熊胜林
Professor
Visit:
Personal Information:
  • Name (Pinyin):
    xiong shenglin
  • Date of Employment:
    2011-07-13
  • School/Department:
    化学与化工学院/晶体材料国家重点实验室
  • Education Level:
    With Certificate of Graduation for Doctorate Study
  • Business Address:
    山东大学中心校区化学与化工学院老晶体北楼102室
  • Gender:
    Male
  • Degree:
    Doctoral Degree in Science
  • Status:
    Employed
  • Alma Mater:
    中国科学技术大学
  • Supervisor of Doctorate Candidates
  • Supervisor of Master's Candidates
Discipline:
Inorganic Chemistry;
Biography

个人简介:

熊胜林,男,1974年10月,教授,博士生导师

课题组一直主要从事无机合成和制备化学基础研究,特别在以化学储能功能化为导向的无机材料的合成方法学、精准合成和宏量制备方面开展研究。近五年在AM, Angew, EES, AEM, AFM, Nano Energy和JMCA等刊物发表通讯作者论文40余篇,15篇ESI高被引,10篇单引>100次,单篇最高他引410次,文近五年总他引5000余次,H指数45。

 

【主讲课程】

无机化学 (本科生)

无机化学博士研究生专业课 《无机化学前言领域概论》

 

【研究领域和兴趣】

研究方向:先进能源材料与无机合成化学

 

主要论著

2018

[1] Jing Bai, Baojuan Xi, Hongzhi Mao, Yue Lin*, Xiaojian Ma, Jinkui Feng, and Shenglin Xiong*, “One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage”, Adv. Mater. 2018, 30(35), 1802310. DOI:10.1002/adma.201802310. (I.F.: 21.95)

[2] Baosong Li, Baojuan Xi, Zhenyu Feng, Yue Lin*, Jincheng Liu, Jinkui Feng, Yitai Qian, and Shenglin Xiong*, “Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO2 Nanoparticles for Ultrafast Sodium Storage”, Adv. Mater. 2018, 30(10), 1705788; DOI:10.1002/adma.201705788. (I.F.: 21.95)  (Cited Times : 18; ESI高引)

[3] Jinlin Yang, Zhicheng Ju*, Yong Jiang, Zheng Xing, Baojuan Xi, Jinkui Feng, and Shenglin Xiong*, Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium Ion Storage”, Adv.  Mater. 2018, 30(4), 1700104; DOI:10.1002/adma.201700104.  (Cited Times : 25; ESI高引)

[4] Yanting Chu, Lingyu Guo, Baojuan Xi, Zhenyu Feng, Fangfang Wu, Yue Lin*, Jincheng Liu, Di Sun*, Jinkui Feng, Yitai Qian, and Shenglin Xiong*, “Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-OrganicClusters for  Efficient Lithium Storage”, Adv. Mater. 2018, 30(6), 1704244;DOI:10.1002/adma.201704244.  (Cited Times : 19; ESI高引)

[5] Junhao Zhang, Man Huang, Baojuan Xi, Kan Mi, Aihua Yuan, and Shenglin Xiong*, "Studying the synergistic effect on enhancing specific capacity and electrochemical kinetics of lithium-sulfur batteries",  Adv. Energy. Mater. 2018, 8(2), 1701330; DOI: 10.1002/aenm.201701330. (I.F.: 21.875)  (Cited Times :20; ESI高引)

[6] Fangfang Wu, Shanshan Zhang, Baojuan Xi, Zhenyu Feng, Di Sun*, Xiaojian Ma, Junhao Zhang, Jinkui Feng, and Shenglin Xiong*, “Unusual Formation of CoO@C “Dandelions” Derived from Two-Dimensional Kagóme MOLs for Efficient Lithium Storage”,Adv. Energy Mater. 2018, 8(13), 1703242; DOI: 10.1002/aenm.201703242.

[7] Shuangshuang, Baojuan Xi, Xiaolei Liu, Lin Ju, Peng Wang*, Zhenyu Feng, Xiaojian Ma, and Shenglin Xiong*, “An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution”, J. Mater. Chem. A 2018, 6(7), 2895−22899; DOI: 10.1039/c7ta10958j. (I.F.: 9.931)

[8] Rui ZHang, Xiangxia Jin, Yanting Chu, Lei, Wang, Wenjun Kang, Denghu Wei, Haibo Li*, and Shenglin Xiong*, “Nitrogen/oxygen co-doped carbon monolithic electrode derived from melamine from for high-performance supercapacitors”, J. Mater. Chem. A 2018, 6(34), 16465−16474; ; DOI: 10.1039/c8ta06471g.

[9] Man Huang, Jingyu Yang, Baojuan Xi, Kan Mi, Zhenyu Feng, Jing Liu, Jinkui Feng, Yitai Qian, and Shenglin Xiong*, “Enhancing kinetics of Li-S batteries by garphene-like N,S-codoped biochar fabricated in NaCl nonaqueous ionic liquid”, Sci. China Mater. 2018, xxx−xxx; accepted. (I.F.: 4.318)


Education
  • 1997-9 — 2001-7
    安徽工程大学
    生物化学工程
    Bachelor
  • 2003-9 — 2007-6
    中国科学技术大学
    Inorganic Chemistry
    Doctoral Degree in Science
  • 1997-9 — 2001-6
    安徽工程大学
    Bioengineering
    Bachelor
Publication
Papers

1. 魏传亮. In Situ Anchoring Ultrafine ZnS Nanodots on 2D MXene Nanosheets for Accelerating Polysulfide Redox and Regulating Li Plating .ADVANCED MATERIALS .2023

2. 逯慧兵. In Situ Electrochemically Transforming VN/V<sub>2</sub>O<sub>3</sub> Heterostructure to Highly Reversible V<sub>2</sub>NO for Excellent Zinc Ion Storage .SMALL STRUCTURES.2023

3. 鲍明英. Introducing Ce ions and oxygen defects into V<sub>2</sub>O<sub>5</sub> nanoribbons for efficient aqueous zinc ion storage .NANO RESEARCH.2023,16 (2):2445

4. 张明哲. Ni<sub>2</sub>P immobilized on N,P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism .Journal of Materials Chemistry A.2023,11 (15):8162

5. 李保松. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO 2 Hybrids with Ultrafast Sodium Storage .advanced energy materials.2019,9 (8)

6. 黄曼. 在NaCl非水离子液体中制备类石墨烯状氮硫共掺杂生物质碳材料来提高锂硫电池的动力学研究(英文) .SCIENCE CHINA-MATERIALS.2019,62 (4):455-464

7. . Two-dimensional MXenes for flexible energy storage devices .Energy & Environmental Science.2023,16 (10)

8. 王正冉. Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives .Advanced Functional Materials.2023,33 (12)

9. 申恒涛. Controlled prelithiation of siloxene nanosheet anodes enables high performance 5 V-class lithium-ion batteries .Chemical Engineering Journal.2023,454

10. 安永灵. Fluorine- and Acid-Free Strategy toward Scalable Fabrication of Two-Dimensional MXenes for Sodium-Ion Batteries .Nano Letters.2023,23 (11):5217-5226

11. 王正冉. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries .NANO RESEARCH.2022

12. 张琦琨. Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer .JOURNAL OF POWER SOURCES.2022,521

13. . Two-dimensional silicene/silicon and its derivatives: Properties, synthesis and frontier applications .Materials Today.2023,67 :566

14. 王正冉. Free-standing Na<sub>2</sub>C<sub>6</sub>O<sub>6</sub>/MXene composite paper for high-performance organic sodium-ion batteries .NANO RESEARCH.2023,16 (1):458

15. 安永灵. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries .ACS nano.2021,15 (9):15259-15273

16. 魏传亮. MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries .ACS Applied Materials & Interfaces.2022,14 (2):2979-2988

17. 魏传亮. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes .J.Mater.Sci.Technol..2022,115 (20):156-165

18. 谭利文. Design of Robust, Lithiophilic, and Flexible Inorganic-Polymer Protective Layer by Separator Engineering Enables Dendrite-Free Lithium Metal Batteries with LiNi0.8Mn0.1Co0.1O2 Cathode .Small.2021,17 (13)

19. 鲍明英. Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage .Nano Research.2022 (16)

20. 王宇. Binary Sulfiphilic Nickel Boride on Boron-Doped Graphene with Beneficial Interfacial Charge for Accelerated Li–S Dynamics .small.2023 (29)

21. 王鹏. WP Nanocrystals on N,P Dual-Doped Carbon Nanosheets with Deeply-Analyzed Catalytic Mechanisms for Lithium–Sulfur Batteries .CCS CHEMISTRY.2022,5 (2):397

22. 袁佳. Multifunctional Atomic Molybdenum on Graphene with Distinctive Coordination to Solve Li and S Electrochemistry .Small .2022 (37)

23. 张明哲. Ni2P immobilized on N,P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism .Journal of Materials Chemistry A.2023 (15)

24. 逯慧兵. In Situ Electrochemically Transforming VN/V2O3 Heterostructure to Highly Reversible V2NO for Excellent Zinc Ion Storage .Small Structures.2023 (23)

25. 张华. Ultrafine PtMo Nanocrystals Confined on N-Doped Carbon Toward Efficient pH-Universal Hydrogen Evolution Reaction .Advanced functional materials.2023 (32)

26. 魏传亮. In Situ Anchoring Ultrafine ZnS Nanodots on 2D MXene Nanosheets for Accelerating Polysulfide Redox and Regulating Li Plating .Advanced Materials.2023 (32)

27. 王晓. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. .ACS nano.2021,15 (6):9244-9272

28. 李斌. In-situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries .NANO RESEARCH.2022

29. 宋宁. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries .NANO RESEARCH.2022,15 (2):1424-1432

30. Chen, Yaxin. Defect-Selectivity and “Order-in-Disorder” Engineering in Carbon for Durable and Fast Potassium Storage .ADVANCED MATERIALS.2022,34 (7):e2108621

31. Liang, Yazhan. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage .ADVANCED MATERIALS.2022 :e2202673

32. 王鹏. A Zn8 Double-Cavity Metallacalix[8]arene as Molecular Sieve to Realize Self-Cleaning Intramolecular Tandem Transformation of Li?S Chemistry .ADVANCED MATERIALS .2022 (51)

33. 李晓伟. Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni(OH)2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment .JOURNAL OF MATERIALS CHEMISTRY Journal.2012,22 (28):14276-14283

34. 白玉林. One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core-Shell Hierarchical Microspheres with Superior Lithium Storage Properties .J. Phys. Chem. C.2016,120 (5):2984-2992

35. 李敬发. High electrochemical performance of monodisperse NiCo2O 4 mesoporous microspheres as an anode material for Li-ion batteries .ACS Applied Materials & Interfaces.2013,5 (3):981-988

36. 毋芳芳. Hydrothermal Synthesis of Unique Hollow Hexagonal Prismatic Pencils of Co3V2O8H2O: A New Anode Material for Lithium-Ion Batteries .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2015,54 (37):10787-10791

37. 李敬发. Spinel Mn1.5Co1.5O4 core-shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity .JOURNAL OF MATERIALS CHEMISTRY Journal.2012,22 (43):23254-23259

38. 王晓. A High-Rate and Ultrastable Aqueous Zinc-Ion Battery with a Novel MgV2O6 center dot 1.7H(2)O Nanobelt Cathode .small.2021,17 (20):e2100318

39. Li, Jingfa. Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder .Journal of Materials Chemistry A.2013,1 (48):15292-15299

40. 褚衍婷. Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 core-shell microcubes with controllable pore size .RSC advances.2015,5 (51):40899-40906

41. 柏静. Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material .Advanced Functional Materials.2014,24 (20):3012-3020

42. 刘玉荣. Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries .Journal of Materials Chemistry A.2014,2 (34):14236-14244

43. 李保松. Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties .Journal of Materials Chemistry A.2015,3 (19):10336-10344

44. 李敬发. Uniform LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance .NANO ENERGY.2014 (6):1249-1260

45. 姜勇. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets .能源环境科学.2016,9 (4):1430-1438

46. 褚衍婷. Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage .CHINESE CHEMICAL LETTERS Journal.2022,33 (1):486

47. 谷雨. Activation of Main-Group Antimony Atomic Sites for Oxygen Reduction Catalysis .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2022

48. Ahmad, Muhammad. NiSe2/FeSe2 heterostructured nanoparticles supported on rGO for efficient water electrolysis .Inorganic Chemistry Frontiers.2022,9 (3):448

49. 黄曼. Quantum-Matter Bi/TiO2 Heterostructure Embedded in N-Doped Porous Carbon Nanosheets for Enhanced Sodium Storage .SMALL STRUCTURES.2021,2 (4)

50. 开爽爽. One-Pot Synthesis of Size-Controllable Core–Shell CdS and Derived CdS@ZnxCd1?xS Structures for Photocatalytic Hydrogen Production .chemistry-a European journal.2017,23 (65):16653-16659

51. 姜勇. Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries .Journal of Materials Chemistry A.2016,4 (27):10719-10726

52. 马小健. Formation of C@Fe3O4@C Hollow Sandwiched Structures with Enhanced Lithium-Storage Properties .European Journal of Inorganic Chemistry.2016 (23):3722-3727

53. 王鹏. WSe2 Flakelets on N-Doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2022,61 (7):e202116048

54. 安永灵. Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal-Organic Frameworks for High-Performance Lithium Sulfur Batteries .ACS Applied Materials & Interfaces.2017,9 (14):12400-12407

55. 安永灵. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte .2018,378 :66-72

56. 安永灵. One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries .ACS nano.2022,16 (3):4560

57. 安永灵. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries .ACS nano.2021,15 (9):15259

58. 钱壹. Flexible, freestanding and lithiophilic Indium/MXene heterostructure enabling dendrite-free lithium metal anode in commercial carbonate-based electrolyte with high voltage cobalt-free LiNi0.5Mn1.5O4 cathode .JOURNAL OF POWER SOURCES.2022,520

59. 刘承凯. Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries .Chemical Engineering Journal.2022,430

60. 魏传亮. Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes .Journal of Materials Science and Technology.2022,115 :156

61. 张琦琨. Highly reversible lithium metal-organic battery enabled by a freestanding MXene interlayer .JOURNAL OF POWER SOURCES.2022,521

62. 王玉胜. Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5 V-class lithium metal batteries with commercial carbonate-based electrolyte .Applied surface science.2022,583

63. 魏传亮. MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries .ACS. Appl. Mater. Interfaces.2022,14 (2):2979

64. 奚宝娟. WSe2?Flakelets on N-doped Graphene for Accelerating Polysulfide Redox and Regulating Li Plating .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2022 (7)

65. 毋芳芳. Unusual Formation of CoO@C “Dandelions” Derived from Two-Dimensional Kagóme MOLs for Efficient Lithium Storage .ADVANCED MATERIALS .2018 (13)

66. 韩建梅. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries .Journal of Energy Chemistry .2021,52 :1

67. 王晓. In Situ Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries .纳米快报.2022,22 (1):119

68. 张乾亮. Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes .Nano Research.2022

69. 貟元兴. Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage .Journal of Energy Chemistry .2022,66 :339

70. 貟元兴. Zero-Strain Structure for Efficient Potassium Storage Nitrogen-Enriched Carbon Dual-Confinement CoP Composite .Advanced Energy Materials.2022,12 (3)

71. 王鹏. Dual-Functional MgO Nanocrystals Satisfying Both Polysulfides and Li Regulation toward Advanced Lithium-Sulfur Full Batteries .Small.2021,17 (44)

72. 安永灵. Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries .Chemical Engineering Journal .2020,400

73. 李媛. High-Safety and High-Voltage Lithium Metal Batteries Enabled by a Nonflammable Ether-Based Electrolyte with Phosphazene as a Cosolvent .ACS Applied Materials & Interfaces.2021,13 (8):10141

74. 魏传亮. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives .Energy Storage Materials.2021,38 :157

75. 魏传亮. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries .ACS nano.2021,15 (8):12741

76. 安永灵. Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries .ACS nano.2021,15 (7):11828

77. 田园. Micron-Sized Nanoporous Vanadium Pentoxide Arrays for High-Performance Gel Zinc-Ion Batteries and Potassium Batteries .Chemistry of Materials.2020,32 (9):4054

78. 钱壹. Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode .Chemical Engineering Journal .2021,421

79. 田园. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries .Energy Storage Materials.2021,41 :343

80. 安永灵. Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage .NANO TODAY.2021,37

81. 安永灵. Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries .ACS nano.2020,14 (12):17574

82. 魏浩. Porous lithium cobalt oxide fabricated from metal-organic frameworks as a high-rate cathode for lithium-ion batteries .RSC ADVANCES.2020,10 (53):31889

83. 张峥春雨. Oxygen Defects Engineering of VO2 center dot xH(2)O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage .Advanced functional materials.2021,31 (34)

84. 王鹏. Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries .ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.2021,60 (28):15563

85. 罗瑞. N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium-sulfur batteries .Inorganic Chemistry Frontiers.2020,7 (20):3969

86. 王晓. Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate .纳米快报.2020,20 (4):2899

87. 魏入朝. Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution .纳米快报.2020,20 (10):7342

88. 王鹏. Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries .Advanced Energy Materials.2021,11 (7)

89. 石念香. Sandwich Structures Constructed by ZnSe subset of N-C@MoSe(2)Located in Graphene for Efficient Sodium Storage .Advanced Energy Materials.2020,10 (41)

90. 谷雨. Sponge Assembled by Graphene Nanocages with Double Active Sites to Accelerate Alkaline HER Kinetics .纳米快报.2020,20 (11):8375

91. 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .Journal of Materials Chemistry A.2018,6 (7):2895

92. 褚衍婷. Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage .Advanced Materials.2018,30 (6)

93. 石念香. Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries .Journal of Materials Chemistry A.2019,7 (8):4009

94. 张华. Interface engineering and heterometal doping Mo-NiS/Ni(OH)(2) for overall water splitting .Nano Research.2021

95. 张乾亮. Molten Salt Derived Graphene-Like Carbon Nanosheets Wrapped SiOx/Carbon Submicrospheres with Enhanced Lithium Storage .CHINESE JOURNAL OF CHEMISTRY Journal.2021,39 (5):1233

96. 王鹏. Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium-Sulfur Batteries .ANGEWANDTE CHEMIE INTERNATIONAL EDITION.2021,60 (28):15563

97. 穆海姆德. N-Doped carbon coated NiCo2O4 nanorods for efficient electrocatalytic oxygen evolution .Inorganic Chemistry Frontiers.2021,8 (15):3740

98. 褚衍婷. One-step construction of MoO2 uniform nanoparticles on graphene with enhanced lithium storage .CHINESE CHEMICAL LETTERS Journal.2020,32 (6):1983

99. 王晓. Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries .ACS nano.2021,15 (6):9244

100. 潘晓娜. Electrochemical and Nanomechanical Properties of TiO2 Ceramic Filler Li-Ion Composite Gel Polymer Electrolytes for Li Metal Batteries .Advanced Materials Interfaces.2021,8 (16)

101. 张乾亮. Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage .Inorganic Chemistry Frontiers.2021,8 (18):4282

102. 田文芝. Formation of hierarchical Fe7Se8 nanorod bundles with enhanced sodium storage properties .Journal of Energy Chemistry .2019,44 :97

103. 田文芝. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries .Nano Research.2020,13 (10):2673

104. 魏入朝. Nanoribbon Superstructures of Graphene Nanocages for Efficient Electrocatalytic Hydrogen Evolution .纳米快报.2020,20 (10):7342

105. 王鹏. Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries .Advanced Energy Materials.2021,11 (7)

106. 谷雨. Sponge Assembled by Graphene Nanocages with Double Active Sites to Accelerate Alkaline HER Kinetics .纳米快报.2020,20 (11):8375

107. 谷雨. Boosting Selective Nitrogen Reduction via Geometric Coordination Engineering on Single-Tungsten-Atom Catalysts .ADVANCED MATERIALS Journal.2021

108. 魏入朝. Layer-by-Layer Stacked (NH4)(2)V4O9 center dot 0.5H(2)O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage .ACS Appl. Energy Mater. .2020,3 (6):5343

109. 黄曼. TiO2-Based Heterostructures with Different Mechanism: A General Synergistic Effect toward High-Performance Sodium Storage .Small.2020,16 (42)

110. 石念香. Sandwich Structures Constructed by ZnSe subset of N-C@MoSe(2)Located in Graphene for Efficient Sodium Storage .Advanced Energy Materials.2020,10 (41)

111. 魏入朝. Nanoribbon Superstructures of Graphene Nanocages for Efficient Hydrogen Evolution .Nano Letters.2020 (4)

112. 罗瑞. N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium-sulfur batteries .Inorganic Chemistry Frontiers.2020,7 (20):3969

113. 黄曼. Systematic Study of Alkali Cations Intercalated Titanium Dioxide Effect on Sodium and Lithium Storage .Small.2020,16 (33)

114. 石念香. Hierarchical Octahedra Constructed by Cu2S/MoS2 subset of Carbon Framework with Enhanced Sodium Storage .Small.2020,16 (23)

115. 陶苑. Controlled synthesis of copper reinforced nanoporous silicon microsphere with boosted electrochemical performance .JOURNAL OF POWER SOURCES.2020,455

116. 石念香. Boosting Na(+)Storage Ability of Bimetallic Mo(x)W(1-x)Se(2)with Expanded Interlayers .CHEMISTRY-A EUROPEAN JOURNAL .2020,26 (43):9580

117. 谷雨. Sponge Assembled by Graphene Nanocages with Double Active Sites to Accelerates Alkaline HER Kinetics .Nano Letters.2020 (11)

118. 郭康康. Hierarchical Microcables Constructed by CoP@C subset of Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage .Advanced Energy Materials.2020,10 (12)

119. 安永灵. Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion .Energy Storage Materials.2020,32 :115

120. 田园. Recently advances and perspectives of anode-free rechargeable batteries .Nano Energy.2020,78

121. 田园. Recent Advances and Perspectives of Zn-Metal Free "Rocking-Chair"-Type Zn-Ion Batteries .Advanced Energy Materials.2021

122. 王晓. Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate .纳米快报.2020,20 (4):2899

123. Jinkui Feng. Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive .Journal of the Electrochemical Society.2019 (13)

124. Jinkui Feng. Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries .ACS Applied Materials & Interfaces.2019 (26)

125. 石念香. One-Step Construction of MoS0.74Se1.26/N-Doped Carbon Flower-like Hierarchical Microspheres with Enhanced Sodium Storage .ACS Applied Materials & Interfaces.2019,11 (47):44342

126. 王晓. Layered (NH4)(2)V6O16 center dot 1.5H(2)O nanobelts as a high-performance cathode for aqueous zinc-ion batteries .Journal of Materials Chemistry A.2019,7 (32):19130

127. weiruchao , Xi Baojuan , fengzhenyu , Jinkui Feng  and xiong shenglin. N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage .Journal of Energy Chemistry .2020

128. Xi Baojuan , fengzhenyu , Jinkui Feng , xiong shenglin  and 石念香. Strongly Coupled W2C Atomic Nanoclusters on N/P-Codoped Graphene for Kinetically Enhanced Sulfur Host .Advanced Materials Interfaces.2019,6 (9)

129. Xi Baojuan , weiruchao , Jinkui Feng , xiong shenglin  and 郭康康. Hierarchical Microcables Constructed by CoP@C?Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage .advanced energy materials.2020

130. Xi Baojuan , fengzhenyu , Jinkui Feng , xiong shenglin  and 田文芝. Sulfiphilic Few-Layered MoSe2 Nanoflakes Decorated rGO as a Highly Efficient Sulfur Host for Lithium-Sulfur Batteries .Advanced Energy Materials.2019,9 (36)

131. Jinkui Feng  and xiong shenglin. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries .Journal of Materials Chemistry A.2019

132. Jinkui Feng , Xi Baojuan  and xiong shenglin. Scalable and Physical Synthesis of 2D Silicon from Bulk Layered Alloy for Lithium-Ion Batteries and Lithium Metal Batteries .ACS nano.2019 :13690

133. Jinkui Feng , Xi Baojuan  and xiong shenglin. Porosity- and Graphitization-Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium-Metal Anode .Advanced functional materials.2019 :1908721

134. Jinkui Feng , Xi Baojuan  and xiong shenglin. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode .JOURNAL OF POWER SOURCES.2019

135. Jinkui Feng , xiong shenglin  and zhaoguoqun. Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries .Journal of Materials Chemistry A.2019

136. Xi Baojuan , xiong shenglin , Jinkui Feng  and 安永灵. Commercial expanded graphite as a low cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte .JOURNAL OF POWER SOURCES.2018,378 :66

137. Xi Baojuan , xiong shenglin , Jinkui Feng  and 安永灵. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries .NANO ENERGY.2018,47 :503

138. xiong shenglin , Ji Bing , Jinkui Feng  and 安永灵. Ultrafine TiO<inf>2</inf>Confined in Porous-Nitrogen-Doped Carbon from Metal-Organic Frameworks for High-Performance Lithium Sulfur Batteries .ACS Appl. Mater. Interfaces.2017,9 (14):12400

139. Jinkui Feng , Xi Baojuan , xiong shenglin  and 费慧芳. Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode .JOURNAL OF POWER SOURCES.2018,399 :294

140. xiong shenglin , Jinkui Feng  and 安永灵. Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries .ACS nano.2018,12 (5):4993

141. Xi Baojuan , fengzhenyu , xiong shenglin  and 石念香. Insight into different-microstructured ZnO/ graphene-functionalized separators affecting the performance of lithium–sulfur batteries .Journal of Materials Chemistry A.2019 (8)

142. xiong shenglin  and 张璟. P-doped BN nanosheets decorated graphene as the functional interlayer for Li–S batteries .Journal of Energy Chemistry .2019

143. lijingfa  and xiong shenglin. Spinel 1 Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity .Journal of Materials Chemistry A.2012

144. Xi Baojuan , Jinkui Feng , qianyitai , xiong shenglin  and 王晓. Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries .journal of materials chemistry A.2019

145. cilijie , xiong shenglin , Jinkui Feng , qianyitai  and 安永灵. Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries .ACS nano.2018,12 (12):12932

146. Xi Baojuan , xiong shenglin  and Kai, Shuangshuang. Nanostructures inducing distinctive photocatalytic and photoelectrochemical performance via the introduction of rGO into CdxZn1-xS .NANOSCALE.2019,11 (12):5571

147. Xi Baojuan , wangpeng , xiong shenglin  and 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .journal of materials chemistry A.2018,6 (7):2895

148. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and Li Baosong. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2019,9 (8)

149. Xi Baojuan , fengzhenyu , Jinkui Feng , qianyitai , xiong shenglin  and Huang Man. New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries .Small.2019,15 (12)

150. xiong shenglin  and An Yonglin. Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal- Organic Frameworks for High-Performance Lithium Sulfur Batteries .ACS Applied Materials & Interfaces.2017, 9 (14):12400

151. xiong shenglin  and Li, Yumei. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage .ELECTROCHIMICA ACTA.2019,296 :582

152. Xi Baojuan , fengzhenyu , Jinkui Feng , qianyitai , xiong shenglin  and huang man. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid .SCIENCE CHINA-MATERIALS.2019,62 (4):455

153. xiong shenglin , qianyitai , Jinkui Feng  and 曾桂芳. Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery .JOURNAL OF THE ELECTROCHEMICAL SOCIETY Journal.2019,166 (6):A1217

154. Jinkui Feng , xiong shenglin  and 郭丽萍. Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries .Materials Technology.2017, 32 (10):592

155. xiong shenglin  and An Yonglin. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs .CHEMICAL COMMUNICATIONS.2017, 53 (59):8360

156. xiong shenglin , Jinkui Feng , cilijie  and An Yongling. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries .JOURNAL OF POWER SOURCES.2017, 363 :193

157. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and bojing. One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage .ADVANCED MATERIALS Journal.2018

158. Xi Baojuan , fengzhenyu , Jinkui Feng , qianyitai , xiong shenglin  and Li baosong. Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO2?Nanoparticles for Ultrafast Sodium Storage .ADVANCED MATERIALS Journal.2018

159. Xi Baojuan , fengzhenyu , Jinkui Feng , qianyitai , xiong shenglin  and 黄曼. Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage .journal of materials chemistry A.2018

160. Xi Baojuan , wangpeng , fengzhenyu , xiong shenglin  and 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .Journal of Materials Chemistry A.2018 (7)

161. Xi Baojuan , wufangfang , maohongzhi , Jinkui Feng , xiong shenglin  and Baosong Li. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2018

162. qianyitai , xiong shenglin , Xi Baojuan , fengzhenyu , Di Sun  and chuyanting. Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage .Advanced Materials.2018,30 (6)

163. Xi Baojuan , fengzhenyu , Di Sun , maxiaojian , xiong shenglin  and wufangfang. Unusual Formation of CoO@C "Dandelions" Derived from 2D Kagome MOLs for Efficient Lithium Storage .advanced energy materials.2018,8 (13)

164. fengzhenyu , Xi Baojuan , Jinkui Feng , xiong shenglin  and jiangyong. Rationally Incorporated MoS2/SnS2 Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries .ACS Applied Materials & Interfaces.2017, 9 (33):27697

165. Xi Baojuan , Jinkui Feng , qianyitai , xiong shenglin  and mi kan. Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for Lithium-Sulfur Batteries .Advanced functional materials.2017, 27 (1)

166. xiong shenglin , maohongzhi , Jinkui Feng , Xi Baojuan  and shi nianxiang. Hydrothermal Synthesis of ZnWO4 Hierarchical Hexangular Microstars for Enhanced Lithium-Storage Properties .European Journal of Inorganic Chemistry.2017, 0 (3):734

167. xiong shenglin  and huang man. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage .journal of materials chemistry A.2017,5 (1):266

168. xiong shenglin  and bojing. ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties .ACS Appl. Mater. Interfaces.2015,7

169. xiong shenglin , qianyitai  and wufangfang. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: a new anode material for lithium-ion batteries .Angew. Chem. Int. Ed..2015,54 :10787

170. qianyitai , xiong shenglin  and 刘锦程. Multifunctional CoO@C metasequoia arrays for enhanced lithium storage .NANO ENERGY.2014

171. Xi Baojuan , Yifeng Wang , xiong shenglin  and kai shuangshuang. One-Pot Synthesis of Size-Controllable Core-Shell CdS and Derived CdS@ZnxCd1-xS Structures for Photocatalytic Hydrogen Production .Chemistry-A European Journal.2017, 23 (65):16653

172. xiong shenglin  and jiangyong. Enhancing the cycling stability of Na-ion batteries bybonding SnS2 ultrafine nanocrystals on amino- functionalized graphene hybrid nanosheets .Energy & Environmental Science.2016,9 :1430

173. xiong shenglin. Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for Lithium-ion batteries .J. Mater. Chem.A.2013

174. xiong shenglin  and 刘玉荣. General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties .Rsc Adv..2015,5 :26863

175. qianyitai , xiong shenglin  and 李保松. Mesoporous single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties .J. Mater. Chem. A.2015,3 :10336

176. xiong shenglin  and jiangyong. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries .J. Mater. Chem. A.2015,3 :4539

177. xiong shenglin. Simple Synthesis of Yolk-Shelled ZnCo2O4 Microspheres towards enhancing the Electrochemical Performance of Lithium–ion Batteries in Conjunction with Sodium Carboxymethyl Cellulose Binder .J. Mater. Chem. A.2013

178. xiong shenglin. Hollow MnCo2O4 Submicrospheres with Multilevel Interiors: From Mesoporous to Core-in-Double-Shell Structures .ACS Applied Materials & Interfaces.2014

179. xiong shenglin. Direct large-scale of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries .NANOSCALE.2014

180. xiong shenglin. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation .NANOSCALE.2016

181. xiong shenglin  and wufangfang. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage .J. Mater. Chem. A.2015,3 :16728

182. xiong shenglin  and wufangfang. Porous mixed metal metal oxides: design, formation mechanism, and application in lithium-ion batteries .NANOSCALE.2015,7 :17211

183. qianyitai , xiong shenglin  and 刘玉荣. Formation of quasi-mesocrystal ZnMn2O4 twin-microspheres via an oriented-attachment for lithium-ion batteries .journal of materials chemistry A.2014

184. maxiaojian , qianyitai , xiong shenglin  and wufangfang. 3D Co3O4 and CoO@C wall Arrays: Morphology control, formation mechanism,and their lithium-storage properties .journal of materials chemistry A.2014

185. qianyitai , xiong shenglin  and bojing. Unusal formation of ZnCo2O4 3D hierarchical twin-microspheres as a high-rate and ultralong-life lithium-ion battery anode materials .Advanced functional materials.2014

186. xiong shenglin  and 白玉林. One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core?Shell Hierarchical Microspheres with Superior Lithium Storage Properties .J. Phys. Chem. C.2016,120 :2984

187. qianyitai , xiong shenglin  and 弥侃. Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Ef?cient Scaffolds for Lithium–Sulfur Batteries .Advanced functional materials.2016,26 :1571

188. maxiaojian , xiong shenglin  and Xi Baojuan. Formation of C@Fe3O4@C Hollow Sandwiched Structures with Enhanced Lithium Storage Properties .European Journal of Inorganic Chemistry.2016

189. xiong shenglin , qianyitai  and 李晓伟. MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries .Chemistry-A European Journal.2013,19 (34):11310

190. lijingfa , xiong shenglin  and qianyitai. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance .NANO ENERGY.2013,2 (6):1249

191. lijingfa , xiong shenglin  and qianyitai. High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries .ACS Applied Materials & Interfaces.2013,5 (3):981

192. lijingfa , xiong shenglin  and qianyitai. A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties .NANOSCALE.2013,5 (5):2045

193. xiong shenglin , qianyitai  and 李晓伟. Mesoporous NiO ultrathin nanowire networks topotactically transformation from a-Ni(OH)2 hierarchical microshperes and their superior electrochemical capacitance properties and excellent capacity for water treatment .《J. Mater. Chem.》.2012,22, :14276

194. qianyitai , xiong shenglin  and chuyanting. Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 core–shell microcubes with controllable pore size .Rsc Adv..2015,5 :40899

195. Xi Baojuan , wangpeng , xiong shenglin  and 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .journal of materials chemistry A.2018,6 (7):2895

196. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and Li Baosong. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2019,9 (8)

197. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and bojing. One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage .ADVANCED MATERIALS Journal.2018

198. xiong shenglin  and Li baosong. Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO2?Nanoparticles for Ultrafast Sodium Storage .ADVANCED MATERIALS Journal.2018

199. xiong shenglin  and 黄曼. Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage .journal of materials chemistry A.2018

200. Xi Baojuan , wangpeng , fengzhenyu , xiong shenglin  and 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .journal of materials chemistry A.2018

201. Xi Baojuan , wufangfang , maohongzhi , Jinkui Feng , xiong shenglin  and Baosong Li. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2018

202. xiong shenglin  and bojing. ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties .ACS Appl. Mater. Interfaces.2015,7

203. xiong shenglin  and 刘锦程. Multifunctional CoO@C metasequoia arrays for enhanced lithium storage .NANO ENERGY.2014

204. xiong shenglin  and jiangyong. Enhancing the cycling stability of Na-ion batteries bybonding SnS2 ultrafine nanocrystals on amino- functionalized graphene hybrid nanosheets .Energy & Environmental Science.2016,9 :1430

205. xiong shenglin. Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for Lithium-ion batteries .J. Mater. Chem.A.2013

206. xiong shenglin  and 刘玉荣. General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties .Rsc Adv..2015,5 :26863

207. xiong shenglin  and 李保松. Mesoporous single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties .J. Mater. Chem. A.2015,3 :10336

208. xiong shenglin  and jiangyong. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries .J. Mater. Chem. A.2015,3 :4539

209. xiong shenglin. Simple Synthesis of Yolk-Shelled ZnCo2O4 Microspheres towards enhancing the Electrochemical Performance of Lithium–ion Batteries in Conjunction with Sodium Carboxymethyl Cellulose Binder .J. Mater. Chem. A.2013

210. xiong shenglin. Hollow MnCo2O4 Submicrospheres with Multilevel Interiors: From Mesoporous to Core-in-Double-Shell Structures .ACS Applied Materials & Interfaces.2014

211. xiong shenglin. Direct large-scale of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries .NANOSCALE.2014

212. xiong shenglin. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation .NANOSCALE.2016

213. xiong shenglin  and wufangfang. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage .J. Mater. Chem. A.2015,3 :16728

214. xiong shenglin  and wufangfang. Porous mixed metal metal oxides: design, formation mechanism, and application in lithium-ion batteries .NANOSCALE.2015,7 :17211

215. xiong shenglin  and 刘玉荣. Formation of quasi-mesocrystal ZnMn2O4 twin-microspheres via an oriented-attachment for lithium-ion batteries .journal of materials chemistry A.2014

216. xiong shenglin  and wufangfang. 3D Co3O4 and CoO@C wall Arrays: Morphology control, formation mechanism,and their lithium-storage properties .journal of materials chemistry A.2014

217. xiong shenglin  and bojing. Unusal formation of ZnCo2O4 3D hierarchical twin-microspheres as a high-rate and ultralong-life lithium-ion battery anode materials .Advanced functional materials.2014

218. xiong shenglin  and 白玉林. One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core?Shell Hierarchical Microspheres with Superior Lithium Storage Properties .J. Phys. Chem. C.2016,120 :2984

219. xiong shenglin  and 弥侃. Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Ef?cient Scaffolds for Lithium–Sulfur Batteries .Advanced functional materials.2016,26 :1571

220. xiong shenglin  and chuyanting. Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 core–shell microcubes with controllable pore size .Rsc Adv..2015,5 :40899

221. xiong shenglin  and bojing. ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties .ACS Appl. Mater. Interfaces.2015,7

222. wufangfang. Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: a new anode material for lithium-ion batteries .Angew. Chem. Int. Ed..2015,54 :10787

223. xiong shenglin  and 刘锦程. Multifunctional CoO@C metasequoia arrays for enhanced lithium storage .NANO ENERGY.2014

224. xiong shenglin  and jiangyong. Enhancing the cycling stability of Na-ion batteries bybonding SnS2 ultrafine nanocrystals on amino- functionalized graphene hybrid nanosheets .Energy & Environmental Science.2016,9 :1430

225. xiong shenglin  and 刘玉荣. General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties .Rsc Adv..2015,5 :26863

226. xiong shenglin  and 李保松. Mesoporous single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties .J. Mater. Chem. A.2015,3 :10336

227. xiong shenglin  and jiangyong. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries .J. Mater. Chem. A.2015,3 :4539

228. xiong shenglin  and wufangfang. Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage .J. Mater. Chem. A.2015,3 :16728

229. xiong shenglin  and wufangfang. Porous mixed metal metal oxides: design, formation mechanism, and application in lithium-ion batteries .NANOSCALE.2015,7 :17211

230. xiong shenglin  and 刘玉荣. Formation of quasi-mesocrystal ZnMn2O4 twin-microspheres via an oriented-attachment for lithium-ion batteries .journal of materials chemistry A.2014

231. xiong shenglin , maxiaojian  and wufangfang. 3D Co3O4 and CoO@C wall Arrays: Morphology control, formation mechanism,and their lithium-storage properties .journal of materials chemistry A.2014

232. xiong shenglin  and bojing. Unusal formation of ZnCo2O4 3D hierarchical twin-microspheres as a high-rate and ultralong-life lithium-ion battery anode materials .Advanced functional materials.2014

233. xiong shenglin  and 白玉林. One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core?Shell Hierarchical Microspheres with Superior Lithium Storage Properties .J. Phys. Chem. C.2016,120 :2984

234. xiong shenglin  and 弥侃. Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Ef?cient Scaffolds for Lithium–Sulfur Batteries .Advanced functional materials.2016,26 :1571

235. 李晓伟. MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries .Chemistry-A European Journal.2013,19 (34):11310

236. lijingfa. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance .NANO ENERGY.2013,2 (6):1249

237. lijingfa. High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries .ACS Applied Materials & Interfaces.2013,5 (3):981

238. lijingfa. A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties .NANOSCALE.2013,5 (5):2045

239. 李晓伟. Mesoporous NiO ultrathin nanowire networks topotactically transformation from a-Ni(OH)2 hierarchical microshperes and their superior electrochemical capacitance properties and excellent capacity for water treatment .《J. Mater. Chem.》.2012,22, :14276

240. xiong shenglin  and chuyanting. Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 core–shell microcubes with controllable pore size .Rsc Adv..2015,5 :40899

241. xiong shenglin  and An Yonglin. Ultrafine TiO2 Confined in Porous-Nitrogen-Doped Carbon from Metal- Organic Frameworks for High-Performance Lithium Sulfur Batteries .ACS Applied Materials & Interfaces.2017, 9 (14):12400

242. xiong shenglin  and Li, Yumei. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage .ELECTROCHIMICA ACTA.2019,296 :582

243. Jinkui Feng  and 曾桂芳. Non-Flammable Phosphate Electrolyte with High Salt-to-Solvent Ratios for Safe Potassium-Ion Battery .JOURNAL OF THE ELECTROCHEMICAL SOCIETY Journal.2019,166 (6):A1217

244. Jinkui Feng , xiong shenglin  and 郭丽萍. Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries .Materials Technology.2017, 32 (10):592

245. xiong shenglin  and An Yonglin. A titanium-based metal-organic framework as an ultralong cycle-life anode for PIBs .CHEMICAL COMMUNICATIONS.2017, 53 (59):8360

246. xiong shenglin , Jinkui Feng , cilijie  and An Yongling. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries .JOURNAL OF POWER SOURCES.2017, 363 :193

247. Xi Baojuan , xiong shenglin  and Kai, Shuangshuang. Nanostructures inducing distinctive photocatalytic and photoelectrochemical performance via the introduction of rGO into CdxZn1-xS .NANOSCALE.2019,11 (12):5571

248. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and Li Baosong. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2019,9 (8)

249. xiong shenglin  and Huang Man. New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries .Small.2019,15 (12)

250. xiong shenglin  and huang man. Enhancing kinetics of Li-S batteries by graphene-like N,S-codoped biochar fabricated in NaCl non-aqueous ionic liquid .SCIENCE CHINA-MATERIALS.2019,62 (4):455

251. xiong shenglin , Xi Baojuan  and maxiaojian. Formation of C@Fe3O4@C Hollow Sandwiched Structures with Enhanced Lithium Storage Properties .European Journal of Inorganic Chemistry.2016

252. Xi Baojuan , fengzhenyu , Di Sun , maxiaojian , xiong shenglin  and wufangfang. Unusual Formation of CoO@C "Dandelions" Derived from 2D Kagome MOLs for Efficient Lithium Storage .advanced energy materials.2018,8 (13)

253. xiong shenglin , Xi Baojuan , fengzhenyu , Di Sun  and chuyanting. Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage .Advanced Materials.2018,30 (6)

254. fengzhenyu , Xi Baojuan , Jinkui Feng , xiong shenglin  and jiangyong. Rationally Incorporated MoS2/SnS2 Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries .ACS Applied Materials & Interfaces.2017, 9 (33):27697

255. xiong shenglin  and chuyanting. Embedding MnO@Mn3O4 Nanoparticles in an N-Doped-Carbon Framework Derived from Mn-Organic Clusters for Efficient Lithium Storage .ADVANCED MATERIALS Journal.2018

256. xiong shenglin  and mi kan. Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for Lithium-Sulfur Batteries .Advanced functional materials.2017, 27 (1)

257. xiong shenglin  and huang man. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage .journal of materials chemistry A.2017,5 (1):266

258. Xi Baojuan , fengzhenyu , Di Sun , Jinkui Feng , xiong shenglin  and wufangfang. Unusual Formation of CoO@C “Dandelions” Derived from 2D Kagóme MOLs for Efficient Lithium Storage .advanced energy materials.2018

259. wangpeng , Xi Baojuan , fengzhenyu , xiong shenglin  and 开爽爽. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution .journal of materials chemistry A.2018

260. xiong shenglin  and Li baosong. Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO2?Nanoparticles for Ultrafast Sodium Storage .ADVANCED MATERIALS Journal.2018

261. Xi Baojuan , wufangfang , maohongzhi , Jinkui Feng , xiong shenglin  and Baosong Li. One-Step In Situ Formation of N-doped Carbon Nanosheet 3D Porous Networks/TiO2 Hybrids with Ultrafast Sodium Storage .Advanced Energy Materials.2018

262. xiong shenglin  and 黄曼. Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage .journal of materials chemistry A.2018

263. Xi Baojuan , maohongzhi , Jinkui Feng , xiong shenglin  and bojing. One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage .ADVANCED MATERIALS Journal.2018

264. Xi Baojuan , Yifeng Wang , xiong shenglin  and kai shuangshuang. One-Pot Synthesis of Size-Controllable Core-Shell CdS and Derived CdS@ZnxCd1-xS Structures for Photocatalytic Hydrogen Production .Chemistry-A European Journal.2017, 23 (65):16653

265. xiong shenglin , maohongzhi , Jinkui Feng , Xi Baojuan  and shi nianxiang. Hydrothermal Synthesis of ZnWO4 Hierarchical Hexangular Microstars for Enhanced Lithium-Storage Properties .European Journal of Inorganic Chemistry.2017, 0 (3):734

266. xiong shenglin. Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for Lithium-ion batteries .J. Mater. Chem.A.2013

267. xiong shenglin. Simple Synthesis of Yolk-Shelled ZnCo2O4 Microspheres towards enhancing the Electrochemical Performance of Lithium–ion Batteries in Conjunction with Sodium Carboxymethyl Cellulose Binder .J. Mater. Chem. A.2013

268. xiong shenglin. Hollow MnCo2O4 Submicrospheres with Multilevel Interiors: From Mesoporous to Core-in-Double-Shell Structures .ACS Applied Materials & Interfaces.2014

269. xiong shenglin. Direct large-scale of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries .NANOSCALE.2014

270. xiong shenglin. Formation of Fe3O4@SiO2@C/Ni hybrids with enhanced catalytic activity and histidine-rich protein separation .NANOSCALE.2016

271. xiong shenglin Enhancing the cycling stability of Na-ion batteries bybonding SnS2 ultrafine nanocrystals on amino- functionalized graphene hybrid nanosheets .Energy & Environmental Science.2016,9 :1430

272. xiong shenglin One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core?Shell Hierarchical Microspheres with Superior Lithium Storage Properties .J. Phys. Chem. C.2016,120 :2984

273. xiong shenglin , qianyitai Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Ef?cient Scaffolds for Lithium–Sulfur Batteries .Advanced functional materials.2016,26 :1571

274. xiong shenglin , qianyitai Enhancing the electrode performance of Co3O4 through Co3O4@a-TiO2 core–shell microcubes with controllable pore size .Rsc Adv..2015,5 :40899

275. xiong shenglin General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties .Rsc Adv..2015,5 :26863

276. xiong shenglin , qianyitai Mesoporous single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties .J. Mater. Chem. A.2015,3 :10336

277. xiong shenglin Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries .J. Mater. Chem. A.2015,3 :4539

278. xiong shenglin Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage .J. Mater. Chem. A.2015,3 :16728

279. xiong shenglin ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties .ACS Appl. Mater. Interfaces.2015,7 :22848

280. xiong shenglin Porous mixed metal metal oxides: design, formation mechanism, and application in lithium-ion batteries .NANOSCALE.2015,7 :17211

281. xiong shenglin , qianyitai Hydrothermal synthesis of unique hollow hexagonal prismatic pencils of Co3V2O8·nH2O: a new anode material for lithium-ion batteries .Angew. Chem. Int. Ed..2015,54 :10787

282. xiong shenglin , qianyitai Formation of quasi-mesocrystal ZnMn2O4 twin-microspheres via an oriented-attachment for lithium-ion batteries .journal of materials chemistry A.2014

283. xiong shenglin , maxiaojian , qianyitai 3D Co3O4 and CoO@C wall Arrays: Morphology control, formation mechanism,and their lithium-storage properties .journal of materials chemistry A.2014

284. xiong shenglin , qianyitai Multifunctional CoO@C metasequoia arrays for enhanced lithium storage .NANO ENERGY.2014

285. xiong shenglin , qianyitai Unusal formation of ZnCo2O4 3D hierarchical twin-microspheres as a high-rate and ultralong-life lithium-ion battery anode materials .Advanced functional materials.2014

286. xiong shenglin. High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries .ACS Applied Materials & Interfaces.2013,5 (3):981

287. xiong shenglin. A Facile Route to Synthesize Multiporous MnCo2O4 and CoMn2O4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties .NANOSCALE.2013,5 (5):2045

288. xiong shenglin , qianyitai MnO@Carbon Core-Shell Nanowires as Stable High-Performance Anodes for Lithium-Ion Batteries .Chemistry-A European Journal.2013,19 (34):11310

289. xiong shenglin. Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: Designed synthesis, topotactical structural transformation and their enhanced electrochemical performance .NANO ENERGY.2013,2 (6):1249

290. xiong shenglin. Spinel 1 Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity .Journal of Materials Chemistry.2012,22 (43):23254

291. xiong shenglin , qianyitai Mesoporous NiO ultrathin nanowire networks topotactically transformation from a-Ni(OH)2 hierarchical microshperes and their superior electrochemical capacitance properties and excellent capacity for water treatment .《J. Mater. Chem.》.2012,22, :14276

Patens
Copyright All Rights Reserved Shandong University Address: No. 27 Shanda South Road, Jinan City, Shandong Province, China: 250100
Information desk: (86) - 0531-88395114
On Duty Telephone: (86) - 0531-88364731 Construction and Maintenance: Information Work Office of Shandong University