1991.9 to 1994.7
吉林大学 | 理论物理 | Doctoral Degree in Science
1987.10 to 1990.7
吉林大学 | 理论物理 | Master's Degree in Science
学习经历1978.10-1982.07 山东大学物理系,获学士学位; 1987.09-1990.07 吉林大学物理系理论物理专业,获硕士学位; 1991.09-1994.07 吉林大学物理系理论物理专业,获博士学位。 工作经历工作经历 1982.08-1985.12 中国科学院光电技术研究所,研究实习员;1986.01-1987.08, 1990.09-1991.08 烟台大学物理系,助教;1994.09-2007.09 山东师范大学物理系,教授、博士生导师;2007.09-今 山东大学物理学院,教授、博士生导师。 1994年晋升为教授,2009年晋升教授二级岗,2013年起为泰山学者特聘教授,2018年起为山东大学特聘教授。 工作介绍 本人及所在的山东大学物理学院量子信息研究团队主要从事量子信息的物理基础研究,过去几年,我们在量子物理基础理论、量子信息、数学物理等多个研究领域完成了一些具有国际影响的工作。代表性成果:1)提出了开放系统的几何相理论(PRL93,080405,2004),为几何相在开放系统的应用奠定了基础,所给公式已成为计算混态几何相的基本依据被广泛应用于各类物理体系。该理论所确定的几何相位被加拿大Laflamme组的实验证实(PRL105,240406,2010);2)证明了通常哈密顿量H(t)的本征值、本征函数描述的量化绝热条件的非充分性(PRL95,110407,2005),并在后续的工作中进一步确立了其性质和应用范围(PRL98,150402,2007;PRL104,120401,2010)。 该绝热条件非充分性的理论结果被中科大杜江峰组的实验证实(PRL101,060403,2008);3)提出了非绝热Holonomy量子计算理论,并应用于开放系统普适量子门的设计(NJP14,103035,2012;PRL109,170501,2012;PRA89,042302,2014)。该理论旨在克服量子系统的控制误差和退相干问题——这是实现量子计算所面临的主要挑战。该理论已被清华大学龙桂鲁组(PRL110,190501,2013)、苏黎世理工与加州理工的联合组(Nature496,482,2013)等的数十个实验证实;4) 提出了关于准对角密度矩阵相干性度量的可加性公理假定,并证明了基于相对熵测量的相干性完全冻结定理。关于该工作的两篇论文都被推荐为Rapid Communications发表在PRA(PRA93,060303(R),2016;PRA94,060302(R),2016).5) 提出了未知量子态相干度的最优下界理论公式,并给出了数值计算方案(PRL 120, 170501,2018)。由于真实量子系统的状态往往未知,无法直接计算系统的相干性,为解决相干性度量理论面向实际应用的这一难题,我们提出了利用不完备信息估算未量子态相干性的方法,该方法适用于各种相干性度量,可基于任意的实验数据确定相干性度量的最优下界。 除上述代表性成果外,我们还完成了一些其他有影响的工作,如,辫子群的不可约表示理论已被写入多本专著和研究生教材,并获山东省科技进步一等奖。近几年,6篇论文发表在PRL上,50余篇论文发表在PR系列。研究成果先后获得山东省科技进步一等奖、教育部自然科学一等奖、国家自然科学二等奖。 代表性论文作为第一和通信作者6篇PRL、3篇PRA Rapid Communication,42篇PR系列。 1. K. Z. Li , P. Z. Zhao , and D. M. TongApproach to realizing nonadiabatic geometric gates with prescribed evolution pathsPhysical Review Research 2, 023295 (2020)2.P. Z. Zhao, K. Z. Li , G. F. Xu, and D. M. TongGeneral approach for constructing Hamiltonians for nonadiabatic holonomic quantum computationPhysical Review A 101, 062306 (2020)3. P. Z. Zhao, G. F. Xu and D. M. TongNonadiabatic holonomic multiqubit controlled gatesPhysical Review A, 99, 052309 (2019)4. C. L. Liu, Xiao-Dong Yu and D. M. TongFlag additivity in quantum resource theoriesPhysical Review A, 99, 042322 (2019)5. Zhenxing Zhang, P Z Zhao, Tenghui Wang, Liang Xiang, Zhilong Jia, Peng Duan, D M Tong, Yi Yin and Guoping GuoSingle-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutritNew J. Phys. 21, 073024 (2019)6. G. F. Xu, E. Sjoqvist and D. M. TongPath-shortening realizations of nonadiabatic holonomic gatesPhysical Review A, 98, 052315 (2018)7. P.Z. Zhao, X Wu, T. H. Xing, G. F. Xu and D. M. TongNonadiabatic holonomic quantum computation with Rydberg superatoms, Physical Review A, 98, 032313 (2018)8.Da-Jian Zhang, C. L. Liu, Xiao-Dong Yu and D. M. TongEstimating Coherence Measures from LimitedPhysical Review Letters, 120, 170501 (2018)9. C. L. Liu, Yan-Qing Guo, D. M. TongEnhancing coherence of a state by stochastic strictly incoherent operationsPhys. Rev. A 96, 062325 (2017)10. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sjöqvist, D. M. TongRydberg-atom-based scheme of nonadiabatic geometric quantum computationPhys. Rev. A 96, 052316 (2017)11. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sjöqvist, D. M. TongSingle-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspacesPhys. Rev. A 95, 062310 (2017)12. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik SjöqvistRobust paths to realize nonadiabatic holonomic gatesPhys. Rev. A 95, 052349 (2017)13. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong,Composite nonadiabatic holonomic quantum computationPhys. Rev. A 95, 032311 (2017)14. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. TongUniversal freezing of asymmetryPhys. Rev. A 95, 022323 (2017)15. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. TongAlternative framework for quantifying coherencePhys. Rev. A 94 (2016) 060302 (Rapid Communications).16. Pei-Zi Zhao, G F Xu, D M TongNonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phasesPhys. Rev. A 94 (2016) 062327.17. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. TongGeneral approach to find steady-state manifolds in Markovian and non-Markovian systemsPhys. Rev. A 94 (2016) 052132.18. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. TongMeasure-independent freezing of quantum coherencePhys. Rev. A 93 (2016) 060303 (Rapid Communications).19. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processesPhys. Rev. A 93 (2016) 012117.20. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. TongNonadiabatic holonomic gates realized by a single-shot implementationPhys. Rev. A 92 (2015) 052302.21. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sjöqvist, L. C. KwekFast non-Abelian geometric gates via transitionless quantum drivingSci. Rep. 5, 18414 (2015).22. Xiao-Dong Yu, Yan-Qing Guo, D M TongA proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequalityNew J. Phys. 17 (2015) 093001.23. Da-Jian Zhang, Xiao-Dong Yu, D M TongTheorem on the existence of a non-zero energy gap in adiabatic quantum computationPhys. Rev. A 90(2014)042321.24. Long-Jiang Liu, D M TongCompletely positive maps within the framework of direct-sum decomposition of state spacePhys. Rev. A 90(2014)012305.25. X D Yu, D M TongCoexistence of Kochen-Specker inequalities and noncontextuality inequalitiesPhys. Rev. A 89(2014)010101 (Rapid Communications).26. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P ZanardiQuantum computation in noiseless subsystems with fast non-Abelian holonomiesPhys. Rev. A 89(2014)042302.27. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek,Nonadiabatic holonomic quantum computation in decoherence-free subspacesPhys. Rev. Lett, 109(2012)170501.28. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K SinghNon-adiabatic holonomic quantum computationNew J phys., 14(2012)10303529. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M TongRobustness of nonadiabatic holonomic gatesPhys. Rev. A 86(2012)06232230. D M Tong, Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximationPhys. Rev. Lett 106 (2011)138903.31. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong,Phase control of probe response in a Doppler-broadened N-type four-level systemPhys. Rev. A 83(2011)043805.32. D M Tong Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximationPhys. Rev. Lett., 104(2010) 12:12040133. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek,Separable states and geometric phases of an interacting two-spin system Phys. Rev. A, 81(2010)1:01211634. S Yin, D M TongGeometric phase of a quantum dot system in nonunitary evolution Phys. Rev. A 79 (2009)4: 04430335. C S Guo, L L Lu , G X Wei, J L He, D M TongDiffractive imaging based on a multipinhole plateOptics Letters 34(2009)12:181336. D M Tong, K. Singh, L C Kwek, C H OhSufficiency Criterion for the Validity of the Adiabatic ApproximationPhys. Rev. Lett., 98(2007)15:15040237. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit Phys. Rev. A, 73(2006)052103.38. D M Tong, K. Singh, L C Kwek, C H OhQuantitative conditions do not guarantee the validity of the adiabatic approximationPhys. Rev. Lett., 95(2005)11:11040739. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed Phys. Rev. A 71(2005)03210640. D M Tong, E. Sjoqvist, L C Kwek, C H OhKinematic approach to geometric phase of mixed states under nonunitary evolutionsPhys. Rev. Lett., 93(2004)8:08040541. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma Operator-sum representation of time-dependent density operators Phys. Rev. A, 69(2004)05410242. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh General formalism of Hamiltonians for realizing a prescribed evolution of a qubit Phys. Rev. A, 68(2003)06230743. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson Relation between the geometric phases of the entangled biparticle system and their subsystemsPhys. Rev. A, 68(2003)02210644. K Sigh, D M Tong, K Basu, J L Chen and J F Du Geometric phase for non-degenerate and degenerate mixed statesPhys. Rev. A, 67(2003)3:03210645. S X Liu, G L Long, D M Tong and Feng Li General scheme for superdense coding between multipartiesPhys. Rev. A, 65(2002)02
1991.9 to 1994.7
吉林大学 | 理论物理 | Doctoral Degree in Science
1987.10 to 1990.7
吉林大学 | 理论物理 | Master's Degree in Science
1990.07 to 1991.08
 烟台大学物理系 
2007.09 to Now
 山东大学物理与微电子学院 
2002.02 to 2007.07
 新加坡国立大学量子中心 
1994.08 to 2007.09
 山东师范大学物理系 
1986.01 to 1991.08
 烟台大学物理系 
1982.08 to 1985.12
 中国科学院光电技术研究所 
No content