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Abstract A size-dependent Kirchhoff micro-plate

model resting on elastic medium is developed based

on the strain gradient elasticity theory. Three material

length scale parameters are introduced in the model,

and those parameters may effectively capture the size

effect. The model can degenerate into the modified

couple stress plate model or the classical plate model

by setting two (l0 and l1) or all (l0, l1 and l2) of the

material length scale parameters to be zero. Analytical

solutions for the static bending, buckling and free

vibration problems of a rectangular micro-plate with

all edges simply supported are obtained. The results

predicted by the present model are compared with

those predicted by the degraded models. Influences of

the elastic medium on the static bending, buckling, and

free vibration are discussed. The results show that the

present model can predict prominent size-dependent

normalized stiffness, buckling load, and natural

frequency with the reduction of structural size,

especially when the plate thickness is on the same

order of the material length scale parameter. The study

may be helpful to guide the design of microplate-based

devices resting on elastic medium for a wide range of

potential applications.

Keywords Micro plates � Elastic medium �
Size effect � Strain gradient elasticity theory

1 Introduction

With the development of recent technology, opportu-

nities of promising research and engineering priorities

in micro-plate have been opened up based on

micromechanics [1], where the thickness of plates is

typically on the order of microns or sub-microns. The

size-dependent behavior of micro scale structures has

been verified experimentally in some kinds of mate-

rials [2–8]. Hence, the size effect must be taken into

account in studies of micro scale structures.

However, the classical theory of linear elasticity

does not involve the size effect in micro scale

structures. Recently, many scientists [3, 6, 8–15] have

done some work based on higher-order continuum

theories, in which strain gradient or non-local terms

are involved and additional material length scale

parameters are introduced in addition to the classical

material constants. Several micro-plate models have

been developed by many researchers based on some

higher-order continuum theories, e.g., micropolar
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theory [16, 17], the simplest version of the simplified

form-II theory of strain gradient linear elasticity [15,

18–20], gradient elastic theory [21, 22], and couple

stress theory [23–25]. Ariman [16, 17] studied the

circular micropolar plate and discussed some prob-

lems of the model. According to the gradient elasticity

theory proposed by Altan and Aifantis [26–29], a

gradient elasticity theory of plates is established by

Lazopoulos [21]. And the gradient elasticity theory

can be traced back to Mindlin [30]. Lazopoulos [22]

considered the bending problem of strain gradient

elastic thin plates by using a simple version of

Mindlin’s linear theory of elasticity with microstruc-

ture. In addition to the classical Lame constants, the

intrinsic bulk length g and the directional surface

energy length lk are introduced in this theory for

characterizing the strain gradient. Tsiatas [25] studied

the static problem of a micro Kirchhoff plate with

arbitrary shape based on the simplified couple stress

theory proposed by Yang et al. [31].

The couple stress theory [32], a general form of the

modified couple stress theory [31], was used by

Tsiatas [25] to capture the size effect of micro-plate. It

was pointed out by Shu and Fleck [33] that it usually

under-predicts the size effect because the couple stress

theory only employs the rotation gradient and neglects

the other gradients (e.g. stretch gradient). Therefore, in

order to account for the size effect more effectively, a

general strain gradient theory should be introduced,

which employs not only the rotation gradient but also

stretch gradient or other gradients.

The strain gradient elasticity theory proposed by

Lam et al. [8] contains three material length scale

parameters and can be successfully applied to predict

the size-dependent properties for small scale struc-

tures. This theory has been used to analyze the static

and dynamic problems of micro scale Bernoulli–Euler

beam [14], Timoshenko beam [12] and Kirchhoff plate

[34]. Moreover, the strain gradient elasticity theory [8]

can degenerate into the modified couple stress theory

[31] by setting two of the three material length scale

parameters to zero; thus, the modified couple stress

theory [31] may be regarded as a special case of the

strain gradient elasticity theory [8].

Some works [35–39] have been conducted to study

the vibration and bending analysis of plates on elastic

foundation based on the classical continuum elasticity.

Recently, Akgoz and Caivalek [40] modeled and

analyzed the micro plate resting on elastic foundation

using the modified couple stress theory. Influences of

the elastic medium and the length scale parameter on

the bending, buckling, and vibration properties are

discussed. Since the modified couple stress theory is a

special case of the strain gradient elasticity theory, the

micro plate model resting on elastic medium based on

strain gradient elasticity theory is necessary to be

discussed, which, to the best knowledge of authors,

has not been studied in the literature.

In this study, an application of a size-dependent

Kirchhoff micro-plate model resting on elastic medium

is presented based on the strain gradient elasticity

theory [8]. In Sect. 2, the governing equation and

boundary conditions of the size-dependent Kirchhoff

micro-plate model embedded in elastic medium are

derived. In subsequent Sects. 3, 4 and 5, static bending,

buckling and free vibration analyses of the simply

supported plate resting on elasticmedium are described

and discussed. Conclusions are summarized in Sect. 6.

2 The size-dependent model for micro-sized plates

resting on elastic medium

According to the strain gradient theory proposed by

Lam et al. [8], in addition to two classical material

constants, three independent material length scale

parameters (MLSPs) are introduced for isotropic

linear elastic materials. Then the strain energy U for

the isotropic linear elastic material occupying region

X is written as

U ¼ 1

2

Z
X
�udX ¼ 1

2

ZZZ
X
�udxdydz ð1Þ

where �u is the strain energy density, defined as

�u ¼ rijeij þ pici þ sð1Þijk g
ð1Þ
ijk þ ms

ijv
s
ij ð2Þ

in which eij is the strain tensor, ci is the dilatation

gradient tensor, gð1Þijk is the deviatoric stretch gradient

tensor, and vsij is the symmetric rotation gradient

tensor, defined as

eij ¼
1

2
ðui;j þ uj;iÞ ð3Þ

ci ¼ emm;i ð4Þ

gð1Þijk ¼ gsijk �
1

5
ðdijgsmmk þ djkg

s
mmi þ dkig

s
mmjÞ ð5Þ
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vsij ¼
1

2
ðeipqeqj;p þ ejpqeqi;pÞ ð6Þ

where ui is the displacement vector, emm is the

dilatation strain, dij and eijk are the Knocker symbol

and the alternate symbol respectively, and gsijk is the

symmetric part of second-order displacement gradient

tensor, given by

gsijk ¼
1

3
ðui;jk þ uj;ki þ uk;ijÞ ð7Þ

Here it should be noted that the index notation will

always be used with repeated indices denoting sum-

mation from 1 to 3.

The corresponding stress measures, respectively,

are given by the following constitutive relations,

rij ¼ kdijemm þ 2leij ð8Þ

pi ¼ 2ll20ci ð9Þ

sð1Þijk ¼ 2ll21g
ð1Þ
ijk ð10Þ

ms
ij ¼ 2ll22v

s
ij ð11Þ

In the above equations, l0, l1 and l2 are the

additional independent MLSPs associated with the

dilatation gradients, deviatoric stretch gradients and

symmetric rotation gradients, respectively. The

parameters k and l in the constitutive equation of

the classical stress rij denote the bulk and shear moduli

respectively and can be written in terms of the Young

modulus E and the Poisson’s ratio v as

k ¼ Ev

ð1þ vÞð1� 2vÞ ; l ¼ E

2ð1þ vÞ ð12Þ

Consider an initially flat thin rectangular micro-

plate embedded in elastic medium, as shown in Fig. 1.

The plate is subject to a static transverse load q(x,

y) distributed in the x - y plane. k is the elastic

foundation parameter. The plate is assumed to be

made by homogeneous linearly elastic material.

According to Kirchhoff’s plate theory, the displace-

ment field can be defined as

uxðx; y; zÞ ¼ �z
owðx; yÞ

ox

uyðx; y; zÞ ¼ �z
owðx; yÞ

oy

uzðx; y; zÞ ¼ wðx; yÞ

ð13Þ

where uiðx; y; zÞ(i = x, y, z) are displacement compo-

nents along x, y, z directions.

Substituting Eq. (13) into Eq. (3), the nonzero

components of the strain tensor are written as

e11 ¼ �z
o2w

ox2
; e22 ¼ �z

o2w

oy2
; e12 ¼ �z

o2w

oxoy

ð14Þ

By using Eqs. (4) and (14), the non-zero compo-

nents of the dilatation gradient tensor ci can be

achieved

c1 ¼ �z
o3w

ox3
þ o3w

oxoy2

� �
; c2

¼ �z
o3w

oy3
þ o3w

ox2oy

� �
; c3 ¼ � o2w

ox2
þ o2w

oy2

� �
ð15Þ

By inserting Eqs. (14) into (6), the non-zero

components of the symmetric rotation gradient vsij are

vs11 ¼
o2w

oxoy
; vs22 ¼ � o2w

oxoy
; vs12

¼ 1

2

o2w

oy2
� o2w

ox2

� �
ð16Þ

From Eqs. (5), (7) and (13), the non-zero compo-

nents of the deviatoric stretch gradient gð1Þijk are

gð1Þ111 ¼
1

5
z 3

o3w

oxoy2
� 2

o3w

ox3

� �
;

gð1Þ222 ¼
1

5
z 3

o3w

ox2oy
� 2

o3w

oy3

� �

gð1Þ333 ¼
1

5

o2w

ox2
þ o2w

oy2

� �
;

Fig. 1 Geometry and coordinates of a thin rectangular micro-

plate model on an elastic medium
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gð1Þ112 ¼ gð1Þ121 ¼ gð1Þ211 ¼
1

5
z

o3w

oy3
� 4

o3w

ox2oy

� �
gð1Þ113

¼ gð1Þ131 ¼ gð1Þ311 ¼
1

15

o2w

oy2
� 4

o2w

ox2

� �
gð1Þ221

¼ gð1Þ212 ¼ gð1Þ122 ¼
1

5
z

o3w

ox3
� 4

o3w

oxoy2

� �
gð1Þ223

¼ gð1Þ232 ¼ gð1Þ322 ¼
1

15

o2w

ox2
� 4

o3w

oy2

� �
gð1Þ331

¼ gð1Þ313 ¼ gð1Þ133 ¼
1

5
z

o3w

ox3
þ o3w

oxoy2

� �
gð1Þ332

¼ gð1Þ323 ¼ gð1Þ233 ¼
1

5
z

o3w

oy3
þ o3w

ox2oy

� �
gð1Þ123

¼ gð1Þ231 ¼ gð1Þ312 ¼ gð1Þ123 ¼ gð1Þ213 ¼ gð1Þ321 ¼
1

3

o2w

oxoy

ð17Þ

It is worth noting that the present model is a plane

stress problem, according to elasticity mechanics,

the classical stress of the present model can be

obtained by

rij ¼
Ev

1� v2
dijemm þ E

1þ v
eij ð18Þ

Finally, by inserting the strain tensors into Eqs. (9),

(10), (11) and (18), the stress tensors can be obtained.

When the strain and stress tensors are substituted into

Eq. (2), the strain energy density �u is obtained by

taking somewhat lengthy but straightforward

manipulation:

�u¼ðc1þc2z
2Þ o2w

ox2

� �2

þ o2w

oy2

� �2
 !

þðc3þc4z
2Þ o2w

ox2
o2w

oy2

� �

þ ðc5þc6z
2Þ o2w

oxoy

� �2

þc7z
2 o3w

ox3

� �2

þ o3w

oy3

� �2
 !

þ c8z
2 o3w

oxoy2

� �2

þ o3w

ox2oy

� �2
 !

þc9z
2 o3w

ox3
o3w

oxoy2
þo3w

oy3
o3w

ox2oy

� �

ð19Þ

in which

c1 ¼ 2ll20 þ
8

15
ll21 þ ll22; c2 ¼

E

1� m2
;

c3 ¼ 4ll20 �
4

15
ll21 � 2ll22

c4 ¼
2Em
1� m2

; c5 ¼
4

3
ll21 þ 4ll22; c6 ¼ 4l

c7 ¼ 2ll20 þ
4

5
ll21; c8 ¼ 2ll20 þ

24

5
ll21;

c9 ¼ 4ll20 �
12

5
ll21

ð20Þ

We assume the following integral relations,

ZZZ
V

z2dxdydz ¼ I

ZZ
A

dxdy I ¼
Z h

2

�h
2

z2dz ¼ h3

12ZZZ
V

dxdydz ¼ h

ZZ
A

dxdy

ð21Þ

Substituting Eq. (19) into Eq. (1), and the variation

of strain energy can be obtained as

dU ¼
ZZZ

V

d�udxdydz ¼
ZZ

S

dFdxdy

¼
ZZ

S

oF

owxx

� �
dwxx þ

oF

owyy

� �
dwyy

�

þ oF

owxy

� �
dwxy þ

oF

owxxx

� �
dwxxx

þ oF

owyyy

� �
dwyyy þ

oF

owxyy

� �
dwxyy

þ oF

owxxy

� �
dwxxyÞdxdy

ð22Þ

where

F ¼ c1hþ c2Ið Þ o2w

ox2

� �2

þ o2w

oy2

� �2
 !

þ c3hþ c4Ið Þ o2w

ox2
o2w

oy2

� �
þ c5hþ c6Ið Þ o2w

oxoy

� �2

þ c7I
o3w

ox3

� �2

þ o3w

oy3

� �2
 !

þ c8I
o3w

oxoy2

� �2
 

þ o3w

ox2oy

� �2

Þ þ c9I
o3w

ox3
o3w

oxoy2
þ o3w

oy3
o3w

ox2oy

� �

ð23Þ

and
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wxx ¼
o2w

ox2
; wyy ¼

o2w

oy2
; wxy ¼

o2w

oxoy

wxxx ¼
o3w

ox3
; wyyy ¼

o3w

oy3
; wxxy ¼

o3w

ox2oy
;

wxyy ¼
o3w

oxoy2

ð24Þ

By applying the rules of integration by parts,

Eq. (22) is rewritten as

dU ¼
ZZ

o2

ox2
oF

owxx

� �
þ o2

oy2
oF

owyy

� �
þ o2

oxoy

oF

owxy

� ��

� o3

ox3
oF

owxxx

� �
� o3

oy3
oF

owyyy

� �
:

� o3

oxoy2
oF

owxyy

� �
� o3

ox2oy

oF

owxxy

� ��
dwdxdy

þ
Z

� o

oy

oF

owyy

� �
� o

ox

oF

owxy

� �
þ o2

oy2
oF

owyyy

� ���

þ o2

oxoy

oF

owxyy

� �
þ o2

ox2
oF

owxxy

� �
Þdw:

þ oF

owyy

� o

oy

oF

owyyy

� �
� o

ox

oF

owxyy

� �� �
dwy

þ oF

owyyy

dwyyÞjb0dx þ
Z

� o

ox

oF

owxx

� ���

� o

oy

oF

owxy

� �
þ o2

ox2
oF

owxxx

� �

þ o2

oxoy

oF

owxxy

� �
þ o2

oy2
oF

owxyy

� �
Þdw:

þ oF

owxx

� o

ox

oF

owxxx

� �
� o

oy

oF

owxxy

� �� �
dwx

þ oF

owxxx

dwxx

�
ja0dy

ð25Þ

The first variation of the virtual work done by

external loads can be rewritten as

dW ¼
ZZ

S

½qðx; yÞ � kwðx; yÞ�dwðx; yÞdxdy ð26Þ

in which q(x, y) is the distributed transverse load on the

plate and k is the elastic foundation parameter.

Then, Eqs. (25) and (26) are substituted into the

following expression of principle of minimum poten-

tial energy

dðU �WÞ ¼ 0 ð27Þ

Due to the variational principle for arbitrary dw, the
governing equation is finally obtained by taking

somewhat lengthy but straightforward manipulations:

�p1r6wþ p2r4wþ kw ¼ qðx; yÞ ð28Þ

where

p1 ¼ lIð2l20 þ
4

5
l21Þ

p2 ¼ lhð2l20 þ
8

15
l21 þ l22Þ þ

E

1� v2
I

ð29Þ

and

r6w ¼ o6w

ox6
þ 3

o6w

ox2oy4
þ 3

o6w

ox4oy2
þ o6w

oy6

r4w ¼ o4w

ox4
þ 2

o4w

ox2oy2
þ o4w

oy4

ð30Þ

The corresponding exact boundary conditions at the

edges can also be obtained:

BX1ða; yÞdwða; yÞ � BX1ð0; yÞdwð0; yÞ ¼ 0

BX2ða; yÞdwxða; yÞ � BX2ð0; yÞdwxð0; yÞ ¼ 0

BX3ða; yÞdwxxða; yÞ � BX3ð0; yÞdwxxð0; yÞ ¼ 0

BY1ðx; bÞdwðx; bÞ � BY1ðx; 0Þdwðx; 0Þ ¼ 0

BY2ðx; bÞdwyðx; bÞ � BY2ðx; 0Þdwyðx; 0Þ ¼ 0

BY3ðx; bÞdwyyðx; bÞ � BY3ðx; 0Þdwyyðx; 0Þ ¼ 0

ð31Þ

in which

BX1ðx; yÞ ¼ �2P1

o3w

ox3
þ 2P4

o5w

ox5
;

BX2ðx; yÞ ¼ 2P1

o2w

ox2
� 2P4

o4w

ox4

BX3ðx; yÞ ¼ 2P4

o3w

ox3
;

BY1ðx; yÞ ¼ �2P1

o3w

oy3
þ 2P4

o5w

oy5

BY2ðx; yÞ ¼ 2P1

o2w

oy2
� 2P4

o4w

oy4
;

BY3ðx; yÞ ¼ 2P4

o3w

oy3

ð32Þ

and
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P1 ¼ c1hþ c2I P2 ¼ c3hþ c2I P3 ¼ c5hþ c6I

P4 ¼ c7I P5 ¼ c8I P6 ¼ c9I

ð33Þ

3 Static bending of simply supported size-

dependent plate

Firstly, to illustrate the present model, the static

bending problem of a rectangular micro-plate with all

edges simply supported is considered. The micro-plate

is subject to a lateral uniformly distributed load q(x,

y) and a lateral reaction force kw(x, y) due to elastic

medium.

It is noted that based on the principal of variation

[41], the boundary conditions can be classified to two

groups: kinematic boundary conditions and natural

boundary conditions. The boundary conditions are

determined by specifying the kinematic boundary

conditions or by satisfying the natural boundary

conditions. For the boundary conditions given in

Eq. (31), the kinematic and natural boundary condi-

tion are given as follows

Kinematic natural

BX1 ¼ 0 or w ¼ 0

BX2 ¼ 0 or w;x ¼ 0

BX3 ¼ 0 or w;xx ¼ 0

9>=
>; for x ¼ 0; a

BY1 ¼ 0 or w ¼ 0

BY2 ¼ 0 or w;y ¼ 0

BY3 ¼ 0 or w;yy ¼ 0

9>=
>; for y ¼ 0; b

ð34Þ

The classical boundary conditions for the simply

supported plate are

w ¼ 0; BX2 ¼ 0 for x ¼ 0; a

w ¼ 0; BY2 ¼ 0 for y ¼ 0; b
ð35Þ

Similar to our previous work [14], for non-classical

boundary conditions, there are two possible boundary

conditions at both ends:

wxxðx;yÞ ¼ 0 for x¼ 0; a

wyyðx;yÞ ¼ 0 for y¼ 0; b
or

BX3ðx;yÞ ¼ 0 for x¼ 0; a
BY3ðx;yÞ ¼ 0 for y¼ 0; b

ð36Þ

For illustration purposes, here, the boundary con-

ditions for the simply supported plate are selected as

wðx; yÞ ¼ 0

BX2ðx; yÞ ¼ 0

wxxðx; yÞ ¼ 0

9>>=
>>;

for x ¼ 0; a

wðx; yÞ ¼ 0

BY2ðx; yÞ ¼ 0

wyyðx; yÞ ¼ 0

9>>=
>>;

for y ¼ 0; b

ð37Þ

In order to solve the governing Eq. (28) with the

boundary conditions in Eq. (37), the following Fourier

series w(x, y) is assumed:

wðx; yÞ ¼
X1
m¼1

X1
n¼1

Amn sin
mpx
a

� �
sin

npy
b

� �
ð38Þ

where Amn is the Fourier coefficient. It is obvious that

Eq. (38) satisfies the corresponding boundary condi-

tions in Eq. (37). Similarly, the lateral uniformly

distributed load q(x, y) can also be expressed as

Fourier series:

qðx; yÞ ¼
X1
m¼1

X1
n¼1

Qmn sinð
mpx
a

Þ sinðnpy
b

Þ ð39Þ

In the case of the uniformly distributed load q(x,

y) = q0, Qmn is expressed as [13]

Qmn ¼
16q0

mnp2
m; n ¼ 1; 3; 5. . . ð40Þ

Substituting Eqs. (38) and (39) into Eq. (28), Amn

can be calculated as

Amn ¼
Qmn

C1p1þC2p2 þ k
ð41Þ

in which

C1 ¼ ðmp
a
Þ2 þ ðnp

b
Þ2

� �3

C2 ¼ ðmp
a
Þ2 þ ðnp

b
Þ2

� �2 ð42Þ

For simplification, it is assumed that all three

MLSPs are the same, i.e. l0 = l1 = l2 = Cl. For the

purpose of illustration, unless otherwise stated, the

plate considered here has the following properties: the

elastic modulus E = 1.44 GPa, Poisson’s ratio

v = 0.3, the material length scale parameter
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Cl = 4.0 lm, the aspect ratio of the plate to be the

same, i.e., a/h = 50, b/h = 50. The thickness of the

plate h = f�Cl, in which f is the dimensionless size

scale. The lateral uniformly distributed load

q = 0.1 lN/lm2, and the density of the plate

q = 1220 kg/m3.

Figure 2 shows the variation of the normalized

micro-plate stiffness (h/wmax) with the size scale (f),

where wmax is the deflection of the plate at the central

point (x = a/2, y = b/2). Results predicted by the

present model are compared with those predicted by

the modified couple stress model [40] and the classical

model [42]. As shown in Fig. 2, when the plate is not

affected by the elastic medium(k = 0), the normalized

stiffness keeps constant for the classical model, while

for the present model and the modified couple stress

model, the normalized stiffness decreases nonlinearly

as the size scale increases. These three models show

almost no difference of the normalized stiffness if the

plate thickness is more than 15 times larger than the

material length scale parameter; while with a smaller

size scale (i.e., smaller plate dimension for the same

material) the present model shows strong size effect,

and that leads to a higher normalized stiffness. When

the elastic medium (assuming k = 109Pa/m) is con-

sidered, the normalized stiffness increases almost

linearly for the classical model, while for the present

model and the modified couple stress model, the

normalized stiffness decreases and then increases as

the size scale increases. And when the plate thickness

is more than 15 times larger than the material length

scale parameter, the three models show almost no

difference of the normalized stiffness; while with a

smaller size scale the present model shows strong size

effect.

Figure 3 shows the change of the maximum

deflection with foundation parameter for all of the

three models. As shown in Fig. 3, the results from the

three models are quite different, and the size-depen-

dent phenomenon is significantly pronounced when

k is less than 1011Pa/m. The maximum deflections

predicted by the present model and by the couple stress

model are about 13.6 and 4.6 times of that obtained by

the classical model for k = 108 Pa/m. When the

foundation parameter k is greater than 1011Pa/m,the

maximum deflections of the plate predicted by the

three model are almost the same. So the size effect of

Fig. 3 Variation of the maximum plate deflection with

foundation parameters Fig. 4 Effects of different MLSPs on deflection

Fig. 2 Normalized stiffness with size scale
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the micro-plate is significant and cannot be neglected

when the foundation parameter k is smaller than

1011Pa/m.

In the present model, three MLSPs are incorporated

corresponding to the three strain gradient tensors (the

dilatation gradient, the deviatoric stretch gradient and

the symmetric rotation gradient). The MLSPs, how-

ever, are assumed to be the same value in Figs. 2 and

3, i.e., l0 = l1 = l2 = Cl. In order to study the role of

each strain gradient tensor in the present model, the

deflection of the plate at the central line (y = b/2) with

different cases for MLSPs are presented in Fig. 4,

where the results of: (a) l0 = l1 = l2 = Cl, (b) l0/

2 = l1 = l2 = Cl, (c) l0 = l1/2 = l2 = Cl,

(d) l0 = l1 = l2/2 = Cl, (e) l0/4 = l1 = l2 = Cl,

(f) l0 = l1/4 = l2 = Cl, (g) l0 = l1 = l2/4 = Cl are

given and compared. Here, the lateral uniformly

distributed load q = 0.01 lN/lm2, and the other

parameters are the same as those given before. Of

course, the dimensionless deflections of case (b)–

(d) are smaller than that of case (a) as case (b)–(d) use

double values of l0, l1, l2, respectively, compared to

case (a). It is shown that the results of case (d) are

smaller than those of case (c) but larger than those of

case (b), indicating that the symmetric rotation

gradient plays less role than the dilatation gradient

and plays more important role than the deviatoric

stretch gradient in the present model. The results of

(e)–(g) are smaller than the results of (a)–(d) as 4Cl is

substituted into l0, l1, l2 in (e)–(g), respectively.

Furthermore, from another point of view, the deflec-

tion reduces with l0/l1 increasing if we compare results

of (a), (b), (e) (i.e., l1/l2 fixed, l0/l1 = 1, 2, 4,

respectively). The same tendencies are also found

when comparing (a), (c), (f) or (a), (d), (g). Again,

here, it is shown that l0 is more sensitive than l1 and l2,

and l1 is the least sensitive among the three MLSPs,

which indeed affect the resultant strain gradient effect

more or less by altering these ratios among MLSPs.

The similar conclusions are also drawn in Ref. [43],

where different material characteristic lengths are

studied and discussed respectively to evaluate the

optimal structure. This may guide us to pay more

attention on the dilation gradient in determining

MLSPs. It is noted that the MLSPs are internal

parameters of a given material, and in practice, they

are generally different and determined by uniaxial

tensile, torsional or bending experiments for different

size.

4 Stability analysis of simply supported size-

dependent plate

Secondly, stability analysis of a simply supported

rectangular micro-plate on an elastic foundation is

considered. In addition to a lateral distributed load

q(x, y) and a lateral reaction force kw(x, y) due to

elastic medium, the micro-plate is also subject to in-

plane compressive loads P = (Px, Pxy, Py), Px and Py

are the load along x-axis direction and y-axis

direction respectively, Pxy is the shear load in the

x–y plane. According to the classical theory, there

exists a critical buckling load Pcr. The governing

equation is given as

� p1r6wþ p2r4wþþPx

o2w

ox2
þ 2Pxy

o2w

oxoy
þ Py

o2w

oy2

þ kw ¼ qðx; yÞ ð43Þ

The boundary conditions are expressed in Eq. (37).

In order to simplify analysis, Px and kw(x, y) are

only considered, the other loads are set to zero. So

Eq. (43) can be rewritten as

�p1r6wþ p2r4wþ Px

o2w

ox2
þ kw ¼ 0 ð44Þ

The following Fourier series is also used for this

problem,

wðx; yÞ ¼
X1
m¼1

X1
n¼1

Bmn sinð
mpx
a

Þ sinðnpy
b

Þ ð45Þ

By substituting Eq. (45) into Eq. (44), it is obtained

as

Px ¼
C1p1 þ C2p2 þ k

ðmp
a
Þ2

ð46Þ

The critical buckling load Pcr is equal to the

minimum of Px in Eq. (46). The critical buckling load

Pcr can be obtained by setting m = 1 and n = 1, that

is

Pcr ¼ ðp
a
Þ2 þ ðp

b
Þ2

� �2
p1 1þ ða

b
Þ2

� �
þ p2ð

a

p
Þ2

h i

þ kða
p
Þ2

ð47Þ

Figure 5 illustrates the variation of the normalized

critical load (Pcr/f) with size scale (f), where results

from all of the three models are presented with and
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without elastic medium. The parameters are the same

as those in the static problemmentioned above. For the

classical model without elastic medium, the normal-

ized critical load (Pcr/f) is constant. For the present

model and modified couple stress model, it can be seen

that the normalized critical load depends on the size

scale of the micro-plate from the Fig. 5. The variation

trend of the normalized critical load is similar to that of

the normalized stiffness. When the plate thickness is

greater than 15 times of the material length scale

parameter, there is almost no difference between the

critical buckling loads from all of the three models.

The variation of the critical buckling load (Pcr) with

elastic medium parameter (k) is shown in Fig. 6 in

which the horizontal axis increases exponentially.

When the medium parameter k is small, there are

significant differences between the critical buckling

loads predicted by the three models and the size effect

of the micro-plate cannot be neglected. With the

increase of the value of the foundation parameter, the

relative differences of critical buckling loads predicted

from the three models decrease.

5 Free vibration of simply supported size-

dependent plate

Finally, the free vibration problem of a simply

supported rectangular micro-plate on an elastic foun-

dation is solved. No external force is applied on the

structure. The governing equation is expressed as

qg €w� p1r6wþ p2r4wþ kw ¼ 0 ð48Þ

where w is dependent with time scale t. Similar to the

procedure of classical model [42], the following

Fourier series solutions for w(x, y, t) is employed,

which incorporates the spatial and temporal parts.

wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

Cmn sinð
mpx
a

Þ sinðnpy
b

Þeixmnt

ð49Þ

in which Cmn is Fourier coefficient, xmn is the

vibrational frequency, and i is the usual imaginary

number defined by i2 = -1. Equation (49) satisfies the

boundary conditions in Eq. (37) for any Cmn.

By substituting Eq. (49) into Eq. (48), x2
mn is

obtained as a simple form,

x2
mn ¼

C1p1 þ C2p2 þ k

qh
ð50Þ

The positive solution of xmn determined from

Eq. (50) is the natural frequency of the simply

supported plate for different order number m and n.

In the following, the fundamental natural frequency

for m = 1 and n = 1 is considered. The parameters

are the same as those in Sect. 3. For comparison

purposes, the results from the three models are given

in Fig. 7 with and without elastic medium effect. The

normalized natural frequency shows similar size-

dependent trends with that of the normalized stiffness

(Sect. 3) and normalized critical load (Sect. 4). For the

classical model without elastic medium, the normal-

ized natural frequency (fx11) is constant. For the

present model and modified couple stress model, it can

be seen that the normalized natural frequency dependsFig. 6 Critical buckling load with foundation parameter

Fig. 5 Normalized critical buckling load with size scale
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on the size scale of the micro-plate. When the plate

thickness is greater than 20 times of the material

length scale parameter, there is almost no difference

between the normalized natural frequencies from all of

the three models. When the elastic medium (assuming

k = 109Pa/m) is considered, the normalized natural

frequency increases almost linearly for the classical

model, but for the present model and the modified

couple stress model, the normalized natural frequency

decreases and then increases as the size scale

increases.

The variation of the natural frequency (x11) with

elastic medium parameter (k) is shown in Fig. 8 in

which the horizontal axis increases exponentially.

When the medium parameter k is smaller than 1011Pa/

m, there are significant differences between the natural

frequencies predicted by the three models. So the size

effect of the micro-plate cannot be neglected when the

medium parameter k is smaller than 1011Pa/m. These

three models show almost no difference of the natural

frequency if the elastic medium parameter k is more

than 1012Pa/m.

Similar to Fig. 4, the effects of different MLSPs on

natural frequency of the plate have been studied as

shown in Fig. 9, where the variations of natural

frequency with the dimensionless size scale f are

plotted for four cases of MLSPs. In Fig. 9, the black

solid curve is for the case of l0 = l1 = l2 = Cl, the

other curves are calculated by doubling one of the

three MLSPs, respectively, which is the same as did in

Fig. 4. The frequency of case (d) is smaller than that of

case (b) and larger than that of case (c). The higher

frequency represents the higher stiffness, which

results in the smaller deflection, so what shown in

Fig. 9 is consistent with what shown in Fig. 4.

Therefore, the dilatation gradient plays a more

important role than the other two gradients.

6 Concluding remarks

In this paper, an application of a size-dependent

Kirchhoff plate resting on elastic medium is presented,

and three material length scale parameters are con-

tained in the model. If two (l0 and l1) or three (l0, l1 and

l2) material length scale parameters are ignored, the

model can degenerate to the modified couple stress

model and the classical model. The differences
Fig. 8 Natural frequency with foundation parameters

Fig. 9 Effects of different MLSPs on frequencyFig. 7 Normalized natural frequency with size scale
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between the three models and the influences of elastic

medium coefficient on the static bending, buckling and

vibration response of a simply supported micro-plate

on an elastic medium are discussed in detail.

Numerical results indicate that the normalized

stiffness, normalized critical load, and normalized

natural frequency exhibit strong size-dependence. The

results predicted by the present model are very

different from those predicted by the other two

reduced models when the plate thickness is on the

same order of the material length scale parameter.

These size effects are not significant if the thickness of

the plate is about 15 times as large as the material

length scale parameter. For the case of highly rigid

elastic medium, these size effects are also not signif-

icant. The study may be helpful to characterize the

mechanical properties of micro-plate based structures

that can be modeled as resting on elastic medium.
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