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A size-dependent finite-element model for a micro/nanoscale Timoshenko beam is developed based on the strain gradi-
ent elasticity theory. The newly developed element contains three material length scale parameters that capture the size
effect. This element is a new, comprehensive Timoshenko beam element that can reduce to the modified couple stress
Timoshenko beam element or the classical Timoshenko beam element if two (lo and 11) or three (lo, I1, and l3) material
length scale parameters are set to zero. The element satisfies Co continuity and Cy weak continuity and has two nodes,
with four degrees of freedom at each node considering only bending deformation. The deflection and cross-sectional rota-
tion of the element are interpolated independently. The finite-element formulations and the stiffness and mass matrices
are derived using the corresponding weak-form equations. To verify the reliability and accuracy of the proposed element,
the problems of convergence and shear locking are studied. Using the newly developed element, the static bending and
free vibration problems of the clamped and simply supported Timoshenko microbeam are investigated. The results for a
simply supported Timoshenko microbeam predicted by the new element model agree well with results from the literature.
Moreover, the results illustrate that the size effect on the Timoshenko microbeam can be effectively predicted by using
the proposed element.
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1. INTRODUCTION

Rapid progress in device miniaturization has led to the quick rise of micro/nanobeam-like structures in micro/nano-
electromechanical systems (MEMS/NEMS) or atomic force microscopes (AFMs) because of their superior mechan-
ical, chemical, and electronic properties. For this reason, accurate modeling and analysis of the static and dynamic
behaviors of micro/nanobeams are crucial to research. The characteristic size of these beams is comparable to the ma-
terial microstructure (e.g., the grain size or atomic lattice spacing), which leads to distinct mechanical behaviors with
respect to their macroscopic counterparts. Numerous experiments have observed size-dependent behaviors in metals
(Poole et al., 1996), brittle materials (Vardoulakis et al., 1998), polymers (Lam and Chong, 1999; Lam et al., 2003;
McFarland and Colton, 2005), and polysilicon (Chasiotis and Knauss, 2003; Sadeghian et al., 2011). These behaviors
cannot be explained using classical continuum theory, which has no length-scale parameters (MLSPs). Hence, the size
effect must be taken into account in theoretical and experimental studies.

Recently, size-dependent continuum theories have received increasing attention in the modeling of micro/nano-
structures and devices. These include nonlocal continuum theory (Eringen, 1983), surface energy theory (Gurtin and
Murdoch, 1975), couple stress theory (Yang et al., 2002), and strain gradient elasticity theory (Lam et al., 2003).
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When applying nonlocal theory, a paradoxical conclusion arises: the small length scale effect vanishes in the
bending deflection for the Euler-Bernoulli cantilever nanobeam under a transverse point load. Moreover, this theory
predicts a “softening effect”, which is inconsistent with the “stiffening effect” observed in experiments (Lam et al.,
2003). For surface energy theory, it is considered that surface properties cannot be overlooked in the study of hanos-
tructures and nanomaterials because of the large value of surface—volume ratios at that scale (Assadi, 2013). Although
this theory is applied to size-dependent behaviors, it must be admitted that the mechanical properties are relative not
only to the surface part but also to the internal part because the characteristic length is in the bulk, such as grain size
or atomic lattice spacing.

The couple stress theory is a nonclassical continuum theory in which higher-order stresses, known as couple
stresses, exist (Koiter, 1964). Yang et al. (2002) proposed a modified theory involving only one additional MLSP.
Since then, numerical approaches have been developed to study the size effect of the linear and nonlinear Bernoulli—
Euler beam (Fathalilou et al., 2014; Park and Gao, 2006; Xia et al., 2010), the linear and nonlinear Timoshenko beam
(Asghari et al., 2010b; Ma et al., 2008), the linear functionally graded Euler-Bernoulli beam (Asghari et al., 2010a),
the Timoshenko beam (Asghari et al., 2011), the Kirchhoff plate (Tsiatas, 2009), and the pull-in phenomena in MEMS
(Yin et al., 2011).

Of the most popular size-dependent continuum models, the strain gradient elasticity theory (Lam et al., 2003), a
modification of Mindlin’s linear elasticity theory for microstructures (Mindlin, 1964), is widely used. It introduces
three MLSPs to characterize the dilatation gradient tensor, the deviatoric stretch gradient tensor, and the symmetric
rotation gradient tensor. Also, the higher-order stress tensor work-conjugate to the new higher-order deformation
metrics and the corresponding constitutive relations are defined. As our previous papers have pointed out (Wang et
al., 2010), the strain gradient elasticity theory can reduce to the modified couple stress theory (Yang et al., 2002)
if two of the three MLSPs are set to zero. This indicates that it is a more general theory than the modified couple
stress theory (Yang et al., 2002). The strain gradient elasticity theory has been applied to study the linear (Kong et
al., 2009) and nonlinear (Zhao et al., 2012) Euler beam, the linear (Wang et al., 2010) and nonlinear (Asghari et al.,
2010b) Timoshenko beam, and the Reddy-Levinson beam (Wang et al., 2014). It has also been employed to investigate
size-dependent pull-in phenomena in MEMS (Wang et al., 2011a,b, 2012).

Higher-order continuum theories are more complicated than conventional elasticity theory. Higher-order terms
(e.g., strain gradient) are incorporated in the governing equations and boundary conditions, leading to difficulties in
problem solutions. In our experience, only a few cases with simple geometric shapes and boundary conditions can
be achieved with exact analytical solutions. Moreover, for micro/nanobeams the presence of complex forces such as
Casimir, Van Der Waals, and capillary forces may introduce unexpected nonlinearities.

Naturally, approaches other than analytical ones are required to deal with the problems occurring in micro/nano-
beams. The finite-element method (FEM) is one of the most popular numerical alternatives and has been used to
investigate the mechanical behavior of micro/nanoscale structures based not only on classical continuum theory but
also on the size-dependent theories mentioned previously.

Phadikar and Pradhan (2010) presented a finite-element formulation for nonlocal elastic nanobeams and nanoplates
based on nonlocal elasticity theory. Pradhan (2012) proposed a finite-element formulation for nonlocal elastic Bernoul-
li-Euler beam and Timoshenko beam theories. Based on the modified couple stress theory, Kahrobaiyan et al. (2014)
developed a size-dependent Timoshenko beam element model to predict the size dependence observed in microbeams.
Zhang et al. (2013) proposed a novel Mindlin plate element based on the framework of modified couple stress theory
for analyzing the static bending, free vibration, and buckling behaviors of size-dependent Mindlin microplates. The
finite-element method is also used to develop the size-dependent Euler—-Bernoulli beam element based on the strain
gradient theory (Kahrobaiyan et al., 2013). Also based on the strain gradient elasticity theory, the size-dependent non-
classical Timoshenko beam element model (Zhang et al., 2014) was proposed for predicting the mechanical behaviors
of microbeams where six-degree-of-freedom (6-DOF) nodes are introduced.

Our previous work established the theoretical size-dependent Timoshenko beam model based on the strain gradient
theory. In the present study, the corresponding finite-element approach is adopted to predict the mechanical behaviors
of micro/nanoscale beams, which is the main gap we try to bridge.

The rest of the paper is organized as follows. In Section 2, the size-dependent Timoshenko beam model, based on
the strain gradient elasticity theory, is reviewed. The finite-element formulations as well as the weak-form formulations
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of the model are presented in Section 3, which introduces a two-node element where each node has 4 DOF. Numerical
examples and discussions are given in Section 4. Finally, conclusions are summarized in Section 5.

2. THEORETICAL FORMULATIONS

2.1 Size-Dependent Timoshenko Beam Model

The strain gradient theory proposed by Lam et al. (2003) introduces three independent material length scale parameters
for isotropic linear elastic materials in addition to two classical material constants. Then the strain Eriergy
deformed isotropic linear elastic material occupying redis written as

1
U= 5 /Q (05j€i + pivi + ngll)mijlzz + m3;Xi;)dS2 1)

The deformed measures—strain tensgy dilatation gradient tensay;, deviatoric stretch gradiené},)c, and symmet-
ric rotation gradienk;;—are defined as

1
e = 5 (Ui + ) 2
Yi = €mm,i (3)
n _ s 1 s s s
nijk = nijk - 5 (5i.jnmmk: + 6]knmmz + 6kinmmj) (4)
s 1
Xij = §(€ipq5qj,p + €jpg€qi,p) (5)

whereu; is the displacement vectar,,,, is the dilatation strairy;; ande;;;, are the Knocker symbol and the alternate
symbol, respectively, ang, is the symmetric part of the second-order displacement gradient tensor, given by

. 1
Nijk = g(um'k + Uj ki + Uk,ij) (6)

It should be noted that the index notation is always used with repeated indices denoting summation from 1 to 3.
The corresponding stress measures are respectively given by the following constitutive relations:

0ij = kij€mm + 2UE]; (7
pi = 205y ®)

T = 2uinj) 9)
mi; = 2ulgxfj (10)

wheree;; is the deviatoric strain, defined as

1
Eéj = &5 — gamméij (11)
In the previous equationg,, /1, andi, are the additional independent material length scale parameters associated with
the dilatation gradients, deviatoric stretch gradients, and symmetric rotation gradients, respectively. The pdgrameters
andu in the constitutive equation of classical stressare bulk and shear modulus, respectively. They can be written
in terms of Young’s modulug&’ and the Poisson ratioas

E E
F=sioa 0 P anrw (12)
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As shown in Fig. 1, a straight beam subjected to a static lateraldpaddistributed along the longitudinal axis
of the beam is considered, where the loading plane coincides with:tiane and the cross-section parallels the
yz-plane. The displacement fields, based on Timoshenko beam theory, can be described as (Dym and Shames, 1973)

ul(xaywzvt) = —le)(.%’,t), u2(x7yazat) = 07 Us(%yy%t) = UJ(QL‘,t) (13)

wheret is time, andy(z, ) is the rotation of line elements along the centerline due to bending only. Here we assume
that the shear strain is the same at all points over a given cross-section of the beam.
By substituting Eq. (13) into Eq. (2), the nonzero components of the strain tensor can be obtained:

0 1 /0
€11 = —Z%, €13 = €31 =5 (81;] - ll)> (14)

Using Egs. (3) and (14), the nonzero components of the dilatation gradientytenaarbe obtained:

) o
= — = — 1
Y1 Yo Y8 o (15)
Inserting Egs. (14) into Eq. (5) yields the nonzero components of the symmetric rotation ggggient
s s 1 /0%w
X1z =X21 =~ 7 (6952 + 83;) (16)
From Egs. (4), (6), and (13), the nonzero components of the deviatoric stretch grégj;ieme have
(1) 2 0% (1) 1 /0%w o
M= g M Ty G Ty
1 1 1 4 (0w o 1 1 1 1 0%
T151)3 = ﬂ:(sl)l = T]gS)l =15 (axg - 287 ; ‘1§2)1 = 52)2 = ﬂél)z =5 o2 17
1 1 1 1 (0w o 1 1 1 1 0%
i =i =l =~ (G 25 ). ) =l =l - 108

FIG. 1. Geometry and loading of the Timoshenko beam
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The nonzero stresses; can be obtained using Egs. (14), (11), and (7):

4 0 2 0 5]
onn=-z|k+gu 711)3 Og0 =033 =—2|k—su 711)7 013 = 031 = L *w—lb (18)
3 or 3 ox

It is worth noting that ther;3 and o3; variations depend only on. To take the nonuniformity of the shear strain
into account over the beam cross-section, a correction fagtavhich depends on the shape of the cross-section, is
introduced to the stress componeunts andos; as follows:

ow
013 = 031 = kst ( - w) (19)
Substituting Eq. (15) into Eq. (8) yields
Y e
_ 2 _ 2
p1 = —2HZOZ@7 b3 = —QHZO% (20)
From Egs. (16) and (10), it follows that
s s 1 0w O
Mg =My = *iulz <6 + 833) (21)
From Egs. (9) and (17), the nonzero components of the higher-order str{eﬁseﬂa
1 4 0% 0%w N
Tgl)l = l% ox2’ Ti(33)3 = l2 8%2 281’
8 0w 811) 2 ozl
o} - T;aa o = o (W -250) R == oflh = St @
1 1 2 8210 811) 1 1 2 6 II)
o = = =~ puit (Gr 250 ) =l - Tgsg =2y

According to Hamilton’s principle, the actual motion minimizes the difference between the kinetic energy and the
total potential energy for a system with prescribed configuratiohsatdt,. That is,

5/t2 [T~ (U — W)dt = 0 23)
ty
The variation in strain enerdy can be expressed as
SU = 5% /Q (Gwsw +pivi + T+ m”x”) dv = /Q <G”6£” + pibyi + ten{l) +ms; 5x”) av
= /OL [(ks + kw4 (ks — 2k )" + ks (-0 + 11’)} dwdz + /L []43111’”/ — (k3 — 2kg)w" (24)

0
— (1{32 + k3 + 4](54)1.')// + k5(—w’ + 1])):| pdx + [—(k'g + k4)w'” + (—kg + 2]64)11)” + ]{?5(111/ — 1b)]6w|£

+ [(ks+ka)w” + (ks —2ka )W 18w |5+ [k " + (ks — 2k )w” + (ko + ks +4ks W' |50 > + k" 50| >

where

4 4 1
ky=1 (mg + 5uz%> . ke=1 (k: + 3u) +2uALZ, ks = Zqug, ks = BuAl ks = ksuA  (25)
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The variation in the kinetic energy of the beam can be expressed as

1 ouq 2 Oug 2 Ous 2 L e P
5T = 5/V 50 K&) + <6t> + (8t) dv :/0 (m0w5w+m2¢5¢) da (26)
where
mg = pA, me = pl, I= / 22dA 27)
The first variation of the work done by the external forggs, y), takes tﬁe form
SW = ' q(z)dwdz + Vow|l + Msp|E + M,s'|) (28)

0

Because of the fundamental lemma of the calculus of variation with the arbitrarinéss arfid 5y for the given
x € [0, L] andt € [t; t2], the governing equations for the beam in bending are given by

mow —q—+ (kg + k4)’va + (kg — 2]{74)11)”/ + k5(—w" + 11)/) =0
mo\p + klll)lv — (k3 — 2]434)111”/ — (kg + k3 + 4](14)1])” + k5(—w’ + 11)) =0
and the boundary conditions can be written as
(/ﬂg + /{4)111/// + (k3 — 2k4)11)// — k5(w’ — 1])) =-V o w=w
(k3 + ka)w” + (k3 — 2k’ =0 or w' =w"
—k‘lll)m 4:(]433 — 2/@‘4)11]” :|— (]{32 + k3 + 4/414)11)/ =M or V=
k" =M, or ¢ =1’
The boundary conditions are determined by specifying the kinematic boundary conditions or by satisfying the natural
boundary conditions (Dym and Shames, 1973).

(29)

at x=0 and z=1L (30)

=i

2.2 Weak-Form Equations for the Timoshenko Beam

For the static analysis of Timoshenko beams, a weak form can be briefly expressed as
L
/ |:(k3 + k4)w”5w” + (k3 — 2]64)1])/5111// — k5(—w’ + 1]))6w’ + k‘ll.l)/léll)” + (k3 - 2]64)’11)”511)/
0
L
+ (kg + k3 + Ak W' + ks(—w’ + 1!))611)] do = / q(z)swdz + (N 8w + NV sw' (31)
0
L
N(O) 5 N(1)5 /
+ Ny, 0+ Ny o) |

in which
N = (kg + kg)w"” + (k3 — 2k — ks(w' — )
N = (k3 + ka)w” + (k3 — 2kq)0’

(0) — " _ 173 / (32)
Ny = =k + (ks — 2ka)w” + (k2 + k3 + 4ka )W
N =k
For the free vibration analysis of Timoshenko beams, a weak form can be briefly expressed as
L
/ |:(,Z€3 + ]{14)11///511)// + (kg — 2](54)1])’6’[0” — k’s(*w/ + 11))6’[0/ + klll)u&ll)ﬂ + (kg — 2]64)11)”611)/
0
L 2 2
+ (kg + ks + 4k W' 8 + ks (—w' + 11))611)] dr = — / <m0%t§)6w + m%;j’éq)) dx (33)
0

L
+ (NO8w + NOsw' + N s + N
0
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3. FINITE-ELEMENT FORMULATIONS

In this section, the stiffness and mass matrices of a Timoshenko microbeam element are derived. The appropriate shape
functions are given by the Hermite polynomial. The weak-form equations for Timoshenko microbeams are discretized
to finite elements using the finite-element method. From Egs. (31) and (33), it can been seen that the weak-form equa-
tions contain the second-order derivative of transverse defleatiand rotatiomp. However, because weak-form
equations based on classical Timoshenko beam theory contain only the first derivative of generalized displacements,
the generalized displacement functions need to satigfgdtinuity to guarantee the weak-form equations’ integra-
bility. In this paper, a two-node Timoshenko beam element with 4 DOF at each node is proposed that satisfies both
Cy continuity and G weak continuity conditions and includes three material length scale parameters to capture the
microstructure size effect.

The deflection and the cross-sectional rotation of the element are interpolated independently. According to FEM,
the element’s displacementand rotation) are related to the corresponding nodal displacement vector as

w=Nya,, VP=Nyay (34)
where the nodal displacement vecédior the new beam element can be represented as
ay =[w1 wy wy wy]", ay =M Wy b2 Ph]” (35)
N,, andINy, represent the shape function matrices for displacement and rotation, respectively:
Ny, =[N" N3* N3’ Ni’J, Ny =N, (36)

The appropriate shape functions are given by the first-order Hermite polynomial, which is given as
w 2 z\3 w | T 2 z\3
NP =1-3(3) w2(g) = [L_2<L) (1) ]L
w T\ 2 x\3 w T\ 2 x\3
Np=3(7) -2(7) . A= [(L) +(3) }L
By substituting Eq. (34) into the weak-form equations [Egs. (31) and (33)], respectively, the finite-element formula-
tions for the static bending and free vibration problems of Timoshenko microbeams can be obtained, along with the
stiffness and mass matrices of the new element. Because theKsrarsdM ¢ are tedious and complicated, they are

given in the Appendix.
For the static model, the formulation of the Timoshenko beam element can be written as

(37)

Kd=F (38)
For the free vibration problem, it can be written as
(K- w’M)d=0 (39)
in whichK, F, andM are the global stiffness matrix, the global force vector, and the global mass matrix, respectively,

andw is the natural frequency. By assembling each corresponding element matrix and load vector, the above global
matrices and global force vector can be respectively obtained:

K K M M F
K¢ = ww wp :| , Me¢ = |: ww wp :| ’ Fe = |: w :| (40)
[ Kyw Kyy Myw My
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where

i 9°N,\" 9°N,,

al 02N, \ " Ny,
Koy _/0 (ks — 2ky) ( 922 ) or ks (
o ONy\" 9°N,, )
_ - — 711)
I 2 2
0°Ny, 0°Ny, ONy, 3N¢
Kyyp = /0 k1 ( 92 ) 0z + (k2 + kg + 4ky) ((%) o + ks (Nlb) Ny | dz
! ONL\ " "
F, = / (Nw)" q(z)dz + |(Ny,)" N + (aw> N’S’l)] B “
0 T
0
ww / mO N d$ Mll)q, = / mao Nll)) N¢d:1;‘ thb = Mll)w =0 (43)

From Eq. (41), it can be seen that there are three additional independent material length scale parameters in the
stiffness matrix of the new Timoshenko beam element based on the strain gradient elasticity theory. This is different
from classical Timoshenko beam theory, which just requirgsddtinuity. Thus the newly developed element makes
it possible to capture the size effect. Verifications and numerical results are given in Section 4.

The boundary conditions for the Timoshenko beam based on the strain gradient theory can be written as

dSw=0 or NQ(UO):O
dw/dz =0 or N =0
sp=0 or N =0
o8p/0x =0 or Ni =0

rz=0, L (44)

Nfuo), N, Nfbo), andepl) are higher-order tractions; they have no special physical meaning and so are not considered
here.

The kinematic boundary conditions in the newly proposed element are listed in Table 1. “S”, “C”, and “F” denote
the boundary conditions of the edges as simply supported, clamped, and free, respectively. The dashes represent the
unknown displacements at the corresponding boundary.

4. RESULTS AND DISCUSSION

In this section, the convergence of the present element is studied. Static bending and free vibration problems with a
Timoshenko beam with simply supported and clamped boundary conditions are numerically solved by applying the
new Timoshenko beam element. To verify the reliability and accuracy of the present approach, results obtained with

TABLE 1: Boundary conditions used in finite-element implementation

Boundary | Node parameters related to bending deformation
conditions w w’ U U’

S 0 — — 0

C 0 — 0 —

F — — — —
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the present element are compared with results from the literature (Wang et al., 2010). Unless otherwise indicated, the
beam studied here is taken to be made of epoxy with the following properties (Lam et al., 2003; Wang et al., 2010):
elastic modulus® = 1.44 GPa, density = 1,220 kg/m, Poisson’s ratia = 0.38, material length scale paramditer

17.6um, and shear coefficieit, = 5/6.

4.1 Shear Locking Study

Itis known that shear locking appears in the classical Timoshenko beam element when the length-to-thickness ratio is
large. Here, the performance of the present Timoshenko beam element is illustrated when the thickness becomes very
thin. For simplification, all three material length scale parameters are set to zero.

A simple beam subjected a concentrated fafcat the midpoint is considered, as shown in Fig. 2. In Table 2,
wy, andp,, are the deflection and rotation predicted by the present element when Poisson’s ratio is set to zero with
different length-to-thickness ratiqd /h). The variablesv. and. are the deflection and rotation of the classical
Euler-Bernoulli beam predicted by Eq. (45) with varyibfh (Gere, 2002).

PL?

Ve = 1657

PL3

We = @ ; (45)

Table 2 shows that with an increaselufh, the errors between the corresponding results predicted by the present
element and those predicted by classical Euler-Bernoulli beam theory decreasel fihsnvery large, the errors

can be ignored. This illustrates that the results obtained by the present element can reduce to the results of classical
Euler-Bernoulli beam theory when the length-to-thickness ratio is very large and Poisson’s ratio is set to zero. Thus it
can be guaranteed that the shear locking phenomenon does not exist here.

4.2 Convergence Study

As shown in Figs. 2 and 3, the static bending of a Timoshenko microbeam is solved to verify the convergence of
the results. The dimensionless deflection and rotation results atspeint./4 with simply supported and clamped
boundary conditions are listed in Table 3. Equation (46) is adopted in the dimensionless treatment for convenience.
From Table 3, it can be seen that the present element has good convergence and high precision. It can be also seen that

VF :
+ ____________________________________________ <|$ Y ih
< ‘lL S—LS |

FIG. 2: Geometry and loading of the simply supported Timoshenko beam

TABLE 2: Deflection and rotation with different length-to-thickness ratibsi)
L/h 5 10 20 30

50 100

Wp

6.75563x 10~8

5.05023x 1077

3.96933x 10°¢

1.33522x 107°

6.17107x 10°°

4.93331x 1074

We

6.16517x 1078

4.93213x 1077

3.94571x 1076

1.33168x 107°

6.16517x 10°°

4.93213x 104

Error

9.577%

2.394%

0.599%

0.266%

0.096%

0.024%

Wy

2.23627x 1073

8.54156x 103

3.37627x 1072

7.57979x 1072

2.10311x 107!

8.40839x 107!

e

2.10176x 1073

8.40705x 1073

3.36282x 1072

7.56634x 1072

2.10176x 10!

8.40705x 107!

Error

6.400%

1.600%

0.400%

0.178%

0.064%

0.016%
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S B N S 2 e
I
L
z
c-C

FIG. 3: Geometry and loading of the clamped Timoshenko beam

TABLE 3: Dimensionless deflection and rotation results at poiat L/4

Boundary Sources Node Number of elements
conditions parameters 4 8 12 16 20 100
a w 7.7369 | 7.7374 | 7.7375 | 7.7375 | 7.7375 | 7.7375
P 25.0810| 25.0440| 25.0407| 25.0404| 25.0403| 25.0403
S-S b w 2.3390 | 2.3393 | 2.3393 | 2.3393 | 2.3393 | 2.3393
P 7.4715 | 7.4580 | 7.4579 | 7.4580 | 7.4580 | 7.4580
c w 0.9170 | 0.9176 | 0.9176 | 0.9176 | 0.9176 | 0.9176
P 2.7257 | 2.7188 | 2.7185 | 2.7185 | 2.7185 | 2.7185
a w 14769 | 14773 | 1.4774 | 14774 | 14774 | 14774
P 8.3858 | 8.3504 | 8.3472 | 8.3468 | 8.3468 | 8.3468
c-C b w 0.5551 | 0.5840 | 0.5969 | 0.6030 | 0.6061 | 0.6100
P 2.6080 | 2.7279 | 2.7632 | 2.7793 | 2.7875 | 2.7981
c w 0.2358 | 0.2364 | 0.2364 | 0.2364 | 0.2364 | 0.2364
P 0.9115 | 0.9042 | 0.9039 | 0.9039 | 0.9039 | 0.9039

Note: S-S: simply supported at both ends; C-C: clamped at both ends; a: classical theory; b: modified couple stress
theory; c: present theory.

20 elements are enough to obtain reasonably accurate results. Unless otherwise indicated, 20 elements are used in all
following computations.
For illustration purposes, the following parameters are used in computing the numerical Bse{td00 uN,
h =1, L = 20h, andb = 2h.
EJ - EJ

4.3 Verification Study

To verify the accuracy of the present element, some comparisons are given in Figs. 4—6. The value of the height of the
Timoshenko microbeam is given in all figures. The three material length scale paramgtiersafdl;) are equal to

the material length scale parametére.,io = Iy = I = [ = 17.6um). Other parameters are the same as those given
earlier.

Figures 4 and 5 compare the static bending results of the simply supported Timoshenko microbeam predicted
by the present element with results from the literature (Wang et al., 2010). It can be seen that the results obtained
by the present model agree well with the theoretical results. When the element degenerates into the modified couple
stress or classical Timoshenko beam element, the results also agree well (Wang et al., 2010). Figure 6 compares the
natural frequencies of the simply supported Timoshenko microbeam predicted by the present element with those from
the literature (Wang et al., 2010). The results predicted by the present model agree well with the theoretical results,
meaning that this element has high reliability and accuracy.
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4.4 Static Bending of a Clamped Beam

Using the newly developed element, the static bending and free vibration problems of a clamped Timoshenko mi-
crobeam are investigated. The microbeam is subject to a concentrated force at the center point; the geometrical and
load parameters are given in Figs. 7 and 8 and other parameters are the same as those given earlier. From Fig. 7,
it can clearly be observed that the deflection predicted by the present element is smaller than that predicted by the
classical element and the modified couple stress element. The absolute rotation values for the clamped Timoshenko
microbeam predicted by the three models in Fig. 8 show a trend similar to that in Fig. 7. From both figures, it can be
seen that there are large differences in deflection and rotation for the three models when the beam thislauesd
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to the material length scale parameterowever, when the thickness of the beam becomes greater, such differences
decrease. This shows that the size effect is significant only when the beam thickness is comparable to the material
length scale parameter.

Figure 9 shows the change in the first-order natural frequency of the clamped Timoshenko beam predicted by the
three models (the present model, the modified couple stress model, and the classical model) with the dimensionless
thickness of the beank(!) for different values of Poisson’s ratio £ 0 andv = 0.38). It can be seen that the natural
frequency predicted by the present element is not only larger than that predicted by the modified couple stress model
but also larger than that predicted by the classical model for the two Poisson values. There are large differences in the
natural frequency predicted by the three models for both case8.andv = 0.38, when the dimensionless thickness of
the beam is smalli/i < 2). When the thickness increases, the differences decrease or even disappear. This illustrates
that the size effect is prominent when the beam thickness is as small as the material length scale pgafameter
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Fig. 9, it can also be seen that the natural frequency witl).38 is always larger than that with= O for the classical
model. However, this is not true for either the present model or the modified couple stress model.

5. CONCLUSIONS

A microscale Timoshenko beam element was developed based on the strain gradient elasticity theory. The proposed
element contains three material length scale parameters that can capture the size effect. It is known that the classical
Timoshenko beam element satisfigsd@ntinuity, but the proposed element satisfies baflt@htinuity and G weak
continuity. Moreover, the new element can degenerate into the modified couple stress Timoshenko beam element or
the classical Timoshenko beam element. The newly developed element comprises two nodes, with 4 DOF at each one
considering only bending deformation.
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Both the static bending and the free vibration problem of a simple beam are solved using the new element, and
the results agree with those in the literature. Using this newly developed element, the static bending and free vibration
problems of a clamped Timoshenko microbeam were investigated. Future work may focus on the plate and shell
elements with strain gradient included.
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APPENDIX

The global stiffness matrix and the global mass matrix are expressed as follows:

ki1 ki ki ki kis ks kir ks
ka1 koo kog kos kos kos kar ko
k31 kaz k33 ksq kss kae k37 kss
ka1 kao ka3 kas kas ks kar kas
ks1 kso kss ksa kss kse kst ksg
ke1 ko2 ke3 kes kes ke ko7 Kes
kri koo ko3 key krs kre ket kes
kg1 kso kg3 kss kss kse ksr kss
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12 6
kin = —kis = —ks1 = k55 = 5 (ks + k) + =7 ks
6 1
kg = k17 = kg1 = —kss = —ks3 = —ks7 = kn1 = —krs = 75 (k3 + ka) + 1ok
4 2L 2 L
ksz = k77 = Z(k3+k4)+1—5k5, k37 = k73 = Z(k3+k4) - %ks

1
ki = kig = ko1 = —kos = —kso = —ksg = k1 = —kes5 = §k5

kay = kyg = —krs = —kgy = —— (ks — 2ky4)

1
2

L
k14 = —kig = —kog = koy = —kzp = kag = k41 = —kus = (ks — 2kyq) + TOkS

1
L

1 L
— k54 = ksg = kg3 = —ke7 = kv = —krg = —kg1 = kg5 = *Z(/% — 2ky) + TOks

kg = kap = kra = —ksy = — = (k —2k)+L—2k
38 — h47 — Rh74 — 83 — 2 3 4 605

12 6 13L
koo = keg = —k —(k k 4k —k
22 66 L31+5L(2+ 3 +4ky) + 35 %5
6 1 1112
koy = kyo = —kes = —kgg = —k —(k k 4k k
24 = Ka2 68 8 = 73 1+10( o + k3 + 4k4) + 210 5
12 6 9L
ko = ko = ——=k1 — —(k k 4k —k
26 = Ke2 73 5L(2+ 3+ 4)+7O5
6 1 1312
kogs = —kug = —kea = kga = —<k —(k k 4ky) — —k
28 46 64 82 75 1+10( 2 + k3 + 4ky) 120
4 2L L3 2 L L3
kga = kgg = =k —(k k 4k —k kyg = kga = —k1 — —(k k 4ky) — —k
44 38 L1+15(2+ 3 + 4)+1O5 5, 48 84 = TR 30(2+ 3 + 4ky) 14075
[ mi1 MMi2 Mi3 Mig4 Mi15 Mie 17 71118 1
Ma1 Ma2 T23 M24 25 MM2e MM27 1128
m31 M3z M33 M34 M35 M3e 137 138
M — Myl M4z M43 Mg My Mae Ma7 N4
Ms51 Mps2 Ms53 M54 M55 Mpe M5y M58
me1 Me2 Me3 Mea Mes Mee Me7 168
M7y My M73 Mga Mrs Mige Mgr Mt
| 7181 T2 T3 7TNg4 Tgs 7Tge T8y 1188 |
13 I 11 12
mmi; = MMss = —mM, mmi3 = Mms; = —MMs7 = —MMs = ——M
11 55 = 35 ol 13 31 57 75 5100
9 I 13 2
mmis = Mms; = —mM, —mmi7 = MMsgs = MMsz = —MM71 = —M
15 51 70 ods, 17 35 53 71 120 0
1 13 1 13
mmss = mmo; = —Mm, mms7; = mmsg = ———m
33 7 105 ol", 37 73 140 0
MMos = MMegg = —M MMog = MMy = —MMgg = —MMgg = ——M
22 66 35 2L, 24 42 68 86 210 2
9 I 13 12
MMog = MMegy = —=M —MMag = MMyg = MMggy = —MIMgy = ——M
26 62 70 2L, 28 46 64 82 120 2
1 13 1 13
MMys = MMgg = ——=M mmyg = Mmmegg = ———m
44 88 105 oL, 48 84 140 2
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