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A size-dependent finite-element model for a micro/nanoscale Timoshenko beam is developed based on the strain gradi-
ent elasticity theory. The newly developed element contains three material length scale parameters that capture the size
effect. This element is a new, comprehensive Timoshenko beam element that can reduce to the modified couple stress
Timoshenko beam element or the classical Timoshenko beam element if two (l0 and l1) or three (l0, l1, and l2) material
length scale parameters are set to zero. The element satisfies C0 continuity and C1 weak continuity and has two nodes,
with four degrees of freedom at each node considering only bending deformation. The deflection and cross-sectional rota-
tion of the element are interpolated independently. The finite-element formulations and the stiffness and mass matrices
are derived using the corresponding weak-form equations. To verify the reliability and accuracy of the proposed element,
the problems of convergence and shear locking are studied. Using the newly developed element, the static bending and
free vibration problems of the clamped and simply supported Timoshenko microbeam are investigated. The results for a
simply supported Timoshenko microbeam predicted by the new element model agree well with results from the literature.
Moreover, the results illustrate that the size effect on the Timoshenko microbeam can be effectively predicted by using
the proposed element.
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1. INTRODUCTION

Rapid progress in device miniaturization has led to the quick rise of micro/nanobeam-like structures in micro/nano-
electromechanical systems (MEMS/NEMS) or atomic force microscopes (AFMs) because of their superior mechan-
ical, chemical, and electronic properties. For this reason, accurate modeling and analysis of the static and dynamic
behaviors of micro/nanobeams are crucial to research. The characteristic size of these beams is comparable to the ma-
terial microstructure (e.g., the grain size or atomic lattice spacing), which leads to distinct mechanical behaviors with
respect to their macroscopic counterparts. Numerous experiments have observed size-dependent behaviors in metals
(Poole et al., 1996), brittle materials (Vardoulakis et al., 1998), polymers (Lam and Chong, 1999; Lam et al., 2003;
McFarland and Colton, 2005), and polysilicon (Chasiotis and Knauss, 2003; Sadeghian et al., 2011). These behaviors
cannot be explained using classical continuum theory, which has no length-scale parameters (MLSPs). Hence, the size
effect must be taken into account in theoretical and experimental studies.

Recently, size-dependent continuum theories have received increasing attention in the modeling of micro/nano-
structures and devices. These include nonlocal continuum theory (Eringen, 1983), surface energy theory (Gurtin and
Murdoch, 1975), couple stress theory (Yang et al., 2002), and strain gradient elasticity theory (Lam et al., 2003).
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When applying nonlocal theory, a paradoxical conclusion arises: the small length scale effect vanishes in the
bending deflection for the Euler-Bernoulli cantilever nanobeam under a transverse point load. Moreover, this theory
predicts a “softening effect”, which is inconsistent with the “stiffening effect” observed in experiments (Lam et al.,
2003). For surface energy theory, it is considered that surface properties cannot be overlooked in the study of nanos-
tructures and nanomaterials because of the large value of surface–volume ratios at that scale (Assadi, 2013). Although
this theory is applied to size-dependent behaviors, it must be admitted that the mechanical properties are relative not
only to the surface part but also to the internal part because the characteristic length is in the bulk, such as grain size
or atomic lattice spacing.

The couple stress theory is a nonclassical continuum theory in which higher-order stresses, known as couple
stresses, exist (Koiter, 1964). Yang et al. (2002) proposed a modified theory involving only one additional MLSP.
Since then, numerical approaches have been developed to study the size effect of the linear and nonlinear Bernoulli–
Euler beam (Fathalilou et al., 2014; Park and Gao, 2006; Xia et al., 2010), the linear and nonlinear Timoshenko beam
(Asghari et al., 2010b; Ma et al., 2008), the linear functionally graded Euler-Bernoulli beam (Asghari et al., 2010a),
the Timoshenko beam (Asghari et al., 2011), the Kirchhoff plate (Tsiatas, 2009), and the pull-in phenomena in MEMS
(Yin et al., 2011).

Of the most popular size-dependent continuum models, the strain gradient elasticity theory (Lam et al., 2003), a
modification of Mindlin’s linear elasticity theory for microstructures (Mindlin, 1964), is widely used. It introduces
three MLSPs to characterize the dilatation gradient tensor, the deviatoric stretch gradient tensor, and the symmetric
rotation gradient tensor. Also, the higher-order stress tensor work-conjugate to the new higher-order deformation
metrics and the corresponding constitutive relations are defined. As our previous papers have pointed out (Wang et
al., 2010), the strain gradient elasticity theory can reduce to the modified couple stress theory (Yang et al., 2002)
if two of the three MLSPs are set to zero. This indicates that it is a more general theory than the modified couple
stress theory (Yang et al., 2002). The strain gradient elasticity theory has been applied to study the linear (Kong et
al., 2009) and nonlinear (Zhao et al., 2012) Euler beam, the linear (Wang et al., 2010) and nonlinear (Asghari et al.,
2010b) Timoshenko beam, and the Reddy-Levinson beam (Wang et al., 2014). It has also been employed to investigate
size-dependent pull-in phenomena in MEMS (Wang et al., 2011a,b, 2012).

Higher-order continuum theories are more complicated than conventional elasticity theory. Higher-order terms
(e.g., strain gradient) are incorporated in the governing equations and boundary conditions, leading to difficulties in
problem solutions. In our experience, only a few cases with simple geometric shapes and boundary conditions can
be achieved with exact analytical solutions. Moreover, for micro/nanobeams the presence of complex forces such as
Casimir, Van Der Waals, and capillary forces may introduce unexpected nonlinearities.

Naturally, approaches other than analytical ones are required to deal with the problems occurring in micro/nano-
beams. The finite-element method (FEM) is one of the most popular numerical alternatives and has been used to
investigate the mechanical behavior of micro/nanoscale structures based not only on classical continuum theory but
also on the size-dependent theories mentioned previously.

Phadikar and Pradhan (2010) presented a finite-element formulation for nonlocal elastic nanobeams and nanoplates
based on nonlocal elasticity theory. Pradhan (2012) proposed a finite-element formulation for nonlocal elastic Bernoul-
li-Euler beam and Timoshenko beam theories. Based on the modified couple stress theory, Kahrobaiyan et al. (2014)
developed a size-dependent Timoshenko beam element model to predict the size dependence observed in microbeams.
Zhang et al. (2013) proposed a novel Mindlin plate element based on the framework of modified couple stress theory
for analyzing the static bending, free vibration, and buckling behaviors of size-dependent Mindlin microplates. The
finite-element method is also used to develop the size-dependent Euler–Bernoulli beam element based on the strain
gradient theory (Kahrobaiyan et al., 2013). Also based on the strain gradient elasticity theory, the size-dependent non-
classical Timoshenko beam element model (Zhang et al., 2014) was proposed for predicting the mechanical behaviors
of microbeams where six-degree-of-freedom (6-DOF) nodes are introduced.

Our previous work established the theoretical size-dependent Timoshenko beam model based on the strain gradient
theory. In the present study, the corresponding finite-element approach is adopted to predict the mechanical behaviors
of micro/nanoscale beams, which is the main gap we try to bridge.

The rest of the paper is organized as follows. In Section 2, the size-dependent Timoshenko beam model, based on
the strain gradient elasticity theory, is reviewed. The finite-element formulations as well as the weak-form formulations
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of the model are presented in Section 3, which introduces a two-node element where each node has 4 DOF. Numerical
examples and discussions are given in Section 4. Finally, conclusions are summarized in Section 5.

2. THEORETICAL FORMULATIONS

2.1 Size-Dependent Timoshenko Beam Model

The strain gradient theory proposed by Lam et al. (2003) introduces three independent material length scale parameters
for isotropic linear elastic materials in addition to two classical material constants. Then the strain energyU in a
deformed isotropic linear elastic material occupying regionΩ is written as

U =
1

2

∫
Ω

(σijεij + piγi + τ
(1)
ijkη

(1)
ijk +ms

ijχ
s
ij)dΩ (1)

The deformed measures—strain tensorεij , dilatation gradient tensorγi, deviatoric stretch gradientη(1)ijk, and symmet-
ric rotation gradientχsij—are defined as

εij =
1

2
(ui,j + uj,i) (2)

γi = εmm,i (3)

η
(1)
ijk = ηsijk − 1

5
(δijη

s
mmk + δjkη

s
mmi + δkiη

s
mmj) (4)

χsij =
1

2
(eipqεqj,p + ejpqεqi,p) (5)

whereui is the displacement vector,εmm is the dilatation strain,δij andeijk are the Knocker symbol and the alternate
symbol, respectively, andηsijk is the symmetric part of the second-order displacement gradient tensor, given by

ηsijk =
1

3
(ui,jk + uj,ki + uk,ij) (6)

It should be noted that the index notation is always used with repeated indices denoting summation from 1 to 3.
The corresponding stress measures are respectively given by the following constitutive relations:

σij = kδijεmm + 2µε′ij (7)

pi = 2µl20γi (8)

τ
(1)
ijk = 2µl21η

(1)
ijk (9)

ms
ij = 2µl22χ

s
ij (10)

whereε′ij is the deviatoric strain, defined as

ε′ij = εij −
1

3
εmmδij (11)

In the previous equations,l0, l1, andl2 are the additional independent material length scale parameters associated with
the dilatation gradients, deviatoric stretch gradients, and symmetric rotation gradients, respectively. The parametersk
andµ in the constitutive equation of classical stressσij are bulk and shear modulus, respectively. They can be written
in terms of Young’s modulusE and the Poisson ratiov as

k =
E

3(1− 2v)
, µ =

E

2(1 + v)
(12)
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As shown in Fig. 1, a straight beam subjected to a static lateral loadq(x) distributed along the longitudinal axisx
of the beam is considered, where the loading plane coincides with thexz-plane and the cross-section parallels the
yz-plane. The displacement fields, based on Timoshenko beam theory, can be described as (Dym and Shames, 1973)

u1(x, y, z, t) = −zψ(x, t), u2(x, y, z, t) = 0, u3(x, y, z, t) = w(x, t) (13)

wheret is time, andψ(x, t) is the rotation of line elements along the centerline due to bending only. Here we assume
that the shear strain is the same at all points over a given cross-section of the beam.

By substituting Eq. (13) into Eq. (2), the nonzero components of the strain tensor can be obtained:

ε11 = −z
∂ψ

∂x
, ε13 = ε31 =

1

2

(
∂w

∂x
−ψ

)
(14)

Using Eqs. (3) and (14), the nonzero components of the dilatation gradient tensorγi can be obtained:

γ1 = −z
∂2ψ

∂x2
, γ3 = −∂ψ

∂x
(15)

Inserting Eqs. (14) into Eq. (5) yields the nonzero components of the symmetric rotation gradientχsij :

χs12 = χs21 = −1

4

(
∂2w

∂x2
+

∂ψ

∂x

)
(16)

From Eqs. (4), (6), and (13), the nonzero components of the deviatoric stretch gradientη
(1)
ijk, we have

η
(1)
111 = −2

5
z
∂2ψ

∂x2
, η

(1)
333 = −1

5

(
∂2w

∂x2
− 2

∂ψ

∂x

)
η
(1)
113 = η

(1)
311 = η

(1)
131 =

4

15

(
∂2w

∂x2
− 2

∂ψ

∂x

)
, η

(1)
221 = η

(1)
122 = η

(1)
212 =

1

5
z
∂2ψ

∂x2

η
(1)
223 = η

(1)
322 = η

(1)
232 = − 1

15

(
∂2w

∂x2
− 2

∂ψ

∂x

)
, η

(1)
331 = η

(1)
133 = η

(1)
313 =

1

5
z
∂2ψ

∂x2

(17)

FIG. 1: Geometry and loading of the Timoshenko beam
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The nonzero stressesσij can be obtained using Eqs. (14), (11), and (7):

σ11 = −z

(
k +

4

3
µ

)
∂ψ

∂x
, σ22 = σ33 = −z

(
k − 2

3
µ

)
∂ψ

∂x
, σ13 = σ31 = µ

(
∂w

∂x
−ψ

)
(18)

It is worth noting that theσ13 andσ31 variations depend only onx. To take the nonuniformity of the shear strain
into account over the beam cross-section, a correction factorks, which depends on the shape of the cross-section, is
introduced to the stress componentsσ13 andσ31 as follows:

σ13 = σ31 = ksµ

(
∂w

∂x
−ψ

)
(19)

Substituting Eq. (15) into Eq. (8) yields

p1 = −2µl20z
∂2ψ

∂x2
, p3 = −2µl20

∂ψ

∂x
(20)

From Eqs. (16) and (10), it follows that

ms
12 = ms

21 = −1

2
µl22

(
∂2w

∂x2
+

∂ψ

∂x

)
(21)

From Eqs. (9) and (17), the nonzero components of the higher-order stressesτ
(1)
ijk are

τ
(1)
111 = −4

5
zµl21

∂2ψ

∂x2
, τ

(1)
333 = −2

5
µl21

(
∂2w

∂x2
− 2

∂ψ

∂x

)
τ
(1)
113 = τ

(1)
311 = τ

(1)
131 =

8

15
µl21

(
∂2w

∂x2
− 2

∂ψ

∂x

)
, τ

(1)
221 = τ

(1)
122 = τ

(1)
212 =

2

5
zµl21

∂2ψ

∂x2

τ
(1)
223 = τ

(1)
322 = τ

(1)
232 = − 2

15
µl21

(
∂2w

∂x2
− 2

∂ψ

∂x

)
, τ

(1)
331 = τ

(1)
133 = τ

(1)
313 =

2

5
zµl21

∂2ψ

∂x2

(22)

According to Hamilton’s principle, the actual motion minimizes the difference between the kinetic energy and the
total potential energy for a system with prescribed configurations att1 andt2. That is,

δ

∫ t2

t1

[T − (U −W )]dt = 0 (23)

The variation in strain energyU can be expressed as

δU = δ
1

2

∫
Ω

(
σijεij + piγi + τ

(1)
ijkη

(1)
ijk +ms

ijχ
s
ij

)
dV =

∫
Ω

(
σijδεij + piδγi + τ

(1)
ijkδη

(1)
ijk +ms

ijδχ
s
ij

)
dV

=

∫ L

0

[
(k3 + k4)w

IV + (k3 − 2k4)ψ
′′′ + k5(−w′′ +ψ)

]
δwdx+

∫ L

0

[
k1ψ

IV − (k3 − 2k4)w
′′′

− (k2 + k3 + 4k4)ψ
′′ + k5(−w′ +ψ)

]
δψdx+ [−(k3 + k4)w

′′′ + (−k3 + 2k4)ψ
′′ + k5(w

′ −ψ)]δw|L0

+ [(k3+k4)w
′′+(k3−2k4)ψ

′]δw′|L0 + [−k1ψ
′′′+(k3−2k4)w

′′+(k2+k3+4k4)ψ
′]δψ|L0 + k1ψ

′′δψ′|L0

(24)

where

k1 = I

(
2µl20 +

4

5
µl21

)
, k2 = I

(
k +

4

3
µ

)
+ 2µAl20, k3 =

1

4
µAl22, k4 =

8

15
µAl21, k5 = ksµA (25)
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The variation in the kinetic energy of the beam can be expressed as

δT = δ

∫
V

1

2
ρ

[(
∂u1

∂t

)2

+

(
∂u2

∂t

)2

+

(
∂u3

∂t

)2
]
dV =

∫ L

0

(
m0ẇδẇ +m2ψ̇δψ̇

)
dx (26)

where

m0 = ρA, m2 = ρI, I =

∫
A

z2dA (27)

The first variation of the work done by the external force,q(x, y), takes the form

δW =

∫ L

0

q(x)δwdx+ V δw|L0 + Mδψ|L0 + Mhδψ
′|L0 (28)

Because of the fundamental lemma of the calculus of variation with the arbitrariness ofδw andδψ for the given
x ∈ [0, L] andt ∈ [t1,t2], the governing equations for the beam in bending are given by

m0ẅ − q + (k3 + k4)w
IV + (k3 − 2k4)ψ

′′′ + k5(−w′′ +ψ′) = 0

m2ψ̈+ k1ψ
IV − (k3 − 2k4)w

′′′ − (k2 + k3 + 4k4)ψ
′′ + k5(−w′ +ψ) = 0

(29)

and the boundary conditions can be written as

(k3 + k4)w
′′′ + (k3 − 2k4)ψ

′′ − k5(w
′ −ψ) = −V̄ or w = w̄

(k3 + k4)w
′′ + (k3 − 2k4)ψ

′ = 0 or w′ = w̄′

−k1ψ
′′′ + (k3 − 2k4)w

′′ + (k2 + k3 + 4k4)ψ
′ = M̄ or ψ = ψ̄

k1ψ
′′ = M̄h or ψ′ = ψ̄′

 at x = 0 and x = L (30)

The boundary conditions are determined by specifying the kinematic boundary conditions or by satisfying the natural
boundary conditions (Dym and Shames, 1973).

2.2 Weak-Form Equations for the Timoshenko Beam

For the static analysis of Timoshenko beams, a weak form can be briefly expressed as∫ L

0

[
(k3 + k4)w

′′δw′′ + (k3 − 2k4)ψ
′δw′′ − k5(−w′ +ψ)δw′ + k1ψ

′′δψ′′ + (k3 − 2k4)w
′′δψ′

+ (k2 + k3 + 4k4)ψ
′δψ′ + k5(−w′ +ψ)δψ

]
dx =

∫ L

0

q(x)δwdx+
(
N (0)

w δw +N (1)
w δw′

+ N
(0)
ψ δψ+N

(1)
ψ δψ′)∣∣∣L

0

(31)

in which

N (0)
w = (k3 + k4)w

′′′ + (k3 − 2k4)ψ
′′ − k5(w

′ −ψ)
N (1)

w = (k3 + k4)w
′′ + (k3 − 2k4)ψ

′

N
(0)
ψ = −k1ψ

′′′ + (k3 − 2k4)w
′′ + (k2 + k3 + 4k4)ψ

′

N
(1)
ψ = k1ψ

′′

(32)

For the free vibration analysis of Timoshenko beams, a weak form can be briefly expressed as∫ L

0

[
(k3 + k4)w

′′δw′′ + (k3 − 2k4)ψ
′δw′′ − k5(−w′ +ψ)δw′ + k1ψ

′′δψ′′ + (k3 − 2k4)w
′′δψ′

+ (k2 + k3 + 4k4)ψ
′δψ′ + k5(−w′ +ψ)δψ

]
dx = −

∫ L

0

(
m0

∂2w

∂t2
δw +m2

∂2ψ

∂t2
δψ

)
dx

+
(
N (0)

w δw +N (1)
w δw′ +N

(0)
ψ δψ+N

(1)
ψ δψ′

)∣∣∣L
0

(33)
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3. FINITE-ELEMENT FORMULATIONS

In this section, the stiffness and mass matrices of a Timoshenko microbeam element are derived. The appropriate shape
functions are given by the Hermite polynomial. The weak-form equations for Timoshenko microbeams are discretized
to finite elements using the finite-element method. From Eqs. (31) and (33), it can been seen that the weak-form equa-
tions contain the second-order derivative of transverse deflectionw and rotationψ. However, because weak-form
equations based on classical Timoshenko beam theory contain only the first derivative of generalized displacements,
the generalized displacement functions need to satisfy C1 continuity to guarantee the weak-form equations’ integra-
bility. In this paper, a two-node Timoshenko beam element with 4 DOF at each node is proposed that satisfies both
C0 continuity and C1 weak continuity conditions and includes three material length scale parameters to capture the
microstructure size effect.

The deflection and the cross-sectional rotation of the element are interpolated independently. According to FEM,
the element’s displacementw and rotationψ are related to the corresponding nodal displacement vector as

w = Nwaw , ψ = Nψaψ (34)

where the nodal displacement vectora for the new beam element can be represented as

aw = [w1 w′
1 w2 w′

2]
T , aψ = [ψ1 ψ′

1 ψ2 ψ′
2]

T (35)

Nw andNψ represent the shape function matrices for displacement and rotation, respectively:

Nw = [Nw
1 Nw

2 Nw
3 Nw

4 ] , Nψ = Nw (36)

The appropriate shape functions are given by the first-order Hermite polynomial, which is given as

Nw
1 = 1− 3

( x

L

)2

+ 2
( x

L

)3

, Nw
2 =

[
x

L
− 2

( x

L

)2

+
( x

L

)3
]
L

Nw
3 = 3

( x

L

)2

− 2
( x

L

)3

, Nw
4 =

[
−
( x

L

)2

+
( x

L

)3
]
L

(37)

By substituting Eq. (34) into the weak-form equations [Eqs. (31) and (33)], respectively, the finite-element formula-
tions for the static bending and free vibration problems of Timoshenko microbeams can be obtained, along with the
stiffness and mass matrices of the new element. Because the formsKe andMe are tedious and complicated, they are
given in the Appendix.

For the static model, the formulation of the Timoshenko beam element can be written as

Kd = F (38)

For the free vibration problem, it can be written as

(K−ω2M)d = 0 (39)

in whichK , F, andM are the global stiffness matrix, the global force vector, and the global mass matrix, respectively,
andω is the natural frequency. By assembling each corresponding element matrix and load vector, the above global
matrices and global force vector can be respectively obtained:

Ke =

[
Kww Kwψ

Kψw Kψψ

]
, Me =

[
Mww Mwψ

Mψw Mψψ

]
, Fe =

[
Fw

Fψ

]
(40)
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where

Kww =

∫ l

0

[
(k3 + k4)

(
∂2Nw

∂x2

)T
∂2Nw

∂x2
+ k5

(
∂Nw

∂x

)T
∂Nw

∂x

]
dx

Kwψ =

∫ l

0

[
(k3 − 2k4)

(
∂2Nw

∂x2

)T
∂Nψ
∂x

− k5

(
∂Nw

∂x

)T

Nψ

]
dx

Kψw =

∫ l

0

[
(k3 − 2k4)

(
∂Nψ
∂x

)T
∂2Nw

∂x2
− k5 (Nψ)

T ∂Nw

∂x

]
dx

Kψψ =

∫ l

0

[
k1

(
∂2Nψ
∂x2

)T
∂2Nψ
∂x2

+ (k2 + k3 + 4k4)

(
∂Nψ
∂x

)T
∂Nψ
∂x

+ k5 (Nψ)
T
Nψ

]
dx

(41)

Fw =

∫ l

0

(Nw)
T
q(x)dx+

[
(Nw)

T
N (0)

w +

(
∂Nw

∂x

)T

N (1)
w

]∣∣∣∣∣
L

0

, Fψ = 0 (42)

Mww =

∫ L

0

m0(Nw)
TNwdx, Mψψ =

∫ L

0

m2(Nψ)
TNψdx, Mwψ = Mψw = 0 (43)

From Eq. (41), it can be seen that there are three additional independent material length scale parameters in the
stiffness matrix of the new Timoshenko beam element based on the strain gradient elasticity theory. This is different
from classical Timoshenko beam theory, which just requires C0 continuity. Thus the newly developed element makes
it possible to capture the size effect. Verifications and numerical results are given in Section 4.

The boundary conditions for the Timoshenko beam based on the strain gradient theory can be written as

δw = 0 or N
(0)
w = 0

∂δw/∂x = 0 or N
(1)
w = 0

δψ = 0 or N
(0)
ψ = 0

∂δψ/∂x = 0 or N
(1)
ψ = 0

 x = 0, L (44)

N
(0)
w ,N (1)

w ,N (0)
ψ , andN (1)

ψ are higher-order tractions; they have no special physical meaning and so are not considered
here.

The kinematic boundary conditions in the newly proposed element are listed in Table 1. “S”, “C”, and “F” denote
the boundary conditions of the edges as simply supported, clamped, and free, respectively. The dashes represent the
unknown displacements at the corresponding boundary.

4. RESULTS AND DISCUSSION

In this section, the convergence of the present element is studied. Static bending and free vibration problems with a
Timoshenko beam with simply supported and clamped boundary conditions are numerically solved by applying the
new Timoshenko beam element. To verify the reliability and accuracy of the present approach, results obtained with

TABLE 1: Boundary conditions used in finite-element implementation

Boundary Node parameters related to bending deformation
conditions w w′ ψ ψ′

S 0 — — 0
C 0 — 0 —
F — — — —
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the present element are compared with results from the literature (Wang et al., 2010). Unless otherwise indicated, the
beam studied here is taken to be made of epoxy with the following properties (Lam et al., 2003; Wang et al., 2010):
elastic modulusE = 1.44 GPa, densityρ = 1,220 kg/m3, Poisson’s ratiov = 0.38, material length scale parameterl =
17.6µm, and shear coefficientks = 5/6.

4.1 Shear Locking Study

It is known that shear locking appears in the classical Timoshenko beam element when the length-to-thickness ratio is
large. Here, the performance of the present Timoshenko beam element is illustrated when the thickness becomes very
thin. For simplification, all three material length scale parameters are set to zero.

A simple beam subjected a concentrated forceP at the midpoint is considered, as shown in Fig. 2. In Table 2,
wp andψp are the deflection and rotation predicted by the present element when Poisson’s ratio is set to zero with
different length-to-thickness ratios(L/h). The variableswc andψc are the deflection and rotation of the classical
Euler-Bernoulli beam predicted by Eq. (45) with varyingL/h (Gere, 2002).

wc =
PL3

48EI
; ψc =

PL2

16EI
(45)

Table 2 shows that with an increase inL/h, the errors between the corresponding results predicted by the present
element and those predicted by classical Euler-Bernoulli beam theory decrease; whenL/h is very large, the errors
can be ignored. This illustrates that the results obtained by the present element can reduce to the results of classical
Euler-Bernoulli beam theory when the length-to-thickness ratio is very large and Poisson’s ratio is set to zero. Thus it
can be guaranteed that the shear locking phenomenon does not exist here.

4.2 Convergence Study

As shown in Figs. 2 and 3, the static bending of a Timoshenko microbeam is solved to verify the convergence of
the results. The dimensionless deflection and rotation results at pointx = L/4 with simply supported and clamped
boundary conditions are listed in Table 3. Equation (46) is adopted in the dimensionless treatment for convenience.
From Table 3, it can be seen that the present element has good convergence and high precision. It can be also seen that

FIG. 2: Geometry and loading of the simply supported Timoshenko beam

TABLE 2: Deflection and rotation with different length-to-thickness ratios (L/h)

L/h 5 10 20 30 50 100
wp 6.75563× 10−8 5.05023× 10−7 3.96933× 10−6 1.33522× 10−5 6.17107× 10−5 4.93331× 10−4

wc 6.16517× 10−8 4.93213× 10−7 3.94571× 10−6 1.33168× 10−5 6.16517× 10−5 4.93213× 10−4

Error 9.577% 2.394% 0.599% 0.266% 0.096% 0.024%
ψp 2.23627× 10−3 8.54156× 10−3 3.37627× 10−2 7.57979× 10−2 2.10311× 10−1 8.40839× 10−1

ψc 2.10176× 10−3 8.40705× 10−3 3.36282× 10−2 7.56634× 10−2 2.10176× 10−1 8.40705× 10−1

Error 6.400% 1.600% 0.400% 0.178% 0.064% 0.016%
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FIG. 3: Geometry and loading of the clamped Timoshenko beam

TABLE 3: Dimensionless deflection and rotation results at pointx = L/4

Boundary
Sources

Node Number of elements
conditions parameters 4 8 12 16 20 100

S-S

a
w 7.7369 7.7374 7.7375 7.7375 7.7375 7.7375
ψ 25.0810 25.0440 25.0407 25.0404 25.0403 25.0403

b
w 2.3390 2.3393 2.3393 2.3393 2.3393 2.3393
ψ 7.4715 7.4580 7.4579 7.4580 7.4580 7.4580

c
w 0.9170 0.9176 0.9176 0.9176 0.9176 0.9176
ψ 2.7257 2.7188 2.7185 2.7185 2.7185 2.7185

C-C

a
w 1.4769 1.4773 1.4774 1.4774 1.4774 1.4774
ψ 8.3858 8.3504 8.3472 8.3468 8.3468 8.3468

b
w 0.5551 0.5840 0.5969 0.6030 0.6061 0.6100
ψ 2.6080 2.7279 2.7632 2.7793 2.7875 2.7981

c
w 0.2358 0.2364 0.2364 0.2364 0.2364 0.2364
ψ 0.9115 0.9042 0.9039 0.9039 0.9039 0.9039

Note: S-S: simply supported at both ends; C-C: clamped at both ends; a: classical theory; b: modified couple stress
theory; c: present theory.

20 elements are enough to obtain reasonably accurate results. Unless otherwise indicated, 20 elements are used in all
following computations.

For illustration purposes, the following parameters are used in computing the numerical results:P = 100µN,
h = l, L = 20h, andb = 2h.

w̄ = 1000w
EJ

PL3
, ψ̄ = 1000ψ

EJ

PL2
(46)

4.3 Verification Study

To verify the accuracy of the present element, some comparisons are given in Figs. 4–6. The value of the height of the
Timoshenko microbeam is given in all figures. The three material length scale parameters (l0, l1, andl2) are equal to
the material length scale parameterl (i.e., l0 = l1 = l2 = l = 17.6µm). Other parameters are the same as those given
earlier.

Figures 4 and 5 compare the static bending results of the simply supported Timoshenko microbeam predicted
by the present element with results from the literature (Wang et al., 2010). It can be seen that the results obtained
by the present model agree well with the theoretical results. When the element degenerates into the modified couple
stress or classical Timoshenko beam element, the results also agree well (Wang et al., 2010). Figure 6 compares the
natural frequencies of the simply supported Timoshenko microbeam predicted by the present element with those from
the literature (Wang et al., 2010). The results predicted by the present model agree well with the theoretical results,
meaning that this element has high reliability and accuracy.
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FIG. 4: Comparison of dimensionless deflection(w/h) from theoretical and present results

FIG. 5: Comparison of rotation from theoretical and present results

4.4 Static Bending of a Clamped Beam

Using the newly developed element, the static bending and free vibration problems of a clamped Timoshenko mi-
crobeam are investigated. The microbeam is subject to a concentrated force at the center point; the geometrical and
load parameters are given in Figs. 7 and 8 and other parameters are the same as those given earlier. From Fig. 7,
it can clearly be observed that the deflection predicted by the present element is smaller than that predicted by the
classical element and the modified couple stress element. The absolute rotation values for the clamped Timoshenko
microbeam predicted by the three models in Fig. 8 show a trend similar to that in Fig. 7. From both figures, it can be
seen that there are large differences in deflection and rotation for the three models when the beam thicknessh is equal
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FIG. 6: Comparison of natural frequency from theoretical and present results

FIG. 7: Deflection of the clamped Timoshenko beam

to the material length scale parameterl. However, when the thickness of the beam becomes greater, such differences
decrease. This shows that the size effect is significant only when the beam thickness is comparable to the material
length scale parameter.

Figure 9 shows the change in the first-order natural frequency of the clamped Timoshenko beam predicted by the
three models (the present model, the modified couple stress model, and the classical model) with the dimensionless
thickness of the beam (h/l) for different values of Poisson’s ratio (v = 0 andv = 0.38). It can be seen that the natural
frequency predicted by the present element is not only larger than that predicted by the modified couple stress model
but also larger than that predicted by the classical model for the two Poisson values. There are large differences in the
natural frequency predicted by the three models for both cases,v = 0 andv = 0.38, when the dimensionless thickness of
the beam is small (h/l < 2). When the thickness increases, the differences decrease or even disappear. This illustrates
that the size effect is prominent when the beam thickness is as small as the material length scale parameterl. From
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FIG. 8: Rotation of the clamped Timoshenko beam based on the three models withh = l, 2l, and 4l

FIG. 9: Natural frequency of the clamped Timoshenko beam based on the three models withv = 0 andv = 0.38

Fig. 9, it can also be seen that the natural frequency withv = 0.38 is always larger than that withv = 0 for the classical
model. However, this is not true for either the present model or the modified couple stress model.

5. CONCLUSIONS

A microscale Timoshenko beam element was developed based on the strain gradient elasticity theory. The proposed
element contains three material length scale parameters that can capture the size effect. It is known that the classical
Timoshenko beam element satisfies C0 continuity, but the proposed element satisfies both C0 continuity and C1 weak
continuity. Moreover, the new element can degenerate into the modified couple stress Timoshenko beam element or
the classical Timoshenko beam element. The newly developed element comprises two nodes, with 4 DOF at each one
considering only bending deformation.
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Both the static bending and the free vibration problem of a simple beam are solved using the new element, and
the results agree with those in the literature. Using this newly developed element, the static bending and free vibration
problems of a clamped Timoshenko microbeam were investigated. Future work may focus on the plate and shell
elements with strain gradient included.
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APPENDIX

The global stiffness matrix and the global mass matrix are expressed as follows:

K =



k11 k12 k13 k14 k15 k16 k17 k18
k21 k22 k23 k24 k25 k26 k27 k28
k31 k32 k33 k34 k35 k36 k37 k38
k41 k42 k43 k44 k45 k46 k47 k48
k51 k52 k53 k54 k55 k56 k57 k58
k61 k62 k63 k64 k65 k66 k67 k68
k71 k72 k73 k74 k75 k76 k77 k78
k81 k82 k83 k84 k85 k86 k87 k88


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k11 = −k15 = −k51 = k55 =
12

L3
(k3 + k4) +

6

5L
k5

k13 = k17 = k31 = −k35 = −k53 = −k57 = k71 = −k75 =
6

L2
(k3 + k4) +

1

10
k5

k33 = k77 =
4

L
(k3 + k4) +

2L

15
k5, k37 = k73 =

2

L
(k3 + k4)−

L

30
k5

k12 = k16 = k21 = −k25 = −k52 = −k56 = k61 = −k65 =
1

2
k5

k34 = k43 = −k78 = −k87 = −1

2
(k3 − 2k4)

k14 = −k18 = −k23 = k27 = −k32 = k36 = k41 = −k45 = − 1

L
(k3 − 2k4) +

L

10
k5

− k54 = k58 = k63 = −k67 = k72 = −k76 = −k81 = k85 = − 1

L
(k3 − 2k4) +

L

10
k5

− k38 = k47 = k74 = −k83 = −1

2
(k3 − 2k4) +

L2

60
k5

k22 = k66 =
12

L3
k1 +

6

5L
(k2 + k3 + 4k4) +

13L

35
k5

k24 = k42 = −k68 = −k86 =
6

L2
k1 +

1

10
(k2 + k3 + 4k4) +

11L2

210
k5

k26 = k62 = − 12

L3
k1 −

6

5L
(k2 + k3 + 4k4) +

9L

70
k5

k28 = −k46 = −k64 = k82 =
6

L2
k1 +

1

10
(k2 + k3 + 4k4)−

13L2

420
k5

k44 = k88 =
4

L
k1 +

2L

15
(k2 + k3 + 4k4) +

L3

105
k5, k48 = k84 =

2

L
k1 −

L

30
(k2 + k3 + 4k4)−

L3

140
k5

M =



m11 m12 m13 m14 m15 m16 m17 m18

m21 m22 m23 m24 m25 m26 m27 m28

m31 m32 m33 m34 m35 m36 m37 m38

m41 m42 m43 m44 m45 m46 m47 m48

m51 m52 m53 m54 m55 m56 m57 m58

m61 m62 m63 m64 m65 m66 m67 m68

m71 m72 m73 m74 m75 m76 m77 m78

m81 m82 m83 m84 m85 m86 m87 m88


mm11 = mm55 =

13

35
m0L, mm13 = mm31 = −mm57 = −mm75 =

11

210
m0L

2

mm15 = mm51 =
9

70
m0L, −mm17 = mm35 = mm53 = −mm71 =

13

420
m0L

2

mm33 = mm77 =
1

105
m0L

3, mm37 = mm73 = − 1

140
m0L

3

mm22 = mm66 =
13

35
m2L, mm24 = mm42 = −mm68 = −mm86 =

11

210
m2L

2

mm26 = mm62 =
9

70
m2L, −mm28 = mm46 = mm64 = −mm82 =

13

420
m2L

2

mm44 = mm88 =
1

105
m2L

3, mm48 = mm84 = − 1

140
m2L

3
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