differential operator, ui is the displacement vector,
εmm is the dilatation strain, and ηsijk is the symmetric part of the second-order
displacement gradient tensor:

ηsijk =
1
3
(ui,jk + uj,ki + uk,ij), (6)

where δij and eijk are the Kronecker delta and permutation tensor, respectively. The
stress measures include the classical stress tensor, σij , and the higher-order stresses,
pi, τ

(1)
ijk , and ms

ij , which are the work-conjugate to the deformation measures, are
given by the following:

σij = kδijεmm + 2µε′ij , (7)

pi = 2µl20γi, (8)

τ
(1)
ijk = 2µl21η

(1)
ijk , (9)

ms
ij = 2µl22χ

s
ij , (10)

where ε′ij = εij − 1
3εmmδij is the deviatoric strain. k and µ are the bulk and shear

modulus, respectively. l0, l1 and l2 are the independent MLSPs associated with γi,
η
(1)
ijk, and χsij , respectively.

Wang et al. [2011a] proposed a size-dependent model for a rectangular Kirchhoff
plate based on the strain gradient elasticity theory. For a microplate with external
force q(x, y) applied, the governing equation is:

−p1∇̄6w + p2∇̄4w +
∂2w

∂t2
= q(x, y), (11)

in which:

p1 = Iµ

(
2l20 +

4
5
l21

)
,

p2 = µh

(
2l20 +

8
15
l21 + l22

)
+
(
k +

4
3
µ

)
I

(12)

and

∇̄6w =
∂6w

∂x6
+ 3

∂6w

∂x4∂y2
+ 3

∂6w

∂x2∂y4
+
∂6w

∂y6
,

∇̄4w =
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
.

(13)

I = h3/12 is the moment of inertia, t is time.
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However, the governing equation above is expressed in the Cartesian coordinate
system. For application in circular microplate, they must be transformed to the
cylindrical coordinate system. The electric force works as the external force q(x, y),
which is expressed as:

q(x, y) =
εV 2

2(d− w)2
, (14)

in which ε is the dielectric constant of the gap medium.
Dimensionless variables (w̄ = w

d ; r̄ = r
R ; t̄ = t

T , T is a time scale defined below)
are substituted to the governing equation in cylindrical coordinate systems and
after removing all the hats of the variables. The dimensionless governing equations
become:

α1∇6w + ∇4w +
∂2w

∂t2
=

α2V
2

(1 − w)2
, (15)

where

∇6 =
(
∂2

∂r2
+

1
r

∂

∂r

)(
∂2

∂r2
+

1
r

∂

∂r

)(
∂2

∂r2
+

1
r

∂

∂r

)

=
∂6

∂r6
+

3
r

∂5

∂r5
+

3
r2

∂4

∂r4
+

1
r3

∂3

∂r3
,

∇4 =
(
∂2

∂r2
+

1
r

∂

∂r

)(
∂2

∂r2
+

1
r

∂

∂r

)
=

∂4

∂r4
+

2
r

∂3

∂r3
+

1
r2

∂2

∂r2
,

(16)

α1 =
S

R2D′ , α2 =
R4ε

2D′d3
, T 2 =

ρhR4

D′ , (17)

and

S = −Iµ
(

2l20 +
4
5
l21

)

D′ = µh

(
2l20 +

8
15
l21 + l22

)
+
(
k +

4
3
µ

)
I.

(18)

The classical boundary conditions for the dimensionless axisymmetric circular
plate are

w = 0;
dw

dr
= 0 at r = 1,

dw

dr
= 0;

d3w

dr3
+

1
r

d2w

dr2
− 1
r2
dw

dr
= 0; at r = 0.

(19)

Note that different forms of higher order boundary conditions have almost no effect
on the final results [Kong et al., 2009]. For simplicity, following Papargyri-Beskou
and Beskos [2008], we assume a very simple form for the higher-order boundary
condition as

∂4w

∂r4
= 0; at r = 0, 1. (20)
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In conclusion, all the boundary conditions employed in the present study are:

w = 0;
dw

dr
= 0;

d4w

dr4
= 0 at r = 1,

dw

dr
= 0;

d3w

dr3
+

1
r

d2w

dr2
− 1
r2
dw

dr
= 0;

d4w

dr4
= 0 at r = 0.

(21)

It is noted that when the MLSPs are ignored (i.e., l0 = l1 = l2 = 0), the sixth-
order term in the governing equation (15) vanishes; in that case, the present model
with size effect can be reduced to the classical model without size effect [Liao et al.,
2010; Vogl and Nayfeh, 2005].

3. Application of GDQ Method

The GDQ method is adopted in this paper to solve the governing equation (15)
combining with the boundary conditions Eq. (21). This method is based on the
idea that the derivative of a function with respect to a coordinate can be expressed
as a weighted linear summation of function values at all mesh points along that
direction. Consider a function w(r)which is defined in the domain 0 ≤ r ≤ 1. The
mth-order derivative of the function w(r) at the ith point, ri in radial direction is
approximated as (where ri is the Chebyshev–Gauss–Lobatto node):

∂mw(ri)
∂rm

=
N∑
j=1

c
(m)
ij w(ri), i = 1, 2, . . . , N, (22)

where c(m)
ij is a weighting factor. c(1)ij (i, j = 1, 2, . . . , N) is expressed as

c
(1)
ij = M (1)(ri)/(ri − rj)M (1)(rj) for i �= j, i = 1, 2, . . . , N, (23)

c
(1)
ii = −

N∑
j=1
j �=i

c
(1)
ij for i = 1, 2, . . . , N,

where

M (1)(rj) =
N∏

k=1,k �=j
(rj − rk). (24)

The weighting coefficients for higher-order derivatives can be obtained as:

c
(m)
ij = m

(
c
(m−1)
ii c

(1)
ij − c

(m−1)
ij

ri − rj

)
for i �= j, m = 2, 3, . . . , N − 1,

i, j = 1, 2, . . . , N,

c
(m)
ii = −

N∑
j=1,j �=i

c
(m)
ij for i = 1, 2, . . . , N.

(25)
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By applying the GDQ method, Eq. (15) is rewritten in tensor form:

α1

(
C(6) +

3
R

C(5) +
3

R2
C(4) +

1
R3

C(3)

)
W

+
(
C(4) +

2
R

C(3) +
1

R2
C(2)

)
W = α2

�

V, W = (w1, w2, . . . , wN )T , (26)

where

�

V =
(

V 2

(1 − w1)2
,

V 2

(1 − w2)2
, . . . ,

V 2

(1 − wN )2

)T
, (27)

C(k) =




c
(k)
11 c

(k)
12 · · · c

(k)
1N

c
(k)
21 c

(k)
22 · · · c

(k)
2N

...
...

. . .
...

c
(k)
N1 c

(k)
N2 · · · c

(k)
NN




and R =




r1 0 · · · 0

0 r2 · · · 0
...

...
. . .

...

0 0 · · · rN



. (28)

The boundary conditions (21) are rewritten as

wN = 0;
N∑
j=1

e
(1)
Njwj = 0;

N∑
j=1

e
(4)
Njwj = 0;

N∑
j=1

e
(1)
1j wj = 0,

N∑
j=1

e
(3)
1j wj +

N∑
j=1

1
rj
e
(2)
1j wj −

N∑
j=1

1
r2j
e
(1)
1j wj = 0;

N∑
j=1

e
(4)
1j wj = 0.

(29)

Solving the discrete governing equation (26) combining with the discrete boundary
condition Eq. (29), the bending displacement w(r) can be numerically determined.

4. Results and Discussion

With the three MLSPs involved, the present model can predict the size-dependent
properties for electrostatically actuated circular microplate-based devices. It should
be noted that the MLSPs are internal parameters of a given material, which can be
obtained from uniaxial tensile or bending experiments. For simplicity, it is assumed
that the three constants are the same and equal to Cl throughout the following
discussion, i.e., l0 = l1 = l2 = Cl. For the rest of this paper, the Young’s Modulus
of the plate is E = 151GPa and Poisson’s ratio ν = 0.3.

When applying the GDQ method in the numerical procedure, the number of
discrete points (nodes) in the radial direction is chosen asN = 21, which is proven to
be accurate for this problem [Kuang and Chen, 2004]. Convergence, with a tolerance
of 10−8, can be achieved within four iterations with the help of the pseudo arc-length
algorithm [Klosiewicz et al., 2009; Nayfeh and Balachandran, 1995].
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Fig. 2. Pull-in voltage variation with plate thickness.

First, to illustrate the newly developed model, the pull-in voltage predicted by
the present model is studied with the variation of plate thickness (h, from 0.1µm to
1.0µm) as depicted in Fig. 2. The parameters used in this example are R = 200µm
and g = 0.5µm, Cl is taken to be 0.1µm. For comparison, the corresponding results
predicted by the classical model (without size effect) are also shown. For both mod-
els, the pull-in voltage increases as the plate gets thicker, indicate that a thicker
plate needs larger voltage to deform the upper plate, owing to the higher bending
rigidity. Meanwhile, the present model predicts larger pull-in voltage than the clas-
sical model, since the three additional gradient tensors result in higher rigidity than
the classical model, which is consistent with literature [Kong et al., 2009; Wang
et al., 2010, 2011b]. The result of the present model is 3.97 times of the classical
model when h = 0.1µm, yet the ratio decreases to 1.07 when h = 1.0µm, indicating
a strong size effect which will be discussed below.

Next, we study the variation of the pull-in voltage with plate gap (g, from 0.1µm
to 1.0µm) in Fig. 3. In this case, R = 200µm and h = 0.5µm, Cl is still taken to
be 0.1µm. The pull-in voltage is found to increase as the gap gets larger (due to
the required larger deformation). Although the results predicted by the present
model are higher than those by the classical model, the difference between the two
models is small when gap g = 0.1µm, yet the difference increases for larger gap,
also exhibiting a strong size effect.

Finally, to further demonstrate the size effect, a size scale k is defined as the
ratio of plate thickness to MLSP, i.e., k = h/Cl; in Fig. 4 we plot the normalized
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Fig. 3. The pull-in voltage versus gap.

Fig. 4. The normalized pull-in voltage varies with size scale.
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pull-in voltage (Vpull−in/k) with respect to k. Here, we keep the plate shape to be
the same, i.e., fixing R/h = 300 and the gap between the movable plate and fixed
electrode is kept as g/h = 1. Since Cl is still taken to be 0.1µm, the variation of the
size scale k indicates different device sizes (while the plate’s shape is fixed). For
the present model, the normalized pull-in voltage Vpull-in/k increases nonlinearly as
the size scale k decreases, or when the MLSP becomes more prominent comparing
with the plate characteristic dimension (i.e., the thickness h), showing strong size-
dependence. However, for the classical model, the normalized pull-in voltage keeps
a constant despite the variation of the size scale. Moreover, the two models show
almost no difference for the normalized pull-in voltage if k is about larger than 15,
indicating that the present model can also be applied at the macro scale; in other
words, the size effect is diminishing if the plate thickness is more than 15 times the
MLSP (i.e., if the plate thickness is several microns or larger). The strong size effect
indicates that the classical model may be inadequate at submicron scale. Specifically,
when the size scale k = 1 and 6, the normalized pull-in voltage predicted by the
present model are 3.97 and 1.19 times of that by the classical model, respectively.
The similar tendency was discovered by Lam et al. [2003], where in their experiment,
the normalized bending rigidity was increased by 2.4 times when the beam thickness
was reduced from 115 to 20µm, and that was successfully predicted by using the
strain gradient elasticity theory with MLSP included.

5. Conclusion

Based on the strain gradient elasticity theory, a size-dependent model for elec-
trostatically actuated circular microplate-based MEMS device is established. The
size-dependent pull-in voltage is studied by solving the higher-order governing equa-
tion numerically. The influence of the plate thickness and plate gap on the pull-in
voltage is investigated. Furthermore, the normalized pull-in voltage with size scale
is also explored. The results show that the normalized pull-in voltage keeps a con-
stant for the classical model, while it increases nonlinearly with decreasing size scale
for the present model. Such a size effect is especially strong when the size scale is
smaller than about 15. Therefore, the newly developed model is in particular useful
at submicron scales. Meanwhile, the size effect diminishes if the plate thickness is
several microns or more (at least 15 times MLSP), or if the strain gradient effect is
ignored. The new model may be robust for describing the behavior of size-dependent
pull-in instability for circular microplate-based MEMS devices, at both micro- and
macro-scales.
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