CHAPTER 4

The Distribution of Primes

To study prime numbers, Chebyshev introduced the following two functions

=> An), 6(x) =) logp.

n<x p<x

THEOREM 4.1. The following statements are equivalent:

m(z) ~ gz’ T — 00, (4.1)
Y(x) ~x, x— 00, (4.2)
O(z) ~x, = — 0. (4.3)

PROOF. We first show that (4.2) <= (4.3]). By definition of A, we have

Z Zlogp: Z 9(;1:1/'“).

k<log, x pk<z k<log, x

Note that 0(y) < ylogy. So we have

P(z) —0(x) = Z 0 (xl/k) < 22 logz,

2<k<logy x

from which we get 1
Now we show (| By Theorem |[3.5) - with A\, n, f(u) = logu,

B |1, 1fn€IP’ we hav
“n = e =) 0 otherwise ' o ovC

0(z) = m(x)logx — /; %ﬁ(u)du.

If 7(z) ~ z/logz, then we have

T Vel ] T x
—7(u)du = —7(u)du + —m(u)du < z + du < :
9 U 9 U VAL /7 logu log x

and 7(x)logz ~ x. Hence we get (4.3).
Finally we show (4.1)) <= (4.3)). By Theorem with A, = n, f(u) = 1/logu,

Cn = Opep, We have
_ 0(x) ’ 1
m(e) = log x /2 u(log u)QQ(U)du'
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40 4. THE DISTRIBUTION OF PRIMES

If 6(x) ~ z, then we have

z 1 B NG Q(U) " r 9() udu
/ u<logu>29(“>d“‘/2 ullog )" +/ u(log u ™

€V T < o

and 2&) . Hence we get (4.1]). This completes the proof. O]

log x log

4.1. The Chebyshev inequality and Mertens’ theorems

The prime number theorem states that 7(z) ~ z/logx as * — oo. In this section,
we show that x/logz is the correct order of magnitude of 7(z). We first consider
Chebyshev’s y-function.

THEOREM 4.2. We have
U(x) < x.
ProoOF. By Theorem [2.46] we have
x
= Zlogn = Z A(b) = Zw (5> :
n<lz ab<z alz
Hence we have
x x T
S)=28(c/2) =Y v (2) =2 3 v (5) = vl —v (5)+v (5) - < vl
a<lw a<z/2
and .
S(2) - 25(x/2) 2 (@) - v (5)
By Theorem [3.3 we have
= Zlogn = zlogz —x + O(log ).
n<x
Hence
S(x) —28(z/2) = xlogr —x — xlogg + 2+ O(logz) = xlog2 + O(logz) < ¢(z),

and
W(x) — (g) < zlog2+ O(logx).
So
Y (g) — (%) glogQ + O(log z),
(G (Z) - <§> < zlogQ—l—O(logm),....

Therefore, we have
1
r) <Y o 1og2 + O((log 2)?) < (2log2)z + O((log )?).
k>0

Hence we have
rlog2 + O(logz) < ¥(z) < (2log2)z + O((log z)?).
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This completes the proof. O

THEOREM 4.3. We have

PROOF. By Theorem [£.2] we have

lo
m(w) = logarz 08P = loga:

k>2 pk<z
By Theorems [3.5] and [£.2] we have
logp RO / ’ 1
d) 1 —d
Zlogp /2 logu I;u 08P = logul2 + 9 dj(u)u(logu)? “

x | x Ve * 1 x
< + —du < + du + ——du K )
logz  J, (logu) logz  J, vz (logx)? log x
This completes the proof. O

COROLLARY 4.4. Forn > 1, the n-th prime p, satisfies the inequalities
Pn <X nlogn.

PROOF. By Theorem [£.3] we have

DPn
log p,,
Note that p, > n. We have p, > nlogp, > nlogn.

Note that p, < nlogp, < np,ll/ ?. Hence pn < n%. Therefore, we have p, <
nlogn? < nlogn. O

n = 7(pn) <

THEOREM 4.5. We have

Z # =logz + O(1),

n<zx

1
Z in =logz + O(1).

p<lzx

PRrROOF. By Theorems [2.46] and [£.2] we have

= logn = ZA(b) =3 AQ) (5 +0(1)) - x2¥ +O(x).

n<lz ab<z <z n<lx

By Theorem [3.3] we have

S(x) =xlogz + O(x) :xZM + O(x).

n

and

n<x

Hence we get

Z% =logz + O(1)

n<x
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from which we obtain

log p A(n) log p
> :ZT—ZZ = =logx + O(1). (4.4)
p<z P n<z >2 phea U
This completes the proof. O

THEOREM 4.6. We have

1 1
Z—zloglogx+0+0( ),
P log

p<z

for some constant C'.
PROOF. By Theorem 3.5 we have

1 | log p 1 log p /w logp . 1
= d = — d .
Zp /2 log u p;u P log x Z P 9 Z log u

p<w p<z p<u p

By (4.4), we have

and

v logp . 1 v 1 /”‘“ log p 1

— d = — | d—— 1 — d
/2; p logu /2 og U logu+ 9 (ogu Z P log u
v 1 *° log p 1

= — | d e | — d
/20gu 10gu+0 /x (ogu Z p) g u

o1 1
:/ du+C"+0
5 ulogu log x

z 1
:loglogu‘ +C’+O< ),
2 log x

where C' = [* <logu -> logp> d—— is a constant. Hence

p<u p log u
1 1
Z—zloglog:c+0+0 ooz )
o og T
where C' = C" + 1 — loglog 2. O

THEOREM 4.7. Let x > 2. There exists a constant C' such that

10 -3) - O (o)

p<z

PRrOOF. Note that log(1 + z) =z + O(2?), as * — 0. By Theorem |4.6| we have

() Z3 T (D))

p<z p<w p<w

1
:—loglog:z;—C'+O< )—i—B,
log x
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where B = 3 ., (log (1 - %) + 1) < szzi < Do -5 < o0. Therefore we

P p?

H(l—— — exp (Zlog 1__>>
(-

obtain

p<lzx p<lz
1
= exp loglogx + B — C’+O< ))
log x

B

A 1
" logz ( 0 (logx)) ~logx +0 <(logx)2> ’

where A = e8¢, O

4.2. Averages of w(n) and Q(n)

THEOREM 4.8. We have

Zw(n) :xloglogx+cx+0< ° )

log x

n<x

and
Z Q(n) = zloglogx + 'z + o(x).

n<x

PRrROOF. By Theorems [4.3] and [4.6) we have

DEGES ) HED M

n<x n<z p|n p<z nlz
pln

:xloglogx+cx+0( * ) .
log

Note that Q(n) =3 ., 7. We have

2 Am =3 > r=> 3 r

n<z n<z pT|n p<z nlzx
p"n

DD NEDH ST IS B CA0)

p<z r=1 nlzx p<z n<z p<al/2 r>2
pn pln Pz

=zxloglogz + cx + O (logx) Z Z -

r>2 pr<x

= zloglogx + (c—i-zz )x—l—O(

r>2 p>2

r>2 p" >:c )
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Note that
1 1 /oo 1 /Oo 1
— K — K —du + —d
;Erpr ;nTZNﬁ nr rS;ng xl/rru'f’ U nggéx ) Tur u
< Z x(—r-&-l)/r + Z 2T & .I'_l/Q.

2<r<log, x r>log, x

Hence we have

ZQ(n) = zloglogz + 'z + O ( ’ ) :
log =

n<x

with ¢ = c+ 37 59200 o O
THEOREM 4.9. We have
Z w(n)? = z(loglog x)* + O(z loglog 7).
n<x

PROOF. Let us consider the number of pairs of different prime factors p,q of n
(i.e. p # q), counting the pair ¢, p distinct from p,q. There are w(n) possible values
of p and, with each of these, just w(n) — 1 possible values of q. Hence we have

w(n)(w(n)—l):21:21—21.

pq|n pgln p2In
pF#q

Summing over all n < z we have

dwmwhn) -1 => 3 1->">"1

n<zx n<z pq|n n<z p2|n
i T T
- a-ZE -2 5] o
pa<a P4 p?<z p pa<a P4

By Theorem [4.6) we have

Sl zae(z)-2aelz0)

pg<z pg<z pg<z pg<z p<z
:xzpiq—{—O (%Z}%) zxzpiq—i—O(zL'loglogx).
pqsz p<zT pg<lx

Note that we have

> exie (sl

p<al/2 pg<w p<z

1
Z — =loglogz*? + O(1) = loglog z + O(1),
pSII/Q
and

(loglogz + O(1))? = (loglog x)? + O(loglog ).
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So we get

1
Z — = (loglog z)* + O(loglog x),

Pg<w Pq
and therefore
Zw(n)2 = Z (n) —1)+ Z x(loglog x)* + O(xloglog ).
n<x n<x n<x
This concludes the proof. |

THEOREM 4.10. For any € > 0, the number of n € [1,x] such that

lw(n) — loglogn| > (loglogn)'/?+e

is o(x).
PROOF. If n < z%/¢, then the number of such n is o(z). If n € (x'/¢, x|, then
loglogz — 1 < loglogn < loglog x,
so we only need to show that the number of n € (x'/¢, 2] such that

w(n) —loglog x| > (loglog z)/***

is o(z). By Theorems |4.8 and 4.9 we have

Z(a}(n) —loglog z)* = Z (n)” —2log logxz + (loglog x) Z 1

n<x n<x n<x n<x
= z(loglog z)? + O(zloglog z) — 2loglog z(z loglog z + O(x))
+ (loglog z)*(z + O(1))
= O(zloglog ).

Let M denote the number of n € [1,z] such that |w(n) — loglog x| > (loglog x)/?+¢
is M, then we have

M - (loglog z)* ™2 < Z(w(n) —loglog r)* < xloglogx,

n<x

and therefore
T
M<K ————— = )
< (loglog z)2 o)

This proves the theorem. O

Note that Q(n) > w(n) for all n > 1 and

> (Q(n) = w(n)) = O().

n<z
So the number of n € [1,x] such that Q(n) — w(n) > (loglogx)/? is O(
By Theorem [4.10, we have w(n) ~ 2(n) ~ loglogn for almost all n > 1.

loglog:c)l/Q)
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4.3. Bertrand’s Postulate

In 1845 J. Bertrand showed empirically that there is a prime between n and 2n
for all n greater than 1 and less than six million, and predicted that this is true for
all positive integers n. Chebyshev proved this in 1852.

THEOREM 4.11. For any n > 1, there is at least one prime in (n,2n].

REMARK 4.12. Theorem [£.5] implies a weak form of Theorem [4.11} there exists a
positive constant ¢ such that there is a prime between n and cn for all n. By Theorem
[4.5] there is a constant A such that

1
logn—A<Zﬂ<logn+A
p

p<n
for all n. Hence

log p log p log p 24
= — > loge“n —A—logn—A=0.

n<p<e24n p<e24n p<n

So we can take ¢ = €24,

REMARK 4.13. One can consider primes in short intervals [z, z + y] with y < x
and z — oo. It it natural to ask whether there is a prime in [n?, (n+1)?] for all large
n. This is an open problem, known as Legendre’s conjecture. It follows from a result
by Ingham that for all sufficiently large n, there is a prime between the consecutive
cubes n? and (n + 1)3. Baker, Harman and Pintz proved that there is a prime in the
interval [z — 299% x| for all sufficiently large z.

To prove Theorem we need two lemmas.

LEMMA 4.14. For every positive integer n, we have Hpénp < 4",

ProoFr. We use induction on n. If n =1 or 2, the inequality is obvious. Suppose

it is true for 1,2,...,n — 1, where n > 3. The we only need to consider odd n, since
if n is even then

Hp: H p < 4"t < 4n

p<n p<n—1

Take n = 2m + 1. Note that the binomial coefficient

(Qm + 1) _ (2m+1)!

m m!(m + 1)!
is divisible by every prime p with m 4+ 2 < p < 2m + 1. Hence we have

2m +1 2m+ 1Y\ ..
[T oe (75) 10 oe (7)o

p<2m+1 p<m+1
Note that (*F!) = (%Zfll) are both occur in the expansion of (1 + 1)?"*!, so that
2m + 1 < 22m+171 — 4m
m <

Hence
H p < 4m4m+1 — 42m+1'
p<2m+1
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The lemma follows by induction on n. 0
LEMMA 4.15. If n > 3 and %n <p<mn, thenpt (2:)

PrOOF. By Theorem we know if p®™ || (*"), then

=3 ([ [5])

SincenZBandp>%n,wehavep23andp2>%nEQn. By§n<p§nwehave
2§2?”<3and1§%<%. HencefornZSand§n<p§n,wehave

e(p,n) = {2—"} —zm —2-2.1=0.

p p
This completes the proof. O

PROOF OF THEOREM [A.11]. There is such a prime for n = 1 or 2. Assume there
is none for a certain integer n > 3. Hence

(2:) _ 1:[ perm) = T o).
p<2n p<2n

By Theorem [1.15| we have

on-(]-[2)

Note that for p* < 2n we have [2—2} -2 [%} < 1. So p®™ < 2p. If %n <p<mn,by
p p
Lemma we have e(p,n) =0. If vV2n <p < %n, then e(p,n) < 1. Hence
2n
< 2 < .
()< I> I vs M1
p<V2n  V2n<p<3in p<v2n  p<in

By Lemma we get

n

But (2”) is the largest of the 2n + 1 terms in the expansion of (1 + 1)?", and the first

and lagt terms are 1, so that

2

Qn( n) > 4",

n
Note that m(v/2n) < v/2n — 1. We have
5 < (2n)m’14%", and 4% < (2n)Y?".

n

Taking logarithms, we have

log 4
3

n < vV2nlog2n, and +/n<

3vV2
V2 log 2n.
o

log 4
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The inequality is false for n > 427. Indeed, let f(n) = /n — 3v/2 log2n. Then

log 4

f'(n) = ﬁﬁ - na(‘){i) > (0 if n > 38. Hence f(n) > f(427) > 0 if n > 427. So there is

a prime between n and 2n for n > 427. But in the sequence of primes

2,3,5,7,13,23,43,83,163, 317, 557,

each number is smaller than twice the one preceding it. So there is also such a prime
for all n < 427, and hence for all n > 1. O

4.4. Averages of pu(n)

THEOREM 4.16. For all n € N, we have

i [2] 1.

Moreover for all real number x > 1, we have

ZM

1<m<z

<1

Proor. We have

mi“(m) 2= Yo 1= 3 om),

m<n d<n 1<4<n m|¢

By Theorem we have Y0 pu(m) [2] =30, I(€) = 1.

Denote n = |z]. Then we have

> X e B e

1<m<z 1<m<n 1<m<n
1 n 1 n
=5 2 um [T+ 5 3w {T]
1<m<n 1<m<n
1 1
n n

if n >4, as p(4) = 0 and | {2} | < 1. This proves theorem for > 4. But we have
ZlSmgxmzlforl <z <2 Zlémgxmzl—%:%for2§x<3, and

Zlgmgw @ =1- % — % = % for 3 <z < 4. %his completes the proof. O
DEFINITION 4.17. If x > 1 we define
M(z) = Zu(n) and H(x):= Z,u(n) logn.
n<z n<wz
THEOREM 4.18. The following two assertions are equivalent:
M(x) =o(z), x — oo, (4.5)

H(z) =o(xlogx), x— o0. (4.6)



4.4. AVERAGES OF p(n) 49

PRrROOF. By Theorem 3.5 with A, =1, ¢, = u(n), and f(n) = logn, we have
T M(t
H(z) = M(z)logz — / %dt.
1

Note that M(t) < t. We have
H(z) = M(x)logx + O(x),
from which we know (4.5) < (4.6)). O
THEOREM 4.19. The prime number theorem is equivalent to .

PROOF. The prime number theorem is equivalent to ¢)(x) ~ x. Assume ¢)(z)—z =
O(xR(z)), for some R(x) such that R(z) > (logz)™! and R(x) — 0 as x — co. By
A = —plogxu, we have plog = —px A. Let a = z/logxz. Then by Theorems m
and [1.16) we have

H(z) =3 p(n)logn = = >~ (e A)(n)

=S um) Y Am) = S Am) Y un)+ > un) Y Am)
n<a m<zx/n m<x/a n<z/m n<a m<z/a

— _Zu(n)g(l—i-O(R(x/n)))—l—O x Z W + O(x)
n<a m<z/a

=0 xzw—%xz % + O(x)

n<a m<z/a
=0 <:c logz max R(y) + xloglog x) + O(z) = o(zlog x).

logz<y<z

By Theorem we know the prime number theorem implies (4.5)).
Now we prove (4.5) implies the prime number theorem. We first show that

Y(x) =z =Y Y p(m)f(n)+0(1), (4.7)
where :
f(n) =7(n) —logn — 27,
with v the Euler constant. Note that
Si=ll, SAm) =v@), S Im) =1,

and u = pu*x7, A = pxlog, and I = p*u. We have

(2] = d(x) =2y =Y (1= A(n) = 291 (n))

- Z (m) Z (t(n) —logn — 2v) = Z Zﬂ(m)f(”)-
m<z n<z/m mon

mn<z



50 4. THE DISTRIBUTION OF PRIMES

This proves (4.7). So now we need to show that (4.5]) implies
S5 wlm)f(n) = ofa). (4.9

mn<zx

Assume that M(z) = O(xR(z)) for some R(z) such that R(x) > (logz)™! and
R(z) = 0as x = co. Let b = b(z) := (max,i/2c,<, R(y))~'. We have b — oo as
x — c0. By Theorem [3.14] we get

SoYulm)ft) = fM (S) + D pm)F (T) = Fo)M (T).

n<b n<z/b
mn<x

where F(y) = >_,., f(n). By Theorems 3.3/ and we have
F(y) =Y 7(n)=> logn —2y[y] = O(y"?).

n<y n<y

Note that

3 % < (logh)?, Y loi” < (logb)?.

n<b n<b

Hence we have

n<b n<b
2 (log b)2 _
< z(logb) nax R(y) <z _— o(x).
and
x x x x x
> umF (%)< 3 \F <= FOM(7) <
n<z/b " n<z/b n \/l_) b \/B
Hence we prove (4.8]), and therefore we show (|4.5)) implies the prime number theorem.
This concludes the proof. Il

4.5. Average of \(n)

DEFINITION 4.20. If x > 1 we define
L(z) =) An).
n<z
THEOREM 4.21. The prime number theorem is equivalent to
L(z) =o(z), x— 0. (4.9)
PROOF. By Theorem we only need to prove L(x) = o(z) <= M(z) = o(x).

We first prove M(z) = o(z) = L(z) = o(z). By Theorem [2.41] we have A =
p x 1n. Hence by Theorem we have

L(z) =Y 1n(n)M (%) + Y wm)G (%) — Gla)M (2) :

n<a m<z/a
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where G(y) = 3, In(n) < /y. Take a = x'/2. Assume M (z) = o(z). Then we
have -

L(z) = Z ) 4 > \/7—1—363/40

k<gl/4 m<al/2

Now we show L(x) = o(z) = M (x) = o(z). Since A = pux1p, we have yu = Axpln.
Hence by Theorem we have

=S (2) + 3 s (2) - st (2).

n<a m<z/a

where S(y) = 3, #(n)In(n) < /y. Take a = z/?. Assume L(z) = o(z). Then
we have -

M) =Y —+ > [+x3/4

k<al/4 m<zl/2

This completes the proof. Il

4.6. Selberg’s formula

The prime number theorem was proved in 1896 independently by Hadamard and
de la Valleé Poussin by analytic methods. The first elementary proofs were found
about fifty years later by Erdos and Selberg based on Selberg’s formula.

THEOREM 4.22. We have

ZA( logn—l—ZZA n) =2xlogz + O(x).

n<lz mn<x

PROOF. By Theorem we have Ay = p* (log)? = Alog +A x A. By the partial
summation formula we have

Z(logn)2 - / (logu de 1 = [z](log x)? /x(u +0O(1))2logu %

n<x n<u 1

= z(logz)* — 2z logx + 27 + O((log x)?)

=zlogw (Z %) — Z(v + (v +2)log k) + O((log x)?),

k<z k<z



52 4. THE DISTRIBUTION OF PRIMES

where v is the Euler constant. Here we have used Theorems [3.3] and [3.4] Note that
> <z (logx/ m)? = O(x). Hence we have

ZAg(n) = ZA(n) logn—i—ZZA(m A(n

n<x n<x mn<z
=S um) Y (logn)?
m<zx n<z/m
=S nlm) S0 = (372 = 3 utm Z (v + (v +2)log k) + O(x)
m<x k< z m<x <
=Z%Zu( log——ZZu )(v +( 7+2)10g£)+0($)'
<z m|¢ <z ml|¢

By Theorems [2.18] .2 and [4.5] we have
Y M) =37 7L (O)logz +A(0)) — D (VIO + (v +2)A(0) + O(w)

n<lz <z <z
= 2zlogz + O(x).
This completes the proof. O

4.7. Elementary proof of the prime number theorem
In this section we will prove the prime number theorem.

THEOREM 4.23. For x > 2 and A > 0 we have
x
= Oy | ——— — 00.
We shall derive Theorem [£.23] from a similar estimate for the sum of the Mobius

function.

THEOREM 4.24. For x > 2 and A > 0 we have
T
M(z) =04 | ———— — 0.
0= 0n () 7

PROOF OF THEOREM [4.23] BY ASSUMING THEOREM [4.24]. The proof is similar

to the proof of Theorem [£.19, We shall give some details for completeness. Recall
that we have (4.7)), that is,

r)=a =) Y p(m)fn)+0(1),

mn<z
where

f(n) = 7(n) —logn — 27,
with v the Euler constant. So now we need to show that Theorem implies

5% um)0) = 0a (g ) (4.10)

mn<x
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Let b = b(x) := (log 7)**. By Theorem [3.14] we get

2D ulm)rtn) = 37 fm)M () + 3T wm)F () = FO)M (5).
m n n<b n<z/b

53

where F(y) = 3_,., f(n). By Theorems 3.3/ and we have

Note that

Hence we have

Zf(n)M (g) <<z|f(”)| x

ot el (log z)A+1

log b)2 —— A
< (080" oA < (loga)?

and

2 ror () < G e FOV(G) < < e

Hence we prove (4.10]). This concludes the proof.

To prove Theorem we will need the following lemmas.
LEMMA 4.25. For Re(s) > 1 we have

PLY
(O (s) = % T Ou((log 2ls])" ).

PROOF. By the Euler-Maclaurin formula we derive (with any X > 2)

n=1 n’
1 0 [ee] 1 l
_ (Ogsn) n / (Ogsy) dy
n<X n X Yy

,Sl(logy)‘+1 M(logy)“) du + (logX)f)
1

yRe(s)Jrl yRe(s)Jr
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Here we have used the fact that for Re(s) > 1

> (log y)f+1 1 > /+1 — Re(s
/ yRe(s)—i-l dy - Re(s) (log y) dy (s)

X X
- £+1/OO — Re(s)—1 ¢

+ yo e logy)"dy
X Re(s) Jx ( )

1
— 1 L+1, —Re(s)
“Re(s) (logy)™y

~0 (%(log X)“l) |

Note that , , ,
1 1 1
Z (Ogsn) < Z (Oii) < Z (logn) < (log X)*
n<X n n<X n n<X "
and N y
1 ¢ 1 ¢
/ ( ogsy) dy < / (logy) dy < (log X)*1,
1 Y 1 )
Hence .
(1
(~1)5¢W(s) = / U08Y) 4y + 0 ((1 + %) (log X)“l) .
1 )
Note that
% (] l 00 00
/ mdy = / gle ey = / (s — 1) “ufedu=T+1)(s —1)7*
1 y? 0 0
and I'(/ + 1) = ¢!. By taking X = 2|s|, we complete the proof. O

LEMMA 4.26. For Re(s) > 1 we have

(1~ 1¢()"” < Isl(og 2/s))"*".
PRrOOF. By induction we have
(= 1¢)"” = (s = DCOs) + 1),
The lemma follows from Lemma by the above formula. [

PROOF OF THEOREM [4.24]. First we are going to estimate the series

00 m (k)
616 = 3 " o) = (-1¥ (5 )

m (s

for k> 0and s =0 +it,0c > 1 and t € R. Put (*(s) = (s — 1){(s). We need a lower
bound for (*(s). To do this we use the Euler product for ((s) giving

1 1t —it\2
1§H<1+( R ))
P

pcr

3 2 it 92 —it 24t —2it
:H<1+ +2p" + 27+ p™ 4 p )
p

p(T
= ((0)*¢(o + it)*|C(o + 2it) .
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If [s — 1| > €, then we have |((o + 2it)| < log2|s| by Lemma with £ = 0. So we

have
1

((oi)3(log 2]s])2) 1/

Ko +it)] > — (o~ )"/ *(log2}s)) %

and hence
€ ()] > (0 = 1)**]s|(log 2]s]) /2. (4.11)
If |s — 1| < ¢, then we have |¢*(s)| =< 1 by Lemma [4.25 with ¢ = 0, and hence (4.11])
also holds.
By induction, we have

(F1)°6s) = (Z*@;)W =(-1) (c*t@)(k) o (c*@)w '

By the formula from the differential calculus

(l)(k)_k_! Z (a1+a2_|_..._|_ak) (—f/>a1<—f”>a2'“(—f(k)>ak
f f 01420 et kap—k aylas! - - - ag! 1f 21 f kKl f
with f = (* we get

A" s (log 2s])"
(ew) <@ i

for some x depending on k, for example x = £(5k + 1). Hence

G(s) < (0 — 1)~ 1% D (10g 2| s|)". (4.12)

=05 0.5

FIGURE 1.

Next we derive an estimate for the finite sum

Flz)=Y" “(”Z) (logm)*, z>1, k>1

m

m<x

from the estimate . We first smooth out at the endpoint of summation by means
of the function

, o<x<l,

, r<0Qorx>1+4,

1z, 0<x<9,

Sl 4+ 41, 1< <144,

S O =

Aly) =
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whose graph is given by Figure [1] with 0 < § < 1 to be chosen later. We have

)= 3 M g )& (T ) + O(6(log )+ ).

= 0g T
Let A be the Fourier transform of A(y), then we have

Afu) = /_ ) A(y)e(—yu)dy = s (mu) SIN(0TU) ir(115)u

om2u?

[e.e]

1 1
IR < .
|ul 5|U|2} L+ Jul 4 6lul?

By the Fourier inversion we have

N " Aw)e(uy)du

< min{l

Hence we have

=2 A (log m /: A(u)e (ullogm) du + O(8(log x)**1)

m>1 08 T
I _2mu k+1
= /_OO Alu)G (a Zloga:) du + O(6(logx)™™)

3 > log™(2 + [ul)
< -1 4(k+1)/ —= = " UV du+ 6(log z)FTL.
k(o =1) o L+ |u[ + oful? (log )

Note that
> 1og"(2 + [ul) /1/5 log™(2 + Jul) /°° log™(2 + [ul) ( 1>H+1
du <« ————=du+ —————du < | log = :
[T e e s ofuP °5
Choosing § = (logz)™*~! we obtain

F(z) <, (0 — 1)7i%+D (log log 5z)" |

Finally, by partial summation formula we get

=3 um) / _V_ap(y)

(logy)*

m<x
yo. xr xT yO'
F Y —/ F Y d
T N A e
< <loz—x>k(0 = 1)75# (loglog 52)"" < r(logr) ¥ (loglog 50)",




	Chapter 4. The Distribution of Primes
	4.1. The Chebyshev inequality and Mertens' theorems
	4.2. Averages of (n) and (n)
	4.3. Bertrand's Postulate
	4.4. Averages of (n)
	4.5. Average of (n)
	4.6. Selberg's formula
	4.7. Elementary proof of the prime number theorem
	Exercises


