
CHAPTER 3

The order and average order of magnitude of arithmetic
functions

3.1. The symbols “O”, “�”, “�”, “o” and “∼”

Some convenient notations have been introduced for use during the study of inte-
gers. Let g(x) be defined and positive for all x in some unbounded set S of positive
numbers (which will usually be either the set of positive integers or the set of positive
real numbers, but might for example be the set of primes). Then if f(x) is defined
on S, and if there is a constant C such that

|f(x)|
g(x)

< C

for all sufficiently large x ∈ S, then we write either f(x) = O(g(x)) or f(x) � g(x).
If there are constants 0 < c < C <∞ such that

c <
|f(x)|
g(x)

< C

for all sufficiently large x ∈ S, then we write f(x) � g(x). If

lim
x→∞
x∈S

f(x)

g(x)
= 0,

we write f(x) = o(g(x)), and if

lim
x→∞
x∈S

f(x)

g(x)
= 1,

we write f(x) ∼ g(x), and say that f(x) is asymptotically equal to g(x).

Example 3.1. For x ∈ R, we have

sinx� x,

sinx = O(1),

2 + sin x � 1,
√
x = o(x),

xk = o(ex), for every constant k,

logk x = o(xα), for every pair of constants k and α > 0,

[x] ∼ x.
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24 3. THE ORDER AND AVERAGE ORDER OF MAGNITUDE

3.2. The Euler–Maclaurin formula and the partial summation formula

Theorem 3.2 (Euler–Maclaurin formula). Let a < b and a, b ∈ Z. Let f : [a, b]→
C. If f is of class C1 on [a, b]. Then we have∑

a<n≤b

f(n) =

∫ b

a

(f(x) + ψ1(x)f ′(x))dx+
1

2
(f(b)− f(a)),

where ψ1(x) = x− [x]− 1/2 is the saw function.

Figure 1. The saw function

Proof. Let n ∈ Z such that a ≤ n < b. By integration by parts, we have∫ n+1

n

ψ1(x)f ′(x)dx =

∫ n+1

n

(x− n− 1/2)df(x)

= (x− n− 1/2)f(x)
∣∣∣n+1

n
−
∫ n+1

n

f(x)dx

=
1

2
(f(n+ 1) + f(n))−

∫ n+1

n

f(x)dx.

Hence ∫ b

a

ψ1(x)f ′(x)dx =
b−1∑
n=a

∫ n+1

n

ψ1(x)f ′(x)dx

=
1

2
(f(b) + f(a)) +

b−1∑
n=a+1

f(n)−
∫ b

a

f(x)dx.

So we obtain ∑
a<n≤b

f(n) =

∫ b

a

(f(x) + ψ1(x)f ′(x))dx+
1

2
(f(b)− f(a)),

as claimed. �

Theorem 3.3. We have∑
n≤x

log n = x log x− x+O (log x) .
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Proof. By Theorem 3.2 we have∑
n≤x

log n =

∫ x

1

(
log u+ ψ1(u)

1

u

)
du+O(log x).

Since |ψ1(u)| ≤ 1, we have∫ x

1

ψ1(u)
1

u
du�

∫ x

1

1

u
du = O (log x) .

Note that ∫ x

1

log u du = (u log u− u)
∣∣∣x
1

= x log x− x+ 1.

This completes the proof. �

Theorem 3.4. We have∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
,

where γ is the Euler constant.

Proof. By Theorem 3.2 we have∑
n≤x

1

n
= 1 +

∫ x

1

(
1

u
− ψ1(u)

1

u2

)
du− 1

2
+O

(
1

x

)
.

Let γ = 1
2
−
∫∞

1
ψ(u)
u2

du. Since |ψ1(u)| ≤ 1, we have

1

2
−
∫ x

1

ψ1(u)
1

u2
du = γ +

∫ ∞
x

ψ1(u)
1

u2
du = γ +O

(∫ ∞
x

1

u2
du

)
= γ +O

(
1

x

)
.

Note that ∫ x

1

1

u
du = log u

∣∣∣x
1

= log x.

This completes the proof. �

Theorem 3.5 (partial summation). Suppose that λ1, λ2, · · · is a nondecreasing
sequence of real numbers with limit infinity, that c1, c2, · · · is an arbitrary sequence of
real or complex numbers, and that f(x) has a continuous derivative for x ≥ λ1. Put

C(x) =
∑
λn≤x

cn,

where the summation is over all n for which λn ≤ x. Then for x ≥ λ1, we have∑
λn≤x

cnf(λn) = C(x)f(x)−
∫ x

λ1

C(t)f ′(t)dt.

Proof. Let

g(λn, t) =

{
0, if λ1 ≤ t < λn,
1, if λn ≤ t ≤ x.
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Since C(x) =
∑

λn≤x cn, we have

C(x)f(x)−
∑
λn≤x

cnf(λn) =
∑
λn≤x

cn(f(x)− f(λn)) =
∑
λn≤x

cn

∫ x

λn

f ′(t)dt

=
∑
λn≤x

cn

∫ x

λ1

g(λn, t)f
′(t)dt

=

∫ x

λ1

∑
λn≤x

cng(λn, t)f
′(t)dt

=

∫ x

λ1

∑
λn≤t

cnf
′(t)dt =

∫ x

λ1

C(t)f ′(t)dt.

Hence we have ∑
λn≤x

cnf(λn) = C(x)f(x)−
∫ x

λ1

C(t)f ′(t)dt. �

Take λn = n. Then we get∑
n≤x

anf(n) = S(x)f(x)−
∫ x

1

S(u)f ′(u)du,

where S(u) =
∑

n≤u an.

3.3. The order of magnitude of τ, σ and ϕ

In this section we will give the true order of magnitude of τ , ϕ and σ.

Theorem 3.6. Let τ(n) be the divisor function.

(a) The relation τ(n)� logA n is false for every constant A.
(b) The relation τ(n)� nδ is true for every fixed δ > 0.

Proof. (a) Let n be any of the numbers (2 · 3 · · · pr)m, m = 1, 2, · · · ; here r
is arbitrary but fixed. Then

τ(n) =
∏
p|n

(m+ 1) = (m+ 1)r > mr.

But m = log n/ log(2 · 3 · · · pr), so that

τ(n) >
logr n

(log(2 · 3 · · · pr))r
� logr n,

where the implied constant depends only on r, and not on n.
(b) Let

f(n) =
τ(n)

nδ
;

the f is multiplicative. But f(pm) = (m + 1)/pmδ, so that f(pm) → 0 as
pm → ∞, that is, as either p or m, or both, increases. This clearly implies
that f(n)→ 0 as n→∞, which is the assertion. �

Remark 3.7. The above argument can be pushed a little further. We can give
the inequality in (b) with an explicit constant for each δ.
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Remark 3.8. Here we can also consider the function τk(n) which denotes the
number of (ordered) factorization of n as the product of exactly k positive integers.

Theorem 3.9. We have

ϕ(n)� n

log log n
.

Proof. By Theorem 2.21, we have

ϕ(n)

n
=
∏
p|n

(
1− 1

p

)
so that

log
ϕ(n)

n
=
∑
p|n

log

(
1− 1

p

)
= −

∑
p|n

1

p
+
∑
p|n

(
log

(
1− 1

p

)
+

1

p

)
.

Since we have log
(

1− 1
p

)
+ 1

p
� 1

p2
, we have∑

p|n

(
log

(
1− 1

p

)
+

1

p

)
� 1.

We write ∑
p|n

1

p
=
∑
p|n

p≤logn

1

p
+
∑
p|n

p≥logn

1

p
.

The total number of prime factors greater than log n of n with multiplicity isO( logn
log logn

).
Hence we get ∑

p|n
p≥logn

1

p
� 1

log log n
.

By Mertens’ Theorem 4.6, we have∑
p|n

p≤logn

1

p
≤
∑
p≤logn

1

p
= log log log n+O(1).

Hence we obtain ∑
p|n

1

p
≤ log log log n+O(1).

Thus we have

log
ϕ(n)

n
≥ − log log log n+O(1)

and

ϕ(n)� n

log log n
. �

Remark 3.10. If we do not use Mertens’ Theorem 4.6, then we can prove

ϕ(n)� n

log n
,
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by applying ∑
p|n

p≤logn

1

p
≤
∑
p≤logn

1

p
≤

∑
m≤logn

1

m
= log log n+O(1),

which follows from Theorem 3.4.

Remark 3.11. The result of Theorem 3.9 is best-possible, in the sense that there
is an increasing sequence of positive integers n1, n2, · · · such that

ϕ(nr)�
nr

log log nr
.

Proof. Take nr = p1p2 · · · pr, where pr is the r-th prime. By Chebyshev inequal-
ity we have

log nr =
∑
p≤pr

log p � pr.

Note that

log
ϕ(nr)

nr
= log

∏
p≤pr

(
1− 1

p

)
=
∑
p≤pr

log

(
1− 1

p

)
= −

∑
p≤pr

1

p
+
∑
p≤pr

(
log

(
1− 1

p

)
+

1

p

)
= − log log pr +O(1).

Hence

ϕ(nr) �
nr

log pr
� nr

log log nr
. �

Theorem 3.12. We have

1

2
<
σ(n)ϕ(n)

n2
< 1.

Proof. By Theorem 2.15 we have

σ(n) =
∏
pa‖n

pa+1 − 1

p− 1
= n

∏
pa‖n

(1 + p−1 + p−2 + · · ·+ p−a).

Hence

σ(n)ϕ(n) = n2
∏
pa‖n

(1− p−1)(1 + p−1 + p−2 + · · ·+ p−a) = n2
∏
pa‖n

(1− p−a−1).

We have

σ(n)ϕ(n) < n2

and

σ(n)ϕ(n) ≥ n2
∏
p|n

(1− p−2) > n2 1

ζ(2)
>
n2

2
.

Here we have used ζ(2) = π2

6
< 2. �

Theorem 3.13. We have

σ(n)� n log log n.
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Proof. By Theorem 3.12 we have

σ(n)� n2

ϕ(n)
.

By Theorem 3.9 we obtain

σ(n)� n2

n/ log log n
� n log log n. �

3.4. Averages of τ(n), σ(n), ϕ(n) and |µ|(n)

At first, we introduce Dirichlet’s trick of switching divisors (the hyperbola method).

Theorem 3.14 (the hyperbola method). Let h = f ∗ g, and

F (x) =
∑
n≤x

f(n), G(x) =
∑
n≤x

g(n), H(x) =
∑
n≤x

h(n),

then for any y ∈ [1, x], we have

H(x) =
∑
n≤y

f(n)G
(x
n

)
+
∑
m≤x/y

g(m)F
( x
m

)
− F (y)G

(
x

y

)
.

Figure 2.

Proof. Since h = f ∗ g, we have

H(x) =
∑
k

∑
mn≤x

f(n)g(m)

=
∑
n≤y

f(n)
∑
m≤x/n

g(m) +
∑
m≤x/y

g(m)
∑
n≤x/m

f(n)−
∑
n≤y

f(n)
∑
m≤x/y

g(m)

=
∑
n≤y

f(n)G
(x
n

)
+
∑
m≤x/y

g(m)F
( x
m

)
− F (y)G

(
x

y

)
.

This concludes the proof. �
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Theorem 3.15. We have∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2),

where γ is Euler’s constant.

Proof. Note that τ = u ∗ u. By Theorem 3.14 with y =
√
x, we have∑

n≤x

τ(n) = 2
∑
n≤
√
x

[x
n

]
−
[√
x
]2
.

By Theorem 3.4 we have∑
n≤x

τ(n) = 2x
∑
n≤
√
x

1

n
− x+O(x1/2)

= 2x(log x+ γ +O(x−1/2))− x+O(x1/2)

= x log x+ (2γ − 1)x+O(x1/2),

as claimed. �

Theorem 3.16. We have∑
n≤x

ϕ(n) =
3x2

π2
+O(x log x).

Proof. Note that ϕ = µ ∗N and∑
n≤y

n =
y2

2
+O(y).

We have ∑
n≤x

ϕ(n) =
∑
n≤x

µ(n)
∑
m≤ x

n

m =
∑
n≤x

µ(n)

(
x2

2n2
+O

(x
n

))

=
x2

2

∑
n≤x

µ(n)

n2
+O(x log x) =

x2

2

∑
n≥1

µ(n)

n2
+O(x log x).

Note that
∑

n≥1
µ(n)
n2 = 1

ζ(2)
= 6

π2 . This completes the proof. �

Theorem 3.17. We have∑
n≤x

σ(n) =
π2x2

12
+O(x log x).

Proof. Note that σ = u ∗N . We have∑
n≤x

σ(n) =
∑
n≤x

∑
m≤ x

n

m =
∑
n≤x

(
x2

2n2
+O

(x
n

))

=
x2

2

∑
n≤x

1

n2
+O(x log x) =

x2

2

∑
n≥1

1

n2
+O(x log x).

Note that
∑

n≥1
1
n2 = ζ(2) = π2

6
. This completes the proof. �
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Theorem 3.18. Let Q(x) be the number of positive square-free integers not ex-
ceeding x. We have

Q(x) =
∑
n≤x

|µ|(n) =
6

π2
x+O(

√
x).

Proof. By Theorem 2.19, we have |µ|(n) =
∑

d2|n µ(d). Hence we have∑
n≤x

|µ|(n) =
∑
d≤
√
x

µ(d)
∑
m≤ x

d2

1 =
∑
d≤
√
x

µ(d)
( x
d2

+O (1)
)

= x
∑
n≤
√
x

µ(n)

n2
+O(

√
x) = x

∑
n≥1

µ(n)

n2
+O(

√
x) =

6

π2
x+O(

√
x),

where we have used
∑

n≥1
µ(n)
n2 = 6

π2 . �

3.5. The Gauss circle problem and the Dirichlet divisor problem

Definition 3.19. The sum of two squares function r2(n) is defined as the number
of pairs of integers (a, b) such that n = a2 + b2, that is,

r2(n) = #{a, b ∈ Z : a2 + b2 = n}.

The Gauss circle problem is the problem of determining how many integer lattice
points there are in a circle centered at the origin and with radius

√
x. This number

is approximated by the area of the circle, so the real problem is to accurately bound
the error term describing how the number of points differs from the area. The first
progress on a solution was made by Carl Friedrich Gauss, hence its name.

Theorem 3.20 (Gauss). We have∑
n≤x

r2(n) = πx+O(x1/2).

Proof. We use the slicing method. By the definition of r2(n), we have∑
n≤x

r2(n) =
∑
|a|≤
√
x

∑
|b|≤
√
x−a2

1 =
∑
|a|≤
√
x

(2[
√
x− a2] +O(1))

= 4
∑

1≤a≤
√
x

√
x− a2 +O(

√
x).

By Theorem 3.5 with λn = n, cn = 1 and f(n) =
√
x− n2, we get∑

n≤x

r2(n) = −4

∫ √x
1

−u√
x− u2

(u+O(1))du+O(
√
x)

= 4
√
x

∫ π
2

0

sin t (
√
x sin t+O(1))dt+O(

√
x)

= 4x

∫ π
2

0

(sin t)2dt+O(
√
x).
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Here we made a change of variable u =
√
x sin t. Note that∫ π

2

0

(sin t)2dt =

∫ π
2

0

1− cos 2t

2
dt

=
π

4
− 1

4

∫ π

0

cos θdθ =
π

4
.

Hence we get ∑
n≤x

r2(n) = πx+O(x1/2),

as claimed. �

By harmonic analysis we can improve the exponent to 1/3. Furthermore, applying
the exponential sum method we can even go lower than 1/3. The best exponent in
the error term is conjectured to be 1/4 and it is well known that one can not do better
than 1/4.

Theorem 3.21 (Voronoi, Sierpinski). We have∑
n≤x

r2(n) = πx+O(x1/3).

To prove Theorem 3.21, we will use the Poisson summation formulas. Let L1(R)
denote the space of Lebesgue integrable functions on R. Recall that for any function
f ∈ L1(R) its Fourier transform is defined by

f̂(y) =

∫
R
f(x)e(−xy)dx.

We first give the follow Poisson summation formula on R.

Theorem 3.22. Suppose that both f and f̂ are in L1(R) and have bounded vari-
ation. Then we have ∑

m∈Z

f(m) =
∑
n∈Z

f̂(n)

where both series converge absolutely.

Proof. Consider the function

F (x) =
∑
m∈Z

f(m+ x)

which is periodic of period one. This has the absolutely convergent Fourier series
expansion

F (x) =
∑
n∈Z

cF (n)e(nx)

with coefficients given by

cF (n) =

∫ 1

0

F (u)e(−nu)du =

∫ ∞
−∞

f(u)e(−nu)du = f̂(n).

Taking F (0) we get the Poisson summation formula. �

The same method (averaging of integral translations) works in several variables
giving
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Theorem 3.23. Suppose f in the Schwartz class S(R`). Then we have∑
m∈Z`

f(m) =
∑
n∈Z`

f̂(n).

Lemma 3.24. Let f : R2 → C. Suppose

f(x) = g(|x|2)

where g is a smooth compactly supported function on R+. Then we have

f̂(y) = h(|y|2)

with

h(y) = π

∫ ∞
0

J0(2π
√
xy)g(x)dx

where J0(x) is the Bessel function of order 0.

Proof. For integer values of ν, the Bessel function has the following integral
representation:

Jν(z) =
1

π

∫ π

0

cos(νθ − z sin θ)dθ.

Hence J0(z) = 1
π

∫ π
0

cos(−z sin θ)dθ. Since f(x) = g(|x|2), by using the polar coordi-
nates we have

f̂(y) =

∫
R2

f(x)e(−xy)dx =

∫ ∞
0

g(r2)

∫ 2π

0

e(−r cos(θ)y1 − r sin(θ)y2)rdrdθ.

If y = 0 then f̂(0) =
∫
R2 f(x)dx = 2π

∫∞
0
g(r2)rdr = π

∫∞
0
g(x)dx and h(0) =

π
∫∞

0
g(x)dx = f̂(0). Here we have used J0(0) = 1. Now we assume y 6= 0. Let

ϕ ∈ [0, 2π] such that cosϕ = y1
|y| and sin(ϕ) = y2

|y| . Then we have

f̂(y) =

∫ ∞
0

g(r2)

∫ 2π

0

e(−r cos(θ + ϕ)y1 − r sin(θ + ϕ)y2)rdrdθ

=

∫ ∞
0

g(r2)

∫ 2π

0

e(−r cos(θ)|y|)rdrdθ =

∫ ∞
0

g(r2)

∫ 2π

0

e(−r sin(θ)|y|)rdrdθ.

Making a change of variable r2 = x we have

f̂(y) =

∫ ∞
0

g(x)

∫ π

0

e(−
√
x sin(θ)|y|)dxdθ = h(|y|2),

as claimed. �

Lemma 3.25. We have

h(y) = − 1

πy

∫ ∞
0

(uy)1/4g′(u) sin
(

2π
√
uy − π

4

)
du+O(R(y)),

where

R(y) =

∫ ∞
0

(uy)−5/4(|g(u)|+ u|g′(u)|)du.
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Proof. We have the following asymptotic expansion:

πJ0(z) =

(
2π

z

)1/2{
cos
(
z − π

4

)
+

1

8z
sin
(
z − π

4

)
+O

(
1

z2

)}
(3.1)

valid for z > 0. We get

h(y) =

∫ ∞
0

g(x)(xy)−1/4 cos(2π
√
xy − π/4)dx

+

∫ ∞
0

g(x)
(xy)−3/4

16π
sin(2π

√
xy − π/4)dx+O

(∫ ∞
0

|g(x)|(xy)−5/4dx

)
.

Integrating by parts in the second integral above we obtain∫ ∞
0

g(x)
(xy)−3/4

16π
sin(2π

√
xy − π/4)dx =

∫ ∞
0

g(x)
(xy)−3/4

16π

−x
π
√
xy

d cos(2π
√
xy − π/4)

� R(y)

and hence

h(y) =

∫ ∞
0

g(x)(xy)−1/4 cos(2π
√
xy − π/4)dx+O(R(y)).

Now integrating by parts in the integral above we get

h(y) = − 1

πy

∫ ∞
0

(uy)1/4g′(u) sin
(

2π
√
uy − π

4

)
du+O(R(y)).

This completes the proof. �

Corollary 3.26. Suppose g is a smooth and compactly supported on R+. Then
∞∑
n=0

r2(m)g(m) = π

∫ ∞
0

g(x)dx+
∞∑
n=1

r2(n)h(n)

where

h(y) = π

∫ ∞
0

g(x)J0(2π
√
xy)dx

and both series converge absolutely.

Proof. By Theorem 3.23 with f(x) = g(|x|2), we have
∞∑
n=0

r2(n)g(n) = h(0) +
∞∑
n=1

r2(n)h(n).

Noting that h(0) = π
∫∞

0
g(x)dx, we completes the proof. �

Proof of Theorem 3.21. Let 0 < y ≤ x/5. Let w1 be a smooth function with
support suppw1 ∈ [0, 1 + y/x] such that w1(u) = 1 if u ∈ [y/x, 1], w1(u) ∈ [0, 1]
if u ∈ [0, y/x] ∪ [1, 1 + y/x]. Similarly, let w2 be a smooth function with support
suppw2 ∈ [0, 1] such that w2(u) = 1 if u ∈ [y/x, 1 − y/x], w2(u) ∈ [0, 1] if u ∈
[0, y/x]∪ [1− y/x, 1]. Assume w

(k)
j (u)� (x/y)k for any integer k ≥ 0 and j ∈ {1, 2}.

By the fact r2(n) ≥ 0 and Theorem 3.20, we have∑
n≥1

r2(n)w2

(n
x

)
≤
∑
n≤x

r2(n) ≤
∑
n≥1

r2(n)w1

(n
x

)
+ y.
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In order to prove Theorem 3.21, it suffices to prove for w ∈ {w1, w2} and y = x1/3,
we have ∑

n≥1

r2(n)w
( n
X

)
= πw̃(1)x+O(x1/3). (3.2)

where w̃(s) =
∫∞

0
w(u)us−1du is the Mellin transform of w. Note that w̃(1) =∫∞

0
w(u)du = 1 +O(y/x). Indeed, (3.2) leads to∑

n≥1

r2(n)w
( n
X

)
= πx+O(x1/3),

as claimed.
Now we prove (3.2). By Corollary 3.26 we have∑

n≥1

r2(n)w
(n
x

)
= π

∫ ∞
0

w(u/x)du+
∞∑
n=1

r2(n)h(n).

with g(u) = w(u/x). Note that g′(u) = w′(u/x) 1
x
. By Lemma 3.25 we have

h(n) = − 1

πn

∫ ∞
0

(un)1/4w′(u/x)
1

x
sin
(

2π
√
un− π

4

)
du+O(R(n)),

where

R(n) =

∫ ∞
0

(un)−5/4(|w(u/x)|+ u|w′(u/x)
1

x
|)du.

Note that w(u/x) � 1, w(u/x) = w(0) +
∫ u/x

0
w′(v)dv � u/y for u ∈ [0, y], and

w′(u/x)� x/y for u ∈ [0, y]∪ [x− y, x+ y] and w′(u/x) = 0 for u ∈ [y, 1− y]. Hence

R(n)�
∫ y

0

(un)−5/4u

y
du+

∫ x+y

y

(un)−5/4du

+

∫ y

0

(un)−5/4u

x
|w′(u/x)|du+

∫ x+y

x−y
(un)−5/4u

x
|w′(u/x)|du� n−5/4y−1/4,

h(n) = − 1

πn

∫ ∞
0

(un)1/4w′(u/x)
1

x
sin
(

2π
√
un− π

4

)
du+O(R(n))

� n−3/4

∫ y

0

u1/4 1

x
|w′(u/x)|du+ n−3/4

∫ x+y

x−y
u1/4 1

x
|w′(u/x)|du+O(R(n))

� n−3/4x1/4 + n−5/4y−1/4,

and by integrating by parts,

h(n) = − x

πn

∫ ∞
0

(xnξ)1/4w′(ξ)
1

x
sin
(

2π
√
nxξ − π

4

)
dξ +O(R(n))

=
x1/4

πn3/4

∫ ∞
0

ξ1/4w′(ξ)
ξ

π
√
xnξ

d cos
(

2π
√
nxξ − π

4

)
+O(R(n))

� n−5/4x−1/4

(∫ y/x

0

+

∫ 1+y/x

1−y/x

)(
ξ3/4|w′′(ξ)|+ ξ−1/4|w′(ξ)|

)
dξ +O(R(n))

� n−5/4y−1/4 + n−5/4x3/4/y.
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Hence we obtain
h(n)� min{n−3/4x1/4, n−5/4x3/4/y}.

Thus we get∑
n≥1

r2(n)w
(n
x

)
= π

∫ ∞
0

w(u/x)du+
∑

n≤x/y2
r2(n)n−3/4x1/4 +

∑
n≥x/y2

r2(n)n−5/4x3/4/y.

By the partial summation formula we get∑
n≥1

r2(n)w
(n
x

)
= π

∫ ∞
0

w(u/x)du+O(x1/2/y1/2).

Therefore, we have∑
n≤x

r2(n) =
∑
n≥1

r2(n)w
(n
x

)
+O(y)

= πx+O(x1/2/y1/2 + y) = πx+O(x1/3),

by taking y = x1/3. This proves the theorem. �

The Dirichlet divisor problem is to accurately bound the error term in the average
of τ(n). This is closed related to the Gauss circle problem. We state the following
theorem without giving a proof.

Theorem 3.27. We have∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/3 log x),

where γ is Euler’s constant.
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