
Introduction

Number theory is the study of the set of integers 0,±1,±2, . . ., or some of its
subsets or extensions. Denote the set of all natural numbers by N = {1, 2, 3, . . .} and
the set of all integers by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} = −N ∪ {0} ∪ N.

Many of proofs make use of the following property of integers.
The principle of induction. If Q is a set of integers such that

(1) 1 ∈ Q,
(2) n ∈ Q implies n+ 1 ∈ Q,

then all positive integers belong to Q.
The well-ordering principle. If A is a nonempty set of positive integers, then

A contains a smallest member.
We assume that the reader is familiar with those principles.

Theorem 0.1. There is no integer between 0 and 1.

Proof. If the assertion is false, then there is an a ∈ Z with 0 < a < 1. Multiply-
ing through by the positive integer a gives a2 ∈ Z with 0 < a2 < a, and similarly we
get ak for all k ≥ 1. Then the set A = {ak : k ∈ N} ⊂ N contains a smallest member,
say ak0 for some k0 ∈ N. However ak0+1 ∈ A and ak0+1 < ak0 . This is a contradiction.
Hence there is no integer between 0 and 1. �

This simple fact is quite useful.

Theorem 0.2. The real number e = 1+ 1
1!

+ 1
2!

+ 1
3!

+· · · = 2.71828 · · · is irrational.

Proof. If e is rational, then we can write e = a
b

with a, b ∈ N and (a, b) = 1. For
any n ∈ N, we have

n!a = n!be = qn + rn.

where

qn =

(
n! +

n!

1!
+
n!

2!
+ · · ·+ n!

n!

)
b and rn =

(
n!

(n+ 1)!
+

n!

(n+ 2)!
+ · · ·

)
b.

Note that qn ∈ Z and hence we have rn = n!a− qn ∈ Z. However we have

b

n+ 1
< rn <

(
1

n+ 1
+

1

(n+ 2)(n+ 1)
+

1

(n+ 3)(n+ 2)
+ · · ·

)
b

=

(
1

n+ 1
+

1

n+ 1
− 1

n+ 2
+

1

n+ 2
− 1

n+ 3
+ · · ·

)
b =

2b

n+ 1
.

Take n > 2b. Then we have 0 < rn < 1. This is a contradiction. Hence e is
irrational. �
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2 INTRODUCTION

Arithmetic functions are functions f : N → C which is one of the fundamental
concepts in number theory. In Chapter 2, we introduce some important examples of
arithmetic functions and discuss their basic properties. We also define the Dirichlet
convolution and multiplicative functions. In Chapter 3, the order and average order
of magnitude of some important arithmetic functions were given.

Prime number is one of the basic concepts in number theory. Denote P =
{2, 3, 5, 7, 11, . . .} the set of all positive prime numbers. Euler was the first to use
analytic arguments for the purpose of studying properties of integers, specifically by
constructing generating power series. Euler made use of the divergence of the zeta
function and the corresponding product over primes to give a proof of the infinity of
prime numbers. This was the beginning of analytic number theory. It was conjec-
tured by Legendre and Gauss that the number of primes not exceeding x satisfies the
asymptotic formula

π(x) :=
∑
p≤x

1 ∼ x

log x
.

This assertion is called the prime number theorem, and it has been proven much later
independently by Hadamard and de la Vallée Poussin (1896), based on the celebrated
memoir of Riemann on the zeta function. In Chapter 4, an elementary proof of the
prime number theorem will be given.

Dirichlet created the theory of L-functions for characters, resulting in the proof
of the infinity of primes in arithmetic progressions, which makes him the true father
of analytic number theory. In Chapter 8 we define the Dirichlet characters and prove
some basic properties of them. We also introduce the Gauss sums and the Pólya–
Vinogradov inequality, which concern sums of characters. In Chapter 9, we will prove∑

p≤x
p≡a mod q

log p

p
=

1

ϕ(q)
log x+Oq(1),

as x→∞, for a ∈ Z, q ∈ N such that (a, q) = 1.



CHAPTER 1

Divisibility theory

1.1. Divisibility of integers

Definition 1.1. For d, n ∈ Z, we say d divides n and we write d | n if n = cd
for some c ∈ Z. We also say that n is a multiple of d, that d is a divisor (or factor)
of n. If d does not divide n then we write d - n.

Theorem 1.2 (The division theorem). If a is positive and b is any integer, there
is exactly on pair of integers q and r such that we have

b = qa+ r, 0 ≤ r < a.

Here q is called the quotient and r the remainder when b is divided by a.

Theorem 1.3. Let S ⊂ Z be any non-empty subset of all integers. Assume that
S is closed under subtraction, that is, for any x, y ∈ S we have x−y ∈ S. Then there
exists a unique non-negative integer d such that S = dZ = {0,±d,±2d, . . .}.

This shows that (Z,+, ·) is a principal ideal domain.

1.2. The prime numbers

Definition 1.4. We say ±1 are the units. The prime numbers are those
integers n for which the conditions

n = ab, a, b ∈ Z, a, b not units,

cannot be satisfied simultaneously. Numbers that are not unit or prime are called
composite. Denote the set of all positive prime numbers by P.

Theorem 1.5 (Euclid). There are infinitely many prime numbers.

Theorem 1.6 (Fundamental lemma of arithmetic). Let p ∈ P and a, b ∈ Z. If
p | ab, then p | a or p | b.

1.3. The Fundamental theorem of arithmetic

Theorem 1.7. Every positive integer n > 1 can be represented as a product of
prime factors in only one way, apart from the order of the factors.

By Theorem 1.7 we have the prime-power decomposition of n > 1,

n = pa11 p
a2
2 · · · parr ,

where the pi are now distinct primes and the ai are positive integers. The factor pa

corresponding to a particular prime p in this decomposition is called the p-component
of n. Thus pa | n, but pa+1 - n, denoted by pa ‖ n.
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4 1. DIVISIBILITY THEORY

Corollary 1.8. If n = pa11 p
a2
2 · · · parr is the prime-power decomposition, then

the set of positive divisors of n is the set of numbers of the form
∏r

i=1 p
ci
i , where

0 ≤ ci ≤ ai for 1 ≤ i ≤ r.

1.4. The greatest common divisor and the least common multiple

Definition 1.9. Let m,n ∈ Z, not both zero. The greatest common divisor
(GCD) of m and n, denoted by (m,n), is the largest integer d such that d | m and
d | n.

Theorem 1.10. Let m,n ∈ Z, not both zero. Assume m = pa11 p
a2
2 · · · parr and

n = pb11 p
b2
2 · · · pbrr with ai, bi ∈ Z≥0. Then any common divisor d1 of m and n, i.e.,

d1 | a and d1 | b, has the following form

d1 = upc11 p
c2
2 · · · pcrr , u = ±1, ci ∈ Z≥0, ci ≤ min(ai, bi).

In particular, we have (m,n) =
∏

1≤i≤r p
min(ai,bi)
i .

Corollary 1.11. Let m,n ∈ Z, not both zero. Let d = (m,n) and d1 a common
divisor of m and n. Then d1 | d.

Definition 1.12. Let m,n ∈ Z \ {0}. The least common multiple (LCM) of
m and n, denoted by [m,n], is the smallest positive integer ` such that m | ` and
n | `. If m = 0 or n = 0, we define their least common multiple [m,n] = 0.

Theorem 1.13. Let m,n ∈ Z \ {0}. Then we have

[m,n] =
|mn|

(m,n)
.

1.5. The functions [x] and {x}

An important function in number theory is the function [x] which represent the
largest integer not exceeding x. In other word, for each x ∈ R, [x] is the unique
integer such that x − 1 < [x] ≤ x < [x] + 1. Let {x} = x − [x] denote the fractional
part of x. We have the following basic properties:

a) x = [x] + {x}, where 0 ≤ {x} < 1.
b) [x+ n] = [x] + n, if n ∈ Z.

c) [x] + [−x] =

{
0, if x is an integer,
−1, otherwise.

d) [x] + [y] ≤ [x+ y].

Lemma 1.14. Let x ∈ R+ and a ∈ N. Then the number of positive integers not
exceeding x which are divisible by a is [x

a
].

Proof. The positive integers which are divisible by a is

{a, 2a, 3a, . . .}
Those integers which is less than x are {a, 2a, . . . , [x

a
]a}. This completes the proof. �

Let n ∈ N. The factorial of n, denoted by n!, is the product of all positive integers
less than or equal to n:

n! = n(n− 1)(n− 2) · · · 2 · 1.
We have the following prime-power decomposition of n!.
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Theorem 1.15. Let n ∈ N. Denote n! =
∏

p≤n p
h(p,n), then we have

h(p, n) =
∞∑
k=1

[
n

pk

]
.

Proof. Given prime p and positive integer n. Denote pr ‖ n if pr | n and pr+1 - n.
Hence we have

h(p, n) =
∞∑
k=1

∑
1≤m≤n
pk‖m

k =
∑

1≤m≤n

∞∑
k=1
pk‖m

k =
∑

1≤m≤n

∞∑
k=1
pk|m

1 =
∞∑
k=1

∑
1≤m≤n
pk|m

1.

By Lemma 1.14, we have

h(p, n) =
∞∑
k=1

[
n

pk

]
,

as claimed. �

Theorem 1.16. Let a ∈ Z and k ∈ N. Then we have

(a+ 1)(a+ 2) · · · (a+ k)

k!
∈ Z.

Proof. If a ∈ [−k,−1], then (a+1)(a+2)···(a+k)
k!

= 0 ∈ Z. If a = 0, then (a+1)(a+2)···(a+k)
k!

=
1 ∈ Z. If a ≥ 1, then by Theorem 1.15, we have

(a+ 1)(a+ 2) · · · (a+ k)

k!
=

(a+ k)!

a!k!
=

∏
p≤(a+k)

ph(p,a+k)−h(p,a)−h(p,k).

Note that

h(p, a+ k)− h(p, a)− h(p, k) =
∞∑
j=1

([
a+ k

pj

]
−
[
a

pj

]
−
[
k

pj

])
∈ Z≥0.

Hence (a+1)(a+2)···(a+k)
k!

∈ Z. If a < −k, then (a+1)(a+2)···(a+k)
k!

= (−1)k(−a−1)(−a−2)···(−a−k)
k!

∈
Z. This completes the proof. �

Theorem 1.17. Let p ∈ P. Then for any a ∈ Z, we have p | (ap − a).

Proof. If p | (a − b), then p | ((ap − a) − (bp − b)). Indeed, we have (ap − a) −
(bp− b) = (a− b)(ap−1 + ap−2b+ · · ·+ bp−1 + 1). So we only need to prove p | (ap− a)
for 0 ≤ a ≤ p− 1.

If a = 0 then ap − a = 0 and p | 0. Now assume p | (ap − a). Note that we have

(a+ 1)p − (a+ 1) = ap +

p−1∑
k=1

(
p

k

)
ak + 1− a− 1 = (ap − a) +

p−1∑
k=1

(
p

k

)
ak,

and
(
p
k

)
= p!

k!(p−k)!
and hence p |

(
p
k

)
for 1 ≤ k ≤ p−1. So we have p | (a+1)p−(a+1).

By induction, we complete the proof. �
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