
CHAPTER 2

Arithmetic Functions

2.1. Examples

In this chapter, we discuss some basic arithmetic functions.

Definition 2.1. A real or complex valued function defined on the positive integers
(or all integers) is called an arithmetic function or a number-theoretic function.

We give some examples of arithmetic functions as follows and we will discuss their
properties in the following sections.

Example 2.2. We have the following simple but important arithmetic functions:

The identity function I(n) =

{
1, if n = 1,
0, otherwise,

the unit function u(n) ≡ 1, n ≥ 1,

N s(n) = ns, n ≥ 1, s ∈ C.

Definition 2.3. The divisor function τ(n) is defined as the number of positive
divisors of n, i.e.,

τ(n) =
∑
d|n

1. (2.1)

Definition 2.4. The divisor power sum function σs(n) (with s ∈ C) is defined
as the sum of s power of all positive divisors of n, i.e.,

σs(n) =
∑
d|n

ds. (2.2)

Definition 2.5. The Euler totient function ϕ is defined as

ϕ(n) =
∑

1≤k≤n
(k,n)=1

1.

Definition 2.6. The Möbius function µ is defined as follows:

µ(n) =

 1, if n = 1,
(−1)r, if n = p1p2 · · · pr, with distint primes pi,
0, otherwise.

(2.3)

Definition 2.7. The von Mangoldt function Λ is defined as follows:

Λ(n) =

{
log p, if n = pk, k ≥ 1 and p prime,
0, otherwise.

(2.4)

7



8 2. ARITHMETIC FUNCTIONS

Definition 2.8. The omega function ω(n) is defined as the number of distinct
prime factors of n, i.e.,

ω(n) = r, n = pa11 p
a2
2 · · · parr is the prime-power decomposition. (2.5)

Definition 2.9. The Omega function Ω(n) is defined as the total number of
prime factors of n, i.e.,

Ω(n) = a1 + a2 + · · ·+ ar, n = pa11 p
a2
2 · · · parr is the prime-power decomposition.

(2.6)

Definition 2.10. The Liouville function λ is defined as follows:

λ(n) = (−1)Ω(n). (2.7)

2.2. Multiplicative functions

An important class of arithmetic functions are multiplicative functions defined as
follows.

Definition 2.11. An arithmetic function f which is not identically zero is said
to be multiplicative if

f(mn) = f(m)f(n) (2.8)

whenever (m,n) = 1. Moreover, if (2.8) holds for all m,n, then f is called completely
multiplicative.

We have the following property of all multiplicative functions

Theorem 2.12. If f is multiplicative then f(1) = 1.

Proof. Since f is not identically zero, there exists n ∈ N such that f(n) 6= 0.
We have f(n) = f(n)f(1) as f is multiplicative. Hence f(1) = 1. �

In this section, we will discuss some properties of some basic examples of multi-
plicative functions.

2.2.1. The divisor function τ .

Theorem 2.13. If n = pa11 p
a2
2 · · · parr , then

τ(n) =
r∏
i=1

(ai + 1).

Proof. By Corollary 1.8 we have

τ(n) =
∑

0≤c1≤a1

∑
0≤c2≤a2

· · ·
∑

0≤cr≤ar

1 =
r∏
i=1

(ai + 1). �

As a simple consequence we have the following corollary.

Corollary 2.14. The function τ is multiplicative.
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2.2.2. The divisor sum function σ.

Theorem 2.15. If n = pa11 p
a2
2 · · · parr , then

σs(n) =
r∏
i=1

p
(ai+1)s
i − 1

psi − 1
.

Proof. By Corollary 1.8 we have

σs(n) =
∑

0≤c1≤a1

∑
0≤c2≤a2

· · ·
∑

0≤cr≤ar

(pc11 p
c2
2 · · · pcrr )s

=
r∏
i=1

∑
0≤ci≤ai

pcisi =
r∏
i=1

p
(ai+1)s
i − 1

psi − 1
. �

As a simple consequence we have the following corollary.

Theorem 2.16. The function σs is multiplicative.

We denote σ1 by σ. We say n ∈ N is a perfect number if σ(n) = 2n, which
means the number is equal to the sum of its proper divisors. For examples, 6 and 28.
It was of great interest of the Greeks to determine all the perfect numbers. It was
known as early as Euclid’s time that every number of the form

n = 2p−1(2p − 1),

in which both p and 2p − 1 are prime, is perfect. Indeed we have

σ(n) =
2p − 1

2− 1
· (2p − 1)2 − 1

2p − 1− 1
= 2p(2p − 1) = 2n.

A partial converse of above holds: every even perfect number n is of the above type.
To see this we put n = 2k−1 · n′ such that σ(n) = 2n, where k ≥ 2 and 2 - n′. Then
we have

σ(n) = σ(2k−1)σ(n′) = (2k − 1)σ(n′) = 2k · n′.

Since (2k − 1, 2) = 1, we have (2k − 1) | n′. Write n′ = (2k − 1)n′′. Then we have
σ(n′) = 2k · n′′. Note that

n′′ + n′ = 2kn′′ = σ(n′).

Hence n′′ = 1 and n′ = (2k − 1) is prime. Note that if k is composite then 2k − 1 is
also composite. Hence k is also prime. This proves the claim.

There are two open problems connected with perfect numbers. One is whether
there are any odd perfect numbers. Various necessary conditions are known for an
odd number to be perfect, which show that any such number must be extremely large,
but no conclusive results have been obtained. The other question is about the primes
p for which 2p − 1 is prime. These are Mersenne primes. They continue to occur,
although with decreasing frequency, as far as computations have been pushed. There
is no reason to suppose that there are only finitely many, but no proof that there are
infinitely many.
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2.2.3. The Möbius function µ. Note that µ(n) = 0 if and only if n has a
square factor > 1. Here is a short table of values of µ:

n: 1 2 3 4 5 6 7 8 9 10
µ(n): 1 −1 −1 0 −1 1 −1 0 0 1

It is easy to prove the following property of µ.

Theorem 2.17. The function µ is multiplicative.

The Möbius function arises in many different places in number theory. One of its
fundamental properties is a remarkably simple formula for the divisor sum

∑
d|n µ(d).

Theorem 2.18. If n ≥ 1, then we have∑
d|n

µ(d) = I(n) =

{
1, if n = 1,
0, otherwise.

Proof. If n = 1, then both sides are equal to 1. If n > 1, then we can write
n = pa11 p

a2
2 · · · parr . By Corollary 1.8 and Theorem 2.17, we have∑

d|n

µ(d) =
∑

0≤c1≤a1

∑
0≤c2≤a2

· · ·
∑

0≤cr≤ar

µ(pc11 p
c2
2 · · · pcrr )

=
∑

0≤c1≤1

∑
0≤c2≤1

· · ·
∑

0≤cr≤1

µ(pc11 )µ(pc22 ) · · ·µ(pcrr )

=
r∏
i=1

∑
0≤ci≤1

µ(pcii ) =
r∏
i=1

(1− 1) = 0.

This proves the theorem. �

Theorem 2.19. If n ≥ 1, then we have∑
d2|n

µ(d) = |µ|(n) = µ(n)2.

Proof. If n = 1, then both sides are equal to 1. If n > 1, then we can write
n = pa11 p

a2
2 · · · parr . By Corollary 1.8 and Theorem 2.17, we have∑

d2|n

µ(d) =
∑

0≤c1≤[
a1
2

]

∑
0≤c2≤[

a2
2

]

· · ·
∑

0≤cr≤[
a2
2

]

µ(pc11 p
c2
2 · · · pcrr )

=
∑

0≤c1≤[
a1
2

]

∑
0≤c2≤[

a2
2

]

· · ·
∑

0≤cr≤[
a2
2

]

µ(pc11 )µ(pc22 ) · · ·µ(pcrr )

=
r∏
i=1

∑
0≤ci≤[

ai
2

]

µ(pcii ).

If there exists i such that ai ≥ 2 then
∑

0≤ci≤[
ai
2

] µ(pcii ) = 1− 1 = 0. Otherwise ai = 1

for all i, and hence
∑

d2|n µ(d) = |µ|(n) = 1. This proves the theorem. �
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2.2.4. Euler’s totient function ϕ. Note that ϕ(p) = p− 1 if p is prime. Here
is a short table of values of ϕ:

n: 1 2 3 4 5 6 7 8 9 10
ϕ(n): 1 1 2 2 4 2 6 4 6 4

Theorem 2.20. If n ≥ 1, then we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Proof. By Theorem 2.18, we have

ϕ(n) =
∑

1≤k≤n
(k,n)=1

1 =
∑

1≤k≤n

1
∑
d|(n,k)

µ(d).

Exchanging the order of the sums above, we get

ϕ(n) =
∑
d|n

µ(d)
∑

1≤k≤n
d|k

1 =
∑
d|n

µ(d)
n

d
,

as claimed. �

Theorem 2.21. If n ≥ 1, then we have

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Proof. Assume n = pa11 p
a2
2 · · · parr . By Corollary 1.8 and Theorems 2.17 and 2.20,

we have

ϕ(n) = n
∑
d|n

µ(d)

d
= n

∑
0≤c1≤a1

∑
0≤c2≤a2

· · ·
∑

0≤cr≤ar

µ(pc11 p
c2
2 · · · pcrr )

pc11 p
c2
2 · · · pcrr

= n
∑

0≤c1≤1

∑
0≤c2≤1

· · ·
∑

0≤cr≤1

µ(pc11 p
c2
2 · · · pcrr )

pc11 p
c2
2 · · · pcrr

=
r∏
i=1

∑
0≤ci≤1

µ(pcii )

pcii
= n

r∏
i=1

(
1− 1

pi

)
= n

∏
p|n

(
1− 1

p

)
. �

Theorem 2.22. The function ϕ is multiplicative.

Proof. For any m,n ∈ N such that (m,n) = 1, we need to prove ϕ(mn) =
ϕ(m)ϕ(n). Assume m = pa11 p

a2
2 · · · parr and n = qb11 q

b2
2 · · · qbss , with pi, qj are distinct

primes and ai, bj ∈ Z≥0. By Theorem 2.21 we have

ϕ(mn) = mn
∏
p|mn

(
1− 1

p

)
= m

r∏
i=1

(
1− 1

pi

)
n

s∏
j=1

(
1− 1

qj

)
= ϕ(m)ϕ(n).

This completes the proof. �

Theorem 2.23. If n ≥ 1, then we have

n =
∑
d|n

ϕ(d).
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Proof. By Theorem 2.20 we have∑
d|n

ϕ(d) =
∑
d|n

∑
`|d

µ(`)
d

`
=
∑
d|n

∑
`|d

µ

(
d

`

)
` =

∑
`|n

`
∑
`|d|n

µ

(
d

`

)
.

Making a change of variable k = d/`, we get∑
d|n

ϕ(d) =
∑
`|n

`
∑
k|n/`

µ (k) .

By Theorem 2.18, we have ∑
d|n

ϕ(d) =
∑
`|n

`I(n/`) = n.

This completes the proof. �

2.3. Dirichlet convolution

2.3.1. Dirichlet convolution.

Definition 2.24. Let f, g be two arithmetic functions. The Dirichlet convo-
lution of f and g, denoted by f ∗ g, is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

Theorem 2.25. Let f, g, h be three arithmetic functions. Then we have

f ∗ g = g ∗ f (commutative law),

(f ∗ g) ∗ h = f ∗ (g ∗ h) (associative law).

Proof. By definition, for any n ≥ 1 we have

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) =
∑
ab=n

f(a)g(b) = (g ∗ f)(n),

and

((f ∗ g) ∗ h)(n) =
∑
mc=n

(f ∗ g)(m)h(c) =
∑
abc=n

f(a)g(b)h(c) = (f ∗ (g ∗ h))(n). �

In this notation, we have

I = µ ∗ u, N = ϕ ∗ u, ϕ = µ ∗N.

Theorem 2.26. For all f , we have I ∗ f = f ∗ I = f .

Proof. We have

(I ∗ f)(n) =
∑
d|n

f(d)I(n/d) = f(n). �



2.3. DIRICHLET CONVOLUTION 13

2.3.2. Möbius transform.

Definition 2.27. We define the Möbius transform of an arithmetic function
f to be F = f ∗ u, that is,

F (n) =
∑
d|n

f(d).

Theorem 2.28 (Möbius inversion formula). If F = f ∗ u, then f = F ∗ µ.
Conversely, if f = F ∗ µ, then F = f ∗ u. We say f is the inverse Möbius transform
of F .

Proof. If F = f ∗u, then by Theorem 2.18 and 2.26 we have F ∗µ = (f ∗u)∗µ =
f ∗ (u ∗ µ) = f ∗ I = f . Conversely, if f = F ∗ µ, then f ∗ u = F ∗ µ ∗ u = F . �

2.3.3. Dirichlet inverse.

Theorem 2.29. If f is an arithmetic function with f(1) 6= 0, then there is a
unique arithmetic function f−1, called the Dirichlet inverse of f , such that

f ∗ f−1 = f−1 ∗ f = I.

Moreover, f−1 is given by the recursion formulas

f−1(1) =
1

f(1)
, f−1(n) =

−1

f(1)

∑
d|n
d<n

f
(n
d

)
f−1(d) for n > 1.

Proof. It is clear that the function f−1 constructed above satisfies that f ∗f−1 =
f−1 ∗ f = I. So we prove the existence. Now we prove the uniqueness. Assume that
g is a function such that f ∗ g = g ∗ f = I. Then we have g = g ∗ I = g ∗ (f ∗ f−1) =
(g ∗ f) ∗ f−1 = I ∗ f−1 = f−1. This proves the theorem. �

Remark 2.30. We have (f ∗ g)(1) = f(1)g(1). So if f(1) 6= 0, g(1) 6= 0, then
(f ∗ g)(1) 6= 0. The set of all arithmetic functions f with f(1) 6= 0 forms an abelian
group with respect to the operation ∗. Since (f−1 ∗ g−1) ∗ (f ∗ g) = I, we get
(f ∗ g)−1 = f−1 ∗ g−1, if f(1) 6= 0, g(1) 6= 0.

Example 2.31. Recall that u ∗ µ = I. We have u−1 = µ and µ−1 = u.

Theorem 2.32. Let f be multiplicative. Then f is completely multiplicative if
and only if

f−1(n) = µ(n)f(n), for all n ≥ 1.

Proof. If f is completely multiplicative, then we have

(µf ∗ f)(n) =
∑
ab=n

µ(a)f(a)f(b) = f(n)
∑
d|n

µ(d) = I(n).

So f−1 = µf .
If f−1 = µf , then by Theorem 2.29 we have

f(n) = −
∑
ab=n
a<n

f−1 (b) f(a) = −
∑
ab=n
a<n

µ(b)f (b) f(a), for n > 1.

Let p be a prime and k ≥ 1 be an integer. Then we have

f(pk) = f(p)f(pk−1).
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Hence f(pk) = f(p)k. This shows that f is completely multiplicative. �

Theorem 2.33. We have λ−1 = |µ|.

Proof. Note that λ is completely multiplicative. So we have λ−1 = µλ. Note
that µλ = |µ|. So we have λ−1 = |µ|. �

Theorem 2.34. We have ϕ−1 = u ∗ µN .

Proof. Note that we have ϕ = µ ∗ N . By Theorem 2.32 we have N−1 = µN .
Hence ϕ−1 = µ−1 ∗N−1 = u ∗ µN . �

Theorem 2.35. We have σ−1
s = µN s ∗ µ, where N s(n) = ns.

Proof. Note that σs = u ∗N s. By Theorem 2.32 we have (N s)−1 = µN s. Hence
σ−1 = u−1 ∗ (N s)−1 = µ ∗ µN s. �

2.3.4. Dirichlet convolution and multiplicative functions.

Theorem 2.36. If f and g are multiplicative, so is their Dirichlet convolution
f ∗ g.

Proof. By corollary 1.8, for any pair of positive integers m,n with (m,n) = 1,
a divisor d of mn can be written uniquely as a product of a divisor d1 of m and a
divisor d2 of n. So

(f ∗ g)(mn) =
∑
d|mn

f(d)g(mn/d) =
∑
d1|m

∑
d2|n

f(d1d2)g(mn/d1d2).

Note that (d1, d2) = (m/d1, n/d2) = 1. Since f and g are multiplicative, we have

(f ∗ g)(mn) =
∑
d1|m

f(d1)g(m/d1)
∑
d2|n

f(d2)g(n/d2) = (f ∗ g)(m)(f ∗ g)(n).

So f ∗ g is multiplicative. �

Theorem 2.37. If both g and f ∗g are multiplicative, then f is also multiplicative.

Proof. We should assume that f is not multiplicative and then find a contra-
diction. Assume that a pair of coprime positive integers (m,n) such that f(mn) 6=
f(m)f(n) and the product mn is smallest. Now we consider (f ∗ g)(mn). On the one
hand, we have

(f ∗ g)(mn) =
∑
d|mn

f(d)g(mn/d) =
∑
d1|m

∑
d2|n

f(d1d2)g(mn/d1d2).

If d1d2 < mn then we have f(d1d2) = f(d1)f(d2). Since g is multiplicative, we get

(f ∗ g)(mn) =
∑
d1|m
d2|n

d1d2<mn

f(d1)f(d2)g(m/d1)g(n/d2) + f(mn). (2.9)
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On the other hand, since f ∗ g is multiplicative, we have

(f ∗ g)(mn) = (f ∗ g)(m)(f ∗ g)(n) =
∑
d1|m

∑
d2|n

f(d1)f(d2)g(m/d1)g(n/d2)

=
∑
d1|m
d2|n

d1d2<mn

f(d1)f(d2)g(m/d1)g(n/d2) + f(m)f(n). (2.10)

If f(mn) 6= f(m)f(n), then (2.9) and (2.10) are contradicted to each other. �

Corollary 2.38. If f is multiplicative, so is its Dirichlet inverse f−1.

Proof. Since f and I are both multiplicative and f ∗f−1 = I. By Theorem 2.37,
we conclude the proof. �

Remark 2.39. These results together show that the set of multiplicative functions
is a subgroup of the group of all arithmetic functions f with f(1) 6= 0.

Theorem 2.40. If f is multiplicative, then we have∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)).

Proof. Since µ and f are multiplicative, so is µf . Hence g(n) =
∑

d|n µ(d)f(d)

is also multiplicative. Note that h(n) =
∏

p|n(1− f(p)) is multiplicative. So we only

need to check g(pk) = h(pk) for any prime p and integer k ≥ 1. Indeed we have

g(pk) = 1− f(p) = h(pk).

This completes the proof of Theorem 2.40. �

Theorem 2.41. We have u ∗ λ = 1�, where

1�(n) =

{
1, if n is a square,
0, otherwise.

Proof. Note that both u ∗ λ and 1� are multiplicative functions. We only need
to check (u ∗ λ)(pk) = 1�(pk) for prime p and integer k ≥ 1. If 2 - k, then we have

(u ∗ λ)(pk) =
∑
d|pk

λ(d) = λ(1) + λ(p) + · · ·+ λ(pk) = 1− 1 + 1− · · · − 1 = 0.

So 1�(pk) = 0 = (u ∗ λ)(pk). If 2 | k, then we have

(u ∗ λ)(pk) =
∑
d|pk

λ(d) = λ(1) + λ(p) + · · ·+ λ(pk) = 1− 1 + 1− · · · − 1 + 1 = 1.

So 1�(pk) = 1 = (u ∗ λ)(pk). This proves the theorem. �
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2.4. Generalized convolutions

In this section, F denotes a real or complex-valued function defined on the positive
real axis (0,+∞) such that F (x) = 0 for 0 < x < 1. Let g be an arithmetic function.
Sums of the type ∑

n≤x

g(n)F
(x
n

)
arise frequently in number theory. The sum defines a new function H on (0,+∞)
such that G(x) = 0 for 0 < x < 1. We denote the function H by g ◦ F , that is,

H(x) = (g ◦ F )(x) =
∑
n≤x

g(n)F
(x
n

)
.

If F (x) = 0 for all non-integer x, the restriction of F to the integers is an arithmetic
function and we have

(g ◦ F )(m) = (g ∗ F )(m),

for all integers m ≥ 1. So the operation ◦ can be regarded as a generalization fo the
Dirichlet convolution ∗.

Theorem 2.42. For any arithmetic functions f and g, we have

f ◦ (g ◦H) = (f ∗ g) ◦H.

Proof. We have

(f ◦ (g ◦H))(x) =
∑
a≤x

f(a)

∑
b≤x/a

g(b)H
( x
ab

)
=
∑
n≤x

(∑
ab=n

f(a)g(b)

)
H
(x
n

)
= ((f ∗ g) ◦H)(x).

This proves the theorem. �

Theorem 2.43. If g has a Dirichlet inverse g−1, then the equation

H(x) =
∑
n≤x

g(n)F
(x
n

)
(2.11)

implies

F (x) =
∑
n≤x

g−1(n)H
(x
n

)
. (2.12)

Conversely, (2.14) implies (2.13).

Proof. If H = g ◦ F , then by Theorem 2.42 we have

g−1 ◦H = g−1 ◦ (g ◦ F ) = I ◦ F = F.

Conversely, if F = g−1 ◦H, then we have g ◦ F = g ◦ (g−1 ◦H) = I ◦H = H. �

Corollary 2.44. If g has a completely multiplicative function, then the equation

H(x) =
∑
n≤x

g(n)F
(x
n

)
(2.13)
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if and only if

F (x) =
∑
n≤x

µ(n)g(n)H
(x
n

)
. (2.14)

Proof. By Theorem 2.32 we have g−1 = µg. �

2.5. The von Mangoldt function

The von Mangoldt function Λ plays a central role in the distribution of primes.
Here is a table of values of Λ(n):

n: 1 2 3 4 5 6 7 8 9 10
Λ(n): 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

Theorem 2.45. If n ≥ 1 then we have

log n =
∑
d|n

Λ(d).

That is, we have log = u ∗ Λ.

Proof. If n = pa11 p
a2
2 · · · parr , then we have∑

d|n

Λ(d) =
r∑
i=1

ai∑
k=1

Λ(pki ) =
r∑
i=1

ai∑
k=1

log pi =
r∑
i=1

log paii = log n

as claimed. �

Theorem 2.46. We have

Λ(n) =
∑
d|n

µ(d) log
n

d
= −

∑
d|n

µ(d) log d.

That is we have Λ = µ ∗ log = −u ∗ µ log.

Proof. By Theorems 2.37 and 2.45, we have Λ = µ ∗ log. Note that∑
d|n

µ(d) log
n

d
= log n

∑
d|n

µ(d)−
∑
d|n

µ(d) log d = −
∑
d|n

µ(d) log d.

Hence Λ = −u ∗ µ log. This completes the proof. �

Definition 2.47. For k ≥ 0, the von Mangoldt function of degree k is defined as
follows

Λk(n) =
∑
d|n

µ(d)
(

log
n

d

)k
.

Theorem 2.48 (Selberg’s identity). We have

Λk = Λk−1 log +Λk−1 ∗ Λ.

Proof. We have

Λk = µ ∗ logk = (µ ∗ logk−1) log−µ log ∗ logk−1

= Λk−1 log +(−µ log) ∗ (µ ∗ u) ∗ logk−1

= Λk−1 log +Λ ∗ Λk−1.

This completes the proof. �
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2.6. The Riemann zeta function and generating function

Let s = σ + it ∈ C. For σ > 1, the Riemann zeta function ζ(s) is defined by the
series

ζ(s) =
∞∑
n=1

1

ns
.

Theorem 2.49 (Euler product). For Re(s) > 1, we have

ζ(s) =
∞∑
n=1

1

ns
=
∞∏
p=2

(
1− 1

ps

)−1

.

Proof. By Taylor’s series, we have∏
p≤x

(
1− 1

ps

)−1

=
∏
p≤x

(
1 +

1

ps
+

1

p2s
+ · · ·

)
.

By Fundamental theorem of arithmetic, we have∏
p≤x

(
1− 1

ps

)−1

=
∑
n≥1

p|n⇒p≤x

1

ns
=: Σ1(x) + Σ2(x),

where Σ1(x) =
∑

n≤x
1
ns

and Σ2(x) =
∑

n>x
p|n⇒p≤x

1
ns

. Let σ = Re(s) > 1. We have

Σ2(x) ≤
∑
n>x

1

nσ
≤
∫ ∞
x

2

uσ
du ≤ 2

(1− σ)

1

uσ−1

∣∣∣∞
x

=
2

(σ − 1)xσ−1
.

Hence limx→∞Σ2(x) = 0 and

ζ(s) = lim
x→∞

Σ1(x) = lim
x→∞

∏
p≤x

(
1− 1

ps

)−1

− lim
x→∞

Σ2(x) =
∏
p≥2

(
1− 1

ps

)−1

.

This completes the proof. �

Theorem 2.50. We have ζ(s) 6= 0 if Re(s) > 1, and

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
, Re(s) > 1.

Proof. If Re(s) > 1 then we have

∞∑
n=1

µ(n)

ns
≤

∞∑
n=1

1

nRe(s)
<∞.

By u ∗ µ = I, we have

ζ(s)
∞∑
n=1

µ(n)

ns
=

∞∑
m=1

1

ms

∞∑
n=1

µ(n)

ns
=
∞∑
k=1

I(k)

ks
= 1, Re(s) > 1.

This completes the proof. �
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Corollary 2.51. We have
∞∑
n=1

µ(n)

ns
=
∞∏
p=2

(
1− 1

ps

)
,

for Re(s) > 1.

Proof. This follows from Theorems 2.49 and 2.50. �

Theorem 2.52 (generating function of the divisor function). We have

ζ2(s) =
∞∑
n=1

τ(n)

ns
,

for Re(s) > 1.

Proof. This follows from τ = u ∗ u. �

Theorem 2.53 (generating function of the Euler totient function). We have

ζ(s− 1)

ζ(s)
=
∞∑
n=1

ϕ(n)

ns
,

for Re(s) > 2.

Proof. This follows from ϕ = µ ∗N . �

Theorem 2.54 (generating function of the Mangoldt function). We have

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
,

for Re(s) > 1.

Proof. By the Euler product formula, we have

log ζ(s) = log
∞∑
n=1

1

ns
= log

∏
p

(
1− 1

ps

)−1

= −
∑
p

log

(
1− 1

ps

)
.

Then by derivation on the both sides of the above equation, we get

ζ ′(s)

ζ(s)
= −

∑
p

1(
1− 1

ps

)p−s log p

= −
∑
p

p−s log p

(
1 +

1

ps
+

1

p2s
+ · · ·

)

= −
∑
p

∞∑
k=1

log p

pks
= −

∞∑
n=1

Λ(n)

ns
.

Hence we have

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
. �
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2.7. Additive functions

Definition 2.55. An arithmetic function f which is not identically zero is said
to be additive if

f(mn) = f(m) + f(n) (2.15)

whenever (m,n) = 1. Moreover, if (2.15) holds for all m,n, then f is called com-
pletely additive.

Theorem 2.56. The function ω is additive. The function Ω is completely additive.

Proof. Write m = pa11 · · · parr and n = qb11 · · · qbss with prime pi, qj and positive
integers ai, bj. We have Ω(mn) =

∑
i ai +

∑
j bj = Ω(m) + Ω(n). If (m,n) = 1, then

ω(mn) = r + s = ω(m) + ω(n). �
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