Homework 3

(due Wednesday, April 14, 2021)

1. Show that

$$
\prod_{2<p \leq x}\left(1-\frac{2}{p}\right)=\frac{A+o(1)}{\log ^{2} x}
$$

where A is an absolute constant.
2. Let $\alpha \in \mathbb{R}$ be a parameter. Discuss when the series

$$
\sum_{p} \frac{1}{p(\log \log p)^{\alpha}}
$$

converges and when it diverges.
3. Let f be an arithmetic function such that

$$
\sum_{p \leq x} f(p) \log p=(a x+b) \log x+c x+O(1), \quad \text { for } x \geq 2
$$

Prove that there is a constant A depending on f such that for $x \geq 2$,

$$
\sum_{p \leq x} f(p)=a x+(a+c)\left(\frac{x}{\log x}+\int_{2}^{x} \frac{\mathrm{~d} t}{\log ^{2} t}\right)+b \log \log x+A+O\left(\frac{1}{\log x}\right)
$$

4. If $\psi(x) / x$ tends to a limit as $x \rightarrow \infty$, then this limit equals 1 . Here $\psi(x)=\sum_{n \leq x} \Lambda(n)$.
5. Show that $\pi(x) \sim \frac{x}{\log x}$ is equivalent to $\sum_{n \geq 1} \frac{\mu(n)}{n}=0$. Here $\pi(x)=$ $\sum_{p \leq x} 1$.
6. Prove that the following two statements are equivalent:

$$
\begin{gather*}
\pi(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) ; \tag{1}\\
\theta(x)=x+O\left(\frac{x}{\log x}\right) \tag{2}
\end{gather*}
$$

Here $\theta(x)=\sum_{p \leq x} \log p$.
7. Let

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{\mathrm{~d} t}{\log t} .
$$

Show that for each fixed positive integer n, we have

$$
\operatorname{Li}(x)=\frac{x}{\log x}+\frac{1!x}{\log ^{2} x}+\frac{2!x}{\log ^{3} x}+\cdots+\frac{(n-1)!x}{\log ^{n} x}+O\left(\frac{x}{\log ^{n+1} x}\right) .
$$

