Homework 4

(due Wednesday, April 28, 2021)

1. Show that for $k \geq 2$ we have

$$
\sum_{n \leq x} \Lambda_{k}(n)=k x(\log x)^{k-1}\left(1+O\left(\frac{1}{\log x}\right)\right)
$$

2. Define the counting function $\pi_{\odot}(R)$ as the number of prime lattice points, both coordinates are prime (positive or negative), inside the circle with radius R and origin $O=(0,0)$. That is, $\pi_{\odot}(R):=\#\left\{(p, q) \in \mathbb{Z}^{2}\right.$: p, q are prime and $\left.p^{2}+q^{2} \leq R^{2}\right\}$. Show that

$$
\pi_{\odot}(R) \sim \frac{\pi R^{2}}{(\log R)^{2}}, \quad R \rightarrow \infty
$$

3. Let $N_{\square}(R)=\#\left\{(m, n) \in \mathbb{Z}^{2}: \operatorname{gcd}(m, n)=1\right.$ and $\left.|m| \leq R,|n| \leq R\right\}$. Show that

$$
N_{\square}(R)=\frac{24}{\pi^{2}} R^{2}+O(R \log R)
$$

4. Let $N_{\odot}(R)=\#\left\{(m, n) \in \mathbb{Z}^{2}: \operatorname{gcd}(m, n)=1\right.$ and $\left.m^{2}+n^{2} \leq R^{2}\right\}$. Show that

$$
N_{\odot}(R)=\frac{6}{\pi} R^{2}+O(R \log R)
$$

5. If $m_{1}, m_{2}, \cdots, m_{k}$ are pairwise prime, and $x_{1}, x_{2}, \cdots, x_{k}$ run over a complete residue system modulo $m_{1}, m_{2}, \cdots, m_{k}$ respectively, then

$$
x_{1}+m_{1} x_{2}+m_{1} m_{2} x_{3}+\cdots+m_{1} m_{2} \cdots m_{k-1} x_{k}
$$

run over a complete residue system modulo $m_{1} m_{2} \cdots m_{k}$.
6. Let $m>1$ be an integer and $a \in \mathbb{N},(a, m)=1$. Show that
(a) $\sum_{\xi(\bmod m)}\left\{\frac{a \xi+b}{m}\right\}=\frac{m-1}{2}$,
(b) $\sum_{\xi(\bmod m)}^{\prime}\left\{\frac{a \xi}{m}\right\}=\frac{1}{2} \varphi(m)$,
where $\sum_{\xi(\bmod m)}$ means summing over a complete residue system modulo m, and $\sum_{\xi(\bmod m)}^{\prime}$ means summing over a reduced residue system modulo m.
7. If p is an odd prime, show that not all three of the sets

$$
\left\{a_{1}, \cdots, a_{p-1}\right\},\left\{b_{1}, \cdots, b_{p-1}\right\},\left\{a_{1} b_{1}, \cdots, a_{p-1} b_{p-1}\right\}
$$

can be reduced residue systems $(\bmod p)$.
8. Show that for $1<k<p-1$, we have $(p-k)!(k-1)!\equiv(-1)^{k}(\bmod p)$.
9. Solve the system of congruences

$$
3 x \equiv 9 \quad(\bmod 12), \quad 4 x \equiv 5 \quad(\bmod 35), \quad 6 x \equiv 2 \quad(\bmod 11)
$$

10. Let $p>3$ be a prime number. Show that
(a) $\left(\frac{3}{p}\right)=1$ if and only if $p=12 n \pm 1$;
(b) $\left(\frac{-3}{p}\right)=1$ if and only if $p=6 n+1$.
11. Show that if p is an odd prime and $\operatorname{ord}_{p}(a)=t>1$, then

$$
\sum_{k=1}^{t-1} a^{k} \equiv-1 \quad(\bmod p)
$$

12. Show that a primitive root of p^{k} is also a primitive root of p^{j} for $1 \leq j<$ k.
13. Solve the congruences
(a) $x^{12} \equiv 16(\bmod 17) ;$
(b) $7 x^{7} \equiv 11(\bmod 41)$.
