Homework 3

(due Wednesday, April 14, 2021)
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. Show that

where A is an absolute constant.

. Let a € R be a parameter. Discuss when the series
>
— p(loglog p)

converges and when it diverges.

. Let f be an arithmetic function such that

Zf Ylogp = (ax + b)logz + cx + O(1), for x> 2.
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Prove that there is a constant A depending on f such that for x > 2,
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. If (x)/x tends to a limit as © — oo, then this limit equals 1. Here
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. Show that 7(z) ~ = is equivalent to > ., 5= = 0. Here m(z) =
> p<a L

. Prove that the following two statements are equivalent:
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Show that for each fixed positive integer n, we have
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