
CHAPTER 4

The Distribution of Primes

To study prime numbers, Chebyshev introduced the following two functions

ψ(x) =
∑
n≤x

Λ(n), θ(x) =
∑
p≤x

log p.

Theorem 4.1. The following statements are equivalent:

π(x) ∼ x

log x
, x→∞, (4.1)

ψ(x) ∼ x, x→∞, (4.2)

θ(x) ∼ x, x→∞. (4.3)

Proof. We first show that (4.2) ⇐⇒ (4.3). By definition of Λ, we have

ψ(x) =
∑

k≤log2 x

∑
pk≤x

log p =
∑

k≤log2 x

θ
(
x1/k

)
.

Note that θ(y) ≤ y log y. So we have

ψ(x)− θ(x) =
∑

2≤k≤log2 x

θ
(
x1/k

)
� x1/2 log x,

from which we get (4.2) ⇐⇒ (4.3).
Now we show (4.1) =⇒ (4.3). By Theorem 3.5 with λn = n, f(u) = log u,

cn = δn∈P =

{
1, if n ∈ P,
0, otherwise

, we have

θ(x) = π(x) log x−
∫ x

2

1

u
π(u)du.

If π(x) ∼ x/ log x, then we have∫ x

2

1

u
π(u)du =

∫ √x
2

1

u
π(u)du+

∫ x

√
x

1

u
π(u)du�

√
x+

∫ x

√
x

1

log u
du� x

log x
,

and π(x) log x ∼ x. Hence we get (4.3).
Finally we show (4.1) ⇐= (4.3). By Theorem 3.5 with λn = n, f(u) = 1/ log u,

cn = δn∈P, we have

π(x) =
θ(x)

log x
−
∫ x

2

1

u(log u)2
θ(u)du.
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If θ(x) ∼ x, then we have∫ x

2

1

u(log u)2
θ(u)du =

∫ √x
2

θ(u)

u(log u)2
du+

∫ x

√
x

θ(u)

u(log u)2
dudu

�
√
x+

∫ x

√
x

1

(log u)2
du� x

(log x)2
,

and θ(x)
log x
∼ x

log x
. Hence we get (4.1). This completes the proof. �

4.1. The Chebyshev inequality and Mertens’ theorems

The prime number theorem states that π(x) ∼ x/ log x as x→∞. In this section,
we show that x/ log x is the correct order of magnitude of π(x). We first consider
Chebyshev’s ψ-function.

Theorem 4.2. We have
ψ(x) � x.

Proof. By Theorem 2.46, we have

S(x) :=
∑
n≤x

log n =
∑
ab≤x

Λ(b) =
∑
a≤x

ψ
(x
a

)
.

Hence we have

S(x)−2S(x/2) =
∑
a≤x

ψ
(x
a

)
−2

∑
a≤x/2

ψ
( x

2a

)
= ψ(x)−ψ

(x
2

)
+ψ

(x
3

)
−· · · ≤ ψ(x),

and
S(x)− 2S(x/2) ≥ ψ(x)− ψ

(x
2

)
.

By Theorem 3.3, we have

S(x) =
∑
n≤x

log n = x log x− x+O(log x).

Hence

S(x)− 2S(x/2) = x log x− x− x log
x

2
+ x+O(log x) = x log 2 +O(log x) ≤ ψ(x),

and
ψ(x)− ψ

(x
2

)
≤ x log 2 +O(log x).

So

ψ
(x

2

)
− ψ

(x
4

)
≤ x

2
log 2 +O(log x),

ψ
(x

4

)
− ψ

(x
8

)
≤ x

4
log 2 +O(log x), . . . .

Therefore, we have

ψ(x) ≤
∑
k≥0

1

2k
x log 2 +O((log x)2) ≤ (2 log 2)x+O((log x)2).

Hence we have

x log 2 +O(log x) ≤ ψ(x) ≤ (2 log 2)x+O((log x)2).
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This completes the proof. �

Theorem 4.3. We have
π(x) � x

log x
.

Proof. By Theorem 4.2, we have

π(x) ≥ 1

log x

∑
p≤x

log p =
1

log x

ψ(x)−
∑
k≥2

∑
pk≤x

log p

� x

log x
,

By Theorems 3.5 and 4.2, we have

π(x) =
∑
p≤x

log p

log p
≤
∫ x

2

1

log u
d
∑
p≤u

log p ≤ ψ(u)

log u

∣∣∣x
2

+

∫ x

2

ψ(u)
1

u(log u)2
du

� x

log x
+

∫ x

2

1

(log u)2
du� x

log x
+

∫ √x
2

du+

∫ x

√
x

1

(log x)2
du� x

log x
.

This completes the proof. �

Corollary 4.4. For n ≥ 1, the n-th prime pn satisfies the inequalities

pn � n log n.

Proof. By Theorem 4.3, we have

n = π(pn) � pn
log pn

.

Note that pn ≥ n. We have pn � n log pn � n log n.

Note that pn � n log pn � np
1/2
n . Hence pn � n2. Therefore, we have pn �

n log n2 � n log n. �

Theorem 4.5. We have ∑
n≤x

Λ(n)

n
= log x+O(1),

and ∑
p≤x

log p

p
= log x+O(1).

Proof. By Theorems 2.46 and 4.2, we have

S(x) =
∑
n≤x

log n =
∑
ab≤x

Λ(b) =
∑
b≤x

Λ(b)
(x
b

+O(1)
)

= x
∑
n≤x

Λ(n)

n
+O(x).

By Theorem 3.3, we have

S(x) = x log x+O(x) = x
∑
n≤x

Λ(n)

n
+O(x).

Hence we get ∑
n≤x

Λ(n)

n
= log x+O(1)
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from which we obtain∑
p≤x

log p

p
=
∑
n≤x

Λ(n)

n
−
∑
k≥2

∑
pk≤x

log p

pk
= log x+O(1). (4.4)

This completes the proof. �

Theorem 4.6. We have∑
p≤x

1

p
= log log x+ C +O

(
1

log x

)
,

for some constant C.

Proof. By Theorem 3.5, we have∑
p≤x

1

p
=

∫ x

2

1

log u
d
∑
p≤u

log p

p
=

1

log x

∑
p≤x

log p

p
−
∫ x

2

∑
p≤u

log p

p
d

1

log u
.

By (4.4), we have
1

log x

∑
p≤x

log p

p
= 1 +O

(
1

log x

)
,

and

−
∫ x

2

∑
p≤u

log p

p
d

1

log u
= −

∫ x

2

log u d
1

log u
+

∫ x

2

(
log u−

∑
p≤u

log p

p

)
d

1

log u

= −
∫ x

2

log u d
1

log u
+ C ′ −

∫ ∞
x

(
log u−

∑
p≤u

log p

p

)
d

1

log u

=

∫ x

2

1

u log u
du+ C ′ +O

(
1

log x

)
= log log u

∣∣∣x
2

+ C ′ +O

(
1

log x

)
,

where C ′ =
∫∞

2

(
log u−

∑
p≤u

log p
p

)
d 1

log u
is a constant. Hence∑

p≤x

1

p
= log log x+ C +O

(
1

log x

)
,

where C = C ′ + 1− log log 2. �

Theorem 4.7. Let x ≥ 2. There exists a constant C such that∏
p≤x

(
1− 1

p

)
=

A

log x
+O

(
1

(log x)2

)
.

Proof. Note that log(1 + x) = x+O(x2), as x→ 0. By Theorem 4.6 we have∑
p≤x

log

(
1− 1

p

)
= −

∑
p≤x

1

p
+
∑
p≤x

(
log

(
1− 1

p

)
+

1

p

)
= − log log x− C +O

(
1

log x

)
+B,
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where B =
∑

p≥2

(
log
(

1− 1
p

)
+ 1

p

)
�
∑

p≥2
1
p2

<
∑

n≥2
1
n2 < ∞. Therefore we

obtain ∏
p≤x

(
1− 1

p

)
= exp

(∑
p≤x

log

(
1− 1

p

))

= exp

(
− log log x+B − C +O

(
1

log x

))
=
eB−C

log x

(
1 +O

(
1

log x

))
=

A

log x
+O

(
1

(log x)2

)
,

where A = eB−C . �

4.2. Averages of ω(n) and Ω(n)

Theorem 4.8. We have∑
n≤x

ω(n) = x log log x+ cx+O

(
x

log x

)
and ∑

n≤x

Ω(n) = x log log x+ c′x+ o(x).

Proof. By Theorems 4.3 and 4.6 we have∑
n≤x

ω(n) =
∑
n≤x

∑
p|n

1 =
∑
p≤x

∑
n≤x
p|n

1

=
∑
p≤x

(
x

p
+O(1)

)
= x log log x+ cx+O

(
x

log x

)
.

Note that Ω(n) =
∑

pr‖n r. We have∑
n≤x

Ω(n) =
∑
n≤x

∑
pr‖n

r =
∑
p≤x

∑
n≤x
pr‖n

r

=
∑
p≤x

∞∑
r=1

∑
n≤x
pr|n

1 =
∑
p≤x

∑
n≤x
p|n

1 +
∑
p≤x1/2

∑
r≥2
pr≤x

(
x

pr
+O(1)

)

= x log log x+ cx+O

(
x

log x

)
+
∑
r≥2

∑
pr≤x

x

pr

= x log log x+

(
c+

∑
r≥2

∑
p≥2

1

pr

)
x+O

(
x

log x
+ x

∑
r≥2

∑
pr>x

1

pr

)
.
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Note that∑
r≥2

∑
pr>x

1

pr
�
∑
r≥2

∑
nr>x

1

nr
�

∑
r≤log2 x

∫ ∞
x1/r

r
1

ur
du+

∑
r≥log2 x

∫ ∞
2

r
1

ur
du

�
∑

2≤r≤log2 x

x(−r+1)/r +
∑

r≥log2 x

2−r � x−1/2.

Hence we have ∑
n≤x

Ω(n) = x log log x+ c′x+O

(
x

log x

)
,

with c′ = c+
∑

r≥2

∑
p≥2

1
pr

. �

Theorem 4.9. We have∑
n≤x

ω(n)2 = x(log log x)2 +O(x log log x).

Proof. Let us consider the number of pairs of different prime factors p, q of n
(i.e. p 6= q), counting the pair q, p distinct from p, q. There are ω(n) possible values
of p and, with each of these, just ω(n)− 1 possible values of q. Hence we have

ω(n)(ω(n)− 1) =
∑
pq|n
p6=q

1 =
∑
pq|n

1−
∑
p2|n

1.

Summing over all n ≤ x we have∑
n≤x

ω(n)(ω(n)− 1) =
∑
n≤x

∑
pq|n

1−
∑
n≤x

∑
p2|n

1

=
∑
pq≤x

[
x

pq

]
−
∑
p2≤x

[
x

p2

]
=
∑
pq≤x

[
x

pq

]
+O(x).

By Theorem 4.6 we have∑
pq≤x

[
x

pq

]
=
∑
pq≤x

x

pq
+O

(∑
pq≤x

1

)
=
∑
pq≤x

x

pq
+O

(∑
p≤x

π

(
x

p

))

= x
∑
pq≤x

1

pq
+O

(
x
∑
p≤x

1

p

)
= x

∑
pq≤x

1

pq
+O (x log log x) .

Note that we have  ∑
p≤x1/2

1

p

2

≤
∑
pq≤x

1

pq
≤

(∑
p≤x

1

p

)2

,

∑
p≤x1/2

1

p
= log log x1/2 +O(1) = log log x+O(1),

and

(log log x+O(1))2 = (log log x)2 +O(log log x).
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So we get ∑
pq≤x

1

pq
= (log log x)2 +O(log log x),

and therefore∑
n≤x

ω(n)2 =
∑
n≤x

ω(n)(ω(n)− 1) +
∑
n≤x

ω(n) = x(log log x)2 +O(x log log x).

This concludes the proof. �

Theorem 4.10. For any ε > 0, the number of n ∈ [1, x] such that

|ω(n)− log log n| > (log log n)1/2+ε

is o(x).

Proof. If n ≤ x1/e, then the number of such n is o(x). If n ∈ (x1/e, x], then

log log x− 1 < log log n ≤ log log x,

so we only need to show that the number of n ∈ (x1/e, x] such that

|ω(n)− log log x| > (log log x)1/2+ε

is o(x). By Theorems 4.8 and 4.9 we have∑
n≤x

(ω(n)− log log x)2 =
∑
n≤x

ω(n)2 − 2 log log x
∑
n≤x

ω(n) + (log log x)2
∑
n≤x

1

= x(log log x)2 +O(x log log x)− 2 log log x(x log log x+O(x))

+ (log log x)2(x+O(1))

= O(x log log x).

Let M denote the number of n ∈ [1, x] such that |ω(n) − log log x| > (log log x)1/2+ε

is M , then we have

M · (log log x)1+2ε ≤
∑
n≤x

(ω(n)− log log x)2 � x log log x,

and therefore

M � x

(log log x)2ε
= o(x).

This proves the theorem. �

Note that Ω(n) ≥ ω(n) for all n ≥ 1 and∑
n≤x

(Ω(n)− ω(n)) = O(x).

So the number of n ∈ [1, x] such that Ω(n) − ω(n) > (log log x)1/2 is O( x
(log log x)1/2

).

By Theorem 4.10, we have ω(n) ∼ Ω(n) ∼ log log n for almost all n ≥ 1.
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4.3. Bertrand’s Postulate

In 1845 J. Bertrand showed empirically that there is a prime between n and 2n
for all n greater than 1 and less than six million, and predicted that this is true for
all positive integers n. Chebyshev proved this in 1852.

Theorem 4.11. For any n ≥ 1, there is at least one prime in (n, 2n].

Remark 4.12. Theorem 4.5 implies a weak form of Theorem 4.11: there exists a
positive constant c such that there is a prime between n and cn for all n. By Theorem
4.5 there is a constant A such that

log n− A <
∑
p≤n

log p

p
< log n+ A

for all n. Hence∑
n<p≤e2An

log p

p
=
∑

p≤e2An

log p

p
−
∑
p≤n

log p

p
> log e2An− A− log n− A = 0.

So we can take c = e2A.

Remark 4.13. One can consider primes in short intervals [x, x + y] with y < x
and x→∞. It it natural to ask whether there is a prime in [n2, (n+ 1)2] for all large
n. This is an open problem, known as Legendre’s conjecture. It follows from a result
by Ingham that for all sufficiently large n, there is a prime between the consecutive
cubes n3 and (n+ 1)3. Baker, Harman and Pintz proved that there is a prime in the
interval [x− x0.525, x] for all sufficiently large x.

To prove Theorem 4.11 we need two lemmas.

Lemma 4.14. For every positive integer n, we have
∏

p≤n p < 4n.

Proof. We use induction on n. If n = 1 or 2, the inequality is obvious. Suppose
it is true for 1, 2, . . . , n− 1, where n ≥ 3. The we only need to consider odd n, since
if n is even then ∏

p≤n

p =
∏

p≤n−1

p < 4n−1 < 4n.

Take n = 2m+ 1. Note that the binomial coefficient(
2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!

is divisible by every prime p with m+ 2 ≤ p ≤ 2m+ 1. Hence we have∏
p≤2m+1

p ≤
(

2m+ 1

m

) ∏
p≤m+1

p ≤
(

2m+ 1

m

)
4m+1.

Note that
(

2m+1
m

)
=
(

2m+1
m+1

)
are both occur in the expansion of (1 + 1)2m+1, so that(

2m+ 1

m

)
≤ 22m+1−1 = 4m.

Hence ∏
p≤2m+1

p ≤ 4m4m+1 = 42m+1.
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The lemma follows by induction on n. �

Lemma 4.15. If n ≥ 3 and 2
3
n < p ≤ n, then p -

(
2n
n

)
.

Proof. By Theorem 1.15 we know if pe(p,n) ‖
(

2n
n

)
, then

e(p, n) =
∑
k≥1

([
2n

pk

]
− 2

[
n

pk

])
.

Since n ≥ 3 and p > 2
3
n, we have p ≥ 3 and p2 > 2p

3
n ≥ 2n. By 2

3
n < p ≤ n we have

2 ≤ 2n
p
< 3 and 1 ≤ n

p
< 3

2
. Hence for n ≥ 3 and 2

3
n < p ≤ n, we have

e(p, n) =

[
2n

p

]
− 2

[
n

p

]
= 2− 2 · 1 = 0.

This completes the proof. �

Proof of Theorem 4.11. There is such a prime for n = 1 or 2. Assume there
is none for a certain integer n ≥ 3. Hence(

2n

n

)
=
∏
p≤2n

pe(p,n) =
∏
p≤2n

pe(p,n).

By Theorem 1.15 we have

e(p, n) =
∑
k≥1

([
2n

pk

]
− 2

[
n

pk

])
.

Note that for pk ≤ 2n we have
[

2n
pk

]
− 2

[
n
pk

]
≤ 1. So pe(p,n) ≤ 2n. If 2

3
n < p ≤ n, by

Lemma 4.15 we have e(p, n) = 0. If
√

2n < p ≤ 2
3
n, then e(p, n) ≤ 1. Hence(

2n

n

)
≤
∏

p≤
√

2n

2n
∏

√
2n<p≤ 2

3
n

p ≤
∏

p≤
√

2n

2n
∏
p≤ 2

3
n

p.

By Lemma 4.14 we get (
2n

n

)
≤ (2n)π(2n)4

2
3
n.

But
(

2n
n

)
is the largest of the 2n+ 1 terms in the expansion of (1 + 1)2n, and the first

and last terms are 1, so that

2n

(
2n

n

)
> 4n.

Note that π(
√

2n) ≤
√

2n− 1. We have

4n

2n
< (2n)

√
2n−14

2
3
n, and 4

n
3 < (2n)

√
2n.

Taking logarithms, we have

log 4

3
n <
√

2n log 2n, and
√
n <

3
√

2

log 4
log 2n.
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The inequality is false for n ≥ 427. Indeed, let f(n) =
√
n − 3

√
2

log 4
log 2n. Then

f ′(n) = 1
2
√
n
− 3

√
2

n(log 4)
> 0 if n > 38. Hence f(n) ≥ f(427) > 0 if n ≥ 427. So there is

a prime between n and 2n for n ≥ 427. But in the sequence of primes

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 557,

each number is smaller than twice the one preceding it. So there is also such a prime
for all n ≤ 427, and hence for all n ≥ 1. �

4.4. Averages of µ(n)

Theorem 4.16. For all n ∈ N, we have

n∑
m=1

µ(m)
[ n
m

]
= 1.

Moreover for all real number x ≥ 1, we have∣∣∣∣∣ ∑
1≤m≤x

µ(m)

m

∣∣∣∣∣ ≤ 1.

Proof. We have
n∑

m=1

µ(m)
[ n
m

]
=
∑
m≤n

µ(m)
∑
d≤ n

m

1 =
∑

1≤`≤n

∑
m|`

µ(m).

By Theorem 2.18 we have
∑n

m=1 µ(m)
[
n
m

]
=
∑

1≤`≤n I(`) = 1.
Denote n = [x]. Then we have∑

1≤m≤x

µ(m)

m
=
∑

1≤m≤n

µ(m)

m
=

1

n

∑
1≤m≤n

µ(m)
n

m

=
1

n

∑
1≤m≤n

µ(m)
[ n
m

]
+

1

n

∑
1≤m≤n

µ(m)
{ n
m

}
≤ 1

n
+

1

n
(n− 1) = 1,

if n ≥ 4, as µ(4) = 0 and |
{
n
m

}
| ≤ 1. This proves theorem for x ≥ 4. But we have∑

1≤m≤x
µ(m)
m

= 1 for 1 ≤ x < 2,
∑

1≤m≤x
µ(m)
m

= 1 − 1
2

= 1
2

for 2 ≤ x < 3, and∑
1≤m≤x

µ(m)
m

= 1− 1
2
− 1

3
= 1

6
for 3 ≤ x < 4. This completes the proof. �

Definition 4.17. If x ≥ 1 we define

M(x) :=
∑
n≤x

µ(n) and H(x) :=
∑
n≤x

µ(n) log n.

Theorem 4.18. The following two assertions are equivalent:

M(x) = o(x), x→∞, (4.5)

H(x) = o(x log x), x→∞. (4.6)
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Proof. By Theorem 3.5 with λn = 1, cn = µ(n), and f(n) = log n, we have

H(x) = M(x) log x−
∫ x

1

M(t)

t
dt.

Note that M(t) ≤ t. We have

H(x) = M(x) log x+O(x),

from which we know (4.5) ⇐⇒ (4.6). �

Theorem 4.19. The prime number theorem is equivalent to (4.5).

Proof. The prime number theorem is equivalent to ψ(x) ∼ x. Assume ψ(x)−x =
O(xR(x)), for some R(x) such that R(x) ≥ (log x)−1 and R(x) → 0 as x → ∞. By
Λ = −µ log ∗u, we have µ log = −µ ∗ Λ. Let a = x/ log x. Then by Theorems 3.14
and 4.16 we have

H(x) =
∑
n≤x

µ(n) log n = −
∑
n≤x

(µ ∗ Λ)(n)

= −
∑
n≤a

µ(n)
∑
m≤x/n

Λ(m)−
∑
m≤x/a

Λ(m)
∑
n≤x/m

µ(n) +
∑
n≤a

µ(n)
∑
m≤x/a

Λ(m)

= −
∑
n≤a

µ(n)
x

n
(1 +O(R(x/n))) +O

x ∑
m≤x/a

Λ(m)

m

+O(x)

= O

x∑
n≤a

R(x/n)

n
+ x

∑
m≤x/a

Λ(m)

m

+O(x)

= O

(
x log x max

log x≤y≤x
R(y) + x log log x

)
+O(x) = o(x log x).

By Theorem 4.18 we know the prime number theorem implies (4.5).
Now we prove (4.5) implies the prime number theorem. We first show that

ψ(x) = x−
∑
m

∑
n

mn≤x

µ(m)f(n) +O(1), (4.7)

where

f(n) = τ(n)− log n− 2γ,

with γ the Euler constant. Note that∑
n≤x

1 = [x],
∑
n≤x

Λ(n) = ψ(x),
∑
n≤x

I(n) = 1,

and u = µ ∗ τ , Λ = µ ∗ log, and I = µ ∗ u. We have

[x]− ψ(x)− 2γ =
∑
n≤x

(1− Λ(n)− 2γI(n))

=
∑
m≤x

µ(m)
∑
n≤x/m

(τ(n)− log n− 2γ) =
∑
m

∑
n

mn≤x

µ(m)f(n).
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This proves (4.7). So now we need to show that (4.5) implies∑
m

∑
n

mn≤x

µ(m)f(n) = o(x). (4.8)

Assume that M(x) = O(xR(x)) for some R(x) such that R(x) ≥ (log x)−1 and
R(x) → 0 as x → ∞. Let b = b(x) := (maxx1/2≤y≤xR(y))−1. We have b → ∞ as
x→∞. By Theorem 3.14, we get∑

m

∑
n

mn≤x

µ(m)f(n) =
∑
n≤b

f(n)M
(x
n

)
+
∑
n≤x/b

µ(n)F
(x
n

)
− F (b)M

(x
b

)
,

where F (y) =
∑

n≤y f(n). By Theorems 3.3 and 3.15 we have

F (y) =
∑
n≤y

τ(n)−
∑
n≤y

log n− 2γ[y] = O(y1/2).

Note that ∑
n≤b

τ(n)

n
� (log b)2,

∑
n≤b

log n

n
� (log b)2.

Hence we have∑
n≤b

f(n)M
(x
n

)
�
∑
n≤b

|f(n)|
n

x max
x/b≤y≤x

R(y)

� x(log b)2 max
x/b≤y≤x

R(y)� x
(log b)2

b
= o(x).

and ∑
n≤x/b

µ(n)F
(x
n

)
�
∑
n≤x/b

√
x

n
� x√

b
, F (b)M

(x
b

)
� x√

b
.

Hence we prove (4.8), and therefore we show (4.5) implies the prime number theorem.
This concludes the proof. �

4.5. Average of λ(n)

Definition 4.20. If x ≥ 1 we define

L(x) :=
∑
n≤x

λ(n).

Theorem 4.21. The prime number theorem is equivalent to

L(x) = o(x), x→∞. (4.9)

Proof. By Theorem 4.19 we only need to prove L(x) = o(x) ⇐⇒ M(x) = o(x).
We first prove M(x) = o(x) =⇒ L(x) = o(x). By Theorem 2.41, we have λ =

µ ∗ 1�. Hence by Theorem 3.14 we have

L(x) =
∑
n≤a

1�(n)M
(x
n

)
+
∑
m≤x/a

µ(m)G
( x
m

)
−G(a)M

(x
a

)
,
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where G(y) =
∑

n≤y 1�(n) � √y. Take a = x1/2. Assume M(x) = o(x). Then we
have

L(x) =
∑
k≤x1/4

o(x)

k2
+
∑

m≤x1/2

√
x

m
+ x3/4 = o(x).

Now we show L(x) = o(x) =⇒M(x) = o(x). Since λ = µ∗1�, we have µ = λ∗µ1�.
Hence by Theorem 3.14 we have

M(x) =
∑
n≤a

µ(n)1�(n)L
(x
n

)
+
∑
m≤x/a

λ(m)S
( x
m

)
− S(a)L

(x
a

)
,

where S(y) =
∑

n≤y µ(n)1�(n) � √y. Take a = x1/2. Assume L(x) = o(x). Then
we have

M(x) =
∑
k≤x1/4

o(x)

k2
+
∑

m≤x1/2

√
x

m
+ x3/4 = o(x).

This completes the proof. �

4.6. Selberg’s formula

The prime number theorem was proved in 1896 independently by Hadamard and
de la Valleé Poussin by analytic methods. The first elementary proofs were found
about fifty years later by Erdös and Selberg based on Selberg’s formula.

Theorem 4.22. We have∑
n≤x

Λ(n) log n+
∑∑
mn≤x

Λ(m)Λ(n) = 2x log x+O(x).

Proof. By Theorem 2.48 we have Λ2 = µ ∗ (log)2 = Λ log +Λ ∗Λ. By the partial
summation formula we have

∑
n≤x

(log n)2 =

∫ x

1

(log u)2d
∑
n≤u

1 = [x](log x)2 −
∫ x

1

(u+O(1))2 log u
du

u

= x(log x)2 − 2x log x+ 2x+O((log x)2)

= x log x

(∑
k≤x

1

k

)
−
∑
k≤x

(γ + (γ + 2) log k) +O((log x)2),



52 4. THE DISTRIBUTION OF PRIMES

where γ is the Euler constant. Here we have used Theorems 3.3 and 3.4. Note that∑
m≤x(log x/m)2 = O(x). Hence we have∑

n≤x

Λ2(n) =
∑
n≤x

Λ(n) log n+
∑∑
mn≤x

Λ(m)Λ(n)

=
∑
m≤x

µ(m)
∑
n≤x/m

(log n)2

=
∑
m≤x

µ(m)
x

m
log

x

m

∑
k≤ x

m

1

k

−∑
m≤x

µ(m)
∑
k≤ x

m

(γ + (γ + 2) log k) +O(x)

=
∑
`≤x

x

`

∑
m|`

µ(m) log
x

m
−
∑
`≤x

∑
m|`

µ(m)(γ + (γ + 2) log
`

m
) +O(x).

By Theorems 2.18, 4.2 and 4.5 we have∑
n≤x

Λ2(n) =
∑
`≤x

x

`
(I(`) log x+ Λ(`))−

∑
`≤x

(γI(`) + (γ + 2)Λ(`)) +O(x)

= 2x log x+O(x).

This completes the proof. �

4.7. Elementary proof of the prime number theorem

In this section we will prove the prime number theorem.

Theorem 4.23. For x ≥ 2 and A > 0 we have

ψ(x) = x+OA

(
x

(log x)A

)
, x→∞.

We shall derive Theorem 4.23 from a similar estimate for the sum of the Möbius
function.

Theorem 4.24. For x ≥ 2 and A > 0 we have

M(x) = OA

(
x

(log x)A

)
, x→∞.

Proof of Theorem 4.23 by assuming Theorem 4.24. The proof is similar
to the proof of Theorem 4.19. We shall give some details for completeness. Recall
that we have (4.7), that is,

ψ(x) = x−
∑
m

∑
n

mn≤x

µ(m)f(n) +O(1),

where
f(n) = τ(n)− log n− 2γ,

with γ the Euler constant. So now we need to show that Theorem 4.24 implies∑
m

∑
n

mn≤x

µ(m)f(n) = OA

(
x

(log x)A

)
. (4.10)
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Let b = b(x) := (log x)2A. By Theorem 3.14, we get∑
m

∑
n

mn≤x

µ(m)f(n) =
∑
n≤b

f(n)M
(x
n

)
+
∑
n≤x/b

µ(n)F
(x
n

)
− F (b)M

(x
b

)
,

where F (y) =
∑

n≤y f(n). By Theorems 3.3 and 3.15 we have

F (y) =
∑
n≤y

τ(n)−
∑
n≤y

log n− 2γ[y] = O(y1/2).

Note that ∑
n≤b

τ(n)

n
� (log b)2,

∑
n≤b

log n

n
� (log b)2.

Hence we have ∑
n≤b

f(n)M
(x
n

)
�
∑
n≤b

|f(n)|
n

x

(log x)A+1

� (log b)2 x

(log x)A+1
� x

(log x)A
.

and ∑
n≤x/b

µ(n)F
(x
n

)
� x√

b
� x

(log x)A
, F (b)M

(x
b

)
� x√

b
� x

(log x)A
.

Hence we prove (4.10). This concludes the proof. �

To prove Theorem 4.24 we will need the following lemmas.

Lemma 4.25. For Re(s) > 1 we have

ζ(`)(s) =
(−1)``!

(s− 1)`+1
+O`((log 2|s|)`+1).

Proof. By the Euler–Maclaurin formula we derive (with any X ≥ 2)

(−1)`ζ(`)(s) =
∞∑
n=1

(log n)`

ns

=
∑
n≤X

(log n)`

ns
+

∫ ∞
X

(log y)`

ys
dy

+O

(∫ ∞
X

(
|s|(log y)`+1

yRe(s)+1
+ `

(log y)`−1

yRe(s)+1

)
dy +

(logX)`

XRe(s)

)
=
∑
n≤X

(log n)`

ns
+

∫ ∞
X

(log y)`

ys
dy +O

(
|s|
X

(logX)`+1

)
.
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Here we have used the fact that for Re(s) > 1∫ ∞
X

(log y)`+1

yRe(s)+1
dy =

1

−Re(s)

∫ ∞
X

(log y)`+1dy−Re(s)

=
1

−Re(s)
(log y)`+1y−Re(s)

∣∣∣∣∞
X

+
`+ 1

Re(s)

∫ ∞
X

y−Re(s)−1(log y)`dy

= O

(
1

X
(logX)`+1

)
.

Note that ∑
n≤X

(log n)`

ns
≤
∑
n≤X

(log n)`

nRe s
≤
∑
n≤X

(log n)`

n
� (logX)`+1

and ∫ X

1

(log y)`

ys
dy ≤

∫ X

1

(log y)`

y
dy � (logX)`+1.

Hence

(−1)`ζ(`)(s) =

∫ ∞
1

(log y)`

ys
dy +O

((
1 +
|s|
X

)
(logX)`+1

)
.

Note that∫ ∞
1

(log y)`

ys
dy =

∫ ∞
0

x`e−(s−1)xdx =

∫ ∞
0

(s− 1)−`u`e−udu = Γ(`+ 1)(s− 1)−`

and Γ(`+ 1) = `!. By taking X = 2|s|, we complete the proof. �

Lemma 4.26. For Re(s) > 1 we have(
(s− 1)ζ(s)

)(`)

� |s|(log 2|s|)`+1.

Proof. By induction we have(
(s− 1)ζ(s)

)(`)

= (s− 1)ζ(`)(s) + `ζ(`−1)(s).

The lemma follows from Lemma 4.25 by the above formula. �

Proof of Theorem 4.24. First we are going to estimate the series

G(s) =
∞∑
n=1

µ(m)

ms
(logm)k = (−1)k

(
1

ζ(s)

)(k)

for k ≥ 0 and s = σ + it, σ > 1 and t ∈ R. Put ζ∗(s) = (s− 1)ζ(s). We need a lower
bound for ζ∗(s). To do this we use the Euler product for ζ(s) giving

1 ≤
∏
p

(
1 +

(1 + pit + p−it)2

pσ

)
=
∏
p

(
1 +

3 + 2pit + 2p−it + p2it + p−2it

pσ

)
� ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)|2.



4.7. ELEMENTARY PROOF OF THE PRIME NUMBER THEOREM 55

If |s− 1| ≥ ε, then we have |ζ(σ + 2it)| � log 2|s| by Lemma 4.25 with ` = 0. So we
have

|ζ(σ + it)| � 1

(( 1
(σ−1)

)3(log 2|s|)2)1/4
= (σ − 1)3/4(log 2|s|)−1/2,

and hence
|ζ∗(s)| � (σ − 1)3/4|s|(log 2|s|)−1/2. (4.11)

If |s− 1| ≤ ε, then we have |ζ∗(s)| � 1 by Lemma 4.25 with ` = 0, and hence (4.11)
also holds.

By induction, we have

(−1)kG(s) =

(
s− 1

ζ∗(s)

)(k)

= (s− 1)

(
1

ζ∗(s)

)(k)

+ k

(
1

ζ∗(s)

)(k−1)

.

By the formula from the differential calculus(
1

f

)(k)

=
k!

f

∑
a1+2a2+···+kak=k

(a1 + a2 + · · ·+ ak)

a1!a2! · · · ak!

(
−f ′

1!f

)a1 (−f ′′
2!f

)a2
· · ·
(
−f (k)

k!f

)ak
with f = ζ∗ we get (

1

ζ∗(s)

)(k)

� (σ − 1)−
3
4

(k+1) (log 2|s|)κ

|s|
,

for some κ depending on k, for example κ = 1
2
(5k + 1). Hence

G(s)�k (σ − 1)−
3
4

(k+1)(log 2|s|)κ. (4.12)

Figure 1.

Next we derive an estimate for the finite sum

F (x) =
∑
m≤x

µ(m)

mσ
(logm)k, x > 1, k ≥ 1

from the estimate (4.12). We first smooth out at the endpoint of summation by means
of the function

∆(y) =


1, δ < x < 1,
0, x < 0 or x > 1 + δ,
δ−1x, 0 ≤ x ≤ δ,
−δ−1x+ δ−1 + 1, 1 ≤ x ≤ 1 + δ,
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whose graph is given by Figure 1 with 0 < δ < 1 to be chosen later. We have

F (x) =
∑
m≥1

µ(m)

mσ
(logm)k∆

(
logm

log x

)
+O(δ(log x)k+1).

Let ∆̂ be the Fourier transform of ∆(y), then we have

∆̂(u) =

∫ ∞
−∞

∆(y)e(−yu)dy =
sin(πu) sin(δπu)

δπ2u2
eiπ(1+δ)u

� min

{
1,

1

|u|
,

1

δ|u|2

}
� 1

1 + |u|+ δ|u|2
.

By the Fourier inversion we have

∆(y) =

∫ ∞
−∞

∆̂(u)e(uy)du.

Hence we have

F (x) =
∑
m≥1

µ(m)

mσ
(logm)k

∫ ∞
−∞

∆̂(u)e

(
u

logm

log x

)
du+O(δ(log x)k+1)

=

∫ ∞
−∞

∆̂(u)G

(
σ − i 2πu

log x

)
du+O(δ(log x)k+1)

�k (σ − 1)−
3
4

(k+1)

∫ ∞
0

logκ(2 + |u|)
1 + |u|+ δ|u|2

du+ δ(log x)k+1.

Note that∫ ∞
0

logκ(2 + |u|)
1 + |u|+ δ|u|2

du�
∫ 1/δ

0

logκ(2 + |u|)
1 + |u|

du+

∫ ∞
1/δ

logκ(2 + |u|)
δ|u|2

du�
(

log
1

δ

)κ+1

.

Choosing δ = (log x)−k−1 we obtain

F (x)�k (σ − 1)−
3
4

(k+1) (log log 5x)κ+1 .

Finally, by partial summation formula we get

M(x) =
∑
m≤x

µ(m) =

∫ x

1

yσ

(log y)k
dF (y)

=
yσ

(log y)k
F (y)

∣∣∣∣x
1

−
∫ x

1

F (y)d
yσ

(log y)k

�k
xσ

(log x)k
(σ − 1)−

3
4

(k+1) (log log 5x)κ+1 � x(log x)
3
4
− k

4 (log log 5x)κ+1 ,

by taking σ = 1 + 1
log x

. This completes the proof of Theorem 4.24. �
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