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� A variational size-dependent model for the electrostatically actuated NEMS is presented.

� The model incorporates nonlinearities and Casimir force.
� The results reveal that Casimir force can reduce the external applied voltage.
� Pull-in instability may occur without applied voltage due to Casimir force.
� Size effect and Casimir force should be considered for precisely modeling NEMS.
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a b s t r a c t

A size-dependent model for the electrostatically actuated Nano-Electro-Mechanical Systems (NEMS)
incorporating nonlinearities and Casimir force is presented by using a variational method. The governing
equation and boundary conditions are derived with the help of strain gradient elasticity theory and
Hamilton principle. Generalized differential quadrature (GDQ) method is employed to solve the problem
numerically. The pull-in instability with Casimir force included is then studied. The results reveal that
Casimir force, which is a spontaneous force between the two electrodes, can reduce the external applied
voltage. With Casimir force incorporated, the pull-in instability occurs without voltage applied when the
beam size is in nanoscale. The minimum gap and detachment length can be calculated from the present
model for different beam size, which is important for NEMS design. Finally, discussions of size effect
induced by the strain gradient terms reveal that the present model is more accurate since size effect play
an important role when beam in nanoscale.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rapid progress in device miniaturization has led to the quick
rise of Nano-Electro-Mechanical Systems (NEMS) due to the many
advantages such as fast response, low energy consumption and
low cost [1]. Nanobeam models subjected to electrostatic force are
typically introduced in various kinds of NEMS such as nano-switch
[2], nano-resonators and nano-pressure sensors [3].

A typical electrostatically actuated NEMS includes two parts: a
fixed electrode and a conductive deformable electrode (Fig. 1). An
applied voltage between the two electrodes results in the deflec-
tion of the deformable electrode due to electrostatic attraction,
ering, Shandong University,
and a subsequent change in the system capacitance. When the
voltage increases beyond a critical value, the movable electrode
becomes unstable and collapses onto the fixed electrode, which is
called the pull-in instability phenomenon. The critical displace-
ment and the critical voltage associated with this instability are
referred to as the pull-in displacement and the pull-in voltage,
respectively. Such pull-in instability is a saddle-node bifurcation,
which exhibits snap-through phenomenon [4]. Some applications
including nano-resonators and nano-pressure sensors should
avoid such instability in order to achieve stable operations and
maximize device sensitivity; whereas some other applications
such as optical/RF switches are underpinned by the pull-in in-
stability, where it is critical to fine-tune the critical voltage so that
the switch on and off functions can be well-controlled. Hence, the
accurate modeling of the static and dynamic bending behavior of
nanobeams seems to be crucial in order to study the mechanical
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Fig. 1. Schematic of a fixed–fixed NEMS.
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and electric behaviors of these NEMS.
In general, the characteristic size of these nanobeams are

comparable to the material microstructure, e.g., the grain size or
atomic lattice spacing, which leads to distinct mechanical and
electric behaviors with respect to their macroscopic counterparts.
Numerous experiments have observed the size-dependent beha-
viors in metals [5, 6], brittle materials [7], polymers [8, 9] and
polysilicon [10]. These behaviors cannot be explained by the
classical continuum theory, which does not have material length
scale parameter (MLSP).

Among the size dependent continuum theories, the nonlocal
theory [11], the surface energy theory [12], the modified couple
stress theory [13] and strain gradient elasticity theory [8] are pro-
posed to predict the size-dependent phenomena. When applying
the nonlocal theory, a paradoxical conclusion arises in some cases.
For example, the small length-scale effect vanishes in the bending
deflection for the Euler–Bernoulli cantilever nanobeam under a
transverse point load. Moreover, the nonlocal theory predicts a
“softening effect”, which is inconsistent with the “stiffening effect”
observed in experiments. For surface energy theory, it is considered
that the surface properties cannot be overlooked in the study of
nanostructures and nanomaterials due to the large value of surface
to volume ratios at that scale [14]. Although it is applied to study
the size dependent behaviors, it is had to admit that the funda-
mental properties are not only relative to the surface part but also
relative to the internal part because the characteristic length is in
the bulk such as the grain size or atomic lattice spacing. With only
one MLSP incorporated, the modified couple stress theory [13] are
also been used to predict the size dependent phenomenon [15–17],
which is a special case of the strain gradient elasticity theory sug-
gested by Lam et al. [8]. Strain gradient elasticity theory has been
applied to study the linear [18] and nonlinear [19] Euler beam,
linear [20] and nonlinear [21] Timoshenko beam and Reddy–Le-
vinson beam [22], and is also employed to investigate the size-de-
pendent pull-in phenomena in MEMS [23–25].

With the decrease in device dimensions from the micro- to
nanoscale, additional forces on NEMS, such as the Casimir force,
should be considered. The Casimir force represents the attraction
of two uncharged material bodies due to modification of the zero-
point energy associated with the electromagnetic modes in the
space between them [26]. During the manufacturing, the movable
electrode in NEMS device collapses and sticks on fixed electrode, if
the distance between each other become less enough to critical
value or the lengths longer than critical lengths [27]. The two
critical values referred to the minimum initial gap and the de-
tachment length [28], respectively. Therefore, the existence of the
Casimir force poses a severe constraint on the miniaturization of
electrostatically actuated devices. The Casimir interaction is pro-
portional to the inverse fourth power of the distance of separation.
Batra et al. [26,29,30] have studied the pull-in instability in mi-
cromembrane, rectangular, circular and elliptic plates incorporat-
ing Casimir force. The saddle–node bifurcation behavior of na-
noscale electrostatic actuators considering the Casimir force and
the effect of Casimir force on the pull-in parameters were studied
[27,31], and an approximate analytical expression of the critical
pull-in gap was obtained by the perturbation theory. Not only
Casimir force but also geometric nonlinearity are considered in
some studies, such as electrostatically actuated von Karman cir-
cular by Wang et al. [32], micro-switch by Jia et al. [33].

Unfortunately these works are based on the classical continuum
theory, which cannot capture the size effect in micro-/nano-scale. In
our previous works, strain gradient theory is introduced to study
the size dependent pull-in instability of electrostatically actuated
beam and plate without considering the Casimir force [23–25]. For
nanoscale structures in NEMS which will be studied in the present
paper, the nonlinearities and Casimir force together with strain
gradient terms are considered simultaneously here, which is the
main gap we attempt to bridge in the present paper.

The rest of the paper is organized as follows. In Section 2, the
theoretical formulations are derived based on a variational pro-
cedure. A generalized differential quadrature (GDQ) method is
employed to analyze the higher order differential equation and
numerical results and discussions are presented in Section 3. Fi-
nally some concluding remarks are summarized in Section 4.
2. Theoretical formulations

2.1. Strain gradient elasticity theory

Based on the assumptions of strain gradient elasticity theory
[8], the bending strain energy Um in a deformed isotropic linear
elastic material occupying region Ω (with a volume element V) is
given by

U u dV p m dV
1
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where the strain energy density is a function of the strain and the
strain gradient metrics.

With the displacement field is given, the strain and strain
gradient tensors are defined by
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where i∂ is the differential operator, ui is the displacement vector,
mmε is the dilatation strain, and ijk

sη is the symmetric part of second
order displacement gradient tensor defined by,

u u u
1
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( ) (7)ijk
s

i jk j ki k ij, , ,η = + +

δij and eijk are the Kronecker symbol and the alternate symbol, re-
spectively. Here, it should be noted that the index notationwill always
be used with repeated indices denoting summation from (1)–(3).

The corresponding stress tensors, respectively, are given by the
following constitutive relations,
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where ijε ′ is the deviatoric strain defined as

1
3 (12)ij ij mm ijε ε ε δ= −′

k and μ are bulk and shear modules, respectively, l0, l1, and l2 are
the additional independent MLSPs associated with the dilatation
gradients, deviatoric stretch gradients and symmetric rotation
gradients, respectively. As mentioned by Lam [8], three indepen-
dent material length scale parameters are internal parameters for
a given material, which only can be determined from uniaxial
tensile or compressive, bending or torsion experiments for differ-
ent size. It is noted that the strain gradient elasticity theory will
reduce to the modified couple stress theory [13] if l0¼ l1¼0; and it
will further reduce to the classical continuum theory if
l0¼ l1¼ l2¼0.
2.2. The variational size-dependent model

The nonlinear governing equation of a nanobeam with im-
movable supports as well as all boundary conditions can be de-
rived with the help of the strain gradient elasticity theory and
Hamilton’s principle (Variational approach).

According to Hamilton’s principle, the actual motion minimizes
the difference of the kinetic energy and total potential energy for a
system with prescribed configurations at t1 and t2. That is

T U U W U U dt[ ( )] 0
(13)t

t
m s e c

1

2∫δ − + − − − =

in which, Um and Us are, respectively, the bending strain energy
and energy due to axial forces stored in the deformed beam. T is
kinetic energy, W the work done by external forces, Ue and Uc are
the electrostatic potential energy and the Casimir effect energy
between the two electrodes, respectively.

Consider a straight beam subjected to a static lateral load q(x)
distributed along the longitudinal axis x of the beam, as shown in
Fig. 1. The loading plane coincides with the xz plane, and the cross-
section of the beam parallels to the yz plane.

Based on the Bernoulli–Euler beam assumption, the bending
strain energy (Eq. (1)), with strain gradient incorporated, is ex-
pressed by [18]
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and x is the position along the beam length, w is bending dis-
placement. A and I are the area and moment of inertia of the cross
section, E is Young’s modulus. μ is shear modulus, l0, l1 and l2 are
the independent material length scale parameters (MLSPs) asso-
ciated with the dilatation gradients, deviatoric stretch gradients,
and symmetric rotation gradients, respectively.

The energy Us stored in the beam due to axial forces is
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N0 is positive or negative depending on either a tensile or
compressive axial applied load or residual force expressed by
N A0 σ= ¯ with σ̄ the residual stress. Ns is the additional axial force
associated with the mean axial extension of the beam.
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The kinetic energy T of the beam has the form
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where t is the time, ρ is the material density.
And the work W done by the externally transverse force, q(x),

the boundary shear force Q̄ , the boundary classical bending mo-

ments M̄ and the higher bending moment Mh¯ , respectively, may be
written as
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The electrostatic potential energy Ue, which is the summation
of the electrostatic energy stored between the upper and lower
electrodes of the plate and the electrostatic energy of the voltage
source, is given by
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in which, C N m8.854 10 12 2 1 2ε = × − − − is the dielectric constant of
the gap medium. V is applied voltage between two electrodes.

In quantum field theory, the Casimir effect is physical forces
arising from a quantized field. And in applied physics, the Casimir
effect plays an important role in some aspects of emerging mi-
crotechnologies and nanotechnologies. The Casimir effect energy
between the two electrodes is

U
c b
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where J s1.055 10 34ℏ = × ⋅− is Planck’s constant divided by 2π and c
the speed of light in vacuum.

Substituting Eqs. (14), (16), (18)–(21) into Hamilton’s principle
Eq. (13), after somewhat lengthy but straightforward manipula-
tions, it takes the following form
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Due to the variational principle for arbitrary wδ , the governing
equation is finally obtained:
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in which q(x) represents the external distributed force, Fe and Fc
represent the electrostatic force and Casimir force between two
electrodes assuming that the area between the nanobeam and the
stationary electrode completely overlaps.

With q(x)¼0 in Eq. (25), the nanobeam excited by the elec-
troelastic force and the Casimir force is theoretically governed by
the following equation:
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The corresponding boundary conditions at the edges can also
be obtained from Eq. (22):
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Eqs. (27) and (28) are the classical boundary conditions and Eq.
(29) is the non-classical boundary conditions. The first equations in
Eqs. (27)–(29) are the natural boundary conditions; and the second
ones in Eqs. (27)–(29) are the kinematic end conditions [34].

For the fixed–fixed nanobeam, the classical boundary condi-
tions are easily determined:
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The non-classical boundary conditions are determined either
from the natural boundary conditions or the kinematic end con-
ditions in Eq. (29).
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Generally, for the higher-order strain gradient theory, the
higher moment (Mh¯ ) is not yet given. Therefore,

w x x L/ 0 (for 0, )2 2∂ ∂ = = is used as the non-classical boundary
conditions.

Thus, all the boundary conditions are
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The nanobeam excited by the electroelastic force and the Ca-
simir force is governed by Eq. (26) with q x( ) 0= and the boundary
conditions (32).

If neglecting the Casimir force and l0, l1 are set to be zero, the
governing Eq. (25) will reduce to that of Ref. [35] which is based on
the modified couple stress theory [13]. Furthermore, when the
MLSPs are ignored (i.e. l0¼ l1¼ l2¼0), the sixth-order term in the
governing Eq. (26) vanishes and the non-classical equation in the
boundary condition Eq. (32) vanishes; in that case, the present
model with size effect can be reduced to the classical model [36].
3. Numerical analysis with GDQ method

3.1. GDQ method and its application

Shu and Richards [37] proposed the GDQ method to numeri-
cally solve PDEs using considerably fewer grid points. This method
is based on the idea that the derivative of a function with respect
to a coordinate can be expressed as a weighted linear summation
of function values at all mesh points along that direction. Here we
briefly summarize the results of one-dimensional problems and
for more details of the GDQ method, one may refer to Ref. [38].

The N-th order derivative of a function w x( ) with respect to x in
the overall domain is approximated as:
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where g x( )i are the Lagrange interpolated polynomials of equa-
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And xi are the shifted Chebyshev–Gauss–Lobatto nodes, defined
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( ) is the m-th order derivative of w x( ) at xi. cij
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weighting factor for the approximation of the m-th order deriva-
tive of the i-th point.
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The weighting coefficients for the second and higher-order
derivatives can be obtained similarly. The following recurrence
relationship can be found for the m-th order weighting factors:
cij

m( )
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To solve the governing Eq. (26) with boundary conditions Eq.
(32), the nondimensional variables (denoted with hats) are in-
troduced,
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where T is a time scale defined below. Substituting Eq. (40) into
Eqs. (26) and (32) and remove the hats, we obtain
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and the corresponding boundary conditions are
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For the static problem, the time derivatives in Eq. (41) are set to
zero, and electric voltage is assumed to be constant. Then, Eq. (41)
is rewritten as:
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for any x∈[0, 1].
By solving Eq. (44) satisfied with boundary conditions (43), the

static deformation w(x) may be determined.
With GDQ method is applied, the governing Eq. (44) is re-

written in the following discrete form.
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and ‘∘’ is the Hadamard matrix product [41]. Ck is derived using the
Newton–Cotes integration [42]:
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Furthermore, the boundary conditions in Eq. (43) may be
written as
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By substituting Eq. (48) into Eq. (45), the static problem of a
electrostatically actuated micro-beam can be solved numerically.
The pseudo-arclength algorithm is applied to iterate the discrete
equation [43]. The natural frequencies of the device can be ob-
tained by taking the square root of the magnitudes of the in-
dividual eigenvalues, which is deduced from the Jacobian matrix of
Eq. (45) for a given voltage.

3.2. Numerical results and discussion

The newly developed model and solution algorithm are sub-
sequently employed to study the size-dependent pull-in instability
of nanobeam-based NEMS devices under a constant DC loading;
especially the effects of Casmir force and strain gradient on the
pull-in phenomena are discussion.

3.2.1. Pull-in instability
Firstly, the new model is introduced to study the pull-in in-

stability by illustrating the relationship between the mid-point
nondimensional displacement, wmax, and applied voltage, which
are shown in Fig. 2. In the calculation, the geometrical and ma-
terial properties of the system are L¼210 μm, b¼100 μm,
h¼1.5 μm, d¼1.18 μm, E¼151 Gpa and v¼0.3. For simplication,
here and what follow in the rest paper, the material length scale
parameters are assumed the same, i.e. l0¼ l1¼ l2¼Cl. Here
Cl¼0.1 μm, the residual strain is 40.4�10�6. It is shown in Fig. 2
that there are two branches: the stable branch and the unstable
branch. The voltage of the intersection point (p) between the
stable and unstable branches is pull-in voltage, Vpl; and the cor-
responding displacement is the pull-in displacement, wpl. Noting
that the unstable branch only exists theoretically, which cannot be
measured in experiment. Therefore, the pull-in instability is also
called a saddle–node bifurcation phenomenon.

3.2.2. Effect of Casimir force
In order to study the effect of Casimir force on the pull-in in-

stability, the variations of the maximum nondimensional beam
displacement with the applied voltage for clamped–clamped beam
are plotted in Fig. 3, in which the results of the beam with Casimir
force considered (blue line) are compared with those without
Casimir force (red line). The geometrical and material properties
are L¼400 μm, b¼100 μm, h¼1 μm, d¼0.2 μm, E¼151 Gpa and
v¼0.3, and Cl¼0.1 μm, the residual stress is zero, fringing field
parameter f¼0. By studying the red line (Casimir force ignored), it
reveals that the nondimensional displacement starts from zero
and then increasing nonlinearly with applied voltage increases
from zero; as the applied voltage reaches to the maximum voltage
(pull-in voltage, Vpl), which corresponds to the maximum non-
dimensional displacement, wpl, the nondimensional displacement
will continue to increases and finally reaches to 1.0 with applied



Fig. 2. Nondimensional displacement with applied voltage (the solid line is stable
branch; dash line is unstable branch.).
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voltage decreasing. However, with Casimir force considered as
shown by the blue line, there is an initial w0 although no voltage is
applied on the beam, which is due to the Casimir force between
the two electrodes. Besides, at the top of the unstable branch,
residual displacement, wr (o1.0), is finally reached without vol-
tage applied, where the Casimir force is just equal to the elastic
restoring force of the beam theoretically. It is also shown in Fig. 3
that Casimir force not only reduces pull-in voltage from Vpl1 to Vpl2,
but also reduces pull-in displacement from wpl1 to wpl2. All of
these characteristics reveal that the effect of Casimir force on the
system cannot be ignored.

3.2.3. The minimum gap and detachment length
As Casimir force is the spontaneous force between the flexible

beam and substrate, the flexible beam will be driven to attach to
the substrate if Casimir force ( 3α in Eq. (41)) reaches a critical value
and without voltage applied, which is called the critical Casimir
parameter crα as discussed in [1,26]. It is known from Eq. (42) that

3α is associated with the beam length L and initial gap d between
the two electrodes. Therefore, based on the parameters of system
Fig. 3. Effect of Casimir force on the maximum displacement for fc ¼0 and fc ≠0.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
in Fig. 3, two cases are employed to study the pull-in instability:
(I) only gap d changes and other parameters are kept as constants;
(II) only length L changes and other parameters are kept as con-
stants. For both cases, the variations of the maximum non-
dimensional displacement of the beam versus the applied voltage
are depicted in Fig. 4(a and b), respectively. As shown in Fig. 4
(a) for case I, the pull-in voltage Vpl decreases as gap d decreases,
which is reasonable because the Casimir force increases with gap
decreasing. Moreover, the initial displacement w0 increases and
the residual displacement wr decreases with gap d decreases. As
gap d decrease to a critical value, dmin, the initial displacement w0

is equal to the residual displacement wr, i.e., w0¼wr. Such critical
dmin is called the minimum gap [1]. In another words, the beam
will collapse onto the substrate if the gap dodmin with other
parameters fixed. For case II as plotted in Fig. 4(b), the pull-in
voltage Vpl decreases as beam length L increases, which is almost
the same with Fig. 4(a). Similarly, the initial displacement w0 in-
creases and the residual displacement wr decreases with length L
increases. Finally, the beam may collapse onto the substrate
spontaneously without voltage applied when the length L in-
creases to a critical value, Lmax, where w0¼wr. Here, the maximum
Lmax is called the detachment length [28], which means the beam
are no longer stable beyond this beam length with no voltage
applied and other parameters fixed.

The minimum gap and detachment length are two significant
parameters for microstructure designers. For example, in micro-/
nano-resonators design, the designer should avoid such critical
point in order to achieve stable motions; however, in switching
applications the designer takes advantage of this effect to optimize
the performance of the device.

By further considering clamped–clamped beam NEMS, the ef-
fect of the gap d on the parameter of Casimir force, pull-in voltage
and pull-in displacement are plotted in Fig. 5. The geometrical and
material parameters are L/k ¼2000 nm, b/k ¼500 nm, h/k¼15 nm,
E¼151 Gpa and v¼0.3, Cl¼0.1 μm, N¼0 and f¼0, where k is a
nondimensional size scale parameter. The results of three cases
(k¼0.2, 0.5, 1.0) are presented for each plot, respectively.

It is evident in Fig. 5(a) that the parameter of Casimir force
increases nonlinearly with gap decreasing. However, the curves
are truncated below the minimum gap as the beam collapses onto
the substrate beyond the minimum gap. It is interesting that the
critical value crα corresponding to the minimum gap are same al-
though the minimum gap are different for different k as shown in
Fig. 5(a). It is also shown in Fig. 5(b) that the pull-in voltage de-
creases monotonically with gap decreasing and finally reduces to
zero when gap is equal to the minimum gap. And the pull-in
displacement is also decreases with gap decreasing as depicted in
Fig. 5(c). Similarly, the curves are also truncated at the minimum
gap, which is corresponding to the same minimum pull-in dis-
placement wmin

pl , although size scale k is different.
Similar to the minimum gap, the detachment length is another

design parameter for the nanostructure. Here, the effects of beam
length on the parameter of Casimir force, pull-in voltage and pull-
in displacement are studied as plotted in Fig. 6, where the para-
meters are b/k¼500 nm, h/k¼15 nm, d/k¼10 nm, E¼151 Gpa,
v¼0.3, Cl¼0.1 μm, N¼0 and f¼0. The size scale k is also in-
troduced here as did in Fig. 5, where the result of k¼2/3, 1, 3/2 are
specially studied. It is shown in Fig. 6(a) that the Casimir force
increases with beam length increasing and other parameters fixed.
Of course, the length is truncated at a critical value, i.e., detach-
ment length Lmax, beyond which the beam collapse onto the sub-
strate without voltage applied. Again here, it is interesting that the
critical parameters of Casimir force crα , which are corresponding to
the detachment length, are same even size scale k is different.
Since beam length affects the Casimir force, it inevitably changes
the pull-in voltage. The variation of pull-in voltage with beam



Fig. 4. The curves of wmax versus voltage for different gaps (a) and lengths (b).
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length is presented in Fig. 6(b), where the results of different k are
also plotted. It is evident that the pull-in voltage decreases with
beam length increasing, and it reduces to zero when beam length
is equal to detachment length, which means no voltage is needed
for the beam pull-in instability. The nondimensional displacement
is observed to decrease with beam length increasing. For different
size scale k, as plotted in Fig. 6(c), the displacement reaches a
Fig. 5. The effect of gap on the Casimir force (a), pull-in voltage
minimum value, wmin
pl , when beam length increases to a critical

value, detachment length Lmax, which is same with the results in
Fig. 5(c). From Figs. 5 and 6, it should be noted that some variables
(e.g. crα and wmin

pl ) are independent with the size scale. Is there any
relationship between these variables and size scales? The size ef-
fect may play an important role in the characteristics in nanos-
tructures, which will be discussed in the next section.
(b) and pull-in displacement (c) for different size scale k.



Fig. 6. The effect of beam length on the parameter of Casimir force (a), pull-in voltage (b) and pull-in displacement (c) for different size scale k.

Fig. 7. The effect of size scale (k) on the normalized pull-in voltage (Vpl/k).

Table 1
Comparisons of the pull-in voltage from different
models and the present model.

Data sources Vpl /V

Experimental [44] 27.95
FIE [45] 28.24
DQM [46] 28.10
SGT [23] 28.02
The present model 27.99

%Δ 0.14%

B. Liang et al. / Physica E 71 (2015) 21–3028
3.2.4. Size effect of the pull-in voltage
To study the size effect induced by strain gradient, the beam

with parameters L/k¼2000 nm, b/k¼500 nm, h/k¼15 nm, d/
k¼10 nm, E¼151 Gpa, v¼0.3 are studied, where k is size scale as
defined above. The MLSP is taken to be Cl¼0.1 μm. Thus, the
variation of the size scale k indicates different structure sizes
(while the beam shape is fixed). The results predicted by the
present model (with size effect) are also compared with the cor-
responding ones by the modified couple stress model [13] and
classical model (without size effect) as shown in Fig. 7.

For the present model, when Casimir force is ignored, the pull-
in voltage increases with size scale decreasing, while the pull-in
voltage increases firstly and then decreases sharply to zero with
size scale decreasing when Casimir force is considered as shown in
Fig. 7. There is a critical value, Vmax

pl , which means the maximum
normalized pull-in voltage no matter what size of the beam. It is
evident that the pull-in voltage reduces to zero when the beam is
small enough (k is very small), which indicates that the Casimir
force should be considered in the model. For the classical model,



Table 2
Comparisons of the results for different models.

Beam length L¼250 μm L¼350 μm
Vpl in Ref. Residual stress (Mpa) Residual stress (Mpa)

0 100 �25 0 100 �25

[47] (MEMCAD) 40.10 57.60 33.60 20.30 35.80 13.70
[47] (2D) 39.50 56.90 33.70 20.20 35.40 13.80
[48] (GDQM) 39.13 57.62 33.63 20.36 35.99 13.60
[49] (2D-FEM) 39.56 57.35 33.50 20.19 35.71 13.42
[50] (Closed-form) 39.60 57.40 33.71 20.20 35.91 13.71
[45] (Analytical) 39.40 57.37 33.43 20.10 35.94 13.50
[51] (GM) 41.00 58.05 34.02 – – –

[52] (LMA) 40.38 58.87 34.12 20.60 36.77 13.63

Present model (a3¼0,f¼0) 40.03 57.78 34.02 20.43 35.93 13.73

Present model (a3¼0,f≠0) 39.86 57.52 33.86 20.34 35.76 13.67

Present model (a3≠0,f≠0) 39.86 57.52 33.86 20.34 35.76 13.67
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on the other hand, the normalized pull-in voltage keeps constant
when Casimir force is ignored, which is also pointed out in our
previous papers [23,24]. Whereas the normalized pull-in voltage
starts from zero, then increases gradually and finally converge to
the same constant when Casimir force is included. For both
models with Casimir force, external voltage is not needed for the
beams whose size scale under the critical value, kcr, because the
existence of the Casimir force. In addition, when size scale k is very
large, no matter what models and whether Casimir force included,
the normalized pull-in voltage approach to the same value since
the Casimir force and size effect are negligible for macro-scale
structures.

3.2.5. Application of the present model
Finally the present model with Casimir force included is ap-

plied to predict the pull-in voltage of microbeam which is carried
out experimentally [44]. The results are also compared with those
from other models [23,45,46]. To be consistent with the experi-
ment, the parameters of the fixed–fixed microbeam are set as
L¼210 μm, b¼100 μm, h¼1.5 μm, g¼1.18 μm, the residual strain
is 40.4�10�6 as shown in Table 1, where Rokin et al. [45] solved
the problem by transforming the governing equation into the
Fredholm Integral Euation (FIE), Kuang et al. [46] using the dif-
ferential quadrature method (DQM) and Wang et al. [23] using the
strain gradient theory (SGT) with Casimir force and fringing field
ignored. Δ% is the percentage of difference between the present
model and experimental result. The difference is only 0.14%, which
is in good agreement with the experimental.

The present model is further applied to study the beams and
compared the results with those available in literatures as given in
Table 2, where the beams are clamped–clamped boundary con-
ditions with varying beam length and residual stress. Other geo-
metrical and material properties are b¼50 μm, h¼3 μm, d¼1 μm,
E¼169 Gpa, v¼0.06 and Cl¼0.1 μm. It is noted that 3α ≠0 means
the result with Casimir force included, while f≠0 means the result
with fringe field included, respectively. The results from literatures
are also shown, where the results obtained by Osterberg and
Senturia [47] using micro-electro-mechanical computer aided
design (MEMCAD), Sadeghian et al. [48] using GDQM, Haluzan
et al. [49] using 2-D FEM, Chowdhury et al. [50] using a VLSI on-
chip interconnect capacitance model, Sadeghian et al. [51] using
the Galerkin methods and Pamidighantam et al. [52] using the
LMA.

It is shown in Table 2 that the fringing field effect reduces the
pull-in voltage, while it is found that, by contrasting the last two
lines in the table, Casimir force does not significantly affect the
pull-in voltage. This is due to Casimir force is effective in na-
noscale, whereas it is very small at macro-scale and even be
negligible at macro-scale.
4. Concluding remarks

By considering nonlinearities and Casimir force, a size-depen-
dent model for electrostatically actuated nanobeam device is es-
tablished based on the strain gradient elasticity theory and Ha-
milton principle. The governing equation together with boundary
conditions is solved numerically with generalized differential
quadrature (GDQ) method.

The results show that Casimir force can reduce the external
applied voltage. Moreover, there exists a minimum gap between
two electrodes and a maximum beam length (detachment length)
where pull-in instability occurs without voltage applied. The size
effect of the pull-in voltage is also discussed since the model in-
corporates strain gradient terms. In addition, comparisons are
made between the results predicted from the present model with
those of experimental data in literatures. Very good agreement is
observed, which proves the new model is robust for describing the
behavior of size-dependent pull-in instability for NEMS devices.
Acknowledgment

The work is supported by the National Natural Science Foun-
dation of China (Grant nos. 11202117 and 11272186), Natural Sci-
ence Fund of Shandong Province (ZR2012AM014), Opening fund of
State Key Laboratory of Strength and Vibration of Mechanical
Structures.
References

[1] J.-S. Duan, R. Rach, A pull-in parameter analysis for the cantilever NEMS ac-
tuator model including surface energy, fringing field and Casimir effects, Int. J.
Solids Struct. 50 (2013) 3511–3518.

[2] J. Yang, X.L. Jia, S. Kitipornchai, Pull-in instability of nano-switches using
nonlocal elasticity theory, J. Phys. D: Appl. Phys. 41 (2008) 035103 (8 pp.).

[3] M. Rasekh, S.E. Khadem, Pull-in analysis of an electrostatically actuated nano-
cantilever beamwith nonlinearity in curvature and inertia, Int. J. Mech. Sci. 53
(2011) 108–115.

[4] Y. Zhang, Y.P. Zhao, Numerical and analytical study on the pull-in instability of
micro-structure under electrostatic loading, Sens. Actuator A: Phys. 127 (2006)
366–380.

[5] W.D. Nix, Mechanical-properties of thin-films, Metall. Trans. A: Phys. Metall.

http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref1
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref1
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref1
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref1
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref2
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref2
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref3
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref3
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref3
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref3
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref4
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref4
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref4
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref4
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref5


B. Liang et al. / Physica E 71 (2015) 21–3030
Mater. Sci. 20 (1989) 2217–2245.
[6] W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work-

hardened copper polycrystals, Scr. Mater. 34 (1996) 559–564.
[7] I. Vardoulakis, G. Exadaktylos, S.K. Kourkoulis, Bending of marble with in-

trinsic length scales: a gradient theory with surface energy and size effects, J.
Phys. IV 8 (1998) 399–406.

[8] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in
strain gradient elasticity, J. Mech. Phys. Solids 51 (2003) 1477–1508.

[9] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness
with relevance to microcantilever sensors, J. Micromech. Microeng. 15 (2005)
1060–1067.

[10] E.C. Aifantis, Exploring the applicability of gradient elasticity to certain micro/
nano reliability problems, Microsyst. Technol.: Micro- Nanosyst.-Inf. Storage
Process. Syst. 15 (2009) 109–115.

[11] A.C. Eringen, On differential-equations of nonlocal elasticity and solutions of
screw dislocation and surface-waves, J. Appl. Phys. 54 (1983) 4703–4710.

[12] M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces,
Arch. Ration. Mech. Anal. 57 (1975) 291–323.

[13] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient
theory for elasticity, Int. J. Solids Struct. 39 (2002) 2731–2743.

[14] A. Assadi, Size dependent forced vibration of nanoplates with consideration of
surface effects, Appl. Math. Model. 37 (2013) 3575–3588.

[15] S.L. Kong, S.J. Zhou, Z.F. Nie, K. Wang, The size-dependent natural frequency of
Bernoulli–Euler micro-beams, Int. J. Eng. Sci. 46 (2008) 427–437.

[16] H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependent Timoshenko beam
model based on a modified couple stress theory, J. Mech. Phys. Solids 56
(2008) 3379–3391.

[17] H.M. Ma, X.L. Gao, J.N. Reddy, A nonclassical Reddy–Levinson beam model
based on a modified couple stress theory, Int. J. Multiscale Comput. Eng. 8
(2010) 167–180.

[18] S.L. Kong, S.J. Zhou, Z.F. Nie, K. Wang, Static and dynamic analysis of micro
beams based on strain gradient elasticity theory, Int. J. Eng. Sci. 47 (2009)
487–498.

[19] J. Zhao, S. Zhou, B. Wang, X. Wang, Nonlinear microbeam model based on
strain gradient theory, Appl. Math. Model. 36 (2012) 2674–2686.

[20] B. Wang, J. Zhao, S. Zhou, A micro scale Timoshenko beam model based on
strain gradient elasticity theory, Eur. J. Mech.: A/Solids 29 (2010) 591–599.

[21] M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinear Timoshenko beam
formulation based on the modified couple stress theory, Int. J. Eng. Sci. 48
(2010) 1749–1761.

[22] B. Wang, M. Liu, J. Zhao, S. Zhou, A size-dependent Reddy–Levinson beam
model based on a strain gradient elasticity theory, Meccanica 49 (2014)
1427–1441.

[23] B.L. Wang, S.J. Zhou, J.F. Zhao, X. Chen, Size-dependent pull-in instability of
electrostatically actuated microbeam-based MEMS, J. Micromech. Microeng.
21 (2011) 027001 (6 pp.).

[24] B. Wang, S. Zhou, J. Zhao, X. Chen, Pull-in instability analysis of electro-
statically actuated microplate with rectangular shape, Int. J. Precis. Eng.
Manuf. 12 (2011) 1085–1094.

[25] B. Wang, S. Zhou, J. Zhao, X. Chen, Pull-in instability of circular plate MEMS: a
new model based on strain gradient elasticity theory, Int. J. Appl. Mech. 4
(2012) 1250003 (12 pp.).

[26] R.C. Batra, M. Porfiri, D. Spinello, Effects of Casimir force on pull-in instability
in micromembranes, EPl 77 (2007) 20010 (6 pp.).

[27] W.-H. Lin, Y.-P. Zhao, Nonlinear behavior for nanoscale electrostatic actuators
with Casimir force, Chaos Solitons Fractals 23 (2005) 1777–1785.

[28] W.H. Lin, Y.P. Zhao, Dynamic behaviour of nanoscale electrostatic actuators,
Chin. Phys. Lett. 20 (2003) 2070–2073.

[29] R.C. Batra, M. Porfiri, D. Spinello, Vibrations and pull-in instabilities of mi-
croelectromechanical von Karman elliptic plates incorporating the Casimir
force, J. Sound Vib. 315 (2008) 939–960.

[30] R.C. Batra, M. Porfiri, D. Spinello, Reduced-order models for microelec-
tromechanical rectangular and circular plates incorporating the Casimir force,
Int. J. Solids Struct. 45 (2008) 3558–3583.
[31] W.H. Lin, Y.P. Zhao, Casimir effect on the pull-in parameters of nanometer

switches, Microsyst. Technol. 11 (2005) 80–85.
[32] Y.-G. Wang, W.-H. Lin, X.-M. Li, Z.-J. Feng, Bending and vibration of an elec-

trostatically actuated circular microplate in presence of Casimir force, Appl.
Math. Model. 35 (2011) 2348–2357.

[33] X.L. Jia, J. Yang, S. Kitipornchai, Pull-in instability of geometrically nonlinear
micro-switches under electrostatic and Casimir forces, Acta Mech. 218 (2011)
161–174.

[34] C.L. Dym, I.H. Shames, Solid Mechanics: A Variational Approach, McGraw-Hill
Inc., New York, 1973.

[35] M. Rahaeifard, M.H. Kahrobaiyan, M.T. Ahmadian, K. Firoozbakhsh, Size-de-
pendent pull-in phenomena in nonlinear microbridges, Int. J. Mech. Sci. 54
(2012) 306–310.

[36] M.I. Younis, E.M. Abdel-Rahman, A. Nayfeh, A reduced-order model for elec-
trically actuated microbeam-based MEMS, J. Microelectromech. Syst. 12
(2003) 672–680.

[37] C. Shu, B.E. Richards, Parallel simulation of incompressible viscous flows by
generalized differential quadrature, Comput. Syst. Eng 3 (1992) 11.

[38] C. Shu, C.M. Wang, Treatment of mixed and nonuniform boundary conditions
in GDQ vibration analysis of rectangular plates, Eng. Struct. 21 (1999) 125–134.

[39] J.R. Quan, C.T. Chang, New insights in solving distributed system equations by
the quadrature method.1. Analysis, Comput. Chem. Eng. 13 (1989) 779–788.

[40] J.R. Quan, C.T. Chang, New insights in solving distributed system equations by
the quadrature method 2. Numerical experiments, Comput. Chem. Eng. 13
(1989) 1017–1024.

[41] W. Chen, T. Zhong, The study on the nonlinear computations of the DQ and DC
methods, J. Numer. Method Partial Differ. Equ. 13 (1997) 19.

[42] S. Tomasiello, Differential quadrature method: application to initial-boundary-
value problems, J. Sound Vib. 218 (1998) 573–585.

[43] A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics, Wiley, New York,
1995.

[44] H.A.C. Tilmans, R. Legtenberg, Electrostatically driven vacuum-encapsulated
polysilicon resonators. 2. Theory and performance, Sens. Actuator A: Phys. 45
(1994) 67–84.

[45] H. Rokni, R.J. Seethaler, A.S. Milani, S. Hosseini-Hashemi, X.-F. Li, Analytical
closed-form solutions for size-dependent static pull-in behavior in electro-
static micro-actuators via Fredholm integral equation, Sens. Actuators A: Phys.
190 (2013) 32–43.

[46] J.H. Kuang, C.J. Chen, Dynamic characteristics of shaped micro-actuators
solved using the differential quadrature method, J. Micromech. Microeng. 14
(2004) 647–655.

[47] P.M. Osterberg, S.D. Senturia, M-TEST: a test chip for MEMS material property
measurement using electrostatically actuated test structures, J. Microelec-
tromech. Syst. 6 (1997) 107–118.

[48] H. Sadeghian, G. Rezazadeh, P.M. Osterberg, Application of the generalized
differential quadrature method to the study of pull-in phenomena of MEMS
switches, J. Microelectromech. Syst. 16 (2007) 1334–1340.

[49] D.T. Haluzan, D.M. Klymyshyn, S. Achenbach, M. Boerner, Reducing pull-in
voltage by adjusting gap shape in electrostatically actuated cantilever and
fixed–fixed beams, Micromachines 1 (2010) 68–81.

[50] S. Chowdhury, M. Ahmadi, W.C. Miller, A closed-form model for the pull-in
voltage of electrostatically actuated cantilever beams, J. Micromech. Microeng.
15 (2005) 756–763.

[51] H. Sadeghian, G. Rezazadeh, Comparison of generalized differential quadrature
and Galerkin methods for the analysis of micro-electro-mechanical coupled
systems, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 2807–2816.

[52] S. Pamidighantam, R. Puers, K. Baert, H.A.C. Tilmans, Pull-in voltage analysis of
electrostatically actuated beam structures with fixed–fixed and fixed-free end
conditions, J. Micromech. Microeng. 12 (2002) 458–464.

http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref5
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref5
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref6
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref6
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref6
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref7
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref7
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref7
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref7
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref8
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref8
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref8
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref9
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref9
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref9
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref9
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref10
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref10
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref10
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref10
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref11
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref11
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref11
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref12
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref12
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref12
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref13
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref13
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref13
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref25263
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref25263
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref25263
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref14
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref14
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref14
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref15
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref15
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref15
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref15
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref16
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref16
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref16
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref16
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref17
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref17
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref17
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref17
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref18
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref18
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref18
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref19
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref19
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref19
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref20
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref20
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref20
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref20
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref21
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref21
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref21
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref21
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref22
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref22
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref22
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref23
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref23
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref23
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref23
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref24
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref24
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref24
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref25
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref25
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref26
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref26
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref26
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref27
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref27
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref27
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref28
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref28
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref28
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref28
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref29
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref29
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref29
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref29
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref30
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref30
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref30
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref31
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref31
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref31
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref31
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref32
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref32
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref32
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref32
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref33
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref33
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref34
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref34
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref34
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref34
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref35
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref35
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref35
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref35
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref36
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref36
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref37
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref37
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref37
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref38
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref38
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref38
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref39
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref39
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref39
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref39
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref40
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref40
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref41
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref41
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref41
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref42
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref42
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref43
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref43
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref43
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref43
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref44
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref44
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref44
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref44
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref44
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref45
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref45
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref45
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref45
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref46
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref46
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref46
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref46
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref47
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref47
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref47
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref47
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref48
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref48
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref48
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref48
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref49
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref49
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref49
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref49
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref50
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref50
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref50
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref50
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref51
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref51
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref51
http://refhub.elsevier.com/S1386-9477(15)00119-8/sbref51

	A variational size-dependent model for electrostatically actuated NEMS incorporating nonlinearities and Casimir force
	Introduction
	Theoretical formulations
	Strain gradient elasticity theory
	The variational size-dependent model

	Numerical analysis with GDQ method
	GDQ method and its application
	Numerical results and discussion
	Pull-in instability
	Effect of Casimir force
	The minimum gap and detachment length
	Size effect of the pull-in voltage
	Application of the present model


	Concluding remarks
	Acknowledgment
	References




