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Preface

In the fall of 2010, I taught an introductory one-quarter course on graduate
real analysis, focusing in particular on the basics of measure and integration
theory, both in Euclidean spaces and in abstract measure spaces. This text
is based on my lecture notes of that course, which are also available online
on my blog terrytao.wordpress.com, together with some supplementary
material, such as a section on problem solving strategies in real analysis
(Section 2.1) which evolved from discussions with my students.

This text is intended to form a prequel to my graduate text [Ta2010]
(henceforth referred to as An epsilon of room, Vol. I ), which is an introduc-
tion to the analysis of Hilbert and Banach spaces (such as Lp and Sobolev
spaces), point-set topology, and related topics such as Fourier analysis and
the theory of distributions; together, they serve as a text for a complete
first-year graduate course in real analysis.

The approach to measure theory here is inspired by the text [StSk2005],
which was used as a secondary text in my course. In particular, the first half
of the course is devoted almost exclusively to measure theory on Euclidean
spaces Rd (starting with the more elementary Jordan-Riemann-Darboux
theory, and only then moving on to the more sophisticated Lebesgue theory),
deferring the abstract aspects of measure theory to the second half of the
course. I found that this approach strengthened the student’s intuition in the
early stages of the course, and helped provide motivation for more abstract
constructions, such as Carathéodory’s general construction of a measure
from an outer measure.

Most of the material here is self-contained, assuming only an undergrad-
uate knowledge in real analysis (and in particular, on the Heine-Borel the-
orem, which we will use as the foundation for our construction of Lebesgue

ix



x Preface

measure); a secondary real analysis text can be used in conjunction with
this one, but it is not strictly necessary. A small number of exercises, how-
ever, will require some knowledge of point-set topology or of set-theoretic
concepts such as cardinals and ordinals.

A large number of exercises are interspersed throughout the text, and it
is intended that the reader perform a significant fraction of these exercises
while going through the text. Indeed, many of the key results and examples
in the subject will in fact be presented through the exercises. In my own
course, I used the exercises as the basis for the examination questions, and
indicated this well in advance, to encourage the students to attempt as many
of the exercises as they could as preparation for the exams.

The core material is contained in Chapter 1, and already comprises a
full quarter’s worth of material. Section 2.1 is a much more informal section
than the rest of the book, focusing on describing problem solving strategies,
either specific to real analysis exercises, or more generally, applicable to a
wider set of mathematical problems; this section evolved from various dis-
cussions with students throughout the course. The remaining three sections
in Chapter 2 are optional topics, which require understanding most of the
material in Chapter 1 as a prerequisite (although Section 2.3 can be read
after completing Section 1.4).

Notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

Given a subset E of a space X, the indicator function 1E : X → R is
defined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for x �∈ E.

For any natural number d, we refer to the vector space

Rd := {(x1, . . . , xd) : x1, . . . , xd ∈ R}

as (d-dimensional) Euclidean space. A vector (x1, . . . , xd) in Rd has length

|(x1, . . . , xd)| := (x21 + . . .+ x2d)
1/2

and two vectors (x1, . . . , xd), (y1, . . . , yd) have dot product

(x1, . . . , xd) · (y1, . . . , yd) := x1y1 + . . .+ xdyd.



Notation xi

The extended non-negative real axis [0,+∞] is the non-negative real
axis [0,+∞) := {x ∈ R : x ≥ 0} with an additional element adjointed to it,
which we label +∞; we will need to work with this system because many sets
(e.g. Rd) will have infinite measure. Of course, +∞ is not a real number,
but we think of it as an extended real number. We extend the addition,
multiplication, and order structures on [0,+∞) to [0,+∞] by declaring

+∞+ x = x++∞ = +∞

for all x ∈ [0,+∞],

+∞ · x = x ·+∞ = +∞
for all non-zero x ∈ (0,+∞],

+∞ · 0 = 0 ·+∞ = 0,

and

x < +∞ for all x ∈ [0,+∞).

Most of the laws of algebra for addition, multiplication, and order continue
to hold in this extended number system; for instance, addition and multi-
plication are commutative and associative, with the latter distributing over
the former, and an order relation x ≤ y is preserved under addition or mul-
tiplication of both sides of that relation by the same quantity. However, we
caution that the laws of cancellation do not apply once some of the vari-
ables are allowed to be infinite; for instance, we cannot deduce x = y from
+∞+x = +∞+y or from +∞·x = +∞·y. This is related to the fact that
the forms +∞− +∞ and +∞/ +∞ are indeterminate (one cannot assign
a value to them without breaking many of the rules of algebra). A general
rule of thumb is that if one wishes to use cancellation (or proxies for cancel-
lation, such as subtraction or division), this is only safe if one can guarantee
that all quantities involved are finite (and in the case of multiplicative can-
cellation, the quantity being cancelled also needs to be non-zero, of course).
However, as long as one avoids using cancellation and works exclusively with
non-negative quantities, there is little danger in working in the extended real
number system.

We note also that once one adopts the convention +∞· 0 = 0 ·+∞ = 0,
then multiplication becomes upward continuous (in the sense that when-
ever xn ∈ [0,+∞] increases to x ∈ [0,+∞], and yn ∈ [0,+∞] increases to
y ∈ [0,+∞], then xnyn increases to xy) but not downward continuous (e.g.
1/n → 0 but 1/n · +∞ �→ 0 · +∞). This asymmetry will ultimately cause
us to define integration from below rather than from above, which leads
to other asymmetries (e.g. the monotone convergence theorem (Theorem
1.4.43) applies for monotone increasing functions, but not necessarily for
monotone decreasing ones).



xii Preface

Remark 0.0.1. Note that there is a tradeoff here: if one wants to keep as
many useful laws of algebra as one can, then one can add in infinity, or have
negative numbers, but it is difficult to have both at the same time. Because
of this tradeoff, we will see two overlapping types of measure and integration
theory: the non-negative theory, which involves quantities taking values in
[0,+∞], and the absolutely integrable theory, which involves quantities tak-
ing values in (−∞,+∞) or C. For instance, the fundamental convergence
theorem for the former theory is the monotone convergence theorem (The-
orem 1.4.43), while the fundamental convergence theorem for the latter is
the dominated convergence theorem (Theorem 1.4.48). Both branches of
the theory are important, and both will be covered in later notes.

One important feature of the extended non-negative real axis is that
all sums are convergent: given any sequence x1, x2, . . . ∈ [0,+∞], we can
always form the sum

∞∑
n=1

xn ∈ [0,+∞]

as the limit of the partial sums
∑N

n=1 xn, which may be either finite or
infinite. An equivalent definition of this infinite sum is as the supremum of
all finite subsums:

∞∑
n=1

xn = sup
F⊂N,F finite

∑
n∈F

xn.

Motivated by this, given any collection (xα)α∈A of numbers xα ∈ [0,+∞]
indexed by an arbitrary set A (finite or infinite, countable or uncountable),
we can define the sum

∑
α∈A xα by the formula

(0.1)
∑
α∈A

xα = sup
F⊂A,F finite

∑
α∈F

xα.

Note from this definition that one can relabel the collection in an arbitrary
fashion without affecting the sum; more precisely, given any bijection φ :
B → A, one has the change of variables formula

(0.2)
∑
α∈A

xα =
∑
β∈B

xφ(β).

Note that when dealing with signed sums, the above rearrangement iden-
tity can fail when the series is not absolutely convergent (cf. the Riemann
rearrangement theorem).

Exercise 0.0.1. If (xα)α∈A is a collection of numbers xα ∈ [0,+∞] such
that

∑
α∈A xα < ∞, show that xα = 0 for all but at most countably many

α ∈ A, even if A itself is uncountable.
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We will rely frequently on the following basic fact (a special case of the
Fubini-Tonelli theorem, Corollary 1.7.23):

Theorem 0.0.2 (Tonelli’s theorem for series). Let (xn,m)n,m∈N be a doubly
infinite sequence of extended non-negative reals xn,m ∈ [0,+∞]. Then

∑
(n,m)∈N2

xn,m =

∞∑
n=1

∞∑
m=1

xn,m =

∞∑
m=1

∞∑
n=1

xn,m.

Informally, Tonelli’s theorem asserts that we may rearrange infinite series
with impunity as long as all summands are non-negative.

Proof. We shall just show the equality of the first and second expressions;
the equality of the first and third is proven similarly.

We first show that ∑
(n,m)∈N2

xn,m ≤
∞∑
n=1

∞∑
m=1

xn,m.

Let F be any finite subset of N2. Then F ⊂ {1, . . . , N} × {1, . . . , N} for
some finite N , and thus (by the non-negativity of the xn,m)∑

(n,m)∈F
xn,m ≤

∑
(n,m)∈{1,...,N}×{1,...,N}

xn,m.

The right-hand side can be rearranged as

N∑
n=1

N∑
m=1

xn,m,

which is clearly at most
∑∞

n=1

∑∞
m=1 xn,m (again by non-negativity of xn,m).

This gives ∑
(n,m)∈F

xn,m ≤
∞∑
n=1

∞∑
m=1

xn,m,

for any finite subset F of N2, and the claim then follows from (0.1).

It remains to show the reverse inequality
∞∑
n=1

∞∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m.

It suffices to show that
N∑

n=1

∞∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finite N .
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Fix N . As each
∑∞

m=1 xn,m is the limit of
∑M

m=1 xn,m, the left-hand side

is the limit of
∑N

n=1

∑M
m=1 xn,m as M → ∞. Thus it suffices to show that

N∑
n=1

M∑
m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finite M . But the left-hand side is
∑

(n,m)∈{1,...,N}×{1,...,M} xn,m,

and the claim follows. �

Remark 0.0.3. Note how important it was that the xn,m were non-negative
in the above argument. In the signed case, one needs an additional assump-
tion of absolute summability of xn,m on N2 before one is permitted to in-
terchange sums; this is Fubini’s theorem for series, which we will encounter
later in this text. Without absolute summability or non-negativity hypothe-
ses, the theorem can fail (consider, for instance, the case when xn,m equals
+1 when n = m, −1 when n = m+ 1, and 0 otherwise).

Exercise 0.0.2 (Tonelli’s theorem for series over arbitrary sets). Let A,B
be sets (possibly infinite or uncountable), and (xn,m)n∈A,m∈B be a doubly
infinite sequence of extended non-negative reals xn,m ∈ [0,+∞] indexed by
A and B. Show that∑

(n,m)∈A×B

xn,m =
∑
n∈A

∑
m∈B

xn,m =
∑
m∈B

∑
n∈A

xn,m.

(Hint: Although not strictly necessary, you may find it convenient to first
establish the fact that if

∑
n∈A xn is finite, then xn is non-zero for at most

countably many n.)

Next, we recall the axiom of choice, which we shall be assuming through-
out the text:

Axiom 0.0.4 (Axiom of choice). Let (Eα)α∈A be a family of non-empty
sets Eα, indexed by an index set A. Then we can find a family (xα)α∈A of
elements xα of Eα, indexed by the same set A.

This axiom is trivial when A is a singleton set, and from mathematical
induction one can also prove it without difficulty when A is finite. However,
when A is infinite, one cannot deduce this axiom from the other axioms of
set theory, but must explicitly add it to the list of axioms. We isolate the
countable case as a particularly useful corollary (though one which is strictly
weaker than the full axiom of choice):

Corollary 0.0.5 (Axiom of countable choice). Let E1, E2, E3, . . . be a se-
quence of non-empty sets. Then one can find a sequence x1, x2, . . . such that
xn ∈ En for all n = 1, 2, 3, . . ..
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Remark 0.0.6. The question of how much of real analysis still survives
when one is not permitted to use the axiom of choice is a delicate one,
involving a fair amount of logic and descriptive set theory to answer. We
will not discuss these matters in this text. We will, however, note a theorem
of Gödel [Go1938] that states that any statement that can be phrased in
the first-order language of Peano arithmetic, and which is proven with the
axiom of choice, can also be proven without the axiom of choice. So, roughly
speaking, Gödel’s theorem tells us that for any “finitary” application of real
analysis (which includes most of the “practical” applications of the subject),
it is safe to use the axiom of choice; it is only when asking questions about
“infinitary” objects that are beyond the scope of Peano arithmetic that one
can encounter statements that are provable using the axiom of choice, but
are not provable without it.
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1.1. Prologue: The problem of measure

One of the most fundamental concepts in Euclidean geometry is that of
the measure m(E) of a solid body E in one or more dimensions. In one,
two, and three dimensions, we refer to this measure as the length, area,
or volume of E, respectively. In the classical approach to geometry, the
measure of a body was often computed by partitioning that body into finitely
many components, moving around each component by a rigid motion (e.g.
a translation or rotation), and then reassembling those components to form
a simpler body which presumably has the same area. One could also obtain
lower and upper bounds on the measure of a body by computing the measure
of some inscribed or circumscribed body; this ancient idea goes all the way
back to the work of Archimedes at least. Such arguments can be justified by
an appeal to geometric intuition, or simply by postulating the existence of a
measure m(E) that can be assigned to all solid bodies E, and which obeys
a collection of geometrically reasonable axioms. One can also justify the
concept of measure on “physical” or “reductionistic” grounds, viewing the
measure of a macroscopic body as the sum of the measures of its microscopic
components.

With the advent of analytic geometry, however, Euclidean geometry be-
came reinterpreted as the study of Cartesian products Rd of the real line
R. Using this analytic foundation rather than the classical geometrical one,
it was no longer intuitively obvious how to define the measure m(E) of a
general1 subset E of Rd; we will refer to this (somewhat vaguely defined)
problem of writing down the “correct” definition of measure as the problem
of measure.

To see why this problem exists at all, let us try to formalise some of the
intuition for measure discussed earlier. The physical intuition of defining the
measure of a body E to be the sum of the measure of its component “atoms”
runs into an immediate problem: a typical solid body would consist of an
infinite (and uncountable) number of points, each of which has a measure
of zero; and the product ∞ · 0 is indeterminate. To make matters worse,
two bodies that have exactly the same number of points, need not have the
same measure. For instance, in one dimension, the intervals A := [0, 1] and
B := [0, 2] are in one-to-one correspondence (using the bijection x 
→ 2x
from A to B), but of course B is twice as long as A. So one can disassemble
A into an uncountable number of points and reassemble them to form a set
of twice the length.

1One can also pose the problem of measure on domains other than Euclidean space, such as
a Riemannian manifold, but we will focus on the Euclidean case here for simplicity, and refer to
any text on Riemannian geometry for a treatment of integration on manifolds.
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Of course, one can point to the infinite (and uncountable) number of
components in this disassembly as being the cause of this breakdown of
intuition, and restrict attention to just finite partitions. But one still runs
into trouble here for a number of reasons, the most striking of which is the
Banach-Tarski paradox, which shows that the unit ball B := {(x, y, z) ∈
R3 : x2 + y2 + z2 ≤ 1} in three dimensions2 can be disassembled into a
finite number of pieces (in fact, just five pieces suffice), which can then be
reassembled (after translating and rotating each of the pieces) to form two
disjoint copies of the ball B.

Here, the problem is that the pieces used in this decomposition are highly
pathological in nature; among other things, their construction requires use of
the axiom of choice. (This is in fact necessary; there are models of set theory
without the axiom of choice in which the Banach-Tarski paradox does not
occur, thanks to a famous theorem of Solovay [So1970].) Such pathological
sets almost never come up in practical applications of mathematics. Because
of this, the standard solution to the problem of measure has been to abandon
the goal of measuring every subset E of Rd, and instead to settle for only
measuring a certain subclass of “non-pathological” subsets of Rd, which are
then referred to as themeasurable sets. The problem of measure then divides
into several subproblems:

(i) What does it mean for a subset E of Rd to be measurable?

(ii) If a set E is measurable, how does one define its measure?

(iii) What nice properties or axioms does measure (or the concept of
measurability) obey?

(iv) Are “ordinary” sets such as cubes, balls, polyhedra, etc., measur-
able?

(v) Does the measure of an “ordinary” set equal the “naive geometric
measure” of such sets? (For example, is the measure of an a × b
rectangle equal to ab?)

These questions are somewhat open-ended in formulation, and there is
no unique answer to them; in particular, one can expand the class of mea-
surable sets at the expense of losing one or more nice properties of measure
in the process (e.g. finite or countable additivity, translation invariance, or
rotation invariance). However, there are two basic answers which, between
them, suffice for most applications. The first is the concept of Jordan mea-
sure (or Jordan content) of a Jordan measurable set, which is a concept
closely related to that of the Riemann integral (or Darboux integral). This

2The paradox only works in three dimensions and higher, for reasons having to do with
the group-theoretic property of amenability; see §2.2 of An epsilon of room, Vol. I for further
discussion.
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concept is elementary enough to be systematically studied in an undergrad-
uate analysis course, and suffices for measuring most of the “ordinary” sets
(e.g. the area under the graph of a continuous function) in many branches
of mathematics. However, when one turns to the type of sets that arise in
analysis, and in particular, those sets that arise as limits (in various senses)
of other sets, it turns out that the Jordan concept of measurability is not
quite adequate, and must be extended to the more general notion of Lebesgue
measurability, with the corresponding notion of Lebesgue measure that ex-
tends Jordan measure. With the Lebesgue theory (which can be viewed
as a completion of the Jordan-Darboux-Riemann theory), one keeps almost
all of the desirable properties of Jordan measure, but with the crucial ad-
ditional property that many features of the Lebesgue theory are preserved
under limits (as exemplified in the fundamental convergence theorems of
the Lebesgue theory, such as the monotone convergence theorem (Theorem
1.4.43) and the dominated convergence theorem (Theorem 1.4.48), which do
not hold in the Jordan-Darboux-Riemann setting). As such, they are par-
ticularly well suited3 for applications in analysis, where limits of functions
or sets arise all the time.

In later sections, we will formally define Lebesgue measure and the
Lebesgue integral, as well as the more general concept of an abstract measure
space and the associated integration operation. In the rest of the current
section, we will discuss the more elementary concepts of Jordan measure
and the Riemann integral. This material will eventually be superceded by
the more powerful theory to be treated in later sections; but it will serve as
motivation for that later material, as well as providing some continuity with
the treatment of measure and integration in undergraduate analysis courses.

1.1.1. Elementary measure. Before we discuss Jordan measure, we dis-
cuss the even simpler notion of elementary measure, which allows one to
measure a very simple class of sets, namely the elementary sets (finite unions
of boxes).

Definition 1.1.1 (Intervals, boxes, elementary sets). An interval is a subset
of R of the form [a, b] := {x ∈ R : a ≤ x ≤ b}, [a, b) := {x ∈ R : a ≤ x < b},
(a, b] := {x ∈ R : a < x ≤ b}, or (a, b) := {x ∈ R : a < x < b},
where a ≤ b are real numbers. We define the length4 |I| of an interval
I = [a, b], [a, b), (a, b], (a, b) to be |I| := b − a. A box in Rd is a Cartesian
product B := I1×. . .×Id of d intervals I1, . . . , Id (not necessarily of the same

3There are other ways to extend Jordan measure and the Riemann integral (see for instance
Exercise 1.6.54 or Section 1.7.3), but the Lebesgue approach handles limits and rearrangement
better than the other alternatives, and so has become the standard approach in analysis; it is also
particularly well suited for providing the rigorous foundations of probability theory, as discussed
in Section 2.3.

4Note we allow degenerate intervals of zero length.
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length), thus for instance, an interval is a one-dimensional box. The volume
|B| of such a box B is defined as |B| := |I1| × . . .× |Id|. An elementary set
is any subset of Rd which is the union of a finite number of boxes.

Exercise 1.1.1 (Boolean closure). Show that if E,F ⊂ Rd are elementary
sets, then the union E ∪ F , the intersection E ∩ F , and the set theoretic
difference E\F := {x ∈ E : x �∈ F}, and the symmetric difference EΔF :=
(E\F ) ∪ (F\E) are also elementary. If x ∈ Rd, show that the translate
E + x := {y + x : y ∈ E} is also an elementary set.

We now give each elementary set a measure.

Lemma 1.1.2 (Measure of an elementary set). Let E ⊂ Rd be an elemen-
tary set.

(i) E can be expressed as the finite union of disjoint boxes.

(ii) If E is partitioned as the finite union B1∪ . . .∪Bk of disjoint boxes,
then the quantity m(E) := |B1| + . . . + |Bk| is independent of the
partition. In other words, given any other partition B′

1 ∪ . . . ∪ B′
k′

of E, one has |B1|+ . . .+ |Bk| = |B′
1|+ . . .+ |B′

k′ |.
We refer to m(E) as the elementary measure of E. (We occasionally write
m(E) as md(E) to emphasise the d-dimensional nature of the measure.)
Thus, for example, the elementary measure of (1, 2)∪[3, 6] is (2−1)+(6−3) =
4.

Proof. We first prove (i) in the one-dimensional case d = 1. Given any
finite collection of intervals I1, . . . , Ik, one can place the 2k endpoints of these
intervals in increasing order (discarding repetitions). Looking at the open
intervals between these endpoints, together with the endpoints themselves
(viewed as intervals of length zero), we see that there exists a finite collection
of disjoint intervals J1, . . . , Jk′ such that each of the I1, . . . , Ik are a union
of some subcollection of the J1, . . . , Jk′ . This already gives (i) when d = 1.
To prove the higher dimensional case, we express E as the union B1, . . . , Bk

of boxes Bi = Ii,1 × . . . × Ii,d. For each j = 1, . . . , d, we use the one-
dimensional argument to express I1,j , . . . , Ik,j as the union of subcollections
of a collection J1,j, . . . , Jk′j ,j of disjoint intervals. Taking Cartesian products,

we can express the B1, . . . , Bk as finite unions of boxes Ji1,1 × . . . × Jid,d,
where 1 ≤ ij ≤ k′j for all 1 ≤ j ≤ d. Such boxes are all disjoint, and the
claim follows.

To prove (ii) we use a discretisation argument. Observe (exercise!) that
for any interval I, the length of I can be recovered by the limiting formula

|I| = lim
N→∞

1

N
#(I ∩ 1

N
Z)
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where 1
NZ := { n

N : n ∈ Z} and #A denotes the cardinality of a finite set A.
Taking Cartesian products, we see that

|B| = lim
N→∞

1

Nd
#(B ∩ 1

N
Zd)

for any box B, and in particular, that

|B1|+ . . .+ |Bk| = lim
N→∞

1

Nd
#(E ∩ 1

N
Zd).

Denoting the right-hand side as m(E), we obtain the claim (ii). �

Exercise 1.1.2. Give an alternate proof of Lemma 1.1.2(ii) by showing that
any two partitions of E into boxes admit a mutual refinement into boxes
that arise from taking Cartesian products of elements from finite collections
of disjoint intervals.

Remark 1.1.3. One might be tempted now to define the measure m(E) of
an arbitrary set E ⊂ Rd by the formula

(1.1) m(E) := lim
N→∞

1

Nd
#(E ∩ 1

N
Zd),

since this worked well for elementary sets. However, this definition is not
particularly satisfactory for a number of reasons. First, one can concoct
examples in which the limit does not exist (Exercise!). Even when the
limit does exist, this concept does not obey reasonable properties such as
translation invariance. For instance, if d = 1 and E := Q ∩ [0, 1] := {x ∈
Q : 0 ≤ x ≤ 1}, then this definition would give E a measure of 1, but would
give the translate E+

√
2 := {x+

√
2 : x ∈ Q; 0 ≤ x ≤ 1} a measure of zero.

Nevertheless, the formula (1.1) will be valid for all Jordan measurable sets
(see Exercise 1.1.13). It also makes precise an important intuition, namely
that the continuous concept of measure can be viewed5 as a limit of the
discrete concept of (normalised) cardinality.

From the definitions, it is clear that m(E) is a non-negative real number
for every elementary set E, and that

m(E ∪ F ) = m(E) +m(F )

whenever E and F are disjoint elementary sets. We refer to the latter
property as finite additivity ; by induction it also implies that

m(E1 ∪ . . . ∪Ek) = m(E1) + . . .+m(Ek)

5Another way to obtain continuous measure as the limit of discrete measure is via Monte
Carlo integration, although in order to rigorously introduce the probability theory needed to set
up Monte Carlo integration properly, one already needs to develop a large part of measure theory,
so this perspective, while intuitive, is not suitable for foundational purposes.
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whenever E1, . . . , Ek are disjoint elementary sets. We also have the obvious
degenerate case

m(∅) = 0.

Finally, elementary measure clearly extends the notion of volume, in the
sense that

m(B) = |B|

for all boxes B.

From non-negativity and finite additivity (and Exercise 1.1.1) we con-
clude the monotonicity property

m(E) ≤ m(F )

whenever E ⊂ F are nested elementary sets. From this and finite additivity
(and Exercise 1.1.1) we easily obtain the finite subadditivity property

m(E ∪ F ) ≤ m(E) +m(F )

whenever E,F are elementary sets (not necessarily disjoint); by induction
one then has

m(E1 ∪ . . . ∪Ek) ≤ m(E1) + . . .+m(Ek)

whenever E1, . . . , Ek are elementary sets (not necessarily disjoint).

It is also clear from the definition that we have the translation invariance

m(E + x) = m(E)

for all elementary sets E and x ∈ Rd.

These properties in fact define elementary measure up to normalisation:

Exercise 1.1.3 (Uniqueness of elementary measure). Let d ≥ 1. Let
m′ : E(Rd) → R+ be a map from the collection E(Rd) of elementary subsets
of Rd to the non-negative reals that obeys the non-negativity, finite additiv-
ity, and translation invariance properties. Show that there exists a constant
c ∈ R+ such that m′(E) = cm(E) for all elementary sets E. In particular,
if we impose the additional normalisation m′([0, 1)d) = 1, then m′ ≡ m.
(Hint: Set c := m′([0, 1)d), and then compute m′([0, 1

n)
d) for any positive

integer n.)

Exercise 1.1.4. Let d1, d2 ≥ 1, and let E1 ⊂ Rd1 , E2 ⊂ Rd2 be elementary
sets. Show that E1 × E2 ⊂ Rd1+d2 is elementary, and md1+d2(E1 × E2) =
md1(E1)×md2(E2).
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1.1.2. Jordan measure. We now have a satisfactory notion of measure
for elementary sets. But of course, the elementary sets are a very restrictive
class of sets, far too small for most applications. For instance, a solid triangle
or disk in the plane will not be elementary, or even a rotated box. On the
other hand, as essentially observed long ago by Archimedes, such sets E can
be approximated from within and without by elementary sets A ⊂ E ⊂ B,
and the inscribing elementary set A and the circumscribing elementary set
B can be used to give lower and upper bounds on the putative measure of E.
As one makes the approximating sets A,B increasingly fine, one can hope
that these two bounds eventually match. This gives rise to the following
definitions.

Definition 1.1.4 (Jordan measure). Let E ⊂ Rd be a bounded set.

• The Jordan inner measure m∗,(J)(E) of E is defined as

m∗,(J)(E) := sup
A⊂E,A elementary

m(A).

• The Jordan outer measure m∗,(J)(E) of E is defined as

m∗,(J)(E) := inf
B⊃E,B elementary

m(B).

• If m∗,(J)(E) = m∗,(J)(E), then we say that E is Jordan measurable,

and call m(E) := m∗,(J)(E) = m∗,(J)(E) the Jordan measure of E.

As before, we write m(E) as md(E) when we wish to emphasise
the dimension d.

By convention, we do not consider unbounded sets to be Jordan measurable
(they will be deemed to have infinite Jordan outer measure).

Jordan measurable sets are those sets which are “almost elementary”
with respect to Jordan outer measure. More precisely, we have

Exercise 1.1.5 (Characterisation of Jordan measurability). Let E ⊂ Rd

be bounded. Show that the following are equivalent:

(1) E is Jordan measurable.

(2) For every ε > 0, there exist elementary sets A ⊂ E ⊂ B such that
m(B\A) ≤ ε.

(3) For every ε > 0, there exists an elementary set A such that

m∗,(J)(AΔE) ≤ ε.

As one corollary of this exercise, we see that every elementary set E
is Jordan measurable, and that Jordan measure and elementary measure
coincide for such sets; this justifies the use of m(E) to denote both. In
particular, we still have m(∅) = 0.
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Jordan measurability also inherits many of the properties of elementary
measure:

Exercise 1.1.6. Let E,F ⊂ Rd be Jordan measurable sets.

(1) (Boolean closure) Show that E ∪ F , E ∩ F , E\F , and EΔF are
Jordan measurable.

(2) (Non-negativity) m(E) ≥ 0.

(3) (Finite additivity) If E,F are disjoint, then m(E ∪ F ) = m(E) +
m(F ).

(4) (Monotonicity) If E ⊂ F , then m(E) ≤ m(F ).

(5) (Finite subadditivity) m(E ∪ F ) ≤ m(E) +m(F ).

(6) (Translation invariance) For any x ∈ Rd, E + x is Jordan measur-
able, and m(E + x) = m(E).

Now we give some examples of Jordan measurable sets:

Exercise 1.1.7 (Regions under graphs are Jordan measurable). Let B be
a closed box in Rd, and let f : B → R be a continuous function.

(1) Show that the graph {(x, f(x)) : x ∈ B} ⊂ Rd+1 is Jordan mea-
surable in Rd+1 with Jordan measure zero. (Hint: On a compact
metric space, continuous functions are uniformly continuous.)

(2) Show that the set {(x, t) : x ∈ B; 0 ≤ t ≤ f(x)} ⊂ Rd+1 is Jordan
measurable.

Exercise 1.1.8. Let A,B,C be three points in R2.

(1) Show that the solid triangle with vertices A,B,C is Jordan mea-
surable.

(2) Show that the Jordan measure of the solid triangle is equal to
1
2 |(B −A) ∧ (C −A)|, where |(a, b) ∧ (c, d)| := |ad− bc|.

(Hint: It may help to first do the case when one of the edges, say AB, is
horizontal.)

Exercise 1.1.9. Show that every compact convex polytope6 inRd is Jordan
measurable.

Exercise 1.1.10.

(1) Show that all open and closed Euclidean balls B(x, r) := {y ∈ Rd :

|y − x| < r}, B(x, r) := {y ∈ Rd : |y − x| ≤ r} in Rd are Jordan
measurable, with Jordan measure cdr

d for some constant cd > 0
depending only on d.

6A closed convex polytope is a subset of Rd formed by intersecting together finitely many
closed half-spaces of the form {x ∈ Rd : x · v ≤ c}, where v ∈ Rd, c ∈ R, and · denotes the usual
dot product on Rd. A compact convex polytope is a closed convex polytope which is also bounded.
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(2) Establish the crude bounds(
2√
d

)d

≤ cd ≤ 2d.

(An exact formula for cd is cd = 1
dωd, where ωd := 2πd/2

Γ(d/2) is the volume of

the unit sphere Sd−1 ⊂ Rd and Γ is the Gamma function, but we will not
derive this formula here.)

Exercise 1.1.11. This exercise assumes familiarity with linear algebra. Let
L : Rd → Rd be a linear transformation.

(1) Show that there exists a non-negative real number D such that
m(L(E)) = Dm(E) for every elementary set E (note from previous
exercises that L(E) is Jordan measurable). (Hint: Apply Exercise
1.1.3 to the map E 
→ m(L(E)).)

(2) Show that if E is Jordan measurable, then L(E) is also, and
m(L(E)) = Dm(E).

(3) Show that D = | detL|. (Hint: Work first with the case when L is
an elementary transformation, using Gaussian elimination. Alter-
natively, work with the cases when L is a diagonal transformation
or an orthogonal transformation, using the unit ball in the latter
case, and use the polar decomposition.)

Exercise 1.1.12. Define a Jordan null set to be a Jordan measurable set of
Jordan measure zero. Show that any subset of a Jordan null set is a Jordan
null set.

Exercise 1.1.13. Show that (1.1) holds for all Jordan measurable E ⊂ Rd.

Exercise 1.1.14 (Metric entropy formulation of Jordan measurability).
Define a dyadic cube to be a half-open box of the form[

i1
2n

,
i1 + 1

2n

)
× . . .×

[
id
2n

,
id + 1

2n

)

for some integers n, i1, . . . , id. Let E ⊂ Rd be a bounded set. For each
integer n, let E∗(E, 2−n) denote the number of dyadic cubes of sidelength
2−n that are contained in E, and let E∗(E, 2−n) be the number of dyadic
cubes7 of sidelength 2−n that intersect E. Show that E is Jordan measurable
if and only if

lim
n→∞

2−dn(E∗(E, 2−n)− E∗(E, 2−n)) = 0,

in which case one has

m(E) = lim
n→∞

2−dnE∗(E, 2−n) = lim
n→∞

2−dnE∗(E, 2−n).

7This quantity could be called the (dyadic) metric entropy of E at scale 2−n.
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Exercise 1.1.15 (Uniqueness of Jordan measure). Let d≥1. Letm′ : J (Rd)
→ R+ be a map from the collection J (Rd) of Jordan-measurable subsets of
Rd to the non-negative reals that obeys the non-negativity, finite additiv-
ity, and translation invariance properties. Show that there exists a constant
c ∈ R+ such that m′(E) = cm(E) for all Jordan measurable sets E. In
particular, if we impose the additional normalisation m′([0, 1)d) = 1, then
m′ ≡ m.

Exercise 1.1.16. Let d1, d2 ≥ 1, and let E1 ⊂ Rd1 , E2 ⊂ Rd2 be Jordan
measurable sets. Show that E1 × E2 ⊂ Rd1+d2 is Jordan measurable, and
md1+d2(E1 × E2) = md1(E1)×md2(E2).

Exercise 1.1.17. Let P,Q be two polytopes in Rd. Suppose that P can be
partitioned into finitely many sub-polytopes P1, . . . , Pn which, after being
rotated and translated, form new polytopes Q1, . . . , Qn which are an almost
disjoint cover of Q, which means that Q = Q1 ∪ . . . ∪ Qn, and for any
1 ≤ i < j ≤ n, Qi and Qj only intersect at the boundary (i.e. the interior of
Qi is disjoint from the interior of Qj). Conclude that P and Q have the same
Jordan measure. The converse statement is true in one and two dimensions
d = 1, 2 (this is the Bolyai-Gerwien theorem), but false in higher dimensions
(this was Dehn’s negative answer [De1901] to Hilbert’s third problem).

The above exercises give a fairly large class of Jordan measurable sets.
However, not every subset of Rd is Jordan measurable. First of all, the
unbounded sets are not Jordan measurable, by construction. But there are
also bounded sets that are not Jordan measurable:

Exercise 1.1.18. Let E ⊂ Rd be a bounded set.

(1) Show that E and the closure E of E have the same Jordan outer
measure.

(2) Show that E and the interior E◦ of E have the same Jordan inner
measure.

(3) Show that E is Jordan measurable if and only if the topological
boundary ∂E of E has Jordan outer measure zero.

(4) Show that the bullet-riddled square [0, 1]2\Q2, and set of bullets
[0, 1]2∩Q2, both have Jordan inner measure zero and Jordan outer
measure one. In particular, both sets are not Jordan measurable.

Informally, any set with a lot of “holes”, or a very “fractal” boundary,
is unlikely to be Jordan measurable. In order to measure such sets we will
need to develop Lebesgue measure, which is done in the next set of notes.

Exercise 1.1.19 (Carathéodory type property). Let E ⊂ Rd be a bounded

set, and let F ⊂ Rd be an elementary set. Show that m∗,(J)(E) =
m∗,(J)(E ∩ F ) +m∗,(J)(E\F ).
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1.1.3. Connection with the Riemann integral. To conclude this sec-
tion, we briefly discuss the relationship between Jordan measure and the
Riemann integral (or the equivalent Darboux integral). For simplicity we
will only discuss the classical one-dimensional Riemann integral on an in-
terval [a, b], though one can extend the Riemann theory without much dif-
ficulty to higher-dimensional integrals on Jordan measurable sets. (In later
sections, this Riemann integral will be superceded by the Lebesgue integral.)

Definition 1.1.5 (Riemann integrability). Let [a, b] be an interval of pos-
itive length, and let f : [a, b] → R be a function. A tagged partition P =
((x0, x1, . . . , xn), (x

∗
1, . . . , x

∗
n)) of [a, b] is a finite sequence of real numbers

a = x0 < x1 < . . . < xn = b, together with additional numbers xi−1 ≤
x∗i ≤ xi for each i = 1, . . . , n. We abbreviate xi − xi−1 as δxi. The quantity
Δ(P) := sup1≤i≤n δxi will be called the norm of the tagged partition. The
Riemann sum R(f,P) of f with respect to the tagged partition P is defined
as

R(f,P) :=
n∑

i=1

f(x∗i )δxi.

We say that f is Riemann integrable on [a, b] if there exists a real number,

denoted
∫ b
a f(x) dx and referred to as the Riemann integral of f on [a, b],

for which we have ∫ b

a
f(x) dx = lim

Δ(P)→0
R(f,P)

by which we mean that for every ε > 0 there exists δ > 0 such that |R(f,P)−∫ b
a f(x) dx| ≤ ε for every tagged partition P with Δ(P) ≤ δ.

If [a, b] is an interval of zero length, we adopt the convention that every
function f : [a, b] → R is Riemann integrable, with a Riemann integral of
zero.

Note that unbounded functions cannot be Riemann integrable (why?).

The above definition, while geometrically natural, can be awkward to
use in practice. A more convenient formulation of the Riemann integral can
be formulated using some additional machinery.

Exercise 1.1.20 (Piecewise constant functions). Let [a, b] be an interval.
A piecewise constant function f : [a, b] → R is a function for which there
exists a partition of [a, b] into finitely many intervals I1, . . . , In, such that f
is equal to a constant ci on each of the intervals Ii. If f is piecewise constant,
show that the expression

n∑
i=1

ci|Ii|
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is independent of the choice of partition used to demonstrate the piecewise

constant nature of f . We will denote this quantity by p.c.
∫ b
a f(x) dx, and

refer to it as the piecewise constant integral of f on [a, b].

Exercise 1.1.21 (Basic properties of the piecewise constant integral). Let
[a, b] be an interval, and let f, g : [a, b] → R be piecewise constant functions.
Establish the following statements:

(1) (Linearity) For any real number c, cf and f + g are piecewise con-

stant, with p.c.
∫ b
a cf(x) dx = c p.c.

∫ b
a f(x) dx and p.c.

∫ b
a f(x) +

g(x) dx = p.c.
∫ b
a f(x) dx+ p.c.

∫ b
a g(x) dx.

(2) (Monotonicity) If f ≤ g pointwise (i.e. f(x) ≤ g(x) for all x ∈
[a, b]), then p.c.

∫ b
a f(x) dx ≤ p.c.

∫ b
a g(x) dx.

(3) (Indicator) If E is an elementary subset of [a, b], then the in-
dicator function 1E : [a, b] → R (defined by setting 1E(x) := 1
when x ∈ E and 1E(x) := 0 otherwise) is piecewise constant, and

p.c.
∫ b
a 1E(x) dx = m(E).

Definition 1.1.6 (Darboux integral). Let [a, b] be an interval, and f : [a, b]→
R be a bounded function. The lower Darboux integral

∫ b
a f(x) dx of f on

[a, b] is defined as∫ b

a
f(x) dx := sup

g≤f, piecewise constant
p.c.

∫ b

a
g(x) dx,

where g ranges over all piecewise constant functions that are pointwise
bounded above by f . (The hypothesis that f is bounded ensures that the
supremum is over a non-empty set.) Similarly, we define the upper Darboux

integral
∫ b
a f(x) dx of f on [a, b] by the formula∫ b

a
f(x) dx := inf

h≥f, piecewise constant
p.c.

∫ b

a
h(x) dx.

Clearly,
∫ b
a f(x) dx ≤

∫ b
a f(x) dx. If these two quantities are equal, we

say that f is Darboux integrable, and refer to this quantity as the Darboux
integral of f on [a, b].

Note that the upper and lower Darboux integrals are related by the
reflection identity ∫ b

a
− f(x) dx = −

∫ b

a
f(x) dx.

Exercise 1.1.22. Let [a, b] be an interval, and f : [a, b] → R be a bounded
function. Show that f is Riemann integrable if and only if it is Darboux
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integrable, in which case the Riemann integral and Darboux integrals are
equal.

Exercise 1.1.23. Show that any continuous function f : [a, b] → R is Rie-
mann integrable. More generally, show that any bounded, piecewise contin-
uous8 function f : [a, b] → R is Riemann integrable.

Now we connect the Riemann integral to Jordan measure in two ways.
First, we connect the Riemann integral to one-dimensional Jordan measure:

Exercise 1.1.24 (Basic properties of the Riemann integral). Let [a, b] be
an interval, and let f, g : [a, b] → R be Riemann integrable. Establish the
following statements:

(1) (Linearity) For any real number c, cf and f + g are Riemann inte-

grable, with
∫ b
a cf(x) dx = c ·

∫ b
a f(x) dx and

∫ b
a f(x) + g(x) dx =∫ b

a f(x) dx+
∫ b
a g(x) dx.

(2) (Monotonicity) If f≤g pointwise (i.e. f(x) ≤ g(x) for all x ∈ [a, b]),

then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

(3) (Indicator) If E is a Jordan measurable of [a, b], then the indica-
tor function 1E : [a, b] → R (defined by setting 1E(x) := 1 when
x ∈ E and 1E(x) := 0 otherwise) is Riemann integrable, and∫ b
a 1E(x) dx = m(E).

Finally, show that these properties uniquely define the Riemann integral, in

the sense that the functional f 
→
∫ b
a f(x) dx is the only map from the space

of Riemann integrable functions on [a, b] to R which obeys all three of the
above properties.

Next, we connect the integral to two-dimensional Jordan measure:

Exercise 1.1.25 (Area interpretation of the Riemann integral). Let [a, b]
be an interval, and let f : [a, b] → R be a bounded function. Show that f
is Riemann integrable if and only if the sets E+ := {(x, t) : x ∈ [a, b]; 0 ≤
t ≤ f(x)} and E− := {(x, t) : x ∈ [a, b]; f(x) ≤ t ≤ 0} are both Jordan
measurable in R2, in which case one has∫ b

a
f(x) dx = m2(E+)−m2(E−),

where m2 denotes two-dimensional Jordan measure. (Hint: First establish
this in the case when f is non-negative.)

8A function f : [a, b] → R is piecewise continuous if one can partition [a, b] into finitely many
intervals, such that f is continuous on each interval.
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Exercise 1.1.26. Extend the definition of the Riemann and Darboux inte-
grals to higher dimensions, in such a way that analogues of all the previous
results hold.

1.2. Lebesgue measure

In Section 1.1, we recalled the classical theory of Jordan measure on Eu-
clidean spaces Rd. This theory proceeded in the following stages:

(i) First, one defined the notion of a box B and its volume |B|.
(ii) Using this, one defined the notion of an elementary set E (a finite

union of boxes), and defines the elementary measure m(E) of such
sets.

(iii) From this, one defined the inner and Jordan outer measures

m∗,(J)(E),m∗,(J)(E) of an arbitrary bounded set E ⊂ Rd. If
those measures match, we say that E is Jordan measurable, and
call m(E) = m∗,(J)(E) = m∗,(J)(E) the Jordan measure of E.

As long as one is lucky enough to only have to deal with Jordan mea-
surable sets, the theory of Jordan measure works well enough. However, as
noted previously, not all sets are Jordan measurable, even if one restricts
attention to bounded sets. In fact, we shall see later in these notes that there
even exist bounded open sets, or compact sets, which are not Jordan mea-
surable, so the Jordan theory does not cover many classes of sets of interest.
Another class that it fails to cover is countable unions or intersections of
sets that are already known to be measurable:

Exercise 1.2.1. Show that the countable union
⋃∞

n=1En or countable in-
tersection

⋂∞
n=1En of Jordan measurable sets E1, E2, . . . ⊂ R need not be

Jordan measurable, even when bounded.

This creates problems with Riemann integrability (which, as we saw in
Section 1.1, was closely related to Jordan measure) and pointwise limits:

Exercise 1.2.2. Give an example of a sequence of uniformly bounded, Rie-
mann integrable functions fn : [0, 1] → R for n = 1, 2, . . . that converge
pointwise to a bounded function f : [0, 1] → R that is not Riemann inte-
grable. What happens if we replace pointwise convergence with uniform
convergence?

These issues can be rectified by using a more powerful notion of measure
than Jordan measure, namely Lebesgue measure. To define this measure, we
first tinker with the notion of the Jordan outer measure

m∗,(J)(E) := inf
B⊃E;B elementary

m(B)
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of a set E ⊂ Rd (we adopt the convention that m∗,(J)(E) = +∞ if E is
unbounded, thus m∗,(J) now takes values in the extended non-negative reals
[0,+∞], whose properties we will briefly review below). Observe from the
finite additivity and subadditivity of elementary measure that we can also
write the Jordan outer measure as

m∗,(J)(E) := inf
B1∪...∪Bk⊃E;B1,...,Bk boxes

|B1|+ . . .+ |Bk|,

i.e., the Jordan outer measure is the infimal cost required to cover E by a
finite union of boxes. (The natural number k is allowed to vary freely in
the above infimum.) We now modify this by replacing the finite union of
boxes by a countable union of boxes, leading to the Lebesgue outer measure9

m∗(E) of E:

m∗(E) := inf⋃∞
n=1 Bn⊃E;B1,B2,... boxes

∞∑
n=1

|Bn|,

thus the Lebesgue outer measure is the infimal cost required to cover E by
a countable union of boxes. Note that the countable sum

∑∞
n=1 |Bn| may be

infinite, and so the Lebesgue outer measure m∗(E) could well equal +∞.

Clearly, we always havem∗(E) ≤ m∗,(J)(E) (since we can always pad out
a finite union of boxes into an infinite union by adding an infinite number
of empty boxes). But m∗(E) can be a lot smaller:

Example 1.2.1. Let E = {x1, x2, x3, . . .} ⊂ Rd be a countable set. We
know that the Jordan outer measure of E can be quite large; for instance,
in one dimension, m∗,(J)(Q) is infinite, and m∗,(J)(Q ∩ [−R,R]) =

m∗,(J)([−R,R]) = 2R since Q ∩ [−R,R] has [−R,R] as its closure (see
Exercise 1.1.18). On the other hand, all countable sets E have Lebesgue
outer measure zero. Indeed, one simply covers E by the degenerate boxes
{x1}, {x2}, . . . of sidelength and volume zero.

Alternatively, if one does not like degenerate boxes, one can cover each
xn by a cube Bn of sidelength ε/2n (say) for some arbitrary ε > 0, leading
to a total cost of

∑∞
n=1(ε/2

n)d, which converges to Cdε
d for some absolute

constant Cd. As ε can be arbitrarily small, we see that the Lebesgue outer
measure must be zero. We will refer to this type of trick as the ε/2n trick ;
it will be used many more times in this text.

From this example we see, in particular, that a set may be unbounded
while still having Lebesgue outer measure zero, in contrast to Jordan outer
measure.

9Lebesgue outer measure is also denoted m∗(E) in some texts.
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As we shall see in Section 1.7, Lebesgue outer measure (also known as
Lebesgue exterior measure) is a special case of a more general concept known
as an outer measure.

In analogy with the Jordan theory, we would also like to define a concept
of “Lebesgue inner measure” to complement that of outer measure. Here,
there is an asymmetry (which ultimately arises from the fact that elemen-
tary measure is subadditive rather than superadditive): one does not gain
any increase in power in the Jordan inner measure by replacing finite unions
of boxes with countable ones. But one can get a sort of Lebesgue inner mea-
sure by taking complements; see Exercise 1.2.18. This leads to one possible
definition for Lebesgue measurability, namely the Carathéodory criterion for
Lebesgue measurability; see Exercise 1.2.17. However, this is not the most
intuitive formulation of this concept to work with, and we will instead use a
different (but logically equivalent) definition of Lebesgue measurability. The
starting point is the observation (see Exercise 1.1.13) that Jordan measur-
able sets can be efficiently contained in elementary sets, with an error that
has small Jordan outer measure. In a similar vein, we will define Lebesgue
measurable sets to be sets that can be efficiently contained in open sets,
with an error that has small Lebesgue outer measure:

Definition 1.2.2 (Lebesgue measurability). A set E ⊂ Rd is said to be
Lebesgue measurable if, for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U\E) ≤ ε. If E is Lebesgue measurable, we refer
to m(E) := m∗(E) as the Lebesgue measure of E (note that this quantity
may be equal to +∞). We also write m(E) as md(E) when we wish to
emphasise the dimension d.

Remark 1.2.3. The intuition that measurable sets are almost open is also
known as Littlewood’s first principle, this principle is a triviality with our
current choice of definitions, though less so if one uses other, equivalent, def-
initions of Lebesgue measurability. See Section 1.3.5 for a further discussion
of Littlewood’s principles.

As we shall see later, Lebesgue measure extends Jordan measure, in
the sense that every Jordan measurable set is Lebesgue measurable, and
the Lebesgue measure and Jordan measure of a Jordan measurable set are
always equal. We will also see a few other equivalent descriptions of the
concept of Lebesgue measurability.

In the notes below we will establish the basic properties of Lebesgue mea-
sure. Broadly speaking, this concept obeys all the intuitive properties one
would ask of measure, so long as one restricts attention to countable opera-
tions rather than uncountable ones, and as long as one restricts attention to
Lebesgue measurable sets. The latter is not a serious restriction in practice,
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as almost every set one actually encounters in analysis will be measurable
(the main exceptions being some pathological sets that are constructed using
the axiom of choice). In the next set of notes we will use Lebesgue mea-
sure to set up the Lebesgue integral, which extends the Riemann integral
in the same way that Lebesgue measure extends Jordan measure; and the
many pleasant properties of Lebesgue measure will be reflected in analogous
pleasant properties of the Lebesgue integral (most notably the convergence
theorems).

We will treat all dimensions d = 1, 2, . . . equally here, but for the pur-
poses of drawing pictures, we recommend to the reader that one sets d equal
to 2. However, for this topic at least, no additional mathematical difficulties
will be encountered in the higher-dimensional case (though of course there
are significant visual difficulties once d exceeds 3).

1.2.1. Properties of Lebesgue outer measure. We begin by studying
the Lebesgue outer measure m∗, which was defined earlier, and takes values
in the extended non-negative real axis [0,+∞]. We first record three easy
properties of Lebesgue outer measure, which we will use repeatedly in the
sequel without further comment:

Exercise 1.2.3 (The outer measure axioms).

(i) (Empty set) m∗(∅) = 0.

(ii) (Monotonicity) If E ⊂ F ⊂ Rd, then m∗(E) ≤ m∗(F ).

(iii) (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable se-
quence of sets, then m∗(

⋃∞
n=1En) ≤

∑∞
n=1m

∗(En). (Hint: Use
the axiom of countable choice, Tonelli’s theorem for series, and the
ε/2n trick used previously to show that countable sets have outer
measure zero.)

Note that countable subadditivity, when combined with the empty set
axiom, gives as a corollary the finite subadditivity property

m∗(E1 ∪ . . . ∪ Ek) ≤ m∗(E1) + . . .+m∗(Ek)

for any k ≥ 0. These subadditivity properties will be useful in establishing
upper bounds on Lebesgue outer measure. Establishing lower bounds will
often be a bit trickier. (More generally, when dealing with a quantity that
is defined using an infimum, it is usually easier to obtain upper bounds on
that quantity than lower bounds, because the former requires one to bound
just one element of the infimum, whereas the latter requires one to bound
all elements.)

Remark 1.2.4. Later on in this text, when we study abstract measure the-
ory on a general set X, we will define the concept of an outer measure on



1.2. Lebesgue measure 19

X, which is an assigment E 
→ m∗(E) of element of [0,+∞] to arbitrary
subsets E of a space X that obeys the above three axioms of the empty set,
monotonicity, and countable subadditivity; thus Lebesgue outer measure is
a model example of an abstract outer measure. On the other hand (and
somewhat confusingly), Jordan outer measure will not be an abstract outer
measure (even after adopting the convention that unbounded sets have Jor-
dan outer measure +∞): it obeys the empty set and monotonicity axioms,
but is only finitely subadditive rather than countably subadditive. (For in-
stance, the rationals Q have infinite Jordan outer measure, despite being
the countable union of points, each of which have a Jordan outer measure
of zero.) Thus we already see a major benefit of allowing countable unions
of boxes in the definition of Lebesgue outer measure, in contrast to the fi-
nite unions of boxes in the definition of Jordan outer measure, in that finite
subadditivity is upgraded to countable subadditivity.

Of course, one cannot hope to upgrade countable subadditivity to un-
countable subadditivity: Rd is an uncountable union of points, each of which
has Lebesgue outer measure zero, but (as we shall shortly see), Rd has infi-
nite Lebesgue outer measure.

It is natural to ask whether Lebesgue outer measure has the finite addi-
tivity property, that is to say that m∗(E ∪ F ) = m∗(E) +m∗(F ) whenever
E,F ⊂ Rd are disjoint. The answer to this question is somewhat subtle: as
we shall see later, we have finite additivity (and even countable additivity)
when all sets involved are Lebesgue measurable, but that finite additivity
(and hence also countable additivity) can break down in the non-measurable
case. The difficulty here (which, incidentally, also appears in the theory of
Jordan outer measure) is that if E and F are sufficiently “entangled” with
each other, it is not always possible to take a countable cover of E ∪ F by
boxes and split the total volume of that cover into separate covers of E
and F without some duplication. However, we can at least recover finite
additivity if the sets E,F are separated by some positive distance:

Lemma 1.2.5 (Finite additivity for separated sets). Let E,F ⊂ Rd be such
that dist(E,F ) > 0, where

dist(E,F ) := inf{|x− y| : x ∈ E, y ∈ F}
is the distance10 between E and F . Then m∗(E ∪ F ) = m∗(E) +m∗(F ).

Proof. From subadditivity one has m∗(E ∪ F ) ≤ m∗(E) + m∗(F ), so it
suffices to prove the other direction m∗(E) +m∗(F ) ≤ m∗(E ∪ F ). This is
trivial if E ∪F has infinite Lebesgue outer measure, so we may assume that

10Recall from the preface that we use the usual Euclidean metric |(x1, . . . , xd)| :=√
x2
1 + . . .+ x2

d on Rd.
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it has finite Lebesgue outer measure (and then the same is true for E and
F , by monotonicity).

We use the standard “give yourself an epsilon of room” trick (see Section
2.7 of An epsilon of room, Vol I.). Let ε > 0. By definition of Lebesgue
outer measure, we can cover E∪F by a countable family B1, B2, . . . of boxes
such that

∞∑
n=1

|Bn| ≤ m∗(E ∪ F ) + ε.

Suppose it was the case that each box intersected at most one of E and
F . Then we could divide this family into two subfamilies B′

1, B
′
2, . . . and

B′′
1 , B

′′
2 , B

′′
3 , . . ., the first of which covered E, and the second of which covered

F . From definition of Lebesgue outer measure, we have

m∗(E) ≤
∞∑
n=1

|B′
n|

and

m∗(F ) ≤
∞∑
n=1

|B′′
n|;

summing, we obtain

m∗(E) +m∗(F ) ≤
∞∑
n=1

|Bn|

and thus

m∗(E) +m∗(F ) ≤ m∗(E ∪ F ) + ε.

Since ε was arbitrary, this gives m∗(E) +m∗(F ) ≤ m∗(E ∪ F ) as required.

Of course, it is quite possible for some of the boxes Bn to intersect both
E and F , particularly if the boxes are big, in which case the above argument
does not work because that box would be double-counted. However, observe
that given any r > 0, one can always partition a large box Bn into a finite
number of smaller boxes, each of which has diameter11 at most r, with the
total volume of these sub-boxes equal to the volume of the original box.
Applying this observation to each of the boxes Bn, we see that given any
r > 0, we may assume without loss of generality that the boxes B1, B2, . . .
covering E ∪F have diameter at most r. In particular, we may assume that
all such boxes have diameter strictly less than dist(E,F ). Once we do this,
then it is no longer possible for any box to intersect both E and F , and then
the previous argument now applies. �

11The diameter of a set B is defined as sup{|x− y| : x, y ∈ B}.
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In general, disjoint sets E,F need not have a positive separation from
each other (e.g. E = [0, 1) and F = [1, 2]). But the situation improves when
E,F are closed, and at least one of E,F is compact:

Exercise 1.2.4. Let E,F ⊂ Rd be disjoint closed sets, with at least one of
E,F being compact. Show that dist(E,F ) > 0. Give a counterexample to
show that this claim fails when the compactness hypothesis is dropped.

We already know that countable sets have Lebesgue outer measure zero.
Now we start computing the outer measure of some other sets. We begin
with elementary sets:

Lemma 1.2.6 (Outer measure of elementary sets). Let E be an elementary
set. Then the Lebesgue outer measure m∗(E) of E is equal to the elementary
measure m(E) of E: m∗(E) = m(E).

Remark 1.2.7. Since countable sets have zero outer measure, we note that
we have managed to give a proof of Cantor’s theorem thatRd is uncountable.
Of course, much quicker proofs of this theorem are available. However, this
observation shows that the proof this lemma must somehow use some crucial
fact about the real line which is not true for countable subfields of R, such
as the rationals Q. In the proof we give here, the key fact about the real line
we use is the Heine-Borel theorem, which ultimately exploits the important
fact that the reals are complete. In the one-dimensional case d = 1, it is also
possible to exploit the fact that the reals are connected as a substitute for
completeness (note that proper subfields of the reals are neither connected
nor complete).

Proof. We already know that m∗(E) ≤ m∗,(J)(E) = m(E), so it suffices to
show that m(E) ≤ m∗(E).

We first establish this in the case when the elementary set E is closed.
As the elementary set E is also bounded, this allows us to use the powerful
Heine-Borel theorem, which asserts that every open cover of E has a finite
subcover (or in other words, E is compact).

Again, we use the epsilon of room strategy. Let ε > 0 be arbitrary, then
we can find a countable family B1, B2, . . . of boxes that cover E,

E ⊂
∞⋃
n=1

Bn,

and such that ∞∑
n=1

|Bn| ≤ m∗(E) + ε.

We would like to use the Heine-Borel theorem, but the boxes Bn need not
be open. But this is not a serious problem, as one can spend another epsilon
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to enlarge the boxes to be open. More precisely, for each box Bn one can
find an open box B′

n containing Bn such that |B′
n| ≤ |Bn|+ ε/2n (say). The

B′
n still cover E, and we have

∞∑
n=1

|B′
n| ≤

∞∑
n=1

(|Bn|+ ε/2n) = (

∞∑
n=1

|Bn|) + ε ≤ m∗(E) + 2ε.

As the B′
n are open, we may apply the Heine-Borel theorem and conclude

that

E ⊂
N⋃

n=1

B′
n

for some finite N . Using the finite subadditivity of elementary measure, we
conclude that

m(E) ≤
N∑

n=1

|B′
n|

and thus
m(E) ≤ m∗(E) + 2ε.

Since ε > 0 was arbitrary, the claim follows.

Now we consider the case when the elementary E is not closed. Then
we can write E as the finite union Q1 ∪ . . . ∪ Qk of disjoint boxes, which
need not be closed. But, similarly to before, we can use the epsilon of room
strategy: for every ε > 0 and every 1 ≤ j ≤ k, one can find a closed sub-box
Q′

j of Qj such that |Q′
j| ≥ |Qj| − ε/k (say); then E contains the finite union

of Q′
1 ∪ . . . ∪Q′

k disjoint closed boxes, which is a closed elementary set. By
the previous discussion and the finite additivity of elementary measure, we
have

m∗(Q′
1 ∪ . . . ∪Q′

k) = m(Q′
1 ∪ . . . ∪Q′

k)

= m(Q′
1) + . . .+m(Q′

k)

≥ m(Q1) + . . .+m(Qk)− ε

= m(E)− ε.

Applying by monotonicity of Lebesgue outer measure, we conclude that

m∗(E) ≥ m(E)− ε

for every ε > 0. Since ε > 0 was arbitrary, the claim follows. �

The above lemma allows us to compute the Lebesgue outer measure of
a finite union of boxes. From this and monotonicity we conclude that the
Lebesgue outer measure of any set is bounded below by its Jordan inner
measure. As it is also bounded above by the Jordan outer measure, we have

(1.2) m∗,(J)(E) ≤ m∗(E) ≤ m∗,(J)(E)

for every E ⊂ Rd.
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Remark 1.2.8. We are now able to explain why not every bounded open set
or compact set is Jordan measurable. Consider the countable set Q ∩ [0, 1],
which we enumerate as {q1, q2, q3, . . .}, let ε > 0 be a small number, and
consider the set

U :=

∞⋃
n=1

(qn − ε/2n, qn + ε/2n).

This is the union of open sets and is thus open. On the other hand, by
countable subadditivity, one has

m∗(U) ≤
∞∑
n=1

2ε/2n = 2ε.

Finally, as U is dense in [0, 1] (i.e. U contains [0, 1]), we have

m∗,(J)(U) = m∗,(J)(U) ≥ m∗,(J)([0, 1]) = 1.

For ε small enough (e.g. ε := 1/3), we see that the Lebesgue outer measure
and Jordan outer measure of U disagree. Using (1.2), we conclude that the
bounded open set U is not Jordan measurable. This in turn implies that
the complement of U in, say, [−2, 2], is also not Jordan measurable, despite
being a compact set.

Now we turn to countable unions of boxes. It is convenient to introduce
the following notion: two boxes are almost disjoint if their interiors are
disjoint, thus, for instance, [0, 1] and [1, 2] are almost disjoint. As a box has
the same elementary measure as its interior, we see that the finite additivity
property

(1.3) m(B1 ∪ . . . ∪Bk) = |B1|+ . . .+ |Bk|

holds for almost disjoint boxes B1, . . . , Bk, and not just for disjoint boxes.
This (and Lemma 1.2.6) has the following consequence:

Lemma 1.2.9 (Outer measure of countable unions of almost disjoint boxes).
Let E =

⋃∞
n=1Bn be a countable union of almost disjoint boxes B1, B2, . . ..

Then

m∗(E) =

∞∑
n=1

|Bn|.

Thus, for instance, Rd itself has an infinite outer measure.

Proof. From countable subadditivity and Lemma 1.2.6 we have

m∗(E) ≤
∞∑
n=1

m∗(Bn) =

∞∑
n=1

|Bn|,
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so it suffices to show that
∞∑
n=1

|Bn| ≤ m∗(E).

But for each natural number N , E contains the elementary set B1∪. . .∪BN ,
so by monotonicity and Lemma 1.2.6,

m∗(E) ≥ m∗(B1 ∪ . . . ∪BN )

= m(B1 ∪ . . . ∪BN )

and thus by (1.3), one has

N∑
n=1

|Bn| ≤ m∗(E).

Letting N → ∞ we obtain the claim. �

Remark 1.2.10. The above lemma has the following immediate corollary:
if E =

⋃∞
n=1Bn =

⋃∞
n=1B

′
n can be decomposed in two different ways as

the countable union of almost disjoint boxes, then
∑∞

n=1 |Bn| =
∑∞

n=1 |B′
n|.

Although this statement is intuitively obvious and does not explicitly use the
concepts of Lebesgue outer measure or Lebesgue measure, it is remarkably
difficult to prove this statement rigorously without essentially using one of
these two concepts. (Try it!)

Exercise 1.2.5. Show that if a set E ⊂ Rd is expressible as the countable
union of almost disjoint boxes, then the Lebesgue outer measure of E is
equal to the Jordan inner measure: m∗(E) = m∗,(J)(E), where we extend
the definition of Jordan inner measure to unbounded sets in the obvious
manner.

Not every set can be expressed as the countable union of almost disjoint
boxes (consider for instance the irrationals R\Q, which contain no boxes
other than the singleton sets). However, there is an important class of sets
of this form, namely the open sets:

Lemma 1.2.11. Let E ⊂ Rd be an open set. Then E can be expressed as
the countable union of almost disjoint boxes (and, in fact, as the countable
union of almost disjoint closed cubes).

Proof. We will use the dyadic mesh structure of the Euclidean space Rd,
which is a convenient tool for “discretising” certain aspects of real analysis.

Define a closed dyadic cube to be a cube Q of the form

Q =

[
i1
2n

,
i1 + 1

2n

]
× . . .×

[
id
2n

,
id + 1

2n

]
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for some integers n, i1, . . . , id. To avoid some technical issues we shall restrict
attention here to “small” cubes of sidelength at most 1, thus we restrict n
to the non-negative integers, and we will completely ignore “large” cubes of
sidelength greater than one. Observe that the closed dyadic cubes of a fixed
sidelength 2−n are almost disjoint, and cover all of Rd. Also observe that
each dyadic cube of sidelength 2−n is contained in exactly one “parent” cube
of sidelength 2−n+1 (which, conversely, has 2d “children” of sidelength 2−n),
giving the dyadic cubes a structure analogous to that of a binary tree (or
more precisely, an infinite forest of 2d-ary trees). As a consequence of these
facts, we also obtain the important dyadic nesting property : given any two
closed dyadic cubes (possibly of different sidelength), either they are almost
disjoint, or one of them is contained in the other.

If E is open, and x ∈ E, then by definition there is an open ball centered
at x that is contained in E, and it is easy to conclude that there is also a
closed dyadic cube containing x that is contained in E. Thus, if we let Q
be the collection of all the dyadic cubes Q that are contained in E, we see
that the union

⋃
Q∈QQ of all these cubes is exactly equal to E.

As there are only countably many dyadic cubes, Q is at most countable.
But we are not done yet, because these cubes are not almost disjoint (for
instance, any cube Q in Q will of course overlap with its child cubes). But
we can deal with this by exploiting the dyadic nesting property. Let Q∗

denote those cubes in Q which are maximal with respect to set inclusion,
which means that they are not contained in any other cube in Q. From the
nesting property (and the fact that we have capped the maximum size of
our cubes) we see that every cube in Q is contained in exactly one maximal
cube in Q∗, and that any two such maximal cubes in Q∗ are almost disjoint.
Thus, we see that E is the union E =

⋃
Q∈Q∗ Q of almost disjoint cubes. As

Q∗ is at most countable, the claim follows (adding empty boxes if necessary
to pad out the cardinality). �

We now have a formula for the Lebesgue outer measure of any open set:
it is exactly equal to the Jordan inner measure of that set, or of the total
volume of any partitioning of that set into almost disjoint boxes. Finally,
we have a formula for the Lebesgue outer measure of an arbitrary set:

Lemma 1.2.12 (Outer regularity). Let E ⊂ Rd be an arbitrary set. Then
one has

m∗(E) = inf
E⊂U,U open

m∗(U).

Proof. From monotonicity one trivially has

m∗(E) ≤ inf
E⊂U,U open

m∗(U)
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so it suffices to show that

inf
E⊂U,U open

m∗(U) ≤ m∗(E).

This is trivial for m∗(E) infinite, so we may assume that m∗(E) is finite.

Let ε > 0. By definition of outer measure, there exists a countable family
B1, B2, . . . of boxes covering E such that

∞∑
n=1

|Bn| ≤ m∗(E) + ε.

We use the ε/2n trick again. We can enlarge each of these boxes Bn to an
open box B′

n such that |B′
n| ≤ |Bn|+ ε/2n. Then the set

⋃∞
n=1B

′
n, being a

union of open sets, is itself open, and contains E; and
∞∑
n=1

|B′
n| ≤ m∗(E) + ε+

∞∑
n=1

ε/2n = m∗(E) + 2ε.

By countable subadditivity, this implies that

m∗(
∞⋃
n=1

B′
n) ≤ m∗(E) + 2ε

and thus

inf
E⊂U,U open

m∗(U) ≤ m∗(E) + 2ε.

As ε > 0 was arbitrary, we obtain the claim. �

Exercise 1.2.6. Give an example to show that the reverse statement

m∗(E) = sup
U⊂E,U open

m∗(U)

is false. (For the corrected version of this statement, see Exercise 1.2.15.)

1.2.2. Lebesgue measurability. We now define the notion of a Lebesgue
measurable set as one which can be efficiently contained in open sets in the
sense of Definition 1.2.2, and set out their basic properties.

First, we show that there are plenty of Lebesgue measurable sets.

Lemma 1.2.13 (Existence of Lebesgue measurable sets).

(i) Every open set is Lebesgue measurable.

(ii) Every closed set is Lebesgue measurable.

(iii) Every set of Lebesgue outer measure zero is measurable. (Such sets
are called null sets.)

(iv) The empty set ∅ is Lebesgue measurable.

(v) If E ⊂ Rd is Lebesgue measurable, then so is its complement Rd\E.
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(vi) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the union

⋃∞
n=1En is Lebesgue measurable.

(vii) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the intersection

⋂∞
n=1En is Lebesgue measurable.

Proof. Claim (i) is obvious from definition, as are Claims (iii) and (iv).

To prove Claim (vi), we use the ε/2n trick. Let ε > 0 be arbitrary.
By hypothesis, each En is contained in an open set Un whose difference
Un\En has Lebesgue outer measure at most ε/2n. By countable subaddi-
tivity, this implies that

⋃∞
n=1En is contained in

⋃∞
n=1 Un, and the differ-

ence (
⋃∞

n=1 Un)\(
⋃∞

n=1En) has Lebesgue outer measure at most ε. The set⋃∞
n=1 Un, being a union of open sets, is itself open, and the claim follows.

Now we establish Claim (ii). Every closed set E is the countable union
of closed and bounded sets (by intersecting E with, say, the closed balls

B(0, n) of radius n for n = 1, 2, 3, . . .), so by (vi), it suffices to verify the
claim when E is closed and bounded, hence compact by the Heine-Borel
theorem. Note that the boundedness of E implies that m∗(E) is finite.

Let ε > 0. By outer regularity (Lemma 1.2.12), we can find an open
set U containing E such that m∗(U) ≤ m∗(E) + ε. It suffices to show that
m∗(U\E) ≤ ε.

The set U\E is open, and so by Lemma 1.2.11 is the countable union⋃∞
n=1Qn of almost disjoint closed cubes. By Lemma 1.2.9, m∗(U\E) =∑∞
n=1 |Qn|. So it will suffice to show that

∑N
n=1 |Qn| ≤ ε for every finite N .

The set
⋃N

n=1Qn is a finite union of closed cubes and is thus closed. It
is disjoint from the compact set E, so by Exercise 1.2.4 followed by Lemma
1.2.5 one has

m∗(E ∪
N⋃

n=1

Qn) = m∗(E) +m∗(
N⋃

n=1

Qn).

By monotonicity, the left-hand side is at most m∗(U), which is in turn at
most m∗(E) + ε. Since m∗(E) is finite, we may cancel it and conclude that

m∗(
⋃N

n=1Qn) ≤ ε, as required.

Next, we establish Claim (v). If E is Lebesgue measurable, then for
every n we can find an open set Un containing E such that m∗(Un\E) ≤
1/n. Letting Fn be the complement of Un, we conclude that the comple-
ment Rd\E of E contains all of the Fn, and that m∗((Rd\E)\Fn) ≤ 1/n.
If we let F :=

⋃∞
n=1 Fn, then Rd\E contains F , and from monotonicity

m∗((Rd\E)\F ) = 0, thus Rd\E is the union of F and a set of Lebesgue
outer measure zero. But F is in turn the union of countably many closed
sets Fn. The claim now follows from (ii), (iii), (iv).
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Finally, Claim (vii) follows from (v), (vi), and de Morgan’s laws

(
⋂
α∈A

Eα)
c =

⋃
α∈A

Ec
α, (

⋃
α∈A

Eα)
c =

⋂
α∈A

Ec
α,

(which work for infinite unions and intersections without any difficulty). �

Informally, the above lemma asserts (among other things) that if one
starts with such basic subsets of Rd as open or closed sets and then takes
at most countably many Boolean operations, one will always end up with
a Lebesgue measurable set. This is already enough to ensure that the ma-
jority of sets that one actually encounters in real analysis will be Lebesgue
measurable. (Nevertheless, using the axiom of choice one can construct sets
that are not Lebesgue measurable; we will see an example of this later. As
a consequence, we cannot generalise the countable closure properties here
to uncountable closure properties.)

Remark 1.2.14. The properties (iv), (v), (vi) of Lemma 1.2.13 assert that
the collection of Lebesgue measurable subsets of Rd form a σ-algebra, which
is a strengthening of the more classical concept of a Boolean algebra. We
will study abstract σ-algebras in more detail in Section 1.4.

Note how Lemma 1.2.13 is significantly stronger than the counterpart for
Jordan measurability (Exercise 1.1.6), in particular, by allowing countably
many Boolean operations instead of just finitely many. This is one of the
main reasons why we use Lebesgue measure instead of Jordan measure.

Exercise 1.2.7 (Criteria for measurability). Let E ⊂ Rd. Show that the
following are equivalent:

(i) E is Lebesgue measurable.

(ii) (Outer approximation by open) For every ε > 0, one can contain
E in an open set U with m∗(U\E) ≤ ε.

(iii) (Almost open) For every ε > 0, one can find an open set U such
that m∗(UΔE) ≤ ε. (In other words, E differs from an open set
by a set of outer measure at most ε.)

(iv) (Inner approximation by closed) For every ε > 0, one can find a
closed set F contained in E with m∗(E\F ) ≤ ε.

(v) (Almost closed) For every ε > 0, one can find a closed set F such
that m∗(FΔE) ≤ ε. (In other words, E differs from a closed set
by a set of outer measure at most ε.)

(vi) (Almost measurable) For every ε > 0, one can find a Lebesgue
measurable set Eε such that m∗(EεΔE) ≤ ε. (In other words, E
differs from a measurable set by a set of outer measure at most ε.)
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(Hint: Some of these deductions are either trivial or very easy. To deduce (i)
from (vi), use the ε/2n trick to show that E is contained in a Lebesgue mea-
surable set E′

ε with m∗(E′
εΔE) ≤ ε, and then take countable intersections

to show that E differs from a Lebesgue measurable set by a null set.)

Exercise 1.2.8. Show that every Jordan measurable set is Lebesgue mea-
surable.

Exercise 1.2.9 (Middle thirds Cantor set). Let I0 := [0, 1] be the unit
interval, let I1 := [0, 1/3]∪ [2/3, 1] be I0 with the interior of the middle third
interval removed, let I2 := [0, 1/9]∪ [2/9, 1/3]∪ [2/3, 7/9]∪ [8/9, 1] be I1 with
the interior of the middle third of each of the two intervals of I1 removed,
and so forth. More formally, write

In :=
⋃

a1,...,an∈{0,2}
[

n∑
i=1

ai
3i
,

n∑
i=1

ai
3i

+
1

3n
].

Let C :=
⋂∞

n=1 In be the intersection of all the elementary sets In. Show
that C is compact, uncountable, and a null set.

Exercise 1.2.10. (This exercise presumes some familiarity with point-set
topology.) Show that the half-open interval [0, 1) cannot be expressed as the
countable union of disjoint closed intervals. (Hint: It is easy to prevent [0, 1)
from being expressed as the finite union of disjoint closed intervals. Next,
assume for the sake of contradiction that [0, 1) is the union of infinitely many
closed intervals, and conclude that [0, 1) is homeomorphic to the middle
thirds Cantor set, which is absurd. It is also possible to proceed using
the Baire category theorem (§1.7 of An epsilon of room, Vol. I.) For an
additional challenge, show that [0, 1) cannot be expressed as the countable
union of disjoint closed sets.

Now we look at the Lebesgue measure m(E) of a Lebesgue measurable
set E, which is defined to equal its Lebesgue outer measure m∗(E). If E
is Jordan measurable, we see from (1.2) that the Lebesgue measure and
the Jordan measure of E coincide, thus Lebesgue measure extends Jordan
measure. This justifies the use of the notationm(E) to denote both Lebesgue
measure of a Lebesgue measurable set, and Jordan measure of a Jordan
measurable set (as well as elementary measure of an elementary set).

Lebesgue measure obeys significantly better properties than Lebesgue
outer measure, when restricted to Lebesgue measurable sets:

Lemma 1.2.15 (The measure axioms).

(i) (Empty set) m(∅) = 0.

(ii) (Countable additivity) If E1, E2, . . . ⊂ Rd is a countable sequence of
disjoint Lebesgue measurable sets, then m(

⋃∞
n=1En)=

∑∞
n=1m(En).
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Proof. The first claim is trivial, so we focus on the second. We deal with
an easy case when all of the En are compact. By repeated use of Lemma
1.2.5 and Exercise 1.2.4, we have

m(

N⋃
n=1

En) =

N∑
n=1

m(En).

Using monotonicity, we conclude that

m(
∞⋃
n=1

En) ≥
N∑

n=1

m(En).

(We can use m instead of m∗ throughout this argument, thanks to Lemma
1.2.13). Sending N → ∞ we obtain

m(

∞⋃
n=1

En) ≥
∞∑
n=1

m(En).

On the other hand, from countable subadditivity one has

m(
∞⋃
n=1

En) ≤
∞∑
n=1

m(En),

and the claim follows.

Next, we handle the case when the En are bounded but not necessarily
compact. We use the ε/2n trick. Let ε > 0. Applying Exercise 1.2.7, we
know that each En is the union of a compact set Kn and a set of outer
measure at most ε/2n. Thus

m(En) ≤ m(Kn) + ε/2n

and hence
∞∑
n=1

m(En) ≤ (
∞∑
n=1

m(Kn)) + ε.

Finally, from the compact case of this lemma we already know that

m(
∞⋃
n=1

Kn) =
∞∑
n=1

m(Kn)

while from monotonicity

m(
∞⋃
n=1

Kn) ≤ m(
∞⋃
n=1

En).

Putting all of this together we see that
∞∑
n=1

m(En) ≤ m(

∞⋃
n=1

En) + ε
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for every ε > 0, while from countable subadditivity we have

m(

∞⋃
n=1

En) ≤
∞∑
n=1

m(En).

The claim follows.

Finally, we handle the case when the En are not assumed to be bounded
or closed. Here, the basic idea is to decompose each En as a countable
disjoint union of bounded Lebesgue measurable sets. First, decompose Rd

as the countable disjoint union Rd =
⋃∞

m=1Am of bounded measurable sets

Am; for instance, one could take the annuli Am := {x ∈ Rd : m − 1 ≤
|x| < m}. Then each En is the countable disjoint union of the bounded
measurable sets En ∩Am for m = 1, 2, . . ., and thus

m(En) =
∞∑

m=1

m(En ∩Am)

by the previous arguments. In a similar vein,
⋃∞

n=1En is the countable
disjoint union of the bounded measurable sets En ∩Am for n,m = 1, 2, . . .,
and thus

m(
∞⋃
n=1

En) =
∞∑
n=1

∞∑
m=1

m(En ∩Am),

and the claim follows. �

From Lemma 1.2.15 one of course can conclude finite additivity,

m(E1 ∪ . . . ∪ Ek) = m(E1) + . . .+m(Ek),

whenever E1, . . . , Ek ⊂ Rd are Lebesgue measurable sets. We also have
another important result:

Exercise 1.2.11 (Monotone convergence theorem for measurable sets).

(i) (Upward monotone convergence) Let E1 ⊂ E2 ⊂ . . . ⊂ Rn be
a countable non-decreasing sequence of Lebesgue measurable sets.
Show thatm(

⋃∞
n=1En) = limn→∞m(En). (Hint: Express

⋃∞
n=1En

as the countable union of the lacunae En\
⋃n−1

n′=1En′ .)

(ii) (Downward monotone convergence) Let Rd ⊃ E1 ⊃ E2 ⊃ . . . be
a countable non-increasing sequence of Lebesgue measurable sets.
If at least one of the m(En) is finite, show that m(

⋂∞
n=1En) =

limn→∞m(En).

(iii) Give a counterexample to show that in the hypothesis that at least
one of the m(En) is finite in the downward monotone convergence
theorem cannot be dropped.
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Exercise 1.2.12. Show that any map E 
→ m(E) from Lebesgue mea-
surable sets to elements of [0,+∞] that obeys the above empty set and
countable additivity axioms will also obey the monotonicity and countable
subadditivity axioms from Exercise 1.2.3, when restricted to Lebesgue mea-
surable sets of course.

Exercise 1.2.13. We say that a sequence En of sets in Rd converges point-
wise to another set E inRd if the indicator functions 1En converge pointwise
to 1E .

(i) Show that if the En are all Lebesgue measurable, and converge
pointwise to E, then E is Lebesgue measurable also. (Hint: Use the
identity 1E(x) = lim infn→∞ 1En(x) or 1E(x) = lim supn→∞ 1En(x)
to write E in terms of countable unions and intersections of the
En.)

(ii) (Dominated convergence theorem) Suppose that the En are all con-
tained in another Lebesgue measurable set F of finite measure.
Show that m(En) converges to m(E). (Hint: Use the upward and
downward monotone convergence theorems, Exercise 1.2.11.)

(iii) Give a counterexample to show that the dominated convergence
theorem fails if the En are not contained in a set of finite measure,
even if we assume that the m(En) are all uniformly bounded.

In later sections we will generalise the monotone and dominated con-
vergence theorems to measurable functions instead of measurable sets; see
Theorem 1.4.43 and Theorem 1.4.48.

Exercise 1.2.14. Let E ⊂ Rd. Show that E is contained in a Lebesgue
measurable set of measure exactly equal to m∗(E).

Exercise 1.2.15 (Inner regularity). Let E ⊂ Rd be Lebesgue measurable.
Show that

m(E) = sup
K⊂E,K compact

m(K).

Remark 1.2.16. The inner and outer regularity properties of measure can
be used to define the concept of a Radon measure (see §1.10 of An epsilon
of room, Vol. I.).

Exercise 1.2.16 (Criteria for finite measure). Let E ⊂ Rd. Show that the
following are equivalent:

(i) E is Lebesgue measurable with finite measure.

(ii) (Outer approximation by open) For every ε > 0, one can contain
E in an open set U of finite measure with m∗(U\E) ≤ ε.
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(iii) (Almost open bounded) E differs from a bounded open set by a
set of arbitrarily small Lebesgue outer measure. (In other words,
for every ε > 0 there exists a bounded open set U such that
m∗(EΔU) ≤ ε.)

(iv) (Inner approximation by compact) For every ε > 0, one can find a
compact set F contained in E with m∗(E\F ) ≤ ε.

(v) (Almost compact) E differs from a compact set by a set of arbi-
trarily small Lebesgue outer measure.

(vi) (Almost bounded measurable) E differs from a bounded Lebesgue
measurable set by a set of arbitrarily small Lebesgue outer measure.

(vii) (Almost finite measure) E differs from a Lebesgue measurable set
with finite measure by a set of arbitrarily small Lebesgue outer
measure.

(viii) (Almost elementary) E differs from an elementary set by a set of
arbitrarily small Lebesgue outer measure.

(ix) (Almost dyadically elementary) For every ε > 0, there exists an
integer n and a finite union F of closed dyadic cubes of sidelength
2−n such that m∗(EΔF ) ≤ ε.

One can interpret the equivalence of (i) and (ix) in the above exercise
as asserting that Lebesgue measurable sets are those which look (locally)
“pixelated” at sufficiently fine scales. This will be formalised in later sections
with the Lebesgue differentiation theorem (Exercise 1.6.24).

Exercise 1.2.17 (Carathéodory criterion, one direction). Let E ⊂ Rd.
Show that the following are equivalent:

(i) E is Lebesgue measurable.

(ii) For every elementary set A, one has m(A) = m∗(A∩E)+m∗(A\E).

(iii) For every box B, one has |B| = m∗(B ∩E) +m∗(B\E).

Exercise 1.2.18 (Inner measure). Let E ⊂ Rd be a bounded set. Define
the Lebesgue inner measure m∗(E) of E by the formula

m∗(E) := m(A)−m∗(A\E)

for any elementary set A containing E.

(i) Show that this definition is well defined, i.e., that if A,A′ are two
elementary sets containing E, then m(A) − m∗(A\E) is equal to
m(A′)−m∗(A′\E).

(ii) Show that m∗(E) ≤ m∗(E), and that equality holds if and only if
E is Lebesgue measurable.
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Define a Gδ set to be a countable intersection
⋂∞

n=1 Un of open sets, and
an Fσ set to be a countable union

⋃∞
n=1 Fn of closed sets.

Exercise 1.2.19. Let E ⊂ Rd. Show that the following are equivalent:

(i) E is Lebesgue measurable.

(ii) E is a Gδ set with a null set removed.

(iii) E is the union of a Fσ set and a null set.

Remark 1.2.17. From the above exercises, we see that when describing
what it means for a set to be Lebesgue measurable, there is a tradeoff
between the type of approximation one is willing to bear, and the type
of things one can say about the approximation. If one is only willing to
approximate to within a null set, then one can only say that a measurable
set is approximated by a Gδ or a Fσ set, which is a fairly weak amount of
structure. If one is willing to add on an epsilon of error (as measured in the
Lebesgue outer measure), one can make a measurable set open; dually, if
one is willing to take away an epsilon of error, one can make a measurable
set closed. Finally, if one is willing to both add and subtract an epsilon of
error, then one can make a measurable set (of finite measure) elementary,
or even a finite union of dyadic cubes.

Exercise 1.2.20 (Translation invariance). If E ⊂ Rd is Lebesgue measur-
able, show that E + x is Lebesgue measurable for any x ∈ Rd, and that
m(E + x) = m(E).

Exercise 1.2.21 (Change of variables). If E ⊂ Rd is Lebesgue measurable,
and T : Rd → Rd is a linear transformation, show that T (E) is Lebesgue
measurable, and that m(T (E)) = | detT |m(E). We caution that if T : Rd →
Rd′ is a linear map to a space Rd′ of strictly smaller dimension than Rd,
then T (E) need not be Lebesgue measurable; see Exercise 1.2.27.

Exercise 1.2.22. Let d, d′ ≥ 1 be natural numbers.

(i) If E ⊂ Rd and F ⊂ Rd′ , show that

(md+d′)∗(E × F ) ≤ (md)∗(E)(md′)∗(F ),

where (md)∗ denotes d-dimensional Lebesgue measure, etc.

(ii) Let E ⊂ Rd, F ⊂ Rd′ be Lebesgue measurable sets. Show that E×
F ⊂ Rd+d′ is Lebesgue measurable, with md+d′(E × F ) = md(E) ·
md′(F ). (Note that we allowE or F to have infinite measure, and so
one may have to divide into cases or take advantage of the monotone
convergence theorem for Lebesgue measure, Exercise 1.2.11.)

Exercise 1.2.23 (Uniqueness of Lebesgue measure). Show that Lebesgue
measure E 
→ m(E) is the only map from Lebesgue measurable sets to
[0,+∞] that obeys the following axioms:
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(i) (Empty set) m(∅) = 0.

(ii) (Countable additivity) If E1, E2, . . . ⊂ Rd is a countable sequence of
disjoint Lebesgue measurable sets, thenm(

⋃∞
n=1En)=

∑∞
n=1m(En).

(iii) (Translation invariance) If E is Lebesgue measurable and x ∈ Rd,
then m(E + x) = m(E).

(iv) (Normalisation) m([0, 1]d) = 1.

Hint: First show that m must match elementary measure on elementary
sets, then show that m is bounded by outer measure.

Exercise 1.2.24 (Lebesgue measure as the completion of elementary mea-
sure). The purpose of the following exercise is to indicate how Lebesgue
measure can be viewed as a metric completion of elementary measure in
some sense. To avoid some technicalities we will not work in all of Rd, but
in some fixed elementary set A (e.g. A = [0, 1]d).

(i) Let 2A := {E : E ⊂ A} be the power set of A. We say that two
sets E,F ∈ 2A are equivalent if EΔF is a null set. Show that this
is a equivalence relation.

(ii) Let 2A/ ∼ be the set of equivalence classes [E] := {F ∈ 2A : E ∼
F} of 2A with respect to the above equivalence relation. Define a
distance d : 2A/ ∼ ×2A/ ∼→ R+ between two equivalence classes
[E], [E′] by defining d([E], [E′]) := m∗(EΔE′). Show that this
distance is well defined (in the sense that m(EΔE′) = m(FΔF ′)
whenever [E] = [F ] and [E′] = [F ′]) and gives 2A/ ∼ the structure
of a complete metric space.

(iii) Let E ⊂ 2A be the elementary subsets of A, and let L ⊂ 2A be the
Lebesgue measurable subsets of A. Show that L/ ∼ is the closure
of E/ ∼ with respect to the metric defined above. In particular,
L/ ∼ is a complete metric space that contains E/ ∼ as a dense
subset; in other words, L/ ∼ is a metric completion of E/ ∼.

(iv) Show that Lebesgue measure m : L → R+ descends to a continuous
function m : L/ ∼→ R+, which by abuse of notation we shall still
call m. Show that m : L/ ∼→ R+ is the unique continuous exten-
sion of the analogous elementary measure function m : E/ ∼→ R+

to L/ ∼.

For a further discussion of how measures can be viewed as completions of
elementary measures, see §2.1 of An epsilon of room, Vol. I.

Exercise 1.2.25. Define a continuously differentiable curve in Rd to be
a set of the form {γ(t) : a ≤ t ≤ b} where [a, b] is a closed interval and
γ : [a, b] → Rd is a continuously differentiable function.
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(i) If d ≥ 2, show that every continuously differentiable curve has
Lebesgue measure zero. (Why is the condition d ≥ 2 necessary?)

(ii) Conclude that if d ≥ 2, then the unit cube [0, 1]d cannot be covered
by countably many continuously differentiable curves.

We remark that if the curve is only assumed to be continuous, rather than
continuously differentiable, then these claims fail, thanks to the existence of
space-filling curves.

1.2.3. Non-measurable sets. In the previous section we have set out a
rich theory of Lebesgue measure, which enjoys many nice properties when
applied to Lebesgue measurable sets.

Thus far, we have not ruled out the possibility that every single set is
Lebesgue measurable. There is good reason for this: A famous theorem of
Solovay [So1970] asserts that, if one is willing to drop the axiom of choice,
there exist models of set theory in which all subsets of Rd are measurable.
So any demonstration of the existence of non-measurable sets must use the
axiom of choice in some essential way.

That said, we can give an informal (and highly non-rigorous) motivation
as to why non-measurable sets should exist, using intuition from probability
theory rather than from set theory. The starting point is the observation
that Lebesgue sets of finite measure (and, in particular, bounded Lebesgue
sets) have to be “almost elementary”, in the sense of Exercise 1.2.16. So
all we need to do to build a non-measurable set is to exhibit a bounded set
which is not almost elementary. Intuitively, we want to build a set which
has oscillatory structure even at arbitrarily fine scales.

We will non-rigorously do this as follows. We will work inside the unit
interval [0, 1]. For each x ∈ [0, 1], we imagine that we flip a coin to give either
heads or tails (with an independent coin flip for each x), and let E ⊂ [0, 1]
be the set of all the x ∈ [0, 1] for which the coin flip came up heads. We
suppose for contradiction that E is Lebesgue measurable. Intuitively, since
each x had a 50% chance of being heads, E should occupy about “half”
of [0, 1]; applying the law of large numbers (see e.g. [Ta2009, §1.4]) in an
extremely non-rigorous fashion, we thus expect m(E) to equal 1/2.

Moreover, given any subinterval [a, b] of [0, 1], the same reasoning leads
us to expect that E ∩ [a, b] should occupy about half of [a, b], so that m(E ∩
[a, b]) should be |[a, b]|/2. More generally, given any elementary set F in
[0, 1], we should have m(E ∩ F ) = m(F )/2. This makes it very hard for
E to be approximated by an elementary set; indeed, a little algebra then
shows that m(EΔF ) = 1/2 for any elementary F ⊂ [0, 1]. Thus E is not
Lebesgue measurable.
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Unfortunately, the above argument is terribly non-rigorous for a number
of reasons, not the least of which is that it uses an uncountable number of
coin flips, and the rigorous probabilistic theory that one would have to use to
model such a system of random variables is too weak12 to be able to assign
meaningful probabilities to such events as “E is Lebesgue measurable”. So
we now turn to more rigorous arguments that establish the existence of
non-measurable sets. The arguments will be fairly simple, but the sets
constructed are somewhat artificial in nature.

Proposition 1.2.18. There exists a subset E ⊂ [0, 1] which is not Lebesgue
measurable.

Proof. We use the fact that the rationals Q are an additive subgroup of
the reals R, and so partition the reals R into disjoint cosets x + Q. This
creates a quotient group R/Q := {x +Q : x ∈ R}. Each coset C of R/Q
is dense in R, and so has a non-empty intersection with [0, 1]. Applying
the axiom of choice, we may thus find an element xC ∈ C ∩ [0, 1] for each
C ∈ R/Q. We then let E := {xC : C ∈ R/Q} be the collection of all these
coset representatives. By construction, E ⊂ [0, 1].

Let y be any element of [0, 1]. Then it must lie in some coset C of R/Q,
and thus differs from xC by some rational number in [−1, 1]. In other words,
we have

(1.4) [0, 1] ⊂
⋃

q∈Q∩[−1,1]

(E + q).

On the other hand, we clearly have

(1.5)
⋃

q∈Q∩[−1,1]

(E + q) ⊂ [−1, 2].

Also, the different translates E+q are disjoint, because E contains only one
element from each coset of Q.

We claim that E is not Lebesgue measurable. To see this, suppose for
contradiction that E was Lebesgue measurable. Then the translates E + q
would also be Lebesgue measurable. By countable additivity, we thus have

m(
⋃

q∈Q∩[−1,1]

(E + q)) =
∑

q∈Q∩[−1,1]

m(E + q),

and thus by translation invariance and (1.4), (1.5)

1 ≤
∑

q∈Q∩[−1,1]

m(E) ≤ 3.

12For some further discussion of this point, see [Ta2009, §1.10].



38 1. Measure theory

On the other hand, the sum
∑

q∈Q∩[−1,1]m(E) is either zero (if m(E) = 0)

or infinite (if m(E) > 0), leading to the desired contradiction. �

Exercise 1.2.26 (Outer measure is not finitely additive). Show that there
exists disjoint bounded subsets E,F of the real line such that m∗(E ∪F ) �=
m∗(E) +m∗(F ). (Hint: Show that the set constructed in the proof of the
above proposition has positive outer measure.)

Exercise 1.2.27 (Projections of measurable sets need not be measurable).
Let π : R2 → R be the coordinate projection π(x, y) := x. Show that there
exists a measurable subset E of R2 such that π(E) is not measurable.

Remark 1.2.19. The above discussion shows that, in the presence of the
axiom of choice, one cannot hope to extend Lebesgue measure to arbitrary
subsets of R while retaining both the countable additivity and the trans-
lation invariance properties. If one drops the translation invariant require-
ment, then this question concerns the theory of measurable cardinals, and
is not decidable from the standard ZFC axioms. On the other hand, one
can construct finitely additive translation invariant extensions of Lebesgue
measure to the power set of R by use of the Hahn-Banach theorem (§1.5 of
An epsilon of room, Vol. I ) to extend the integration functional, though we
will not do so here.

1.3. The Lebesgue integral

In Section 1.2, we defined the Lebesgue measure m(E) of a Lebesgue mea-
surable set E ⊂ Rd, and set out the basic properties of this measure. In
this set of notes, we use Lebesgue measure to define the Lebesgue integral∫

Rd

f(x) dx

of functions f : Rd → C ∪ {∞}. Just as not every set can be measured by
Lebesgue measure, not every function can be integrated by the Lebesgue
integral; the function will need to be Lebesgue measurable. Furthermore,
the function will either need to be unsigned (taking values on [0,+∞]), or
absolutely integrable.

To motivate the Lebesgue integral, let us first briefly review two simpler
integration concepts. The first is that of an infinite summation

∞∑
n=1

cn

of a sequence of numbers cn, which can be viewed as a discrete analogue
of the Lebesgue integral. Actually, there are two overlapping, but different,
notions of summation that we wish to recall here. The first is that of the



1.3. The Lebesgue integral 39

unsigned infinite sum, when the cn lie in the extended non-negative real
axis [0,+∞]. In this case, the infinite sum can be defined as the limit of the
partial sums

(1.6)
∞∑
n=1

cn = lim
N→∞

N∑
n=1

cn

or equivalently as a supremum of arbitrary finite partial sums:

(1.7)

∞∑
n=1

cn = sup
A⊂N,A finite

∑
n∈A

cn.

The unsigned infinite sum
∑∞

n=1 cn always exists, but its value may be infi-
nite, even when each term is individually finite (consider e.g.

∑∞
n=1 1).

The second notion of a summation is the absolutely summable infinite
sum, in which the cn lie in the complex plane C and obey the absolute
summability condition

∞∑
n=1

|cn| < ∞,

where the left-hand side is of course an unsigned infinite sum. When this
occurs, one can show that the partial sums

∑N
n=1 cn converge to a limit,

and we can then define the infinite sum by the same formula (1.6) as in the
unsigned case, though now the sum takes values in C rather than [0,+∞].
The absolute summability condition confers a number of useful properties
that are not obeyed by sums that are merely conditionally convergent; most
notably, the value of an absolutely convergent sum is unchanged if one re-
arranges the terms in the series in an arbitrary fashion. Note also that the
absolutely summable infinite sums can be defined in terms of the unsigned
infinite sums by taking advantage of the formulae

∞∑
n=1

cn = (

∞∑
n=1

Re(cn)) + i(

∞∑
n=1

Im(cn))

for complex absolutely summable cn, and
∞∑
n=1

cn =
∞∑
n=1

c+n −
∞∑
n=1

c−n

for real absolutely summable cn, where c+n := max(cn, 0) and c−n :=
max(−cn, 0) are the (magnitudes of the) positive and negative parts of cn.

In an analogous spirit, we will first define an unsigned Lebesgue integral∫
Rd f(x) dx of (measurable) unsigned functions f : Rd → [0,+∞], and then
use that to define the absolutely convergent Lebesgue integral

∫
Rd f(x) dx of

absolutely integrable functions f : Rd → C∪{∞}. (In contrast to absolutely
summable series, which cannot have any infinite terms, absolutely integrable
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functions will be allowed to occasionally become infinite. However, as we
will see, this can only happen on a set of Lebesgue measure zero.)

To define the unsigned Lebesgue integral, we now turn to another more

basic notion of integration, namely the
∫ b
a f(x) dx of a Riemann integrable

function f : [a, b] → R. Recall from Section 1.1 that this integral is equal to
the lower Darboux integral

∫ b

a
f(x) =

∫ b

a
f(x) dx := sup

g≤f ;g piecewise constant
p.c.

∫ b

a
g(x) dx.

(It is also equal to the upper Darboux integral; but much as the theory
of Lebesgue measure is easiest to define by relying solely on outer measure
and not on inner measure, the theory of the unsigned Lebesgue integral is
easiest to define by relying solely on lower integrals rather than upper ones;
the upper integral is somewhat problematic when dealing with “improper”
integrals of functions that are unbounded or are supported on sets of infinite

measure.) Compare this formula also with (1.7). The integral p.c.
∫ b
a g(x) dx

is a piecewise constant integral, formed by breaking up the piecewise con-
stant functions g, h into finite linear combinations of indicator functions 1I
of intervals I, and then measuring the length of each interval.

It turns out that virtually the same definition allows us to define a lower
Lebesgue integral

∫
Rdf(x) dx of any unsigned function f : Rd → [0,+∞],

simply by replacing intervals with the more general class of Lebesgue mea-
surable sets (and thus replacing piecewise constant functions with the more
general class of simple functions). If the function is Lebesgue measurable (a
concept that we will define presently), then we refer to the lower Lebesgue
integral simply as the Lebesgue integral. As we shall see, it obeys all the basic
properties one expects of an integral, such as monotonicity and additivity;
in subsequent notes we will also see that it behaves quite well with respect
to limits, as we shall see by establishing the two basic convergence theorems
of the unsigned Lebesgue integral, namely Fatou’s lemma (Corollary 1.4.46)
and the monotone convergence theorem (Theorem 1.4.43).

Once we have the theory of the unsigned Lebesgue integral, we will then
be able to define the absolutely convergent Lebesgue integral, similarly to
how the absolutely convergent infinite sum can be defined using the unsigned
infinite sum. This integral also obeys all the basic properties one expects,
such as linearity and compatibility with the more classical Riemann integral;
in subsequent notes we will see that it also obeys a fundamentally important
convergence theorem, the dominated convergence theorem (Theorem 1.4.48).
This convergence theorem makes the Lebesgue integral (and its abstract
generalisations to other measure spaces than Rd) particularly suitable for
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analysis, as well as allied fields that rely heavily on limits of functions, such
as PDE, probability, and ergodic theory.

Remark 1.3.1. This is not the only route to setting up the unsigned and
absolutely convergent Lebesgue integrals. For instance, one can proceed
with the unsigned integral but then making an auxiliary stop at integration
of functions that are bounded and are supported on a set of finite mea-
sure, before going to the absolutely convergent Lebesgue integral; see e.g.
[StSk2005]. Another approach (which will not be discussed here) is to take
the metric completion of the Riemann integral with respect to the L1 metric.

The Lebesgue integral and Lebesgue measure can be viewed as comple-
tions of the Riemann integral and Jordan measure, respectively. This means
three things. First, the Lebesgue theory extends the Riemann theory: every
Jordan measurable set is Lebesgue measurable, and every Riemann inte-
grable function is Lebesgue measurable, with the measures and integrals
from the two theories being compatible. Conversely, the Lebesgue theory
can be approximated by the Riemann theory; as we saw in Section 1.2, ev-
ery Lebesgue measurable set can be approximated (in various senses) by
simpler sets, such as open sets or elementary sets, and in a similar fashion,
Lebesgue measurable functions can be approximated by nicer functions, such
as Riemann integrable or continuous functions. Finally, the Lebesgue the-
ory is complete in various ways; this is formalised in §1.3 of An epsilon of
room, Vol. I, but the convergence theorems mentioned above already hint
at this completeness. A related fact, known as Egorov’s theorem, asserts
that a pointwise converging sequence of functions can be approximated as a
(locally) uniformly converging sequence of functions. The facts listed here
are manifestations of Littlewood’s three principles of real analysis (Section
1.3.5), which capture much of the essence of the Lebesgue theory.

1.3.1. Integration of simple functions. Much as the Riemann integral
was set up by first using the integral for piecewise constant functions, the
Lebesgue integral is set up using the integral for simple functions.

Definition 1.3.2 (Simple function). A (complex-valued) simple function
f : Rd → C is a finite linear combination

(1.8) f = c11E1 + . . .+ ck1Ek

of indicator functions 1Ei of Lebesgue measurable sets Ei ⊂ Rd for i =
1, . . . , k, where k ≥ 0 is a natural number and c1, . . . , ck ∈ C are com-
plex numbers. An unsigned simple function f : Rd → [0,+∞], is defined
similarly, but with the ci taking values in [0,+∞] rather than C.

It is clear from construction that the space Simp(Rd) of complex-valued
simple functions forms a complex vector space, and Simp(Rd) is also closed
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under pointwise product f, g 
→ fg and complex conjugation f 
→ f .
In short, Simp(Rd) is a commutative ∗-algebra. Meanwhile, the space
Simp+(Rd) of unsigned simple functions is a [0,+∞]-module; it is closed
under addition, and under scalar multiplication by elements in [0,+∞].

In this definition, we did not require the E1, . . . , Ek to be disjoint. How-
ever, it is easy enough to arrange this, basically by exploiting Venn diagrams
(or, to use fancier language, finite Boolean algebras). Indeed, any k subsets
E1, . . . , Ek of Rd partition Rd into 2k disjoint sets, each of which is an inter-
section of Ei or the complement Rd\Ei for i = 1, . . . , k (and in particular, is
measurable). The (complex or unsigned) simple function is constant on each
of these sets, and so can easily be decomposed as a linear combination of the
indicator function of these sets. One easy consequence of this is that if f is
a complex-valued simple function, then its absolute value |f | : x 
→ |f(x)| is
an unsigned simple function.

It is geometrically intuitive that we should define the integral
∫
Rd1E(x)dx

of an indicator function of a measurable set E to equal m(E):∫
Rd

1E(x) dx = m(E).

Using this and applying the laws of integration formally, we are led to pro-
pose the following definition for the integral of an unsigned simple function:

Definition 1.3.3 (Integral of a unsigned simple function). If f = c11E1 +
. . .+ ck1Ek

is an unsigned simple function, the integral Simp
∫
Rd f(x) dx is

defined by the formula

Simp

∫
Rd

f(x) dx := c1m(E1) + . . .+ ckm(Ek),

thus Simp
∫
Rd f(x) dx will take values in [0,+∞].

However, one has to actually check that this definition is well defined,
in the sense that different representations

f = c11E1 + . . .+ ck1Ek
= c′11E′

1
+ . . .+ c′k′1E′

k′

of a function as a finite unsigned combination of indicator functions of mea-
surable sets will give the same value for the integral Simp

∫
Rd f(x) dx. This

is the purpose of the following lemma:

Lemma 1.3.4 (Well-definedness of simple integral). Let k, k′ ≥ 0 be natural
numbers, c1, . . . , ck, c

′
1, . . . , c

′
k′ ∈ [0,+∞], and let E1, . . . , Ek, E

′
1, . . . , E

′
k′ ⊂

Rd be Lebesgue measurable sets such that the identity

(1.9) c11E1 + . . .+ ck1Ek
= c′11E′

1
+ . . .+ c′k′1E′

k′
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holds identically on Rd. Then one has

c1m(E1) + . . .+ ckm(Ek) = c′1m(E′
1) + . . .+ c′k′m(E′

k′).

Proof. Again, we use a Venn diagram argument. The k+k′ sets E1, . . . , Ek,
E′

1, . . . , E
′
k′ partition Rd into 2k+k′ disjoint sets, each of which is an inter-

section of some of the E1, . . . , Ek, E
′
1, . . . , E

′
k′ and their complements. We

throw away any sets that are empty, leaving us with a partition of Rd into
m non-empty disjoint sets A1, . . . , Am for some 0 ≤ m ≤ 2k+k′ . As the
E1, . . . , Ek, E

′
1, . . . , E

′
k are Lebesgue measurable, the A1, . . . , Am are too.

By construction, each of the E1, . . . , Ek, E
′
1, . . . , Ek′ arise as unions of some

of the A1, . . . , Am, thus we can write

Ei =
⋃
j∈Ji

Aj

and

E′
i′ =

⋃
j′∈J ′

i′

Aj′

for all i = 1, . . . , k and i′ = 1, . . . , k′, and some subsets Ji, J
′
i′ ⊂ {1, . . . ,m}.

By finite additivity of Lebesgue measure, we thus have

m(Ei) =
∑
j∈Ji

m(Aj)

and

m(E′
i′) =

∑
j∈J ′

i′

m(Aj)

Thus, our objective is now to show that

(1.10)
k∑

i=1

ci
∑
j∈Ji

m(Aj) =
k′∑

i′=1

c′i′
∑
j∈J ′

i′

m(Aj).

To obtain this, we fix 1 ≤ j ≤ m and evaluate (1.9) at a point x in the
non-empty set Aj . At such a point, 1Ei(x) is equal to 1Ji(j), and similarly
1E′

i′
is equal to 1J ′

i′
(j). From (1.9) we conclude that

k∑
i=1

ci1Ji(j) =

k′∑
i′=1

c′i′1J ′
i′
(j).

Multiplying this bym(Aj) and then summing over all j = 1, . . . ,m we obtain
(1.10). �

We now make some important definitions that we will use repeatedly in
this text:
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Definition 1.3.5 (Almost everywhere and support). A property P (x) of
a point x ∈ Rd is said to hold (Lebesgue) almost everywhere in Rd, or for
(Lebesgue) almost every point x ∈ Rd, if the set of x ∈ Rd for which P (x)
fails has Lebesgue measure zero (i.e. P is true outside of a null set). We
usually omit the prefix Lebesgue, and often abbreviate “almost everywhere”
or “almost every” as a.e.

Two functions f, g : Rd → Z into an arbitrary range Z are said to agree
almost everywhere if one has f(x) = g(x) for almost every x ∈ Rd.

The support of a function f : Rd → C or f : Rd → [0,+∞] is defined to
be the set {x ∈ Rd : f(x) �= 0} where f is non-zero.

Note that if P (x) holds for almost every x, and P (x) implies Q(x), then
Q(x) holds for almost every x. Also, if P1(x), P2(x), . . . are an at most
countable family of properties, each of which individually holds for almost
every x, then they will simultaneously be true for almost every x, because
the countable union of null sets is still a null set. Because of these properties,
one can (as a rule of thumb) treat the almost universal quantifier “for almost
every” as if it was the truly universal quantifier “for every”, as long as one
is only concatenating at most countably many properties together, and as
long as one never specialises the free variable x to a null set. Observe also
that the property of agreeing almost everywhere is an equivalence relation,
which we will refer to as almost everywhere equivalence.

In An epsilon of room, Vol. I, we will also see the notion of the closed
support of a function f : Rd → C, defined as the closure of the support.

The following properties of the simple unsigned integral are easily ob-
tained from the definitions:

Exercise 1.3.1 (Basic properties of the simple unsigned integral). Let
f, g : Rd → [0,+∞] be simple unsigned functions.

(i) (Unsigned linearity) We have

Simp

∫
Rd

f(x) + g(x) dx = Simp

∫
Rd

f(x) dx

+ Simp

∫
Rd

g(x) dx

and

Simp

∫
Rd

cf(x) dx = c× Simp

∫
Rd

f(x) dx

for all c ∈ [0,+∞].

(ii) (Finiteness) We have Simp
∫
Rd f(x) dx < ∞ if and only if f is finite

almost everywhere, and its support has finite measure.
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(iii) (Vanishing) We have Simp
∫
Rd f(x) dx = 0 if and only if f is zero

almost everywhere.

(iv) (Equivalence) If f and g agree almost everywhere, then we have
Simp

∫
Rd f(x) dx = Simp

∫
Rd g(x) dx.

(v) (Monotonicity) If f(x) ≤ g(x) for almost every x ∈ Rd, then
Simp

∫
Rd f(x) dx ≤ Simp

∫
Rd g(x) dx.

(vi) (Compatibility with Lebesgue measure) For any Lebesgue measur-
able E, one has Simp

∫
Rd 1E(x) dx = m(E).

Furthermore, show that the simple unsigned integral f 
→ Simp
∫
Rd f(x) dx

is the only map from the space Simp+(Rd) of unsigned simple functions to
[0,+∞] that obeys all of the above properties.

We can now define an absolutely convergent counterpart to the simple
unsigned integral. This integral will soon be superceded by the absolutely
Lebesgue integral, but we give it here as motivation for the more general
notion of integration.

Definition 1.3.6 (Absolutely convergent simple integral). A complex-valued
simple function f : Rd → C is said to be absolutely integrable of

Simp

∫
Rd

|f(x)| dx < ∞.

If f is absolutely integrable, the integral Simp
∫
Rd f(x) dx is defined for real

signed f by the formula

Simp

∫
Rd

f(x) dx := Simp

∫
Rd

f+(x) dx− Simp

∫
Rd

f−(x) dx

where f+(x) := max(f(x), 0) and f−(x) := max(−f(x), 0) (note that these
are unsigned simple functions that are pointwise dominated by |f | and thus
have finite integral), and for complex-valued f by the formula13

Simp

∫
Rd

f(x) dx := Simp

∫
Rd

Re f(x) dx

+ i Simp

∫
Rd

Im f(x) dx.

Note from the preceding exercise that a complex-valued simple func-
tion f is absolutely integrable if and only if it has finite measure support
(since finiteness almost everywhere is automatic). In particular, the space

13Strictly speaking, this is an abuse of notation as we have now defined the simple integral
Simp

∫
Rd three different times, for unsigned, real signed, and complex-valued simple functions,

but one easily verifies that these three definitions agree with each other on their common domains
of definition, so it is safe to use a single notation for all three.
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Simpabs(Rd) of absolutely integrable simple functions is closed under addi-
tion and scalar multiplication by complex numbers, and is thus a complex
vector space.

The properties of the unsigned simple integral then can be used to deduce
analogous properties for the complex-valued integral:

Exercise 1.3.2 (Basic properties of the complex-valued simple integral).
Let f, g : Rd → C be absolutely integrable simple functions.

(i) (*-linearity) We have

Simp

∫
Rd

f(x) + g(x) dx = Simp

∫
Rd

f(x) dx

+ Simp

∫
Rd

g(x) dx

and

(1.11) Simp

∫
Rd

cf(x) dx = c× Simp

∫
Rd

f(x) dx

for all c ∈ C. Also, we have

Simp

∫
Rd

f(x) dx = Simp

∫
Rd

f(x) dx.

(ii) (Equivalence) If f and g agree almost everywhere, then we have
Simp

∫
Rd f(x) dx = Simp

∫
Rd g(x) dx.

(iii) (Compatibility with Lebesgue measure) For any Lebesgue measur-
able E, one has Simp

∫
Rd 1E(x) dx = m(E).

(Hints: Work out the real-valued counterpart of the linearity property first.
To establish (1.11), treat the cases c > 0, c = 0, c = −1 separately. To deal
with the additivity for real functions f, g, start with the identity

f + g = (f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−)

and then rearrange the second inequality so that no subtraction appears.)
Furthermore, show that the complex-valued simple integral

f 
→ Simp

∫
Rd

f(x) dx

is the only map from the space Simpabs(Rd) of absolutely integrable simple
functions to C that obeys all of the above properties.

We now comment further on the fact that (simple) functions that agree
almost everywhere, have the same integral. We can view this as an asser-
tion that integration is a noise-tolerant operation: One can have “noise” or
“errors” in a function f(x) on a null set, and this will not affect the final
value of the integral. Indeed, once one has this noise tolerance, one can even
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integrate functions f that are not defined everywhere on Rd, but merely de-
fined almost everywhere on Rd (i.e. f is defined on some set Rd\N where N
is a null set), simply by extending f to all of Rd in some arbitrary fashion
(e.g. by setting f equal to zero on N). This is extremely convenient for
analysis, as there are many natural functions (e.g. sinx

x in one dimension,

or 1
|x|α for various α > 0 in higher dimensions) that are only defined almost

everywhere instead of everywhere (often due to “division by zero” problems
when a denominator vanishes). While such functions cannot be evaluated
at certain singular points, they can still be integrated (provided they obey
some integrability condition, of course, such as absolute integrability), and
so one can still perform a large portion of analysis on such functions.

In fact, in the subfield of analysis known as functional analysis, it is
convenient to abstract the notion of an almost everywhere defined function
somewhat, by replacing any such function f with the equivalence class of
almost everywhere defined functions that are equal to f almost everywhere.
Such classes are then no longer functions in the standard set-theoretic sense
(they do not map each point in the domain to a unique point in the range,
since points in Rd have measure zero), but the properties of various func-
tion spaces improve when one does this (various semi-norms become norms,
various topologies become Hausdorff, and so forth). See §1.3 of An epsilon
of room, Vol. I for further discussion.

Remark 1.3.7. The “Lebesgue philosophy” that one is willing to lose con-
trol on sets of measure zero is a perspective that distinguishes Lebesgue-type
analysis from other types of analysis, most notably that of descriptive set
theory, which is also interested in studying subsets of Rd, but can give com-
pletely different structural classifications to a pair of sets that agree almost
everywhere. This loss of control on null sets is the price one has to pay for
gaining access to the powerful tool of the Lebesgue integral; if one needs to
control a function at absolutely every point, and not just almost every point,
then one often needs to use tools other than integration theory (unless one
has some regularity on the function, such as continuity, that lets one pass
from almost everywhere true statements to everywhere true statements).

1.3.2. Measurable functions. Much as the piecewise constant integral
can be completed to the Riemann integral, the unsigned simple integral can
be completed to the unsigned Lebesgue integral, by extending the class of
unsigned simple functions to the larger class of unsigned Lebesgue measur-
able functions. One of the shortest ways to define this class is as follows:

Definition 1.3.8 (Unsigned measurable function). An unsigned function
f : Rd → [0,+∞] is unsigned Lebesgue measurable, or measurable for short,
if it is the pointwise limit of unsigned simple functions, i.e., if there exists
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a sequence f1, f2, f3, . . . : R
d → [0,+∞] of unsigned simple functions such

that fn(x) → f(x) for every x ∈ Rd.

This particular definition is not always the most tractable. Fortunately,
it has many equivalent forms:

Lemma 1.3.9 (Equivalent notions of measurability). Let f : Rd → [0,+∞]
be an unsigned function. Then the following are equivalent:

(i) f is unsigned Lebesgue measurable.

(ii) f is the pointwise limit of unsigned simple functions fn (thus the
limit limn→∞ fn(x) exists and is equal to f(x) for all x ∈ Rd).

(iii) f is the pointwise almost everywhere limit of unsigned simple func-
tions fn (thus the limit limn→∞ fn(x) exists and is equal to f(x)
for almost every x ∈ Rd).

(iv) f is the supremum f(x) = supn fn(x) of an increasing sequence
0 ≤ f1 ≤ f2 ≤ . . . of unsigned simple functions fn, each of which
are bounded with finite measure support.

(v) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) > λ} is Lebesgue
measurable.

(vi) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) ≥ λ} is Lebesgue
measurable.

(vii) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue
measurable.

(viii) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) ≤ λ} is Lebesgue
measurable.

(ix) For every interval I ⊂ [0,+∞), the set f−1(I) := {x ∈ Rd : f(x) ∈
I} is Lebesgue measurable.

(x) For every (relatively) open set U ⊂ [0,+∞), the set f−1(U) :=
{x ∈ Rd : f(x) ∈ U} is Lebesgue measurable.

(xi) For every (relatively) closed set K ⊂ [0,+∞), the set f−1(K) :=
{x ∈ Rd : f(x) ∈ K} is Lebesgue measurable.

Proof. (i) and (ii) are equivalent by definition. (ii) clearly implies (iii). As
every monotone sequence in [0,+∞] converges, (iv) implies (ii). Now we
show that (iii) implies (v). If f is the pointwise almost everywhere limit of
fn, then for almost every x ∈ Rd one has

f(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x) = inf
N>0

sup
n≥N

fn(x).
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This implies that, for any λ, the set {x ∈ Rd : f(x) > λ} is equal to⋃
M>0

⋂
N>0

{x ∈ Rd : sup
n≥N

fn(x) > λ+
1

M
}

outside of a set of measure zero; this set in turn is equal to⋃
M>0

⋂
N>0

⋃
n≥N

{x ∈ Rd : fn(x) > λ+
1

M
}

outside of a set of measure zero. But as each fn is an unsigned simple
function, the sets {x ∈ Rd : fn(x) > λ + 1

M } are Lebesgue measurable.
Since countable unions or countable intersections of Lebesgue measurable
sets are Lebesgue measurable, and modifying a Lebesgue measurable set on
a null set produces another Lebesgue measurable set, we obtain (v).

To obtain the equivalence of (v) and (vi), observe that

{x ∈ Rd : f(x) ≥ λ} =
⋂

λ′∈Q+:λ′<λ

{x ∈ Rd : f(x) > λ′}

for λ ∈ (0,+∞] and

{x ∈ Rd : f(x) > λ} =
⋃

λ′∈Q+:λ′>λ

{x ∈ Rd : f(x) ≥ λ′}

for λ ∈ [0,+∞), where Q+ := Q ∩ [0,+∞] are the non-negative rationals.
The claim then easily follows from the countable nature of Q+ (treating the
extreme cases λ = 0,+∞ separately if necessary). A similar argument lets
one deduce (v) or (vi) from (ix).

The equivalence of (v), (vi) with (vii), (viii) comes from the observation
that {x ∈ Rd : f(x) ≤ λ} is the complement of {x ∈ Rd : f(x) > λ}, and
{x ∈ Rd : f(x) < λ} is the complement of {x ∈ Rd : f(x) ≥ λ}. A similar
argument shows that (x) and (xi) are equivalent.

By expressing an interval as the intersection of two half-intervals, we see
that (ix) follows from (v)–(viii), and so all of (v)–(ix) are now shown to be
equivalent.

Clearly (x) implies (vii), and hence (v)–(ix). Conversely, because every
open set in [0,+∞) is the union of countably many open intervals in [0,+∞),
(ix) implies (x).

The only remaining task is to show that (v)–(xi) implies (iv). Let f
obey (v)–(xi). For each positive integer n, we let fn(x) be defined to be
the largest integer multiple of 2−n that is less than or equal to min(f(x), n)
when |x| ≤ n, with fn(x) := 0 for |x| > n. From construction it is easy
to see that the fn : R

d → [0,+∞] are increasing and have f as their supre-
mum. Furthermore, each fn takes on only finitely many values, and for each
non-zero value c it attains, the set f−1

n (c) takes the form f−1(Ic)∩{x ∈ Rd :
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|x| ≤ n} for some interval or ray Ic, and is thus measurable. As a conse-
quence, fn is a simple function, and by construction it is bounded and has
finite measure support. The claim follows. �

With these equivalent formulations, we can now generate plenty of mea-
surable functions:

Exercise 1.3.3.

(i) Show that every continuous function f : Rd → [0,+∞] is measur-
able.

(ii) Show that every unsigned simple function is measurable.

(iii) Show that the supremum, infimum, limit superior, or limit inferior
of unsigned measurable functions is unsigned measurable.

(iv) Show that an unsigned function that is equal almost everywhere to
an unsigned measurable function, is itself measurable.

(v) Show that if a sequence fn of unsigned measurable functions con-
verges pointwise almost everywhere to an unsigned limit f , then f
is also measurable.

(vi) If f : Rd → [0,+∞] is measurable and φ : [0,+∞] → [0,+∞] is
continuous, show that φ ◦ f : Rd → [0,+∞] is measurable.

(vii) If f, g are unsigned measurable functions, show that f + g and fg
are measurable.

In view of Exercise 1.3.3(iv), one can define the concept of measurability
for an unsigned function that is only defined almost everywhere on Rd,
rather than everywhere on Rd, by extending that function arbitrarily to the
null set where it is currently undefined.

Exercise 1.3.4. Let f : Rd → [0,+∞]. Show that f is a bounded unsigned
measurable function if and only if f is the uniform limit of bounded simple
functions.

Exercise 1.3.5. Show that an unsigned function f : Rd → [0,+∞] is a
simple function if and only if it is measurable and takes on at most finitely
many values.

Exercise 1.3.6. Let f : Rd → [0,+∞] be an unsigned measurable function.
Show that the region {(x, t) ∈ Rd × R : 0 ≤ t ≤ f(x)} is a measurable
subset of Rd+1. (There is a converse to this statement, but we will wait
until Exercise 1.7.24 to prove it, once we have the Fubini-Tonelli theorem
(Corollary 1.7.23) available to us.)
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Remark 1.3.10. Lemma 1.3.9 tells us that if f : Rd → [0,+∞] is measur-
able, then f−1(E) is Lebesgue measurable for many classes of sets E. How-
ever, we caution that it is not necessarily the case that f−1(E) is Lebesgue
measurable if E is Lebesgue measurable. To see this, we let C be the Cantor
set

C := {
∞∑
j=1

aj3
−j : aj ∈ {0, 2} for all j}

and let f : R → [0,+∞] be the function defined by setting

f(x) :=
∞∑
j=1

2bj3
−j

whenever x ∈ [0, 1] is not a terminating binary decimal, and so has a unique
binary expansion x =

∑∞
j=1 bj2

−j for some bj ∈ {0, 1}, and f(x) := 0
otherwise. We thus see that f takes values in C, and is bijective on the
set A of non-terminating decimals in [0, 1]. Using Lemma 1.3.9, it is not
difficult to show that f is measurable. On the other hand, by modifying the
construction from the previous notes, we can find a subset F of A which is
non-measurable. If we set E := f(F ), then E is a subset of the null set C
and is thus itself a null set; but f−1(E) = F is non-measurable, and so the
inverse image of a Lebesgue measurable set by a measurable function need
not remain Lebesgue measurable.

However, we will later see that it is still true that f−1(E) is Lebesgue
measurable if E has a slightly stronger measurability property than Lebesgue
measurability, namely Borel measurability ; see Exercise 1.4.29(iii).

Now we can define the concept of a complex-valued measurable function.
As discussed earlier, it will be convenient to allow for such functions to
only be defined almost everywhere, rather than everywhere, to allow for the
possibility that the function becomes singular or otherwise undefined on a
null set.

Definition 1.3.11 (Complex measurability). An almost everywhere defined
complex-valued function f : Rd → C is Lebesgue measurable, or measurable
for short, if it is the pointwise almost everywhere limit of complex-valued
simple functions.

As before, there are several equivalent definitions:

Exercise 1.3.7. Let f : Rd → C be an almost everywhere defined complex-
valued function. Then the following are equivalent:

(i) f is measurable.

(ii) f is the pointwise almost everywhere limit of complex-valued simple
functions.
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(iii) The (magnitudes of the) positive and negative parts of Re(f) and
Im(f) are unsigned measurable functions.

(iv) f−1(U) is Lebesgue measurable for every open set U ⊂ C.

(v) f−1(K) is Lebesgue measurable for every closed set K ⊂ C.

From the above exercise, we see that the notion of complex-valued mea-
surability and unsigned measurability are compatible when applied to a
function that takes values in [0,+∞) = [0,+∞] ∩C everywhere (or almost
everywhere).

Exercise 1.3.8.

(i) Show that every continuous function f : Rd → C is measurable.

(ii) Show that a function f : Rd → C is simple if and only if it is
measurable and takes on at most finitely many values.

(iii) Show that a complex-valued function that is equal almost every-
where to an measurable function, is itself measurable.

(iv) Show that if a sequence fn of complex-valued measurable functions
converges pointwise almost everywhere to an complex-valued limit
f , then f is also measurable.

(v) If f : Rd → C is measurable and φ : C → C is continuous, show
that φ ◦ f : Rd → C is measurable.

(vi) If f, g are measurable functions, show that f + g and fg are mea-
surable.

Exercise 1.3.9. Let f : [a, b] → R be a Riemann integrable function. Show
that if one extends f to all of R by defining f(x) = 0 for x �∈ [a, b], then f
is measurable.

1.3.3. Unsigned Lebesgue integrals. We are now ready to integrate un-
signed measurable functions. We begin with the notion of the lower unsigned
Lebesgue integral, which can be defined for arbitrary unsigned functions (not
necessarily measurable):

Definition 1.3.12 (Lower unsigned Lebesgue integral). Let f : Rd→ [0,+∞]
be an unsigned function (not necessarily measurable). We define the lower
unsigned Lebesgue integral

∫
Rdf(x) dx to be the quantity∫

Rd

f(x) dx := sup
0≤g≤f ;g simple

Simp

∫
Rd

g(x) dx

where g ranges over all unsigned simple functions g : Rd → [0,+∞] that are
pointwise bounded by f .
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One can also define the upper unsigned Lebesgue integral∫
Rd

f(x) dx := inf
h≥f ;h simple

Simp

∫
Rd

h(x) dx,

but we will use this integral much more rarely. Note that both integrals take
values in [0,+∞], and that the upper Lebesgue integral is always at least as
large as the lower Lebesgue integral.

In the definition of the lower unsigned Lebesgue integral, g is required to
be bounded by f pointwise everywhere, but it is easy to see that one could
also require g to just be bounded by f pointwise almost everywhere without
affecting the value of the integral, since the simple integral is not affected
by modifications on sets of measure zero.

The following properties of the lower Lebesgue integral are easy to es-
tablish:

Exercise 1.3.10 (Basic properties of the lower Lebesgue integral). Let
f, g : Rd → [0,+∞] be unsigned functions (not necessarily measurable).

(i) (Compatibility with the simple integral) If f is simple, then we have∫
Rdf(x) dx =

∫
Rdf(x) dx = Simp

∫
Rd f(x) dx.

(ii) (Monotonicity) If f ≤ g pointwise almost everywhere, then we have∫
Rdf(x) dx ≤

∫
Rdg(x) dx and

∫
Rdf(x) dx ≤

∫
Rdg(x) dx.

(iii) (Homogeneity) If c ∈ [0,+∞), then
∫
Rdcf(x) dx = c

∫
Rdf(x) dx.

(The claim unfortunately fails for c = +∞, but this is somewhat
tricky to show.)

(iv) (Equivalence) If f, g agree almost everywhere, then
∫
Rdf(x) dx =∫

Rdg(x) dx and
∫
Rdf(x) dx =

∫
Rdg(x) dx.

(v) (Superadditivity)
∫
Rdf(x) + g(x) dx ≥

∫
Rdf(x) dx+

∫
Rdg(x) dx.

(vi) (Subadditivity of upper integral)
∫
Rdf(x)+g(x) dx ≤

∫
Rdf(x) dx+∫

Rdg(x) dx.

(vii) (Divisibility) For any measurable set E, one has
∫
Rdf(x) dx =∫

Rdf(x)1E(x) dx+
∫
Rdf(x)1Rd\E(x) dx.

(viii) (Horizontal truncation) As n → ∞,
∫
Rd min(f(x), n) dx converges

to
∫
Rdf(x) dx.

(ix) (Vertical truncation) As n → ∞,
∫
Rdf(x)1|x|≤n dx converges to∫

Rdf(x) dx. Hint: From Exercise 1.2.11 one has m(E ∩ {x : |x| ≤
n}) → m(E) for any measurable set E.
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(x) (Reflection) If f + g is a simple function that is bounded with
finite measure support (i.e. it is absolutely integrable), then we have

Simp
∫
Rd f(x) + g(x) dx =

∫
Rdf(x) dx+

∫
Rdg(x) dx.

Do the horizontal and vertical truncation properties hold if the lower
Lebesgue integral is replaced with the upper Lebesgue integral?

Now we restrict attention to measurable functions.

Definition 1.3.13 (Unsigned Lebesgue integral). If f : Rd → [0,+∞] is
measurable, we define the unsigned Lebesgue integral

∫
Rd f(x) dx of f to

equal the lower unsigned Lebesgue integral
∫
Rdf(x) dx. (For non-measurable

functions, we leave the unsigned Lebesgue integral undefined.)

One nice feature of measurable functions is that the lower and upper
Lebesgue integrals can match, if one also assumes some boundedness:

Exercise 1.3.11. Let f : Rd → [0,+∞] be measurable, bounded, and van-
ishing outside of a set of finite measure. Show that the lower and upper
Lebesgue integrals of f agree. (Hint: Use Exercise 1.3.4.) There is a con-
verse to this statement, but we will defer it to later notes. What happens
if f is allowed to be unbounded, or is not supported inside a set of finite
measure?

This gives an important corollary:

Corollary 1.3.14 (Finite additivity of the Lebesgue integral). Let f, g : Rd

→ [0,+∞] be measurable. Then
∫
Rd f(x) + g(x) dx =

∫
Rd f(x) dx +∫

Rd g(x) dx.

Proof. From the horizontal truncation property and a limiting argument,
we may assume that f, g are bounded. From the vertical truncation property
and another limiting argument, we may assume that f, g are supported
inside a bounded set. From Exercise 1.3.11, we now see that the lower and
upper Lebesgue integrals of f , g, and f + g agree. The claim now follows
by combining the superadditivity of the lower Lebesgue integral with the
subadditivity of the upper Lebesgue integral. �

In the next section we will improve this finite additivity property for the
unsigned Lebesgue integral further, to countable additivity; this property is
also known as the monotone convergence theorem (Theorem 1.4.43).

Exercise 1.3.12 (Upper Lebesgue integral and outer Lebesgue measure).

Show that for any set E ⊂ Rd,
∫
Rd1E(x) dx = m∗(E). Conclude that

the upper and lower Lebesgue integrals are not necessarily additive if no
measurability hypotheses are assumed.
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Exercise 1.3.13 (Area interpretation of integral). If f : Rd → [0,+∞] is
measurable, show that

∫
Rd f(x) dx is equal to the d+1-dimensional Lebesgue

measure of the region {(x, t) ∈ Rd ×R : 0 ≤ t ≤ f(x)}. (This can be used
as an alternate, and more geometrically intuitive, definition of the unsigned
Lebesgue integral; it is a more convenient formulation for establishing the
basic convergence theorems, but not quite as convenient for establishing
basic properties such as additivity.) (Hint: Use Exercise 1.2.22.)

Exercise 1.3.14 (Uniqueness of the Lebesgue integral). Show that the
Lebesgue integral f 
→

∫
Rd f(x) dx is the only map from measurable un-

signed functions f : Rd → [0,+∞] to [0,+∞] that obeys the following prop-
erties for measurable f, g : Rd → [0,+∞]:

(i) (Compatibility with the simple integral) If f is simple, then we have∫
Rd f(x) dx = Simp

∫
Rd f(x) dx.

(ii) (Finite additivity)
∫
Rd f(x)+ g(x) dx =

∫
Rd f(x) dx+

∫
Rd g(x) dx.

(iii) (Horizontal truncation) As n → ∞,
∫
Rd min(f(x), n) dx converges

to
∫
Rd f(x) dx.

(iv) (Vertical truncation) As n → ∞,
∫
Rd f(x)1|x|≤n dx converges to∫

Rd f(x) dx.

Exercise 1.3.15 (Translation invariance). Let f : Rd → [0,+∞] be mea-
surable. Show that

∫
Rd f(x+ y) dx =

∫
Rd f(x) dx for any y ∈ Rd.

Exercise 1.3.16 (Linear change of variables). Let f : Rd → [0,+∞] be
measurable, and let T : Rd → Rd be an invertible linear transformation.
Show that

∫
Rd f(T

−1(x)) dx = | detT |
∫
Rd f(x) dx, or equivalently, that∫

Rd f(Tx) dx = 1
| detT |

∫
Rd f(x) dx.

Exercise 1.3.17 (Compatibility with the Riemann integral). Let f : [a, b] →
[0,+∞] be Riemann integrable. If we extend f to R by declaring f to equal

zero outside of [a, b], show that
∫
R f(x) dx =

∫ b
a f(x) dx.

We record a basic inequality, known as Markov’s inequality, that asserts
that the Lebesgue integral of an unsigned measurable function controls how
often that function can be large:

Lemma 1.3.15 (Markov’s inequality). Let f : Rd → [0,+∞] be measurable.
Then for any 0 < λ < ∞, one has

m({x ∈ Rd : f(x) ≥ λ}) ≤ 1

λ

∫
Rd

f(x) dx.

Proof. We have the trivial pointwise inequality

λ1{x∈Rd:f(x)≥λ} ≤ f(x).
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From the definition of the lower Lebesgue integral, we conclude that

λm({x ∈ Rd : f(x) ≥ λ}) ≤
∫
Rd

f(x) dx,

and the claim follows. �

By sending λ to infinity or to zero, we obtain the following important
corollary:

Exercise 1.3.18. Let f : Rd → [0,+∞] be measurable.

(i) Show that if
∫
Rd f(x) dx < ∞, then f is finite almost everywhere.

Give a counterexample to show that the converse statement is false.

(ii) Show that
∫
Rd f(x) dx = 0 if and only if f is zero almost every-

where.

Remark 1.3.16. The use of the integral
∫
Rd f(x) dx to control the distri-

bution of f is known as the first moment method. One can also control this
distribution using higher moments such as

∫
Rd |f(x)|p dx for various values

of p, or exponential moments such as
∫
Rd e

tf(x) dx or the Fourier moments∫
Rd e

itf(x) dx for various values of t; such moment methods are fundamental
to probability theory.

1.3.4. Absolute integrability. Having set out the theory of the unsigned
Lebesgue integral, we can now define the absolutely convergent Lebesgue
integral.

Definition 1.3.17 (Absolute integrability). An almost everywhere defined
measurable function f : Rd → C is said to be absolutely integrable if the
unsigned integral

‖f‖L1(Rd) :=

∫
Rd

|f(x)| dx

is finite. We refer to this quantity ‖f‖L1(Rd) as the L1(Rd) norm of f ,

and use L1(Rd) or L1(Rd → C) to denote the space of absolutely inte-
grable functions. If f is real-valued and absolutely integrable, we define the
Lebesgue integral

∫
Rd f(x) dx by the formula

(1.12)

∫
Rd

f(x) dx :=

∫
Rd

f+(x) dx−
∫
Rd

f−(x) dx

where f+ := max(f, 0), f− := max(−f, 0) are the magnitudes of the positive
and negative components of f (note that the two unsigned integrals on the
right-hand side are finite, as f+, f− are pointwise dominated by |f |). If f is
complex-valued and absolutely integrable, we define the Lebesgue integral∫
Rd f(x) dx by the formula∫

Rd

f(x) dx :=

∫
Rd

Re f(x) dx+ i

∫
Rd

Im f(x) dx
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where the two integrals on the right are interpreted as real-valued absolutely
integrable Lebesgue integrals. It is easy to see that the unsigned, real-
valued, and complex-valued Lebesgue integrals defined in this manner are
compatible on their common domains of definition.

Note from construction that the absolutely integrable Lebesgue integral
extends the absolutely integrable simple integral, which is now redundant
and will not be needed any further in the sequel.

Remark 1.3.18. One can attempt to define integrals for non-absolutely-
integrable functions, analogous to the improper integrals

∫∞
0 f(x) dx :=

limR→∞
∫ R
0 f(x) dx or the principal value integrals p.v.

∫∞
−∞ f(x) dx :=

limR→∞
∫ R
−R f(x) dx one sees in the classical one-dimensional Riemannian

theory. While one can certainly generate any number of such extensions of
the Lebesgue integral concept, such extensions tend to be poorly behaved
with respect to various important operations, such as change of variables or
exchanging limits and integrals, so it is usually not worthwhile to try to set
up a systematic theory for such non-absolutely-integrable integrals that is
anywhere near as complete as the absolutely integrable theory, and instead
deal with such exotic integrals on an ad hoc basis.

From the pointwise triangle inequality |f(x)+g(x)| ≤ |f(x)|+ |g(x)|, we
conclude the L1 triangle inequality

(1.13) ‖f + g‖L1(Rd) ≤ ‖f‖L1(Rd) + ‖g‖L1(Rd)

for any almost everywhere defined measurable f, g : Rd → C. It is also easy
to see that

‖cf‖L1(Rd) = |c|‖f‖L1(Rd)

for any complex number c. As such, we see that L1(Rd → C) is a complex
vector space. (The L1 norm is then a seminorm on this space; see §1.3 of
An epsilon of room, Vol. I.) From Exercise 1.3.18 we make the important
observation that a function f ∈ L1(Rd → C) has zero L1 norm, ‖f‖L1(Rd) =
0, if and only if f is zero almost everywhere.

Given two functions f, g ∈ L1(Rd → C), we can define the L1 distance
dL1(f, g) between them by the formula

dL1(f, g) := ‖f − g‖L1(Rd).

Thanks to (1.13), this distance obeys almost all the axioms of a metric on
L1(Rd), with one exception: it is possible for two different functions f, g ∈
L1(Rd → C) to have a zero L1 distance, if they agree almost everywhere.
As such, dL1 is only a semi-metric (also known as a pseudo-metric) rather
than a metric. However, if one adopts the convention that any two functions
that agree almost everywhere are considered equivalent (or more formally,
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one works in the quotient space of L1(Rd) by the equivalence relation of
almost everywhere agreement, which by abuse of notation is also denoted
L1(Rd)), then one recovers a genuine metric. (Later on, we will establish
the important fact that this metric makes the (quotient space) L1(Rd) a
complete metric space, a fact known as the L1 Riesz-Fischer theorem; this
completeness is one of the main reasons we spend so much effort setting up
Lebesgue integration theory in the first place.)

The linearity properties of the unsigned integral induce analogous lin-
earity properties of the absolutely convergent Lebesgue integral:

Exercise 1.3.19 (Integration is linear). Show that the integration
f 
→

∫
Rd f(x) dx is a (complex) linear operation from L1(Rd) to C. In

other words, show that∫
Rd

f(x) + g(x) dx =

∫
Rd

f(x) dx+

∫
Rd

g(x) dx

and ∫
Rd

cf(x) dx = c

∫
Rd

f(x) dx

for all absolutely integrable f, g : Rd → C and complex numbers c. Also,
establish the identity ∫

Rd

f(x) dx =

∫
Rd

f(x) dx,

which makes integration not just a linear operation, but a *-linear operation.

Exercise 1.3.20. Show that Exercises 1.3.15, 1.3.16, and 1.3.17 also hold
for complex-valued, absolutely integrable functions rather than for unsigned
measurable functions.

Exercise 1.3.21 (Absolute summability is a special case of absolute inte-
grability). Let (cn)n∈Z be a doubly infinite sequence of complex numbers,
and let f : R → C be the function

f(x) :=
∑
n∈Z

cn1[n,n+1)(x) = c�x�

where �x� is the greatest integer less than x. Show that f is absolutely
integrable if and only if the series

∑
n∈Z cn is absolutely convergent, in which

case one has
∫
R f(x) dx =

∑
n∈Z cn.

We can localise the absolutely convergent integral to any measurable
subset E of Rd. Indeed, if f : E → C is a function, we say that f is measur-
able (resp. absolutely integrable) if its extension f̃ : Rd → C is measurable

(resp. absolutely integrable), where f̃(x) is defined to equal f(x) when x ∈ E

and zero otherwise, and then we define
∫
E f(x) dx :=

∫
Rd f̃(x) dx. Thus,
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for instance, the absolutely integrable analogue of Exercise 1.3.17 tells us
that ∫ b

a
f(x) dx =

∫
[a,b]

f(x) dx

for any Riemann-integrable f : [a, b] → C.

Exercise 1.3.22. If E,F are disjoint measurable subsets of Rd, and f : E∪
F → C is absolutely integrable, show that

∫
E
f(x) dx =

∫
E∪F

f(x)1E(x) dx

and ∫
E
f(x) dx+

∫
F
f(x) dx =

∫
E∪F

f(x) dx.

We will study the properties of the absolutely convergent Lebesgue in-
tegral in more detail in later notes, as a special case of the more general
Lebesgue integration theory on abstract measure spaces. For now, we record
one very basic inequality:

Lemma 1.3.19 (Triangle inequality). Let f ∈ L1(Rd → C). Then

|
∫
Rd

f(x) dx| ≤
∫
Rd

|f(x)| dx.

Proof. If f is real-valued, then |f | = f++f− and the claim is obvious from
(1.12). When f is complex-valued, one cannot argue quite so simply; a naive
mimicking of the real-valued argument would lose a factor of 2, giving the
inferior bound

|
∫
Rd

f(x) dx| ≤ 2

∫
Rd

|f(x)| dx.

To do better, we exploit the phase rotation invariance properties of the
absolute value operation and of the integral, as follows. Note that for any
complex number z, one can write |z| as zeiθ for some real θ. In particular,
we have

|
∫
Rd

f(x) dx| = eiθ
∫
Rd

f(x) dx =

∫
Rd

eiθf(x) dx
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for some real θ. Taking real parts of both sides, we obtain

|
∫
Rd

f(x) dx| =
∫
Rd

Re(eiθf(x)) dx.

Since Re(eiθf(x)) ≤ |eiθf(x)| = |f(x)|, we obtain the claim. �

1.3.5. Littlewood’s three principles. Littlewood’s three principles are
informal heuristics that convey much of the basic intuition behind the mea-
sure theory of Lebesgue. Briefly, the three principles are as follows:

(i) Every (measurable) set is nearly a finite sum of intervals;

(ii) Every (absolutely integrable) function is nearly continuous; and

(iii) Every (pointwise) convergent sequence of functions is nearly uni-
formly convergent.

Various manifestations of the first principle were given in Exercise 1.2.7
and Exercise 1.2.16. Now we turn to the second principle. Define a step
function to be a finite linear combination of indicator functions 1B of boxes
B.

Theorem 1.3.20 (Approximation of L1 functions). Let f ∈ L1(Rd) and
ε > 0.

(i) There exists an absolutely integrable simple function g such that
‖f − g‖L1(Rd) ≤ ε.

(ii) There exists a step function g such that ‖f − g‖L1(Rd) ≤ ε.

(iii) There exists a continuous, compactly supported g such that ‖f −
g‖L1(Rd) ≤ ε.

To put things another way, the absolutely integrable simple functions,
the step functions, and the continuous, compactly supported functions are all
dense subsets of L1(Rd) with respect to the L1(Rd) (semi-)metric. In §1.13
of An epsilon of room, Vol. I, it is shown that a similar statement holds if one
replaces continuous, compactly supported functions with smooth, compactly
supported functions, also known as test functions; this is an important fact
for the theory of distributions.

Proof. We begin with part (i). When f is unsigned, we see from the def-
inition of the lower Lebesgue integral that there exists an unsigned simple
function g such that g ≤ f (so, in particular, g is absolutely integrable) and∫

Rd

g(x) dx ≥
∫
Rd

f(x) dx− ε,

which by linearity implies that ‖f − g‖L1(Rd) ≤ ε. This gives (i) when
f is unsigned. The case when f is real-valued then follows by splitting f
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into positive and negative parts (and adjusting ε as necessary), and the case
when f is complex-valued then follows by splitting f into real and imaginary
parts (and adjusting ε yet again).

To establish part (ii), we see from (i) and the triangle inequality in
L1 that it suffices to show this when f is an absolutely integrable simple
function. By linearity (and more applications of the triangle inequality),
it then suffices to show this when f = 1E is the indicator function of a
measurable set E ⊂ Rd of finite measure. But then, by Exercise (1.2.16),
such a set can be approximated (up to an error of measure at most ε) by an
elementary set, and the claim follows.

To establish part (iii), we see from (ii) and the argument from the pre-
ceding paragraph that it suffices to show this when f = 1E is the indicator
function of a box. But one can then establish the claim by direct construc-
tion. Indeed, if one makes a slightly larger box F that contains the closure of
E in its interior, but has a volume at most ε more than that of E, then one
can directly construct a piecewise linear continuous function g supported
on F that equals 1 on E (e.g. one can set g(x) = max(1 − R dist(x,E), 0)
for some sufficiently large R; one may also invoke Urysohn’s lemma, see
§1.10 of An epsilon of room, Vol. I ). It is then clear from construction that
‖f − g‖L1(Rd) ≤ ε as required. �

This is not the only way to make Littlewood’s second principle manifest;
we return to this point shortly. For now, we turn to Littlewood’s third
principle. We recall three basic ways in which a sequence fn : R

d → C of
functions can converge to a limit f : Rd → C:

(i) (Pointwise convergence) fn(x) → f(x) for every x ∈ Rd.

(ii) (Pointwise almost everywhere convergence) fn(x) → f(x) for al-
most every x ∈ Rd.

(iii) (Uniform convergence) For every ε > 0, there exists N such that
|fn(x)− f(x)| ≤ ε for all n ≥ N and all x ∈ Rd.

Uniform convergence implies pointwise convergence, which in turn im-
plies pointwise almost everywhere convergence.

We now add a fourth mode of convergence, that is weaker than uniform
convergence but stronger than pointwise convergence:

Definition 1.3.21 (Locally uniform convergence). A sequence of functions
fn : R

d → C converges locally uniformly to a limit f : Rd → C if, for every
bounded subset E of Rd, fn converges uniformly to f on E. In other words,
for every bounded E ⊂ Rd and every ε > 0, there exists N > 0 such that
|fn(x)− f(x)| ≤ ε for all n ≥ N and x ∈ E.
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Remark 1.3.22. At least as far as Rd is concerned, an equivalent definition
of local uniform convergence is: fn converges locally uniformly to f if, for
every point x0 ∈ Rd, there exists an open neighbourhood U of x0 such that
fn converges uniformly to f on U . The equivalence of the two definitions
is immediate from the Heine-Borel theorem. More generally, the adverb
“locally” in mathematics is usually used in this fashion; a property P is said
to hold locally on some domain X if, for every point x0 in that domain,
there is an open neighbourhood of x0 in X on which P holds.

One should caution, though, that on domains on which the Heine-Borel
theorem does not hold, the bounded-set notion of local uniform conver-
gence is not equivalent to the open-set notion of local uniform convergence
(though, for locally compact spaces, one can recover equivalence if one re-
places “bounded” by “compact”).

Example 1.3.23. The functions x 
→ x/n on R for n = 1, 2, . . . converge
locally uniformly (and hence pointwise) to zero on R, but do not converge
uniformly.

Example 1.3.24. The partial sums
∑N

n=0
xn

n! of the Taylor series ex =∑∞
n=0

xn

n! converges to ex locally uniformly (and hence pointwise) on R, but
not uniformly.

Example 1.3.25. The functions fn(x) :=
1
nx1x>0 for n = 1, 2, . . . (with the

convention that fn(0) = 0) converge pointwise everywhere to zero, but do
not converge locally uniformly.

From the preceding example, we see that pointwise convergence (either
everywhere or almost everywhere) is a weaker concept than local uniform
convergence. Nevertheless, a remarkable theorem of Egorov, which demon-
strates Littlewood’s third principle, asserts that one can recover local uni-
form convergence as long as one is willing to delete a set of small measure:

Theorem 1.3.26 (Egorov’s theorem). Let fn : R
d → C be a sequence of

measurable functions that converge pointwise almost everywhere to another
function f : Rd → C, and let ε > 0. Then there exists a Lebesgue measurable
set A of measure at most ε, such that fn converges locally uniformly to f
outside of A.

Note that Example 1.3.25 demonstrates that the exceptional set A in
Egorov’s theorem cannot be taken to have zero measure, at least if one
uses the bounded-set definition of local uniform convergence from Definition
1.3.21. (If one instead takes the “open neighbourhood” definition, then the
sequence in Example 1.3.25 does converge locally uniformly on R\{0} in the
open neighbourhood sense, even if it does not do so in the bounded-set sense.
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On a domain such asRd\A, bounded-set locally uniform convergence implies
open-neighbourhood locally uniform convergence, but not conversely.)

Proof. By modifying fn and f on a set of measure zero (that can be ab-
sorbed into A at the end of the argument) we may assume that fn converges
pointwise everywhere to f , thus for every x ∈ Rd and m > 0 there exists
N ≥ 0 such that |fn(x) − f(x)| ≤ 1/m for all n ≥ N . We can rewrite this
fact set-theoretically as

∞⋂
N=0

EN,m = ∅

for each m, where

EN,m := {x ∈ Rd : |fn(x)− f(x)| > 1/m for some n ≥ N}.
It is clear that the EN,m are Lebesgue measurable, and are decreasing in N .
Applying downward monotone convergence (Exercise 1.2.11(ii)) we conclude
that, for any radius R > 0, one has

lim
N→∞

m(EN,m ∩B(0, R)) = 0.

(The restriction to the ball B(0, R) is necessary, because the downward
monotone convergence property only works when the sets involved have
finite measure.) In particular, for any m ≥ 1, we can find Nm such that

m(EN,m ∩B(0,m)) ≤ ε

2m

for all N ≥ Nm.

Now let A :=
⋃∞

m=1ENm,m ∩B(0,m). Then A is Lebesgue measurable,
and by countable subadditivity, m(A) ≤ ε. By construction, we have

|fn(x)− f(x)| ≤ 1/m

whenever m ≥ 1, x ∈ Rd\A, |x| ≤ m, and n ≥ Nm. In particular, we see
for any ball B(0,m0) with an integer radius, fn converges uniformly to f on
B(0,m0)\A. Since every bounded set is contained in such a ball, the claim
follows. �

Remark 1.3.27. Unfortunately, one cannot in general upgrade local uni-
form convergence to uniform convergence in Egorov’s theorem. A basic
example here is the moving bump example, fn := 1[n,n+1] on R, which “es-
capes to horizontal infinity”. This sequence converges pointwise (and locally
uniformly) to the zero function f ≡ 0. However, for any 0 < ε < 1 and any
n, we have |fn(x)− f(x)| > ε on a set of measure 1, namely on the interval
[n, n + 1]. Thus, if one wanted fn to converge uniformly to f outside of a
set A, then that set A has to contain a set of measure 1. In fact, it must
contain the intervals [n, n+1] for all sufficiently large n and must therefore
have infinite measure.
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However, if all the fn and f were supported on a fixed set E of finite
measure (e.g. on a ball B(0, R)), then the above “escape to horizontal
infinity” cannot occur, it is easy to see from the above argument that one
can recover uniform convergence (and not just locally uniform convergence)
outside of a set of arbitrarily small measure.

We now use Theorem 1.3.20 to give another version of Littlewood’s sec-
ond principle, known as Lusin’s theorem:

Theorem 1.3.28 (Lusin’s theorem). Let f : Rd → C be absolutely inte-
grable, and let ε > 0. Then there exists a Lebesgue measurable set E ⊂ Rd

of measure at most ε such that the restriction of f to the complementary set
Rd\E is continuous on that set.

A word of caution: This theorem does not imply that the unrestricted
function f is continuous on Rd\E. For instance, the absolutely integrable
function 1Q : R → C is nowhere continuous, so is certainly not continuous
on R\E for any E of finite measure; but on the other hand, if one deletes
the measure zero set E := Q from the reals, then the restriction of f to
R\E is identically zero and thus continuous.

Proof. By Theorem 1.3.20, for any n ≥ 1 one can find a continuous, com-
pactly supported function fn such that ‖f − fn‖L1(Rd) ≤ ε/4n (say). By

Markov’s inequality (Lemma 1.3.15), that implies that |f(x) − fn(x)| ≤
1/2n−1 for all x outside of a Lebesgue measurable set En of measure at most
ε/2n+1. Letting E :=

⋃∞
n=1En, we conclude that E is Lebesgue measurable

with measure at most ε/2, and fn converges uniformly to f outside of E.
But the uniform limit of continuous functions is continuous, and the same
is true for local uniform limits (because continuity is itself a local property).
We conclude that the restriction f to Rd\E is continuous, as required. �

Exercise 1.3.23. Show that the hypothesis that f is absolutely integrable
in Lusin’s theorem can be relaxed to being locally absolutely integrable (i.e.
absolutely integrable on every bounded set), and then relaxed further to that
of being measurable (but still finite everywhere or almost everywhere). (To
achieve the latter goal, one can replace f locally with a horizontal truncation
f1|f |≤n; alternatively, one can replace f with a bounded variant, such as

f
(1+|f |2)1/2 .)

Exercise 1.3.24. Show that a function f : Rd → C is measurable if and
only if it is the pointwise almost everywhere limit of continuous functions
fn : R

d → C. (Hint: If f : Rd → C is measurable and n ≥ 1, show that
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there exists a continuous function fn : R
d → C for which the set {x ∈

B(0, n) : |f(x) − fn(x)| ≥ 1/n} has measure at most 1
2n . You may find

Exercise 1.3.25 below to be useful for this.) Use this (and Egorov’s theorem,
Theorem 1.3.26) to give an alternate proof of Lusin’s theorem for arbitrary
measurable functions.

Remark 1.3.29. This is a trivial but important remark: when dealing with
unsigned measurable functions such as f : Rd → [0,+∞], then Lusin’s the-
orem does not apply directly because f could be infinite on a set of positive
measure, which is clearly in contradiction with the conclusion of Lusin’s
theorem (unless one allows the continuous function to also take values in
the extended non-negative reals [0,+∞] with the extended topology). How-
ever, if one knows already that f is almost everywhere finite (which is, for
instance, the case when f is absolutely integrable), then Lusin’s theorem
applies (since one can simply zero out f on the null set where it is infinite,
and add that null set to the exceptional set of Lusin’s theorem).

Remark 1.3.30. By combining Lusin’s theorem with inner regularity (Ex-
ercise 1.2.15) and the Tietze extension theorem (see §1.10 of An epsilon of
room, Vol. I ), one can conclude that every measurable function f : Rd → C
agrees (outside of a set of arbitrarily small measure) with a continuous func-
tion g : Rd → C.

Exercise 1.3.25 (Littlewood-like principles). The following facts are not,
strictly speaking, instances of any of Littlewood’s three principles, but are
in a similar spirit.

(i) (Absolutely integrable functions almost have bounded support) Let
f : Rd → C be an absolutely integrable function, and let ε > 0.
Show that there exists a ball B(0, R) outside of which f has an L1

norm of at most ε, or in other words, that
∫
Rd\B(0,R) |f(x)| dx ≤ ε.

(ii) (Measurable functions are almost locally bounded) Let f : Rd → C
be a measurable function, and let ε > 0. Show that there exists a
measurable set E ⊂ Rd of measure at most ε outside of which f
is locally bounded, or in other words, that for every R > 0 there
exists M < ∞ such that |f(x)| ≤ M for all x ∈ B(0, R)\E.

As with Remark 1.3.29, it is important in the second part of the exercise
that f is known to be finite everywhere (or at least almost everywhere); the
result would of course fail if f was, say, unsigned but took the value +∞ on
a set of positive measure.
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1.4. Abstract measure spaces

Thus far, we have only focused on measure and integration theory in the
context of Euclidean spaces Rd. Now, we will work in a more abstract
and general setting, in which the Euclidean space Rd is replaced by a more
general space X.

It turns out that in order to properly define measure and integration on
a general space X, it is not enough to just specify the set X. One also needs
to specify two additional pieces of data:

(i) A collection B of subsets of X that one is allowed to measure; and

(ii) The measure μ(E) ∈ [0,+∞] one assigns to each measurable set
E ∈ B.

For instance, Lebesgue measure theory covers the case when X is a
Euclidean spaceRd, B is the collection B = L[Rd] of all Lebesgue measurable
subsets of Rd, and μ(E) is the Lebesgue measure μ(E) = m(E) of E.

The collection B has to obey a number of axioms (e.g. being closed with
respect to countable unions) that make it a σ-algebra, which is a stronger
variant of the more well-known concept of a Boolean algebra. Similarly,
the measure μ has to obey a number of axioms (most notably, a countable
additivity axiom) in order to obtain a measure and integration theory com-
parable to the Lebesgue theory on Euclidean spaces. When all these axioms
are satisfied, the triple (X,B, μ) is known as a measure space. These play
much the same role in abstract measure theory that metric spaces or topo-
logical spaces play in abstract point-set topology, or that vector spaces play
in abstract linear algebra.

On any measure space, one can set up the unsigned and absolutely con-
vergent integrals in almost exactly the same way as was done in the previous
notes for the Lebesgue integral on Euclidean spaces, although the approxi-
mation theorems are largely unavailable at this level of generality due to the
lack of such concepts as “elementary set” or “continuous function” for an
abstract measure space. On the other hand, one does have the fundamental
convergence theorems for the subject, namely Fatou’s lemma, the mono-
tone convergence theorem and the dominated convergence theorem, and we
present these results here.

One question that will not be addressed much in this section is how
one actually constructs interesting examples of measures. We will return to
this issue in Section 1.7 (although one of the most powerful tools for such
constructions, namely the Riesz representation theorem, will not be covered
here, but instead in §1.10 of An epsilon of room, Vol. I ).
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1.4.1. Boolean algebras. We begin by recalling the concept of a Boolean
algebra.

Definition 1.4.1 (Boolean algebras). Let X be a set. A (concrete) Boolean
algebra on X is a collection B of X which obeys the following properties:

(i) (Empty set) ∅ ∈ B.
(ii) (Complement) If E ∈ B, then the complement Ec := X\E also lies

in B.
(iii) (Finite unions) If E,F ∈ B, then E ∪ F ∈ B.

We sometimes say that E is B-measurable, or measurable with respect to B,
if E ∈ B.

Given two Boolean algebras B,B′ on X, we say that B′ is finer than, a
sub-algebra of, or a refinement of B, or that B is coarser than or a coarsening
of B′, if B ⊂ B′.

We have chosen a “minimalist” definition of a Boolean algebra, in which
one is only assumed to be closed under two of the basic Boolean operations,
namely complement and finite union. However, by using the laws of Boolean
algebra (such as de Morgan’s laws), it is easy to see that a Boolean algebra is
also closed under other Boolean algebra operations such as intersection E ∩
F , set differerence E\F , and symmetric difference EΔF . So one could have
placed these additional closure properties inside the definition of a Boolean
algebra without any loss of generality. However, when we are verifying that
a given collection B of sets is indeed a Boolean algebra, it is convenient to
have as minimal a set of axioms as possible.

Remark 1.4.2. One can also consider abstract Boolean algebras B, which
do not necessarily live in an ambient domain X, but for which one has a
collection of abstract Boolean operations such as meet ∧ and join ∨ instead
of the concrete operations of intersection ∩ and union ∪. We will not take
this abstract perspective here, but see §2.3 of An epsilon of room, Vol. I for
some further discussion of the relationship between concrete and abstract
Boolean algebras, which is codified by Stone’s theorem.

Example 1.4.3 (Trivial and discrete algebra). Given any set X, the coars-
est Boolean algebra is the trivial algebra {∅, X}, in which the only measur-
able sets are the empty set and the whole set. The finest Boolean algebra is
the discrete algebra 2X := {E : E ⊂ X}, in which every set is measurable.
All other Boolean algebras are intermediate between these two extremes:
finer than the trivial algebra, but coarser than the discrete one.
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Exercise 1.4.1 (Elementary algebra). Let E [Rd] be the collection of those
sets E ⊂ Rd that are either elementary sets, or co-elementary sets (i.e. the

complement of an elementary set). Show that E [Rd] is a Boolean algebra.
We will call this algebra the elementary Boolean algebra of Rd.

Example 1.4.4 (Jordan algebra). Let J [Rd] be the collection of subsets
of Rd that are either Jordan measurable or co-Jordan measurable (i.e. the

complement of a Jordan measurable set). Then J [Rd] is a Boolean alge-
bra that is finer than the elementary algebra. We refer to this algebra as
the Jordan algebra on Rd (but caution that there is a completely different
concept of a Jordan algebra in abstract algebra.)

Example 1.4.5 (Lebesgue algebra). Let L[Rd] be the collection of Lebesgue
measurable subsets ofRd. Then L[Rd] is a Boolean algebra that is finer than
the Jordan algebra; we refer to this as the Lebesgue algebra on Rd.

Example 1.4.6 (Null algebra). LetN (Rd) be the collection of subsets ofRd

that are either Lebesgue null sets or Lebesgue co-null sets (the complement
of null sets). Then N (Rd) is a Boolean algebra that is coarser than the
Lebesgue algebra; we refer to it as the null algebra on Rd.

Exercise 1.4.2 (Restriction). Let B be a Boolean algebra on a set X,
and let Y be a subset of X (not necessarily B-measurable). Show that the
restriction B �Y := {E ∩ Y : E ∈ B} of B to Y is a Boolean algebra on Y . If
Y is B-measurable, show that

B �Y= B ∩ 2Y = {E ⊂ Y : E ∈ B}.

Example 1.4.7 (Atomic algebra). Let X be partitioned into a union X =⋃
α∈I Aα of disjoint sets Aα, which we refer to as atoms. Then this partition

generates a Boolean algebra A((Aα)α∈I), defined as the collection of all the
sets E of the form E =

⋃
α∈J Aα for some J ⊂ I, i.e., A((Aα)α∈I) is the

collection of all sets that can be represented as the union of one or more
atoms. This is easily verified to be a Boolean algebra, and we refer to it as
the atomic algebra with atoms (Aα)α∈I . The trivial algebra corresponds to
the trivial partition X = X into a single atom; at the other extreme, the
discrete algebra corresponds to the discrete partition X =

⋃
x∈X{x} into

singleton atoms. More generally, note that finer (resp. coarser) partitions
lead to finer (resp. coarser) atomic algebra. In this definition, we permit
some of the atoms in the partition to be empty; but it is clear that empty
atoms have no impact on the final atomic algebra, and so without loss of
generality one can delete all empty atoms and assume that all atoms are
non-empty if one wishes.

Example 1.4.8 (Dyadic algebras). Let n be an integer. The dyadic algebra
Dn(R

d) at scale 2−n in Rd is defined to be the atomic algebra generated by
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the half-open dyadic cubes[
i1
2n

,
i1 + 1

2n

)
× . . .×

[
id
2n

,
id + 1

2n

)
of length 2−n (see Exercise 1.1.14). These are Boolean algebras which are
increasing in n: Dn+1 ⊃ Dn. Draw a diagram to indicate how these algebras
sit in relation to the elementary, Jordan, and Lebesgue, null, discrete, and
trivial algebras.

Remark 1.4.9. The dyadic algebras are analogous to the finite resolution
one has on modern computer monitors, which subdivide space into square
pixels. A low resolution monitor (in which each pixel has a large size) can
only resolve a very small set of “blocky” images, as opposed to the larger
class of images that can be resolved by a finer resolution monitor.

Exercise 1.4.3. Show that the non-empty atoms of an atomic algebra are
determined up to relabeling. More precisely, show that if X =

⋃
α∈I Aα =⋃

α′∈I′ A
′
α′ are two partitions of X into non-empty atoms Aα, A′

α′ , then
A((Aα)α∈I) = A((A′

α′)α′∈I′) if and only if there exists a bijection φ : I → I ′

such that A′
φ(α) = Aα for all α ∈ I.

While many Boolean algebras are atomic, many are not, as the following
two exercises indicate.

Exercise 1.4.4. Show that every finite Boolean algebra is an atomic al-
gebra. (A Boolean algebra B is finite if its cardinality is finite, i.e., there
are only finitely many measurable sets.) Conclude that every finite Boolean
algebra has a cardinality of the form 2n for some natural number n. From
this exercise and Exercise 1.4.3 we see that there is a one-to-one correspon-
dence between finite Boolean algebras on X and finite partitions of X into
non-empty sets (up to relabeling).

Exercise 1.4.5. Show that the elementary, Jordan, Lebesgue, and null
algebras are not atomic algebras. (Hint: Argue by contradiction. If these
algebras were atomic, what must the atoms be?)

Now we describe some further ways to generate Boolean algebras.

Exercise 1.4.6 (Intersection of algebras). Let (Bα)α∈I be a family of Boolean
algebras on a set X, indexed by a (possibly infinite or uncountable) label set
I. Show that the intersection

∧
α∈I Bα :=

⋂
α∈I Bα of these algebras is still

a Boolean algebra, and is the finest Boolean algebra that is coarser than all
Bα. (If I is empty, we adopt the convention that

∧
α∈I Bα is the discrete

algebra.)

Definition 1.4.10 (Generation of algebras). Let F be any family of sets in
X. We define 〈F〉bool to be the intersection of all the Boolean algebras that
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contain F , which is again a Boolean algebra by Exercise 1.4.6. Equivalently,
〈F〉bool is the coarsest Boolean algebra that contains F . We say that 〈F〉bool
is the Boolean algebra generated by F .

Example 1.4.11. F is a Boolean algebra if and only if 〈F〉bool = F ; thus
each Boolean algebra is generated by itself.

Exercise 1.4.7. Show that the elementary algebra E(Rd) is generated by
the collection of boxes in Rd.

Exercise 1.4.8. Let n be a natural number. Show that if F is a finite
collection of n sets, then 〈F〉bool is a finite Boolean algebra of cardinality
at most 22

n
(in particular, finite sets generate finite algebras). Give an

example to show that this bound is best possible. (Hint: For the latter, it
may be convenient to use a discrete ambient space such as the discrete cube
X = {0, 1}n.)

The Boolean algebra 〈F〉bool can be described explicitly in terms of F
as follows:

Exercise 1.4.9 (Recursive description of a generated Boolean algebra). Let
F be a collection of sets in a set X. Define the sets F0,F1,F2, . . . recursively
as follows:

(i) F0 := F .

(ii) For each n ≥ 1, we define Fn to be the collection of all sets that
either the union of a finite number of sets in Fn−1 (including the
empty union ∅), or the complement of such a union.

Show that 〈F〉bool =
⋃∞

n=0Fn.

1.4.2. σ-algebras and measurable spaces. In order to obtain a measure
and integration theory that can cope well with limits, the finite union axiom
of a Boolean algebra is insufficient, and must be improved to a countable
union axiom:

Definition 1.4.12 (Sigma algebras). Let X be a set. A σ-algebra on X is
a collection B of X which obeys the following properties:

(i) (Empty set) ∅ ∈ B.
(ii) (Complement) If E ∈ B, then the complement Ec := X\E also lies

in B.
(iii) (Countable unions) If E1, E2, . . . ∈ B, then

⋃∞
n=1En ∈ B.

We refer to the pair (X,B) of a set X together with a σ-algebra on that set
as a measurable space.
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Remark 1.4.13. The prefix σ usually denotes “countable union”. Other
instances of this prefix include a σ-compact topological space (a countable
union of compact sets), a σ-finite measure space (a countable union of sets
of finite measure), or Fσ set (a countable union of closed sets) for other
instances of this prefix.

From de Morgan’s law (which is just as valid for infinite unions and
intersections as it is for finite ones), we see that σ-algebras are closed under
countable intersections as well as countable unions.

By padding a finite union into a countable union by using the empty
set, we see that every σ-algebra is automatically a Boolean algebra. Thus,
we automatically inherit the notion of being measurable with respect to a
σ-algebra, or of one σ-algebra being coarser or finer than another.

Exercise 1.4.10. Show that all atomic algebras are σ-algebras. In partic-
ular, the discrete algebra and trivial algebra are σ-algebras, as are the finite
algebras and the dyadic algebras on Euclidean spaces.

Exercise 1.4.11. Show that the Lebesgue and null algebras are σ-algebras,
but the elementary and Jordan algebras are not.

Exercise 1.4.12. Show that any restriction B �Y of a σ-algebra B to a
subspace Y of X (as defined in Exercise 1.4.2) is again a σ-algebra on the
subspace Y .

There is an exact analogue of Exercise 1.4.6:

Exercise 1.4.13 (Intersection of σ-algebras). Show that the intersection∧
α∈I Bα :=

⋂
α∈I Bα of an arbitrary (and possibly infinite or uncountable)

number of σ-algebras Bα is again a σ-algebra, and is the finest σ-algebra
that is coarser than all of the Bα.

Similarly, we have a notion of generation:

Definition 1.4.14 (Generation of σ-algebras). Let F be any family of sets
in X. We define 〈F〉 to be the intersection of all the σ-algebras that con-
tain F , which is again a σ-algebra by Exercise 1.4.13. Equivalently, 〈F〉 is
the coarsest σ-algebra that contains F . We say that 〈F〉 is the σ-algebra
generated by F .

Since every σ-algebra is a Boolean algebra, we have the trivial inclusion

〈F〉bool ⊂ 〈F〉.
However, equality need not hold; it only holds if and only if 〈F〉bool is a σ-
algebra. For instance, if F is the collection of all boxes in Rd, then 〈F〉bool is
the elementary algebra (Exercise 1.4.7), but 〈F〉 cannot equal this algebra,
as it is not a σ-algebra.
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Remark 1.4.15. From the definitions, it is clear that we have the following
principle, somewhat analogous to the principle of mathematical induction:
if F is a family of sets in X, and P (E) is a property of sets E ⊂ X which
obeys the following axioms:

(i) P (∅) is true.
(ii) P (E) is true for all E ∈ F .

(iii) If P (E) is true for some E ⊂ X, then P (X\E) is true also.

(iv) If E1, E2, . . . ⊂ X are such that P (En) is true for all n, then
P (

⋃∞
n=1En) is true also.

Then one can conclude that P (E) is true for all E ∈ 〈F〉. Indeed, the
set of all E for which P (E) holds is a σ-algebra that contains F , whence
the claim. This principle is particularly useful for establishing properties of
Borel measurable sets (see below).

We now turn to an important example of a σ-algebra:

Definition 1.4.16 (Borel σ-algebra). Let X be a metric space, or more
generally a topological space. The Borel σ-algebra B[X] of X is defined to
be the σ-algebra generated by the open subsets of X. Elements of B[X] will
be called Borel measurable.

Thus, for instance, the Borel σ-algebra contains the open sets, the closed
sets (which are complements of open sets), the countable unions of closed
sets (known as Fσ sets), the countable intersections of open sets (known as
Gδ sets), the countable intersections of Fσ sets, and so forth.

In Rd, every open set is Lebesgue measurable, and so we see that the
Borel σ-algebra is coarser than the Lebesgue σ-algebra. We will shortly see,
though, that the two σ-algebras are not equal.

We defined the Borel σ-algebra to be generated by the open sets. How-
ever, they are also generated by several other sets:

Exercise 1.4.14. Show that the Borel σ-algebra B[Rd] of a Euclidean set
is generated by any of the following collections of sets:

(i) The open subsets of Rd.

(ii) The closed subsets of Rd.

(iii) The compact subsets of Rd.

(iv) The open balls of Rd.

(v) The boxes in Rd.

(vi) The elementary sets in Rd.
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(Hint: To show that two families F ,F ′ of sets generate the same σ-algebra,
it suffices to show that every σ-algebra that contains F , contains F ′ also,
and conversely.)

There is an analogue of Exercise 1.4.9, which illustrates the extent
to which a generated σ-algebra is “larger” than the analogous generated
Boolean algebra:

Exercise 1.4.15 (Recursive description of a generated σ-algebra). (This
exercise requires familiarity with the theory of ordinals, which is reviewed in
§2.4 of An epsilon of room, Vol. I. Recall that we are assuming the axiom
of choice throughout this text.) Let F be a collection of sets in a set X,
and let ω1 be the first uncountable ordinal. Define the sets Fα for every
countable ordinal α ∈ ω1 via transfinite induction as follows:

(i) Fα := F .

(ii) For each countable successor ordinal α = β + 1, we define Fα to
be the collection of all sets that either the union of an at most
countable number of sets in Fn−1 (including the empty union ∅),
or the complement of such a union.

(iii) For each countable limit ordinal α = supβ<α β, we define Fα :=⋃
β<αFβ.

Show that 〈F〉 =
⋃

α∈ω1
Fα.

Remark 1.4.17. The first uncountable ordinal ω1 will make several further
cameo appearances here and in An epsilon of room, Vol. I, for instance,
by generating counterexamples to various plausible statements in point-set
topology. In the case when F is the collection of open sets in a topological
space, so that 〈F〉, then the sets Fα are essentially the Borel hierarchy
(which starts at the open and closed sets, then moves on to the Fσ and Gδ

sets, and so forth); these play an important role in descriptive set theory.

Exercise 1.4.16. (This exercise requires familiarity with the theory of car-
dinals.) Let F be an infinite family of subsets of X of cardinality κ (thus κ
is an infinite cardinal). Show that 〈F〉 has cardinality at most κℵ0 . (Hint:
Use Exercise 1.4.15.) In particular, show that the Borel σ-algebra B[Rd] has
cardinality at most c := 2ℵ0 .

Conclude that there exist Jordan measurable (and hence Lebesgue mea-
surable) subsets of Rd which are not Borel measurable. (Hint: How many
subsets of the Cantor set are there?) Use this to place the Borel σ-algebra
on the diagram that you drew for Exercise 1.4.8.

Remark 1.4.18. Despite this demonstration that not all Lebesgue mea-
surable subsets are Borel measurable, it is remarkably difficult (though not
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impossible) to exhibit a specific set that is not Borel measurable. Indeed, a
large majority of the explicitly constructible sets that one actually encoun-
ters in practice tend to be Borel measurable, and one can view the property
of Borel measurability intuitively as a kind of “constructibility” property.
(Indeed, as a very crude first approximation, one can view the Borel mea-
surable sets as those sets of “countable descriptive complexity”; in contrast,
sets of finite descriptive complexity tend to be Jordan measurable (assuming
they are bounded, of course).

Exercise 1.4.17. Let E,F be Borel measurable subsets of Rd1 ,Rd2 , re-
spectively. Show that E×F is a Borel measurable subset of Rd1+d2 . (Hint:
First establish this in the case when F is a box, by using Remark 1.4.15. To
obtain the general case, apply Remark 1.4.15 yet again.)

The above exercise has a partial converse:

Exercise 1.4.18. Let E be a Borel measurable subset of Rd1+d2 .

(i) Show that for any x1 ∈ Rd1 , the slice {x2 ∈ Rd2 : (x1, x2) ∈ E} is
a Borel measurable subset of Rd2 . Similarly, show that for every
x2 ∈ Rd2 , the slice {x1 ∈ Rd1 : (x1, x2) ∈ E} is a Borel measurable
subset of Rd1 .

(ii) Give a counterexample to show that this claim is not true if “Borel”
is replaced with “Lebesgue” throughout. (Hint: The Cartesian
product of any set with a point is a null set, even if the first set
was not measurable.)

Exercise 1.4.19. Show that the Lebesgue σ-algebra on Rd is generated by
the union of the Borel σ-algebra and the null σ-algebra.

1.4.3. Countably additive measures and measure spaces. Having
set out the concept of a σ-algebra a measurable space, we now endow these
structures with a measure.

We begin with the finitely additive theory, although this theory is too
weak for our purposes and will soon be supplanted by the countably additive
theory.

Definition 1.4.19 (Finitely additive measure). Let B be a Boolean algebra
on a space X. An (unsigned) finitely additive measure μ on B is a map
μ : B → [0,+∞] that obeys the following axioms:

(i) (Empty set) μ(∅) = 0.

(ii) (Finite additivity)WheneverE,F ∈ B are disjoint, then μ(E∪F ) =
μ(E) + μ(F ).
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Remark 1.4.20. The empty set axiom is needed in order to rule out the
degenerate situation in which every set (including the empty set) has infinite
measure.

Example 1.4.21. Lebesgue measure m is a finitely additive measure on
the Lebesgue σ-algebra, and hence on all sub-algebras (such as the null al-
gebra, the Jordan algebra, or the elementary algebra). In particular, Jordan
measure and elementary measure are finitely additive (adopting the con-
vention that co-Jordan measurable sets have infinite Jordan measure, and
co-elementary sets have infinite elementary measure).

On the other hand, as we saw in previous notes, Lebesgue outer measure
is not finitely additive on the discrete algebra, and Jordan outer measure is
not finitely additive on the Lebesgue algebra.

Example 1.4.22 (Dirac measure). Let x ∈ X and B be an arbitrary
Boolean algebra on X. Then the Dirac measure δx at x, defined by set-
ting δx(E) := 1E(x), is finitely additive.

Example 1.4.23 (Zero measure). The zero measure 0: E 
→ 0 is a finitely
additive measure on any Boolean algebra.

Example 1.4.24 (Linear combinations of measures). If B is a Boolean
algebra on X, and μ, ν : B → [0,+∞] are finitely additive measures on B,
then μ + ν : E 
→ μ(E) + ν(E) is also a finitely additive measure, as is
cμ : E 
→ c × μ(E) for any c ∈ [0,+∞]. Thus, for instance, the sum of
Lebesgue measure and a Dirac measure is also a finitely additive measure
on the Lebesgue algebra (or on any of its sub-algebras).

Example 1.4.25 (Restriction of a measure). If B is a Boolean algebra on
X, μ : B → [0,+∞] is a finitely additive measure, and Y is a B-measurable
subset of X, then the restriction μ �Y : B �Y → [0,+∞] of B to Y , defined
by setting μ �Y (E) := μ(E) whenever E ∈ B �Y (i.e. if E ∈ B and E ⊂ Y ),
is also a finitely additive measure.

Example 1.4.26 (Counting measure). If B is a Boolean algebra on X, then
the function #: B → [0,+∞] defined by setting #(E) to be the cardinality
of E if E is finite, and #(E) := +∞ if E is infinite, is a finitely additive
measure, known as counting measure.

As with our definition of Boolean algebras and σ-algebras, we adopted
a “minimalist” definition so that the axioms are easy to verify. But they
imply several further useful properties:

Exercise 1.4.20. Let μ : B → [0,+∞] be a finitely additive measure on a
Boolean σ-algebra B. Establish the following facts:
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(i) (Monotonicity) If E,F are B-measurable and E ⊂ F , then μ(E) ≤
μ(F ).

(ii) (Finite additivity) If k is a natural number, and E1, . . . , Ek are B-
measurable and disjoint, then μ(E1∪. . .∪Ek) = μ(E1)+. . .+μ(Ek).

(iii) (Finite subadditivity) If k is a natural number, and E1, . . . , Ek are
B-measurable, then μ(E1 ∪ . . . ∪Ek) ≤ μ(E1) + . . .+ μ(Ek).

(iv) (Inclusion-exclusion for two sets) If E,F are B-measurable, then
μ(E ∪ F ) + μ(E ∩ F ) = μ(E) + μ(F ).

(Caution: Remember that the cancellation law a + c = b + c =⇒ a = b
does not hold in [0,+∞] if c is infinite, and so the use of cancellation (or
subtraction) should be avoided if possible.)

One can characterise measures completely for any finite algebra:

Exercise 1.4.21. Let B be a finite Boolean algebra, generated by a finite
family A1, . . . , Ak of non-empty atoms. Show that for every finitely additive
measure μ on B there exists c1, . . . , ck ∈ [0,+∞] such that

μ(E) =
∑

1≤j≤k:Aj⊂E

cj.

Equivalently, if xj is a point in Aj for each 1 ≤ j ≤ k, then

μ =

k∑
j=1

cjδxj .

Furthermore, show that the c1, . . . , ck are uniquely determined by μ.

This is about the limit of what one can say about finitely additive mea-
sures at this level of generality. We now specialise to the countably additive
measures on σ-algebras.

Definition 1.4.27 (Countably additive measure). Let (X,B) be a measur-
able space. An (unsigned) countably additive measure μ on B, or measure
for short, is a map μ : B → [0,+∞] that obeys the following axioms:

(i) (Empty set) μ(∅) = 0.

(ii) (Countable additivity) Whenever E1, E2, . . . ∈ B are a countable se-
quence of disjoint measurable sets, then μ(

⋃∞
n=1En)=

∑∞
n=1 μ(En).

A triplet (X,B, μ), where (X,B) is a measurable space and μ : B → [0,+∞]
is a countably additive measure, is known as a measure space.

Note the distinction between a measure space and a measurable space.
The latter has the capability to be equipped with a measure, but the former
is actually equipped with a measure.
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Example 1.4.28. Lebesgue measure is a countably additive measure on the
Lebesgue σ-algebra, and hence on every sub-σ-algebra (such as the Borel σ-
algebra).

Example 1.4.29. The Dirac measures from Exercise 1.4.22 are countably
additive, as is counting measure.

Example 1.4.30. Any restriction of a countably additive measure to a
measurable subspace is again countably additive.

Exercise 1.4.22 (Countable combinations of measures). Let (X,B) be a
measurable space.

(i) If μ is a countably additive measure on B, and c ∈ [0,+∞], then
cμ is also countably additive.

(ii) If μ1, μ2, . . . are a sequence of countably additive measures on B,
then the sum

∑∞
n=1 μn : E 
→

∑∞
n=1 μn(E) is also a countably

additive measure.

Note that countable additivity measures are necessarily finitely additive
(by padding out a finite union into a countable union using the empty set),
and so countably additive measures inherit all the properties of finitely ad-
ditive properties, such as monotonicity and finite subadditivity. But one
also has additional properties:

Exercise 1.4.23. Let (X,B, μ) be a measure space.

(i) (Countable subadditivity) If E1, E2, . . . are B-measurable, then we
have μ(

⋃∞
n=1En) ≤

∑∞
n=1 μ(En).

(ii) (Upwards monotone convergence) If E1⊂E2⊂ . . . are B-measurable,
then

μ(

∞⋃
n=1

En) = lim
n→∞

μ(En) = sup
n

μ(En).

(iii) (Downwards monotone convergence) If E1 ⊃ E2 ⊃ . . . are B-
measurable, and μ(En) < ∞ for at least one n, then

μ(

∞⋂
n=1

En) = lim
n→∞

μ(En) = inf
n

μ(En).

Show that the downward monotone convergence claim can fail if the hy-
pothesis that μ(En) < ∞ for at least one n is dropped. (Hint: Mimic the
solution to Exercise 1.2.11.)

Exercise 1.4.24 (Dominated convergence for sets). Let (X,B, μ) be a mea-
sure space. Let E1, E2, . . . be a sequence of B-measurable sets that converge
to another set E, in the sense that 1En converges pointwise to 1E .
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(i) Show that E is also B-measurable.

(ii) If there exists a B-measurable set F of finite measure (i.e. μ(F ) <
∞) that contains all of the En, show that limn→∞ μ(En) = μ(E).
(Hint: Apply downward monotonicity to the sets

⋃
n>N (EnΔE).)

(iii) Show that the previous part of this exercise can fail if the hypothesis
that all the En are contained in a set of finite measure is omitted.

Exercise 1.4.25. Let X be an at most countable set with the discrete
σ-algebra. Show that every measure μ on this measurable space can be
uniquely represented in the form

μ =
∑
x∈X

cxδx

for some cx ∈ [0,+∞], thus

μ(E) =
∑
x∈E

cx

for all E ⊂ X. (This claim fails in the uncountable case, although showing
this is slightly tricky.)

A useful technical property, enjoyed by some measure spaces, is that of
completeness:

Definition 1.4.31 (Completeness). A null set of a measure space (X,B, μ)
is defined to be a B-measurable set of measure zero. A sub-null set is any
subset of a null set. A measure space is said to be complete if every sub-null
set is a null set.

Thus, for instance, the Lebesgue measure space (Rd,L[Rd],m) is com-
plete, but the Borel measure space (Rd,B[Rd],m) is not (as can be seen
from the solution to Exercise 1.4.16).

Completion is a convenient property to have in some cases, particularly
when dealing with properties that hold almost everywhere. Fortunately, it
is fairly easy to modify any measure space to be complete:

Exercise 1.4.26 (Completion). Let (X,B, μ) be a measure space. Show
that there exists a unique refinement (X,B, μ), known as the completion
of (X,B, μ), which is the coarsest refinement of (X,B, μ) that is complete.
Furthermore, show that B consists precisely of those sets that differ from a
B-measurable set by a B-subnull set.
Exercise 1.4.27. Show that the Lebesgue measure space (Rd,L[Rd],m) is
the completion of the Borel measure space (Rd,B[Rd],m).

Exercise 1.4.28 (Approximation by an algebra). Let A be a Boolean al-
gebra on X, and let μ be a measure on 〈A〉.
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(i) If μ(X) < ∞, show that for every E ∈ 〈A〉 and ε > 0 there exists
F ∈ A such that μ(EΔF ) < ε.

(ii) More generally, if X =
⋃∞

n=1An for some A1, A2, . . . ∈ A with
μ(An) < ∞ for all n, E ∈ 〈A〉 has finite measure, and ε > 0, show
that there exists F ∈ A such that μ(EΔF ) < ε.

1.4.4. Measurable functions, and integration on a measure space.
Now we are ready to define integration on measure spaces. We first need the
notion of a measurable function, which is analogous to that of a continuous
function in topology. Recall that a function f : X → Y between two topo-
logical spaces X,Y is continuous if the inverse image f−1(U) of any open
set is open. In a similar spirit, we have

Definition 1.4.32. Let (X,B) be a measurable space, and let f : X →
[0,+∞] or f : X → C be an unsigned or complex-valued function. We say
that f is measurable if f−1(U) is B-measurable for every open subset U of
[0,+∞] or C.

From Lemma 1.3.9, we see that this generalises the notion of a Lebesgue
measurable function.

Exercise 1.4.29. Let (X,B) be a measurable space.

(i) Show that a function f : X → [0,+∞] is measurable if and only if
the level sets {x ∈ X : f(x) > λ} are B-measurable.

(ii) Show that an indicator function 1E of a set E ⊂ X is measurable
if and only if E itself is B-measurable.

(iii) Show that a function f : X → [0,+∞] or f : X → C is measurable
if and only if f−1(E) is B-measurable for every Borel-measurable
subset E of [0,+∞] or C.

(iv) Show that a function f : X → C is measurable if and only if its
real and imaginary parts are measurable.

(v) Show that a function f : X → R is measurable if and only if the
magnitudes f+ := max(f, 0), f− := max(−f, 0) of its positive and
negative parts are measurable.

(vi) If fn : X → [0,+∞] are a sequence of measurable functions that
converge pointwise to a limit f : X → [0,+∞], then show that f is
also measurable. Obtain the same claim if [0,+∞] is replaced by
C.

(vii) If f : X → [0,+∞] is measurable and φ : [0,+∞] → [0,+∞] is
continuous, show that φ ◦ f is measurable. Obtain the same claim
if [0,+∞] is replaced by C.
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(viii) Show that the sum or product of two measurable functions in
[0,+∞] or C is still measurable.

Remark 1.4.33. One can also view measurable functions in a more category
theoretic fashion. Define measurable morphism or measurable map f from
one measurable space (X,B) to another (Y, C) to be a function f : X → Y
with the property that f−1(E) is B-measurable for every C-measurable set
E. Then a measurable function f : X → [0,+∞] or f : X → C is the same
thing as a measurable morphism from X to [0,+∞] or C, where the latter
is equipped with the Borel σ-algebra. Also, one σ-algebra B on a space X
is coarser than another B′ precisely when the identity map idX : X → X
is a measurable morphism from (X,B′) to (X,B). The main advantage of
adopting this viewpoint is that it is obvious that the composition of mea-
surable morphisms is again a measurable morphism. This is important in
those fields of mathematics, such as ergodic theory (discussed in [Ta2009]),
in which one frequently wishes to compose measurable transformations (and
in particular, to compose a transformation T : (X,B) → (X,B) with itself
repeatedly); but it will not play a major role in this text.

Measurable functions are particularly easy to describe on atomic spaces:

Exercise 1.4.30. Let (X,B) be a measurable space that is atomic, thus
B = A((Aα)α∈I) for some partition X =

⋃
α∈I Aα of X into disjoint non-

empty atoms. Show that a function f : X → [0,+∞] or f : X → C is
measurable if and only if it is constant on each atom, or equivalently if one
has a representation of the form

f =
∑
α∈I

cα1Aα

for some constants cα in [0,+∞] or in C as appropriate. Furthermore, the
cα are uniquely determined by f .

Exercise 1.4.31 (Egorov’s theorem). Let (X,B, μ) be a finite measure space
(so μ(X) < ∞), and let fn : X → C be a sequence of measurable functions
that converge pointwise almost everywhere to a limit f : X → C, and let
ε > 0. Show that there exists a measurable set E of measure at most ε such
that fn converges uniformly to f outside of E. Give an example to show
that the claim can fail when the measure μ is not finite.

In Section 1.3 we defined first a simple integral, then an unsigned in-
tegral, and then finally an absolutely convergent integral. We perform the
same three stages here. We begin with the simple integral:

Definition 1.4.34 (Integral of simple functions). An (unsigned) simple
function f : X → [0,+∞] on a measurable space (X,B) is a measurable
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function that takes on finitely many values a1, . . . , ak. We then define the
simple integral Simp

∫
X f dμ by the formula

Simp

∫
X
f dμ :=

k∑
j=1

ajμ(f
−1({aj})).

In order to set out the basic properties of the simple integral, the fol-
lowing preliminary result is handy:

Exercise 1.4.32. Let f : X → [0,+∞] be a simple function on a measurable
space (X,B), and suppose that there are disjoint measurable sets E1, . . . , Em

such that f is supported on E1 ∪ . . .∪Em and equals ci on each Ei for some
ci ∈ [0,+∞]. Show that

Simp

∫
X
f dμ =

m∑
j=1

cjμ(Ej).

Now we can deduce the following properties of the simple integral. As
with the Lebesgue theory, we say that a property P (x) of an element x ∈ X
of a measure space (X,B, μ) holds μ-almost everywhere if it holds outside
of a sub-null set.

Exercise 1.4.33 (Basic properties of the simple integral). Let (X,B, μ) be
a measure space, and let f, g : X → [0,+∞] be simple functions.

(i) (Monotonicity) If f≤g pointwise, then Simp
∫
X f dμ≤Simp

∫
X g dμ.

(ii) (Compatibility with measure) For every B-measurable set E, we
have Simp

∫
X 1E dμ = μ(E).

(iii) (Homogeneity) For every c ∈ [0,+∞], one has Simp
∫
X cf dμ =

c× Simp
∫
X f dμ.

(iv) (Finite additivity) Simp
∫
X(f+g) dμ=Simp

∫
X f dμ+Simp

∫
X g dμ.

(cf. Exercise 1.1.2.)

(v) (Insensitivity to refinement) If (X,B′, μ′) is a refinement of (X,B, μ)
(which means that B′ is a σ-algebra containing B, and μ : B →
[0,+∞] is the restriction of μ′ : B′ → [0,+∞] to B), then we have
Simp

∫
X f dμ = Simp

∫
X f dμ′.

(vi) (Almost everywhere equivalence) If f(x) = g(x) for μ-almost every
x ∈ X, then Simp

∫
X f dμ = Simp

∫
X g dμ.

(vii) (Finiteness) Simp
∫
X f dμ < ∞ if and only if f is finite almost

everywhere, and is supported on a set of finite measure.

(viii) (Vanishing) Simp
∫
X f dμ = 0 if and only if f is zero almost every-

where.
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Exercise 1.4.34 (Inclusion-exclusion principle). Let (X,B, μ) be a measure
space, and let A1, . . . , An be B-measurable sets of finite measure. Show that

μ

(
n⋃

i=1

Ai

)
=

∑
J⊂{1,...,n}:J �=∅

(−1)|J |−1μ

(⋂
i∈J

Ai

)
.

(Hint: Compute Simp
∫
X(1−

∏n
i=1(1− 1Ai)) dμ in two different ways.)

Remark 1.4.35. The simple integral could also be defined on finitely addi-
tive measure spaces, rather than countably additive ones, and all the above
properties would still apply. However, on a finitely additive measure space
one would have difficulty extending the integral beyond simple functions, as
we will now do.

From the simple integral, we can now define the unsigned integral, in
analogy to the way the unsigned Lebesgue integral was constructed in Sec-
tion 1.3.3.

Definition 1.4.36. Let (X,B, μ) be a measure space, and let f : X →
[0,+∞] be measurable. Then we define the unsigned integral

∫
X f dμ of f

by the formula

(1.14)

∫
X
f dμ := sup

0≤g≤f ;g simple
Simp

∫
X
g dμ.

Clearly, this definition generalises Definition 1.3.13. Indeed, if f : Rd →
[0,+∞] is Lebesgue measurable, then

∫
Rd f(x) dx =

∫
Rd f dm.

We record some easy properties of this integral:

Exercise 1.4.35 (Easy properties of the unsigned integral). Let (X,B, μ)
be a measure space, and let f, g : X → [0,+∞] be measurable.

(i) (Almost everywhere equivalence) If f = g μ-almost everywhere,
then

∫
X f dμ =

∫
X g dμ

(ii) (Monotonicity) If f ≤ g μ-almost everywhere, then
∫
X f dμ ≤∫

X g dμ.

(iii) (Homogeneity) We have
∫
X cf dμ = c

∫
X f dμ for every c ∈ [0,+∞].

(iv) (Superadditivity) We have
∫
X(f + g) dμ ≥

∫
X f dμ+

∫
X g dμ.

(v) (Compatibility with the simple integral) If f is simple, then we have∫
X f dμ = Simp

∫
X f dμ.

(vi) (Markov’s inequality) For any 0 < λ < ∞, one has

μ({x ∈ X : f(x) ≥ λ}) ≤ 1

λ

∫
X
f dμ.

In particular, if
∫
X f dμ < ∞, then the sets {x ∈ X : f(x) ≥ λ}

have finite measure for each λ > 0.
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(vii) (Finiteness) If
∫
X f dμ < ∞, then f(x) is finite for μ-almost every

x.

(viii) (Vanishing) If
∫
X f dμ = 0, then f(x) is zero for μ-almost every x.

(ix) (Vertical truncation) We have limn→∞
∫
X min(f, n) dμ =

∫
X f dμ.

(x) (Horizontal truncation) If E1 ⊂ E2 ⊂ . . . is an increasing sequence
of B-measurable sets, then

lim
n→∞

∫
X
f1En dμ =

∫
X
f1⋃∞

n=1 En
dμ.

(xi) (Restriction) If Y is a measurable subset of X, then
∫
X f1Y dμ =∫

Y f �Y dμ �Y , where f �Y : Y → [0,+∞] is the restriction of
f : X → [0,+∞] to Y , and the restriction μ �Y was defined in
Example 1.4.25. We will often abbreviate

∫
Y f �Y dμ �Y (by slight

abuse of notation) as
∫
Y f dμ.

As before, one of the key properties of this integral is its additivity:

Theorem 1.4.37. Let (X,B, μ) be a measure space, and let f, g : X →
[0,+∞] be measurable. Then∫

X
(f + g) dμ =

∫
X
f dμ+

∫
X
g dμ.

Proof. In view of superadditivity, it suffices to establish the subadditivity
property ∫

X
(f + g) dμ ≤

∫
X
f dμ+

∫
X
g dμ

We establish this in stages. We first deal with the case when μ is a finite
measure (which means that μ(X) < ∞) and f, g are bounded. Pick an
ε > 0, and let fε be f rounded down to the nearest integer multiple of ε,
and let f ε be f rounded up to the nearest integer multiple. Clearly, we have
the pointwise bounds

fε(x) ≤ f(x) ≤ f ε(x)

and

f ε(x)− fε(x) ≤ ε.

Since f is bounded, fε and f ε are simple. Similarly, define gε, g
ε. We then

have the pointwise bound

f + g ≤ f ε + gε ≤ fε + gε + 2ε,
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hence by Exercise 1.4.35 and the properties of the simple integral,∫
X
f + g dμ ≤

∫
X
fε + gε + 2ε dμ

= Simp

∫
X
fε + gε + 2ε dμ

= Simp

∫
X
fε dμ+ Simp

∫
X
gε dμ+ 2εμ(X).

From (1.14) we conclude that∫
X
f + g dμ ≤

∫
X
f dμ+

∫
X
g dμ+ 2εμ(X).

Letting ε → 0 and using the assumption that μ(X) is finite, we obtain the
claim.

Now we continue to assume that μ is a finite measure, but now we do
not assume that f, g are bounded. Then for any natural number n, we can
use the previous case to deduce that∫

X
min(f, n) + min(g, n) dμ ≤

∫
X
min(f, n) dμ+

∫
X
min(g, n) dμ.

Since min(f + g, n) ≤ min(f, n) + min(g, n), we conclude that∫
X
min(f + g, n) ≤

∫
X
min(f, n) dμ+

∫
X
min(g, n) dμ.

Taking limits as n → ∞ using vertical truncation, we obtain the claim.

Finally, we no longer assume that μ is of finite measure, and also do not
require f, g to be bounded. If either

∫
X f dμ or

∫
X g dμ is infinite, then by

monotonicity,
∫
X f+g dμ is infinite as well, and the claim follows; so we may

assume that
∫
X f dμ and

∫
X g dμ are both finite. By Markov’s inequality

(Exercise 1.4.35(vi)), we conclude that for each natural number n, the set
En := {x ∈ X : f(x) > 1

n} ∪ {x ∈ X : g(x) > 1
n} has finite measure. These

sets are increasing in n, and f, g, f + g are supported on
⋃∞

n=1En, and so
by horizontal truncation∫

X
(f + g) dμ = lim

n→∞

∫
X
(f + g)1En dμ.

From the previous case, we have∫
X
(f + g)1En dμ ≤

∫
X
f1En dμ+

∫
X
g1En dμ.

Letting n → ∞ and using horizontal truncation we obtain the claim. �

Exercise 1.4.36 (Linearity in μ). Let (X,B, μ) be a measure space, and
let f : X → [0,+∞] be measurable.

(i) Show that
∫
X f d(cμ) = c×

∫
X f dμ for every c ∈ [0,+∞].
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(ii) If μ1, μ2, . . . are a sequence of measures on B, show that∫
X
f d

∞∑
n=1

μn =

∞∑
n=1

∫
X
f dμn.

Exercise 1.4.37 (Change of variables formula). Let (X,B, μ) be a measure
space, and let φ : X → Y be a measurable morphism (as defined in Remark
1.4.33) from (X,B) to another measurable space (Y, C). Define the pushfor-
ward φ∗μ : C → [0,+∞] of μ by φ by the formula φ∗μ(E) := μ(φ−1(E)).

(i) Show that φ∗μ is a measure on C, so that (Y, C, φ∗μ) is a measure
space.

(ii) If f : Y → [0,+∞] is measurable, show that
∫
Y f dφ∗μ =

∫
X(f ◦

φ) dμ.

(Hint: The quickest proof here is via the monotone convergence theorem
(Theorem 1.4.43) below, but it is also possible to prove the exercise without
this theorem.)

Exercise 1.4.38. Let T : Rd → Rd be an invertible linear transformation,
and let m be Lebesgue measure on Rd. Show that T∗m = 1

| detT |m, where

the pushforward T∗m of m was defined in Exercise 1.4.37.

Exercise 1.4.39 (Sums as integrals). Let X be an arbitrary set (with the
discrete σ-algebra), let # be counting measure (see Exercise 1.4.26), and
let f : X → [0,+∞] be an arbitrary unsigned function. Show that f is
measurable with ∫

X
f d# =

∑
x∈X

f(x).

Once one has the unsigned integral, one can define the absolutely con-
vergent integral exactly as in the Lebesgue case:

Definition 1.4.38 (Absolutely convergent integral). Let (X,B, μ) be a mea-
sure space. A measurable function f : X → C is said to be absolutely inte-
grable if the unsigned integral

‖f‖L1(X,B,μ) :=

∫
X
|f | dμ

is finite, and use L1(X,B, μ), L1(X), or L1(μ) to denote the space of abso-
lutely integrable functions. If f is real-valued and absolutely integrable, we
define the integral

∫
X f dμ by the formula∫

X
f dμ :=

∫
X
f+ dμ−

∫
X
f− dμ
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where f+ := max(f, 0), f− := max(−f, 0) are the magnitudes of the posi-
tive and negative components of f . If f is complex-valued and absolutely
integrable, we define the integral

∫
X f dμ by the formula∫

X
f dμ :=

∫
X
Re f dμ+ i

∫
X
Im f dμ

where the two integrals on the right are interpreted as real-valued integrals.
It is easy to see that the unsigned, real-valued, and complex-valued inte-
grals defined in this manner are compatible on their common domains of
definition.

Clearly, this definition generalises the Definition 1.3.17.

We record some of the key facts about the absolutely convergent integral:

Exercise 1.4.40. Let (X,B, μ) be a measure space.

(i) Show that L1(X,B, μ) is a complex vector space.

(ii) Show that the integration map f 
→
∫
X f dμ is a complex-linear

map from L1(X,B, μ) to C.

(iii) Establish the triangle inequality ‖f +g‖L1(μ) ≤ ‖f‖L1(μ)+‖g‖L1(μ)

and the homogeneity property ‖cf‖L1(μ) = |c|‖f‖L1(μ) for all f, g ∈
L1(X,B, μ) and c ∈ C.

(iv) Show that if f, g ∈ L1(X,B, μ) are such that f(x) = g(x) for μ-
almost every x ∈ X, then

∫
X f dμ =

∫
X g dμ.

(v) If f ∈ L1(X,B, μ), and (X,B′, μ′) is a refinement of (X,B, μ), then
f ∈ L1(X,B′, μ′), and

∫
X f dμ′ =

∫
X f dμ. (Hint: It is easy to

get one inequality. To get the other inequality, first work in the
case when f is both bounded and has finite measure support (i.e.
is both vertically and horizontally truncated).)

(vi) Show that if f ∈ L1(X,B, μ), then ‖f‖L1(μ) = 0 if and only if f is
zero μ-almost everywhere.

(vii) If Y ⊂ X is B-measurable and f ∈ L1(X,B, μ), then f �Y ∈
L1(Y,B �Y , μ �Y ) and

∫
Y f �Y dμ �Y=

∫
X f1Y dμ. As before,

by abuse of notation we write
∫
Y f dμ for

∫
Y f �Y dμ �Y .

1.4.5. The convergence theorems. Let (X,B, μ) be a measure space,
and let f1, f2, . . . : X → [0,+∞] be a sequence of measurable functions.
Suppose that as n → ∞, fn(x) converges pointwise either everywhere, or μ-
almost everywhere, to a measurable limit f . A basic question in the subject
is to determine the conditions under which such pointwise convergence would
imply convergence of the integral:∫

X
fn dμ

?→
∫
X
f dμ.
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To put it another way: When can we ensure that one can interchange inte-
grals and limits,

lim
n→∞

∫
X
fn dμ

?
=

∫
X

lim
n→∞

fn dμ?

There are certainly some cases in which one can safely do this:

Exercise 1.4.41 (Uniform convergence on a finite measure space). Suppose
that (X,B, μ) is a finite measure space (so μ(X) < ∞), and fn : X →
[0,+∞] (resp. fn : X → C) are a sequence of unsigned measurable functions
(resp. absolutely integrable functions) that converge uniformly to a limit f .
Show that

∫
X fn dμ converges to

∫
X f dμ.

However, there are also cases in which one cannot interchange limits
and integrals, even when the fn are unsigned. We give the three classic
examples, all of “moving bump” type, though the way in which the bump
moves varies from example to example:

Example 1.4.39 (Escape to horizontal infinity). LetX be the real line with
Lebesgue measure, and let fn := 1[n,n+1]. Then fn converges pointwise to

f := 0, but
∫
R fn(x) dx = 1 does not converge to

∫
R f(x) dx = 0. Somehow,

all the mass in the fn has escaped by moving off to infinity in a horizontal
direction, leaving none behind for the pointwise limit f .

Example 1.4.40 (Escape to width infinity). Let X be the real line with
Lebesgue measure, and let fn := 1

n1[0,n]. Then fn now converges uniformly

to f := 0, but
∫
R fn(x) dx = 1 still does not converge to

∫
R f(x) dx =

0. Exercise 1.4.41 would prevent this from happening if all the fn were
supported in a single set of finite measure, but the increasingly wide nature
of the support of the fn prevents this from happening.

Example 1.4.41 (Escape to vertical infinity). Let X be the unit interval
[0, 1] with Lebesgue measure (restricted from R), and let fn := n1[ 1

n
, 2
n
].

Now, we have finite measure, and fn converges pointwise to f , but no
uniform convergence. And again,

∫
[0,1] fn(x) dx = 1 is not converging to∫

[0,1] f(x) dx = 0. This time, the mass has escaped vertically, through the

increasingly large values of fn.

Remark 1.4.42. From the perspective of time-frequency analysis (or per-
haps more accurately, space-frequency analysis), these three escapes are
analogous (though not quite identical) to escape to spatial infinity, escape
to zero frequency, and escape to infinite frequency respectively, thus describ-
ing the three different ways in which phase space fails to be compact (if one
excises the zero frequency as being singular).
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However, once one shuts down these avenues of escape to infinity, it
turns out that one can recover convergence of the integral. There are two
major ways to accomplish this. One is to enforce monotonicity, which pre-
vents each fn from abandoning the location where the mass of the preceding
f1, . . . , fn−1 was concentrated and which thus shuts down the above three
escape scenarios. More precisely, we have the monotone convergence theo-
rem:

Theorem 1.4.43 (Monotone convergence theorem). Let (X,B, μ) be a mea-
sure space, and let 0 ≤ f1 ≤ f2 ≤ . . . be a monotone non-decreasing sequence
of unsigned measurable functions on X. Then we have

lim
n→∞

∫
X
fn dμ =

∫
X

lim
n→∞

fn dμ.

Note that in the special case when each fn is an indicator function
fn = 1En , this theorem collapses to the upwards monotone convergence
property (Exercise 1.4.23(ii)). Conversely, the upwards monotone conver-
gence property will play a key role in the proof of this theorem.

Proof. Write f := limn→∞ fn = supn fn, then f : X → [0,+∞] is measur-
able. Since the fn are non-decreasing to f , we see from monotonicity that∫
X fn dμ are non-decreasing and bounded above by

∫
X f dμ, which gives

the bound

lim
n→∞

∫
X
fn dμ ≤

∫
X
f dμ.

It remains to establish the reverse inequality∫
X
f dμ ≤ lim

n→∞

∫
X
fn dμ.

By definition, it suffices to show that∫
X
g dμ ≤ lim

n→∞

∫
X
fn dμ,

whenever g is a simple function that is bounded pointwise by f . By vertical
truncation we may assume without loss of generality that g also is finite
everywhere, then we can write

g =
k∑

i=1

ci1Ai

for some 0 ≤ ci < ∞ and some disjoint B-measurable sets A1, . . . , Ak, thus∫
X
g dμ =

k∑
i=1

ciμ(Ai).



1.4. Abstract measure spaces 89

Let 0 < ε < 1 be arbitrary. Then we have

f(x) = sup
n

fn(x) > (1− ε)ci

for all x ∈ Ai. Thus, if we define the sets

Ai,n := {x ∈ Ai : fn(x) > (1− ε)ci}
then the Ai,n increase to Ai and are measurable. By upwards monotonicity
of measure, we conclude that

lim
n→∞

μ(Ai,n) = μ(Ai).

On the other hand, observe the pointwise bound

fn ≥
k∑

i=1

(1− ε)ci1Ai,n

for any n; integrating this, we obtain∫
X
fn dμ ≥ (1− ε)

k∑
i=1

ciμ(Ai,n).

Taking limits as n → ∞, we obtain

lim
n→∞

∫
X
fn dμ ≥ (1− ε)

k∑
i=1

ciμ(Ai);

sending ε → 0 we then obtain the claim. �

Remark 1.4.44. It is easy to see that the result still holds if the mono-
tonicity fn ≤ fn+1 only holds almost everywhere rather than everywhere.

This has a number of important corollaries. First, we can generalise
(part of) Tonelli’s theorem for exchanging sums (see Theorem 0.0.2):

Corollary 1.4.45 (Tonelli’s theorem for sums and integrals). Let (X,B, μ)
be a measure space, and let f1, f2, . . . : X → [0,+∞] be a sequence of un-
signed measurable functions. Then one has∫

X

∞∑
n=1

fn dμ =
∞∑
n=1

∫
X
fn dμ.

Proof. Apply the monotone convergence theorem (Theorem 1.4.43) to the

partial sums FN :=
∑N

n=1 fn. �

Exercise 1.4.42. Give an example to show that this corollary can fail if the
fn are assumed to be absolutely integrable rather than unsigned measurable,
even if the sum

∑∞
n=1 fn(x) is absolutely convergent for each x. (Hint: Think

about the three escapes to infinity.)
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Exercise 1.4.43 (Borel-Cantelli lemma). Let (X,B, μ) be a measure space,
and let E1, E2, E3, . . . be a sequence of B-measurable sets such that

∞∑
n=1

μ(En) < ∞.

Show that almost every x ∈ X is contained in at most finitely many of the
En (i.e. {n ∈ N : x ∈ En} is finite for almost every x ∈ X). (Hint: Apply
Tonelli’s theorem to the indicator functions 1En .)

Exercise 1.4.44.

(i) Give an alternate proof of the Borel-Cantelli lemma (Exercise 1.4.43)
that does not go through any of the convergence theorems, but in-
stead exploits the more basic properties of measure from Exercise
1.4.23.

(ii) Give a counterexample that shows that the Borel-Cantelli lemma
can fail if the condition

∑∞
n=1 μ(En)<∞ is relaxed to limn→∞ μ(En)

= 0.

Second, when one does not have monotonicity, one can at least obtain
an important inequality, known as Fatou’s lemma:

Corollary 1.4.46 (Fatou’s lemma). Let (X,B, μ) be a measure space, and
let f1, f2, . . . : X → [0,+∞] be a sequence of unsigned measurable functions.
Then ∫

X
lim inf
n→∞

fn dμ ≤ lim inf
n→∞

∫
X
fn dμ.

Proof. Write FN := infn≥N fn for eachN . Then the FN are measurable and
non-decreasing, and hence by the monotone convergence theorem (Theorem
1.4.43) ∫

X
sup
N>0

FN dμ = sup
N>0

∫
X
FN dμ.

By definition of lim inf, we have supN>0 FN = lim infn→∞ fn. By mono-
tonicity, we have

∫
X FN dμ ≤

∫
X fn dμ for all n ≥ N , and thus∫

X
FN dμ ≤ inf

n≥N

∫
X
fn dμ.

Hence we have ∫
X
lim inf
n→∞

fn dμ ≤ sup
N>0

inf
n≥N

∫
X
fn dμ.

The claim then follows by another appeal to the definition of the lim inferior.
�
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Remark 1.4.47. Informally, Fatou’s lemma tells us that when taking the
pointwise limit of unsigned functions fn, that mass

∫
X fn dμ can be de-

stroyed in the limit (as was the case in the three key moving bump examples),
but it cannot be created in the limit. Of course the unsigned hypothesis is
necessary here (consider for instance multiplying any of the moving bump
examples by −1). While this lemma was stated only for pointwise limits,
the same general principle (that mass can be destroyed, but not created,
by the process of taking limits) tends to hold for other “weak” notions of
convergence. See §1.9 of An epsilon of room, Vol. I, for some examples of
this.

Finally, we give the other major way to shut down loss of mass via escape
to infinity, which is to dominate all of the functions involved by an absolutely
convergent one. This result is known as the dominated convergence theorem:

Theorem 1.4.48 (Dominated convergence theorem). Let (X,B, μ) be a
measure space, and let f1, f2, . . . : X → C be a sequence of measurable
functions that converge pointwise μ-almost everywhere to a measurable limit
f : X → C. Suppose that there is an unsigned absolutely integrable function
G : X → [0,+∞] such that |fn| are pointwise μ-almost everywhere bounded
by G for each n. Then we have

lim
n→∞

∫
X
fn dμ =

∫
X
f dμ.

From the moving bump examples we see that this statement fails if there
is no absolutely integrable dominating function G. The reader is encouraged
to see why, in each of the moving bump examples, no such dominating
function exists, without appealing to the above theorem. Note also that
when each of the fn is an indicator function fn = 1En , the dominated
convergence theorem collapses to Exercise 1.4.24.

Proof. By modifying fn, f on a null set, we may assume without loss of
generality that the fn converge to f pointwise everywhere rather than μ-
almost everywhere, and similarly we can assume that |fn are bounded by G
pointwise everywhere rather than μ-almost everywhere.

By taking real and imaginary parts we may assume without loss of gen-
erality that fn, f are real, thus −G ≤ fn ≤ G pointwise. Of course, this
implies that −G ≤ f ≤ G is pointwise also.

If we apply Fatou’s lemma (Corollary 1.4.46) to the unsigned functions
fn +G, we see that∫

X
f +G dμ ≤ lim inf

n→∞

∫
X
fn +G dμ,
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which on subtracting the finite quantity
∫
X G dμ gives∫

X
f dμ ≤ lim inf

n→∞

∫
X
fn dμ.

Similarly, if we apply that lemma to the unsigned functions G − fn, we
obtain ∫

X
G− f dμ ≤ lim inf

n→∞

∫
X
G− fn dμ;

negating this inequality and then cancelling
∫
X G dμ again we conclude that

lim sup
n→∞

∫
X
fn dμ ≤

∫
X
f dμ.

The claim then follows by combining these inequalities. �

Remark 1.4.49. We deduced the dominated convergence theorem from
Fatou’s lemma, and Fatou’s lemma from the monotone convergence theorem.
However, one can obtain these theorems in a different order, depending on
one’s taste, as they are so closely related. For instance, in [StSk2005], the
logic is somewhat different; one first obtains the slightly simpler bounded
convergence theorem, which is the dominated convergence theorem under the
assumption that the functions are uniformly bounded and all supported on
a single set of finite measure, and then uses that to deduce Fatou’s lemma,
which in turn is used to deduce the monotone convergence theorem; and
then the horizontal and vertical truncation properties are used to extend
the bounded convergence theorem to the dominated convergence theorem.
It is instructive to view a couple different derivations of these key theorems
to get more of an intuitive understanding as to how they work.

Exercise 1.4.45. Under the hypotheses of the dominated convergence the-
orem (Theorem 1.4.48), establish also that ‖fn − f‖L1 → 0 as n → ∞.

Exercise 1.4.46 (Almost dominated convergence). Let (X,B, μ) be a mea-
sure space, and let f1, f2, . . . : X → C be a sequence of measurable func-
tions that converge pointwise μ-almost everywhere to a measurable limit
f : X → C. Suppose that there is an unsigned absolutely integrable func-
tion G, g1, g2, . . . : X → [0,+∞] such that the |fn| are pointwise μ-almost
everywhere bounded by G + gn, and that

∫
X gn dμ → 0 as n → ∞. Show

that

lim
n→∞

∫
X
fn dμ =

∫
X
f dμ.

Exercise 1.4.47 (Defect version of Fatou’s lemma). Let (X,B, μ) be a
measure space, and let f1, f2, . . . : X → [0,+∞] be a sequence of unsigned
absolutely integrable functions that converges pointwise to an absolutely
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integrable limit f . Show that∫
X
fn dμ−

∫
X
f dμ− ‖f − fn‖L1(μ) → 0

as n → ∞. (Hint: Apply the dominated convergence theorem (Theorem
1.4.48) to min(fn, f).) Informally, this result (first established in [BrLi1983])
tells us that the gap between the left and right-hand sides of Fatou’s lemma
can be measured by the quantity ‖f − fn‖L1(μ).

Exercise 1.4.48. Let (X,B, μ) be a measure space, and let g : X → [0,+∞]
be measurable. Show that the function μg : B → [0,+∞] defined by the
formula

μg(E) :=

∫
X
1Eg dμ =

∫
E
g dμ

is a measure. (Such measures are studied in greater detail in §1.2 of An
epsilon of room, Vol. I.)

The monotone convergence theorem is, in some sense, a defining property
of the unsigned integral, as the following exercise illustrates.

Exercise 1.4.49 (Characterisation of the unsigned integral). Let (X,B) be
a measurable space, and let I : f 
→ I(f) be a map from the space U(X,B)
of unsigned measurable functions f : X → [0,+∞] to [0,+∞] that obeys the
following axioms:

(i) (Homogeneity) For every f ∈ U(X,B) and c ∈ [0,+∞], one has
I(cf) = cI(f).

(ii) (Finite additivity) For every f, g ∈ U(X,B), one has I(f + g) =
I(f) + I(g).

(iii) (Monotone convergence) If 0 ≤ f1 ≤ f2 ≤ . . . are a non-decreasing
sequence of unsigned measurable functions, then I(limn→∞ fn) =
limn→∞ I(fn).

Then there exists a unique measure μ on (X,B) such that I(f) =
∫
X f dμ

for all f ∈ U(X,B). Furthermore, μ is given by the formula μ(E) := I(1E)
for all B-measurable sets E.

Exercise 1.4.50. Let (X,B, μ) be a finite measure space (i.e. μ(X) < ∞),
and let f : X → R be a bounded function. Suppose that μ is complete (see
Definition 1.4.31). Suppose that the upper integral∫

X
f dμ := inf

g≥f ;g simple

∫
X
g dμ

and lower integral ∫
X

f dμ := sup
h≤f ;h simple

∫
X
h dμ



94 1. Measure theory

agree. Show that f is measurable. (This is a converse to Exercise 1.3.11.)

We will continue to see the monotone convergence theorem, Fatou’s
lemma, and the dominated convergence theorem appear throughout the rest
of this text (and in An epsilon of room, Vol. I ).

1.5. Modes of convergence

If one has a sequence x1, x2, x3, . . . ∈ R of real numbers xn, it is unambiguous
what it means for that sequence to converge to a limit x ∈ R; it means that
for every ε > 0, there exists an N such that |xn − x| ≤ ε for all n > N .
Similarly, for a sequence z1, z2, z3, . . . ∈ C of complex numbers zn converging
to a limit z ∈ C.

More generally, if one has a sequence v1, v2, v3, . . . of d-dimensional vec-
tors vn in a real vector space Rd or complex vector space Cd, it is also
unambiguous what it means for that sequence to converge to a limit v ∈ Rd

or v ∈ Cd; it means that for every ε > 0, there exists an N such that
‖vn−v‖ ≤ ε for all n ≥ N . Here, the norm ‖v‖ of a vector v = (v(1), . . . , v(d))

can be chosen to be the Euclidean norm ‖v‖2 := (
∑d

j=1(v
(j))2)1/2, the supre-

mum norm ‖v‖∞ := sup1≤j≤d |v(j)|, or any other number of norms, but for
the purposes of convergence, these norms are all equivalent ; a sequence
of vectors converges in the Euclidean norm if and only if it converges in
the supremum norm, and similarly for any other two norms on the finite-
dimensional space Rd or Cd.

If, however, one has a sequence f1, f2, f3, . . . of functions fn : X → R or
fn : X → C on a common domain X, and a putative limit f : X → R or
f : X → C, there can now be many different ways in which the sequence
fn may or may not converge to the limit f . (One could also consider con-
vergence of functions fn : Xn → C on different domains Xn, but we will
not discuss this issue at all here.) This is in contrast to the situation with
scalars xn or zn (which corresponds to the case when X is a single point)
or vectors vn (which corresponds to the case when X is a finite set such as
{1, . . . , d}). Once X becomes infinite, the functions fn acquire an infinite
number of degrees of freedom, and this allows them to approach f in any
number of inequivalent ways.

What different types of convergence are there? As an undergraduate,
one learns of the following two basic modes of convergence:

(i) We say that fn converges to f pointwise if, for every x ∈ X, fn(x)
converges to f(x). In other words, for every ε > 0 and x ∈ X, there
existsN (which depends on both ε and x) such that |fn(x)−f(x)| ≤
ε whenever n ≥ N .
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(ii) We say that fn converges to f uniformly if, for every ε > 0, there
exists N such that for every n ≥ N , |fn(x) − f(x)| ≤ ε for every
x ∈ X. The difference between uniform convergence and pointwise
convergence is that with the former, the time N at which fn(x)
must be permanently ε-close to f(x) is not permitted to depend on
x, but must instead be chosen uniformly in x.

Uniform convergence implies pointwise convergence, but not conversely.
A typical example: the functions fn : R → R defined by fn(x) := x/n
converge pointwise to the zero function f(x) := 0, but not uniformly.

However, pointwise and uniform convergence are only two of dozens of
many other modes of convergence that are of importance in analysis. We
will not attempt to exhaustively enumerate these modes here (but see §1.9 of
An epsilon of room, Vol. I ). We will, however, discuss some of the modes of
convergence that arise from measure theory, when the domain X is equipped
with the structure of a measure space (X,B, μ), and the functions fn (and
their limit f) are measurable with respect to this space. In this context, we
have some additional modes of convergence:

(i) We say that fn converges to f pointwise almost everywhere if, for
(μ-)almost everywhere x ∈ X, fn(x) converges to f(x).

(ii) We say that fn converges to f uniformly almost everywhere, essen-
tially uniformly, or in L∞ norm if, for every ε > 0, there exists N
such that for every n ≥ N , |fn(x) − f(x)| ≤ ε for μ-almost every
x ∈ X.

(iii) We say that fn converges to f almost uniformly if, for every ε > 0,
there exists an exceptional set E ∈ B of measure μ(E) ≤ ε such
that fn converges uniformly to f on the complement of E.

(iv) We say that fn converges to f in L1 norm if the quantity ‖fn −
f‖L1(μ) =

∫
X |fn(x)− f(x)| dμ converges to 0 as n → ∞.

(v) We say that fn converges to f in measure if, for every ε > 0, the
measures μ({x ∈ X : |fn(x) − f(x)| ≥ ε}) converge to zero as
n → ∞.

Observe that each of these five modes of convergence is unaffected if one
modifies fn or f on a set of measure zero. In contrast, the pointwise and
uniform modes of convergence can be affected if one modifies fn or f even
on a single point. The L1 and L∞ modes of convergence are special cases
of the Lp mode of convergence, which is discussed in §1.3 of An epsilon of
room, Vol. I.

Remark 1.5.1. In the context of probability theory (see Section 2.3), in
which fn and f are interpreted as random variables, convergence in L1 norm
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is often referred to as convergence in mean, pointwise convergence almost
everywhere is often referred to as almost sure convergence, and convergence
in measure is often referred to as convergence in probability.

Exercise 1.5.1 (Linearity of convergence). Let (X,B, μ) be a measure
space, let fn, gn : X → C be sequences of measurable functions, and let
f, g : X → C be measurable functions.

(i) Show that fn converges to f along one of the above seven modes
of convergence if and only if |fn− f | converges to 0 along the same
mode.

(ii) If fn converges to f along one of the above seven modes of con-
vergence, and gn converges to g along the same mode, show that
fn + gn converges to f + g along the same mode, and that cfn
converges to cf along the same mode for any c ∈ C.

(iii) (Squeeze test) If fn converges to 0 along one of the above seven
modes, and |gn| ≤ fn pointwise for each n, show that gn converges
to 0 along the same mode.

We have some easy implications between modes:

Exercise 1.5.2 (Easy implications). Let (X,B, μ) be a measure space, and
let fn : X → C and f : X → C be measurable functions.

(i) If fn converges to f uniformly, then fn converges to f pointwise.

(ii) If fn converges to f uniformly, then fn converges to f in L∞ norm.
Conversely, if fn converges to f in L∞ norm, then fn converges to
f uniformly outside of a null set (i.e. there exists a null set E such
that the restriction fn �X\E of fn to the complement of E converges
to the restriction f �X\E of f).

(iii) If fn converges to f in L∞ norm, then fn converges to f almost
uniformly.

(iv) If fn converges to f almost uniformly, then fn converges to f point-
wise almost everywhere.

(v) If fn converges to f pointwise, then fn converges to f pointwise
almost everywhere.

(vi) If fn converges to f in L1 norm, then fn converges to f in measure.

(vii) If fn converges to f almost uniformly, then fn converges to f in
measure.

The reader is encouraged to draw a diagram that summarises the logical
implications between the seven modes of convergence that the above exercise
describes.
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We give four key examples that distinguish between these modes, in the
case when X is the real line R with Lebesgue measure. The first three of
these examples were already introduced in Section 1.4, but the fourth is
new, and also important.

Example 1.5.2 (Escape to horizontal infinity). Let fn := 1[n,n+1]. Then
fn converges to zero pointwise (and thus, pointwise almost everywhere), but
not uniformly in L∞ norm, almost uniformly in L1 norm, or in measure.

Example 1.5.3 (Escape to width infinity). Let fn := 1
n1[0,n]. Then fn con-

verges to zero uniformly (and thus, pointwise, pointwise almost everywhere,
in L∞ norm, almost uniformly, and in measure), but not in L1 norm.

Example 1.5.4 (Escape to vertical infinity). Let fn := n1[ 1
n
, 2
n
]. Then fn

converges to zero pointwise (and thus, pointwise almost everywhere) and
almost uniformly (and hence in measure), but not uniformly, in L∞ norm,
or in L1 norm.

Example 1.5.5 (Typewriter sequence). Let fn be defined by the formula

fn := 1
[n−2k

2k
,n−2k+1

2k
]

whenever k ≥ 0 and 2k ≤ n < 2k+1. This is a sequence of indicator functions
of intervals of decreasing length, marching across the unit interval [0, 1] over
and over again. Then fn converges to zero in measure and in L1 norm, but
not pointwise almost everywhere (and hence also not pointwise, not almost
uniformly, nor in L∞ norm, nor uniformly).

Remark 1.5.6. The L∞ norm ‖f‖L∞(μ) of a measurable function f : X →
C is defined to the infimum of all the quantities M ∈ [0,+∞] that are
essential upper bounds for f in the sense that |f(x)| ≤ M for almost every
x. Then fn converges to f in L∞ norm if and only if ‖fn − f‖L∞(μ) → 0 as

n → ∞. The L∞ and L1 norms are part of the larger family of Lp norms,
studied in §1.3 of An epsilon of room, Vol. I.

One particular advantage of L1 convergence is that, in the case when
the fn are absolutely integrable, it implies convergence of the integrals,∫

X
fn dμ →

∫
X
f dμ,

as one sees from the triangle inequality. Unfortunately, none of the other
modes of convergence automatically imply this convergence of the integral,
as the above examples show.

The purpose of these notes is to compare these modes of convergence
with each other. Unfortunately, the relationship between these modes is
not particularly simple; unlike the situation with pointwise and uniform
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convergence, one cannot simply rank these modes in a linear order from
strongest to weakest. This is ultimately because the different modes react
in different ways to the three “escape to infinity” scenarios described above,
as well as to the “typewriter” behaviour when a single set is “overwritten”
many times. On the other hand, if one imposes some additional assumptions
to shut down one or more of these escape to infinity scenarios, such as a finite
measure hypothesis μ(X) < ∞ or a uniform integrability hypothesis, then
one can obtain some additional implications between the different modes.

1.5.1. Uniqueness. Throughout these notes, (X,B, μ) denotes a measure
space. We abbreviate “μ-almost everywhere” as “almost everywhere”
throughout.

Even though the modes of convergence all differ from each other, they
are all compatible in the sense that they never disagree about which function
f a sequence of functions fn converges to, outside of a set of measure zero.
More precisely:

Proposition 1.5.7. Let fn : X → C be a sequence of measurable functions,
and let f, g : X → C be two additional measurable functions. Suppose that
fn converges to f along one of the seven modes of convergence defined above,
and fn converges to g along another of the seven modes of convergence (or
perhaps the same mode of convergence as for f). Then f and g agree almost
everywhere.

Note that the conclusion is the best one can hope for in the case of the
last five modes of convergence, since as remarked earlier, these modes of
convergence are unaffected if one modifies f or g on a set of measure zero.

Proof. In view of Exercise 1.5.2, we may assume that fn converges to f
either pointwise almost everywhere, or in measure, and similarly that fn
converges to g either pointwise almost everywhere, or in measure.

Suppose first that fn converges to both f and g pointwise almost ev-
erywhere. Then by Exercise 1.5.1, 0 converges to f − g pointwise almost
everywhere, which clearly implies that f − g is zero almost everywhere, and
the claim follows. A similar argument applies if fn converges to both f and
g in measure.

By symmetry, the only remaining case that needs to be considered is
when fn converges to f pointwise almost everywhere, and fn converges to g
in measure. We need to show that f = g almost everywhere. It suffices to
show that for every ε > 0, that |f(x)− g(x)| ≤ ε for almost every x, as the
claim then follows by setting ε = 1/m for m = 1, 2, 3, . . . and using the fact
that the countable union of null sets is again a null set.
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Fix ε > 0, and let A := {x ∈ X : |f(x)−g(x)| > ε}. This is a measurable
set; our task is to show that it has measure zero. Suppose for contradiction
that μ(A) > 0. We consider the sets

AN := {x ∈ A : |fn(x)− f(x)| ≤ ε/2 for all n ≥ N}.
These are measurable sets that are increasing in N . As fn converges to f
almost everywhere, we see that almost every x ∈ A belongs to at least one
of the AN , thus

⋃∞
N=1AN is equal to A outside of a null set. In particular,

μ(
∞⋃

N=1

AN ) > 0.

Applying monotone convergence for sets, we conclude that

μ(AN ) > 0

for some finite N ; but by the triangle inequality, we have |fn(x)−g(x)| > ε/2
for all x ∈ AN and all n ≥ N . As a consequence, fn cannot converge in
measure to g, which gives the desired contradiction. �

1.5.2. The case of a step function. One way to appreciate the distinc-
tions between the above modes of convergence is to focus on the case when
f = 0, and when each of the fn is a step function, by which we mean a con-
stant multiple fn = An1En of a measurable set En. For simplicity we will
assume that the An > 0 are positive reals, and that the En have a positive
measure μ(En) > 0. We also assume the An exhibit one of two modes of
behaviour: either the An converge to zero, or else they are bounded away
from zero (i.e. there exists c > 0 such that An ≥ c for every n). It is easy
to see that if a sequence An does not converge to zero, then it has a subse-
quence that is bounded away from zero, so it does not cause too much loss
of generality to restrict to one of these two cases.

Given such a sequence fn = An1En of step functions, we now ask, for
each of the seven modes of convergence, what it means for this sequence to
converge to zero along that mode. It turns out that the answer to the ques-
tion is controlled more or less completely by the following three quantities:

(i) The height An of the nth function fn;

(ii) The width μ(En) of the nth function fn; and

(iii) The N th tail support E∗
N :=

⋃
n≥N En of the sequence f1, f2, f3, . . ..

Indeed, we have:

Exercise 1.5.3 (Convergence for step functions). Let the notation and
assumptions be as above. Establish the following claims:

(i) fn converges uniformly to zero if and only if An → 0 as n → ∞.
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(ii) fn converges in L∞ norm to zero if and only if An → 0 as n → ∞.

(iii) fn converges almost uniformly to zero if and only if An → 0 as
n → ∞, or μ(E∗

N ) → 0 as N → ∞.

(iv) fn converges pointwise to zero if and only if An → 0 as n → ∞, or⋂∞
N=1E

∗
N = ∅.

(v) fn converges pointwise almost everywhere to zero if and only if
An → 0 as n → ∞, or

⋂∞
N=1E

∗
N is a null set.

(vi) fn converges in measure to zero if and only if An → 0 as n → ∞,
or μ(En) → 0 as n → ∞.

(vii) fn converges in L1 norm if and only if Anμ(En) → 0 as n → ∞.

To put it more informally: When the height goes to zero, then one
has convergence to zero in all modes except possibly for L1 convergence,
which requires that the product of the height and the width goes to zero.
If instead, the height is bounded away from zero and the width is positive,
then we never have uniform or L∞ convergence, but we have convergence in
measure if the width goes to zero, we have almost uniform convergence if the
tail support (which has larger measure than the width) has measure that
goes to zero, we have pointwise almost everywhere convergence if the tail
support shrinks to a null set, and pointwise convergence if the tail support
shrinks to the empty set.

It is instructive to compare this exercise with Exercise 1.5.2, or with the
four examples given in the introduction. In particular:

(i) In the escape to horizontal infinity scenario, the height and width
do not shrink to zero, but the tail set shrinks to the empty set
(while remaining of infinite measure throughout).

(ii) In the escape to width infinity scenario, the height goes to zero, but
the width (and tail support) go to infinity, causing the L1 norm to
stay bounded away from zero.

(iii) In the escape to vertical infinity, the height goes to infinity, but the
width (and tail support) go to zero (or the empty set), causing the
L1 norm to stay bounded away from zero.

(iv) In the typewriter example, the width goes to zero, but the height
and the tail support stay fixed (and thus bounded away from zero).

Remark 1.5.8. The monotone convergence theorem (Theorem 1.4.43) can
also be specialised to this case. Observe that the fn = An1En are monotone
increasing if and only if An ≤ An+1 and En ⊂ En+1 for each n. In such cases,
observe that the fn converge pointwise to f := A1E , where A := limn→∞An

and E :=
⋃∞

n=1En. The monotone convergence theorem then asserts that
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Anμ(En) → Aμ(E) as n → ∞, which is a consequence of the monotone
convergence theorem μ(En) → μ(E) for sets.

1.5.3. Finite measure spaces. The situation simplifies somewhat if the
space X has finite measure (and in particular, in the case when (X,B, μ) is a
probability space, see Section 2.3). This shuts down two of the four examples
(namely, escape to horizontal infinity or width infinity) and creates a few
more equivalences. Indeed, from Egorov’s theorem (Exercise 1.4.31), we now
have

Theorem 1.5.9 (Egorov’s theorem, again). Let X have finite measure, and
let fn : X → C and f : X → C be measurable functions. Then fn converges
to f pointwise almost everywhere if and only if fn converges to f almost
uniformly.

Note that when one specialises to step functions using Exercise 1.5.3,
then Egorov’s theorem collapses to the downward monotone convergence
property for sets (Exercise 1.4.23(iii)).

Another nice feature of the finite measure case is that L∞ convergence
implies L1 convergence:

Exercise 1.5.4. LetX have finite measure, and let fn : X → C and f : X →
C be measurable functions. Show that if fn converges to f in L∞ norm,
then fn also converges to f in L1 norm.

1.5.4. Fast convergence. The typewriter example shows that L1 conver-
gence is not strong enough to force almost uniform or pointwise almost
everywhere convergence. However, this can be rectified if one assumes that
the L1 convergence is sufficiently fast:

Exercise 1.5.5 (Fast L1 convergence). Suppose that fn, f : X → C are
measurable functions such that

∑∞
n=1 ‖fn − f‖L1(μ) < ∞; thus, not only do

the quantities ‖fn− f‖L1(μ) go to zero (which would mean L1 convergence),
but they converge in an absolutely summable fashion.

(i) Show that fn converges pointwise almost everywhere to f .

(ii) Show that fn converges almost uniformly to f .

(Hint: If you have trouble getting started, try working first in the special
case in which fn = An1En are step functions and f = 0 and use Exercise
1.5.3 in order to gain some intuition. The second part of the exercise implies
the first, but the first is a little easier to prove and may thus serve as a useful
warmup. The ε/2n trick may come in handy for the second part.)

As a corollary, we see that L1 convergence implies almost uniform or
pointwise almost everywhere convergence if we are allowed to pass to a
subsequence:
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Corollary 1.5.10. Suppose that fn : X → C are a sequence of measurable
functions that converge in L1 norm to a limit f . Then there exists a sub-
sequence fnj that converges almost uniformly (and hence, pointwise almost

everywhere) to f (while remaining convergent in L1 norm, of course).

Proof. Since ‖fn−f‖L1(μ) → 0 as n → ∞, we can select n1 < n2 < n3 < . . .

such that ‖fnj−f‖L1(μ) ≤ 2−j (say). This is enough for the previous exercise
to apply. �

Actually, one can strengthen this corollary a bit by relaxing L1 conver-
gence to convergence in measure:

Exercise 1.5.6. Suppose that fn : X → C are a sequence of measur-
able functions that converge in measure to a limit f . Then there ex-
ists a subsequence fnj that converges almost uniformly (and hence, point-
wise almost everywhere) to f . (Hint: Choose the nj so that the sets
{x ∈ X : |fnj (x)− f(x)| > 1/j} have a suitably small measure.)

It is instructive to see how this subsequence is extracted in the case of
the typewriter sequence. In general, one can view the operation of passing
to a subsequence as being able to eliminate “typewriter” situations in which
the tail support is much larger than the width.

Exercise 1.5.7. Let (X,B, μ) be a measure space, let fn : X → C be a
sequence of measurable functions converging pointwise almost everywhere as
n → ∞ to a measurable limit f : X → C, and for each n, let fn,m : X → C be
a sequence of measurable functions converging pointwise almost everywhere
as m → ∞ (keeping n fixed) to fn.

(i) If μ(X) is finite, show that there exists a sequence m1,m2, . . . such
that fn,mn converges pointwise almost everywhere to f .

(ii) Show the same claim is true if, instead of assuming that μ(X) is
finite, we merely assume that X is σ-finite, i.e., it is the countable
union of sets of finite measure.

(The claim can fail if X is not σ-finite. A counterexample is if X = NN

with counting measure, fn and f are identically zero for all n ∈ N, and fn,m
is the indicator function of the space of all sequences (ai)i∈N ∈ NN with
an ≥ m.)

Exercise 1.5.8. Let fn : X → C be a sequence of measurable functions,
and let f : X → C be another measurable function. Show that the following
are equivalent:

(i) fn converges in measure to f .

(ii) Every subsequence fnj of the fn has a further subsequence fnji
that

converges almost uniformly to f .
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1.5.5. Domination and uniform integrability. Now we turn to the re-
verse question, of whether almost uniform convergence, pointwise almost ev-
erywhere convergence, or convergence in measure can imply L1 convergence.
The escape to vertical and width infinity examples shows that, without any
further hypotheses, the answer to this question is no. However, one can do
better if one places some domination hypotheses on the fn that shut down
both of these escape routes.

We say that a sequence fn : X → C is dominated if there exists an
absolutely integrable function g : X → C such that |fn(x)| ≤ g(x) for all n
and almost every x. For instance, if X has finite measure and the fn are
uniformly bounded, then they are dominated. Observe that the sequences
in the vertical and width escape to infinity examples are not dominated
(why?).

The dominated convergence theorem (Theorem 1.4.48) then asserts that
if fn converges to f pointwise almost everywhere, then it necessarily con-
verges to f in L1 norm (and hence also in measure). Here is a variant:

Exercise 1.5.9. Suppose that fn : X → C are a dominated sequence of
measurable functions, and let f : X → C be another measurable function.
Show that fn converges in L1 norm to f if and only if fn converges in
measure to f . (Hint: One way to establish the “if” direction is to first show
that every subsequence of the fn has a further subsequence that converges
in L1 to f , using Exercise 1.5.6 and the dominated convergence theorem
(Theorem 1.4.48). Alternatively, use monotone convergence to find a set E
of finite measure such that

∫
X\E g dμ, and hence

∫
X\E fn dμ and

∫
X\E f dμ,

are small.)

There is a more general notion than domination, known as uniform
integrability, which serves as a substitute for domination in many (but not
all) contexts.

Definition 1.5.11 (Uniform integrability). A sequence fn : X → C of abso-
lutely integrable functions is said to be uniformly integrable if the following
three statements hold:

(i) (Uniform bound on L1 norm) One has

sup
n

‖fn‖L1(μ) = sup
n

∫
X
|fn| dμ < +∞.

(ii) (No escape to vertical infinity) One has

sup
n

∫
|fn|≥M

|fn| dμ → 0 as M → +∞.
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(iii) (No escape to width infinity) One has

sup
n

∫
|fn|≤δ

|fn| dμ → 0 as δ → 0.

Remark 1.5.12. It is instructive to understand uniform integrability in the
step function case fn = An1En . The uniform bound on the L1 norm then
asserts that Anμ(En) stays bounded. The lack of escape to vertical infinity
means that along any subsequence for which An → ∞, Anμ(En) must go
to zero. Similarly, the lack of escape to width infinity means that along any
subsequence for which An → 0, Anμ(En) must go to zero.

Exercise 1.5.10. (i) Show that if f is an absolutely integrable func-
tion, then the constant sequence fn = f is uniformly integrable.
(Hint: Use the monotone convergence theorem.)

(ii) Show that every dominated sequence of measurable functions is
uniformly integrable.

(iii) Give an example of a sequence that is uniformly integrable but not
dominated.

In the case of a finite measure space, there is no escape to width infinity,
and the criterion for uniform integrability simplifies to just that of excluding
vertical infinity:

Exercise 1.5.11. Suppose that X has finite measure, and let fn : X → C
be a sequence of measurable functions. Show that fn is uniformly integrable
if and only if supn

∫
|fn|≥M |fn| dμ → 0 as M → +∞.

Exercise 1.5.12 (Uniform Lp bound on finite measure implies uniform
integrability). Suppose that X has finite measure, let 1 < p < ∞, and
suppose that fn : X → C is a sequence of measurable functions such that
supn

∫
X |fn|p dμ < ∞. Show that the sequence fn is uniformly integrable.

Exercise 1.5.13. Let fn : X → C be a uniformly integrable sequence of
functions. Show that for every ε > 0 there exists a δ > 0 such that∫

E
|fn| dμ ≤ ε

whenever n ≥ 1 and E is a measurable set with μ(E) ≤ δ.

Exercise 1.5.14. This exercise is a partial converse to Exercise 1.5.13. Let
X be a probability space, and let fn : X → C be a sequence of absolutely
integrable functions with supn ‖fn‖L1 < ∞. Suppose that for every ε > 0
there exists a δ > 0 such that ∫

E
|fn| dμ ≤ ε
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whenever n ≥ 1 and E is a measurable set with μ(E) ≤ δ. Show that the
sequence fn is uniformly integrable.

The dominated convergence theorem (Theorem 1.4.48) does not have an
analogue in the uniformly integrable setting:

Exercise 1.5.15. Give an example of a sequence fn of uniformly integrable
functions that converge pointwise almost everywhere to zero, but do not
converge almost uniformly, in measure, or in L1 norm.

However, one does have an analogue of Exercise 1.5.9:

Theorem 1.5.13 (Uniformly integrable convergence in measure). Let fn : X
→ C be a uniformly integrable sequence of functions, and let f : X → C be
another function. Then fn converges in L1 norm to f if and only if fn
converges to f in measure.

Proof. The “only if” part follows from Exercise 1.5.2, so we establish the
“if” part.

By uniform integrability, there exists a finite A > 0 such that∫
X
|fn| dμ ≤ A

for all n. By Exercise 1.5.6, there is a subsequence of the fn that converges
pointwise almost everywhere to f . Applying Fatou’s lemma
(Corollary 1.4.46), we conclude that∫

X
|f | dμ ≤ A,

thus f is absolutely integrable.

Now let ε > 0 be arbitrary. By uniform integrability, one can find δ > 0
such that

(1.15)

∫
|fn|≤δ

|fn| dμ ≤ ε

for all n. By monotone convergence, and decreasing δ if necessary, we may
say the same for f , thus

(1.16)

∫
|f |≤δ

|f | dμ ≤ ε.

Let 0 < κ < δ/2 be another small quantity (that can depend on A, ε, δ)
that we will choose a bit later. From (1.15), (1.16) and the hypothesis
κ < δ/2 we have ∫

|fn−f |<κ;|f |≤δ/2
|fn| dμ ≤ ε
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and ∫
|fn−f |<κ;|f |≤δ/2

|f | dμ ≤ ε

and hence by the triangle inequality

(1.17)

∫
|fn−f |<κ;|f |≤δ/2

|f − fn| dμ ≤ 2ε.

Finally, from Markov’s inequality (Exercise 1.4.35(vi)) we have

μ({x : |f(x)| > δ/2}) ≤ A

δ/2

and thus ∫
|fn−f |<κ;|f |>δ/2

|f − fn| dμ ≤ ε ≤ A

δ/2
κ.

In particular, by shrinking κ further if necessary we see that∫
|fn−f |<κ;|f |>δ/2

|f − fn| dμ ≤ ε

and hence by (1.17)

(1.18)

∫
|fn−f |<κ

|f − fn| dμ ≤ 3ε

for all n.

Meanwhile, since fn converges in measure to f , we know that there exists
an N (depending on κ) such that

μ(|fn(x)− f(x)| ≥ κ) ≤ κ

for all n ≥ N . Applying Exercise 1.5.13, we conclude (making κ smaller if
necessary) that ∫

|fn−f |≥κ
|fn| dμ ≤ ε

and ∫
|fn−f |≥κ

|f | dμ ≤ ε

and hence by the triangle inequality∫
|fn−f |≥κ

|f − fn| dμ ≤ 2ε

for all n ≥ N . Combining this with (1.18) we conclude that

‖fn − f‖L1(μ) =

∫
X
|f − fn| dμ ≤ 5ε

for all n ≥ N , and so fn converges to f in L1 norm as desired. �
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Finally, we recall two results from the previous notes for unsigned func-
tions.

Exercise 1.5.16 (Monotone convergence theorem). Suppose that fn : X →
[0,+∞) are measurable, monotone non-decreasing in n and are such that
supn

∫
X fn dμ < ∞. Show that fn converges in L1 norm to supn fn. (Note

that supn fn can be infinite on a null set, but the definition of L1 convergence
can be easily modified to accommodate this.)

Exercise 1.5.17 (Defect version of Fatou’s lemma). Suppose that fn : X →
[0,+∞) are measurable, are such that supn

∫
X fn dμ < ∞, and converge

pointwise almost everywhere to some measurable limit f : X → [0,+∞).
Show that fn converges in L1 norm to f if and only if

∫
X fn dμ converges

to
∫
X f dμ. Informally, we see that in the unsigned, bounded mass case,

pointwise convergence implies L1 norm convergence if and only if there is
no loss of mass.

Exercise 1.5.18. Suppose that fn : X → C are a dominated sequence of
measurable functions, and let f : X → C be another measurable function.
Show that fn converges pointwise almost everywhere to f if and only if fn
converges almost uniformly to f .

Exercise 1.5.19. Let X be a probability space (see Section 2.3). Given any
real-valued measurable function f : X → R, we define the cumulative dis-
tribution function F : R → [0, 1] of f to be the function F (λ) := μ({x ∈ X :
f(x) ≤ λ}). Given another sequence fn : X → R of real-valued measurable
functions, we say that fn converges in distribution to f if the cumulative
distribution function Fn(λ) of fn converges pointwise to the cumulative dis-
tribution function F (λ) of f at all λ ∈ R for which F is continuous.

(i) Show that if fn converges to f in any of the seven senses discussed
above (uniformly, essentially uniformly, almost uniformly point-
wise, pointwise almost everywhere, in L1, or in measure), then it
converges in distribution to f .

(ii) Give an example in which fn converges to f in distribution, but
not in any of the above seven senses.

(iii) Show that convergence in distribution is not linear, in the sense
that if fn converges to f in distribution, and gn converges to g,
then fn + gn need not converge to f + g.

(iv) Show that a sequence fn can converge in distribution to two differ-
ent limits f, g, which are not equal almost everywhere.

Convergence in distribution (not to be confused with convergence in the
sense of distributions, which is studied in §1.13 of An epsilon of room, Vol.
I, is commonly used in probability; but, as the above exercise demonstrates,
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it is quite a weak notion of convergence, lacking many of the properties of
the modes of convergence discussed here.

1.6. Differentiation theorems

Let [a, b] be a compact interval of positive length (thus −∞ < a < b < +∞).
Recall that a function F : [a, b] → R is said to be differentiable at a point
x ∈ [a, b] if the limit

(1.19) F ′(x) := lim
y→x;y∈[a,b]\{x}

F (y)− F (x)

y − x

exists. In that case, we call F ′(x) the strong derivative, classical derivative,
or just derivative for short, of F at x. We say that F is everywhere differen-
tiable, or differentiable for short, if it is differentiable at all points x ∈ [a, b],
and differentiable almost everywhere if it is differentiable at almost every
point x ∈ [a, b]. If F is differentiable everywhere and its derivative F ′ is
continuous, then we say that F is continuously differentiable.

Remark 1.6.1. In §1.13 of An epsilon of room, Vol. I, the notion of a weak
derivative or distributional derivative is introduced. This type of derivative
can be applied to a much rougher class of functions and is in many ways
more suitable than the classical derivative for doing “Lebesgue” type anal-
ysis (i.e. analysis centered around the Lebesgue integral, and in particular,
allowing functions to be uncontrolled, infinite, or even undefined on sets of
measure zero). However, for now we will stick with the classical approach
to differentiation.

Exercise 1.6.1. If F : [a, b] → R is everywhere differentiable, show that F
is continuous and F ′ is measurable. If F is almost everywhere differentiable,
show that the (almost everywhere defined) function F ′ is measurable (i.e. it
is equal to an everywhere defined measurable function on [a, b] outside of a
null set), but give an example to demonstrate that F need not be continuous.

Exercise 1.6.2. Give an example of a function F : [a, b] → R which is ev-
erywhere differentiable, but not continuously differentiable. (Hint: Choose
an F that vanishes quickly at some point, say at the origin 0, but which also
oscillates rapidly near that point.)

In single-variable calculus, the operations of integration and differenti-
ation are connected by a number of basic theorems, starting with Rolle’s
theorem.

Theorem 1.6.2 (Rolle’s theorem). Let [a, b] be a compact interval of pos-
itive length, and let F : [a, b] → R be a differentiable function such that
F (a) = F (b). Then there exists x ∈ (a, b) such that F ′(x) = 0.
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Proof. By subtracting a constant from F (which does not affect differen-
tiability or the derivative) we may assume that F (a) = F (b) = 0. If F
is identically zero, then the claim is trivial, so assume that F is non-zero
somewhere. By replacing F with −F if necessary, we may assume that F
is positive somewhere, thus supx∈[a,b] F (x) > 0. On the other hand, as F

is continuous and [a, b] is compact, F must attain its maximum somewhere,
thus there exists x ∈ [a, b] such that F (x) ≥ F (y) for all y ∈ [a, b]. Then
F (x) must be positive and so x cannot equal either a or b, and thus must
lie in the interior. From the right limit of (1.19) we see that F ′(x) ≤ 0,
while from the left limit we have F ′(x) ≥ 0. Thus F ′(x) = 0 and the claim
follows. �

Remark 1.6.3. Observe that the same proof also works if F is only differ-
entiable in the interior (a, b) of the interval [a, b], so long as it is continuous
all the way up to the boundary of [a, b].

Exercise 1.6.3. Give an example to show that Rolle’s theorem can fail if f
is merely assumed to be almost everywhere differentiable, even if one adds
the additional hypothesis that f is continuous. This example illustrates
that everywhere differentiability is a significantly stronger property than
almost everywhere differentiability. We will see further evidence of this fact
later in these notes; there are many theorems that assert in their conclusion
that a function is almost everywhere differentiable, but few that manage to
conclude everywhere differentiability.

Remark 1.6.4. It is important to note that Rolle’s theorem only works
in the real scalar case when F is real-valued, as it relies heavily on the
least upper bound property for the domain R. If, for instance, we consider
complex-valued scalar functions F : [a, b] → C, then the theorem can fail; for
instance, the function F : [0, 1] → C defined by F (x) := e2πix − 1 vanishes
at both endpoints and is differentiable, but its derivative F ′(x) = 2πie2πix

is never zero. (Rolle’s theorem does imply that the real and imaginary
parts of the derivative F ′ both vanish somewhere, but the problem is that
they don’t simultaneously vanish at the same point.) Similar remarks can
be made about functions taking values in a finite-dimensional vector space,
such as Rn.

One can easily amplify Rolle’s theorem to the mean value theorem:

Corollary 1.6.5 (Mean value theorem). Let [a, b] be a compact interval of
positive length, and let F : [a, b] → R be a differentiable function. Then there

exists x ∈ (a, b) such that F ′(x) = F (b)−F (a)
b−a .
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Proof. Apply Rolle’s theorem to the function

x 
→ F (x)− F (b)− F (a)

b− a
(x− a). �

Remark 1.6.6. As Rolle’s theorem is only applicable to real scalar-valued
functions, the more general mean value theorem is also only applicable to
such functions.

Exercise 1.6.4 (Uniqueness of antiderivatives up to constants). Let [a, b] be
a compact interval of positive length, and let F : [a, b] → R and G : [a, b] →
R be differentiable functions. Show that F ′(x) = G′(x) for every x ∈ [a, b]
if and only if F (x) = G(x) + C for some constant C ∈ R and all x ∈ [a, b].

We can use the mean value theorem to deduce one of the fundamental
theorems of calculus:

Theorem 1.6.7 (Second fundamental theorem of calculus). Let F : [a, b] →
R be a differentiable function, such that F ′ is Riemann integrable. Then the

Riemann integral
∫ b
a F ′(x) dx of F ′ is equal to F (b)−F (a). In particular, we

have
∫ b
a F ′(x) dx = F (b)− F (a) whenever F is continuously differentiable.

Proof. Let ε > 0. By the definition of Riemann integrability, there exists
a finite partition a = t0 < t1 < . . . < tk = b such that

|
k∑

j=1

F ′(t∗j)(tj − tj−1)−
∫ b

a
F ′(x)| ≤ ε

for every choice of t∗j ∈ [tj−1, tj].

Fix this partition. From the mean value theorem, for each 1 ≤ j ≤ k
one can find t∗j ∈ [tj−1, tj ] such that

F ′(t∗j )(tj − tj−1) = F (tj)− F (tj−1)

and thus by the telescoping series

|(F (b)− F (a))−
∫ b

a
F ′(x)| ≤ ε.

Since ε > 0 was arbitrary, the claim follows. �

Remark 1.6.8. Even though the mean value theorem only holds for real
scalar functions, the fundamental theorem of calculus holds for complex
or vector-valued functions, as one can simply apply that theorem to each
component of that function separately.

Of course, we also have the other half of the fundamental theorem of
calculus:
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Theorem 1.6.9 (First fundamental theorem of calculus). Let [a, b] be a
compact interval of positive length. Let f : [a, b] → C be a continuous func-
tion, and let F : [a, b] → C be the indefinite integral F (x) :=

∫ x
a f(t) dt.

Then F is differentiable on [a, b], with derivative F ′(x) = f(x) for all
x ∈ [a, b]. In particular, F is continuously differentiable.

Proof. It suffices to show that

lim
h→0+

F (x+ h)− F (x)

h
= f(x)

for all x ∈ [a, b), and

lim
h→0−

F (x+ h)− F (x)

h
= f(x)

for all x ∈ (a, b]. After a change of variables, we can write

F (x+ h)− F (x)

h
=

∫ 1

0
f(x+ ht) dt

for any x ∈ [a, b) and any sufficiently small h > 0, or any x ∈ (a, b] and
any sufficiently small h < 0. As f is continuous, the function t 
→ f(x+ ht)
converges uniformly to f(x) on [0, 1] as h → 0 (keeping x fixed). As the

interval [0, 1] is bounded,
∫ 1
0 f(x+ht) dt thus converges to

∫ 1
0 f(x) dt = f(x),

and the claim follows. �

Corollary 1.6.10 (Differentiation theorem for continuous functions). Let
f : [a, b] → C be a continuous function on a compact interval. Then we have

lim
h→0+

1

h

∫
[x,x+h]

f(t) dt = f(x)

for all x ∈ [a, b),

lim
h→0+

1

h

∫
[x−h,x]

f(t) dt = f(x)

for all x ∈ (a, b], and thus

lim
h→0+

1

2h

∫
[x−h,x+h]

f(t) dt = f(x)

for all x ∈ (a, b).

In these notes we explore the question of the extent to which these the-
orems continue to hold when the differentiability or integrability conditions
on the various functions F, F ′, f are relaxed. Among the results proven in
this section are:

(i) The Lebesgue differentiation theorem, which, roughly speaking, as-
serts that Corollary 1.6.10 continues to hold for almost every x if
f is merely absolutely integrable, rather than continuous.
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(ii) A number of differentiation theorems, which assert, for instance,
that monotone, Lipschitz, or bounded variation functions in one
dimension are almost everywhere differentiable.

(iii) The second fundamental theorem of calculus for absolutely contin-
uous functions.

1.6.1. The Lebesgue differentiation theorem in one dimension.
The main objective of this section is to show

Theorem 1.6.11 (Lebesgue differentiation theorem, one-dimensional case).
Let f : R → C be an absolutely integrable function, and let F : R → C be the
definite integral F (x) :=

∫
[−∞,x] f(t) dt. Then F is continuous and almost

everywhere differentiable, and F ′(x) = f(x) for almost every x ∈ R.

This can be viewed as a variant of Corollary 1.6.10; the hypotheses are
weaker because f is only assumed to be absolutely integrable, rather than
continuous (and can live on the entire real line, and not just on a compact
interval); but the conclusion is weaker too, because F is only found to be al-
most everywhere differentiable, rather than everywhere differentiable. (But
such a relaxation of the conclusion is necessary at this level of generality;
consider for instance the example when f = 1[0,1].)

The continuity is an easy exercise:

Exercise 1.6.5. Let f : R → C be an absolutely integrable function, and
let F : R → C be the definite integral F (x) :=

∫
[−∞,x] f(t) dt. Show that F

is continuous.

The main difficulty is to show that F ′(x) = f(x) for almost every x ∈ R.
This will follow from

Theorem 1.6.12 (Lebesgue differentiation theorem, second formulation).
Let f : R → C be an absolutely integrable function. Then

(1.20) lim
h→0+

1

h

∫
[x,x+h]

f(t) dt = f(x)

for almost every x ∈ R, and

(1.21) lim
h→0+

1

h

∫
[x−h,x]

f(t) dt = f(x)

for almost every x ∈ R.

Exercise 1.6.6. Show that Theorem 1.6.11 follows from Theorem 1.6.12.

We will just prove the first fact (1.20); the second fact (1.21) is similar
(or can be deduced from (1.20) by replacing f with the reflected function
x 
→ f(−x).
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We are taking f to be complex valued, but it is clear from taking real
and imaginary parts that it suffices to prove the claim when f is real-valued,
and we shall thus assume this for the rest of the argument.

The conclusion (1.20) we want to prove is a convergence theorem—an
assertion that for all functions f in a given class (in this case, the class
of absolutely integrable functions f : R → R), a certain sequence of linear
expressions Thf (in this case, the right averages Thf(x) =

1
h

∫
[x,x+h] f(t) dt)

converge in some sense (in this case, pointwise almost everywhere) to a
specified limit (in this case, f). There is a general and very useful argument
to prove such convergence theorems, known as the density argument. This
argument requires two ingredients, which we state informally as follows:

(i) A verification of the convergence result for some “dense subclass” of
“nice” functions f , such as continuous functions, smooth functions,
simple functions, etc. By “dense”, we mean that a general function
f in the original class can be approximated to arbitrary accuracy
in a suitable sense by a function in the nice subclass.

(ii) A quantitative estimate that upper bounds the maximal fluctuation
of the linear expressions Thf in terms of the “size” of the function
f (where the precise definition of “size” depends on the nature of
the approximation in the first ingredient).

Once one has these two ingredients, it is usually not too hard to put them
together to obtain the desired convergence theorem for general functions f
(not just those in the dense subclass). We illustrate this with a simple
example:

Proposition 1.6.13 (Translation is continuous in L1). Let f : Rd → C be
an absolutely integrable function, and for each h ∈ Rd, let fh : R

d → C be
the shifted function

fh(x) := f(x− h).

Then fh converges in L1 norm to f as h → 0, thus

lim
h→0

∫
Rd

|fh(x)− f(x)| dx = 0.

Proof. We first verify this claim for a dense subclass of f , namely the func-
tions f which are continuous and compactly supported (i.e. they vanish
outside of a compact set). Such functions are continuous, and thus fh con-
verges uniformly to f as h → 0. Furthermore, as f is compactly supported,
the support of fh−f stays uniformly bounded for h in a bounded set. From
this we see that fh also converges to f in L1 norm as required.
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Next, we observe the quantitative estimate

(1.22)

∫
Rd

|fh(x)− f(x)| dx ≤ 2

∫
Rd

|f(x)| dx

for any h ∈ Rd. This follows easily from the triangle inequality∫
Rd

|fh(x)− f(x)| dx ≤
∫
Rd

|fh(x)| dx+

∫
Rd

|f(x)| dx

together with the translation invariance of the Lebesgue integral:∫
Rd

|fh(x)| dx =

∫
Rd

|f(x)| dx.

Now we put the two ingredients together. Let f : Rd → C be absolutely
integrable, and let ε > 0 be arbitrary. Applying Littlewood’s second prin-
ciple (Theorem 1.3.20(iii)) to the absolutely integrable function F ′, we can
find a continuous, compactly supported function g : Rd → C such that∫

Rd

|f(x)− g(x)| dx ≤ ε.

Applying (1.22), we conclude that∫
Rd

|(f − g)h(x)− (f − g)(x)| dx ≤ 2ε,

which we rearrange as∫
Rd

|(fh − f)h(x)− (gh − g)(x)| dx ≤ 2ε.

By the dense subclass result, we also know that∫
Rd

|gh(x)− g(x)| dx ≤ ε

for all h sufficiently close to zero. From the triangle inequality, we conclude
that ∫

Rd

|fh(x)− f(x)| dx ≤ 3ε

for all h sufficiently close to zero, and the claim follows. �

Remark 1.6.14. In the above application of the density argument, we
proved the required quantitative estimate directly for all functions f in the
original class of functions. However, it is also possible to use the density
argument a second time and initially verify the quantitative estimate just
for functions f in a nice subclass (e.g. continuous functions of compact
support). In many cases, one can then extend that estimate to the general
case by using tools such as Fatou’s lemma (Corollary 1.4.46), which are
particularly suited for showing that upper bound estimates are preserved
with respect to limits.
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Exercise 1.6.7. Let f : Rd → C, g : Rd → C be Lebesgue measurable
functions such that f is absolutely integrable and g is essentially bounded
(i.e. bounded outside of a null set). Show that the convolution f∗g : Rd → C
defined by the formula

f ∗ g(x) =
∫
Rd

f(y)g(x− y) dy

is well defined (in the sense that the integrand on the right-hand side is
absolutely integrable) and that f ∗ g is a bounded, continuous function.

The above exercise is illustrative of a more general intuition, which is
that convolutions tend to be smoothing in nature; the convolution f ∗ g of
two functions is usually at least as regular as, and often more regular than,
either of the two factors f, g.

This smoothing phenomenon gives rise to an important fact, namely the
Steinhaus theorem:

Exercise 1.6.8 (Steinhaus theorem). Let E ⊂ Rd be a Lebesgue measur-
able set of positive measure. Show that the set E −E := {x− y : x, y ∈ E}
contains an open neighbourhood of the origin. (Hint: Reduce to the case
when E is bounded, and then apply the previous exercise to the convolution
1E ∗ 1−E , where −E := {−y : y ∈ E}.)
Exercise 1.6.9. A homomorphism f : Rd → C is a map with the property
that f(x+ y) = f(x) + f(y) for all x, y ∈ Rd.

(i) Show that all measurable homomorphisms are continuous. (Hint:
For any disk D centered at the origin in the complex plane, show
that f−1(z +D) has positive measure for at least one z ∈ C, and
then use the Steinhaus theorem from the previous exercise.)

• Show that f is a measurable homomorphism if and only if it takes
the form f(x1, . . . , xd) = x1z1+. . .+xdzd for all x1, . . . , xd ∈ R and
some complex coefficients z1, . . . , zd. (Hint: First establish this for
rational x1, . . . , xd, and then use the previous part of this exercise.)

(ii) (For readers familiar with Zorn’s lemma, see §2.4 of An epsilon of
room, Vol. I.) Show that there exist homomorphisms f : Rd → C
which are not of the form in the previous exercise. (Hint: View
Rd (or C) as a vector space over the rationals Q, and use the
fact (from Zorn’s lemma) that every vector space—even an infinite-
dimensional one—has at least one basis.) This gives an alternate
construction of a non-measurable set to that given in previous
notes.

Remark 1.6.15. One drawback to the density argument is it gives con-
vergence results which are qualitative rather than quantitative—there is
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no explicit bound on the rate of convergence. For instance, in Proposi-
tion 1.6.13, we know that for any ε > 0, there exists δ > 0 such that∫
Rd |fh(x) − f(x)| dx ≤ ε whenever |h| ≤ δ, but we do not know exactly
how δ depends on ε and f . Actually, the proof does eventually give such
a bound, but it depends on “how measurable” the function f is, or more
precisely how “easy” it is to approximate f by a “nice” function. To il-
lustrate this issue, let’s work in one dimension and consider the function
f(x) := sin(Nx)1[0,2π](x), where N ≥ 1 is a large integer. On the one hand,

f is bounded in the L1 norm uniformly in N :
∫
R |f(x)| dx ≤ 2π (indeed,

the left-hand side is equal to 2). On the other hand, it is not hard to see
that

∫
R |fπ/N(x) − f(x)| dx ≥ c for some absolute constant c > 0. Thus,

if one force
∫
R |fh(x) − f(x)| dx to drop below c, one has to make h at

most π/N from the origin. Making N large, we thus see that the rate of
convergence of

∫
R |fh(x) − f(x)| dx to zero can be arbitrarily slow, even

though f is bounded in L1. The problem is that as N gets large, it becomes
increasingly difficult to approximate f well by a “nice” function, by which
we mean a uniformly continuous function with a reasonable modulus of con-
tinuity, due to the increasingly oscillatory nature of f . See [Ta2008, §1.4]
for some further discussion of this issue, and what quantitative substitutes
are available for such qualitative results.

Now we return to the Lebesgue differentiation theorem, and apply the
density argument. The dense subclass result is already contained in Corol-
lary 1.6.10, which asserts that (1.20) holds for all continuous functions f .
The quantitative estimate we will need is the following special case of the
Hardy-Littlewood maximal inequality :

Lemma 1.6.16 (One-sided Hardy-Littlewood maximal inequality). Let f :
R → C be an absolutely integrable function, and let λ > 0. Then

m({x ∈ R : sup
h>0

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ}) ≤ 1

λ

∫
R
|f(t)| dt.

We will prove this lemma shortly, but let us first see how this, combined
with the dense subclass result, will give the Lebesgue differentiation theorem.
Let f : R → C be absolutely integrable, and let ε, λ > 0 be arbitrary. Then
by Littlewood’s second principle, we can find a function g : R → C which is
continuous and compactly supported, with∫

R
|f(x)− g(x)| dx ≤ ε.

Applying the one-sided Hardy-Littlewood maximal inequality, we conclude
that

m({x ∈ R : sup
h>0

1

h

∫
[x,x+h]

|f(t)− g(t)| dt ≥ λ}) ≤ ε

λ
.
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In a similar spirit, from Markov’s inequality (Lemma 1.3.15) we have

m({x ∈ R : |f(x)− g(x)| ≥ λ}) ≤ ε

λ
.

By subadditivity, we conclude that for all x ∈ R outside of a set E of
measure at most 2ε/λ, one has both

(1.23)
1

h

∫
[x,x+h]

|f(t)− g(t)| dt < λ

and

(1.24) |f(x)− g(x)| < λ

for all h > 0.

Now let x ∈ R\E. From the dense subclass result (Corollary 1.6.10)
applied to the continuous function g, we have

| 1
h

∫
[x,x+h]

g(t) dt− g(x)| < λ

whenever h is sufficiently close to x. Combining this with (1.23), (1.24), and
the triangle inequality, we conclude that

| 1
h

∫
[x,x+h]

f(t) dt− f(x)| < 3λ

for all h sufficiently close to zero. In particular, we have

lim sup
h→0

| 1
h

∫
[x,x+h]

f(t) dt− f(x)| < 3λ

for all x outside of a set of measure 2ε/λ. Keeping λ fixed and sending ε to
zero, we conclude that

lim sup
h→0

| 1
h

∫
[x,x+h]

f(t) dt− f(x)| < 3λ

for almost every x ∈ R. If we then let λ go to zero along a countable
sequence (e.g. λ := 1/n for n = 1, 2, . . .), we conclude that

lim sup
h→0

| 1
h

∫
[x,x+h]

f(t) dt− f(x)| = 0

for almost every x ∈ R, and the claim follows.

The only remaining task is to establish the one-sided Hardy-Littlewood
maximal inequality. We will do so by using the rising sun lemma:

Lemma 1.6.17 (Rising sun lemma). Let [a, b] be a compact interval, and
let F : [a, b] → R be a continuous function. Then one can find an at most
countable family of disjoint non-empty open intervals In = (an, bn) in [a, b]
with the following properties:
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(i) For each n, either F (an) = F (bn), or else an = a and F (bn) ≥
F (an).

(ii) If x ∈ [a, b] does not lie in any of the intervals In, then one must
have F (y) ≤ F (x) for all x ≤ y ≤ b.

Remark 1.6.18. To explain the name “rising sun lemma”, imagine the
graph {(x, F (x)) : x ∈ [a, b]} of F as depicting a hilly landscape, with the
sun shining horizontally from the rightward infinity (+∞, 0) (or rising from
the east, if you will). Those x for which F (y) ≤ F (x) are the locations
on the landscape which are illuminated by the sun. The intervals In then
represent the portions of the landscape that are in shadow. The reader is
encouraged to draw a picture14 to illustrate this perspective.

This lemma is proven using the following basic fact:

Exercise 1.6.10. Show that any open subset U of R can be written as
the union of at most countably many disjoint non-empty open intervals,
whose endpoints lie outside of U . (Hint: First show that every x in U is
contained in a maximal open subinterval (a, b) of U , and that these maximal
open subintervals are disjoint, with each such interval containing at least one
rational number.)

Proof. (Proof of rising sun lemma) Let U be the set of all x ∈ (a, b) such
that F (y) > F (x) for at least one x < y < b. As F is continuous, U is open,
and so U is the union of at most countably many disjoint non-empty open
intervals In = (an, bn), with the endpoints an, bn lying outside of U .

The second conclusion of the rising sun lemma is clear from construction,
so it suffices to establish the first. Suppose first that In = (an, bn) is such that
an �= a. As the endpoint an does not lie in U , we must have F (y) ≤ F (an)
for all an ≤ y ≤ b; similarly, we have F (y) ≤ F (bn) for all bn ≤ y ≤ b.
In particular, we have F (bn) ≤ F (an). By the continuity of F , it will then
suffice to show that F (bn) ≥ F (t) for all an < t < bn.

Suppose for contradiction that there was an < t < bn with F (bn) < F (t).
Let A := {s ∈ [t, b] : F (s) ≥ F (t)}, then A is a closed set that contains t
but not b. Set t∗ := sup(A), then t∗ ∈ [t, b) ⊂ In ⊂ U , and thus there
exists t∗ < y ≤ b such that F (y) > F (t∗). Since F (t∗) ≥ F (t) > F (bn), and
F (bn) ≥ F (z) for all bn ≤ z ≤ b, we see that y cannot exceed bn, and thus
lies in A, but this contradicts the fact that t∗ is the supremum of A.

The case when an = a is similar and is left to the reader; the only
difference is that we can no longer assert that F (y) ≤ F (an) for all an ≤
y ≤ b, and so do not have the upper bound F (bn) ≤ F (an). �

14Author’s note: I have deliberately omitted including such pictures in the text, as I feel that
it is far more instructive and useful for the reader to directly create a personalised visual aid for
these results.
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Now we can prove the one-sided Hardy-Littlewood maximal inequality.
By upwards monotonicity, it will suffice to show that

m({x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ}) ≤ 1

λ

∫
R
|f(t)| dt

for any compact interval [a, b]. By modifying λ by an epsilon, we may replace
the non-strict inequality here with strict inequality:
(1.25)

m({x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt > λ}) ≤ 1

λ

∫
R
|f(t)| dt.

Fix [a, b]. We apply the rising sun lemma to the function F : [a, b] → R
defined as

F (x) :=

∫
[a,x]

|f(t)| dt− (x− a)λ.

By Corollary 1.6.5, F is continuous, and so we can find an at most countable
sequence of intervals In = (an, bn) with the properties given by the rising
sun lemma. From the second property of that lemma, we observe that

{x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt > λ} ⊂
⋃
n

In,

since the property 1
h

∫
[x,x+h] |f(t)| dt > λ can be rearranged as F (x + h) >

F (x). By countable additivity, we may thus upper bound the left-hand side
of (1.25) by

∑
n(bn − an). On the other hand, since F (bn)− F (an) ≥ 0, we

have ∫
In

|f(t)| dt ≥ λ(bn − an)

and thus ∑
n

(bn − an) ≤
1

λ

∑
n

∫
In

|f(t)| dt.

As the In are disjoint intervals in I, we may apply monotone convergence
and monotonicity to conclude that∑

n

∫
In

|f(t)| dt ≤
∫
[a,b]

|f(t)| dt,

and the claim follows.

Exercise 1.6.11 (Two-sided Hardy-Littlewood maximal inequality). Let
f : R → C be an absolutely integrable function, and let λ > 0. Show that

m({x ∈ R : sup
x∈I

1

|I|

∫
I
|f(t)| dt ≥ λ}) ≤ 2

λ

∫
R
|f(t)| dt,

where the supremum ranges over all intervals I of positive length that con-
tain x.
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Exercise 1.6.12 (Rising sun inequality). Let f : R → R be an absolutely
integrable function, and let f∗ : R → R be the one-sided signed Hardy-
Littlewood maximal function

f∗(x) := sup
h>0

1

h

∫
[x,x+h]

f(t) dt.

Establish the rising sun inequality

λm({f∗(x) > λ}) ≤
∫
x:f∗(x)>λ

f(x) dx

for all real λ (note here that we permit λ to be zero or negative), and show
that this inequality implies Lemma 1.6.16. (Hint: First do the λ = 0 case,
by invoking the rising sun lemma.) See [Ta2009, §2.9] for some further
discussion of inequalities of this type, and applications to ergodic theory
(and in particular, the maximal ergodic theorem).

Exercise 1.6.13. Show that the left- and right-hand sides in Lemma 1.6.16
are in fact equal. (Hint: One may first wish to try this in the case when f
has compact support, in which case one can apply the rising sun lemma to
a sufficiently large interval containing the support of f .)

1.6.2. The Lebesgue differentiation theorem in higher dimensions.
Now we extend the Lebesgue differentiation theorem to higher dimensions.
Theorem 1.6.11 does not have an obvious high-dimensional analogue, but
Theorem 1.6.12 does:

Theorem 1.6.19 (Lebesgue differentiation theorem in general dimension).
Let f : Rd → C be an absolutely integrable function. Then for almost every
x ∈ Rd, one has

(1.26) lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

and

lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x),

where B(x, r) := {y ∈ Rd : |x− y| < r} is the open ball of radius r centered
at x.

From the triangle inequality we see that

| 1

m(B(x, r))

∫
B(x,r)

f(y) dy − f(x)| = | 1

m(B(x, r))

∫
B(x,r)

f(y)− f(x) dy|

≤ 1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy,
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so we see that the first conclusion of Theorem 1.6.19 implies the second. A
point x for which (1.26) holds is called a Lebesgue point of f ; thus, for an
absolutely integrable function f , almost every point inRd will be a Lebesgue
point for Rd.

Exercise 1.6.14. Call a function f : Rd → C locally integrable if, for every
x ∈ Rd, there exists an open neighbourhood of x on which f is absolutely
integrable.

(i) Show that f is locally integrable if and only if
∫
B(0,r) |f(x)| dx < ∞

for all r > 0.

(ii) Show that Theorem 1.6.19 implies a generalisation of itself in which
the condition of absolute integrability of f is weakened to local
integrability.

Exercise 1.6.15. For each h > 0, let Eh be a subset of B(0, h) with the
property that m(Eh) ≥ cm(B(0, h)) for some c > 0 independent of h. Show
that if f : Rd → C is locally integrable, and x is a Lebesgue point of f , then

lim
h→0

1

m(Eh)

∫
x+Eh

f(y) dy = f(x).

Conclude that Theorem 1.6.19 implies Theorem 1.6.12.

To prove Theorem 1.6.19, we use the density argument. The dense
subclass case is easy:

Exercise 1.6.16. Show that Theorem 1.6.19 holds whenever f is continu-
ous.

The quantitative estimate needed is the following:

Theorem 1.6.20 (Hardy-Littlewood maximal inequality). Let f : Rd → C
be an absolutely integrable function, and let λ > 0. Then

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy ≥ λ}) ≤ Cd

λ

∫
R
|f(t)| dt

for some constant Cd > 0 depending only on d.

Remark 1.6.21. The expression supr>0
1

m(B(x,r))

∫
B(x,r) |f(y)| dy ≥ λ} is

known as the Hardy-Littlewood maximal function of f , and is often denoted
Mf(x). It is an important function in the field of (real-variable) harmonic
analysis.

Exercise 1.6.17. Use the density argument to show that Theorem 1.6.20
implies Theorem 1.6.19.
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In the one-dimensional case, this estimate was established via the rising
sun lemma. Unfortunately, that lemma relied heavily on the ordered nature
of R, and does not have an obvious analogue in higher dimensions. Instead,
we will use the following covering lemma. Given an open ball B = B(x, r)
in Rd and a real number c > 0, we write cB := B(x, cr) for the ball with the
same center as B, but c times the radius. (Note that this is slightly different
from the set c · B := {cy : y ∈ B}—why?) Note that |cB| = cd|B| for any
open ball B ⊂ Rd and any c > 0.

Lemma 1.6.22 (Vitali-type covering lemma). Let B1, . . . , Bn be a finite
collection of open balls in Rd (not necessarily disjoint). Then there exists a
subcollection B′

1, . . . , B
′
m of disjoint balls in this collection, such that

(1.27)
n⋃

i=1

Bi ⊂
m⋃
j=1

3B′
j.

In particular, by finite subadditivity,

m(
n⋃

i=1

Bi) ≤ 3d
m∑
j=1

m(B′
j).

Proof. We use a greedy algorithm argument, selecting the balls B′
i to be

as large as possible while remaining disjoint. More precisely, we run the
following algorithm:

Step 0. Initialise m = 0 (so that, initially, there are no balls B′
1, . . . , B

′
m in

the desired collection).

Step 1. Consider all the balls Bj that do not already intersect one of the
B′

1, . . . , B
′
m (so, initially, all of the balls B1, . . . , Bn will be consid-

ered). If there are no such balls, STOP. Otherwise, go on to Step
2.

Step 2. Locate the largest ball Bj that does not already intersect one of
the B′

1, . . . , B
′
m. (If there are multiple largest balls with exactly

the same radius, break the tie arbitrarily.) Add this ball to the col-
lection B′

1, . . . , B
′
m by setting B′

m+1 := Bj and then incrementing
m to m+ 1. Then return to Step 1.

Note that at each iteration of this algorithm, the number of available balls
amongst the B1, . . . , Bn drops by at least one (since each ball selected
certainly intersects itself and so cannot be selected again). So this algo-
rithm terminates in finite time. It is also clear from construction that the
B′

1, . . . , B
′
m are a subcollection of the B1, . . . , Bn consisting of disjoint balls.

So the only task remaining is to verify that (1.27) holds at the completion
of the algorithm, i.e., to show that each ball Bi in the original collection is
covered by the triples 3B′

j of the subcollection.
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For this, we argue as follows. Take any ball Bi in the original collection.
Because the algorithm only halts when there are no more balls that are
disjoint from the B′

1, . . . , B
′
m, the ball Bi must intersect at least one of the

balls B′
j in the subcollection. Let B′

j be the first ball with this property, thus

Bi is disjoint from B′
1, . . . , B

′
j−1, but intersects B

′
j . Because B′

j was chosen

to be the largest amongst all balls that did not intersect B′
1, . . . , B

′
j−1, we

conclude that the radius of Bi cannot exceed that of B′
j . From the triangle

inequality, this implies that Bi ⊂ 3B′
j , and the claim follows. �

Exercise 1.6.18. Technically speaking, the above algorithmic argument
was not phrased in the standard language of formal mathematical deduction,
because in that language, any mathematical object (such as the natural
number m) can only be defined once, and not redefined multiple times as is
done in most algorithms. Rewrite the above argument in a way that avoids
redefining any variable. (Hint: Introduce a “time” variable t, and recursively
construct families B′

1,t, . . . , B
′
mt,t of balls that represent the outcome of the

above algorithm after t iterations (or t∗ iterations, if the algorithm halted at
some previous time t∗ < t). For this particular algorithm, there are also more
ad hoc approaches that exploit the relatively simple nature of the algorithm
to allow for a less notationally complicated construction.) More generally,
it is possible to use this time parameter trick to convert any construction
involving a provably terminating algorithm into a construction that does not
redefine any variable. (It is, however, dangerous to work with any algorithm
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that has an infinite run time, unless one has a suitably strong convergence
result for the algorithm that allows one to take limits, either in the classical
sense or in the more general sense of jumping to limit ordinals; in the latter
case, one needs to use transfinite induction in order to ensure that the use
of such algorithms is rigorous; see §2.4 of An epsilon of room, Vol. I.)

Remark 1.6.23. The actual Vitali covering lemma [Vi1908] is slightly
different than this one, but we will not need it here. Actually, there is a
family of related covering lemmas which are useful for a variety of tasks in
harmonic analysis; see, for instance, [deG1981] for further discussion.

Now we can prove the Hardy-Littlewood inequality, which we will do
with the constant Cd := 3d. It suffices to verify the claim with strict in-
equality,

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy > λ}) ≤ Cd

λ

∫
R
|f(t)| dt,

as the non-strict case then follows by perturbing λ slightly and then taking
limits.

Fix f and λ. By inner regularity, it suffices to show that

m(K) ≤ 3d

λ

∫
R
|f(t)| dt

whenever K is a compact set that is contained in

{x ∈ Rd : sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy > λ}.

By construction, for every x ∈ K, there exists an open ball B(x, r) such
that

(1.28)
1

m(B(x, r))

∫
B(x,r)

|f(y)| dy > λ.

By compactness of K, we can cover K by a finite number B1, . . . , Bn of such
balls. Applying the Vitali-type covering lemma, we can find a subcollection
B′

1, . . . , B
′
m of disjoint balls such that

m(
n⋃

i=1

Bi) ≤ 3d
m∑
j=1

m(B′
j).

By (1.28), on each ball B′
j we have

m(B′
j) <

1

λ

∫
B′

j

|f(y)| dy;
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summing in j and using the disjointness of the B′
j we conclude that

m(
n⋃

i=1

Bi) ≤
3d

λ

∫
Rd

|f(y)| dy.

Since the B1, . . . , Bn cover K, we obtain Theorem 1.6.20 as desired.

Exercise 1.6.19. Improve the constant 3d in the Hardy-Littlewood max-
imal inequality to 2d. (Hint: Observe that with the construction used to
prove the Vitali covering lemma, the centers of the balls Bi are contained
in

⋃m
j=1 2B

′
j and not just in

⋃m
j=1 3B

′
j . To exploit this observation one may

need to first create an epsilon of room, as the centers are not by themselves
sufficient to cover the required set.)

Remark 1.6.24. The optimal value of Cd is not known in general, although
a fairly recent result of Melas [Me2003] gives the surprising conclusion that

the optimal value of C1 is C1 =
11+

√
61

12 = 1.56 . . .. It is known that Cd grows
at most linearly in d, thanks to a result of Stein and Strömberg [StSt1983],
but it is not known if Cd is bounded in d or grows as d → ∞.

Exercise 1.6.20 (Dyadic maximal inequality). If f : Rd → C is an abso-
lutely integrable function, establish the dyadic Hardy-Littlewood maximal
inequality

m({x ∈ Rd : sup
x∈Q

1

|Q|

∫
Q
|f(y)| dy ≥ λ}) ≤ 1

λ

∫
R
|f(t)| dt

where the supremum ranges over all dyadic cubes Q that contain x. (Hint:
The nesting property of dyadic cubes will be useful when it comes to the
covering lemma stage of the argument, much as it was in Exercise 1.1.14.)

Exercise 1.6.21 (Besicovich covering lemma in one dimension). Let
I1, . . . , In be a finite family of open intervals in R (not necessarily disjoint).
Show that there exist a subfamily I ′1, . . . , I

′
m of intervals such that:

(i)
⋃n

i=1 In =
⋃m

j=1 I
′
m.

(ii) Each point x ∈ R is contained in at most two of the I ′m.

(Hint: First refine the family of intervals so that no interval Ii is contained
in the union of the the other intervals. At that point, show that it is no
longer possible for a point to be contained in three of the intervals.) There
is a variant of this lemma that holds in higher dimensions, known as the
Besicovitch covering lemma.

Exercise 1.6.22. Let μ be a Borel measure (i.e., a countably additive mea-
sure on the Borel σ-algebra) on R, such that 0 < μ(I) < ∞ for every
interval I of positive length. Assume that μ is inner regular, in the sense
that μ(E) = supK⊂E, compact μ(K) for every Borel measurable set E. (As
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it turns out, from the theory of Radon measures, all locally finite Borel mea-
sures have this property, but we will not prove this here; see §1.10 of An
epsilon of room, Vol. I.) Establish the Hardy-Littlewood maximal inequality

μ({x ∈ R : sup
x∈I

1

μ(I)

∫
I
|f(y)| dμ(y) ≥ λ}) ≤ 2

λ

∫
R
|f(y)| dμ(y)

for any absolutely integrable function f ∈ L1(μ), where the supremum
ranges over all open intervals I that contain x. Note that this essentially
generalises Exercise 1.6.11, in which μ is replaced by Lebesgue measure.
(Hint: Repeat the proof of the usual Hardy-Littlewood maximal inequality,
but use the Besicovich covering lemma in place of the Vitali-type covering
lemma. Why do we need the former lemma here instead of the latter?)

Exercise 1.6.23 (Cousin’s theorem). Prove Cousin’s theorem: given any
function δ : [a, b] → (0,+∞) on a compact interval [a, b] of positive length,
there exists a partition a = t0 < t1 < . . . < tk = b with k ≥ 1, together with
real numbers t∗j ∈ [tj−1, tj ] for each 1 ≤ j ≤ k and tj − tj−1 ≤ δ(t∗j). (Hint:

Use the Heine-Borel theorem, which asserts that any open cover of [a, b] has
a finite subcover, followed by the Besicovitch covering lemma.) This theo-
rem is useful in a variety of applications related to the second fundamental
theorem of calculus, as we shall see below. The positive function δ is known
as a gauge function.

Now we turn to consequences of the Lebesgue differentiation theorem.
Given a Lebesgue measurable set E ⊂ Rd, call a point x ∈ Rd a point

of density for E if m(E∩B(x,r))
m(B(x,r)) → 1 as r → 0. Thus, for instance, if E =

[−1, 1]\{0}, then every point in (−1, 1) (including the boundary point 0) is
a point of density for E, but the endpoints −1, 1 (as well as the exterior of
E) are not points of density. One can think of a point of density as being an
“almost interior” point of E; it is not necessarily the case that one can fit
a small ball B(x, r) centered at x inside of E, but one can fit most of that
small ball inside E.

Exercise 1.6.24. If E ⊂ Rd is Lebesgue measurable, show that almost
every point in E is a point of density for E, and almost every point in the
complement of E is not a point of density for E.

Exercise 1.6.25. Let E ⊂ Rd be a measurable set of positive measure, and
let ε > 0.

(i) Using Exercise 1.6.15 and Exercise 1.6.24, show that there exists
a cube Q ⊂ Rd of positive sidelength such that m(E ∩ Q) >
(1− ε)m(Q).
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(ii) Give an alternate proof of the above claim that avoids the Lebesgue
differentiation theorem. (Hint: Reduce to the case when E is
bounded, then approximateE by an almost disjoint union of cubes.)

(iii) Use the above result to give an alternate proof of the Steinhaus
theorem (Exercise 1.6.8).

Of course, one can replace cubes here by other comparable shapes, such
as balls. (Indeed, a good principle to adopt in analysis is that cubes and
balls are “equivalent up to constants”, in that a cube of some sidelength can
be contained in a ball of comparable radius, and vice versa. This type of
mental equivalence is analogous to, though not identical with, the famous
dictum that a topologist cannot distinguish a doughnut from a coffee cup.)

Exercise 1.6.26.

(i) Give an example of a compact set K ⊂ R of positive measure such
that m(K ∩ I) < |I| for every interval I of positive length. (Hint:
First construct an open dense subset of [0, 1] of measure strictly
less than 1.)

(ii) Give an example of a measurable set E ⊂ R such that 0 < m(E ∩
I) < |I| for every interval I of positive length. (Hint: First work in
a bounded interval, such as (−1, 2). The complement of the set K
in the first example is the union of at most countably many open
intervals, thanks to Exercise 1.6.10. Now fill in these open intervals
and iterate.)

Exercise 1.6.27 (Approximations to the identity). Define a good kernel15

to be a measurable function P : Rd → R+ which is non-negative, radial
(which means that there is a function P̃ : [0,+∞) → R+ such that P (x) =

P̃ (|x|)), radially non-increasing (so that P̃ is a non-increasing function), and
has total mass

∫
Rd P (x) dx equal to 1. The functions Pt(x) :=

1
td
P (xt ) for

t > 0 are then said to be a good family of approximations to the identity.

(i) Show that the heat kernels16 Pt(x) :=
1

(4πt2)d/2
e−|x|2/4t2 and Poisson

kernels Pt(x) := cd
t

(t2+|x|2)(d+1)/2 are good families of approxima-

tions to the identity, if the constant cd > 0 is chosen correctly (in

fact one has cd = Γ((d + 1)/2)/π(d+1)/2, but you are not required
to establish this).

15Different texts have slightly different notions of what a good kernel is; the “right” class of
kernels to consider depends to some extent on what type of convergence results one is interested
in (e.g., almost everywhere convergence, convergence in L1 or L∞ norm, etc.), and on what
hypotheses one wishes to place on the original function f .

16Note that we have modified the usual formulation of the heat kernel by replacing t with t2

in order to make it conform to the notational conventions used in this exercise.
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(ii) Show that if P is a good kernel, then

cd <

∞∑
n=−∞

2dnP̃ (2n) ≤ Cd

for some constants 0 < cd < Cd depending only on d. (Hint:
Compare P with such “horizontal wedding cake” functions as∑∞

n=−∞ 12n−1<|x|≤2nP̃ (2n).)

(iii) Establish the quantitative upper bound

|
∫
Rd

f(y)Pt(x− y) dy| ≤ C ′
d sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy

for any absolutely integrable function f and some constant C ′
d > 0

depending only on d.

(iv) Show that if f : Rd → C is absolutely integrable and x is a Lebesgue
point of f , then the convolution

f ∗ Pt(x) :=

∫
Rd

f(y)Pt(x− y) dy

converges to f(x) as t → 0. (Hint: Split f(y) as the sum of f(x)
and f(y)− f(x).) In particular, f ∗ Pt converges pointwise almost
everywhere to f .

1.6.3. Almost everywhere differentiability. As we see in undergradu-
ate real analysis, not every continuous function f : R → R is differentiable,
with the standard example being the absolute value function f(x) := |x|,
which is continuous not differentiable at the origin x = 0. Of course, this
function is still almost everywhere differentiable. With a bit more effort, one
can construct continuous functions that are in fact nowhere differentiable:

Exercise 1.6.28 (Weierstrass function). Let F : R → R be the function

F (x) :=
∞∑
n=1

4−n sin(8nπx).

(i) Show that F is well defined (in the sense that the series is absolutely
convergent) and that F is a bounded continuous function.

(ii) Show that for every 8-dyadic interval [ j
8n ,

j+1
8n ] with n ≥ 1, one has

|F ( j+1
8n )− F ( j

8n )| ≥ c4−n for some absolute constant c > 0.

(iii) Show that F is not differentiable at any point x ∈ R. (Hint: Argue
by contradiction and use the previous part of this exercise.) Note
that it is not enough to formally differentiate the series term by
term and observe that the resulting series is divergent—why not?
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The difficulty here is that a continuous function can still contain a large
amount of oscillation, which can lead to breakdown of differentiability. How-
ever, if one can somehow limit the amount of oscillation present, then one
can often recover a fair bit of differentiability. For instance, we have

Theorem 1.6.25 (Monotone differentiation theorem). Any function F :
R → R which is monotone (either monotone non-decreasing or monotone
non-increasing) is differentiable almost everywhere.

Exercise 1.6.29. Show that every monotone function is measurable.

To prove this theorem, we just treat the case when F is monotone non-
decreasing, as the non-increasing case is similar (and can be deduced from
the non-decreasing case by replacing F with −F ).

We also first focus on the case when F is continuous, as this allows us
to use the rising sun lemma. To understand the differentiability of F , we
introduce the four Dini derivatives of F at x:

(i) The upper right derivative D+F (x) := lim suph→0+
F (x+h)−F (x)

h ;

(ii) The lower right derivative D+F (x) := lim infh→0+
F (x+h)−F (x)

h ;

(iii) The upper left derivative D−F (x) := lim suph→0−
F (x+h)−F (x)

h ;

(iv) The lower right derivative D−F (x) := lim infh→0−
F (x+h)−F (x)

h .

Regardless of whether F is differentiable or not (or even whether F is con-
tinuous or not), the four Dini derivatives always exist and take values in
the extended real line [−∞,∞]. (If F is only defined on an interval [a, b],
rather than on the endpoints, then some of the Dini derivatives may not
exist at the endpoints, but this is a measure zero set and will not impact
our analysis.)

Exercise 1.6.30. If F is monotone, show that the four Dini derivatives of F
are measurable. (Hint: The main difficulty is to reformulate the derivatives
so that h ranges over a countable set rather than an uncountable one.)

A function F is differentiable at x precisely when the four derivatives
are equal and finite:

(1.29) D+F (x) = D+F (x) = D−F (x) = D−F (x) ∈ (−∞,+∞).

We also have the trivial inequalities

D+F (x) ≤ D+F (x); D−F (x) ≤ D−F (x).

If F is non-decreasing, all these quantities are non-negative, thus

0 ≤ D+F (x) ≤ D+F (x); 0 ≤ D−F (x) ≤ D−F (x).
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The one-sided Hardy-Littlewood maximal inequality has an analogue in
this setting:

Lemma 1.6.26 (One-sided Hardy-Littlewood inequality). Let F : [a, b] →
R be a continuous monotone non-decreasing function, and let λ > 0. Then
we have

m({x ∈ [a, b] : D+F (x) ≥ λ}) ≤ F (b)− F (a)

λ
;

and similarly, for the other three Dini derivatives of F .

If F is not assumed to be continuous, then we have the weaker inequality

m({x ∈ [a, b] : D+F (x) ≥ λ}) ≤ C
F (b)− F (a)

λ
for some absolute constant C > 0.

Remark 1.6.27. Note that if one naively applies the fundamental theo-
rems of calculus, one can formally see that the first part of Lemma 1.6.26 is
equivalent to Lemma 1.6.16. We cannot, however, use this argument rigor-
ously because we have not established the necessary fundamental theorems
of calculus to do this. Nevertheless, we can borrow the proof of Lemma
1.6.16 without difficulty to use here, and this is exactly what we will do.

Proof. We just prove the continuous case and leave the discontinuous case
as an exercise.

It suffices to prove the claim for D+F ; by reflection (replacing F (x)

with −F (−x), and [a, b] with [−b,−a]), the same argument works for D−F ,
and then this trivially implies the same inequalities for D+F and D−F . By
modifying λ by an epsilon, and dropping the endpoints from [a, b] as they
have measure zero, it suffices to show that

m({x ∈ (a, b) : D+F (x) > λ}) ≤ F (b)− F (a)

λ
.

We may apply the rising sun lemma (Lemma 1.6.17) to the continuous
function G(x) := F (x) − λx. This gives us an at most countable family of
intervals In = (an, bn) in (a, b), such that G(bn) ≥ G(an) for each n, and
such that G(y) ≤ G(x) whenever a ≤ x ≤ y ≤ b and x lies outside of all of
the In.

Observe that if x ∈ (a, b), and G(y) ≤ G(x) for all x ≤ y ≤ b, then

D+F (x) ≤ λ. Thus we see that the set {x ∈ (a, b) : D+F (x) > λ} is
contained in the union of the In, and so by countable additivity,

m({x ∈ (a, b) : D+F (x) > λ}) ≤
∑
n

bn − an.

But we can rearrange the inequality G(bn) ≤ G(an) as bn−an ≤ F (bn)−F (an)
λ .

From telescoping series and the monotone nature of F we have
∑

n F (bn)−
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F (an) ≤ F (b) − F (a) (this is easiest to prove by first working with a finite
subcollection of the intervals (an, bn), and then taking suprema), and the
claim follows.

The discontinuous case is left as an exercise. �

Exercise 1.6.31. Prove Lemma 1.6.26 in the discontinuous case. (Hint:
The rising sun lemma is no longer available, but one can use either the
Vitali-type covering lemma (which will give C = 3) or the Besicovitch lemma
(which will give C = 2), by modifying the proof of Theorem 1.6.20.

Exercise 1.6.32. Let μ be a finite Borel measure on R. Show that

|{x ∈ R : sup
r>0

1

2r
μ([x− r, x+ r]) ≥ λ}| ≤ C

λ
μ(R)

for any λ > 0 and some absolute constant C > 0.

Sending λ → ∞ in the above lemma (cf. Exercise 1.3.18), and then send-
ing [a, b] to R, we conclude as a corollary that all the four Dini derivatives
of a continuous monotone non-decreasing function are finite almost every-
where. So to prove Theorem 1.6.25 for continuous monotone non-decreasing
functions, it suffices to show that (1.29) holds for almost every x. In view
of the trivial inequalities, it suffices to show that D+F (x) ≤ D−F (x) and

D−F (x) ≤ D+F (x) for almost every x. We will just show the first inequal-

ity, as the second follows by replacing F with its reflection x 
→ −F (−x). It
will suffice to show that for every pair 0 < r < R of real numbers, the set

E = Er,R := {x ∈ R : D+F (x) > R > r > D−F (x)}
is a null set, since by letting R, r range over rationals with R > r > 0 and
taking countable unions, we would conclude that the set {x ∈ R : D+F (x) >
D−F (x)} is a null set (recall that the Dini derivatives are all non-negative

when F is non-decreasing), and the claim follows.

Clearly E is a measurable set. To prove that it is null, we will establish
the following estimate:

Lemma 1.6.28 (E has density less than one). For any interval [a, b] and
any 0 < r < R, one has m(Er,R ∩ [a, b]) ≤ r

R |b− a|.

Indeed, this lemma implies that E has no points of density, which by
Exercise 1.6.24 forces E to be a null set.

Proof. We begin by applying the rising sun lemma to the function G(x) :=
rx+ F (−x) on [−b,−a]; the large number of negative signs present here is
needed in order to properly deal with the lower left Dini derivative D−F .

This gives an at most countable family of disjoint intervals−In = (−bn,−an)
in (−b,−a), such that G(−an) ≥ G(−bn) for all n, and such that G(−x) ≤
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G(−y) whenever −x ≤ −y ≤ −a and −x ∈ (−b,−a) lies outside of all of the
−In. Observe that if x ∈ (a, b), and G(−x) ≤ G(−y) for all −x ≤ −y ≤ −a,
then D−F (x) ≥ r. Thus we see that Er,R is contained inside the union of

the intervals In = (an, bn). On the other hand, from the first part of Lemma
1.6.26 we have

m(Er,R ∩ (an, bn)) ≤
F (bn)− F (an)

R
.

But we can rearrange the inequality G(−an) ≤ G(−bn) as F (bn)− F (an) ≤
r(bn − an). From countable additivity, one thus has

m(Er,R) ≤
r

R

∑
n

bn − an.

But the (an, bn) are disjoint inside (a, b), so from countable additivity again,
we have

∑
n bn − an ≤ b− a, and the claim follows. �

Remark 1.6.29. Note that if F was not assumed to be continuous, then
one would lose a factor of C here from the second part of Lemma 1.6.26, and
one would then be unable to prevent D+F from being up to C times as large
as D−F . So sometimes, even when all one is seeking is a qualitative result

such as differentiability, it is still important to keep track of constants. (But
this is the exception rather than the rule: for a large portion of arguments
in analysis, the constants are not terribly important.)

This concludes the proof of Theorem 1.6.25 in the continuous monotone
non-decreasing case. Now we work on removing the continuity hypothesis
(which was needed in order to make the rising sun lemma work properly).
If we naively try to run the density argument as we did in previous sec-
tions, then (for once) the argument does not work very well, as the space
of continuous monotone functions are not sufficiently dense in the space of
all monotone functions in the relevant sense (which, in this case, is in the
total variation sense, which is what is needed to invoke such tools as Lemma
1.6.26.). To bridge this gap, we have to supplement the continuous mono-
tone functions with another class of monotone functions, known as the jump
functions.

Definition 1.6.30 (Jump function). A basic jump function J is a function
of the form

J(x) :=

⎧⎨
⎩

0 when x < x0,
θ when x = x0,
1 when x > x0,

for some real numbers x0 ∈ R and 0 ≤ θ ≤ 1; we call x0 the point of
discontinuity for J and θ the fraction. Observe that such functions are
monotone non-decreasing, but have a discontinuity at one point. A jump
function is any absolutely convergent combination of basic jump functions,



1.6. Differentiation theorems 133

i.e., a function of the form F =
∑

n cnJn, where n ranges over an at most
countable set, each Jn is a basic jump function, and the cn are positive reals
with

∑
n cn < ∞. If there are only finitely many n involved, we say that F

is a piecewise constant jump function.

Thus, for instance, if q1, q2, q3, . . . is any enumeration of the rationals,
then

∑∞
n=1 2

−n1[qn,+∞) is a jump function.

Clearly, all jump functions are monotone non-decreasing. From the ab-
solute convergence of the cn we see that every jump function is the uniform
limit of piecewise constant jump functions, for instance,

∑∞
n=1 cnJn is the

uniform limit of
∑N

n=1 cnJn. One consequence of this is that the points
of discontinuity of a jump function

∑∞
n=1 cnJn are precisely those of the

individual summands cnJn, i.e., of the points xn where each Jn jumps.

The key fact is that these functions, together with the continuous mono-
tone functions, essentially generate all monotone functions, at least in the
bounded case:

Lemma 1.6.31 (Continuous-singular decomposition for monotone func-
tions). Let F : R → R be a monotone non-decreasing function.

(i) The only discontinuities of F are jump discontinuities. More pre-
cisely, if x is a point where F is discontinuous, then the limits
limy→x− F (y) and limy→x+ F (y) both exist, but are unequal, with
limy→x− F (y) < limy→x+ F (y).

(ii) There are at most countably many discontinuities of F .

(iii) If F is bounded, then F can be expressed as the sum of a continuous
monotone non-decreasing function Fc and a jump function Fpp.

Remark 1.6.32. This decomposition is part of the more general Lebesgue
decomposition, discussed in §1.2 of An epsilon of room, Vol. I.

Proof. By monotonicity, the limits F−(x) := limy→x− F (y) and F+(x) :=
limy→x+ F (y) always exist, with F−(x) ≤ F (x) ≤ F+(x) for all x. This gives
(i).

By (i), whenever there is a discontinuity x of F , there is at least one
rational number qx strictly between F−(x) and F+(x), and from monotonic-
ity, each rational number can be assigned to at most one discontinuity. This
gives (ii).

Now we prove (iii). Let A be the set of discontinuities of F , thus A is at
most countable. For each x ∈ A, we define the jump cx := F+(x)−F−(x) >

0, and the fraction θx := F (x)−F−(x)
F+(x)−F−(x) ∈ [0, 1]. Thus

F+(x) = F−(x) + cx and F (x) = F−(x) + θxcx.
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Note that cx is the measure of the interval (F−(x), F+(x)). By mono-
tonicity, these intervals are disjoint; by the boundedness of F , their union is
bounded. By countable additivity, we thus have

∑
x∈A cx < ∞, and so if we

let Jx be the basic jump function with point of discontinuity x and fraction
θx, then the function

Fpp :=
∑
x∈A

cxJx

is a jump function.

As discussed previously, G is discontinuous only at A, and for each x ∈ A
one easily checks that

(Fpp)+(x) = (Fpp)−(x) + cx and Fpp(x) = (Fpp)−(x) + θxcx

where (Fpp)−(x) := limy→x− Fpp(y), and (Fpp)+(x) := limy→x+ Fpp(y). We
thus see that the difference Fc := F −Fpp is continuous. The only remaining
task is to verify that Fc is monotone non-decreasing, thus we need

Fpp(b)− Fpp(a) ≤ F (b)− F (a)

for all a < b. But the left-hand side can be rewritten as
∑

x∈A∩[a,b] cx. As

each cx is the measure of the interval (F−(x), F+(x)), and these intervals
for x ∈ A ∩ [a, b] are disjoint and lie in (F (a), F (b)), the claim follows from
countable additivity. �
Exercise 1.6.33. Show that the decomposition of a bounded monotone
non-decreasing function F into continuous Fc and jump components Fpp

given by the above lemma is unique.

Exercise 1.6.34. Find a suitable generalisation of the notion of a jump
function that allows one to extend the above decomposition to unbounded
monotone functions, and then prove this extension. (Hint: The notion to
shoot for here is that of a “local jump function”.)

Now we can finish the proof of Theorem 1.6.25. As noted previously, it
suffices to prove the claim for monotone non-decreasing functions. As differ-
entiability is a local condition, we can easily reduce to the case of bounded
monotone non-decreasing functions, since to test differentiability of a mono-
tone non-decreasing function F in any compact interval [a, b] we may replace
F by the bounded monotone non-decreasing function max(min(F, F (b)),
F (a)) with no change in the differentiability in [a, b] (except perhaps at
the endpoints a, b, but these form a set of measure zero). As we have al-
ready proven the claim for continuous functions, it suffices by Lemma 1.6.31
(and linearity of the derivative) to verify the claim for jump functions.

Now, finally, we are able to use the density argument, using the piecewise
constant jump functions as the dense subclass, and using the second part of
Lemma 1.6.26 for the quantitative estimate; fortunately for us, the density
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argument does not particularly care that there is a loss of a constant factor
in this estimate.

For piecewise constant jump functions, the claim is clear (indeed, the
derivative exists and is zero outside of finitely many discontinuities). Now
we run the density argument. Let F be a bounded jump function, and let
ε > 0 and λ > 0 be arbitrary. As every jump function is the uniform limit
of piecewise constant jump functions, we can find a piecewise constant jump
function Fε such that |F (x) − Fε(x)| ≤ ε for all x. Indeed, by taking Fε

to be a partial sum of the basic jump functions that make up F , we can
ensure that F − Fε is also a monotone non-decreasing function. Applying
the second part of Lemma 1.6.26, we have

{x ∈ R : D+(F − Fε)(x) ≥ λ} ≤ 2Cε

λ

for some absolute constant C, and similarly for the other four Dini deriva-
tives. Thus, outside of a set of measure at most 8Cε/λ, all of the Dini
derivatives of F − Fε are less than λ. Since F ′

ε is almost everywhere dif-
ferentiable, we conclude that outside of a set of measure at most 8Cε/λ,
all the Dini derivatives of F (x) lie within λ of F ′

ε(x), and in particular, are
finite and lie within 2λ of each other. Sending ε to zero (holding λ fixed),
we conclude that for almost every x, the Dini derivatives of F are finite and
lie within 2λ of each other. If we then send λ to zero, we see that for almost
every x, the Dini derivatives of F agree with each other and are finite, and
the claim follows. This concludes the proof of Theorem 1.6.25.

Just as the integration theory of unsigned functions can be used to de-
velop the integration theory of the absolutely convergent functions (see Sec-
tion 1.3.4), the differentiation theory of monotone functions can be used to
develop a parallel differentiation theory for the class of functions of bounded
variation:

Definition 1.6.33 (Bounded variation). Let F : R → R be a function.
The total variation ‖F‖TV (R) (or ‖F‖TV for short) of F is defined to be the
supremum

‖F‖TV (R) := sup
x0<...<xn

n∑
i=1

|F (xi)− F (xi+1)|

where the supremum ranges over all finite increasing sequences x0, . . . , xn of
real numbers with n ≥ 0; this is a quantity in [0,+∞]. We say that F has
bounded variation (on R) if ‖F‖TV (R) is finite. (In this case, ‖F‖TV (R) is
often written as ‖F‖BV (R) or just ‖F‖BV .)
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Given any interval [a, b], we define the total variation ‖F‖TV ([a,b]) of F
on [a, b] as

‖F‖TV ([a,b]) := sup
a≤x0<...<xn≤b

n∑
i=1

|F (xi)− F (xi+1)|;

thus the definition is the same, but the points x0, . . . , xn are restricted to lie
in [a, b]. Thus, for instance, ‖F‖TV (R) = supN→∞ ‖F‖TV ([−N,N ]). We say
that a function F has bounded variation on [a, b] if ‖F‖BV ([a,b]) is finite.

Exercise 1.6.35. If F : R → R is a monotone function, show that

‖F‖TV ([a,b]) = |F (b)− F (a)|
for any interval [a, b], and that F has bounded variation on R if and only if
it is bounded.

Exercise 1.6.36. For any functions F,G : R → R, establish the triangle
property ‖F +G‖TV (R) ≤ ‖F‖TV (R)+‖G‖TV (R) and the homogeneity prop-
erty ‖cF‖TV (R) = |c|‖F‖TV (R) for any c ∈ R. Also, show that ‖F‖TV = 0
if and only if F is constant.

Exercise 1.6.37. If F : R → R is a function, show that ‖F‖TV ([a,b]) +
‖F‖TV ([b,c]) = ‖F‖TV ([a,c]) whenever a ≤ b ≤ c.

Exercise 1.6.38.

(i) Show that every function f :R→R of bounded variation is bounded,
and that the limits limx→+∞ f(x) and limx→−∞ f(x), are well de-
fined.

(ii) Give a counterexample of a bounded, continuous, compactly sup-
ported function f that is not of bounded variation.

Exercise 1.6.39. Let f : R → R be an absolutely integrable function, and
let F : R → R be the indefinite integral F (x) :=

∫
[−∞,x] f(x). Show that F

is of bounded variation, and that ‖F‖TV (R) = ‖f‖L1(R). (Hint: The upper
bound ‖F‖TV (R) ≤ ‖f‖L1(R) is relatively easy to establish. To obtain the
lower bound, use the density argument.)

Much as an absolutely integrable function can be expressed as the dif-
ference of its positive and negative parts, a bounded variation function can
be expressed as the difference of two bounded monotone functions:

Proposition 1.6.34. A function F : R → R is of bounded variation if and
only if it is the difference of two bounded monotone functions.

Proof. It is clear from Exercises 1.6.35, 1.6.36 that the difference of two
bounded monotone functions is bounded. Now define the positive variation
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F+ : R → R of F by the formula

(1.30) F+(x) := sup
x0<...<xn≤x

n∑
i=1

max(F (xi+1)− F (xi), 0).

It is clear from construction that this is a monotone increasing function,
taking values between 0 and ‖F‖TV (R), and is thus bounded. To conclude
the proposition, it suffices to (by writing F = F+ − (F+ −F−) to show that
F+ − F is non-decreasing, or in other words, to show that

F+(b) ≥ F+(a) + F (b)− F (a).

If F (b)−F (a) is negative, then this is clear from the monotone non-decreasing
nature of F+, so assume that F (b) − F (a) ≥ 0. But then the claim fol-
lows because any sequence of real numbers x0 < . . . < xn ≤ a can be
extended by one or two elements by adding a and b, thus increasing the sum
supx0<...<xn

∑n
i=1max(F (xi)− F (xi+1), 0) by at least F (b)− F (a). �

Exercise 1.6.40. Let F : R → R be of bounded variation. Define the
positive variation F+ by (1.30), and the negative variation F− by

F−(x) := sup
x0<...<xn≤x

n∑
i=1

max(−F (xi+1) + F (xi), 0).

Establish the identities

F (x) = F (−∞) + F+(x)− F−(x),

‖F‖TV [a,b] = F+(b)− F+(a) + F−(b)− F−(a),

and

‖F‖TV = F+(+∞) + F−(+∞)

for every interval [a, b], where F (−∞) := limx→−∞ F (x), F+(+∞) :=
limx→+∞ F+(x), and F−(+∞) := limx→+∞ F−(x). (Hint: The main diffi-
culty comes from the fact that a partition x0 < . . . < xn ≤ x that is good for
F+ need not be good for F−, and vice versa. However, this can be fixed by
taking a good partition for F+ and a good partition for F− and combining
them together into a common refinement.)

From Proposition 1.6.34 and Theorem 1.6.25 we immediately obtain

Corollary 1.6.35 (BV differentiation theorem). Every bounded variation
function is differentiable almost everywhere.

Exercise 1.6.41. Call a function locally of bounded variation if it is of
bounded variation on every compact interval [a, b]. Show that every function
that is locally of bounded variation is differentiable almost everywhere.
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Exercise 1.6.42 (Lipschitz differentiation theorem, one-dimensional case).
A function f : R → R is said to be Lipschitz continuous if there exists a
constant C > 0 such that |f(x) − f(y)| ≤ C|x − y| for all x, y ∈ R; the
smallest C with this property is known as the Lipschitz constant of f . Show
that every Lipschitz continuous function F is locally of bounded variation,
and hence differentiable almost everywhere. Furthermore, show that the
derivative F ′, when it exists, is bounded in magnitude by the Lipschitz
constant of F .

Remark 1.6.36. The same result is true in higher dimensions, and is known
as the Rademacher differentiation theorem, but we will defer the proof of this
theorem to Section 2.2, when we have the powerful tool of the Fubini-Tonelli
theorem (Corollary 1.7.23) available, that is particularly useful for deducing
higher-dimensional results in analysis from lower-dimensional ones.

Exercise 1.6.43. A function f : R → R is said to be convex if one has
f((1− t)x+ ty) ≤ (1− t)f(x)+ tf(y) for all x < y and 0 < t < 1. Show that
if f is convex, then it is continuous and almost everywhere differentiable, and
its derivative f ′ is equal almost everywhere to a monotone non-decreasing
function, and so is itself almost everywhere differentiable. (Hint: Drawing
the graph of f , together with a number of chords and tangent lines, is likely
to be very helpful in providing visual intuition.) Thus we see that in some
sense, convex functions are “almost everywhere twice differentiable”. Similar
claims also hold for concave functions, of course.

1.6.4. The second fundamental theorem of calculus. We are now fi-
nally ready to attack the second fundamental theorem of calculus in the
cases where F is not assumed to be continuously differentiable. We begin
with the case when F : [a, b] → R is monotone non-decreasing. From Theo-
rem 1.6.25 (extending F to the rest of the real line if needed), this implies
that F is differentiable almost everywhere in [a, b], so F ′ is defined a.e.; from
monotonicity we see that F ′ is non-negative whenever it is defined. Also,
an easy modification of Exercise 1.6.1 shows that F ′ is measurable.

One half of the second fundamental theorem is easy:

Proposition 1.6.37 (Upper bound for second fundamental theorem). Let
F : [a, b] → R be monotone non-decreasing (so that, as discussed above, F ′

is defined almost everywhere, is unsigned, and is measurable). Then∫
[a,b]

F ′(x) dx ≤ F (b)− F (a).

In particular, F ′ is absolutely integrable.

Proof. It is convenient to extend F to all of R by declaring F (x) := F (b)
for x > b and F (x) := F (a) for x < a, then F is now a bounded monotone
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function on R, and F ′ vanishes outside of [a, b]. As F is almost everywhere
differentiable, the Newton quotients

fn(x) :=
F (x+ 1/n)− F (x)

1/n

converge pointwise almost everywhere to F ′. Applying Fatou’s lemma
(Corollary 1.4.46), we conclude that∫

[a,b]
F ′(x) dx ≤ lim inf

n→∞

∫
[a,b]

F (x+ 1/n)− F (x)

1/n
dx.

The right-hand side can be rearranged as

lim inf
n→∞

n

(∫
[a+1/n,b+1/n]

F (y) dy −
∫
[a,b]

F (x) dx

)

which can be rearranged further as

lim inf
n→∞

n

(∫
[b,b+1/n]

F (x) dx−
∫
[a,a+1/n]

F (x) dx

)
.

Since F is equal to F (b) for the first integral and is at least F (a) for the
second integral, this expression is at most

≤ lim inf
n→∞

n(F (b)/n− F (a)/n) = F (b)− F (a)

and the claim follows. �

Exercise 1.6.44. Show that any function of bounded variation has an (al-
most everywhere defined) derivative that is absolutely integrable.

In the Lipschitz case, one can do better:

Exercise 1.6.45 (Second fundamental theorem for Lipschitz functions).
Let F : [a, b] → R be Lipschitz continuous. Show that

∫
[a,b] F

′(x) dx =

F (b) − F (a). (Hint: Argue as in the proof of Proposition 1.6.37, but use
the dominated convergence theorem (Theorem 1.4.48) in place of Fatou’s
lemma (Corollary 1.4.46).)

Exercise 1.6.46 (Integration by parts formula). Let F,G : [a, b] → R be
Lipschitz continuous functions. Show that∫

[a,b]
F ′(x)G(x) dx = F (b)G(b)− F (a)G(a)

−
∫
[a,b]

F (x)G′(x) dx.

(Hint: First show that the product of two Lipschitz continuous functions on
[a, b] is again Lipschitz continuous.)
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Now we return to the monotone case. Inspired by the Lipschitz case,
one may hope to recover equality in Proposition 1.6.37 for such functions
F . However, there is an important obstruction to this, which is that all the
variation of F may be concentrated in a set of measure zero, and thus unde-
tectable by the Lebesgue integral of F ′. This is most obvious in the case of a
discontinuous monotone function, such as the (appropriately named) Heav-
iside function F := 1[0,+∞); it is clear that F

′ vanishes almost everywhere,

but F (b) − F (a) is not equal to
∫
[a,b] F

′(x) dx if b and a lie on opposite

sides of the discontinuity at 0. In fact, the same problem arises for all jump
functions:

Exercise 1.6.47. Show that if F is a jump function, then F ′ vanishes al-
most everywhere. (Hint: Use the density argument, starting from piecewise
constant jump functions and using Proposition 1.6.37 as the quantitative
estimate.)

One may hope that jump functions—in which all the fluctuation is con-
centrated in a countable set—are the only obstruction to the second fun-
damental theorem of calculus holding for monotone functions, and that as
long as one restricts attention to continuous monotone functions, that one
can recover the second fundamental theorem. However, this is still not true,
because it is possible for all the fluctuation to now be concentrated, not in
a countable collection of jump discontinuities, but instead in an uncount-
able set of zero measure, such as the middle thirds Cantor set (Exercise
1.2.9). This can be illustrated by the key counterexample of the Cantor
function, also known as the Devil’s staircase function. The construction of
this function is detailed in the exercise below.

Exercise 1.6.48 (Cantor function). Define the functions F0, F1, F2, . . . :
[0, 1] → R recursively as follows:

1. Set F0(x) := x for all x ∈ [0, 1].

2. For each n = 1, 2, . . . in turn, define

Fn(x) :=

⎧⎪⎨
⎪⎩

1
2Fn−1(3x) if x ∈ [0, 1/3],
1
2 if x ∈ (1/3, 2/3),
1
2 + 1

2Fn−1(3x− 2) if x ∈ [2/3, 1].

(i) Graph F0, F1, F2, and F3 (preferably on a single graph).

(ii) Show that for each n = 0, 1, . . ., Fn is a continuous monotone non-
decreasing function with Fn(0) = 0 and Fn(1) = 1. (Hint: Induct
on n.)
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(iii) Show that for each n = 0, 1, . . ., one has |Fn+1(x) − Fn(x)| ≤ 2−n

for each x ∈ [0, 1]. Conclude that the Fn converge uniformly to a
limit F : [0, 1] → R. This limit is known as the Cantor function.

(iv) Show that the Cantor function F is continuous and monotone non-
decreasing, with F (0) = 0 and F (1) = 1.

(v) Show that if x ∈ [0, 1] lies outside the middle thirds Cantor set
(Exercise 1.2.9), then F is constant in a neighbourhood of x, and
in particular, F ′(x) = 0. Conclude that

∫
[0,1] F

′(x) dx = 0 �= 1 =

F (1) − F (0), so that the second fundamental theorem of calculus
fails for this function.

(vi) Show that F (
∑∞

n=1 an3
−n)=

∑∞
n=1

an
2 2−n for any digits a1, a2, . . .∈

{0, 2}. Thus the Cantor function, in some sense, converts base three
expansions to base two expansions.

(vii) Let I = [
∑n

i=1
ai
3i
,
∑n

i=1
ai
3i

+ 1
3n ] be one of the intervals used in the

nth cover In of C (see Exercise 1.2.9), thus n ≥ 0 and a1, . . . , an ∈
{0, 2}. Show that I is an interval of length 3−n, but F (I) is an
interval of length 2−n.

(viii) Show that F is not differentiable at any element of the Cantor set
C.

Remark 1.6.38. This example shows that the classical derivative F ′(x) :=

limh→0;h�=0
F (x+h)−F (x)

h of a function has some defects; it cannot “see” some
of the variation of a continuous monotone function such as the Cantor func-
tion. In §1.13 of An epsilon of room, Vol. I, this will be rectified by intro-
ducing the concept of the weak derivative of a function, which despite the
name, is more able than the strong derivative to detect this type of singular
variation behaviour. (We will also encounter in Section 1.7.3 the Lebesgue-
Stieltjes integral, which is another (closely related) way to capture all of
the variation of a monotone function, and which is related to the classical
derivative via the Lebesgue-Radon-Nikodym theorem; see §1.2 of An epsilon
of room, Vol. I.)

In view of this counterexample, we see that we need to add an additional
hypothesis to the continuous monotone non-increasing function F before
we can recover the second fundamental theorem. One such hypothesis is
absolute continuity. To motivate this definition, let us recall two existing
definitions:

(i) A function F : R → R is continuous if, for every ε > 0 and x0 ∈ R,
there exists a δ > 0 such that |F (b)− F (a)| ≤ ε whenever (a, b) is
an interval of length at most δ that contains x0.
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(ii) A function F : R → R is uniformly continuous if, for every ε > 0,
there exists a δ > 0 such that |F (b)− F (a)| ≤ ε whenever (a, b) is
an interval of length at most δ.

Definition 1.6.39. A function F : R → R is said to be absolutely continu-
ous if, for every ε > 0, there exists a δ > 0 such that

∑n
j=1 |F (bj)−F (aj)| ≤ ε

whenever (a1, b1), . . . , (an, bn) is a finite collection of disjoint intervals of to-
tal length

∑n
j=1 bj − aj at most δ.

We define absolute continuity for a function F : [a, b] → R defined on
an interval [a, b] similarly, with the only difference being that the intervals
[aj, bj ] are of course now required to lie in the domain [a, b] of F .

The following exercise places absolute continuity in relation to other
regularity properties:

Exercise 1.6.49.

(i) Show that every absolutely continuous function is uniformly con-
tinuous and therefore continuous.

(ii) Show that every absolutely continuous function is of bounded vari-
ation on every compact interval [a, b]. (Hint: First show this is
true for any sufficiently small interval.) In particular (by Exercise
1.6.41), absolutely continuous functions are differentiable almost
everywhere.

(iii) Show that every Lipschitz continuous function is absolutely contin-
uous.

(iv) Show that the function x 
→ √
x is absolutely continuous, but not

Lipschitz continuous, on the interval [0, 1].

(v) Show that the Cantor function from Exercise 1.6.48 is continuous,
monotone, and uniformly continuous, but not absolutely continu-
ous, on [0, 1].

(vi) If f : R → R is absolutely integrable, show that the indefinite
integral F (x) :=

∫
[−∞,x] f(y) dy is absolutely continuous, and that

F is differentiable almost everywhere with F ′(x) = f(x) for almost
every x.

(vii) Show that the sum or product of two absolutely continuous func-
tions on an interval [a, b] remains absolutely continuous. What
happens if we work on R instead of on [a, b]?

Exercise 1.6.50.

(i) Show that absolutely continuous functions map null sets to null
sets, i.e., if F : R → R is absolutely continuous and E is a null set,
then F (E) := {F (x) : x ∈ E} is also a null set.
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(ii) Show that the Cantor function does not have this property.

For absolutely continuous functions, we can recover the second funda-
mental theorem of calculus:

Theorem 1.6.40 (Second fundamental theorem for absolutely continuous
functions). Let F : [a, b] → R be absolutely continuous. Then

∫
[a,b] F

′(x) dx

= F (b)− F (a).

Proof. Our main tool here will be Cousin’s theorem (Exercise 1.6.23).

By Exercise 1.6.44, F ′ is absolutely integrable. By Exercise 1.5.10, F ′ is
thus uniformly integrable. Now let ε > 0. By Exercise 1.5.13, we can find
κ > 0 such that

∫
U |F ′(x)| dx ≤ ε whenever U ⊂ [a, b] is a measurable set of

measure at most κ. (Here we adopt the convention that F ′ vanishes outside
of [a, b].) By making κ small enough, we may also assume from absolute
continuity that

∑n
j=1 |F (bj)− F (aj)| ≤ ε whenever (a1, b1), . . . , (an, bn) is a

finite collection of disjoint intervals of total length
∑n

j=1 bj − aj at most κ.

Let E ⊂ [a, b] be the set of points x where F is not differentiable, together
with the endpoints a, b, as well as the points where x is not a Lebesgue point
of F ′; thus E is a null set. By outer regularity (or the definition of outer
measure) we can find an open set U containing E of measure m(U) < κ. In
particular,

∫
U |F ′(x)| dx ≤ ε.

Now define a gauge function δ : [a, b] → (0,+∞) as follows.

(i) If x ∈ E, we define δ(x) > 0 to be a small enough number such
that the open interval (x− δ(x), x+ δ(x)) lies in U .

(ii) If x �∈ E, then F is differentiable at x and x is a Lebesgue point
of F ′. We let δ(x) > 0 be a small enough number such that
|F (y)−F (x)−(y−x)F ′(x)| ≤ ε|y−x| holds whenever |y−x| ≤ δ(x),
and such that | 1

|I|
∫
I F

′(y) dy−F ′(x)| ≤ ε whenever I is an interval

containing x of length at most δ(x); such a δ(x) exists by the defi-
nition of differentiability, and of Lebesgue point. We rewrite these
properties using big-O notation17 as F (y)−F (x) = (y− x)F ′(x)+
O(ε|y − x|) and

∫
I F

′(y) dy = |I|F ′(x) +O(ε|I|).

Applying Cousin’s theorem, we can find a partition a = t0 < t1 < . . . < tk =
b with k ≥ 1, together with real numbers t∗j ∈ [tj−1, tj ] for each 1 ≤ j ≤ k

and tj − tj−1 ≤ δ(t∗j).

17In this notation, we use O(X) to denote a quantity Y whose magnitude |Y | is at most
CX for some absolute constant C. This notation is convenient for managing error terms when
it is not important to keep track of the exact value of constants such as C, due to such rules as
O(X) +O(X) = O(X).
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We can express F (b)− F (a) as a telescoping series

F (b)− F (a) =
k∑

j=1

F (tj)− F (tj−1).

To estimate the size of this sum, let us first consider those j for which
t∗j ∈ E. Then, by construction, the intervals (tj−1, tj) are disjoint in U . By
construction of κ, we thus have∑

j:t∗j∈E
|F (tj)− F (tj−1)| ≤ ε

and thus ∑
j:t∗j∈E

F (tj)− F (tj−1) = O(ε).

Next, we consider those j for which t∗j �∈ E. By construction, for those j we
have

F (tj)− F (t∗j ) = (tj − t∗j )F
′(t∗j ) +O(ε|tj − t∗j |)

and

F (t∗j )− F (tj−1) = (t∗j − tj−1)F
′(t∗j) +O(ε|t∗j − tj−1|)

and thus

F (tj)− F (tj−1) = (tj − tj−1)F
′(t∗j ) +O(ε|tj − tj−1|).

On the other hand, from construction again we have∫
[tj−1,tj ]

F ′(y) dy = (tj − tj−1)F
′(t∗j) +O(ε|tj − tj−1|)

and thus

F (tj)− F (tj−1) =

∫
[tj−1,tj ]

F ′(y) dy +O(ε|tj − tj−1|).

Summing in j, we conclude that∑
j:t∗j �∈E

F (tj)− F (tj−1) =

∫
S
F ′(y) dy +O(ε(b− a)),

where S is the union of all the [tj−1, tj] with t∗j �∈ E. By construction, this

set is contained in [a, b] and contains [a, b]\U . Since
∫
U |F ′(x)| dx ≤ ε, we

conclude that ∫
S
F ′(y) dy =

∫
[a,b]

F ′(y) dy +O(ε).

Putting everything together, we conclude that

F (b)− F (a) =

∫
[a,b]

F ′(y) dy +O(ε) +O(ε|b− a|).

Since ε > 0 was arbitrary, the claim follows. �
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Combining this result with Exercise 1.6.49, we obtain a satisfactory clas-
sification of the absolutely continuous functions:

Exercise 1.6.51. Show that a function F : [a, b] → R is absolutely con-
tinuous if and only if it takes the form F (x) =

∫
[a,x] f(y) dy + C for some

absolutely integrable f : [a, b] → R and a constant C.

Exercise 1.6.52 (Compatibility of the strong and weak derivatives in the
absolutely continuous case). Let F : [a, b] → R be an absolutely continu-
ous function, and let φ : [a, b] → R be a continuously differentiable func-
tion supported in a compact subset of (a, b). Show that

∫
[a,b] F

′φ(x) dx =

−
∫
[a,b] Fφ′(x) dx.

Inspecting the proof of Theorem 1.6.40, we see that the absolute conti-
nuity was used primarily in two ways: first, to ensure the almost everywhere
existence, and then to control an exceptional null set E. It turns out that
one can achieve the latter control by making a different hypothesis, namely
that the function F is everywhere differentiable rather than merely almost
everywhere differentiable. More precisely, we have

Proposition 1.6.41 (Second fundamental theorem of calculus, again). Let
[a, b] be a compact interval of positive length, let F : [a, b] → R be a differ-
entiable function, such that F ′ is absolutely integrable. Then the Lebesgue
integral

∫
[a,b] F

′(x) dx of F ′ is equal to F (b)− F (a).

Proof. This will be similar to the proof of Theorem 1.6.40, the one main
new twist being that we need several open sets U instead of just one. Let
E ⊂ [a, b] be the set of points x which are not Lebesgue points of F ′, together
with the endpoints a, b. This is a null set. Let ε > 0, and then let κ > 0 be a
small enough number such that

∫
U |F ′(x)| dx ≤ ε whenever U is measurable

with m(U) ≤ κ. We can also ensure that κ ≤ ε.

For every natural number m = 1, 2, . . . we can find an open set Um con-
tainingE of measurem(Um)≤κ/4m. In particular, we see thatm(

⋃∞
m=1 Um)

≤ κ and thus
∫⋃∞

m=1 Um
|F ′(x)| dx ≤ ε.

Now define a gauge function δ : [a, b] → (0,+∞) as follows.

(i) If x ∈ E, we define δ(x) > 0 to be a small enough number such
that the open interval (x − δ(x), x + δ(x)) lies in Um, where m is
the first natural number such that |F ′(x)| ≤ 2m, and also small
enough such that |F (y) − F (x) − (y − x)F ′(x)| ≤ ε|y − x| holds
whenever |y − x| ≤ δ(x). (Here we crucially use the everywhere
differentiability to ensure that f ′(x) exists and is finite here.)
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(ii) If x �∈ E, we let δ(x) > 0 be a small enough number such that
|F (y)−F (x)−(y−x)F ′(x)| ≤ ε|y−x| holds whenever |y−x| ≤ δ(x),
and such that | 1

|I|
∫
I F

′(y) dy−F ′(x)| ≤ ε whenever I is an interval

containing x of length at most δ(x), exactly as in the proof of
Theorem 1.6.40.

Applying Cousin’s theorem, we can find a partition a = t0 < t1 < . . . < tk =
b with k ≥ 1, together with real numbers t∗j ∈ [tj−1, tj ] for each 1 ≤ j ≤ k

and tj − tj−1 ≤ δ(t∗j).

As before, we express F (b)− F (a) as a telescoping series

F (b)− F (a) =
k∑

j=1

F (tj)− F (tj−1).

For the contributions of those j with t∗j �∈ E, we argue exactly as in the
proof of Theorem 1.6.40 to conclude eventually that∑

j:t∗j �∈E
F (tj)− F (tj−1) =

∫
S
F ′(y) dy +O(ε(b− a)),

where S is the union of all [tj−1, tj ] with t∗j �∈ E. Since∫
[a,b]\S

|F ′(x)| dx ≤
∫
⋃∞

m=1 Um

|F ′(x)| dx ≤ ε,

we thus have ∫
S
F ′(y) dy =

∫
[a,b]

F ′(y) dy +O(ε).

Now we turn to those j with t∗j ∈ E. By construction, we have

F (tj)− F (tj−1) = (tj − tj−1)F
′(t∗j) +O(ε|tj − tj−1|)

for these intervals, and so∑
j:t∗j∈E

F (tj)− F (tj−1) = (
∑

j:t∗j∈E
(tj − tj−1)F

′(t∗j)) +O(ε(b− a)).

Next, for each j we have F ′(t∗j ) ≤ 2m and [tj−1, tj ] ⊂ Um for some natural
number m = 1, 2, . . ., by construction. By countable additivity, we conclude
that

(
∑

j:t∗j∈E
(tj − tj−1)F

′(t∗j)) ≤
∞∑

m=1

2mm(Um) ≤
∞∑

m=1

2mε/4m = O(ε).

Putting all this together, we again have

F (b)− F (a) =

∫
[a,b]

F ′(y) dy +O(ε) +O(ε|b− a|).

Since ε > 0 was arbitrary, the claim follows. �



1.6. Differentiation theorems 147

Remark 1.6.42. The above proposition is yet another illustration of how
the property of everywhere differentiability is significantly better than that
of almost everywhere differentiability. In practice, though, the above propo-
sition is not as useful as one might initially think, because there are very few
methods that establish the everywhere differentiability of a function that do
not also establish continuous differentiability (or at least Riemann integra-
bility of the derivative), at which point one could just use Theorem 1.6.7
instead.

Exercise 1.6.53. Let F : [−1, 1] → R be the function defined by setting
F (x) := x2 sin( 1

x3 ) when x is non-zero, and F (0) := 0. Show that F is
everywhere differentiable, but the deriative F ′ is not absolutely integrable,
and so the second fundamental theorem of calculus does not apply in this
case (at least if we interpret

∫
[a,b] F

′(x) dx using the absolutely convergent

Lebesgue integral). See, however, the next exercise.

Exercise 1.6.54 (Henstock-Kurzweil integral). Let [a, b] be a compact in-
terval of positive length. We say that a function f : [a, b] → R is Henstock-
Kurzweil integrable with integral L ∈ R if for every ε > 0 there exists a
gauge function δ : [a, b] → (0,+∞) such that one has

|
k∑

j=1

f(t∗j)(tj − tj−1)− L| ≤ ε

whenever k ≥ 1 and a = t0 < t1 < . . . < tk = b and t∗1, . . . , t
∗
k are such that

t∗j ∈ [tj−1, tj ] and |tj − tj−1| ≤ δ(t∗j) for every 1 ≤ j ≤ k. When this occurs,

we call L the Henstock-Kurzweil integral of f and write it as
∫
[a,b] f(x) dx.

(i) Show that if a function is Henstock-Kurzweil integrable, it has a
unique Henstock-Kurzweil integral. (Hint: Use Cousin’s theorem.)

(ii) Show that if a function is Riemann integrable, then it is Henstock-
Kurzweil integrable, and the Henstock-Kurzweil integral∫
[a,b] f(x) dx is equal to the Riemann integral

∫ b
a f(x) dx.

(iii) Show that if a function f : [a, b] → R is everywhere defined, ev-
erywhere finite, and is absolutely integrable, then it is Henstock-
Kurzweil integrable, and the Henstock-Kurzweil integral∫
[a,b] f(x) dx is equal to the Lebesgue integral

∫
[a,b] f(x) dx. (Hint:

This is a variant of the proof of Theorem 1.6.40 or Proposition
1.6.41.)

(iv) Show that if F : [a, b] → R is everywhere differentiable, then F ′ is
Henstock-Kurzweil integrable, and the Henstock-Kurzweil integral∫
[a,b] F

′(x) dx is equal to F (b) − F (a). (Hint: This is a variant of

the proof of Theorem 1.6.40 or Proposition 1.6.41.)
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(v) Explain why the above results give an alternate proof of Exercise
1.6.4 and of Proposition 1.6.41.

Remark 1.6.43. As the above exercise indicates, the Henstock-Kurzweil
integral (also known as the Denjoy integral or Perron integral) extends the
Riemann integral and the absolutely convergent Lebesgue integral, at least
as long as one restricts attention to functions that are defined and are finite
everywhere (in contrast to the Lebesgue integral, which is willing to tolerate
functions being infinite or undefined so long as this only occurs on a null
set). It is the notion of integration that is most naturally associated with
the fundamental theorem of calculus for everywhere differentiable functions,
as seen in part (iv) of the above exercise; it can also be used as a unified
framework for all the proofs in this section that invoked Cousin’s theorem.
The Henstock-Kurzweil integral can also integrate some (highly oscillatory)
functions that the Lebesgue integral cannot, such as the derivative F ′ of the
function F appearing in Exercise 1.6.53. This is analogous to how condi-
tional summation limN→∞

∑N
n=1 an can sum conditionally convergent series∑∞

n=1 an, even if they are not absolutely integrable. However, in as much as
conditional summation is not always well behaved with respect to rearrange-
ment, the Henstock-Kurzweil integral does not always react well to changes
of variable; also, due to its reliance on the order structure of the real line
R, it is difficult to extend the Henstock-Kurzweil integral to more general
spaces, such as the Euclidean space Rd, or to abstract measure spaces.

1.7. Outer measures, pre-measures, and product measures

In this text so far, we have focused primarily on one specific example of a
countably additive measure, namely Lebesgue measure. This measure was
constructed from a more primitive concept of Lebesgue outer measure, which
in turn was constructed from the even more primitive concept of elementary
measure.

It turns out that both of these constructions can be abstracted. In this
section, we will give the Carathéodory extension theorem, which constructs
a countably additive measure from any abstract outer measure; this gener-
alises the construction of Lebesgue measure from Lebesgue outer measure.
One can in turn construct outer measures from another concept known as a
pre-measure, of which elementary measure is a typical example.

With these tools, one can start constructing many more measures, such
as Lebesgue-Stieltjes measures, product measures, and Hausdorff measures.
With a little more effort, one can also establish the Kolmogorov extension
theorem, which allows one to construct a variety of measures on infinite-
dimensional spaces, and is of particular importance in the foundations of
probability theory, as it allows one to set up probability spaces associated
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to both discrete and continuous random processes, even if they have infinite
length.

The most important result about product measure, beyond the fact that
it exists, is that one can use it to evaluate iterated integrals, and to inter-
change their order, provided that the integrand is either unsigned or abso-
lutely integrable. This fact is known as the Fubini-Tonelli theorem, and is
an absolutely indispensable tool for computing integrals, and for deducing
higher-dimensional results from lower-dimensional ones.

In this section we will, however, omit a very important way to construct
measures, namely the Riesz representation theorem, which is discussed in
§1.10 of An epsilon of room, Vol. I.

1.7.1. Outer measures and the Carathéodory extension theorem.
We begin with the abstract concept of an outer measure.

Definition 1.7.1 (Abstract outer measure). Let X be a set. An abstract
outer measure (or outer measure for short) is a map μ∗ : 2X → [0,+∞] that
assigns an unsigned extended real number μ∗(E) ∈ [0,+∞] to every set
E ⊂ X which obeys the following axioms:

(i) (Empty set) μ∗(∅) = 0.

(ii) (Monotonicity) If E ⊂ F , then μ∗(E) ≤ μ∗(F ).

(iii) (Countable subadditivity) If E1, E2, . . . ⊂ X is a countable se-
quence of subsets of X, then μ∗(

⋃∞
n=1En) ≤

∑∞
n=1 μ

∗(En).

Outer measures are also known as exterior measures.

Thus, for instance, Lebesgue outer measure m∗ is an outer measure
(see Exercise 1.2.3). On the other hand, Jordan outer measure m∗,(J) is
only finitely subadditive rather than countably subadditive and thus is not,
strictly speaking, an outer measure; for this reason this concept is often
referred to as Jordan outer content rather than Jordan outer measure.

Note that outer measures are weaker than measures in that they are
merely countably subadditive, rather than countably additive. On the other
hand, they are able to measure all subsets of X, whereas measures can only
measure a σ-algebra of measurable sets.

In Definition 1.2.2, we used Lebesgue outer measure together with the
notion of an open set to define the concept of Lebesgue measurability. This
definition is not available in our more abstract setting, as we do not necessar-
ily have the notion of an open set. An alternative definition of measurability
was put forth in Exercise 1.2.17, but this still required the notion of a box or
an elementary set, which is still not available in this setting. Nevertheless,
we can modify that definition to give an abstract definition of measurability:



150 1. Measure theory

Definition 1.7.2 (Carathéodory measurability). Let μ∗ be an outer mea-
sure on a set X. A set E ⊂ X is said to be Carathéodory measurable with
respect to μ∗ if one has

μ∗(A) = μ∗(A ∩ E) + μ∗(A\E)

for every set A ⊂ X.

Exercise 1.7.1 (Null sets are Carathéodory measurable). Suppose that E
is a null set for an outer measure μ∗ (i.e. μ∗(E) = 0). Show that E is
Carathéodory measurable with respect to μ∗.

Exercise 1.7.2 (Compatibility with Lebesgue measurability). Show that
a set E ⊂ Rd is Carathéodory measurable with respect to Lebesgue outer
measurable if and only if it is Lebesgue measurable. (Hint: One direction
follows from Exercise 1.2.17. For the other direction, first verify simple cases,
such as when E is a box, or when E or A are bounded.)

The construction of Lebesgue measure can then be abstracted as follows:

Theorem 1.7.3 (Carathéodory extension theorem). Let μ∗ : 2X → [0,+∞]
be an outer measure on a set X, let B be the collection of all subsets of X
that are Carathéodory measurable with respect to μ∗, and let μ : B → [0,+∞]
be the restriction of μ∗ to B (thus μ(E) := μ∗(E) whenever E ∈ B). Then
B is a σ-algebra, and μ is a measure.

Proof. We begin with the σ-algebra property. It is easy to see that the
empty set lies in B, and that the complement of a set in B lies in B also.
Next, we verify that B is closed under finite unions (which will make B a
Boolean algebra). Let E,F ∈ B, and let A ⊂ X be arbitrary. By definition,
it suffices to show that

(1.31) μ∗(A) = μ∗(A ∩ (E ∪ F )) + μ∗(A\(E ∪ F )).

To simplify the notation, we partition A into the four disjoint sets

A00 := A\(E ∪ F ),

A10 := (A\F ) ∩ E,

A01 := (A\E) ∩ F,

A11 := A ∩ E ∩ F

(the reader may wish to draw a Venn diagram here to understand the nature
of these sets). Thus (1.31) becomes

(1.32) μ∗(A00 ∪A01 ∪A10 ∪A11) = μ∗(A01 ∪A10 ∪A11) + μ∗(A00).

On the other hand, from the Carathéodory measurability of E, one has

μ∗(A00 ∪A01 ∪A10 ∪A11) = μ∗(A00 ∪A01) + μ∗(A10 ∪A11)
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and

μ∗(A01 ∪A10 ∪A11) = μ∗(A01) + μ∗(A10 ∪A11)

while from the Carathéodory measurability of F one has

μ∗(A00 ∪A01) = μ∗(A00) + μ∗(A01);

putting these identities together we obtain (1.32). (Note that no subtraction
is employed here, and so the arguments still work when some sets have
infinite outer measure.)

Now we verify that B is a σ-algebra. As it is already a Boolean algebra,
it suffices (see Exercise 1.7.3 below) to verify that B is closed with respect
to countable disjoint unions. Thus, let E1, E2, . . . be a disjoint sequence of
Carathéodory-measurable sets, and let A be arbitrary. We wish to show
that

μ∗(A) = μ∗(A ∩
∞⋃
n=1

En) + μ∗(A\
∞⋃
n=1

En).

In view of subadditivity, it suffices to show that

μ∗(A) ≥ μ∗(A ∩
∞⋃
n=1

En) + μ∗(A\
∞⋃
n=1

En).

For any N ≥ 1,
⋃N

n=1En is Carathéodory measurable (as B is a Boolean
algebra), and so

μ∗(A) ≥ μ∗(A ∩
N⋃

n=1

En) + μ∗(A\
N⋃

n=1

En).

By monotonicity, μ∗(A\
⋃N

n=1En) ≥ μ∗(A\
⋃∞

n=1En). Taking limits asN →
∞, it thus suffices to show that

μ∗(A ∩
∞⋃
n=1

En) ≤ lim
N→∞

μ∗(A ∩
N⋃

n=1

En).

But by the Carathéodory measurability of
⋃N

n=1En, we have

μ∗(A ∩
N+1⋃
n=1

En) = μ∗(A ∩
N⋃

n=1

En) + μ∗(A ∩ EN+1\
N⋃

n=1

En)

for any N ≥ 0, and thus on iteration

lim
N→∞

μ∗(A ∩
N⋃

n=1

En) =
∞∑

N=0

μ∗(A ∩ EN+1\
N⋃

n=1

En).
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On the other hand, from countable subadditivity one has

μ∗(A ∩
∞⋃
n=1

En) ≤
∞∑

N=0

μ∗(A ∩EN+1\
N⋃

n=1

En)

and the claim follows.

Finally, we show that μ is a measure. It is clear that μ(∅) = 0, so it
suffices to establish countable additivity, thus we need to show that

μ∗(
∞⋃
n=1

En) =
∞∑
n=1

μ∗(En)

whenever E1, E2, . . . are Carathéodory-measurable and disjoint. By subad-
ditivity it suffices to show that

μ∗(
∞⋃
n=1

En) ≥
∞∑
n=1

μ∗(En).

By monotonicity it suffices to show that

μ∗(
N⋃

n=1

En) =
N∑

n=1

μ∗(En)

for any finite N . But from the Carathéodory measurability of
⋃N

n=1En one
has

μ∗(
N+1⋃
n=1

En) = μ∗(
N⋃

n=1

En) + μ∗(EN+1)

for any N ≥ 0, and the claim follows from induction. �
Exercise 1.7.3. Let B be a Boolean algebra on a set X. Show that B
is a σ-algebra if and only if it is closed under countable disjoint unions,
which means that

⋃∞
n=1En ∈ B whenever E1, E2, E3, . . . ∈ B are a countable

sequence of disjoint sets in B.
Remark 1.7.4. Note that the above theorem, combined with Exercise 1.7.2
gives a slightly alternate way to construct Lebesgue measure from Lebesgue
outer measure than the construction given in Section 1.2. This is arguably
a more efficient way to proceed, but is also less geometrically intuitive than
the approach taken in Section 1.2.

Remark 1.7.5. From Exercise 1.7.1 we see that the measure μ constructed
by the Carathéodory extension theorem is automatically complete (see Def-
inition 1.4.31).

Remark 1.7.6. In §1.15 of An epsilon of room, Vol. I, an important exam-
ple of a measure constructed by Carathéodory’s theorem is given, namely
the d-dimensional Hausdorff measure Hd on Rn that is good for measuring
the size of d-dimensional subsets of Rn.
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1.7.2. Pre-measures. In previous notes, we saw that finitely additive
measures, such as elementary measure or Jordan measure, could be extended
to a countably additive measure, namely Lebesgue measure. It is natural
to ask whether this property is true in general. In other words, given a
finitely additive measure μ0 : B0 → [0,+∞] on a Boolean algebra B0, is it
possible to find a σ-algebra B refining B0, and a countably additive measure
μ : B → [0,+∞] that extends μ0?

There is an obvious necessary condition in order for μ0 to have a count-
ably additive extension, namely that μ0 already has to be countably additive
within B0. More precisely, suppose that E1, E2, E3, . . . ∈ B0 were disjoint
sets such that their union

⋃∞
n=1En was also in B0. (Note that this latter

property is not automatic as B0 is merely a Boolean algebra rather than a
σ-algebra.) Then, in order for μ0 to be extendible to a countably additive
measure, it is clearly necessary that

μ0(

∞⋃
n=1

En) =

∞∑
n=1

μ0(En).

Using the Carathéodory extension theorem, we can show that this nec-
essary condition is also sufficient. More precisely, we have

Definition 1.7.7 (Pre-measure). A pre-measure on a Boolean algebra B0

is a finitely additive measure μ0 : B0 → [0,+∞] with the property that
μ0(

⋃∞
n=1En) =

∑∞
n=1 μ0(En) whenever E1, E2, E3, . . . ∈ B0 are disjoint sets

such that
⋃∞

n=1En is in B0.

Exercise 1.7.4.

(i) Show that the requirement that μ0 is finitely additive can be relaxed
to the condition that μ0(∅) = 0 without affecting the definition of
a pre-measure.

(ii) Show that the condition μ0(
⋃∞

n=1En) =
∑∞

n=1 μ0(En) can be re-
laxed to μ0(

⋃∞
n=1En) ≤

∑∞
n=1 μ0(En) without affecting the defini-

tion of a pre-measure.

(iii) On the other hand, give an example to show that if one performs
both of the above two relaxations at once, one starts admitting
objects μ0 that are not pre-measures.

Exercise 1.7.5. Without using the theory of Lebesgue measure, show that
elementary measure (on the elementary Boolean algebra) is a pre-measure.
(Hint: Use Lemma 1.2.6. Note that one has to also deal with co-elementary
sets as well as elementary sets in the elementary Boolean algebra.)

Exercise 1.7.6. Construct a finitely additive measure μ0 : B0 → [0,+∞]
that is not a pre-measure. (Hint: Take X to be the natural numbers, take
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B0 = 2N to be the discrete algebra, and define μ0 separately for finite and
infinite sets.)

Theorem 1.7.8 (Hahn-Kolmogorov theorem). Every pre-measure μ0 : B0 →
[0,+∞] on a Boolean algebra B0 in X can be extended to a countably additive
measure μ : B → [0,+∞].

Proof. We mimic the construction of Lebesgue measure from elementary
measure. Namely, for any set E ⊂ X, define the outer measure μ∗(E) of E
to be the quantity

μ∗(E) := inf{
∞∑
n=1

μ0(En) : E ⊂
∞⋃
n=1

En;En ∈ B0 for all n}.

It is easy to verify (cf. Exercise 1.2.3) that μ∗ is indeed an outer measure. Let
B be the collection of all sets E ⊂ X that are Carathéodory measurable with
respect to μ∗, and let μ be the restriction of μ∗ to B. By the Carathéodory
extension theorem, B is a σ-algebra and μ is a countably additive measure.

It remains to show that B contains B0 and that μ extends μ0. Thus, let
E ∈ B0; we need to show that E is Carathéodory measurable with respect
to μ∗ and that μ∗(E) = μ0(E). To prove the first claim, let A ⊂ X be
arbitrary. We need to show that

μ∗(A) = μ∗(A ∩E) + μ∗(A\E);

by subadditivity, it suffices to show that

μ∗(A) ≥ μ∗(A ∩E) + μ∗(A\E).

We may assume that μ∗(A) is finite, since the claim is trivial otherwise.

Fix ε > 0. By definition of μ∗, one can find E1, E2, . . . ∈ B0 covering A
such that

∞∑
n=1

μ0(En) ≤ μ∗(A) + ε.

The sets En ∩ E lie in B0 and cover A ∩ E and thus

μ∗(A ∩E) ≤
∞∑
n=1

μ0(En ∩ E).

Similarly, we have

μ∗(A\E) ≤
∞∑
n=1

μ0(En\E).

Meanwhile, from finite additivity we have

μ0(En ∩ E) + μ0(En\E) = μ0(En).
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Combining all of these estimates, we obtain

μ∗(A ∩E) + μ∗(A\E) ≤ μ∗(A) + ε;

since ε > 0 was arbitrary, the claim follows.

Finally, we have to show that μ∗(E) = μ0(E). Since E covers itself, we
certainly have μ∗(E) ≤ μ0(E). To show the converse inequality, it suffices
to show that ∞∑

n=1

μ0(En) ≥ μ0(E)

whenever E1, E2, . . . ∈ B0 cover E. By replacing each En with the smaller
set En\

⋃n−1
m=1Em (which still lies in B0, and still covers E), we may assume

without loss of generality (thanks to the monotonicity of μ0) that the En

are disjoint. Similarly, by replacing each En with the smaller set En ∩E we
may assume without loss of generality that the union of the En is exactly
equal to E. But then the claim follows from the hypothesis that μ0 is a
pre-measure (and not merely a finitely additive measure). �

Let us call the measure μ constructed in the above proof the Hahn-
Kolmogorov extension of the pre-measure μ0. Thus, for instance, from Ex-
ercise 1.7.2, the Hahn-Kolmogorov extension of elementary measure (with
the convention that co-elementary sets have infinite elementary measure) is
Lebesgue measure. This is not quite the unique extension of μ0 to a count-
ably additive measure, though. For instance, one could restrict Lebesgue
measure to the Borel σ-algebra, and this would still be a countably additive
extension of elementary measure. However, the extension is unique within
its own σ-algebra:

Exercise 1.7.7. Let μ0 : B0 → [0,+∞] be a pre-measure, let μ : B →
[0,+∞] be the Hahn-Kolmogorov extension of μ0, and let μ′ : B′ → [0,+∞]
be another countably additive extension of μ0. Suppose also that μ0 is σ-
finite, which means that one can express the whole space X as the countable
union of sets E1, E2, . . . ∈ B0 for which μ0(En) < ∞ for all n. Show that μ
and μ′ agree on their common domain of definition. In other words, show
that μ(E) = μ′(E) for all E ∈ B∩B′. (Hint: First show that μ′(E) ≤ μ∗(E)
for all E ∈ B′.)

Exercise 1.7.8. The purpose of this exercise is to show that the σ-finite
hypothesis in Exercise 1.7.7 cannot be removed. Let A be the collection of
all subsets in R that can be expressed as finite unions of half-open intervals
[a, b). Let μ0 : A → [0,+∞] be the function such that μ0(E) = +∞ for
non-empty E and μ0(∅) = 0.

(i) Show that μ0 is a pre-measure.

(ii) Show that 〈A〉 is the Borel σ-algebra B[R].
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(iii) Show that the Hahn-Kolmogorov extension μ : B[R] → [0,+∞] of
μ0 assigns an infinite measure to any non-empty Borel set.

(iv) Show that counting measure # (or more generally, c# for any c ∈
(0,+∞]) is another extension of μ0 on B[R].

Exercise 1.7.9. Let μ0 : B0 → [0,+∞] be a pre-measure which is σ-finite
(thus X is the countable union of sets in B0 of finite μ0-measure), and let
μ : B → [0,+∞] be the Hahn-Kolmogorov extension of μ0.

(i) Show that if E ∈ B, then there exists F ∈ 〈B0〉 containing E such
that μ(F\E) = 0 (thus F consists of the union of E and a null
set). Furthermore, show that F can be chosen to be a countable
intersection F =

⋂∞
n=1 Fn of sets Fn, each of which is a countable

union Fn =
⋃∞

m=1 Fn,m of sets Fn,m in B0.

(ii) If E ∈ B has finite measure (i.e. μ(E) < ∞), and ε > 0, show that
there exists F ∈ B0 such that μ(EΔF ) ≤ ε.

(iii) Conversely, if E is a set such that for every ε > 0 there exists
F ∈ B0 such that μ∗(EΔF ) ≤ ε, show that E ∈ B.

1.7.3. Lebesgue-Stieltjes measure. Now we use the Hahn-Kolmogorov
extension theorem to construct a variety of measures. We begin with
Lebesgue-Stieltjes measure.

Theorem 1.7.9 (Existence of Lebesgue-Stieltjes measure). Let F : R → R
be a monotone non-decreasing function, and define the left and right limits

F−(x) := sup
y<x

F (y), F+(x) := inf
y>x

F (y);

thus one has F−(x) ≤ F (x) ≤ F+(x) for all x. Let B[R] be the Borel σ-
algebra on R. Then there exists a unique Borel measure μF : B[R] → [0,+∞]
such that

μF ([a, b]) = F+(b)− F−(a), μF ([a, b)) = F−(b)− F−(a),(1.33)

μF ((a, b]) = F+(b)− F+(a), μF ((a, b)) = F−(b)− F+(a),

for all −∞ < b < a < ∞, and

(1.34) μF ({a}) = F+(a)− F−(a)

for all a ∈ R.

Proof. (Sketch) For this proof, we will deviate from our previous nota-
tional conventions, and allow intervals to be unbounded, thus, in particular,
including the half-infinite intervals [a,+∞), (a,+∞), (−∞, a], (−∞, a) and
the doubly infinite interval (−∞,+∞) as intervals.

Define the F -volume |I|F ∈ [0,+∞] of any interval I, adopting the obvi-
ous conventions that F−(+∞) = supy∈R F (y) and F+(−∞) = infy∈R F (y),
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and also adopting the convention that the empty interval ∅ has zero F -
volume, |∅|F = 0. Note that F−(+∞) could equal +∞ and F+(−∞) could
equal −∞, but in all circumstances the F -volume |I|F is well defined and
takes values in [0,+∞], after adopting the obvious conventions to evaluate
expressions such as +∞− (−∞).

A somewhat tedious case check (Exercise!) gives the additivity property

|I ∪ J |F = |I|F + |J |F
whenever I, J are disjoint intervals that share a common endpoint. As a
corollary, we see that if an interval I is partitioned into finitely many disjoint
sub-intervals I1, . . . , Ik, we have |I| = |I1|+ . . .+ |Ik|.

Let B0 be the Boolean algebra generated by the (possibly infinite) inter-
vals, then B0 consists of those sets that can be expressed as a finite union of
intervals. (This is slightly larger than the elementary algebra, as it allows
for half-infinite intervals such as [0,+∞), whereas the elementary algebra
does not.) We can define a measure μ0 on this algebra by declaring

μ0(E) = |I1|F + . . .+ |Ik|F
whenever E = I1 ∪ . . . ∪ Ik is the disjoint union of finitely many intervals.
One can check (Exercise!) that this measure is well defined (in the sense that
it gives a unique value to μ0(E) for each E ∈ B0) and is finitely additive.
We now claim that μ0 is a pre-measure; thus we suppose that E = B0 is the
disjoint union of countably many sets E1, E2, . . . ∈ B0, and wish to show
that

μ0(E) =

∞∑
n=1

μ0(En).

By splitting up E into intervals and then intersecting each of the En with
these intervals and using finite additivity, we may assume that E is a single
interval. By splitting up the En into their component intervals and using
finite additivity, we may assume that the En are also individual intervals.
By subadditivity, it suffices to show that

μ0(E) ≤
∞∑
n=1

μ0(En).

By the definition of μ0(E), one can check that

(1.35) μ0(E) = sup
K⊂E

μ0(K)

where K ranges over all compact intervals contained in E (Exercise!). Thus,
it suffices to show that

μ0(K) ≤
∞∑
n=1

μ0(En)
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for each compact sub-interval K of E. In a similar spirit, one can show that

μ0(En) = inf
U⊃En

μ0(En)

where U ranges over all open intervals containing En (Exercise!). Using the
ε/2n trick, it thus suffices to show that

μ0(K) ≤
∞∑
n=1

μ0(Un)

whenever Un is an open interval containing En. But by the Heine-Borel
theorem, one can cover K by a finite number

⋃N
n=1 Un of the Un, hence by

finite subadditivity

μ0(K) ≤
N∑

n=1

μ0(Un)

and the claim follows.

As μ0 is now verified to be a pre-measure, we may use the Hahn-
Kolmogorov extension theorem to extend it to a countably additive measure
μ on a σ-algebra B that contains B0. In particular, B contains all the ele-
mentary sets and hence (by Exercise 1.4.14) contains the Borel σ-algebra.
Restricting μ to the Borel σ-algebra we obtain the existence claim.

Finally, we establish uniqueness. If μ′ is another Borel measure with
the stated properties, then μ′(K) = |K|F for every compact interval K, and
hence by (1.35) and upward monotone convergence, one has μ′(I) = |I|F for
every interval (including the unbounded ones). This implies that μ′ agrees
with μ0 on B0, and thus (by Exercise 1.7.7, noting that μ0 is σ-finite) agrees
with μ on Borel measurable sets. �

Exercise 1.7.10. Verify the claims marked “Exercise!” in the above proof.

The measure μF given by the above theorem is known as the Lebesgue-
Stieltjes measure μF of F . (In some texts, this measure is only defined when
F is right-continuous, or equivalently if F = F+.)

Exercise 1.7.11. Define a Radon measure on R to be a Borel measure μ
obeying the following additional properties:

(i) (Local finiteness) μ(K) < ∞ for every compact K.

(ii) (Inner regularity) One has μ(E) = supK⊂E,K compact μ(K) for
every Borel set E.

(iii) (Outer regularity) One has μ(E) = infU⊃E,U open μ(U) for every
Borel set E.

Show that for every monotone function F : R → R, the Lebesgue-Stieltjes
measure μF is a Radon measure on R; conversely, if μ is a Radon measure
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on R, show that there exists a monotone function F : R → R such that
μ = μF .

Radon measures are studied in more detail in §1.10 of An epsilon of
room, Vol. I.

Exercise 1.7.12 (Near uniqueness). If F, F ′ : R → R are monotone non-
decreasing functions, show that μF = μF ′ if and only if there exists a con-
stant C ∈ R such that F+(x) = F ′

+(x) + C and F−(x) = F ′
−(x) + C for all

x ∈ R. Note that this implies that the value of F at its points of discon-
tinuity are irrelevant for the purposes of determining the Lebesgue-Stieltjes
measure μF ; in particular, μF = μF+ = μF− .

In the special case when F+(−∞) = 0 and F−(+∞) = 1, then μF is a
probability measure, and F+(x) = μF ((−∞, x]) is known as the cumulative
distribution function of μF .

Now we give some examples of Lebesgue-Stieltjes measure.

Exercise 1.7.13 (Lebesgue-Stieltjes measure, absolutely continuous case).

(i) If F : R → R is the identity function F (x) = x, show that μF is
equal to Lebesgue measure m.

(ii) If F : R → R is monotone non-decreasing and absolutely continu-
ous (which, in particular, implies that F ′ exists and is absolutely
integrable, show that μF = mF ′ in the sense of Exercise 1.4.48,
thus

μF (E) =

∫
E
F ′(x) dx

for any Borel measurable E, and∫
R
f(x) dμF (x) =

∫
R
f(x)F ′(x) dx

for any unsigned Borel measurable f : R → [0,+∞].

In view of the above exercise, the integral
∫
R f dμF is often abbreviated∫

R f dF , and referred to as the Lebesgue-Stieltjes integral of f with respect
to F . In particular, observe the identity∫

[a,b]
dF = F+(b)− F−(a)

for any monotone non-decreasing F : R → R and any −∞ < b < a < +∞,
which can be viewed as yet another formulation of the fundamental theorem
of calculus.

Exercise 1.7.14 (Lebesgue-Stieltjes measure, pure point case).
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(i) If H : R → R is the Heaviside function H := 1[0,+∞), show that μH

is equal to the Dirac measure δ0 at the origin (defined in Example
1.4.22).

(ii) If F =
∑

n cnJn is a jump function (as defined in Definition 1.6.30),
show that μF is equal to the linear combination

∑
cnδxn of delta

functions (as defined in Exercise 1.4.22), where xn is the point of
discontinuity for the basic jump function Jn.

Exercise 1.7.15 (Lebesgue-Stieltjes measure, singular continuous case).

(i) If F : R → R is a monotone non-decreasing function, show that F
is continuous if and only if μF ({x}) = 0 for all x ∈ R.

(ii) If F is the Cantor function (defined in Exercise 1.6.48), show that
μF is a probability measure supported on the middle-thirds Can-
tor set (see Exercise 1.2.9) in the sense that μF (R\C) = 0. The
measure μF is known as Cantor measure.

(iii) If μF is Cantor measure, establish the self-similarity properties
μ(13 · E) = 1

2μ(E) and μ(13 · E + 2
3) = 1

2μ(E) for every Borel-

measurable E ⊂ [0, 1], where 1
3 · E := {1

3x : x ∈ E}.

Exercise 1.7.16 (Connection with Riemann-Stieltjes integral). Let F : R→
R be monotone non-decreasing, let [a, b] be a compact interval, and let
f : [a, b] → R be continuous. Suppose that F is continuous at the endpoints
a, b of the interval. Show that for every ε > 0 there exists δ > 0 such that

|
n∑

i=1

f(t∗i )(F (ti)− F (ti−1))−
∫
[a,b]

f dF | ≤ ε

whenever a = t0 < t1 < . . . < tn = b and t∗i ∈ [ti−1, ti] for 1 ≤ i ≤ n are
such that sup1≤i≤n |ti − ti−1| ≤ δ. In the language of the Riemann-Stieltjes
integral, this result asserts that the Lebesgue-Stieltjes integral extends the
Riemann-Stieltjes integral.

Exercise 1.7.17 (Integration by parts formula). Let F,G : R → R be
monotone non-decreasing and continuous. Show that∫

[a,b]
F dG = −

∫
[a,b]

G dF + F (b)G(b)− F (a)G(a)

for any compact interval [a, b]. (Hint: Use Exercise 1.7.16.) This formula
can be partially extended to the case when one or both of F,G have dis-
continuities, but care must be taken when F and G are simultaneously
discontinuous at the same location.
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1.7.4. Product measure. Given two sets X and Y , one can form their
Cartesian product X × Y = {(x, y) : x ∈ X, y ∈ Y }. This set is naturally
equipped with the coordinate projection maps πX : X×Y → X and πY : X×
Y → Y defined by setting πX(x, y) := x and πY (x, y) := y. One can
certainly take Cartesian products X1 × . . . × Xd of more than two sets,
or even take an infinite product

∏
α∈AXα, but for simplicity we will only

discuss the theory for products of two sets for now.

Now suppose that (X,BX) and (Y,BY ) are measurable spaces. Then
we can still form the Cartesian product X × Y and the projection maps
πX : X × Y → X and πY : X × Y → Y . But now we can also form the
pullback σ-algebras

π∗
X(BX) := {π−1

X (E) : E ∈ BX} = {E × Y : E ∈ BX}

and

π∗
Y (BY ) := {π−1

Y (E) : E ∈ BY } = {X × F : F ∈ BY }.
We then define the product σ-algebra BX×BY to be the σ-algebra generated
by the union of these two σ-algebras:

BX × BY := 〈π∗
X(BX) ∪ π∗

Y (BY )〉.
This definition has several equivalent formulations:

Exercise 1.7.18. Let (X,BX) and (Y,BY ) be measurable spaces.

(i) Show that BX×BY is the σ-algebra generated by the sets E×F with
E ∈ BX , Y ∈ BY . In other words, BX×BY is the coarsest σ-algebra
on X × Y with the property that the product of a BX -measurable
set and a BY -measurable set is always BX × BY measurable.

(ii) Show that BX ×BY is the coarsest σ-algebra on X ×Y that makes
the projection maps πX , πY both measurable morphisms (see Re-
mark 1.4.33).

(iii) If E ∈ BX × BY , show that the sets Ex := {y ∈ Y : (x, y) ∈ E} lie
in BY for every x ∈ X, and similarly that the sets Ey := {x ∈ X :
(x, y) ∈ E} lie in BX for every y ∈ Y .

(iv) If f : X × Y → [0,+∞] is measurable (with respect to BX × BY ),
show that the function fx : y 
→ f(x, y) is BY -measurable for every
x ∈ X, and similarly that the function fy : x 
→ f(x, y) is BX -
measurable for every y ∈ Y .

(v) If E ∈ BX × BY , show that the slices Ex := {y ∈ Y : (x, y) ∈ E}
lie in a countably generated σ-algebra. In other words, show that
there exists an at most countable collection A = AE of sets (which
can depend on E) such that {Ex : x ∈ X} ⊂ 〈A〉. Conclude, in
particular, that the number of distinct slices Ex is at most c, the
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cardinality of the continuum. (The last part of this exercise is only
suitable for students who are comfortable with cardinal arithmetic.)

Exercise 1.7.19.

(i) Show that the product of two trivial σ-algebras (on two different
spaces X,Y ) is again trivial.

(ii) Show that the product of two atomic σ-algebras is again atomic.

(iii) Show that the product of two finite σ-algebras is again finite.

(iv) Show that the product of two Borel σ-algebras (on two Euclidean

spaces Rd,Rd′ with d, d′ ≥ 1) is again the Borel σ-algebra (on

Rd ×Rd′ ≡ Rd+d′).

(v) Show that the product of two Lebesgue σ-algebras (on two Eu-

clidean spacesRd,Rd′ with d, d′ ≥ 1) is not the Lebesgue σ-algebra.
(Hint: Argue by contradiction and use Exercise 1.7.18(iii).)

(vi) However, show that the Lebesgue σ-algebra on Rd+d′ is the comple-
tion (see Exercise 1.4.26) of the product of the Lebesgue σ-algebras

of Rd and Rd′ with respect to d+d′-dimensional Lebesgue measure.

(vii) This part of the exercise is only for students who are comfortable
with cardinal arithmetic. Give an example to show that the product
of two discrete σ-algebras is not necessarily discrete.

(viii) On the other hand, show that the product of two discrete σ-algebras
2X , 2Y is again a discrete σ-algebra if at least one of the domains
X,Y is at most countably infinite.

Now suppose we have two measure spaces (X,BX , μX) and (Y,BY , μY ).
Given that we can multiply together the sets X and Y to form a product
set X × Y , and can multiply the σ-algebras BX and BY together to form a
product σ-algebra BX ×BY , it is natural to expect that we can multiply the
two measures μX : BX → [0,+∞] and μY : BY → [0,+∞] to form a product
measure μX × μY : BX × BY → [0,+∞]. In view of the “base times height
formula” that one learns in elementary school, one expects to have

(1.36) μX × μY (E × F ) = μX(E)μY (F )

whenever E ∈ BX and F ∈ BY .

To construct this measure, it is convenient to make the assumption that
both spaces are σ-finite:

Definition 1.7.10 (σ-finite). A measure space (X,B, μ) is σ-finite if X can
be expressed as the countable union of sets of finite measure.

Thus, for instance, Rd with Lebesgue measure is σ-finite, as Rd can be
expressed as the union of (for instance) the balls B(0, n) for n = 1, 2, 3, . . .,
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each of which has finite measure. On the other hand, Rd with counting
measure is not σ-finite (why?). But most measure spaces that one actually
encounters in analysis (including, clearly, all probability spaces) are σ-finite.
It is possible to partially extend the theory of product spaces to the non-σ-
finite setting, but there are a number of very delicate technical issues that
arise and so we will not discuss such extensions here.

As long as we restrict attention to the σ-finite case, product measure
always exists and is unique:

Proposition 1.7.11 (Existence and uniqueness of product measure). Let
(X,BX , μX) and (Y,BY , μY ) be σ-finite measure spaces. Then there exists
a unique measure μX × μY on BX × BY that obeys μX × μY (E × F ) =
μX(E)μY (F ) whenever E ∈ BX and F ∈ BY .

Proof. We first show existence. Inspired by the fact that Lebesgue measure
is the Hahn-Kolmogorov completion of elementary (pre-)measure, we shall
first construct an “elementary product pre-measure” that we will then apply
Theorem 1.7.8 to.

Let B0 be the collection of all finite unions

S := (E1 × F1) ∪ . . . ∪ (Ek × Fk)

of Cartesian products of BX -measurable sets E1, . . . , Ek and BY -measurable
sets F1, . . . , Fk. (One can think of such sets as being somewhat analogous
to elementary sets in Euclidean space, although the analogy is not perfectly
exact.) It is not difficult to verify that this is a Boolean algebra (though it is
not, in general, a σ-algebra). Also, any set in B0 can be easily decomposed
into a disjoint union of product sets E1×F1, . . . , Ek ×Fk of BX -measurable
sets and BY -measurable sets (cf. Exercise 1.1.2). We then define the quan-
tity μ0(S) associated such a disjoint union S by the formula

μ0(S) :=
k∑

j=1

μX(Ej)μY (Fj)

whenever S is the disjoint union of products E1 × F1, . . . , Ek × Fk of BX -
measurable sets and BY -measurable sets. One can show that this definition
does not depend on exactly how S is decomposed, and gives a finitely addi-
tive measure μ0 : B0 → [0,+∞] (cf. Exercise 1.1.2).

Now we show that μ0 is a pre-measure. It suffices to show that if S ∈
B0 is the countable disjoint union of sets S1, S2, . . . ∈ B0, then μ0(S) =∑∞

n=1 μ(Sn).

Splitting S up into disjoint product sets, and restricting the Sn to each of
these product sets in turn, we may assume without loss of generality (using
the finite additivity of μ0) that S = E × F for some E ∈ BX and F ∈ BY .
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In a similar spirit, by breaking each Sn up into component product sets and
using finite additivity again, we may assume without loss of generality that
each Sn takes the form Sn = En × Fn for some En ∈ BX and Fn ∈ BY . By
definition of μ0, our objective is now to show that

μX(E)μY (F ) =
∞∑
n=1

μX(En)μY (Fn).

To do this, first observe from construction that we have the pointwise iden-
tity

1E(x)1F (y) =
∞∑
n=1

1En(x)1Fn(y)

for all x ∈ X and y ∈ Y . We fix x ∈ X, and integrate this identity in y
(noting that both sides are measurable and unsigned) to conclude that∫

Y
1E(x)1F (y) dμY (y) =

∫
Y

∞∑
n=1

1En(x)1Fn(y) dμY (y).

The left-hand side simplifies to 1E(x)μY (F ). To compute the right-hand
side, we use the monotone convergence theorem (Theorem 1.4.43) to inter-
change the summation and integration, and soon see that the right-hand
side is

∑∞
n=1 1En(x)μY (Fn), thus

1E(x)μY (F ) =
∞∑
n=1

1En(x)μY (Fn)

for all x. Both sides are measurable and unsigned in x, so we may integrate
in X and conclude that∫

X
1E(x)μY (F ) dμX =

∫
X

∞∑
n=1

1En(x)μY (Fn) dμX(x).

The left-hand side here is μX(E)μY (F ). Using monotone convergence as
before, the right-hand side simplifies to

∑∞
n=1 μX(En)μY (Fn), and the claim

follows.

Now that we have established that μ0 is a pre-measure, we may apply
Theorem 1.7.8 to extend this measure to a countably additive measure μX×
μY on a σ-algebra containing B0. By Exercise 1.7.18(ii), μX × μY is a
countably additive measure on BX × BY , and as it extends μ0, it will obey
(1.36). Finally, to show uniqueness, observe from finite additivity that any
measure μX × μY on BX × BY that obeys (1.36) must extend μ0, and so
uniqueness follows from Exercise 1.7.7. �

Remark 1.7.12. When X, Y are not both σ-finite, then one can still con-
struct at least one product measure, but it will, in general, not be unique.
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This makes the theory much more subtle, and we will not discuss it in this
text.

Example 1.7.13. From Exercise 1.2.22, we see that the product md ×
md′ of the Lebesgue measures md,md′ on (Rd,L[Rd]) and (Rd,L[Rd′ ]),

respectively, will agree with Lebesgue measure md+d′ on the product space
L[Rd]×L[Rd′ ], which as noted in Exercise 1.7.19 is a subalgebra of L[Rd+d′ ].

After taking the completion md ×md′ of this product measure, one obtains
the full Lebesgue measure md+d′ .

Exercise 1.7.20. Let (X,BX), (Y,BY ) be measurable spaces.

(i) Show that the product of two Dirac measures on (X,BX), (Y,BY )
is a Dirac measure on (X × Y,BX × BY ).

(ii) If X,Y are at most countable, show that the product of the two
counting measures on (X,BX), (Y,BY ) is the counting measure on
(X × Y,BX × BY ).

Exercise 1.7.21 (Associativity of product). Let (X,BX , μX), (Y,BY , μY ),
(Z,BZ , μZ) be σ-finite sets. We may identify the Cartesian products (X ×
Y )× Z and X × (Y × Z) with each other in the obvious manner. If we do
so, show that (BX × BY ) × BZ = BX × (BY × BZ) and (μX × μY ) × μZ =
μX × (μY × μZ).

Now we integrate using this product measure. We will need the following
technical lemma. Define a monotone class in X is a collection B of subsets
of X with the following two closure properties:

(i) If E1 ⊂ E2 ⊂ . . . are a countable increasing sequence of sets in B,
then

⋃∞
n=1En ∈ B.

(ii) If E1 ⊃ E2 ⊃ . . . are a countable decreasing sequence of sets in B,
then

⋂∞
n=1En ∈ B.

Lemma 1.7.14 (Monotone class lemma). Let A be a Boolean algebra on
X. Then 〈A〉 is the smallest monotone class that contains A.

Proof. Let B be the intersection of all the monotone classes that contain
A. Since 〈A〉 is clearly one such class, B is a subset of 〈A〉. Our task is then
to show that B contains 〈A〉.

It is also clear that B is a monotone class that contains A. By replacing
all the elements of B with their complements, we see that B is necessarily
closed under complements.

For any E ∈ A, consider the set CE of all sets F ∈ B such that F\E,
E\F , F ∩ E, and X\(E ∪ F ) all lie in B. It is clear that CE contains A;
since B is a monotone class, we see that CE is also. By definition of B, we
conclude that CE = B for all E ∈ A.
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Next, let D be the set of all E ∈ B such that F\E, E\F , F ∩ E, and
X\(E ∪ F ) all lie in B for all F ∈ B. By the previous discussion, we see
that D contains A. One also easily verifies that D is a monotone class.
By definition of B, we conclude that D = B. Since B is also closed under
complements, this implies that B is closed with respect to finite unions.
Since this class also contains A, which contains ∅, we conclude that B is a
Boolean algebra. Since B is also closed under increasing countable unions,
we conclude that it is closed under arbitrary countable unions, and is thus
a σ-algebra. As it contains A, it must also contain 〈A〉. �

Theorem 1.7.15 (Tonelli’s theorem, incomplete version). Let (X,BX , μX)
and (Y,BY , μY ) be σ-finite measure spaces, and let f : X × Y → [0,+∞] be
measurable with respect to BX × BY . Then:

(i) The functions x 
→
∫
Y f(x, y) dμY (y) and y 
→

∫
X f(x, y) dμX(x)

(which are well defined, thanks to Exercise 1.7.18) are measurable
with respect to BX and BY , respectively.

(ii) We have ∫
X×Y

f(x, y) dμX × μY (x, y)

=

∫
X
(

∫
Y
f(x, y) dμY (y)) dμX(x)

=

∫
Y
(

∫
X
f(x, y) dμX(x)) dμY (y).

Proof. By writing the σ-finite spaceX as an increasing unionX =
⋃∞

n=1Xn

of finite measure sets, we see from several applications of the monotone
convergence theorem (Theorem 1.4.43) that it suffices to prove the claims
with X replaced by Xn. Thus we may assume without loss of generality
that X has finite measure. Similarly we may assume Y has finite measure.
Note from (1.36) that this implies that X × Y has finite measure also.

Every unsigned measurable function is the increasing limit of unsigned
simple functions. By several applications of the monotone convergence the-
orem (Theorem 1.4.43), we thus see that it suffices to verify the claim when
f is a simple function. By linearity, it then suffices to verify the claim when
f is an indicator function, thus f = 1S for some S ∈ BX × BY .

Let C be the set of all S ∈ BX × BY for which the claims hold. From
the repeated applications of the monotone convergence theorem (Theorem
1.4.43) and the downward monotone convergence theorem (which is available
in this finite measure setting) we see that C is a monotone class.

By direct computation (using (1.36)), we see that C contains as an el-
ement any product S = E × F with E ∈ BX and F ∈ BY . By finite
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additivity, we conclude that C also contains as an element a disjoint finite
union S = E1×F1∪ . . .∪Ek×Fk of such products. This implies that C also
contains the Boolean algebra B0 in the proof of Proposition 1.7.11, as such
sets can always be expressed as the disjoint finite union of Cartesian prod-
ucts of measurable sets. Applying the monotone class lemma, we conclude
that C contains 〈B0〉 = BX × BY , and the claim follows. �

Remark 1.7.16. Note that Tonelli’s theorem for sums (Theorem 0.0.2) is
a special case of the above result when μX , μY are counting measure. In a
similar spirit, Corollary 1.4.45 is the special case when just one of μX , μY is
counting measure.

Corollary 1.7.17. Let (X,BX , μX) and (Y,BY , μY ) be σ-finite measure
spaces, and let E ∈ BX ×BY be a null set with respect to μX ×μY . Then for
μX-almost every x ∈ X, the set Ex := {y ∈ Y : (x, y) ∈ E} is a μY -null set;
and similarly, for μY -almost every y ∈ Y , the set Ey := {x ∈ X : (x, y) ∈ E}
is a μX-null set.

Proof. Applying the Tonelli theorem to the indicator function 1E , we con-
clude that

0 =

∫
X
(

∫
Y
1E(x, y) dμY (y)) dμX(x) =

∫
Y
(

∫
X
1E(x, y) dμX(x)) dμY (y)

and thus

0 =

∫
X
μY (Ex) dμX(x) =

∫
Y
μX(Ey) dμY (y),

and the claim follows. �

With this corollary, we can extend Tonelli’s theorem to the completion
(X×Y,BX × BY , μX × μY ) of the product space (X×Y,BX×BY , μX×μY ),
as constructed in Exercise 1.4.26. But we can easily extend the Tonelli
theorem to this context:

Theorem 1.7.18 (Tonelli’s theorem, complete version). Let (X,BX , μX)
and (Y,BY , μY ) be complete σ-finite measure spaces, and let f : X × Y →
[0,+∞] be measurable with respect to BX × BY . Then:

(i) For μX-almost every x ∈ X, the function y 
→ f(x, y) is BY -
measurable, and in particular,

∫
Y f(x, y) dμY (y) exists. Further-

more, the (μX-almost everywhere defined) map x 
→
∫
Y f(x, y) dμY

is BX-measurable.

(ii) For μY -almost every y ∈ Y , the function x 
→ f(x, y) is BX-
measurable, and in particular,

∫
X f(x, y) dμX(x) exists. Further-

more, the (μY -almost everywhere defined) map y 
→
∫
X f(x, y) dμX

is BY -measurable.
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(iii) We have∫
X×Y

f(x, y) dμX × μY (x, y) =

∫
X
(

∫
Y
f(x, y) dμY (y)) dμX(x)

=

∫
X
(

∫
Y
f(x, y) dμY (y)) dμX(x).

(1.37)

Proof. From Exercise 1.4.28, every measurable set in BX × BY is equal to
a measurable set in BX × BY outside of a μX × μY -null set. This implies
that the BX × BY -measurable function f agrees with a BX ×BY -measurable
function f̃ outside of a μX × μY -null set E (as can be seen by expressing
f as the limit of simple functions). From Corollary 1.7.17, we see that for

μX-almost every x ∈ X, the function y 
→ f(x, y) agrees with y 
→ f̃(x, y)
outside of a μY -null set (and is, in particular, measurable, as (Y,BY , μY ) is
complete); and similarly for μY -almost every y ∈ Y , the function x 
→ f(x, y)

agrees with x 
→ f̃(x, y) outside of a μX-null set and is measurable, and the
claim follows. �

Specialising to the case when f is an indicator function f = 1E , we
conclude

Corollary 1.7.19 (Tonelli’s theorem for sets). Let (X,BX , μX) and
(Y,BY , μY ) be complete σ-finite measure spaces, and let E ∈ BX × BY .
Then:

(i) For μX-almost every x ∈ X, the set Ex := {y ∈ Y : (x, y) ∈ E} lies
in BY , and the (μX-almost everywhere defined) map x 
→ μY (Ex)
is BX-measurable.

(ii) For μY -almost every y ∈ Y , the set Ey := {x ∈ X : (x, y) ∈ E} lies
in BX , and the (μY -almost everywhere defined) map y 
→ μX(Ey)
is BY -measurable.

(iii) We have

μX × μY (E) =

∫
X
μY (Ex) dμX(x)(1.38)

=

∫
X
μX(Ey) dμX(x).

Exercise 1.7.22. The goal of this exercise is to demonstrate that Tonelli’s
theorem can fail if the σ-finite hypothesis is removed, and also that product
measure need not be unique. Let X is the unit interval [0, 1] with Lebesgue
measure m (and the Lebesgue σ-algebra L([0, 1])) and Y is the unit interval

[0, 1] with counting measure (and the discrete σ-algebra 2[0,1]) #. Let f :=
1E be the indicator function of the diagonal E := {(x, x) : x ∈ [0, 1]}.

(i) Show that f is measurable in the product σ-algebra.
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(ii) Show that
∫
X(

∫
Y f(x, y) d#(y))dm(x) = 1.

(iii) Show that
∫
Y (

∫
X f(x, y) dm(x))d#(y) = 0.

(iv) Show that there is more than one measure μ on L([0, 1])×2[0,1] with
the property that μ(E × F ) = m(E)#(F ) for all E ∈ L([0, 1]) and
F ∈ 2[0,1]. (Hint: Use the two different ways to perform a double
integral to create two different measures.)

Remark 1.7.20. If f is not assumed to be measurable in the product space
(or its completion), then of course the expression

∫
X×Y f(x, y) dμX×μY (x, y)

does not make sense. Furthermore, in this case the remaining two expres-
sions in (1.37) may become different as well (in some models of set theory,
at least), even when X and Y are finite measure. For instance, let us as-
sume the continuum hypothesis, which implies that the unit interval [0, 1]
can be placed in one-to-one correspondence with the first uncountable ordi-
nal ω1. Let ≺ be the ordering of [0, 1] that is associated to this ordinal, let
E := {(x, y) ∈ [0, 1]2 : x ≺ y}, and let f := 1E . Then, for any y ∈ [0, 1],
there are at most countably many x such that x ≺ y, and so

∫
[0,1] f(x, y) dx

exists and is equal to zero for every y. On the other hand, for every x ∈ [0, 1],
one has x ≺ y for all but countably many y ∈ [0, 1], and so

∫
[0,1] f(x, y) dy

exists and is equal to one for every y, and so the last two expressions in
(1.37) exist but are unequal. (In particular, Tonelli’s theorem implies that
E cannot be a Lebesgue measurable subset of [0, 1]2.) Thus we see that
measurability in the product space is an important hypothesis. (There do,
however, exist models of set theory (with the axiom of choice) in which such
counterexamples cannot be constructed, at least in the case when X and Y
are the unit interval with Lebesgue measure.)

Tonelli’s theorem is for the unsigned integral, but it leads to an im-
portant analogue for the absolutely convergent integral, known as Fubini’s
theorem:

Theorem 1.7.21 (Fubini’s theorem). Let (X,BX , μX) and (Y,BY , μY ) be
complete σ-finite measure spaces, and let f : X × Y → C be absolutely inte-
grable with respect to BX × BY . Then:

(i) For μX-almost every x ∈ X, the function y 
→ f(x, y) is absolutely
integrable with respect to μY , and in particular,

∫
Y f(x, y) dμY (y)

exists. Furthermore, the (μX-almost everywhere defined) map x 
→∫
Y f(x, y) dμY (y) is absolutely integrable with respect to μX .

(ii) For μY -almost every y ∈ Y , the function x 
→ f(x, y) is absolutely
integrable with respect to μX , and in particular,

∫
X f(x, y) dμX(x)

exists. Furthermore, the (μY -almost everywhere defined) map y 
→∫
X f(x, y) dμX(x) is absolutely integrable with respect to μY .
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(iii) We have∫
X×Y

f(x, y) dμX × μY (x, y) =

∫
X
(

∫
Y
f(x, y) dμY (y)) dμX(x)

=

∫
X
(

∫
Y
f(x, y) dμY (y)) dμX(x).

Proof. By taking real and imaginary parts we may assume that f is real;
by taking positive and negative parts we may assume that f is unsigned.
But then the claim follows from Tonelli’s theorem; note from (1.37) that∫
X(

∫
Y f(x, y) dμY (y)) dμX(x) is finite, and so

∫
Y f(x, y) dμY (y) < ∞ for

μX-almost every x ∈ X, and similarly
∫
X f(x, y) dμX(x) < ∞ for μY -almost

every y ∈ Y . �

Exercise 1.7.23. Give an example of a Borel measurable function f : [0, 1]2

→ R such that the integrals
∫
[0,1] f(x, y) dy and

∫
[0,1] f(x, y) dx exist and

are absolutely integrable for all x ∈ [0, 1] and y ∈ [0, 1], respectively, and
that

∫
[0,1](

∫
[0,1] f(x, y) dy) dx and

∫
[0,1](

∫
[0,1] f(x, y) dy) dx exist and are

absolutely integrable, but such that∫
[0,1]

(

∫
[0,1]

f(x, y) dy) dx �=
∫
[0,1]

(

∫
[0,1]

f(x, y) dy) dx.

are unequal. (Hint: Adapt the example from Remark 0.0.3.) Thus we
see that Fubini’s theorem fails when one drops the hypothesis that f is
absolutely integrable with respect to the product space.

Remark 1.7.22. Despite the failure of Tonelli’s theorem in the σ-finite
setting, it is possible to (carefully) extend Fubini’s theorem to the non-σ-
finite setting, as the absolute integrability hypotheses, when combined with
Markov’s inequality (Exercise 1.4.35(vi)), can provide a substitute for the
σ-finite property. However, we will not do so here, and indeed I would
recommend proceeding with extreme caution when performing any sort of
interchange of integrals or invoking of product measure when one is not in
the σ-finite setting.

Informally, Fubini’s theorem allows one to always interchange the order
of two integrals, as long as the integrand is absolutely integrable in the
product space (or its completion). In particular, specialising to Lebesgue
measure, we have∫

Rd+d′
f(x, y) d(x, y) =

∫
Rd

(

∫
Rd′

f(x, y) dy) dx =

∫
Rd′

(

∫
Rd

f(x, y) dx) dy

whenever f : Rd+d′ → C is absolutely integrable. In view of this, we often
write dxdy (or dydx) for d(x, y).
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By combining Fubini’s theorem with Tonelli’s theorem, we can recast
the absolute integrability hypothesis:

Corollary 1.7.23 (Fubini-Tonelli theorem). Let (X,BX , μX) and (Y,BY , μY )
be complete σ-finite measure spaces, and let f : X × Y → C be measurable
with respect to BX × BY . If∫

X
(

∫
Y
|f(x, y)| dμY (y)) dμX(x) < ∞

(note the left-hand side always exists, by Tonelli’s theorem), then f is abso-
lutely integrable with respect to BX × BY , and in particular, the conclusions
of Fubini’s theorem hold. Similarly, if we use

∫
Y (

∫
X |f(x, y)| dμX(x)) dμY (y)

instead of
∫
X(

∫
Y |f(x, y)| dμY ) dμX .

The Fubini-Tonelli theorem is an indispensable tool for computing inte-
grals. We give some basic examples below:

Exercise 1.7.24 (Area interpretation of integral). Let (X,B, μ) be a σ-
finite measure space, and let R be equipped with Lebesgue measure m and
the Borel σ-algebra B[R]. Show that if f : X → [0,+∞] is measurable if and
only if the set {(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)} is measurable in B×B[R], in
which case we have

(μ×m)({(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)}) =
∫
X
f(x) dμ(x).

Similarly, if we replace {(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)} by {(x, t) ∈ X ×R :
0 ≤ t < f(x)}.

Exercise 1.7.25 (Distribution formula). Let (X,B, μ) be a σ-finite measure
space, and let f : X → [0,+∞] be measurable. Show that∫

X
f(x) dμ(x) =

∫
[0,+∞]

μ({x ∈ X : f(x) ≥ λ}) dλ.

(Note that the integrand on the right-hand side is monotone and thus
Lebesgue measurable.) Show that this identity continues to hold if we re-
place {x ∈ X : f(x) ≥ λ} by {x ∈ X : f(x) > λ}.

Exercise 1.7.26 (Approximations to the identity). Let P : Rd → R+ be a
good kernel (see Exercise 1.6.27), and let Pt(x) :=

1
td
P (xt ) be the associated

rescaled functions. Show that if f : Rd → C is absolutely integrable, that
f ∗Pt converges in L1 norm to f as t → 0. (Hint: Use the density argument.
You will need an upper bound on ‖f ∗Pt‖L1(Rd) which can be obtained using

Tonelli’s theorem.)





Chapter 2

Related articles

173



174 2. Related articles

2.1. Problem solving strategies

The purpose of this section is to list (in no particular order) a number of
common problem solving strategies for attacking real analysis exercises such
as that presented in this text. Some of these strategies are specific to real
analysis type problems, but others are quite general and would be applicable
to other mathematical exercises.

2.1.1. Split up equalities into inequalities. If one has to show that
two numerical quantities X and Y are equal, try proving that X ≤ Y and
Y ≤ X separately. Often one of these will be very easy, and the other one
harder; but the easy direction may still provide some clue as to what needs
to be done to establish the other direction. Exercise 1.1.6(iii) is a typical
problem in which this strategy can be applied.

In a similar spirit, to show that two sets E and F are equal, try proving
that E ⊂ F and F ⊂ E. See, for instance, the proof of Lemma 1.2.11 for a
simple example of this.

2.1.2. Give yourself an epsilon of room. If one has to show that X ≤
Y , try proving that X ≤ Y + ε for any ε > 0. (This trick combines well
with §2.1.1.) See, for instance, Lemma 1.2.5 for an example of this.

In a similar spirit:

• If one needs to show that a quantity X vanishes, try showing that
|X| ≤ ε for every ε > 0. (Exercise 1.2.19 is a simple application of
this strategy.)

• If one wishes to show that two functions f, g agree almost every-
where, try showing first that |f(x) − g(x)| ≤ ε holds for almost
every x, or even just outside of a set of measure at most ε, for any
given ε > 0. (See, for instance, the proof of Proposition 1.5.7 for
an example of this.)

• If one wants to show that a sequence xn of real numbers converges
to zero, try showing that lim supn→∞ |xn| ≤ ε for every ε > 0. (The
proof of the Lebesgue differentiation theorem, Theorem 1.6.12, is
in this spirit.)

Don’t be too focused on getting all of your error terms adding up to
exactly ε; usually, as long as the final error bound consists of terms that can
all be made as small as one wishes by choosing parameters in a suitable way,
that is enough. For instance, an error term such as 10ε is certainly OK, or
even more complicated expressions such as 10ε/δ + 4δ if one has the ability
to choose δ as small as one wishes, and then after δ is chosen, one can then
also set ε as small as one wishes (in a manner that can depend on δ).
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One caveat: For finite x, and any ε > 0, it is true that x + ε > x and
x− ε < x, but this statement is not true when x is equal to +∞ (or −∞).
So remember to exercise some care with the epsilon of room trick when some
quantities are infinite.

See also §2.7 of An epsilon of room, Vol. I.

2.1.3. Decompose (or approximate) a rough or general object into
(or by) a smoother or simpler one. If one has to prove something about
an unbounded (or infinite measure) set, consider proving it for bounded (or
finite measure) sets first if this looks easier.

In a similar spirit:

• If one has to prove something about a measurable set, try proving
it for open, closed, compact, bounded, or elementary sets first.

• If one has to prove something about a measurable function, try
proving it for functions that are continuous, bounded, compactly
supported, simple, absolutely integrable, etc.

• If one has to prove something about an infinite sum or sequence,
try proving it first for finite truncations of that sum or sequence
(but try to get all the bounds independent of the number of terms
in that truncation, so that you can still pass to the limit!).

• If one has to prove something about a complex-valued function, try
it for real-valued functions first.

• If one has to prove something about a real-valued function, try it
for unsigned functions first.

• If one has to prove something about a simple function, try it for
indicator functions first.

In order to pass back to the general case from these special cases, one
will have to somehow decompose the general object into a combination of
special ones, or approximate general objects by special ones (or as a limit
of a sequence of special objects). In the latter case, one may need an ep-
silon of room (§2.1.2), and some sort of limiting analysis may be needed to
deal with the errors in the approximation (it is not always enough to just
“pass to the limit”, as one has to justify that the desirable properties of the
approximating object are preserved in the limit). Littlewood’s principles
(Section 1.3.5) and their variants are often useful for thus purpose.

Note: One should not do this blindly, as one might then be loading on
a bunch of distracting but ultimately useless hypotheses that end up being
a lot less help than one might hope. But they should be kept in mind as
something to try if one starts having thoughts such as “Gee, it would be nice
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at this point if I could assume that f is continuous / real-valued / simple /
unsigned / etc.”.

In the more quantitative areas of analysis and PDE, one sees a common
variant of the above technique, namely the method of a priori estimates.
Here, one needs to prove an estimate or inequality for all functions in a
large, rough class (e.g. all rough solutions to a PDE). One can often then
first prove this inequality in a much smaller (but still “dense”) class of “nice”
functions, so that there is little difficulty justifying the various manipulations
(e.g. exchanging integrals, sums, or limits, or integrating by parts) that one
wishes to perform. Once one obtains these a priori estimates, one can then
often take some sort of limiting argument to recover the general case.

2.1.4. If one needs to flip an upper bound to a lower bound or vice
versa, look for a way to take reflections or complements. Sometimes
one needs a lower bound for some quantity, but only has techniques that
give upper bounds. In some cases, though, one can “reflect” an upper bound
into a lower bound (or vice versa) by replacing a set E contained in some
space X with its complement X\E, or a function f with its negation −f (or
perhaps subtracting f from some dominating function F to obtain F − f).
This trick works best when the objects being reflected are contained in some
sort of “bounded”, “finite measure”, or “absolutely integrable” container, so
that one avoids having the dangerous situation of having to subtract infinite
quantities from each other.

A typical example of this is when one deduces downward monotone
convergence for sets from upward monotone convergence for sets (Exercise
1.2.11).

2.1.5. Uncountable unions can sometimes be replaced by count-
able or finite unions. Uncountable unions are not well-behaved in mea-
sure theory; for instance, an uncountable union of null sets need not be a null
set (or even a measurable set). (On the other hand, the uncountable union
of open sets remains open; this can often be important to know.) However,
in many cases one can replace an uncountable union by a countable one.
For instance, if one needs to prove a statement for all ε > 0, then there
are an uncountable number of ε’s one needs to check, which may threaten
measurability; but in many cases it is enough to only work with a countable
sequence of ε’s, such as the numbers 1/m for m = 1, 2, 3, . . .. (Exercise
1.6.30 relies heavily on this trick.)

In a similar spirit, given a real parameter λ, this parameter initially
ranges over uncountably many values, but in some cases one can get away
with only working with a countable set of such values, such as the rationals.
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In a similar spirit, rather than work with all boxes (of which there are un-
countably many), one might work with the dyadic boxes (of which there are
only countably many; also, they obey nicer nesting properties than general
boxes and so are often desirable to work with in any event).

If you are working on a compact set, then one can often replace even
uncountable unions with finite ones, so long as one is working with open sets.
(The proof of Theorem 1.6.20 is a good example of this strategy.) When
this option is available, it is often worth spending an epsilon of measure (or
whatever other resource is available to spend) to make one’s sets open, just
so that one can take advantage of compactness.

2.1.6. If it is difficult to work globally, work locally instead. A
domain such as Euclidean space Rd has infinite measure, and this creates a
number of technical difficulties when trying to do measure theory directly on
such spaces. Sometimes it is best to work more locally, for instance, working
on a large ball B(0, R) or even a small ball such as B(x, ε) first, and then
figuring out how to patch things together later. Compactness (or the closely
related property of total boundedness) is often useful for patching together
small balls to cover a large ball. Patching together large balls into the whole
space tends to work well when the properties one is trying to establish are
local in nature (such as continuity, or pointwise convergence) or behave well
with respect to countable unions. For instance, to prove that a sequence of
functions fn converges pointwise almost everywhere to f on Rd, it suffices
to verify this pointwise almost everywhere convergence on the ball B(0, R)
for every R > 0 (which one can take to be an integer to get countability; see
§2.1.5). The application of vertical truncation (as done, for instance, in the
proof of Corollary 1.3.14) is an instance of this idea.

2.1.7. Be willing to throw away an exceptional set. The “Lebesgue
philosophy” to measure theory is that null sets are often “irrelevant”, and
so one should be very willing to cut out a set of measure zero on which bad
things are happening (e.g. a function is undefined or infinite, a sequence
of functions is not converging, etc.). One should also be only slightly less
willing to throw away sets of positive but small measure, e.g., sets of measure
at most ε. If such sets can be made arbitrarily small in measure, this is often
almost as good as just throwing away a null set.

Many things in measure theory improve after throwing away a small set.
The most notable examples of this are Egorov’s theorem (Theorem 1.3.26)
and Lusin’s theorem (Theorem 1.3.28); see also Exercise 1.3.25 for some
other examples of this idea.
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It is also common to see a similar trick1 of throwing away most of a
sequence and working with a subsequence instead. See §2.1.17 below.

2.1.8. Draw pictures and try to build counterexamples. Measure
theory, particularly on Euclidean spaces, has a significant geometric aspect
to it, and you should be exploiting your geometric intuition. Drawing pic-
tures and graphs of all the objects being studied is a good way to start.
These pictures need not be completely realistic; they should be just compli-
cated enough to hint at the complexities of the problem, but not more. For
instance, usually one- or two-dimensional pictures suffice for understanding
problems in Rd; drawing intricate 3D (or 4D, etc.) pictures does not often
make things simpler. To indicate that a function is not continuous, one or
two discontinuities or oscillations might suffice; make it too ornate and it
becomes less clear what to do about that function. One should view these
pictures as providing a “cartoon sketch” of the situation, which exaggerates
key features and downplays others, rather than a photorealistic image of the
situation; too much detail or accuracy in a picture may be a waste of time,
or otherwise counterproductive.

A common mistake is to try to draw a picture in which both the hy-
potheses and conclusion of the problem hold. This is actually not all that
useful, as it often does not reveal the causal relationship between the for-
mer and the latter. One should try instead to draw a picture in which the
hypotheses hold but for which the conclusion does not—in other words, a
counterexample to the problem. Of course, you should be expected to fail
at this task, given that the statement of the problem is presumably true.
However, the way in which your picture fails to accomplish this task is often
very instructive, and can reveal vital clues as to how the solution to the
problem is supposed to proceed.

I have deliberately avoided drawing pictures in this book. This is not
because I feel that pictures are not useful—far from it—but because I have
found that it is far more informative for a reader to draw his or her own
pictures of a given mathematical situation, rather than rely on the author’s
images (except in situations where the geometric situation is particularly
complicated or subtle), as such pictures will naturally be adapted to the
reader’s mindset rather than the author’s. Besides, the process of actually
drawing the picture is at least as instructive as the picture itself.

2.1.9. Try simpler cases first. This advice of course extends well beyond
measure theory, but if one is completely stuck on a problem, try making the

1This trick can also be interpreted as “throwing away a small set”, but to understand what
“small” means in this context, one needs the language of ultrafilters, which will not be discussed
here; see [Ta2008, §1.5] for a discussion.
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problem simpler (while still capturing at least one of the difficulties of the
problem that you cannot currently resolve). For instance, if faced with a
problem in Rd, try the one-dimensional case d = 1 first. Faced with a
problem about a general measurable function f , try a simpler case first,
such as an indicator function f = 1E . Faced with a problem about a general
measurable set, try an elementary set first. Faced with a problem about
a sequence of functions, try a monotone sequence of functions first, and so
forth. (Note that this trick overlaps quite a bit with §2.1.3.)

The problem should not be made so simple that it becomes trivial, as
this doesn’t really gain you any new insight about the original problem;
instead, one should try to keep the “essential” difficulties of the problem
while throwing away those aspects that you think are less important (but
are still serving to add to the overall difficulty level).

On the other hand, if the simplified problem is unexpectedly easy, but
one cannot extend the methods to the general case (or somehow leverage
the simplified case to the general case, as in §2.1.3), this is an indication
that the true difficulty lies elsewhere. For instance, if a problem involving
general functions could be solved easily for monotone functions, but one
cannot then extend that argument to the general case, this suggests that
the true enemy is oscillation, and perhaps one should try another simple
case in which the function is allowed to be highly oscillatory (but perhaps
simple in other ways, e.g., bounded with compact support).

2.1.10. Abstract away any information that you believe or suspect
to be irrelevant. Sometimes one is faced with an embarrassment of riches
when it comes to what choice of technique to use on a problem; there are
so many different facts that one knows about the problem, and so many
different pieces of theory that one could apply, that one doesn’t quite know
where to begin.

When this happens, abstraction can be a vital tool to clear away some
of the conceptual clutter. Here, one wants to “forget” part of the setting
that the problem is phrased in, and only keep the part that seems to be
most relevant to the hypotheses and conclusions of the problem (and thus,
presumably, to the solution as well).

For instance, if one is working in a problem that is set in Euclidean space
Rd, but the hypotheses and conclusions only involve measure-theoretic con-
cepts (e.g. measurability, integrability, measure, etc.) rather than topo-
logical structure, metric structure, etc., then it may be worthwhile to try
abstracting the problem to the more general setting of an abstract measure
space, thus forgetting that one was initially working in Rd. The point of do-
ing this is that it cuts down on the number of possible ways to start attacking
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the problem. For instance, facts such as outer regularity (every measurable
set can be approximated from above by an open set) do not hold in abstract
measure spaces (which do not even have a meaningful notion of an open
set), and so presumably will not play a role in the solution; similarly, for
any facts involving boxes. Instead, one should be trying to use general facts
about measure, such as countable additivity, which are not specific to Rd.

Remark 2.1.1. It is worth noting that sometimes this abstraction method
does not always work; for instance, when viewed as a measure space, Rd

is not completely arbitrary, but does have one or two features that dis-
tinguish it from a generic measure space, most notably the fact that it is
σ-finite. So, even if the hypotheses and conclusion of a problem about Rd is
purely measure-theoretic in nature, one may still need to use some measure-
theoretic facts specific to Rd. Here, it becomes useful to know a little bit
about the classification of measure spaces to have some intuition as to how
“generic” a measure space such as Rd really is. This intuition is hard to
convey at this level of the subject, but in general, measure spaces form a
very “non-rigid” category, with very few invariants, and so it is largely true
that one measure space usually behaves much the same as any other.

Another example of abstraction: Suppose that a problem involves a
large number of sets (e.g. En and Fn) and their measures, but that the
conclusion of the problem only involves the measures m(En),m(Fn) of the
sets, rather than the sets themselves. Then one can try to abstract the sets
out of the problem, by trying to write down every single relationship between
the numerical quantities m(En),m(Fn) that one can easily deduce from
the given hypotheses (together with basic properties of measure, such as
monotonicity or countable additivity). One can then rename these quantities
(e.g. an := m(En) and bn := m(Fn)) to “forget” that these quantities arose
from a measure-theoretic context, and then work with a purely numerical
problem, in which one is starting with hypotheses on some sequences an, bn
of numbers and trying to deduce a conclusion about such sequences. Such a
problem is often easier to solve than the original problem due to the simpler
context. Sometimes, this simplified problem will end up being false, but the
counterexample will often be instructive, either in indicating the need to
add an additional hypothesis connecting the an, bn, or to indicate that one
cannot work at this level of abstraction, but must introduce some additional
concrete ingredient.

Note that this trick is in many ways the antithesis of §2.1.9, because by
passing to a special case, one often makes the problem more concrete, with
more things that one is now able to start trying. However, the two tricks can
work together. One particularly useful “advanced move” in mathematical
problem solving is to first abstract the problem to a more general one, and
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then consider a special case of that more abstract problem which is not
directly related to the original one, but is somehow simpler than the original
while still capturing some of the essence of the difficulty. Attacking this
alternate problem can then lead to some indirect but important ways to
make progress on the original problem.

2.1.11. Exploit Zeno’s paradox: a single epsilon can be cut up
into countably many sub-epsilons. A particularly useful fact in measure
theory is that one can cut up a single epsilon into countably many pieces,
for instance, by using the geometric series identity

ε = ε/2 + ε/4 + ε/8 + . . . ;

this observation arguably goes all the way back to Zeno. As such, even if one
only has an epsilon of room budgeted for a problem, one can still use this
budget to do a countably infinite number of things. This fact underlies many
of the countable additivity and subadditivity properties in measure theory,
and also makes the ability to approximate rough objects by smoother ones to
be useful even when countably many rough objects need to be approximated.
(Exercise 1.2.3 is a typical example in which this trick is used.)

In general, one should be alert to this sort of trick when one has to
spend an epsilon or so on an infinite number of objects. If one was forced
to spend the same epsilon on each object, one would soon end up with an
unacceptable loss; but if one can get away with using a different epsilon each
time, then Zeno’s trick comes in very handy.

2.1.12. If you expand your way to a double sum, a double integral,
a sum of an integral, or an integral of a sum, try interchanging the
two operations. Or, to put it another way: “The Fubini-Tonelli theorem
(Corollary 1.7.23) is your friend”. Provided that one is either in the unsigned
or absolutely convergent worlds, this theorem allows you to interchange sums
and integrals with each other. In many cases, a double sum or integral that
is difficult to sum in one direction can become easier to sum (or at least to
upper bound, which is often all that one needs in analysis). In fact, if in
the course of expanding an expression, you encounter such a double sum or
integral, you should reflexively try interchanging the operations to see if the
resulting expression looks any simpler.

Note that in some cases the parameters in the summation may be
constrained, and one may have to take a little care to sum it properly.
For instance,

(2.1)
∞∑

n=−∞

∞∑
m=n

am,n
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interchanges (assuming that the an,m are either unsigned or absolutely con-
vergent) to

∞∑
m=−∞

m∑
n=−∞

am,n

(why? try plotting the set of pairs (m,n) that appear in both). If one is
having trouble interchanging constrained sums or integrals, one solution is
to re-express the constraint using indicator functions. For instance, one can
rewrite the constrained sum (2.1) as the unconstrained sum

∞∑
n=−∞

∞∑
m=−∞

1m≥nam,n

(extending the domain of am,n if necessary), at which point interchanging
the summations is easily accomplished.

The following point is obvious, but bears mentioning explicitly: While
the interchanging sums/integrals trick can be very powerful, one should
not apply it twice in a row to the same double sum or double operation,
unless one is doing something genuinely non-trivial in between those two
applications. So, after one exchanges a sum or integral, the next move
should be something other than another exchange (unless one is dealing
with a triple or higher sum or integral).

A related move (not so commonly used in measure theory, but occur-
ring in other areas of analysis, particularly those involving the geometry of
Euclidean spaces) is to merge two sums or integrals into a single sum or
integral over the product space, in order to use some additional feature of
the product space (e.g. rotation symmetry) that is not readily visible in
the factor spaces. The classic example of this trick is the evaluation of the

gaussian integral
∫∞
−∞ e−x2

dx by squaring it, rewriting that square as the

two-dimensional gaussian integral
∫
R2 e

−x2−y2 dxdy, and then switching to
polar coordinates.

2.1.13. Pointwise control, uniform control, and integrated (aver-
age) control are all partially convertible to each other. There are
three main ways to control functions (or sequences of functions, etc.) in
analysis. First, there is pointwise control, in which one can control the func-
tion at every point (or almost every point), but in a non-uniform way. Then
there is uniform control, where one can control the function in the same
way at most points (possibly throwing out a set of zero measure, or small
measure). Finally, there is integrated control (or control “on the average”),
in which one controls the integral of a function, rather than the pointwise
values of that function.
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It is important to realise that control of one type can often be par-
tially converted to another type. Simple examples include the deduction of
pointwise convergence from uniform convergence, or integrating a pointwise
bound f(x) ≤ g(x) to obtain an integrated bound

∫
f ≤

∫
g. Of course,

these conversions are not reversible and thus lose some information; not ev-
ery pointwise convergent sequence is uniformly convergent, and an integral
bound does not imply a pointwise bound. However, one can partially re-
verse such implications if one is willing to throw away an exceptional set
(§2.1.7). For instance, Egorov’s theorem (Theorem 1.3.26) lets one convert
pointwise convergence to (local) uniform convergence after throwing away
an exceptional set, and Markov’s inequality (Exercise 1.4.35(vi)) lets one
convert integral bounds to pointwise bounds, again after throwing away an
exceptional set.

2.1.14. If the conclusion and hypotheses look particularly close to
each other, just expand out all the definitions and follow your nose.
This trick is particularly useful when building the most basic foundations of a
theory. Here, one may not need to experiment too much with generalisations,
abstractions, or special cases, or try to marshall a lot of possibly relevant
facts about the objects being studied; sometimes, all one has to do is go
back to first principles, write out all the definitions with their epsilons and
deltas, and start plugging away at the problem.

Knowing when to just follow one’s nose, and when to instead look for
a more high-level approach to a problem, can require some judgement or
experience. A direct approach tends to work best when the conclusion and
hypothesis already look quite similar to each other (e.g. they both state that
a certain set or family of sets is measurable, or they both state that a certain
function or family of functions is continuous, etc.). But when the conclusion
looks quite different from the hypotheses (e.g. the conclusion is some sort of
integral identity, and the hypotheses involve measurability or convergence
properties), then one may need to use more sophisticated tools than what
one can easily get from using first principles.

2.1.15. Don’t worry too much about exactly what ε (or δ, or N ,
etc.) needs to be. It can usually be chosen or tweaked later if
necessary. Often in the middle of an argument, you will want to use some
fact that involves a parameter, such as ε, that you are completely free to
choose (subject of course to reasonable constraints, such as requiring ε to
be positive). For instance, you may have a measurable set and decide to
approximate it from above by an open set of at most ε more measure. But
it may not be obvious exactly what value to give this parameter ε; you have
so many choices available that you don’t know which one to pick!
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In many cases, one can postpone thinking about this problem by leaving
ε undetermined for now, and continuing on with one’s argument, which
will gradually start being decorated with ε’s all over the place. At some
point, one will need ε to do something (and, in the particular case of ε,
“doing something” almost always means “being small enough”), e.g., one
may need 3nε to be less than δ, where n, δ are some other positive quantities
in one’s problem that do not depend on ε. At this point, one could now
set ε to be whatever is needed to get past this step in the argument, e.g.,
one could set ε to equal δ/4n. But perhaps one still wishes to retain the
freedom to set ε because it might come in handy later. In that case, one
sets aside the requirement “3nε < δ” and keeps going. Perhaps a bit later
on, one might need ε to do something else; for instance, one might also need
5ε ≤ 2−n. Once one has compiled the complete “wish list” of everything
one wishes one’s parameters to do, then one can finally make the decision of
what value to set those parameters equal to. For instance, if the above two
inequalities are the only inequalities required of ε, one can choose ε equal to
min(δ/4n, 2−n/5). This may be a choice of ε which was not obvious at the
start of the argument, but becomes so as the argument progresses.

There is however one big caveat when adopting this “choose parameters
later” approach, which is that one needs to avoid a circular dependence of
constants. For instance, it is perfectly fine to have two arbitrary parameters
ε and δ floating around unspecified for most of the argument, until at some
point you realise that you need ε to be smaller than δ, and so one chooses
ε accordingly (e.g. one sets it to equal δ/2). Or, perhaps instead one needs
δ to be smaller than ε, and so sets δ equal to ε/2. One can execute either
of these two choices separately, but of course one cannot perform them
simultaneously; this sets up an inconsistent circular dependency in which
ε needs to be defined after δ is chosen, and δ can only be chosen after ε
is fixed. So, if one is going to delay choosing a parameter such as ε until
later, it becomes important to mentally keep track of what objects in one’s
argument depend on ε, and which ones are independent of ε. One can
choose ε in terms of the latter quantities, but one usually cannot do so in
terms of the former quantities (unless one takes the care to show that the
interlinked constraints between the quantities are still consistent, and thus
simultaneously satisfiable).

2.1.16. Once one has started to lose some constants, don’t be hes-
itant to lose some more. Many techniques in analysis end up giving
inequalities that are inefficient by a constant factor. For instance, any ar-
gument involving dyadic decomposition and powers of two tends to involve
losses of factors of 2. When arguing using balls in Euclidean space, one
sometimes loses factors involving the volume of the unit ball (although this
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factor often cancels itself out if one tracks it more carefully). And so forth.
However, in many cases these constant factors end up being of little impor-
tance: an upper bound of 2ε or 100ε is often just as good as an upper bound
of ε for the purposes of analysis (cf. §2.1.15). So it is often best not to in-
vest too much energy in carefully computing and optimising these constants;
giving these constants a symbol such as C, and not worrying about their
exact value, is often the simplest approach. (One can also use asymptotic
notation, such as O(), which is very convenient to use once you know how
it works.)

Now there are some cases in which one really does not want to lose any
constants at all. For instance, if one is using §2.1.1 to prove that X = Y ,
it is not enough to show that X ≤ 2Y and Y ≤ 2X; one really needs
to show X ≤ Y and Y ≤ X without losing any constants. (But proving
X ≤ (1+ε)Y and Y ≤ (1+ε)X is OK, by §2.1.2.) But once one has already
performed one step that loses a constant, there is little further to be lost
by losing more; there can be a big difference between X ≤ Y and X ≤ 2Y ,
but there is little difference in practice between X ≤ 2Y and X ≤ 100Y , at
least for the purposes of mathematical analysis. At that stage, one should
put oneself in the mental mode of thought where “constants don’t matter”,
which can lead to some simplifications. For instance, if one has to estimate
a sum X + Y of two positive quantities, one can start using such estimates
as

max(X,Y ) ≤ X + Y ≤ 2max(X,Y ),

which says that, up to a factor of 2, X +Y is the same thing as max(X,Y ).
In some cases the latter is easier to work with (e.g. max(X,Y )n is equal to
max(Xn, Y n), whereas the formula for (X + Y )n is messier).

2.1.17. One can often pass to a subsequence to improve the con-
vergence properties. In real analysis, one often ends up possessing a se-
quence of objects, such as a sequence of functions fn, which may converge
in some rather slow or weak fashion to a limit f . Often, one can improve
the convergence of this sequence by passing to a subsequence. For instance:

• In a metric space, if a sequence xn converges to a limit x, then one
can find a subsequence xnj which converges quickly to the same

limit x; for instance, one can ensure that d(xnj , x) ≤ 2−j (or one

can replace 2−j with any other positive expression depending on j).
In particular, one can make

∑∞
j=1 d(xnj , x) and

∑∞
j=1 d(xnj , xnj+1)

absolutely convergent, which is sometimes useful.

• A sequence of functions that converges in L1 norm or in measure
can be refined to a subsequence that converges pointwise almost
everywhere as well.
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• A sequence in a (sequentially) compact space may not converge at
all, but some subsequence of it will always converge.

• The pigeonhole principle: A sequence which takes only finitely
many values has a subsequence that is constant. More generally,
a sequence which lives in the union of finitely many sets has a
subsequence that lives in just one of these sets.

Often, the subsequence is good enough for one’s applications, and there
are also a number of ways to get back from a subsequence to the original
sequence, such as:

• In a metric space, if you know that xn is a Cauchy sequence, and
some subsequence of xn already converges to x, then this drags the
entire sequence with it, i.e., xn converges to x also.

• The Urysohn subsequence principle : In a topological space, if ev-
ery subsequence of a sequence xn itself has a subsequence that
converges to a limit x, then the entire sequence converges to x.

2.1.18. A real limit can be viewed as a meeting of the limit su-
perior and limit inferior. A sequence xn of real numbers does not nec-
essarily have a limit limn→∞ xn, but the limit superior lim supn→∞ xn :=
infN supn>N xn and the limit inferior lim infn→∞ xn = supN infn>N xn al-
ways exist (though they may be infinite), and can be easily defined in terms
of infima and suprema. Because of this, it is often convenient to work with
the lim sup and lim inf instead of a limit. For instance, to show that a limit
limn→∞ xn exists, it suffices to show that

lim sup
n→∞

xn ≤ lim inf
n→∞

xn + ε

for all ε > 0. In a similar spirit, to show that a sequence xn of real numbers
converges to zero, it suffices to show that

lim sup
n→∞

|xn| ≤ ε

for all ε > 0. It can be more convenient to work with lim sups and lim
infs instead of limits because one does not need to worry about the issue of
whether the limit exists or not, and many tools (notably Fatou’s lemma and
its relatives) still work in this setting. One should, however, be cautious that
lim sups and lim infs tend to have only one half of the linearity properties
that limits do; for instance, lim sups are subadditive but not necessarily
additive, while lim infs are superadditive but not necessarily additive.

The proof of the monotone differentiation theorem (Theorem 1.6.25)
given in the text relies quite heavily on this strategy.
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2.2. The Rademacher differentiation theorem

The Fubini-Tonelli theorem (Corollary 1.7.23) is often used in extending
lower-dimensional results to higher-dimensional ones. We illustrate this by
extending the one-dimensional Lipschitz differentiation theorem (Exercise
1.6.42) to higher dimensions, obtaining the Rademacher differentiation the-
orem.

We first recall some higher-dimensional definitions:

Definition 2.2.1 (Lipschitz continuity). A function f : X → Y from one
metric space (X, dX) to another (Y, dY ) is said to be Lipschitz continuous if
there exists a constant C > 0 such that dY (f(x), f(x

′)) ≤ CdX(x, x′) for all
x, x′ ∈ X. (In the applications of this section, X will be Rd and Y will be
R, with the usual metrics.)

Exercise 2.2.1. Show that Lipschitz continuous functions are uniformly
continuous, and hence continuous. Then give an example of a uniformly
continuous function f : [0, 1] → [0, 1] that is not Lipschitz continuous.

Definition 2.2.2 (Differentiability). Let f : Rd → R be a function, and let
x0 ∈ Rd. For any v ∈ Rd, we say that f is directionally differentiable at x0
in the direction v if the limit

Dvf(x0) := lim
h→0;h∈R\{0}

f(x0 + hv)− f(x0)

h

exists, in which case we call Dvf(x0) the directional derivative of f at x0 in
this direction. If v = ei is one of the standard basis vectors e1, . . . , ed of Rd,
we write Dvf(x0) as

∂f
∂xi

(x0), and refer to this as the partial derivative of f
at x0 in the ei direction.

We say that f is totally differentiable at x0 if there exists a vector
∇f(x0) ∈ Rd with the property that

lim
h→0;h→Rd\{0}

f(x0 + h)− f(x0)− h · ∇f(x0)

|h| = 0,

where v ·w is the usual dot product on Rd. We refer to ∇f(x0) (if it exists)
as the gradient of f at x0.

Remark 2.2.3. From the viewpoint of differential geometry, it is better
to work not with the gradient vector ∇f(x0) ∈ Rd, but rather with the
derivative covector df(x0) : R

d → R given by df(x0) : v 
→ ∇f(x0) · v. This
is because one can then define the notion of total differentiability without
any mention of the Euclidean dot product, which allows one to extend this
notion to other manifolds in which there is no Euclidean (or more generally,
Riemannian) structure. However, as we are working exclusively in Euclidean
space for this application, this distinction will not be important for us.
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Total differentiability implies directional and partial differentiability, but
not conversely, as the following three exercises demonstrate.

Exercise 2.2.2 (Total differentiability implies directional and partial dif-
ferentiability). Show that if f : Rd → R is totally differentiable at x0, then
it is directionally differentiable at x0 in each direction v ∈ Rd, and one has
the formula

(2.2) Dvf(x0) = v · ∇f(x0).

In particular, the partial derivatives ∂f
∂xi

f(x0) exist for i = 1, . . . , d and

(2.3) ∇f(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xd
(x0)

)
.

Exercise 2.2.3 (Continuous partial differentiability implies total differen-

tiability). Let f : Rd → R be such that the partial derivatives ∂f
∂xi

: Rd → R
exist everywhere and are continuous. Then show that f is totally differen-
tiable everywhere, which in particular, implies that the gradient is given by
the formula (2.3) and the directional derivatives are given by (2.2).

Exercise 2.2.4 (Directional differentiability does not imply total differen-
tiability). Let f : R2 → R be defined by setting f(0, 0) := 0 and f(x1, x2) :=
x1x2

2

x2
1+x2

2
for (x1, x2) ∈ R2\{(0, 0)}. Show that the directional derivatives

Dvf(x) exist for all x, v ∈ R2 (so in particular, the partial derivatives exist),
but that f is not totally differentiable at the origin (0, 0).

Now we can state the Rademacher differentiation theorem.

Theorem 2.2.4 (Rademacher differentiation theorem). Let f : Rd → R be
Lipschitz continuous. Then f is totally differentiable at x0 for almost every
x0 ∈ Rd.

Note that the d = 1 case of this theorem is Exercise 1.6.42, and indeed
we will use the one-dimensional theorem to imply the higher-dimensional
one, though there will be some technical issues due to the gap between
directional and total differentiability.

Proof. The strategy here is to first aim for the more modest goal of direc-
tional differentiability, and then find a way to link the directional derivatives
together to get total differentiability.

Let v, x0 ∈ Rd. As f is continuous, we see that in order for the direc-
tional derivative

Dvf(x0) := lim
h→0;h∈R\{0}

f(x0 + hv)− f(x0)

h
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to exist, it suffices to let h range in the dense subset Q\{0} of R\{0} for
the purposes of determing whether the limit exists. In particular, Dvf(x0)
exists if and only if

lim sup
h→0;h∈Q\{0}

f(x0 + hv)− f(x0)

h
= lim inf

h→0;h∈Q\{0}

f(x0 + hv)− f(x0)

h
.

From this we easily conclude that for each direction v ∈ Rd, the set

Ev := {x0 ∈ Rd : Dvf(x0) does not exist}

is Lebesgue measurable in Rd (indeed, it is even Borel measurable). A
similar argument reveals that Dvf is a measurable function outside of Ev.
From the Lipschitz nature of f , we see that Dvf is also a bounded function.

Now we claim that Ev is a null set for each v. For v = 0 Ev is clearly
empty, so we may assume v �= 0. Applying an invertible linear transforma-
tion to map v to e1 (noting that such transformations will map Lipschitz
functions to Lispchitz functions, and null sets to null sets) we may assume
without loss of generality that v is the basis vector e1. Thus our task is now
to show that ∂f

∂x1
(x) exists for almost every x ∈ Rd.

We now split Rd as R×Rd−1. For each x0 ∈ R and y0 ∈ Rd−1, we see
from the definitions that ∂f

∂x1
(x0, y0) exists if and only if the one-dimensional

function x 
→ f(x, y0) is differentiable at x0. But this function is Lipschitz
continuous (this is inherited from the Lipschitz continuity of f), and so we
see that for each fixed y0 ∈ Rd−1, the set Ey0 := {x0 ∈ R : (x0, y0) ∈ E} is
a null set in R. Applying Tonelli’s theorem for sets (Corollary 1.7.19), we
conclude that E is a null set as required.

We would like to now conclude that
⋃

v∈Rd Ev is a null set, but there
are uncountably many v’s, so this is not directly possible. However, as
Qd is rational, we can at least assert that E :=

⋃
v∈Qd Ev is a null set. In

particular, for almost every x0 ∈ Rd, f is directionally differentiable in every
rational direction v ∈ Qd.

Now we perform an important trick, in which we interpret the directional
derivative Dvf as a weak derivative. We already know that Dvf is almost
everywhere defined, bounded and measurable. Now let g : Rd → R be
any function that is compactly supported and Lipschitz continuous. We
investigate the integral ∫

Rd

Dvf(x)g(x) dx.

This integral is absolutely convergent since Dvf(x) is bounded and measur-
able, and g(x) is continuous and compactly supported, hence bounded. We
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expand this out as∫
Rd

lim
h→0;h∈R\{0}

f(x+ hv)− f(x)

h
g(x) dx.

Note (from the Lipschitz nature of f) that the expression f(x+hv)−f(x)
h g(x)

is bounded uniformly in h and x, and is also uniformly compactly supported
in x for h in a bounded set. We may thus apply the dominated convergence
theorem (Theorem 1.4.48) to pull the limit out of the integral to obtain

lim
h→0;h∈R\{0}

∫
Rd

f(x+ hv)− f(x)

h
g(x) dx.

Now, from translation invariance of the Lebesgue integral (Exercise 1.3.15)
we have ∫

Rd

f(x+ hv)g(x) dx =

∫
Rd

f(x)g(x− hv) dx

and so (by the linearity of the Lebesgue integral) we may rearrange the
previous expression as

lim
h→0;h∈R\{0}

∫
Rd

f(x)
g(x− hv)− g(x)

h
dx.

Now, as g is Lipschitz, we know that g(x−hv)−g(x)
h is uniformly bounded

and converges pointwise almost everywhere to D−vg(x) as h → 0. We may
thus apply the dominated convergence theorem again and end up with the
integration by parts formula

(2.4)

∫
Rd

Dvf(x)g(x) dx =

∫
Rd

f(x)D−vg(x) dx.

This formula moves the directional derivative operator Dv from f over to
g. At present, this does not look like much of an advantage, because g is
the same sort of function that f is. However, the key point is that we can
choose g to be whatever we please, whereas f is fixed. In particular, we can
choose g to be a compactly supported, continuously differentiable function
(such functions are Lipschitz from the fundamental theorem of calculus, as
their derivatives are bounded). By Exercise 2.2.3, one has D−vg = −v · ∇g
for such functions, and so∫

Rd

Dvf(x)g(x) dx = −
∫
Rd

f(x)(v · ∇g)(x) dx.

The right-hand side is linear in v, and so the left-hand side must be linear
in v also. In particular, if v = (v1, . . . , vd), then we have∫

Rd

Dvf(x)g(x) dx =
d∑

j=1

vj

∫
Rd

Dejf(x)g(x) dx.
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If we define the gradient candidate function

∇f(x) := (De1f(x), . . . , Dedf(x)) = (
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x))

(note that this function is well defined almost everywhere, even though we
don’t know yet whether f is totally differentiable almost everywhere), we
thus have ∫

Rd

(Dvf − v · ∇f)(x)g(x) dx = 0

for all compactly supported, continuously differentiable g. This implies (see
Exercise 2.2.5 below) that Fv := Dvf − v · ∇f vanishes almost everywhere,
thus (by countable subadditivity) we have

(2.5) Dvf(x0) = v · ∇f(x0)

for almost every x0 ∈ Rd and every v ∈ Qd.

Let x0 be such that (2.5) holds for all v ∈ Qd. We claim that this
forces f to be totally differentiable at x0, which would give the claim. Let
F : Rd → Rd be the modified function

F (h) := f(x0 + h)− f(x0)− h · ∇f(x0).

Our objective is to show that

lim
h→0;h∈Rd\{0}

|F (h)|/|h| = 0.

On the other hand, we have F (0) = 0, F is Lipschitz, and from (2.5) we see
that DvF (0) = 0 for every v ∈ Qd.

Let ε > 0, and suppose that h ∈ Rd\{0}. Then we can write h = ru
where r := |h| and u := h/|h| lies on the unit sphere. This u need not lie
in Qd, but we can approximate it by some vector v ∈ Qd with |u− v| ≤ ε.
Furthermore, by the total boundedness of the unit sphere, we can make v
lie in a finite subset Vε of Qd that only depends on ε (and on d).

Since DvF (0) = 0 for all v ∈ Vε, we see (by making |h| small enough
depending on Vε) that we have

|F (rv)− F (0)

r
| ≤ ε

for all v ∈ Vε, and thus

|F (rv)| ≤ εr.

On the other hand, from the Lipschitz nature of F , we have

|F (ru)− F (rv)| ≤ Cr|u− v| ≤ Crε

where C is the Lipschitz constant of F . As h = ru, we conclude that

|F (h)| ≤ (C + 1)rε.
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In other words, we have shown that

|F (h)|/|h| ≤ (C + 1)ε

whenever |h| is sufficiently small depending on ε. Letting ε → 0, we obtain
the claim. �

Exercise 2.2.5. Let F : Rd → R be a locally integrable function with the
property that

∫
Rd F (x)g(x) dx = 0 whenever g is a compactly supported,

continuously differentiable function. Show that F is zero almost everywhere.
(Hint: If not, use the Lebesgue differentiation theorem to find a Lebesgue
point x0 of F for which F (x0) �= 0, then pick a g which is supported in a
sufficiently small neighbourhood of x0.)

2.3. Probability spaces

In this section we isolate an important special type of measure space, namely
a probability space. As the name suggests, these spaces are of fundamental
importance in the foundations of probability, although it should be empha-
sised that probability theory should not be viewed as the study of probability
spaces, as these are merely models for the true objects of study of that the-
ory, namely the behaviour of random events and random variables. This
text will, however, not be focused on applications to probability theory.

Definition 2.3.1 (Probability space). A probability space is a measure space
(Ω,F ,P) of total measure 1: P(Ω) = 1. The measure P is known as a
probability measure.

Note the change of notation: whereas measure spaces are traditionally
denoted by symbols such as (X,B, μ), probability spaces are traditionally
denoted by symbols such as (Ω,F ,P). Of course, such notational changes
have no impact on the underlying mathematical formalism, but they reflect
the different cultures of measure theory and probability theory. In particu-
lar, the various components Ω, F , P carry the following interpretations in
probability theory, that are absent in other applications of measure theory:

(i) The space Ω is known as the sample space, and is interpreted as
the set of all possible states ω ∈ Ω that a random system could be
in.

(ii) The σ-algebra F is known as the event space, and is interpreted as
the set of all possible events E ∈ F that one can measure.

(iii) The measure P(E) of an event is known as the probability of that
event.

The various axioms of a probability space then formalise the foundational
axioms of probability, as set out by Kolmogorov.
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Example 2.3.2 (Normalised measure). Given any measure space (X,B, μ)
with 0 < μ(X) < +∞, the space (X,B, 1

μ(X)μ) is a probability space. For

instance, if Ω is a non-empty finite set with the discrete σ-algebra 2Ω and
the counting measure #, then the normalised counting measure 1

#Ω# is a

probability measure (known as the (discrete) uniform probability measure
on Ω), and (Ω, 2Ω, 1

#Ω#) is a probability space. In probability theory, this

probability space models the act of drawing an element of the discrete set
Ω uniformly at random.

Similarly, if Ω ⊂ Rd is a Lebesgue measurable set of positive finite
Lebesgue measure, 0 < m(Ω) < ∞, then (Ω,L[Rd] �Ω, 1

m(Ω)m �Ω) is a

probability space. The probability measure 1
m(Ω)m �Ω is known as the (con-

tinuous) uniform probability measure on Ω. In probability theory, this prob-
ability spaces models the act of drawing an element of the continuous set Ω
uniformly at random.

Example 2.3.3 (Discrete and continuous probability measures). If Ω is
a (possibly infinite) non-empty set with the discrete σ-algebra 2Ω, and if
(pω)ω∈Ω are a collection of real numbers in [0, 1] with

∑
ω∈Ω pω = 1, then

the probability measure P defined by P :=
∑

ω∈Ω pωδω, or in other words,

P(E) :=
∑
ω∈E

pω,

is indeed a probability measure, and (Ω, 2Ω,P) is a probability space. The
function ω 
→ pω is known as the (discrete) probability distribution of the
state variable ω.

Similarly, if Ω is a Lebesgue measurable subset of Rd of positive (and
possibly infinite) measure, and f : Ω → [0,+∞] is a Lebesgue measurable
function on Ω (where of course we restrict the Lebesgue measure space on
Rd to Ω in the usual fashion) with

∫
Ω f(x) dx = 1, then (Ω,L[Rd] �Ω,P) is

a probability space, where P := mf is the measure

P(E) :=

∫
Ω
1E(x)f(x) dx =

∫
E
f(x) dx.

The function f is known as the (continuous) probability density of the state
variable ω. (This density is not quite unique, since one can modify it on a
set of probability zero, but it is well defined up to this ambiguity. See §1.2
of An epsilon of room, Vol. I for further discussion.)

Exercise 2.3.1 (No translation-invariant random integer). Show that there
is no probability measure P on the integers Z with the discrete σ-algebra 2Z

with the translation-invariance property P(E + n) = P(E) for every event
E ∈ 2Z and every integer n.
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Exercise 2.3.2 (No translation-invariant random real). Show that there is
no probability measure P on the reals R with the Lebesgue σ-algebra L[R]
with the translation-invariance property P(E + x) = P(E) for every event
E ∈ L[R] and every real x.

Many concepts in measure theory are of importance in probability the-
ory, although the terminology is changed to reflect the different perspective
on the subject. For instance, the notion of a property holding almost every-
where is now replaced with that of a property holding almost surely. A mea-
surable function is now referred to as a random variable and is often denoted
by symbols such as X, and the integral of that function on the probability
space (if the random variable is unsigned or absolutely convergent) is known
as the expectation of that random variable, and is denoted E(X). Thus, for
instance, the Borel-Cantelli lemma (Exercise 1.4.43) now reads as follows:
Given any sequence E1, E2, E3, . . . of events such that

∑∞
n=1P(En) < ∞, it

is almost surely true that at most finitely many of these events hold. In a
similar spirit, Markov’s inequality (Exercise 1.4.35(vi)) becomes the asser-
tion that P(X ≥ λ) ≤ 1

λEX for any non-negative random variable X and
any 0 < λ < ∞.

2.4. Infinite product spaces and the Kolmogorov extension
theorem

In Section 1.7.4 we considered the product of two sets, measurable spaces, or
(σ-finite) measure spaces. We now consider how to generalise this concept
to products of more than two such spaces. The axioms of set theory allow
us to form a Cartesian product XA :=

∏
α∈AXα of any family (Xα)α∈A of

sets indexed by another set A, which consists of the space of all tuples xA =
(xα)α∈A indexed by A, for which xα ∈ Xα for all α ∈ A. This concept allows
for a succinct formulation of the axiom of choice (Axiom 0.0.4), namely that
an arbitrary Cartesian product of non-empty sets remains non-empty.

For any β ∈ A, we have the coordinate projection maps πβ : XA →
Xβ defined by πβ((xα)α∈A) := xβ. More generally, given any B ⊂ A, we
define the partial projections πB : XA → XB to the partial product space
XB :=

∏
α∈B Xα by πB((xα)α∈A) := (xα)α∈B. More generally still, given

two subsets C ⊂ B ⊂ A, we have the partial sub-projections πC←B : XB →
XC defined by πC←B((xα)α∈B) := (xα)α∈C . These partial subprojections
obey the composition law πD←C ◦ πC←B := πD←B for all D ⊂ C ⊂ B ⊂ A
(and thus form a very simple example of a category).

As before, given any σ-algebra Bβ on Xβ, we can pull it back by πβ to
create a σ-algebra

π∗
β(Bβ) := {π−1

β (Eβ) : Eβ ∈ Bβ}
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onXA. One easily verifies that this is indeed a σ-algebra. Informally, π∗
β(Bβ)

describes those sets (or “events”, if one is thinking in probabilistic terms)
that depend only on the xβ coordinate of the state xA = (xα)α∈A, and
whose dependence on xβ is Bβ-measurable. We can then define the product
σ-algebra

∏
β∈A

Bβ := 〈
⋃
β∈A

π∗
β(Bβ)〉.

We have a generalisation of Exercise 1.7.18:

Exercise 2.4.1. Let ((Xα,Bα))α∈A be a family of measurable spaces. For
any B ⊂ A, write BB :=

∏
β∈B Bβ .

(1) Show that BA is the coarsest σ-algebra on XA that makes the pro-
jection maps πβ measurable morphisms for all β ∈ A.

(2) Show that for each B ⊂ A, that πB is a measurable morphism from
(XA,BA) to (XB,BB).

(3) If E in BA, show that there exists an at most countable set B ⊂ A
and a set EB ∈ BB such that EA = π−1

B (EB). Informally, this as-
serts that a measurable event can only depend on at most countably
many of the coefficients.

(4) If f : XA → [0,+∞] is BA-measurable, show that there exists
an at most countable set B ⊂ A and a BB-measurable function
fB : XB → [0,+∞] such that f = fB ◦ πB.

(5) If A is at most countable, show that BA is the σ-algebra generated
by the sets

∏
β∈AEβ with Eβ ∈ Bβ for all β ∈ A.

(6) On the other hand, show that if A is uncountable and the Bα are
all non-trivial, show that BA is not the σ-algebra generated by sets∏

β∈A Eβ with Eβ ∈ Bβ for all β ∈ A.

(7) If B ⊂ A, E ∈ BA, and xA\B ∈ XA\B, show that the set ExA\B ,B :=

{xB ∈ XB : (xB, xA\B) ∈ E} lies in BB, where we identify XB ×
XA\B with XA in the obvious manner.

(8) If B ⊂ A, f : XA → [0,+∞] is BA-measurable, and xA\B ∈ XA\B,
show that the function fxA\B ,B : xB → f(xB, xA\B) is BB-measur-
able.
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Now we consider the problem of constructing a measure μA on the prod-
uct space XA. Any such measure μA will induce pushforward measures
μB := (πB)∗μA on XB (introduced in Exercise 1.4.37), thus

μB(EB) := μA(π
−1
B (EB))

for all EB ∈ BB . These measures obey the compatibility relation

(2.6) (πC←B)∗μB = μC

whenever C ⊂ B ⊂ A, as can be easily seen by chasing the definitions.

One can then ask whether one can reconstruct μA from just the projec-
tions μB to finite subsets B. This is possible in the important special case
when the μB (and hence μA) are probability measures, provided one im-
poses an additional inner regularity hypothesis on the measures μB. More
precisely:

Definition 2.4.1 (Inner regularity). A (metrisable) inner regular measure
space (X,B, μ, d) is a measure space (X,B, μ) equipped with a metric d such
that:

(1) Every compact set is measurable; and

(2) One has μ(E) = supK⊂E,K compact μ(K) for all measurable E.

We say that μ is inner regular if it is associated to an inner regular measure
space.

Thus, for instance, Lebesgue measure is inner regular, as are Dirac mea-
sures and counting measures. Indeed, most measures that one actually en-
counters in applications will be inner regular. For instance, any finite Borel
measure on Rd (or more generally, on a locally compact, σ-compact space)
is inner regular, as is any Radon measure; see §1.10 of An epsilon of room,
Vol. I.

Remark 2.4.2. One can generalise the concept of an inner regular measure
space to one which is given by a topology rather than a metric; Kolmogorov’s
extension theorem still holds in this more general setting, but requires Ty-
chonoff’s theorem, which is discussed in §1.8 of An epsilon of room, Vol.
I. However, some minimal regularity hypotheses of a topological nature are
needed to make the Kolmogorov extension theorem work, although this is
usually not a severe restriction in practice.

Theorem 2.4.3 (Kolmogorov extension theorem). Let ((Xα,Bα),Fα)α∈A
be a family of measurable spaces (Xα,Bα), equipped with a topology Fα.
For each finite B ⊂ A, let μB be an inner regular probability measure on
BB :=

∏
α∈B Bα with the product topology FB :=

∏
α∈B Fα, obeying the

compatibility condition (2.6) whenever C ⊂ B ⊂ A are two nested finite
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subsets of A. Then there exists a unique probability measure μA on BA with
the property that (πB)∗μA = μB for all finite B ⊂ A.

Proof. Our main tool here will be the Hahn-Kolmogorov extension theorem
for pre-measures (Theorem 1.7.8), combined with the Heine-Borel theorem.

Let B0 be the set of all subsets of XA that are of the form π−1
B (EB) for

some finite B ⊂ A and some EB ∈ BB . One easily verifies that this is a
Boolean algebra that is contained in BA. We define a function μ0 : B0 →
[0,+∞] by setting

μ0(E) := μB(EB)

whenever E takes the form π−1
B (EB) for some finite B ⊂ A and EB ∈

BB. Note that a set E ∈ B0 may have two different representations E =
π−1
B (EB) = π−1

B′ (EB′) for some finite B,B′ ⊂ A, but then one must have
EB = πB←B∪B′(EB∪B′) and EB′ = πB′←B∪B′(EB∪B′), where EB∪B′ :=
πB∪B′(E). Applying (2.6), we see that

μB(EB) = μB∪B′(EB∪B′)

and

μB′(EB′) = μB∪B′(EB∪B′)

and thus μB(EB) = μB′(EB′). This shows that μ0(E) is well defined. As
the μB are probability measures, we see that μ0(XA) = 1.

It is not difficult to see that μ0 is finitely additive. We now claim that
μ0 is a pre-measure. In other words, we claim that if E ∈ B0 is the disjoint
countable union E =

⋃∞
n=1En of sets En ∈ B0, then μ0(E) =

∑∞
n=1 μ0(En).

For each N ≥ 1, let FN := E\
⋃N

n=1EN . Then the FN lie in B0, are
decreasing, and are such that

⋂∞
N=1 FN = ∅. By finite additivity (and the

finiteness of μ0), we see that it suffices to show that limN→∞ μ0(FN ) = 0.

Suppose this is not the case, then there exists ε > 0 such that μ0(FN ) > ε
for all N . As each FN lies in B0, we have FN = π−1

BN
(GN ) for some finite

sets BN ⊂ A and some BBN
-measurable sets GN . By enlarging each BN as

necessary we may assume that the BN are increasing in N . The decreasing
nature of the FN then gives the inclusions

GN+1 ⊂ π−1
BN←BN+1

(GN ).

By inner regularity, one can find a compact subset KN of each GN such that

μBN
(KN ) ≥ μBN

(GN )− ε/2N+1.

Now, if we set

K ′
N :=

N⋃
N ′=1

π−1
BN′←BN

(KN ),
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then we see that each K ′
N is compact and

μBN
(K ′

N ) ≥ μBN
(GN )− ε/2N ≥ ε− ε/2N .

In particular, the sets K ′
N are non-empty. By construction, we also have the

inclusions

K ′
N+1 ⊂ π−1

BN←BN+1
(K ′

N )

and thus the sets HN := π−1
BN

(K ′
N ) are decreasing in N . On the other hand,

since these sets are contained in FN , we have
⋂∞

N=1HN = ∅.
By the axiom of choice, we can select an element xN ∈ HN from HN

for each N . Observe that for any N0, that πBN0
(xN ) will lie in the compact

set K ′
N0

whenever N ≥ N0. Applying the Heine-Borel theorem repeatedly,
we may thus find a subsequence xN1,m of the xN for m = 1, 2, . . . such
that πB1(xN1,m) converges; then we can find a further subsequence xN2,m of
that subsequence such that πB2(xN2,m), and more generally obtain nested
subsequences xNj,m for m = 1, 2, . . . and j = 1, 2, . . . such that for each
j = 1, 2, . . ., the sequence m 
→ πBj (xNj,m) converges.

Now we use the diagonalisation trick. Consider the sequence xNm,m =:
(ym,α)α∈A for m = 1, 2, . . .. By construction, we see that for each j,
πBj (xNm,m) converges to a limit as m → ∞. This implies that for each
α ∈

⋃∞
j=1Bj , ym,α converges to a limit yα as m → ∞. As K ′

j is closed, we

see that (yα)α∈Bj ∈ K ′
j for each j. Now, if we extend yα arbitrarily from

α ∈
⋃∞

j=1Bj to α ∈ A, then the point y := (yα)α∈A lies in Hj for each j. But

this contradicts the fact that
⋂∞

N=1HN = ∅. This contradiction completes
the proof that μ0 is a pre-measure.

If we then let μ be the Hahn-Kolmogorov extension of μ0, one easily
verifies that μ obeys all the required properties, and the uniqueness follows
from Exercise 1.7.7. �

The Kolmogorov extension theorem is a fundamental tool in the foun-
dations of probability theory, as it allows one to construct a probability
space to hold a variety of random processes (Xt)t∈T , both in the discrete
case (when the set of times T is something like the integers Z) and in the
continuous case (when the set of times T is something like R). In particu-
lar, it can be used to rigorously construct a process for Brownian motion,
known as the Wiener process. We will, however, not focus on this topic,
which can be found in many graduate probability texts. But we will give
one common special case of the Kolmogorov extension theorem, which is to
construct product probability measures:
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Theorem 2.4.4 (Existence of product measures). Let A be an arbitrary
set. For each α ∈ A, let (Xα,Bα, μα) be a probability space in which Xα is
a locally compact, σ-compact metric space, with Bα being its Borel σ-algebra
(i.e. the σ-algebra generated by the open sets). Then there exists a unique
probability measure μA =

∏
α∈A μα on (XA,BA) := (

∏
α∈AXα,

∏
α∈A Bα)

with the property that

μA(
∏
α∈A

Eα) =
∏
α∈A

μα(Eα)

whenever Eα ∈ Bα for each α ∈ A, and one has Eα = Xα for all but finitely
many of the α.

Proof. We apply the Kolmogorov extension theorem to the finite product
measures μB :=

∏
α∈B μα for finite B ⊂ A, which can be constructed using

the machinery in Section 1.7.4. These are Borel probability measures on
a locally compact, σ-compact space and are thus inner regular (see §1.10
of An epsilon of room, Vol. I ). The compatibility condition (2.6) can be
verified from the uniqueness properties of finite product measures. �

Remark 2.4.5. This result can also be obtained from the Riesz represen-
tation theorem, which is covered in §1.10 of An epsilon of room, Vol. I.

Example 2.4.6 (Bernoulli cube). Let A := N, and for each α ∈ A, let
(Xα,Bα, μα) be the two-element set Xα = {0, 1} with the discrete metric
(and thus discrete σ-algebra) and the uniform probability measure μα. Then
Theorem 2.4.4 gives a probability measure μ on the infinite discrete cube
XA := {0, 1}N, known as the (uniform) Bernoulli measure on this cube. The
coordinate functions πα : XA → {0, 1} can then be interpreted as a countable
sequence of random variables taking values in {0, 1}. From the properties
of product measure one can easily check that these random variables are
uniformly distributed on {0, 1} and are jointly independent2. Informally,
Bernoulli measure allows one to model an infinite number of “coin flips”.
One can replace the natural numbers here by any other index set, and have
a similar construction.

Example 2.4.7 (Continuous cube). We repeat the previous example, but
replace {0, 1} with the unit interval [0, 1] (with the usual metric, the Borel
σ-algebra, and the uniform probability measure). This gives a probability
measure on the infinite continuous cube [0, 1]N, and the coordinate functions
πα : XA → [0, 1] can now be interpreted as jointly independent random
variables, each having the uniform distribution on [0, 1].

2A family of random variables (Yα)α∈A is said to be jointly independent if one has
P(

∧
α∈B Yα ∈ Eα) =

∏
α∈B P(Yα ∈ Eα) for every finite subset B of A and every collection

Eα of measurable sets in the range of Yα.
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Example 2.4.8 (Independent gaussians). We repeat the previous example,
but now replace [0, 1] with R (with the usual metric, and the Borel σ-

algebra), and the normal probability distribution dμα = 1√
2π
e−x2/2 dx (thus

μα(E) =
∫
E

1√
2π
e−x2/2 dx for every Borel set E). This gives a probability

space that supports a countable sequence of jointly independent gaussian
random variables πα.
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Mathematics Studies, 46. Notas de Matemática , 75. North-Holland Publishing Co.,
Amsterdam-New York, 1981.
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This is a graduate text introducing the fundamentals of measure 
theory and integration theory, which is the foundation of modern 
real analysis. The text focuses fi rst on the concrete setting of 
Lebesgue measure and the Lebesgue integral (which in turn is 
motivated by the more classical concepts of Jordan measure and 
the Riemann integral), before moving on to abstract measure and 
integration theory, including the standard convergence theorems, 
Fubini’s theorem, and the Carathéodory extension theorem. 
Classical differentiation theorems, such as the Lebesgue and 
Rademacher differentiation theorems, are also covered, as are connections with 
probability theory. The material is intended to cover a quarter or semester’s worth 
of material for a fi rst graduate course in real analysis.

There is an emphasis in the text on tying together the abstract and the concrete 
sides of the subject, using the latter to illustrate and motivate the former. The central 
role of key principles (such as Littlewood’s three principles) as providing guiding 
intuition to the subject is also emphasized. There are a large number of exercises 
throughout that develop key aspects of the theory, and are thus an integral compo-
nent of the text.

As a supplementary section, a discussion of general problem-solving strategies in 
analysis is also given. The last three sections discuss optional topics related to the 
main matter of the book.
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