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Preface to the First Edition 

The present book is based on lectures given by the author at the 
University of Tokyo during the past ten years. It is intended as a 
textbook to be studied by students on their own or to be used in a course 
on Functional Analysis, i.e., the general theory of linear operators in 
function spaces together with salient features of its application to 
diverse fields of modern and classical analysis. 

Necessary prerequisites for the reading of this book are summarized, 
with or without proof, in Chapter 0 under titles: Set Theory, Topo­
logical Spaces, Measure Spaces and Linear Spaces. Then, starting with 
the chapter on Semi-norms, a general theory of Banach and Hilbert 
spaces is presented in connection with the theory of generalized functions 
of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed 
to graduate students, it is hoped it might prove useful to research mathe­
maticians, both pure and applied. The reader may pass, e.g., from 
Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII 
(Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration 
of the Equation of Evolution). Such materials as "Weak Topologies 
and Duality in Locally Convex Spaces" and "Nuclear Spaces" are 
presented in the form of the appendices to Chapter V and Chapter X, 
respectively. These might be skipped for the first reading by those who 
are interested rather in the application of linear operators. 

In the preparation of the present book, the author has received 
valuable advice and criticism from many friends. Especially, Mrs. 
K. HILLE has kindly read through the manuscript as well as the galley 
and page proofs. Without her painstaking help, this book could not 
have been printed in the present style in the language which was 
not spoken to the author in the cradle. The author owes very much 
to his old friends, Professor E. HILLE and Professor S. KAKUTANI of 
Yale University and Professor R. S. PHILLIPS of Stanford University for 
the chance to stay in their universities in 1962, which enabled him to 
polish the greater part of the manuscript of this book, availing himself 
of their valuable advice. Professor S. ITO and Dr. H. KOMATSU of the 
University of Tokyo kindly assisted the author in reading various parts 



VI Preface 

of the galley proof, correcting errors and improving the presentation. 
To all of them, the author expresses his warmest gratitude. 

Thanks are also due to Professor- F. K. SCHMIDT of Heidelberg Uni­
Yersity and to Professor T. KATO of the University of California at 
Berkeley who constantly encouraged the author to write up the present 
book. Finally, the author wishes to express his appreciation to Springer­
Verlag for their most efficient handling of the publication of this book. 

Tokyo, September 1964 

K6sAKU YOSIDA 

Preface to the Second Edition 

In the preparation of this edition, the author is indebted to 
Mr. FLORET of Heidelberg wno kindly did the task of enlarging the Index 
to make the book more useful. The errors in the second printing are cor­
rected thanks to the remarks of many friends. In order to make the book 
more up-to-date, Section 4 of Chapter XIV has been rewritten entirely 
for this new edition. 

Tokyo, September 1967 

K6sAKU YOSIDA 

Preface to the Third Edition 
A new Section (9. Abstract Potential Operators and Semi-groups) 

pertaining to G. HUNT'S theory of potentials is inserted in Chapter XIII 
of this edition. The errors in the second edition are corrected thanks to 
kind remarks of many friends, especially of Mr. KLAUS-DIETER BIER­
STEDT. 

Kyoto, April 1971 
KOSAKU Y OSIDA 

Preface to the Fourth Edition 

Two new Sections "6. Non-linear Evolution Equations 1 (The 
Komura-Kato Approach)" and "7. Non-linear Evolution Equations 2 
(The Approach Through The Crandall-Liggett Convergence Theorem)" 
are a:dded to the last Chapter XIV of this edition. The author is grateful 
to Professor Y. Komura for his careful reading of the manuscript. 

Tokyo, April 1974 
KOSAKU YOSIDA 



Preface to the Fifth Edition 

Taking advantage of this opportunity, supplementary notes are added 
at the end of this new edition and additional references to books have 
been entered in the bibliography. The notes are divided into two cate­
gories. The first category comprises two topics: the one is concerned with 
the time reversibility of Markov processes with invariant measures, and 
the other is concerned with the uniqueness of the solution of time depen­
dent linear evolution equations. The second category comprises those 
lists of recently published books dealing respectively with Sobolev Spaces, 
Trace Operators or Generalized Boundary Values, Distributions and 
Hyperfunctions, Contraction Operators in Hilbert Spaces, Choquet's 
Refinement of the Krein-Milman Theorem and Linear as well as Non­
linear Evolution Equations. 

A number of minor errors and a serious one on page 459 in the fourth 
edition have been corrected. The author wishes to thank many friends 
who kindly brought these errors to his attention. 

Kamakura, August 1977 KOSAKU Y OSIDA 

Preface to the Sixth Edition 

Two major changes are made to this edition. The first is the re­
writing of the Chapter VI,6 to give a simplified presentation of Miku­
sinski's Operational Calculus in such a way that this presentation does 
not appeal to Titchmarsh's theorem. The second is the rewriting of the 
Lemma together with its Proof in the Chapter XII,S concerning the 
Representation of Vector Lattices. This rewriting is motivated by a 
letter of Professor E. Coimbra of Universidad Nova de Lisboa kindly 
suggesting the author's careless phrasing in the above Lemma of the 
preceding edition. 

A number of misprints in the fifth edition have been corrected thanks 
to kind remarks of many friends. 

Kamakura, June 1980 KOSAKU YOSIDA 
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O. Preliminaries 

It is the purpose of this chapter to explain certain notions and theo­
rems used throughout the present book. These are related to Set Theory, 
Topological Spaces, Measure SPaces and Linear SPaces. 

1. Set Theory 

Sets. x E X means that x is a member or element of the set X; x f X 
means that x is not a member of the set X. We denote the set con­
sisting of all x possessing the property P by {x; Pl. Thus {y; Y = x} is 
the set {x} consisting of a single element x. The void set is the set with 
no members, and will be denoted by 0. If every element of a set X is also 
an element of a set Y, then X is said to be a subset of Y and this fact 
will be denoted by X ~ Y, or Y ~ X. If I is a set whose elements are 
sets X, then the set of all x such that x E X for some X E I is called the 
union of sets X in I; this union will be denoted by U X. The inter-

XEI 
section of the sets X in I is the set of all x which are elements of every 
X E I; this intersection will be denoted by n X. Two sets are dis­

XEI 
foint if their intersection is void. A family of sets is disjoint if every 
pair of distinct sets in the family is disjoint. If a sequence {X .. } .. =1,2, ..• 

00 

of sets is a disjoint family, then the union U X .. may be written in 
,,=1 

00 

the form of a sum .I X ... 
.. =1 

Mappings. The term mapping, function and transformation will be 
used synonymously. The symbol f: X -+ Y will mean that f is a single­
valued function whose domain is X and whose range is contained in Y; 
for every x E X, the function f assigns a uniquely determined element 
f(x) = y E Y. For two mappings f: X -+ Y and g: Y -+ Z, we can 
define their composite mapping gf: X -+ Z by (gf) (x) = g(f(x)). The 
symbol f (M) denotes the set {f (x) ; x E M} and f (M) is called the image 
of M under the mapping f. The symbol j-l (N) denotes the set {x; f(x)EN} 
and f-1 (N) is called the inverse image of N under the mapping f. It is 
dear that 

YI = f(j-I(YI)) for all YI ~ f(X), and Xl ~ f-1(f(XI)) for all Xl ~ X. 
1 Yoslda, Functional Analysis 
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If I: X -+ Y, and for each y E 1 (X) there is only one x E X with 1 (x) = y, 
then 1 is said to have an inverse (mapping) or to be one-to-one. The inverse 
mapping then has the domain 1 (X) and range X; it is defined by the 
equation x = j-l(y) = j-l({y}). 

The domain and the range of a mapping 1 will be denoted by D (I) and 
R(I), respectively. Thus, if 1 has an inverse then 

j-l(t(X)) = x for all xED (I), and 1(1-1 (y» = y for all y E R(I). 

The function 1 is said to map X onto Y if 1 (X) = Y and into Y if 1 (X) ~ Y. 
The function 1 is said to be an extension of the function g and g a restriction 
of 1 if D(I) contains D(g), and 1 (x) = g(x) for all x in D(g). 

Zorn's Lemma 

Definition. Let P be a set of elements a, b, ... Suppose there is a 
hinary relation defined between certain pairs (a, b) of elements of P, 
expressed by a -< b, with the properties: 

I a -< a, 
if a -< band b -< a, then a = b, 
if a -< b and b -< c, then a -< c (transitivity). 

Then P is said to be partially ordered (or semi-ordered) by the relation -<. 
Examples. If P is the set of all subsets of a given set X, then the set 

inclusion relation (A ~ B) gives a partial ordering of P. The set of all 
complex numbers z = x + iy, w = u + iv, ... is partially ordered by 
defining z -< w to mean x < u and y < v. 

Definition. Let P be a partially ordered set with elements a, b, ... 
If a -< c and b -< c, we call c an upper bound for a and b. If furthermore 
c -< d whenever d is an upper bound for a and b, we call c the least upper 
bound or the supremum of a and b, and write c = sup (a, b) or a V b. 
This element of P is unique if it exists. In a similar way we define the 
greatest lower bound or the infimum of a and b, and denote it by inf (a, b) 
or a A b. If a V b and a A b exist for every pair (a, b) in a partially 
ordered set P, P is called a lattice. 

Example. The totality of subsets M of a fixed set B is a lattice by 
the partial ordering Ml -< Ms defined by the set inclusion relation 
Ml ~MB· 

Definition. A partially ordered set P is said to be linearly ordered (or 
totaUy ordered) if for every pair (a, b) in P, either a -< b or b -< a holds. 
A subset of a partially ordered set is itself partially ordered by the rela­
tion which partially orders P; the subset might tum out to be linearly 
ordered by this relation. If P is partially ordered and S is a subset of P, 
an m E P is called an upper bound of S if s -< m for every s E S. An 
mE P is said to be maximal if P. E P and m -< p together imply m = p. 
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Zorn's Lemma. Let P be a non-empty partially ordered set with the 
property that every linearly ordered subset of P has an upper bound 
in P. Then P contains at least one maximal element. 

It is known that Zorn's lemma is equivalent to Zermelo's axiom of 
choice in set theory. 

2. Topological Spaces 

Open Sets and Closed Sets 

Definition. A system T of 'subsets of a set X defines a topology in X 
if T contains the void set, the set X itself, the union of every one of its 
subsystems, and the intersection of everyone of its finite subsystems. 
The sets in T are called the open sets of the topological space (X, -r); we 
shall often omit T and refer to X as a topological space. Unless otherwise 
stated, we shall assume that a topological space X satisfies Hausdorff's 
axiom of separation: 

For every pair (Xl' xs) of distinct points Xl' Xs of X, there exist disjoint 
open sets GI , Gs such that Xl E GI , Xa E Gs' 

A neighbourhood of the point X of X is a set containing an open set which 
contains x. A neighbourhood of the subset M of X is a set which is a 
neighbourhood of every point of M. A point X of X is an accumulation 
point or limit point of a subset M of X if every neighbonrhood of X con­
tains at least one point mE M different from x. 

Definition. Any subset M of a topological space X becomes a topolo­
gical space by calling "open" the subsets of M which are of the form 
M f\ G where G's are open sets of X. The induced topology of M is called 
the relative topology of M as a subset of the topological space X. 

Definition. A set M of a topological space X is closed if it contains 
all its accumulation points. It is easy to see that M is closed ifF its 
complement Me = X - M is open. Here A - B denotes the totality of 
points X E A not contained in B. If M ~ X, the intersection of all closed 
subsets of X which contain M is called the closure of M and will be denoted 
by M" (the superscript "a" stands for toe first letter of the German: 
abgeschlossene Hulle). 

Clearly M" is closed and M ~ M"; it is easy to see that M = M" iff 
M is closed. 

Metric Spaces 

Definition. If X, Yare sets, we denote by Xx Y the set of all ordered 
pairs (x, y) where X E X and y E Y; Xx Y will be called the Cartesian 
product of X and Y. X is called a metric space if there is defined a func-

1 iff is the abbreviation for "if and only if". 

1* 
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tion tl with domain X X X and range in the real number field Rl such 
that I tl (Xl' X2) ~ 0 and tl (Xl' XII) = 0 iff Xl = xZ' 

tl (Xl' XII) = tl (XII' Xl)' 
tl (Xl' X3) :::;;; tl (Xl' Xz) + tl (XII' x3) (the triangle inequality). 

tl is called the metric or the tlistance lunction of X. With each point Xo 
in a metric space X and each positive number 1', we associate the set 
S (xo; 1') = {x EX; tl (x, xo) < 1'} and call it the open sphe1'e with centre Xo 
and radius 1'. Let us call "open" the set M of a metric space X iff, for 
every point Xo EM, M contains a sphere with centre xo' Then the totality 
of such "open" sets satisfies the axiom of open sets in the definition of the 
topological space. 

Hence a metric space X is a topological space. It is easy to see that a 
point Xo of X is an accumulation point of M iff, to every B > 0, there exists 
at least one point m ¥= Xo of M such that tl (m, xo) < B. The n-dimensional 
Euclidean space R!' is a metric space by 

tl (x, y) = (.1 (Xi - Yi)IIV/II , where X ~ (Xl' •• " X .. ) and Y = (Yl' •.. , y .. ). 
t-l } 

Continuous Mappings 

Definition. Let I: X ~ Y be a mapping defined on a topological 
space X into a topological space Y.I is called cantinuous at a point Xo E X 
if to every neighbourhood U of 1 (xo) there corresponds a neighbourhood 
V of Xo such that 1 (V) ~ U. The mapping 1 is said to be continuous if it is 
continuous at every point of its domain D(f) = X. 

Theorem. Let X, Y be topological spaces and 1 a mapping defined 
on X into Y. Then 1 is continuous iff the inverse image under 1 of every 
open set of Y is an open set of X. 

Proof. If 1 is continuous and U an open set of Y, then V = j-l(U) 
is a neighbourhood of every point Xo E X such that I(xo) E U, that is, 
V is a neighbourhood of every point Xo of V. Thus V is an open set of X. 
Let, conversely, for every open set U 3 1 (xo) of Y, the set V = j-l(U) 
be an open set of X. Then, by the definition, 1 is continuous at Xo E X. 

Compactness 

Definition. A system of sets G .. , IX E A, is called a cOfJuing of the set 
X if X is contained as a subset of the union U .. EA G ... A subset M of a 
topological space X is called compact if every system of open sets of X 
which covers M contains a finite subsystem also covering M. 

In view of the preceding theorem, a continuous image 01 a compact set 
is also compact. 

Proposition 1. Compact subsets of a topological space are necessarily 
dosed. 
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Proof. Let there be an accumulation point Xo of a compact set M of a 
topological space X such that Xo EM. By Hausdorff's axiom of separa­
tion, there exist, for any point mE M, disjoint open sets G".,%o and G%.,,,. 
of X such that mE G".,%o' Xo E G%o,"'. The syst_m {G".,%o; mE M} surely 
covers M. By the compactness of M, there exists a finite subsystem .. 
{Gm; %; i = 1, 2, ... , n} which covers M. Then n G% ",. does not 

, • i:::::&1 0" 

intersect M. But, since Xo is an accumulation point of M, the open set .. 
n G% m; :1 Xo must contain a point mE M distinct from xo. This is a 

i=1 0. 

contradiction, and M must be closed. 
Proposition 2. A closed subset MI of a compact set M of a topological 

space X is compact. 
Proof. Let {G .. } be any system of open sets of X which covers MI. 

MI being closed, Mf = X - MI is an open set of X. Since Ml ~ M, 
the system of open sets {G .. } plus Mf covers M, and since M is compact, a 
properly chosen finite subsystem {G<Xi; i = 1, 2, ... , n} plus Mf surely 
covers M. Thus {G .. ;; i = 1, 2, ... , n} covers MI. 

Definition. A subset of a topological space is called relatively compact 
if its closure is compact. A topological space is said to be locally compact if 
each point of the space has a compact neighbourhood. 

Theorem. Any locally compact space X can be embedded in another 
compact space Y, having just one more point than X, in such a way that 
the relative topology of X as a subset of Y is just the original topology 
of X. This Y is called a one point compactification of X. 

Proof. Let y be any element distinct from the points of X. Let {U} be 
the class of all open sets in X such that UC = X - U is compact. We 
remark that X itself E {U}. Let Y be the set consisting of the points of X 
and the point y. A set in Y will be called open if either (i) it does not 
contain y and is open as a subset of X, or (ii) it does contain y and its 
intersection with X is a member of {U}. It is easy to see that Y thus 
obtained is a topological space, and that the relative topology of X 
coincides with its original topology. 

Suppose {V} be a family of open sets which covers Y. Then there must 
be some member of {V} of the form Uo V {y}, where UoE {U}. By the 
definition of {U}, ug is compact as a subset of X. It is covered by the 
system of sets V {\ X with V E {V}. Thus some finite subsystem: 
VI {\ X, V2 (\ X, ... , V .. (\ X covers Ug. Consequently, VI' V2 , ••• , V,. 
and Uo V {y} cover Y, proving that Y is compact. 

Tychonov's Theorem 

Definition. Corresponding to each ~ of an index set A, let there be given 
a topological space X ... The Cartesian product IT X .. is, by defini­

.. EA 
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tion, the set of all functions 1 with domain A such that I(ex) E X", for 
every ex EA. We shall write 1 = II I(ex) and call I(ex) the ex-th coordi­

",EA .. 
nate of I. When A consists of integers (1,2, ... , n), II X" is usually 

"-1 
denoted by X 1 XX\lX·· . xX ... We introduce a (weak) topology in the 
product space II X", by calling "open" the sets of the form IT G"" 

~A ~ 
where the open set G", of X", coincides with X", for all but a finite set of ex. 

Tychonov's Theorem. The Cartesian product X = II X", of a 
",EA 

system of compact topological spaces X", is also compact. 
Remark. As is well known, a closed bounded set on the real line Rl is 

compact with respect to the topology defined by the distance d(x, y) = 
Ix-yl (the Bolzano-Weierstrass theorem). By the way, a subset M 
of a metric space is said to be bounded, if M is contained in some sphere 
S (xo, r) of the space. Tychonov's theorem implies, in particular, that a 
parallelopiped : 

- 00 < a. :::::.;; Xi :::::.;; b. < 00 (i = 1, 2, ... , n) 

of the n-dimensional Euclidean space R" is compact. From this we see 
that R" is locally compact. 

Proof of Tychonov's Theorem. A system of sets has the finite inter­
section property if its every finite subsystem has a non-void intersection. 
It is easy to see, by taking the complement of the open sets of a covering, 
that a topological space X is compact iff, for every system {M",; ex E A} 
of its closed subsets with finite intersection property, the intersection 
n M: is non-void . 

.. EA 
Let now a system {S} of subsets S of X = II X", have the finite 

",EA 
intersection property. Let {N} be a system of subsets N of X with the 
following properties: 

(i) {S} is a subsystem of {N}, 
(ii) {N} has the finite intersection property, 

(iii) {N} is maximal in the sense that it is not a proper subsystem of 
other systems having the finite intersection property and containing 
{S} as its subsystem. 

The existence of such a maximal system {N} can be proved by Zorn's 
lemma or transfinite induction. 

For any set N of {N} we define the set N",={/(ex);/EN} ~X",. 
We denote then by {N",} the system {N",; N E {N}}. Like {N}, {N",} 
enjoys the finite intersection property. Thus, by the compactness of X tA , 
there exists at least one point PtA E X", such that p", E n N:. We have 

NE{N} 
to show that the point p = n PtA belongs to the set n N a• 

",EA NE{N} 
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But since P ... belongs to the intersection n N:', any open set G .. 
NE{N} • 

of XCI; which contains p",.intersects every N ... E {N ... }. Therefore the open 
set 

G("') = {x; x = II x with x 6: G } .:SEA (X a..:S, 

of X must intersect every N of {N}. By the maximality condition (iii) 
of {N}, G("') must belong to {N}. Thus the intersection of a finite number 
of sets of the form 0"') with £Xo E A must also belong to {N} and so such a 
set intersect every set N E {N}. Any open set of X containing p being 
defined as a set containing such an intersection, we see that p = II P .. 

",EA 

must belong to the intersection n N". 
NE{N} 

Urysohn's Theorem 

Proposition. A compact space X is normal in the sense that, for any 
disjoint closed sets Fl and F2 of X, there exist disjoint open sets Gl and 
Gz such that Fl ~ Gl , F2 ~ G2• 

Proof. For any pair (x, y) of points such that x E F l , Y E F2 , there 
exist disjoint open sets G (x, y) and G (y, x) such that x E G (x, y), 
yE G(y, x). F2 being compact as a closed subset of the compact space X, 
we can, for fixed x, cover F2 by a finite number of open sets G(Yl' x), 
G(Y2' x), ... , G(Yn(%), x). Set 

n(%) 
and G(x) = (l G(x, Yj)' 

J=l 

Then the disjoint open sets G% and G(x) are such that F2 ~ G%, xE G(x)· 
F1 being compact as a closed subset of the compact space X, we can cover 
F1 by a finite number of open sets G(x1}, G(x2), ••• , G(xk ). Then 

k k 
Gl = .U G (Xj) and Gz = .n G%s 

)=1 )=1 

satisfy the condition of the proposition. 
Corollary. A compact space X is regular in the sense that, for any 

non-void open set G~ of X, there exists a non-void open set G; such that 
(G;)" ~ G~. 

Proof. Take Fl = (G~)c and F2 = {x} where x E G~. We can then take 
for G; the open set G2 obtained in the preceding proposition. 

Urysohn's Theorem. Let A, B be disjoint closed sets in a normal space 
X. Then there exists a real-valued continuous function I(t) on X such 
that 

o </(t) < Ion X, and I(t) = 0 on A, I(t) = 1 on B. 

Proof. We assign to each rational number r = k/2n (k = 0, 1, ... , 2"), 
an open set G(r) such that (i) A ~ G(O), B = G(l)C, and (ii) G(r)" ~ G(r') 
whenever r < r'. The proof is obtained by induction with respect to n. 
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For n = 0, there exist, by the normality of the space X, disjoint open sets 
Go and G1 with A ~ Go' B ~ G1. We have only to set Go = G (0). Suppose 
that G (r)'s have been constructed for r of the form k/2"-1 in such a 
way that condition (ii) is satisfied. Next let k be an odd integer> o. 
Then, since (k - 1)/2" and (k + 1)/2" are of the form k' /2"-1 with 
o ~ k' < 2"-1, we have G«k -1)/2")" ~ G((k + 1)/2"). Hence, by the 
normality of the space X, there exists an open set G which satisfies 
G((k -- 1)/2")" ~ G, Ga ~ G((k + 1)/2"). If we set G (k/2") = G, the induc­
tion is completed. 

Define I (t) by 

I (t) = 0 on G (0), and I (t) = sup r whenever t E G (O)c . 
iEG(,) 

Then, by (i), I(t) = 0 on A and I(t) = 1 on B. We have to prove the 
continuity of I. For any to E X and positive integer n, we take r with 
!(to) < r < I (to) + 2-,,-1. Set G = G(r) f\ G(r- 2-"tC (we set, for 
convention, G(s) = 0 if s < 0 and G(s) = X if s> 1). The open set G 
contains to. For, I (to) < r implies to E G (r), and (r - 2-"-1) < I (to) 
implies toE G(r- 2-"-1)C ~ G(r-- 2-"tc. Now tE G implies tE G(r) 
and so I (t) < r; similarly t E G implies t E G (r - 2-,,)aC ~ G (r - 2-"f so 
that r- 2-" < f(t). Therefore we have proved that If(t) -f(to) I < 1/2" 
whenever t E G. 

The Stone-Weierstrass Theorem 

Weierstrass' Polynomial Approximation Theorem. Let I(x) be a real­
valued (or complex-valued) continuous function on the closed interval 
[0, 1]. Then there exists a sequence of polynomials P" (x) which converges, 
as n-+oo, to f(x) uniformly on [0,1]. According to S. BERNSTEIN, we 
may take 

(1) 

" Proof. Differentiating (x + y)" = Z "Cp xP y"-P with respect to 
p=o 

" x and multiplying by x, we obtain nx(x + y)"-l = .I P nCp xPy"-p. 
p=o 

Similarly, by differentiating the first expression twice with respect to x and 

" multiplying by.x2, we obtain n(n -1) x2(x + y)"-2 = Z P(P -1) "Cp xP 
p=o 

y"-p. Thus, if we set 

rp (x) = "Cp xP (1 - x)"-P, (2) 
we have 

" " " .Irp(x) =1, .Iprp(x)=nx, .Ip(p-1)rp(x)=n(n-1)x2. (3) 
p=o p=o p=o 
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Hence 
II ,.. 11 fJ 

I (P -nx)2 1'p(x) = n2x2 I 1'p(x) - 2nx I P1'p(x) + I p21'p(X) 
p-o p=o p=o p-o 

= n2 x2 - 2nx . nx + (nx + n (n - 1) x2) 

= nx (1 - x) . (4) 

We may assume that I/(x) I ;S;; M < <Xl on [0, 1]. By the uniform 
continuity of I(~), there exists, for any e > 0, a lJ > 0 such that 

II (x) -/(x') 1< e whenever Ix - x' 1< lJ. 

We have, by (3), 

\ I (x) - p~/(pln) 1'p(x) \ = Ip~ (I (x) -1(Pln)) 1'p(x) I 
;S;; IIP-~:o~1 + IIP_~>~!' 

For the first term on the right, we have, by 1'p(x) > 0 and (3), 

.. 
I .I l<eI1'p(x)=e. 
IP-,;;r:o~ p=o 

For the second term on the right, we have, by (4) and II (x) I ;S;; M, 

I .I I ;S;; 2M .I 1'p (x) < 2:;' i (P - nx)2 1'p (x) 
Ip-tiif>~ Ip-U(>~ n u p=o 

2Mx(1-x) M 
= nd l < 2d1n -+ 0 (as n -+ <Xl). 

(5) 

The Stone-Weierstrass Theorem. Let X be a compact space and C (X) 
the totality of real-valued continuous functions on X. Let a subset B of 
C (X) satisfy the three conditions: (i) if I, g E B, then the function pro­
duct I· g and linear combinations IXI + flg, with real coefficients IX, fl, 
belong to B, (ii) the constant function 1 belongs to B, and (iii) the uniform 
limit 100 of any sequence {I .. } of functions E B also belongs to B. Then 
B = C (X) iff B sepa1'ates the points 01 X, i.e. iff, for every pair (Sl' S2) of 
distinct points of X, there exists a function x in B which satisfies 
X(Sl) =F X(S2)' 

Proof. The necessity is clear, since a compact space is normal and so, 
by Urysohn's theorem, there exists a real-valued continuous function x 
such that x (Sl) =F X(S2)' 

To prove the sufficiency, we intx:oduce the lattice notations: 

(f V g) (s) = max (f(s), g(s», (f A g) (s) = min (I (s), g(s», III (s) = I/(s) I· 

By the preceding theorem, there is a sequence {p .. } of polynomials such that 

IIt:-p .. (t) I < lIn for -n;S;;t;S;;n. 



10 o. Preliminaries 

Hence 11/(5) 1- Pn(f(5)) I < lin if -n < 1(5) < n. This proves, by (iii), 
that III E B if IE B, because any function 1(5) E B ~ C (X) is bounded on 
the compact space X. Thus, by 

I V g = It g + II 2 g I and I 1\ g = It g _II 2-.tl, 

we see that B is closed under the lattice operations V and /\. 
Let h E C (X) and 51' 52 E X be arbitrarily given such that 51 ¥= 52. 

Then we can find an Is,s, E B with Is,s, (51) = h (51) and Is,s, (52) = h (52). 
To see this, let g E B be such that g(51) ¥= g(52), and take real numbers eX 

and {3 so that Is,s, = exg + (3 satisfies the conditions: Is,s,(51) = h(51) 
and I.,s, (52) = h(52)· 

Given 8 > 0 and a point t EX. Then, for each 5 E X, there is a neigh­
bourhood U(5) of 5 such that Ist(u) > h(u) -8 whenever uE U(5). Let 
U (51)' U (52)' ... , U (5n) cover the compact space X and define 

It = Is,t V ... V Isnt· 

Then It E Band It(u) > h (u) - 8 for all u EX. We have, by Is;t(t) = h (t), 
It(t) = h(t). Hence there is a neighbourhood V(t) of t such that I,(u) < 
h(u) + 8 whenever uE V(t). Let V(tl ), V(t2), ••• , V(tk) cover the com­
pact space X, and define 

I = It, /\ . . . /\ Itk· 

Then IE Band I(u) > h(u) -8 ;'or all uE X, because It;(u) > h(U)-8 

for u EX. Moreover, we have, for an arbitrary point u E X, say u E V (t,), 
I(u) < It/(u) < h(u) + 8. 

Therefore we have proved that I/(u) - h(u) 1< 8 on X. 
We have incidentally proved the following two corollaries. 
Corollary 1 (KAKUTANI-KREIN). Let X be a compact space and C(X) 

the totality of real-valued continuous functions on X. Let a subset B 
of C(X) satisfy the conditions: (i) if I, gE B, then I V g, 1/\ g and the 
linear combinations eXl + {3g, with real coefficients eX, (3, belong to B, 
(ii) the constant function 1 belongs to B, and (iii) the uniform limit I(X) 
of any sequence {In} of functions E B also belongs to B. Then B = C (X) 
iff B separates the points of X. 

Corollary 2. Let X be a compact space and C (X) be the totality of 
complex-valued continuous functions on X. Let a subset B of C (X) 
satisfy the conditions: (i) if I, g E B, then the function product I . g and 
the linear combinations eXl + {3g, with complex coefficients ex, (3, belong 
to B, (ii) the constant function 1 belongs to B, and (iii) the uniform 
limit I(X) of any sequence {In} of functions E B also belongs to B. Then 
B = C (X) iff B satisfies the conditions: (iv) B separates points of X 
and (v) if 1(5) E B, then its complex conjugate function 7(5) also belongs 
to B. 
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Weierstrass' Trigonometric Approximation Theorem. Let X be the 
circumference of the unit circle of R2. It is a compact space by the usual 
topology, and a complex-valued continuous function on X is represented 
by a continuous function f(x), -00 < x < 00, of period 2n. If we take, 
in the above Corollary 2, for B the set of all functions representable by 
linear combinations, with complex coefficients of the trigonometric 
functions 

i"" (n = 0, ± 1, ± 2, ... ) 

and by those functions obtainable as the uniform limit of such linear 
combinations, we obtain Weierstrass' trigonometric approximation theo­
rem: Any complex-valued continuous function f(x) with period 2n can 
be approximated uniformly by a sequence of trigonometric polynomials 
of the form.I c .. e''''' . .. 

Completeness 

A sequence {x .. } of elements in a metric space X converges to a limit 
point x E X iff lim d (x .. , x) = O. By the triangle inequality II (x .. , xm) < 

n-+OO 

d(x .. , x) + d(x, xm), we see that a convergent sequence {x .. } in X satisfies 
Cauchy's convergence condition 

lim d (x", xm) = O. (1) 
",m-+oO 

Definition. Any sequence {x,,} in a metric space X satisfying the above 
condition (1) is called a Cauchy sequence. A metric space X is said to be 
complete if every Cauchy sequence in it converges to a limit point EX. 

It is easy to see, by the triangle inequality, that the limit point of 
{x .. }, if it exists, is uniquely determined. 

Definition. A subset M of a topological space X is said to be non­
dense in X if the closure Ma does not contain a non-void open set of X. 
M is called dense in X if Ma = X. M is said to be of the first category if M 
is expressible as the union of a countable number of sets each of which is 
non-dense in X; otherwise M is said to be of the second category. 

Baire's Category Argument 

The Baire-Hausdorff Theorem. A non-void complete metric space is of 
the second category. 

Proof. Let {M .. } be a sequence of closed sets whose union is a complete 
metric space X. Assuming that no M" contains a non-void open set, we 
shall derive a contradiction. Thus Mf is open and Mfa = X, hence Mf 
contains a closed sphere 51 = {x; d(Xl' x) ::;: r l } whose centre Xl may be 
taken arbitrarily near to any point of X. We may assume that 0 < r l <1/2. 
By the same argument, the open set M~ contains a closed sphere 
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52 = {x; d(xz' x) < rz} contained in 51 and such that 0 < 1'2 < 1/22• 

By repeating the same argument, we obtain a sequence {SIll of closed 
spheres 5" = {x; d(x", x) ~ r,,} with the properties: 

0< 1'" < 1/2", 5"+1 ~ 5", 5" (\ M" = 0 (n = 1, 2, ... ). 

The sequence {x,,} of the centres forms a Cauchy sequence, since, for any 
n < m, x", E 5" so that d (x", x",) < 1'" < 1/2". Let Xoo E X be the limit 
point of this sequence {x .. }. The completeness of X guarantees the exist­
ence of such a limit point Xoo' By d (x", xoo) < d (x", x",) + d (x"" xoo) < 
1'" + d(x"" xoo) --')0 1'" (as m --')0 <Xl), we see that Xoo E 5" for every n. Hence 

00 

Xoo is in none of the sets M '" and hence Xoo is not in the union U M" = X, 
,,=1 

contrary to Xoo EX. 
Baire's Theorem 1. Let M be a set of the first category in a compact 

topological space X. Then the complement MG = X - M is dense in X. 
Proof. We have to show that, for any non-void open set G, MG inter-

00 

sects G. Let M = U M" where each M" is a non-dense closed set. Since 
,,=1 

Ml = Mi is non-dense, the open set Mf intersects G. Since X is regular 
as a compact space, there exists a non-void open set Gl such that 
Gi ~ G (\ Mf. Similarly, we can choose a non-void open set Gz such that 
Gz ~ Gl {\ Mg. Repeating the process, we obtain a sequence of non-void 
open sets {G,,} such that 

G:+1 ~ G" (\ M~+1 (n = 1, 2, ... ). 

The sequence of closed sets {G:} enjoys, by the monotony in n, the finite 
intersection property. Since X is compact, there is an x E X such that 

00 

x EnG:. x E Gi implies x E G, and from x E G:+1 ~ G" {\ ~+1 
,,=1 

00 

(n = 0, 1, 2, ... ; Go = G), we obtain x E n M~ = MG. Therefore we 
,,=1 

have proved that G (\ MG is non-void. 
Baire's Theorem 2. Let {x" (tn be a sequence of real-valued continuous 

functions defined on a topological space X. Suppose that a finite limit: 

lim x" (t) = x (t) 
~ 

exists at every point t of X. Then the set of points at which the function 
x is discontinuous constitutes a set of the first category. 

Proof. We denote, for any set M of X, by ~ the union of all the 
open sets contained in M; ~ will be called the interior of M. 

00 

Put P",(e)={tEX; Ix(t)-x",(t)l~e,e>O}, G(e) = U P;"(e). 
",=1 

00 

Then we can prove that C = n G (l/n) coincides with the set of all 
,,=1 

points at which x (t) is continuous. Suppose x (t) is continuous at t = to' 



2. Topological Spaces 13 

co 
We shall show that toE n G(l/n). Since lim x .. (t) = x (t), there 

.. -1 11-+00 

exists an m such that Ix (to) - x",(to) I ~ e/3. By the continuity of x(t) and 
x",(t) at t = to, there exists an open set U,. 3 to such that Ix (t)-x (to) I ~e/3 
I x'" (t) - x'" (to) I ~ e/3 whenever t E U,.. Thus t E Ute implies 

Ix(t) - x",(t) I ~ Ix(t) - x (to) I + Ix(to) - x",(to) 1+ Ix",(to) -x",(t) 1< e, 
which proves that toE P",(e) and so toE G(e). Since e > ° was arbitrary, 

co 
we must have toE n G(I/n) . 

.. -1 
co 

Let, conversely, toE n G(I/n). Then, for any e > 0, toE G(e/3) and 
.. -1 

so there exists an m such that to E P'" (e/3). Thus there is an open set 
Ut• 3 to such that t E Ute implies I x (t) - x", (t) I ~ e/3. Hence, by the 
continuity of x",(t) and the arbitrariness of e> O,x(t) must be continuous 
at t = to. 

After these preparations, we put 

F",(e) = {tE X; Ix",(t) -x"'+A(t) I <e (k = 1, 2, ... )}. 
co 

This is a closed set by the continuityofthex .. (t)'s. We have X = U F", (e) 
",~1 

by lim x .. (t) = x(t).Again by lim x .. (t) = x(t), we have F",(e) ~ P",(e). 
11-+00 11-+00 
.. co . 

Thus F",(e) ~ P",(e) and so "'~1 F",(e) ~ G(e). On the other hand, for 
. co . 

any closed set F, (F - F) is a non-dense closed set. Thus X - U F", (e) 
",-1 

co . 
= U (F", (e) - F", (e» is a set of the first category. Thus its subset 

",=1 

G (e)c = X - G (e) is also a set of the first category. Therefore the set 
of all the points of discontinuity of the function x (t), which is expressible 

co co 
as X - n G(I/n) = U G(I/nf, is a set of the first category . 

.. -1 .. -1 

Theorem. A subset M of a complete metric space X is relatively com­
pact iff it is totally bounded in the sense that, for every e > 0, there exists 
a finite system of points ~,mll' ... , m .. of M such that every point m of 
M has a distance < e from at least one of ~, mil' ... , m ... In other words, 
M is totally bounded if, for every e > 0, M can be covered by a finite 
system of spheres of radii < e and centres E M. 

Proof. Suppose M is not totally bounded. Then there exist a positive 
number e and an infinite sequence {m .. } of points EM such that d (mi' mj) 
~ e for i =1= i. Then, if we cover the compact set M" by a system of open 
spheres of radii < e, no finite subsystem of this system can cover M". 
For, this subsystem cannot cover the infinite subset {mil ~ M ~ M". 
Thus a relatively compact subset of X must be totally bounded. 
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Suppose, conversely, that M is totally bounded as a subset of a com­
plete metric space X. Then the closure M" is complete and is totally 
bounded with M. We have to show that M" is compact. To this purpose. 
we shall first show that any infinite sequence {P .. } of M" contains a sub­
sequence {p( .. ).} which converges to a point of M". Because of the total 
boundedness of M, there exist, for anye > 0, a point q. EM" and a sub­
sequence {P ... } of {P .. } such that d (P"" q.) < e/2 for n = 1, 2, ... ; conse­
quently, d(p,.., Pm') < d(Pn" q.) + d(q., Pm') < e for n, m = 1, 2, ... We 
set e = 1 and obtain the sequence {P •• }, and then apply the same rea­
soning as above with e = 2-1 to this sequence {P •• }. We thus obtain a 
subsequence {Pn"} of {P ... } such that 

d (Pn" Pm') < 1, d (p,. .. , Pm") < 1/2 (n, m = 1, 2, ... ). 

By repeating the process, we obtain a subsequence {P,.Ck+l)} of the sequence 
{P .. Ck)} such that 

d(P .. Ck+l), PmCk+l») < 1/2k (n, m = 1, 2, ... ). 

Then the subsequence {PInY} of the original sequence {p,.}, defined by the 
diagonal method: 

P(ny=Pncn), 

surely satisfies lim d (p( .. y, P(mY) = O. Hence, by the completeness of 
",m-+OO 

Ma, there must exist a point P E M" such that lim d (P(nY, P) = O. 
n-xx:l 

We next show that the set M a is compact. We remark that there 
exists a countable family {F} of open sets F of X such that, if U is any 
open set of X and x E U (\ M", there is a set FE {F} for which x E F ~ U. 
This may be proved as follows. Ma being totally bounded, M" can be 
covered, for any e> 0, by a finite system of open spheres of radii e 
and centres E Ma. Letting e = 1, 1/2, 1/3, ... and collecting the coun­
table family of the corresponding finite systems of open spheres, we 
obtain the desired family {F} of open sets. 

Let now {U} be any open covering of Ma• Let {F*} be the subfamily 
of the family {F} defined as follows: F ~ {F*} iff F ~ {F} and there is 
some U E {U} with F ~ U. By the property of {F} and the fact that 
{U} covers kf", we see that this countable family {F*} of open sets covers 
M". Now let {U*} be a subfamily of {U} obtained by selecting just one 
U E {U} such that F ~ U, for each FE {F*}. Then {U*} is a countable 
family of open sets which covers M a• We have to show that some finite 
subfamily of {U*} covers Ma• Let the sets in {U*} be indexed as U1• 

n 

U2 , .•• Suppose that, for each n, the finite union.U Uj fails to cover 
J=1 

Ma. Then there is some point XnE(M - k91 Uk)' By what was proved 
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above, the sequence {x .. } contains a subsequence {x(")'} which converges 
to a point, say xoo , in MA. Then xooE UN for some index N, and so 
x. E UN for infinitely many values of n, in particular for an n > N. This 

contradicts the fact that x. was chosen so that x. E (M - U u,,). "-1 
Hence we have proved that MA is compact. 

3. Measure Spaces 

Measures 

Definition. Let 5 be a set. A pair (5, ~) is called a a-ring or a a­
additive family of sets ~ 5 if ~ is a family of subsets of 5 such that 

5E~, (1) 

B E ~ implies Be = (5 - B) E ~, (2) 
00 

B j E ~ (i = I, 2, ... ) implies that .U Bj E ~ (a-additivity). (3) ,-1 
Let (5,~) be a a-ring of sets ~ 5. Then a triple (5,~, m) is called a 
measure space if m is a non-negative, a-additive measure defined on ~: 

m(B) > 0 for every B E ~, (4) 

mil Bj) = .I m(Bj) for any disjoint sequence {Bj} of sets E ~ 
\1=1 1=1 

(countable- or a-additivity of m), (5) 

5 is expressible as a countable union of sets Bj E ~ such that m (Bj ) 

< 00 (f = 1, 2, ... ) (a-finiteness of the measure space (5, ~,m». (6) 
This value m (B) is called the m-measure of the set B. 

Measurable Functions 

Definition. A real- (or complex-) valued function x(s) defined on 5 is 
said to be $8-measurable or, in short, measurable if the following condition 
is satisfied: 

For any open set G of the real line Rl (or complex (7) 
plane Gl), the set {s; x(s) E G} belongs to ~. 

It is permitted that x(s} takes the value 00. 

Definition. A property P pertaining to points s of 5 is said to hold m­
almost everywhere or, in short m-a. e., if it holds except for those s which 
form a set E $8 of m-measure zero. 

A real- (or complex-) valued function x(s) defined m-a.e. on 5 and 
satisfying condition (7) shall be called a $8-measurable function defined 
m-a.e. on 5 or, in short, a ~-measurable function. 



16 O. Preliminaries 

Egorov's Theorem. If B is a 58-measurable set with m (B) < 00 and if 
{/,.{s)} is a sequence of 58-measurable functions, finite m-a. e. on B, that 
converges m-a. e. on B to a finite 58-measurable function I (s), then 
there exists, for each 8> 0, a subset E of B such that m{B -E) < 8 

and on E the convergence of I,.{s) to I{s) is uniform. 
Proof. By removing from B, if necessary, a set of m-measure zero, 

we may suppose that on B, the functions I,.{s) are everywhere finite, and 
converge to I{s) on B. 

00 

The set B,. = n {s E B; I/{s) -I,,{s) 1< 8} is 58-measurable and ,,-,.+1 
00 

B,. ~ B" if n < k. Since lim I,.{s) = I{s) on B, we have B = U B,. . 
........00 ,.-1 

Thus, by the a-additivity of the measure m, we have 

m{B) = m{B1 + (Ba - B 1) + (Ba - B,.) + ... } 
= m (B1) + m (Ba - B1) + m (Ba - Ba) + ... 
= m(Bl) + (m(Ba) - m(B1}) + (m(Ba) - m(Ba}) + ... 
= lim m(B,.) . 

........00 

Hence lim m(B - B,.) = 0, and therefore, from a sufficiently large ko 
........00 

on, m(B - B,,) < TJ where TJ is any given positive number. 
Thus there exist, for any positive integer k, a set C" ~ B such that 

m(C,,) < 8/2" and an index N" such that 

I/(s) -I,.(s) 1 < 1/2" for n> N" and for s E B - C". 
00 

Let us set E = B - U C". Then we find 
"=1 

00 00 

m(B -E) ~ .x m(C,,) ~ .x 8/2" = 8, 
"-1 "=1 

and the sequence I,.(s) converges uniformly on E. 

Integrals 

Definition. A real- (or complex-) valued function x (s) defined on S 
is said to be finitely-valued if it is a finite non-zero constant on each of 
a finite number, say n, of disjoint 58-measurable sets Bj and equal to zero ,. 
on S - .U Bi . Let the value of x(s) on Bj be denoted by Xi. 

3=1 ,. 
Then x (s) is m-integrable or, in short, integrable over S if ,I 1 Xj 1 m (Bi) < 00, 

3=1 ,. 
and the value .,X Xi m(Bi) is defined as the integral of x(s) over 5 with 

3-1 
respect to the measure m; the integral will be denoted by f x(s) m(ds) 
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or, in short, by [ x(s) or simply by f x(s) when no confusion can be 

expected. A real- (or complex-) valued function x (s) defined m-a. e. on S is 
said to be m-integrable or, in short, integrable over S if there exists a 
sequence {x .. (s)} of finitely-valued integrable functions converging to 
x (s) m-a. e. and such that 

lim [ /x .. (s) - XA(S)/ m(ds) = O • 
.. ,l->co 

It is then proved that a finite ~! x .. (s) m (ds) exists and the value 

of this limit is independent of the choice of the approximating sequence 
{x .. (s)}. The value of the integral! x(s) m(ds) over S with respect to the 

measure m is, by definition, given by lim f x .. (s) m(ds). We shall 
Il-+OO s 

sometimes abbreviate the notation f x(s) m (ds) to f x(s) m(ds) or to 
f x(s). s 

Properties of the Integral 

i) If x (s) and y (s) are integrable, then /Xx (s) + fJy (s) is integrable 
and J (/Xx(s) + fJy(s)) m(ds) = /X f x(s) m(ds) + fJ f y(s)m(ds). 

s s s 
ii) x(s) is integrable iff /x(s)/ is integrable. 
iii) If x(s) is integrable and x(s) :?! 0 a. e., then f x(s) m(ds) :?! 0, 

s 
and the equality sign holds iff x(s) = 0 a. e. 

iv) If x(s) is integrable, then the function X(B) = f x(s) m(ds) is 
• B 

a-additive, that is, X (1 BJ) = i X (Bj ) for any disjoint 
,=1 ,=1 

sequence {BJ} of sets E 58. Here f x (s) m (ds) = ! C B (s) x(s) m (ds) , 

where CB(s) is the defining function of the set B, that is, 

C B (s) = 1 for s E B and C B (s) = 0 for s E S - B. 

v) X (B) in iv) is absolutely continuous with respect to m in the sense 
that m (B) = 0 implies K (B) = O. This condition is equivalent to 
the condition that lim X (B) = 0 uniformly in BE 58. 

"'(B~ 

The Lebesgue-Fatou Lemma. Let {x .. (s)} be a sequence of real-valued 
integrable functions. If there exists a real-valued integrable function 
x(s) such that x(s) :?! x .. (s) a. e. for n = 1, 2, ... (or x(s) < x .. (s) a. e. 
for n = 1, 2, ... ), then 

f(lim x,. (s)) m(ds) :?! lim f x .. (s) m(ds) 
s Il-+OO Il-+OO S 

(or [ ~ x .. (s)) m(ds) <:: [ x .. (s) m(ds») , 

2 Yoslda. Functional Analysis 
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under the convention that if ~ x" (s) (or ~ x" (s)) is not integrable, 

we understand that lim f x,,(s) m(ds) = -00 (or lim f x,,(s) m(ds) =00). 
1>-+00 S 1>-+00 S 

Definition. Let (5, ~,m) and (5', ~', m') be two measure spaces. We 
denote by ~ X ~' the smallest a-ring of subsets of 5 X 5' which contains 
all the sets of the form B X B', where B E ~, B' E ~'. It is proved that 
there exists a uniquely determined a-finite, a-additive and non-negative 
measure m X m' defined on ~ X~' such that 

(mxm') (BXB') = m(B) m'(B'). 

mxm' is called the product measure of m and m'. We may define the 
~x~'-measurable functions x(s, s') defined on SxS', and the mXm'­
integrable functions x(s, s'). The value of the integral over SxS' of an 
mxm'-integrable function x(s, s') will be denoted by 

f f x(s, s') (mXm') (ds ds') or f f x(s, s') m(ds) m' (ds'). 
SxS' SxS' 

The Fubini-Tonelli Theorem. A ~ X ~'-measurable function x(s, s') is 
m x·m' -integrable over 5 X 5' iff at least one of the iterated integrals 

f f f Ix(s, s')1 m(ds)}m'(ds') and f{f Ix(s, s')1 m'(ds')}m(ds) 
S' \s S s' 

is finite; and in such a case we have 

f f x (s, s') m (ds) m' (ds') = f {! x (s, s') m (ds) 1 m' (ds') 
Sxs' S' J 

= f {f x (s, s') m' (ds')} m (ds). 
s s' 

Topological Measures 

Definition. Let 5 be a locally compact space, e.g., an n·-dimensional 
Euclidean space R" or a closed subset of R". The Baire subsets of 5 are 
the members of the smallest a-ring of subsets of 5 which contains every 
compact Goset, i.e., every compact set of 5 which is the intersection of 
a countable number of open sets of S. The Borel subsets of 5 are the 
members of the smallest a-ring of subsets of 5 which contains every 
compact set of S. 

If 5 is a closed subset of a Euclidean space R", the Baire and the Borel 
subsets of 5 coincide, because in R" every compact (closed bounded) 
set is a G,,-set. If, in particular,S is a real line Rl or a closed interval on 
Rl, the Baire (= Borel) subsets of 5 may also be defined as the members 
of the smallset a-ring of subsets of 5 which contains half open intervals 
(a, b]. 

Definition. Let 5 be a locally compact space. Then a non-negative Baire 
(Borel) measure on 5 is a a-additive measure defined for every Baire 
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(Borel) subset of 5 such that the measure of every compact set is finite. 
The Borel measure m is called regular if for each Borel set B we have 

m(B) = inf m(U) 
U~B 

where the infimum is taken over all open sets U containing B. We may 
also define the regularity for Baire measures in a similar way, but it 
turns out that a Baire measure is always regular. It is also proved that 
each Baire measure has a uniquely determined extension to a regular 
Borel measure. Thus we shall discuss only Baire measures. 

Definition. A complex-valued function f(s) defined on a locally 
compact space 5 is a Baire function on 5 if f-1 (B) is a Baire set of 5 for 
every Baire set B in the complex plane CI. Every continuous function 
is a Baire function if 5 is a countable union of compact sets. A Baire 
function is measurable with respect to the a-ring of all Baire sets of S. 

The Lebesgue Measure 

Definition. Suppose 5 is the real line RI or a closed interval of RI. 
Let F (x) be a monotone non-decreasing function on 5 which is continuous 
from the right: F(x) = infF(y). Define a function m on half closed 

s<,. 
intervals (a, b] by m«(a, bJ) = F(b) - F(a). This m has a uniquely deter­
mined extension to a non-negative Baire measure on S. The extended 
measure m is finite, i.e., m(S) < 00 iff F is bounded. If m is the Baire 
measure induced by the function F(s) = s, then m is called the Lebesgue 
measure. The Lebesgue measure in R" is obtained from the n-tuple of the 
one-dimensional Lebesgue measures through the process of forming the 
product measure. 

Concerning the Lebesgue measure and the corresponding Lebesgue 
integral, we have the following two important theorems: 

Theorem 1. Let M be a Baire set in R" whose Lebesgue measure 1 M 1 

is finite. Then, if we denote by B e C the symmetric difference of the 
set Band C: B e C = B V C - B f\ C, we have 

lim I(M + h) e MI = 0, where M + h = {xER"; x=m + h,mEM}. 
1111--+0 

Here m + h = (~ + hl> ... , m" + h,.) for m = (~, ... , m,.), h = 

(hI> ... , h,,) and Ih 1 = G~ hit2 . 

Theorem 2. Let G be an open set of R". For any Lebesgue integrable 
function f(x) in G and B > 0, there exists a continuous function C.(x) in 
G such that {XE G; C.(x) =1= O}/I is a compact subset of G and 

! I/(x) - C.(x) 1 dx < B. 

2* 
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Remark. Let m be a Baire measure on a locally compact space S. 
A subset Z of S is called a set of m-measure zero if, for each 8 > 0, there 
is a Baire set B containing Z with m (B) < 8. One can extend m to the 
class of m-measurable sets, such a set being one which differs from a 
Baire set by a set of m-measure zero. Any property pertaining to a 
set of m-measure zero is said to hold m-almost everywhere (m-a. e.). 
One can also extend integrability to a function which coincides m-a. e. 
with a Baire function. 

4. Linear Spaces 

Linear Spaces 

Definition. A set X is called a linear space over a field K if the 
following conditions are satisfied: 

X is an abelian group (written additively), 
A scalar multiplication is defined: to every element 
x E X and each l¥ E K there is associated an element of 
X, denoted by l¥X, such that we have 

l¥(X+Y)=l¥X+l¥Y (l¥EK;x,yEX), 

(l¥ + P) X = l¥X + px (l¥,PE K; xE X), 

(IXP) x = IX (px) (IX, PE K; xE X), 

1 . x = x (1 is the unit element of the field K) . 

(1) 

(2) 

In the sequel we consider linear spaces only over the real number 
field RI or the complex number field CI. A linear space will be said to be 
real or complex according as the field K of coefficients is the real number 
field RI or the complex number field CI. Thus, in what follows, we mean 
by a linear space a real or complex linear space. We shall denote by 
Greek letters the elements of the field of coefficients and by Roman 
letters the elements of X. The zero of X (= the unit element of the 
additively written abelian group X) and the number zero will be denoted 
by the same letter 0, since it does not cause inconvenience as 0 . x = 
(IX - IX) X = IX X - IX X = O. The inverse element of the additively written 
abelian group X will be denoted by-x; it is easy to see that -x = (-l)x. 

Definition. The elements of a linear space X are called vectors (of X). 
The vectors Xl> X2, ••• , x" of X are said to be linearly independent if the 

" equation . .I l¥j Xj = 0 implies IXI = ~ = ... = O. They are linearly 
,~1 

dependent if such an equation holds where at least one coefficient is 
different from O. If X contains n linearly independent vectors, but every 
system of (n + 1) vectors is linearly dependent, then X is said to be of 
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n-dimension. If the number of linearly independent vectors is not finite, 
then X is said to be of infinite dimension. Any set of n linearly indepen­
dent vectors in an n-dimensional linear space constitutes a basis for X 

" and each vector x of X has a unique representation of the form x = ,I (Xj Yj 
3=1 

in terms of the basis Yl> Y2, ... , y". A subset M of a linear space X is 
called a linear subspace or, in short, a subspace, if whenever x, Y E M, 
the linear combinations (Xx + (Jy also belong to M. M is thus a linear 
space over the same coefficient field as X. 

Linear Operators and Linear Functionals 

Definition. Let X, Y be linear spaces over the same coefficient field 
K. A mapping T: x-+ Y = T(x) = Tx defined on a linear subspace D 
of X and taking values in Y is said to be linear, if 

T((xx1 + {Jxz} = (X (Tx1) + (J(Tx,J. 

The definition implies, in particular, 

T·O=O, T(-x)=-(Tx). 
We denote 

D =D(T), rYE Y;y= Tx,XED(T)} =R(T),{xED(T);Tx= O}=N(T) 

and call them the domain, the range and the null space of T, respectively. 
T is called a linear operator or linear transformation on D (T) ~ X into 
Y, or somewhat vaguely, a linear operator from X into Y. If the range 
R (T) is contained in the scalar field K, then T is called a linear functional 
on D(T). If a linear operator T gives a one-to-one map of D(T) onto 
R (T), then the inverse map T-l gives a linear operator on R (T) onto 
D(T): 

T-l T x = x for xED (T) and T T-l y = y for y E R (T) . 

T-I is the inverse operator or, in short, the inverse of T. By virtue of 
T (Xl - xa) = T Xl - T xa, we have the following. 

Proposition. A linear operator T admits the inverse T-I iff T x = 0, 
implies x = O. 

Definition. Let Tl and Ta be linear operators with domains D (TI ) 

and D(Ta) both contained in a linear space X, and ranges R(T1) and 
R(Tz) both contained in a linear space Y. Then Tl = Ts iff D(T1) = 
D(Tz) and T 1 x = Tax for all x E D(T1) = D(Ta). If D(T1) ~ D(Ta) and 
T1x = Tax for all x E D(TI ), then Tz is called an extension of Tv and Tl 
a restriction of T z; we shall then write Tl ~ Ta. 

Convention. The value T (x) of a linear functional T at a point 
xED(T) will sometimes be denoted by (x, T), i.e. 

T(x) = <x, T). 
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Factor Spaces 

Proposition. Let M be a linear subspace in a linear space X. We say 
that two vectors Xl' XI E X are equivalent modulo M if (Xl - xz) E M and 
write this fact symbolically by Xl = Xz (mod M). Then we have: 

(i) x= X (modM), 

(ii) if Xl = Xz (mod M), then XI = Xl (mod M) , 

(iii) if Xl = Xz (mod M) and Xz = X3 (mod M), then Xl = X3 (mod M) . 

Proof. (i) is clear since X - X = 0 EM. (ii) If (Xl - xz) E M, then 
(xz - Xl) = - (Xl - xz) E M. (iii) If (Xl - XI) E M and (xz - x3) E M, 
then (Xl - x3) = (Xl - XI) + (XI - x3) E M. 

We shall denote the set of all vectors E X equivalent modulo M to a 
fixed vector X by E". Then, in virtue of properties (ii) and (iii), all vectors in 
E" are mutually equivalent modulo M. E" is called a class of equivalent 
(modulo M) vectors, and each vector in E" is called a representative of the 
class E". Thus a class is completely determined by anyone of its repre­
sentatives, that is, Y E E" implies that E, = E". Hence, two classes E", E, 
are either disjoint (when Y E E,,) or coincide (when Y E E,,). Thus the entire 
space X decomposes into classes E" of mutually equivalent (modulo M) 
vectors. 

Theorem. We can consider the above introduced classes (modulo M) 
as vectors in a new linear space where the operation of addition of classes 
and the multiplication of a class by a scalar will be defined through 

E" + E, = E"+,, IXE" = E..,.. 

Proof. The above definitions do not depend upon the choice of repre­
sentatives x, Y of the classes E", E, respectively. In fact, if (Xl - X) E M, 
(Yl - y) E M, then 

(Xl + Yl) - (X + y) = (Xl - X) + (Yl - y) EM, 

(IXXl -IXX) = IX (Xl - X) EM. 

We have thus proved E"l+'l = E,,+y and E""l = E..,., and the above defini­
tions of the class addition and the scalar multiplication of the classes are 
justified. 

Definition. The linear space obtained in this way is called the factor 
space of X modulo M and is denoted by X/M. 
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I. Semi-norms 

The semi-norm of a vector in a linear space gives a kind of length for 
the vector. To introduce a topology in a linear space of infinite dimension 
suitable for applications to classical and modern analysis, it is sometimes 
necessary to make use of a system of an infinite number of semi-norms. 
It is one of the merits of the Bourbaki group that they stressed the 
importance, in functional analysis, of locally convex spaces which are 
defined through a system of semi-nonns satisfying the axiom of separa­
tion. If the system reduces to a single semi-nonn, the correspond­
ing linear space is called a normed linear space. If, furlhennore, the 
space is complete with respect to the topology defined by this semi­
nonn, it is called a Banach space. The notion of complete nonned linear 
spaces was introduced around 1922 by S. BANACH and N. WIENER inde­
pendently of each other. A modification of the nonn, the quasi-norm in 
the present book, was introduced by M. FRECHET. A particular kind of 
limit, the inductive limit, of locally convex spaces is suitable for discussing 
the generalized functions or the distributions introduced by L. SCHWARTZ, 
as a systematic development of S. L. SOBOLEV'S generalization of the 
notion of functions. 

1. Semi-norms and Locally Convex Linear Topological Spaces 

As was stated in the above introduction, the notion of semi-nonn is of 
fundamental importance in discussing linear topological spaces. We shall 
begin with the definition of the semi-nonn. 

Definition 1. A real-valued function p (x) defined on a linear space X 
is called a semi-norm on X, if the following conditions are satisfied: 

p (x + y) < P (x) + P (y) (subadditivity), 

P(!Xx) = I!XI P(x). 

(1) 

(2) 

Example 1. The n-dimensional Euclidean space R!' of points x = 
(Xl' ... , x,,) with coordinates Xl' X2, ... , X" is an n-dimensional linear 
space by the operations: 

X + y = (Xl + Yl> X2 + Y2, ... , X" + Y,,), 
!XX = (!xXI> !XX2, ... , !Xx,,). 

In this case p (x) = max I Xi I is a semi-nonn. As will be proved later, 

P(x) = G.!1IXilqtq ~~:;:2:: 1 is also a semi-nonn on R!'. 

Proposition 1. A semi-nonn p (x) satisfies 

P(O) = 0, (3) 

P (Xl - X2) :2:: I P (Xl) - P (X2) I, in particular, p (x) :2:: O. (4) 
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Proof. P (0) = P (0 . x) = 0 . P (x) = O. We have, by the subadditivity, 
P (Xl - xz) + P (xz) > P (Xl) and hence P (Xl - Xz) > P (Xl) - P (xz). Thus 
P(xI-XZ) = 1-11, P(XZ-xI) > P(xz) -P(XI) and so we obtain (4). 

Proposition 2. Let P (x) be a semi-norm on X, and c any positive 
number. Then the set M = {XE X; P(x) < c} enjoys the properties: 

M30, (5) 

M is convex: x, yE M and 0 < ~ < 1 implies 

~x + (1-~) yE M, (6) 

M is balanced (equilibre in Bourbaki's terminology): 

xE M and I~I < 1 imply ~xE M, (7) 

M is absorbing: for any X E X, there exists ~ > 0 

such that ~-1 X EM, (8) 

P (x) = inf ~c (inf = infimum = the greatest lower 
It>O,(X-l%EM 

bound). (9) 

Proof. (5) is clear from (3). (7) and (8) are proved by (2). (6) is proved 
by the subadditivity (1) and (2). (9) is proved by observing the equi­
valence of the three propositions below: 

[~-lxE M]~ [P(~-lX) < c]~ [P(x) < ~c]. 

Definition 2. The functional 

PM (X) = inf ~ (9') 
",>o,,.-' .. EM 

is called the Minkowski functional of the convex, balanced and absorbing 
set M of X. 

Proposition 3. Let a family {P" (x) ; 'Y E r} of semi-norms of a linear 
space X satisfy the axiom of separation: 

For any Xo =I=- 0, there exists p", (x) in the family such 
that p", (xo) =I=- O. 

(10) 

Take any finite system of semi-norms of the family, say p", (x), p", (x), ... , 
••. , P"n (x) and any system of n positive numbers 81> 82, .•. ,8,., and set 

u = {XE X; P"j(X) :s;: 8j (i = 1,2, ... , n)}. (11) 

U is a convex, balanced and absorbing set. Consider such a set U as a 
neighbourhood of the vector 0 of X, and define a neighbourhood of any 
vector Xo by the set of the form 

Xo + U = {yE X; y = Xo + u, uE U}. (12) 
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Consider a subset G of X which contains a neighbourhood of each of its 
point. Then the totality {G} of such subsets G satisfies the axiom of open 
sets, given in Chapter 0, Preliminaries, 2. 

Proof. We first show that the set Go of the form Go = {x EX; p" (x) < c} 
is open. For, let Xo E Go and p" (xo) = (J < c. Then the neighbourhood 
of xo,xo+ U where U={xEX;P,,(x) < 2-1 (c-{J)}, is contained in Go. 
because u E U implies P,,(xo + u) < P,,(xo) + P,,(u) < {J + (c - (J) = c. 

Hence, for any point Xo E X, there is an open set Xo + Go which con­
tains xo' It is clear, by the above definition of open sets, that the union 
of open sets and the intersection of a finite number of open sets are also 
open. 

Therefore we have only to prove Hausdorff's axiom of separation: 
If Xl =1= x2 , then there exist disjoint open sets Gl and G2 such that 

(13} 

In view of definition (12) of the neighbourhood of a general point xo. 
it will be sufficient to prove (13) for the case Xl = 0, x2 =1= O. We choose, 
by (10), P".(x) such that P".(X2) = lX > O. Then Gl = {xE X; P".(x) < lX/2} 
is open, as proved above. Surely Gl :7 0 = XI' We have to show that G1 

and G2 = x2 + GI have no point in common. Assume the contrary and 
let there exist ayE Gl (\ G2• Y E G2 implies y = x2 + g = x2 - (-g) with 
some g E Gl and so, by (4), p", (y) > p", (X2) - P (-g) > lX - 2- l lX = lX/2, 
because -g belongs to GI with g. This contradicts the inequality 
P". (y) < lX/2 implied by y E Gl · 

Proposition 4. By the above definition of open sets, X is a linear 
topological space, that is, X is a linear space and at the same time a 
topological space such that the two mappings XXX --+ X: (x, y) --+ X + y 
and KxX --+ X: (lX, x) --+ lXX are both continuous. Moreover, each semi­
norm P,,(x) is a continuous function on X. 

Proof. For any neighbourhood U of 0, there exists a neighbourhood 
Vof 0 such that 

V + V = {w EX; w = VI + v2 where vI> v2 E V} ~ U, 

since the semi-norm is subadditive. Hence, by writing 

(x + y) - (xo + Yo) = (x - xo) + (y - Yo) , 

we see that the mapping (x, y) --+ x + y is continuous at x = xo' y = Yo' 
For any neighbourhood U of 0 and any scalar lX =1= 0, the set lX U = 
{x EX; x = lXU, U E U} is also a neighbourhood of O. Thus, by writing 

lXX - lXoxo = lX (x - xo) + (lX - lXo) xo. 

we see by (2) that (lX, x) --+ lXX is continuous at lX = lXo, x = xo' 
The continuity of the semi-norm p" (x) at the point x = Xo is proved 

by Ip,,(x) - P,,(xo) I :-:;: P,,(x - xo)· 
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Definition 3. A linear topological space X is called a locally convex, 
linear topological space, or, in short, a locally convex space, if any of its 
open sets :1 0 contains a convex, balanced ,and absorbing open set. 

Proposition 5. The Minkowski functional PM(X) of the convex, ba­
lanced and absorbing subset M of a linear space X is a semi-norm on X. 

Proof. By the convexity of M, the inclusions 

X/(PM(X) + e) E M, Y/(PM(Y) + e) E M for any e> 0 
imply 

PM(X) + e x PM(Y) + e Y M 
PM(X) + PM(Y) + 2e· PM(X) + e + PH (X) + PM(Y) + 2e· PM(Y) + e E 

and so PM (X + y) < PM (X) + PM(Y) + 2e. Since e> 0 was arbitrary, 
we obtain the subadditivity of PM(X). Similarly we obtain PM (ex x) = 
I ex I PM (x) since M is balanced. 

We have thus proved 
Theorem. A linear space X, topologized as above by a family of semi­

norms Py(x) satisfying the axiom of separation (10), is a locally convex 
space in which each semi-norm Py (x) is continuous. Conversely, any 
locally convex space is nothing but the linear topological space, topolo­
gized as above through the family of semi-norms obtained as the Min­
kowski functionals of convex balanced and absorbing open sets of X. 

Definition 4. Let I (x) be a complex-valued function defined in an open 
set.o of R". By the support (or carrier) of I, denoted by supp(/), we mean 
the smallest closed set (of the topological space.o) containing the set 
{x E.o; I (x) =F O}. It may equivalently be defined as the smallest closed 
set of.o outside which I vanishes identically. 

Definition 5. By ek (.0),0 < k < 00, we denote the set of all complex­
valued functions defined in.o which have continuous partial derivatives 
of order up to and including k (of order < 00 if k = 00). By e~(.o), we 
denote the set of all functions E ek (.0) with compact support, i.e., those 
functions E ek(.o) whose supports are compact subsets of.o. A classical 
example of a function E ego (Rn) is given by 

I(x) = exp((lx 12 _1)-1) for Ix I = I (Xl> ••• , Xn) I = G~ xjY'Z < 1, (14) 

= 0 for I x I > 1. 

The Space ~(.o) 
ek (.0) is a linear space by 

(/1 + 12) (x) = 11 (x) + 12(X), (ex/) (x) = exl(x). 

For any compact subset K of.o and any non-negative integer m < k 
(m < 00 when k = 00), we define the semi-norm 

h,m (/) = sup I DS I (x) /' lEek (.0). 
Isl~m."'EK 
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where sup = supremum = the least upper bound and 

.. 
151 = 1(51.52, •• • ,5 .. )1 = . .I Sj. 

,=1 

Then e" (D) is a locally convex space by the family of these semi-norms. 
We denote this locally convex space by ~(D). The convergence 
lim I" = I in this space ~"(D} is exactly the uniform convergence 

II-co 

lim D'/" {x} = D'/(x} on every compact subset K of D, for each 5 
"'-+CO 
with 151 ;;:;; k (151 < 00 if k = oo). We often write ~(D) for ~oo (D) • 

Proposition 6. ~ (D) is a metric space. 
Proof. Let Kl ~ K2 ~ ... ~ K .. ~ . .. be a monotone increasing 

00 

sequence of compact subsets of D such that D = UK,.. Define, for 
,.=1 

each positive integer h, the distance 

" d" (I, g) = m~o 2-m PKA,m V - g) . (1 + PK",m V - g»-I. 

Then the convergence lim I, = I in <i" (D) is defined by the distance 
,->00 

00 

d V, g) = .I ~" d" V, g) . (1 + d" V, g»-I. 
"=1 

We have to show that d"V, g) and d(/, g) satisfy the triangle inequality. 
The triangle inequality for d" V, g} is proved as follows: by the sub­

. additivity of the semi-norm PKII.,'" (I), we easily see that d" (I, g) = 
satisfies the triangle inequality d"V, g) ~ d"V, k) + d,,(k, g), if we can 
prove the inequality 

II¥ - PI· (1 + II¥ - P 1)-1 < II¥ - y I (1 + II¥ - Y 1)-1 

+ ly-PI(1 + ly-PI)-1 
for complex numbers I¥, P and y; the last inequality is clear from the in­
equality valid for any system of non-negative numbers IX, P and y: 

(I¥ + P) (1 + I¥ + p)-1 < I¥ (1 + 1¥)-1 + P{1 + p)-l. 

The triangle inequality for dV, g) may be proved similarly. 
Definition 6. Let X be a linear space. Let a family {X",} of linear 

subspaces X", of X be such that X is the union of X", ·s. Suppose that each 
X", is a locally convex linear topological space such that, if X"" ~ X",.' 
then the topology of X"" is identical with the relative topology of X"" 
as a subset of X .... We shall call "open" every convex balanced and 
absorbing set U of X iff the intersection U f\ X", is an open set of X", 
containing the zero vector 0 of X"" for all X",. If X is a locally convex 
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linear topological space whose topology is defined in the stated way, 
then X is called the (strict) inductive limit of X",'s. 

Remark. Take, from each X"" a convex balanced neighbourhood U", 
of 0 of Xc<' Then the convex closure U of the union V = U U"" i.e., 

'" 
U = {u E X; u = . .i{JjVj, vjE V,{Jj"?:. 0 (i= 1,2, .. . ,n),.1 {Jj = 1 

J=1 J=1 

with arbitrary finite n} 
surely satisfies the condition that it is convex balanced and absorbing in 
such a way that U (\ X",is a convex balanced neighbourhood of 0 of X"" 
for all X",. The set of all such U's corresponding to an arbitrary choice of 
U,;s is a lundamental system 0/ neighbourhoods of 0 of the (strict) inductive 
limit X of X: s, i.e., every neighbourhood of 0 of the (strict) inductive 
limit X of X: s contains one of the U's obtained above. This fact justifies 
the above definition of the (strict) inductive limit. 

The Space ~ (.0) 

Cgo (Q) is a linear space by 

(11 + 12) (x) = 11 (x) + 12 (x), (.x I) (x) = .x I (x) . 

For any compact subset K of Q, let ~K(Q) be the set of all functions 
/ E CO' (Q) such that supp (I) ~ K. Define a family of semi-norms on 
~K(Q) by 

PK.m(l) = sup IDSI(x) I, where m < 00. 
Isl:;om.%EK 

'llK(Q) is a locally convex linear topological space, and, if Kl ~ K z, 
then it follows that the topology of 'llK. (Q) is identical with the relative 
topology of 'llK. (Q) as a subset of ~K. (Q). Then the (strict) inductive 
limit of 'llK(Q)'S, where K ranges over all compact subsets of Q, is a 
locally convex, linear topological space. Topologized in this way, CO' (Q} 
will be denoted by 'll (Q). It is to be remarked that, 

p(I) = sup I/(x) I 
"ED 

is one of the semi-norms which defines the topology of 'l) (Q). For, if we 
set U = {t E CO' (Q) ; P (I) < I}, then the intersection U (\ ~K (Q) is given 
by UK = {IE 'l)K(Q); PK(I) = sup I/(x) I < I}. 

"EK 
Proposition 7. The convergence lim I" = 0 in 'l) (Q) means that the 

~ 

following two conditions are satisfied: (i) there exists a compact subset 
K of Q such that supp (h.) ~ K (h = 1, 2, ... ), and (ii) for any differential 
operator DS, the sequence {DSI,,(x)} converges to 0 uniformly on K. 
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Proof. We have only to prove (i). Assume the contrary, and let there 
exist a sequence {x(kl} of points E Q having no accumulation points in 
lJ and a subsequence {till (x)} of {III (x)} such that 1111 (x(j)) =1= O. Then the 
semi-norm 

00 

p(l) = .I 2 sup II (X)/llIk(X(k)) I, where the mono-
11=1 "EKk-Kk_l 

tone increasing sequence of compact subsets K j of 
00 

Q satisfies U K j = Q and X(k) E Kk - K k- 1 
j=1 

(k = 1, 2, ... ), Ko = 0 

defines a neighbourhood U = {I E Co (Q) ; P (I) < I} of 0 of 'l) (Q). 
However, none of the lilk'S is contained in U. 

Corollary. The convergence lim III = I in 'l) (Q) means that the 
~ 

following two conditions are satisfied: (i) there exists a compact subset 
K ofQ such that supp(liI) ~ K (h = I, 2, ... ), and (ii) for any differential 
operator DS, the sequence DS III (x) converges to DS I (x) uniformly on K. 

Proposition 8 (A theorem of approximation). Any continuous function 
f E cg (Rn) can be approximated by functions of Co (Rn) uniformly on R". 

Proof. Let ()l (x) be the function introduced in (14) and put 

()a (x) = h";;l ()l (x/a), where a > 0 and ha > 0 are such that 

f ()a(x) dx = 1. (15) 
R" 

We then define the regularization la of I: 

la(x) = f I(x - y) ()a(Y) dy = f I(y) ()a(x - y) dy, where 
(16) 

The integral is convergent since I and ()" have compact support. Moreover, 
since 

la(x) = J I(y) ()a(x-y) dy, 
supp(f) 

the support of la may be taken to be contained in any neighbourhood of 
the supp(l) if we take a> 0 sufficiently small. Next, by differentiating 
under the integral sign, we have 

D'la(x) = D!la(x) = J I(y) D! ()a(x - y) dy, (17) 
R" 
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and so I,. is in Cgo(R"). Finally we have by J O,.(i - y) dy = 1, 
RIO 

I I,. (x) -/(x) I =:;: J I/(y) -/(x)1 0,. (x - y) dy 
R" 

< J 1/(y) -/(x)1 0,. (x - y) dy 
If(Yl-f(sll :;;-

+ J I/(y) -/(x)1 0,. (x - y) dy. 
If(yl-f(sll >-

The first term on the right is < e; and the second term on the right 
equals 0 for sufficiently small a > 0, because, by the uniform continuity 
of the function I with compact support, there exists an a> 0 such that 
1/(y) -/(x)1 > e implies Iy-x! > a. We have thus proved our Pro­
position. 

2. Norms and guasi-norms 

Definition 1. A locally convex space is called a normed linear space, 
if its topology is defined by just One semi-norm. 

Thus a linear space X is called a normed linear space, if for every 
x EX, there is associated a real number II x II, the norm of the vector x, 
such that 

IIxll;;:::: 0 and Ilxll = 0 iff x = 0, (1) 

Ilx + yll < IIxll + lIyll (triangle inequality), (2) 

IIlXxll = IlXl·llxll· (3) 

The topology of a normed linear space X is thus defined by the distance 

d(x,y) = Ilx-yli. 
In fact, d(x, y) satisfies the axiom 01 distance: 

d(x, y) ;;:::: 0 and d(x, y) = 0 iff x = y, 

d (x, y) < d (x, z) + d (z, y) (triangle inequality). 

d(x, y) = d(y, x). 

(4) 

For, d(x, y) = IIx - yll = Ily -xii = d(y, x) and d(x, y) = Ilx - yll = 
Ilx -z + z- yll < Ilx- zll + Ilz- yll = d(x, z) + d(z, y) by (1), (2), 
(3) and (4). 

The convergence lim d (x", x) = 0 in a normed linear space X will be 
n-+OO 

denoted by s-lim x" = x or simply by x .. -+ x, and we say that the se-
n-+OO 

quence {x .. } converges strongly to x. The adjective "strong" is introduced 
to distinguish it from the "weak" convergence to be introduced later. 
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Proposition 1. In a normed linear space X, we have 

lim Ilx,,11 = Ilxll if s-lim x" = x, (5) 
-co -co 

s-lim IX" x" = IXX if lim IX" = IX and s-lim x" = x, (6) 
-co -co -co 

s-lim (x" + y,,) = x + Y if s-lim x" = x and s-lim y" = y. (7) 
-co -co -co . 

Proof. (5), (6) and (7) are already proved, since X is a locally convex 
space topologized by just one semi-norm p (x) = II x II. However, we shall 
give a direct proof as follows. As a semi-norm, we have 

Ilx-yll > Illxll-llylll (8) 

and hence (5) is clear. (7) is proved by II(x + y) - (x" + y,,)!1 = 
II(x-x,,) + (y-y,,)11 < Ilx-x,,11 + lIy-y"lI· From IllXx-lX"x,,1I ~ 
IIlXx-lX"xll + IIIX"X-IX"X,,11 < 11X-1X,,1·lIxll + 11X,,1·lIx-x,,1I and 
the boundedness of the sequence {IX,,} we obtain (6). 

Definition 2. A linear space X is called a quasi-normed linear space, 
if, for every x E X, there is associated a real number II x I!, the quasi-norm 
of the vector x, which satisfies (1), (2) and 

II-xII = IIxll, ~ II IX" X Ii = 0 and II"'~~ Ii IX x" II = O. (3') 

Proposition 2. In a quasi-normed linear space X, we have (5), (6) 
and (7). 

Proof. We need only prove (6). The proof in the preceding Propo­
sition shows that we have to prove 

lim Ilx" II = 0 implies that lim IllXx" II = 0 uniformly 
-co -co 

in IX on any bounded set of IX. 
(9) 

The following proof of (9) is due to S. KAKUTANI (unpublished). Consider 
the functional p" (IX) = !I IX x" II defined on the linear space RI of real 
numbers normed by the absolute value. By the triangle inequality of 
P,,(IX) and (3'), P,,(IX) is continuous on RI. Hence, from lim P,,(IX) = 0 

-co 
implied by (3') and Egorov's theorem (Chapter 0, Preliminaries, 3. Mea-
sure Spaces), we see that there exists a Baire measurable set A on the 
real line RI with the property: 

the Lebesgue measure I A I of A is > 0 and lim p" (IX) = 0 
-co (10) 

uniformly on A . 

Since the Lebesgue measure on the real line is continuous with respect to 
translations, we have, denoting by Be C the symmetric difference 
BVC-Bf\ C, 

I (A + 0') e A 1- 0 as 0' _ O. 
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Thus there exists a positive number 0'0 such that 

10' [ :;;; 0'0 implies I (A + 0') e A I < [A 1/2, in particular, ! (A + 0') {\ A I > O. 

Hence, for any real number 0' with 10'1 < 0'0' there is a representation 

0' = £x - £x' with £x E A, £x' EA. 

Therefore, by P .. (0') = P .. (£x -£x') < P .. (£x) + P .. (£x'), we see that 

lim P .. (0') = 0 uniformly in 0' when 10'1 < 0'0' 
n->OO 

Let M be any positive number. Then, taking a positive integer k > M/ao 
and remembering P .. (kO') < kp .. (O'), we see that (9) is true for I£x[ < M. 

Remark. The above proof may naturally be modified so as to apply 
to complex quasi-normed linear spaces X as well. 

Asin the case of normed linear spaces, the convergence lim Ilx-x .. l[ =0 
n->OO 

in a quasi-normed linear space will be denoted by s-lim x,. = x, or 
n->OO 

simply by x,. ---+ x; we shall then say that the sequence {x .. } converges 
strongly to x. 

Example. Let the topology of a locally convex space X be defined by a 
countable number of semi-norms P .. (x) (n = 1, 2, ... ). Then X is a 
quasi-normed linear space by the quasi-norm 

For, the convergence lim P .. (Xh) = 0 (n = 1, 2, ... ) is equivalent to 
h->oo 

s-lim Xh = 0 with respect to the quasi-norm [I x [I above. 
h~ 

3. Examples of Normed Linear Spaces 

Example 1. C (S). Let S be a topological space. Consider the set C (S) 
of all real-valued (or complex-valued), bounded continuous functions 
x(s) defined on S. C(S) is a normed linear space by 

(x + y) (s) = x(s) + y(s), (£xx) (s) = £xx(s), [[x [[ = sup Ix(s)1 . 
sES 

In C (S), s-lim x" = x means the uniform convergence of the functionsx .. (s) 
n->OO 

to x (s). 

Example 2. U(S, ~,m), or, in short, LP(S) (1 < P < 00). Let U(S) 
be the set of all real-valued (or complex-valued) ~-measurable functions 
x(s) defined m-a. e. on S such that [x (s) [P is m-integrable over S. LP (S) is 
a linear space by 

(x + y) (s) = x(s) + y(s), (£xx) (s) = £xx(s). 
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For, (x(s) + y(s» belongs to Li'(S) ifx(s) and yes) both belong to U(S), 
as may be seen from the inequality Ix(s) + y~s)IP::;: 2I'(lx(s)JP+ ly(s)lp). 
We define the norm in LP (5) by 

IIxll = (! Ix(s)JP m(ds)tp • (1) 

The subadditivity 

(! Ix(s) + y(s)JP m(ds)tp ::;: (! Ix(s)JP m(ds)tp 

+ (! IY(s)iP m(ds)tp , 
(2) 

called Minkowski's inequality, is clear for the case p = 1. To prove the 
general case 1 < p < CXl, we need 

Lemma 1. Let 1 < p < CXl and let the coniugate exponent p' of p be 
defined by 1 1 

P + p' = 1. (3) 

Then, for any pair of non-negative numbers a and b, we have 

aP bP' 
ab::;: p + "jT' (4) 

where the equality is satisfied iff a = b-1/(P-1) • 

Proof. The minimum of the function I(c) = ~ + ;, -c for c > 0 

is attained only at c = 1, and the minimum value is O. By taking 
c = ab-1/(P-l) we see that the Lemma is true. 

The prool 01 (2). We first prove Holder's inequality 

J Ix(s) y(s)1 < (J Ix(s)JPylP. (Jly(s)lp')I/p' (5) 

(for convenience, we write J z(s) for! z(s) m(ds»). 

To this end, we assume that A = (J Ix(s)JPYIP and B = (J ly(s)JP')I/p' 
are both =F 0, since otherwise xes) yes) = 0 a.e. and so (5) would be true. 
Now, by taking a = Ix(s)I/A and b = ly(s)I/Bin (4) and integrating, we 
obtain I I .1' .1" .> 

J x(s) y(s) ........ ..!.~ +..!. ~ _ 1 hi h' Ii- (5) 
A B == P AI' P' Bp' - w c Imp es . 

Next, by (5), we have 

flx(s) + y(s)JP < J Ix(s) + y(S)lp-I 'lx(s)1 

+ J Ix(s) + y(s)lp-l ·ly(s)1 

< (J Ix(s) + y(s)IP'<P-1»)1/p' (J Ix(sW)1/p 

+ (J (I x (s) + y(s) 11"(.1'-1»)1/.1" (J (IY(S)JP)l/p), 

which proves (2) by p' (P - 1) = p. 
3 Y08lda. Functional Analysis 
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Remark 1. The equality sign in (2) holds iff there exists a non-negative 
constant c such that x(s) = cy(s) m-a.e. (or y(s) = cx(s) m-a.e.). This is 
implied from the fact that, by Lemma 1, the equality sign in Holder's 
inequality (5) holds iff Ix(s)l = c 'Iy(s)ll/(~-l) (or IY(s)\ = c 'lx(s)ll/~-l) 
are satisfied m-a.e. 

Remark 2. The condition Ilxll = (f Ix(s)IP)l/P = 0 is equivalent to the 
condition that x(s) = 0 m-a.e. We shall thus consider two functions of 
LP (5) as equivalent if they are equal m-a.e. By this convention, LP (5) 
becomes a normed linear space. The limit relation s-lim x,. = x in LP (5) 

n.-+oo 

is sometimes called the mean convergence 01 p-th order of the sequence of 
functions x,,(s) to the function x(s). 

Example 3. DlO (5). A 58-measurable function x(s) defined on 5 is 
said to be essentially bounded if there exists a constant IX such that 
Ix(s)1 < IX m-a.e. The infimum of such constants IX is denoted by 

vraimax Ix(s)1 or essential sup Ix(s)l. 
sES sES 

LOO(S, 58, m) or, in short, LOO(S) is the set of all 58-measurable, essentially 
bounded functions defined m-a.e. on S. It is a normed linear space by 

(x + y) (s) = x(s) + y(s), (IXX) (s) = IXX(S), Ilxll = vraimax Ix(s)l, 
sES 

under the convention that we consider two functions of LOO(S) as equi­
valent if they are equal m-a.e. 

Theorem 1. Let the total measure m (5) of 5 be finite. Then we have 

lim (flx(s)IPm(ds))l/P=vraimaxlx(s)1 for x(s)ELOO(S). (6) 
p-+oo S sES 

Proof. It is clear that (! Ix(s)IP m(ds)Y'P < m(S)l/P vrasi/fax Ix(s)! 

so that lim (f I x (s)IP)l/P < vraimax Ix(s)l. By the definition of the 
P-+OO S sES 

vrai max, there exists, for anye > 0, a set B of m-measure > 0 at each 
point of which Ix(s)1 ~ vrai max Ix(s)l- e. Hence (f I x(s)IP m(ds))l/P 

sES S 

> m(B)l/P(vraimax Ix(s)l-e). Therefore lim (J Ix (s)IPyIP > vraimax 
sES P-+OO sES 

Ix(s)l-e, and so (6) is true. 

Example 4. Let, in particular,S be a discrete topological space con­
sisting of countable points denoted by 1, 2, ... ; the term discrete 
means that each point of 5 = {1, 2, ... } is itself open in S. Then as linear 
subspaces of C ({1, 2, ... }), we define (co), (c) and (lP), 1 < P < 00. 

(co): Consider a bounded sequence of real or complex numbers {E .. }. 
Such a sequence {E .. } defines a function x(n) = E .. defined and continuous 
on the discrete space 5 = {1, 2, ... }; we shall call x = {E .. } a vector 
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with components E... The set of all vectors x = {E .. } such that 
lim E .. = 0 constitutes a normed linear space (co) by the norm 

....... 00 
IIxll = sup l,x(n) I = sup IE .. I· .. .. 

(c): The set of all vectors x = {E .. } such that finite lim E.. exist, 
1>-+00 

constitutes a normed linear space (c) by the norm IIxll = sup Ix(n)1 .. 
.. 
(lI'). 1 < P < 00: The set of all vectors x = {E .. } such that 

00 
.I IE .. II> < 00 constitutes a normed linear space (lI') by the norm 

il:
1

11 = (..! IE .. IPt'I>. As an abstract linear space. it is a linear subspace 

of C({1. 2 •..• }). It is also a special case of U(5. m. m) in which 
m({1}) = m({2}) = ... = 1. 

(lOO) = (m): As in the case of L 00 (5). we shall denote by (lOO) the 
linear space C({1.2 •... }). normed by IIxll=suplx(n)l = sup IE .. I· .. .. 
(l00) is also denoted by (m). 

The Space of Measures. Let m be a a-ring of subsets of 5. Consider 
the set A (5. m) of all real- (or complex-) valued functions tp(B) defined 
on m such that 

Itp(B)1 # 00 for every BE m. (7) 

tp ( 1 Bj) = . .x tp (Bj) for any disjoint sequence {Bj} of sets Em. (8) 
V=1 3=1 

A (5. m) will be called the space of signed (or complex) measures defined 
on (5. m). 

Lemma 2. Let tp E A (5. m) be real-valued. Then the total variation of 
tp on 5 defined by 

(9) 

is finite; here the positive variation and the negative variation of tp over 
B E m are given respectively by 

V (tp; B) = sup tp (B1) and V (tp; B) = inf tp (B1). (10) 
B,S; B - B,S;B 

Proof. Since tp(0) = O. we have V(tp; B) > 0 > ~(tp; B). Suppose 
that V (tp; 5) = 00. Then there exists a decreasing sequence {B .. } of sets 
Em such that 

V(tp; B .. ) = 00. Itp(B .. ) I >n-l. 

The proof is obtained by induction. Let us choose Bl = 5 and assume 
that the sets B2• B3 • •••• Bk have been defined so as to satisfy the above 
conditions. By the first condition with n = k, there exists a set B E m 
3* 
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such that B ~ B", Icp(B)1 > Icp(B,,)i + k. We have only to set Bk+l = B 
in the case V (cp; B) = <Xl and Bk+l = B" - B in the case V (cp; B) < <Xl. 

For, in the latter case, we must have V (cp; B" - B) = <Xl and 
Icp(B" - B)I ~ Icp(B)I-lcp(B,,)i ~ k which completes the induction. 

By the decreasing property of the sequence {B .. }, we have 
00 00 

s- n B .. = .I (S-B .. ) 
.. =1 .. =1 

= (S-B1) + (B1 -B2) + (B2-Bs) + ... + (B .. -B .. +1) + ... 
so that, by the countable additivity of cp, 

cp ( S - .. 01 B .. ) = cp (S - B1) + cp (Bl - B2) + cp (B2 - Ba) + ... 
= [cp(S) -cp(B1)J + [CP(Bl) -cp(B2)] 

+ [CP(B2) -cp(Ba)] + ... 
= cp(S) - lim cp (B .. ) = <Xl or - <Xl, 

1>->00 

which is a contradiction of (7). 
Theorem 2 (Jordan's decomposition). Let cp E A (S, 58) be real-valued. 

Then the positive variation V (cp; B), the negative variation V (cp; B) 
and the total variation V (cp; B) are countably additive on B. Moreover, 
we have the Jordan decomposition 

cp (B) = V (cp; B) + V (cp; B) for any BE 58. (11) 

Proof. Let {B .. } be a sequence of disjoint sets E 58. For any set BE 58 
00 00 00 

such that B ~ I B .. , we have cp(B) = .I cp(B f\ B .. ) < I V(cp; B .. ) 

and hence V (cp ;:! B .. ) < ,..; V (cp; B .. ). ~=: the other ha:~,1 if Cn E 58 

is a subset of B .. (n = 1, 2, ... ), then we have v(cp; .. '; B .. ) > cp(,.~ Cn) 

= .Icp(C .. ) and so v(cp; .IB .. » .I V(cp;B .. ). Hence we have pro-
.. =1 .. ~1 .. =1 

ved the countable additivity of V (cp; B) and those of .!::" (cp ; B) and of 
V(cp; B) may be proved similarly. 

To establish (11), we observe that, for every C E 58 with C <;;; B, we 
have cp(C) = cp(B) -cp(B - C) < cp(B) - V(cp; B) and so V(cp; B) ::;: 
cp(B) - V(cp; B). Similarly we obtain V(cp; B)~ cp(B) - V(cp; B). These 
inequalities together give (11). -

Theorem 3 (Hahn's decomposition). Let cp E A (S, 58) be a signed 
measure. Then there exists a set P E 58 such that 

cp(B) > 0 for every BE 58 with B <;;; P, 

cp(B) S 0 for every BE 58 with B ~ pC = S - P. 
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The decomposition 5 = P + (5 - P) is called the Hahn decomposition 
of 5 pertaining to f{!. 

Proof. For each positive integer n we choose a set B" E 58 such that 
f{!(B,,) > V(f{!; 5) - 2-". Hence by (11), we have 

V (f{!; B,,) > - 2-" and V (f{!; 5 - B,,) < 2-". (12) 

The latter inequality is obtained from V (f{! ; 5 - B,,) = V (f{!; 5) - V (f{!; B,,) 
and V(f{!; B,,) > f{!(B,,). We then put 

00 00 

P = lim B" = U n B". 
,;::::;00 k=l "=k 

00 00 00 

Then 5 - P = lim (5 - B,,) = n u (5 - B,,) ~ U (5 - B,,) for 
n-+OO k=l "=k "=k 

every k, and therefore, by the a-additivity of V (f{!; B), 

which gives V (f{!; 5 - P) = o. On the other hand, the negative variation 
V (f{!; B) is a non-positive measure and so, by (12) and similarly as above, 

which gives V (f{!; P) = O. The proof is thus completed. 
Corollary. The total variation V (f{!; 5) of a signed measure f{! is defined 

by 
V(f{!; 5) = sup If x(s) f{!(ds)I' 

suplx(s)i:>;l S 
(13) 

where x (s) ranges through 58-measurable functions defined on 5 such that 
sup I x (s) I ::;: l. 

s 

Proof. If we take x(s) = lor = - 1 according as s E P or s E 5 - P, 
then the right hand side of (13) gives V(f{!; 5). On the other hand, it is 
easy to see that 

!f x(s) f{!(ds)1 < s~p Ix(s)1 .! V(f{!; ds) = s~p Ix(s) I· V(f{!; 5) 

and hence (13) is proved. 

Example o. A (5, 58). The space A (5,58) of signed measures f{! on 58 
is a real linear space by 

(1X1 f{!1 + IXZ f{!z) (B) = 1X1 f{!1 (B) + 1X2 f{!z (B), BE 58. 

It is a normed linear space by the norm 

1If{!II=V(f{!;5)= sup Ifx(s)f{!(ds)l. 
suplz(s)i;:;;l s 

(14) 
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Example 6. The space A (5,58) of complex measures rp is a complex 
linear space by 

(/Xl rpl + /XI! rpl!) (B) = /Xl rpl (B) + /XI! rpa (B), B E 58 with complex /Xl> /X2 • 

It is a normed linear space by the norm 

Ilrpll= sup Ifx(s)rp(ds)I' 
supls!s)!:;;1 S 

(15) 

where complex-valued 58-measurable functions x (s) defined on 5 are 
taken into account. We shall call the right hand value of (15) the total 
variation of rp on 5 and denote it by V (rp; 5). 

4. Examples of guasi-normed Linear Spaces 

Example 1. (? (Q). The linear space (? (Q), introduced in Chapter I, 1, 
is a quasi-normed linear space by the quasi-norm Ilxll = d(x, 0), where 
the distance d (x, y) is as defined there. 

Example 2. M(5, 58, m). Let m(5) < 00 and let M(5, 58, m) be the 
set of all complex-valued 58-measurable functions x(s) defined on 5 and 
such that Ix(s)1 < 00 m-a.e. Then M(S, 58, m) is a quasi-normed linear 
space by the algebraic operations 

(x + y) (s) = x(s) + y(s), (/Xx) (s) = /Xx(s) 

and (under the convention that x = y iff x(s) = y(s) nt-a.e.) 

IIxll = f Ix(s)1 (1 + [x(s)j)-lm(ds). 
S 

The triangle inequality for the quasi-norm II x! I is clear from 

I<x + PI 1<x1 + IPI < 1<x1 IPI 
1 + I<x + PI :-:;; 1 + 1<x1 + 1.81 = 1 + I<x 1+ 1 + 1.81' 

The mapping {/X, x} ~ /Xx is continuous by the following 

(1) 

Proposition. The convergence s-limx" = x in M(5, 58, m) is equi-
n-+CO 

valent to the asymptotic convergence (or the convergence in measure) in 5 
of the sequence of functions {x,,(s)} to x(s): 

For any e> 0, lim m {s E 5; Ix(s} - x,,(s) [ :;::::: e} = O. (2) 
n-+CO 

Proof. Clear from the inequality 

o 0 1+-;5 m(B~) < Ilx II :-:;; m(B~) + 1 + fJ m(5-B~), B6={sE5; Ix(s)I~<5}· 

Remark. It is easy to see that the topology of M(S, 58, m) may also 
be defined by the quasi-norm 

Ilx II = inf tan-1 [e + m{s E 5; Ix(s).[ > e}]. (1') 
0>0 
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Example 3. ~ K (.0). The linear space ~ K (.0), introduced in Chapter!, 1, 
is a quasi-normed linear space by the quasi-norm IIxll = d(x, 0), where 
the distance d(x, y) is defined in Chapter 1,1. 

5. Pre-Hilbert Spaces 

Definition 1. A real or complex normed linear space X is called a 
pre-Hilbert space if its norm satisfies the condition 

(1) 

Theorem 1 (M. FRECHET-J. VON NEUMANN-P. JORDAN). We define, in 
a real pre-Hilbert space X, 

(x,y) = 4-1(lIx + ylr'-lIx-yI12). 
Then we have the properties: 

(lXX, y) = lX (x, y) (lX E Rl), 

(x + y, z) = (x, z) + (y, z) , 
(x, y) = (y, xL 
(x, x) = Ilx112. 

Proof. (5) and (6) are clear. We have, from (1) and (2), 

(x, z) + (y, z) = 4-1(llx + zl12 - Ilx - zl12 + Ily + zl12 -Ily - z 112) 

= 2-1(11~~ Y + zl12 __ II~~ y _ z112) 
=2e~Y,Z). 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

If we take y = 0, we obtain (x, z) = 2 ( ; , z) , bec.ause (0, z) = 0 by (2). 

Hence, by (7), we obtain (4). Thus we see that (3) holds for rational 
numbers lX of the form lX = m/2". In a normed linear space, IllXX + y II 
and IllXX - y II are continuous in lX. Hence, by (2), (lXX, y) is continuous in 
lX. Therefore (3) is proved for every real number lX. 

Corollary (J. VON NEUMANN-P. JORDAN). We define, in a complex 
normed linear space X satisfying (1), 

(x, y) = (x, yh + i (x, $"Yh, 
where i=V 1, (x,yh=4-1(lIx+yllll-lIx-yllll). (8) 

Then, we have (4), (6) and 

(lXX, y) = lX (x, Y) (lX Eel), (3') 

(x, y) = (y, x) (complex-conjugate number). (5') 
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Proof. X is also a real pre-Hilbert space and so (4) and (3') with real £x 

hold good. We have, by (8), (y, xh = (x, yh, (ix, iyh = (x, yh and hence 
(y, iX)1 = (-iiy, ixh = - (iy, x)1 = - (x, iyh. Therefore 

(y, x) = (y, xh + i (y, iX)1 = (x, yh - i (x, iy)} = (x, y). 
Similarly, we have 

(ix, y) = (ix, y)1 + i (ix, iY)1 = - (x, iY)1 + i (x, Y)1 = i (x, y), 

and therefore we have proved (3'). Finally we have (6), because 

(x, X)1 = IIxl12 and (x, ixh = 4-1(11 + il2 -11- i12) IIxl12 = O. 

Theorem 2. A (real or) complex linear space X is a (real or) complex 
pre-Hilbert space, if to every pair of elements x, y E X there is associated 
a (real or) complex number (x, y) satisfying (3'), (4), (5') and 

(x, x) > 0, and (x, x) = 0 iff x = O. 

Proof. For any real number £x, we have, by (3'), (4) and (5') 

(x + £x (x, y) y, X + £x (x, y) y) = IIxll2 + 2£x I (x, y)12 

+ £x2 1(x, y)12 11y112 > 0, where Ilxll = (x, X)I/2 

(9) 

so that we have l(x,y)I'-llxI121(x,y)I:!llylll<0. Hence we obtain 
Schwarz' inequality 

I (x, y) I ::;; IIx" . Ily II, 
where the equality is satisfied iff x and yare linearly dependent. 

The latter part of (10) is clear from the latter part of (9). 
We have, by (10). the triangle inequality for Ilxll: 

Ilx + YI12 = (x + y, x + y) = IIxl12 + (x, y) + (y, x) + !lyll2 

~ (1Ix!1 + Ily11)2. 

Finally, the equality (1) is verified easily. 

(10) 

Definition 2. The number (x, y) introduced above is called the scalar 
product (or inner product) of two vectors x and y of the pre-Hilbert space 
X. 

Example 1. LI(S, ~,m) is a pre-Hilbert space in which the scalar 
product is given by (x, y) = J x(s) y (s) m(ds). 

s 
Example 2. The normed linear space (ZS) is a pre-Hilbert space in 

00 

which the scalar product is given by ({~,,}, {'I'],,}) = .I ~"1i,,. 
,,=1 

Example 3. LetD be an open domain of R" and 0 < k < 00. Then the 
totality of functions lEek (Q) for which 

II/Ilk = (.L J IDj/(x)12 dX)I/2 < 00, where dx = dXldx2'" dx,. 
IJ~k {) (11) 

is the Lebesgue measure in RIO , 
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constitutes a pre-Hilbert space Ii" (D) by the scalar product 

(j, g)" = .~ f D;/(x) • Di g(x) dx. (12) 
11~"D 

Example 4. Let D be an open domain of R!' and 0 < k < 00. Then 
C~(D) is a pre-Hilbert space by the scalar product (12) and the norm (11). 
We shall denote this pre-Hilbert space by [{~(D). 

Example 1>. Let G be a bounded open domain of the complex z-plane. 
Let AI(G) be the set of all holomorphic functions I(z) defined in G and 
such that 

11/11 = ({f I/(z)12 dXdYY'2 < 00, (z = x + iy). (13) 

Then AI(G) is a pre-Hilbert space by the norm (13), the scalar product 

(j, g) = f f I(z) g (z) dx dy (14) 
G 

and the algebraic operations 

(I + g) (z) = I(z) + g(z), «(XI) (z) = (X/(z). 

Example 6. Hardy-Lebesgue class H-LI. Let H-LI be the set of 
all functions I(z) which are holomorphic in the unit disk {z; Iz I < I} 
of the complex z-plane and such that 

sup (j II (reil') 12 dO) < 00. (15) 0<r<1 0 00 
Then, if I(z) = .I e .. " is the Taylor expansion of I, 

.. -0 

12><. 1002><_ . 
F(r) =- f II (ret') 12 dO =- .I f e .. emr .. +met( .. -m)"dO 

2n 0 2n ",m=O 0 

00 
= .I le .. 12 r" 

.. -0 

is monotone increasing in r, 0 < r < 1, and bounded from above. Thus 
it is easy to see that 

[ 1 (in )]1/2 (00 )112 1\111 = sup 2 f II (rei") 12 dO =.I Ie .. 12 0<r<1 n 0 11-0 
(16) 

is a norm which satisfies condition (1). since (ZS) is a pre-Hilbert space. 
Remark. Let a sequence {e .. } E (ZS) be given, and consider 

00 00 
I (z) = I (rei") = .I e .. z" = .I e .. "" ei .. ", Iz I < 1 . 

.. =0 .. -0 

By Schwarz' inequality, we have 

I 00 I (00 )1/2 (00 )1/2 
.. ~ e .. t', ~ .. ~ le .. 12 .. ~,.2" , 
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00 

and so .I e,.z" is uniformly convergent in any disk I z I < e with 0 < e < 1. 
,.~O 

Thus I (z) is a holomorphic function in the unit disk I z I < 1 such that 
(15) holds good, that is, I(z) belongs to the class H-P. 

Therefore we have proved 

Theorem 3. The Hardy-Lebesgue class H-P is in one-to-one corre­
spondence with the pre-Hilbert space (12) as follows: 

00 

H-P:1 I(z) = .I e .. z" ++ {e .. } E (12) 
,.=0 

in such. a way that 
00 00 

I(z) = .I e .. z" ++ {en}, g(z) = .I d .. z" ++ {d .. } imply 
.. =0 n=O 

I(z) + g(z) ++ {e .. + dn}, a/(z) ++ {ae .. } and III II = (..~ le .. 12 Y'2. 
Hence, as a pre-Hilbert space, H-P is isomorphic with (12). 

6. Continuity of Linear Operators 

Proposition 1. Let X and Y be linear topological spaces over the 
same scalar field K. Then a linear operator T on D (T) ~ X into Y is 
continuous everywhere on D (T) iff it is continuous at the zero vector 
x=o. 

Proof. Clear from the linearity of the operator T and T . 0 = O. 

Theorem 1. Let X, Y be locally convex spaces, and {P}, {q} be the 
systems of semi-norms respectively defining the topologies of X and Y. 
Then a linear operator Ton D (T) ~ X into Y is continuous iff, for every 
semi-norm q E {q}, there exist a semi-norm p E {P} and a positive number 
fJ such that 

q(Tx) S;; fJP(x) for all xE D(T). (1) 

Proof. The condition is sufficient. For, by T· 0 = 0, the condition 
implies that T is continuous at the point x = 0 ED (T) and so T is con­
tinuous everywhere on D (T). 

The condition is necessary. The continuity of T at x = 0 implies that, 
for every semi-norm q E {q} and every positive number E, there exist a 
semi-norm p E {P} and a positive number Cl such that 

xED (T) and p (x) S;; Cl imply q (T x) S;; E. 

Let x be an arbitrary point of D (T), and let us take a positive number A 
such that AP (x) < Cl. Then we have p (h) < Cl, hE D (T) and so 
q(T(AX)) S;; E. Thus q(Tx) < EIA. Hence, if P(x) = 0, we can take A 
arbitrarily large and so q(Tx) = 0; and if p (x) =1= 0, we can takeA. = ClIP (x) 
and so, in any case, we have q(Tx) S;; fJp (x) with fJ = EICl. 
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Corollary 1. Let X be a locally convex space, and f a linear functional 
on D if) ~ X. Then f is continuous iff there exist a semi-norm p from the 
system {P} of semi-norms defining the topology of X and a positive 
number (J such that 

If(x)1 < (JP(x) forallxED(f). (2) 

Proof. For, the absolute value IlX I itself constitutes a system of semi­
norms defining the topology of the real or complex number field. 

Corollary 2. Let X, Y be normed linear spaces. Then a linear operator 
T on D (T) ~ X into Y is continuous iff there exists a positive constant 
fJ such that 

II T x II < fJ II x II for all xED (T) . (3) 

Corollary 3. Let X, Y be normed linear spaces. Then a linear operator 
T on D (T) ~ X into Y admits a continuous inverse T-1 iff there exists a 
positive constant y such that 

IITxll >yllxll foreveryxED(T). (4) 

Proof. By (4), T x = 0 implies x = 0 and so the inverse T-l exists. 
The continuity of T-l is proved by (4) and the preceding Corollary 2. 

Definition 1. Let T be a continuous linear operator on a normed linear 
space X into a normed linear space Y. We define 

II T II = ~~~ fJ, where B = {{J; II T x II ~ {J II x II for all x E X}. (5) 

By virtue of the preceding Corollary 2 and the linearity of T, it is easy 
to see that 

IITII = sup IITxll = sup IITxll· 
IIzll::01 11"11=1 

(6) 

"T II is called the norm of T. A continuous linear operator on a normed 
linear space X into Y is called a bounded linear operator on X into Y, 
since, for such an operator T, the norm" T x" is bounded when x ranges 
over the unit disk or the unit sphere {x EX; II x II < 1} of X. 

Definition 2. Let T and S be linear operators such that 

D(T) and D(S) ~ X, and R(T) and R(S) ~ Y. 

Then the sum T + S and the scalar multiple lX T are defined respectively 
by 

(T + S) (x) = Tx + Sx for xE D(T) f\ D(S), (lXT) (x) = lX(Tx). 

Let T be a linear operator on D(T) ~ X into Y, and S a linear operator 
on D(S) ~ Y into Z. Then the product ST is defined by 

(ST) x = S(Tx) for xE {x; xE D(T) and TxE D(S)}. 

T + S, lX T and STare linear operators. 
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Remark. STand T S do not necessarily coincide even if X = Y = Z. 

An example is given by T x = tx (t), S x (t) = V ( 1) ;1 x (t) considered as 

linear operators from L2(Rl) into P(Rl). In this example, we have the 
commutation relation (ST - T S) x(t) = V 1 x(t). 

Proposition 2. If T and S are bounded linear operators on a normed 
linear space X into a normed linear space Y, then 

liT + SII ~ IITII + IISII, IIl¥TII = 1l¥IIITIi. (7) 

If T is a bounded linear operator on a normed linear space X into a 
normed linear space Y, and S a bounded linear operator on Y into a 
normed linear space Z, then 

IISTII ~ IISII·IITII· (8) 

Proof. We prove the last inequality; (7) may be proved similarly. 
IISTxll < IISlIlITxll < IISlllITllllxll and so IISTII ~ IISIIIITIi. 

Corollary. If T is a bounded linear operator on a normed linear space 
X into X, then 

IIPII < II Til", (9) 

where P is defined inductively by P = Tp-l (n = 1, 2, ... ; yo = I 
which maps every x onto x itself, i.e., I x = x, and I is called the identity 
operator). 

7. Bounded Sets and Bomologic Spaces 

Definition 1. A subset B in a linear topological space X is said to be 
bounded if it is absorbed by any neighbourhood U of 0, i.e., if there exists 
a positive constant l¥ such that l¥-l B ~ U. Here l¥-l B = {x EX; x =l¥-lb, 
bEB}. 

Proposition. Let X, Y be linear topological spaces. Then a continuous 
linear operator on X into Y maps every bounded set of X onto a bounded 
set of Y. 

Proof. Let B be a bounded set of X, and V a neighbourhood of 0 of Y. 
By the continuity of T, there exists a neighbourhood U of 0 of X such 
that T· U = {Tu; uE U} ~ V. Let l¥ > 0 be such that B ~ l¥U. Then 
T . B ~ T (l¥ U) = l¥ (T . U) ~ l¥ V. This proves that T . B is a bounded 
set of Y. 

Definition 2. A locally convex space X is called bornologic if it satisfies 
the condition: 

If a balanced convex set M of X absorbs every bounded 
set of X, then M is a neighbourhood of 0 of X. (1) 

Theorem 1. A locally convex space X is bomologic iff every semi­
norm on X, which is bounded on every bounded set, is continuous. 
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Proof. We first remark that a semi-norm p (x) on X is continuous iff 
it is continuous at x = O. This we see from the subadditivity of the semi­
norm: p (x - y) > I p (x) - p (y) I (Chapter I, 1, (4)). 

Necessity. Let a semi-norm p (x) on X be bounded on every bounded 
set of X. The set M = {XE X; P(x) :::;: 1} is convex and balanced. If B 
is a bounded set of X, then sup P (b) = IX < 00 and therefore B £;; IXM. 

bEB 

Since, by the assumption, X is bomologic, M must be a neighbourhood 
of O. Thus we see that p is continuous at x = o. 

Sufficiency. Let M be a convex, balanced set of X which absorbs 
every bounded set of X. Let p be the Minkowski functional of M. Then p 
is bounded on every bounded set, since M absorbs, by the assumption, 
every bounded set. Hence, by the hypothesis, p (x) is continuous. Thus 
Ml = {xE X; P(x) < 1/2} is an open set 3 0 contained in M. This proves 
that M is a neighbourhood of O. 

Example 1. Normed linear spaces are bomologic. 

Proof. Let X be a normed linear space. Then the unit disk S = 
{XE X; IIxll < 1} of X is a bounded set of X. Let a semi-norm P(x) on X 
be bounded on S, i.e., sup P(x) = IX < 00. Then, for any y =1= 0, 

zES 

P(y) =P(IIYII·II~I!)= IIYIIP(II~II)<IX Ilyll· 
Thus P is continuous at y = 0 and so continuous at every point of X. 

Remark. As will be seen later, the quasi-normed linear space M (S, ~) 
is not locally convex. Thus a quasi-normed linear space is not necessarily 
bomologic. However we can prove 

Theorem 2. A linear operator T on one quasi-normed linear space into 
another such space is continuous iff T maps bounded sets into bounded 
sets. 

Proof. As was proved in Chapter 1,2, Proposition 2, a quasi-normed 
linear space is a linear topological space. Hence the "only if" part is al­
ready proved above in the Proposition. We shall prove the "if" part. 

Let T map bounded sets into bounded sets. Suppose that s-lim x" = o. 
"--+00 

Then lim II x" II = 0 and so there exists a sequence of integers {n,,} 
k--+OO 

such that lim n" = 00 while lim n" II x" II = O. 
k--+OO k--+OO 

We may take, for instance, n" as follows: 

n" = the largest integer < II X" 11-1/2 if X" -:J= 0, 

= k if x" = O. 
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Now we have IInkxkll = Ilxk + Xk + ... + xkll:::;;; nk Ilxkll so that 
s-lim nk Xk = O. But, in a quasi-normed linear space, the sequence 
k-oo 

{nk Xk}, which converges to 0, is bounded. Thus, by the hypothesis, 
{T (nk Xk)} = {nk T Xk} is a bounded sequence. Therefore 

s-lim T Xk = s-lim nk"l (T (nk Xk) = 0, 
k-HX) k-oo 

and so T is continuous at x = 0 and hence is continuous everywhere. 

Theorem 3. Let X be bornologic. If a linear operator T on X into a 
locally convex linear topological space Y maps every bounded set into a 
bounded set, then T is continuous. 

Proof. Let V be a convex balanced neighbourhood of 0 of Y. Let P be 
the Minkowski functional of V. Consider q (x) = P (T x). q is a semi-norm 
on X which is bounded on every bounded set of X, because every bounded 
set of Y is absorbed by the neighbourhood V of O. Since X is bornologic, 
q is continuous. Thus the set {xE X; TxE va} = {xE X; q(x) < I} is a 
neighbourhood of 0 of X. This proves that T is continuous: 

8. Generalized Functions and Generalized Derivatives 

A continuous linear functional defined on the locally convex linear 
topological space 'I) (.0), introduced in Chapter I, 1, is the "distribution" 
or the "generalized function" of L. SCHWARTZ. To discuss the generalized 
functions, we shall begin with the proof of 

Theorem 1. Let B be a bounded set of 'I) (.0). Then there exists a 
compact subset K of .0 such that 

supp (qJ) ~ K for every qJ E B, (1) 

sup I Dj qJ (x) I < 00 for every differential operator Dj. (2) 
zEK,'I'EB 

Proof. Suppose that there exist a sequence of functions {qJi} ~ Band 
a sequence of points {Pi} such that (i): {Pi} has no accumulation point 
in.o, and (ii): qJi (Pi) -=1= 0 (i = 1, 2, ... ). Then 

00 

P(qJ) = i~ i IqJ (P;)l/lqJ;(Pi) I 

is a continuous semi-norm on every 'I)K(.Q), defined in Chapter I, 1. 
Hence, for any e > 0, the set {qJ E ~K(.o); P (qJ) < e} is a neighbourhood 
of 0 of 'I)K(.o). Since 'I) (.0) is the inductive limit of 'I)K(.o)'S, we see that 
{qJE 'I)(.o);P(qJ) < e} is also a neighbourhood of 0 of 'I)(.o). Thus P is 
continuous at 0 of 'I) (.0) and so is continuous on 'I) (.0). Hence P must be 
bounded on the bounded set B of 'I) (.0). However, P (qJ;) ~ i (i = I, 2, ... ). 
This proves that we must have (1). 
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We next assume that (1) is satisfied, and suppose (2) is not satisfied. 
Then there exist a differential operator Di. and a sequence of functions 
{tpi} ~ B such that sup IDi·tp.(x)1 > i (i = 1, 2, ... ). Thus, if we set 

"EK 

P(tp) =supIDi'tp(x)1 for tpE1)K(.o), 
"EK 

P(tp) is a continuous semi-norm on 1)K(.o) and P(tpi) > i (i = 1, 2, ... ). 
Hence {tpi} ~ B cannot be bounded in 1)K(.o), and a fortiori in 1)(.0). 
This contradiction proves that (2) must be true. 

Theorem 2. The space 1) (.0) is bornologic. 
Proof. Let q (9'1) be a semi-norm on 1) (.0) which is bounded on every 

bounded set of 1) (.0). In view of Theorem 1 in Chapter I, 7, we have only 
to show that q is continuous on 1) (.0). To this purpose, we show that q is 
continuous on the space 1)K(.o) where K is any compact subset of D. 
Since 1) (.0) is the inductive limit of 1)K (D)'s, we then see that q is con­
tinuous on 1) (.0). 

But q is continuous on every 1)K(.o). For, by hypothesis, q is bounded 
on every bounded set of the quasi-normed linear space 1)K(.o), and so, by 
Theorem 2 of the preceding section, q is continuous on 1)K(.o). Hence q 
must be continuous on 1)(.0). 

We are now ready to define the generalized functions. 
Definition 1. A linear functional T defined and continuous on 1) (.0) 

is called a generalized function, or an ideal function or a distribution in.o; 
and the value T(tp) is called the value of the generalized function Tat 
the testing function 9'1 E 1) (D). 

By virtue of Theorem 1 in Chapter I, 7 and the preceding Theorem 2, 
we have 

Proposition 1. A linear functional T defined on 1) (.0) is a generalized 
function in D iff it is bounded on every bounded set of 1) (.0), that is, 
iff T is bounded on every set BE 1) (.0) satisfying the two conditions (1) 
and (2). 

Proof. Clear from the fact that T (9'1) is continuous iff the semi-norm 
IT (9'1) I is continuous. 

Corollary. A linear functional T defined on qo (.0) is a generalized 
function in D iff it satisfies the condition: 

To every compact subset K of.o, there correspond a 
positive constant C and a positive integer k such that 
I T(tp) I ~C sup I Ditp(x) I whenever tpE 1)K(tp). (3) 

lil:>;k,,,EK 

Proof. By the continuity of T on the inductive limit 1) (.0) of the 
1)K(.o)'S, we see that T must be continuous on every 1)K(.o). Hence 
the necessity of condition (3) is clear. The sufficiency of the condition 
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(3) is also clear, since it implies that T is bounded on every bounded set 
of ~ (D). 

Remark. The above Corollary is very convenient for all applications, 
since it seryes as a useful definition of the generalized functions. 

Example 1. Let a complex-valued function I(x) defined a.e. in .0 
be locally integrable in .0 with respect to the Lebesgue measure 
dx = dX1 dx2 • •• dx .. in R.n, in the sense that, for any compact subset K 
of .0, f I/(x)1 dx < 00. Then 

K 

Tj(lP) = f I (x) lP(x) dx, lPE ~(D), (4) 
D 

defines a generalized function Tj in D. 
Example 2. Let m(B) be a a-finite, a-additive and complex-valued 

measure defined on Baire subsets B of an open set .0 of R!'. Then 

T",(lP) = f lP(x) m(dx), lPE ~(D), (5) 
D 

defines a generalized function T", in D. 
Example 3. As a special case of Example 2, 

T~.,(lP) = lP(P), where p is a fixed point of .0, lP E ~ (.0), (6) 

defines a generalized function T d., in.o. It is called the Dirac distribution 
concentrated at the point p E D. In the particular case p = 0, the origin 
of R!', we shall write T~ or 15 for T d •• 

Definition 2. The set of all generalized functions in .0 will be 
denoted by ~ (.0)'. It is a linear space by 

(T + S) (lP) = T(lP) + S(lP), (t¥T) (lP) = t¥T(lP), (7) 

and we call ~ (D)' the space 01 the generalized lunctions in .0 or the dual 
space of ~ (D). 

Remark. Two distributions Tj, and Tjl are equal as functionals 
(Tj, (lP) = Tjl (lP) for every lP E ~ (.0)) illldx) = 12 (x) a.e. If this fact is 
proved, then the set of all locally integrable functions in.o is, by 1- Tj , 

in a one-one correspondence with a subset of ~ (.0)' in such a way that 
(11 and 12 being considered equivalent iffll (x) = 12 (x) a.e.) 

Tj, + Tjl = Tj,+jl , t¥Tj = Taj. (7') 

In this sense, the notion of the generalized function is, in fact, a genera­
lization of the notion of the locally integrable function. To prove the 
above assertion, we have only to prove that a locally integrable 
function I is = 0 a.e. in an open set .0 of R!' if f I (x) lP (x) dx = 0 for 

13 
all lP E ego (.0). By introducing the Baire measure I-' (B) = f I (x) dx, 

B 

the latter condition implies that f lP (x) I-' (dx) = 0 for all lP E ego (.0), 
D 
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which further implies that f q; (x) I" (dx) = 0 for all q; E cg (D), by virtue 
D 

of Proposition 8 in Chapter I, 1. Let B b~ a compact G,,-set in D: 
00 

B = n Gn , whereGn is an open relatively compact set in D. By applying 
n=l 

Urysohn's theorem in Chapter 0,2, there exists a continuous function 
In(x) such that 

o < In (x) < 1 for xED, In (x) = 1 for x E G~+2 and In (x) = 0 

for xE G~ - Gn+1 (n = 1, 2, ... ), 

assuming that {Gn } is a monotone decreasing sequence of open relatively 
compact sets of D such that G~+2 ~ Gn +1' Setting q; = In and letting 
n --+ 00, we see that I"(B) = 0 for all compact G,,-sets B of D. The Baire 
sets of D are the members of the smallest a-ring containing compact G,,­
sets of D, we see, by the a-additivity of the Baire measure 1", that I" 
vanishes for every Baire set of D. Hence the density I of this measure I" 
must vanish a.e. in D. 

We can define the notion of differentiation of generalized functions 
through 

Proposition 2. If T is a generalized function in D, then 

(8) 

defines another generalized function 5 in D. 
Proof. 5 is a linear functional on 'il (D) which is bounded on every 

bounded set of 'il (D). 
Definition 3. The generalized functional 5 defined by (8) is called the 

generalized derivative or the distributional derivative of T (with respect to 
Xl)' and we write 

(9) 

so that we have 
8 (8f/J) 8x1 T(q;) = - T 8x1 • (10) 

Remark. The above notion is an extension of the usual notion of the 
derivative. For, if the function I is continuously differentiable with 
respect to Xl' then we have 

= f· .. J 8=1 I(x) . q;(x) dXl •.. dXn = Tal/alt. (q;), 
D 

as may be seen by partial integration observing that q; (x) vanishes iden­
tically outside some compact subset of D. 
4 Yoslda. Functional Analysis 
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Corollary. A generalized function T in Q is infinitely differentiable 
in the sense of distributions defined above and 

" i;1 
(DiT) (<p) = (_l)lil T(Di<p), where Ii 1= . .I i., Di = __ 8 --. (11) 

.~l axf' ... a~n 

Example 1. The H eaviside function H (x) is defined by 

H(x) = lor = 0 according as x 2 0 or x < O. (12) 

Then we have 
d 
dxTH = T~., (12') 

where T 6• is the Dirac distribution concentrated at the origin 0 of Rl. 
In fact, we have, for any <p E ~ (Rl) , 

(d) 00 00 

dx TH (<p) = - -L H (x) <p' (x) dx= - ! <p' (x) dx = - [<p(x)Jg" = <p(0). 

Example 2. Let f (x) have a bounded and continuous derivative in the 

" open set Rl -.U Xj of Rl. Let Sj = j(Xj + 0) -f(xi - 0) be the saltus 
1=1 

or the jump of f(x) at x = xi' Since 

we have 

(12") 

where /)XI is defined by (6). 

Example 3. Let j (x) = f (xv X2, •.. , xn) be a continuously differen­
tiable function on a closed bounded domain Q ~ R" having a smooth 
boundary S. Define f to be 0 outside Q. By partial integration, we have 

(8=; Tf ) (<p) = - J f (x) a!; <p (x) dx 
!l 

= J f(x) <p(x) cos (v, xi) dS + J :~ <p(x) dx, 
5 !l 

where v is the inner normal to S, (v, Xj) = (Xj, v) is the angle between v 
and the positive xraxis and dS is the surface element. We have thus 

a 
-;;- Tf = TOflox; + Ts, 
"X; 

where Ts(<p) = f f(x) cos (v, Xj) <p(x) dS. (12"') 
s 

Corollary. If f(x) = f(xv X2, ••• , x,,) is C2 on Q and is 0 outside, 

then, from (12"') and ~. =.I ! cos (Xj, v) we obtain Green's 
UlI 1 cJJ(j 
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integral theorem 

(L1T,)(tp) = T<1,(tp) + j:tp(x) dS - jl(x): dS, (12'11) 
S S .. 

where L1 is the Laplacian . .I (flaxj. 
1-1 

Proposition 3. If T is a generalized function in D and I E Coo (D), then 

S(tp) = T(ltp), tpE ~(D), (13) 

defines another generalized function S in D. 
Proof. S is a linear functional on ~ (D) which is bounded on every 

bounded set of ~(D). This we see by applying Leibniz' formula to Itp. 
Definition 4. The generalized function S defined by (13) is called 

the product of the function I and the generalized function T. 
Leibniz' Formula. We have, denoting S in (13) by IT, 

..!...- (IT) =.!1. T + I 8T (14) 
8xj 8xI 8x, 

because we have 

- T (I 8ffJ)= T (.!1. tp) - T (..!...- (ltp)) 
8xI 8xI 8xI 

by Leibniz' formula for a (ltp)/ax;. This formula is generalized as follows. 
Let P (~) be a polynomial in ~l> ~2' ••• , ~ .. , and consider a linear 

partial differential operator P (D) with constant coefficients, obtained 
by replacing ~; by i-I alaXj. The introduction of the imaginary coefficient 
i-I is suitable for the symbolism in the Fourier transform theory in 
Chapter VI. 

Theorem 3 (Generalized Leibniz' Formula of L. HORMANDER). We 
have 

P (D) (IT) = L (D./) :, P<s) (D) T , (15) 

where, for s = (s1> S2' ... , s,,), 

and 
s! = SI! S2! . . . s,,! . (17) 

Proof. Repeated application of (14) gives an identity of the form 

P(D) (IT) = E (DB/) Q.(D) T, (18) 
s 

4· 
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where Q.(~),s are polynomials. Since (18) is an identity, we may substitute .. 
I(x) = ei( .. ,~) and T = ei(%,'1), where (x, ~) = E Xl~; 

;=1 
in (18). Thus, by the symbolism 

P(D) ei(%,e) = P(~) ei (%,f) , 

we obtain 

P(~ + TJ) = E ~'QB(TJ), where ~. = ~,~ •... ~" . 
• 

On the other hand, we have, by Taylor's formula, 

P(~ +TJ) =E~~·P(·)(TJ). 
• s. 

Thus we obtain 

9. B-spaces and F-spaces 

(19) 

In a quasi-normed linear space X, lim II x .. - x II = 0 implies, by the 
ot-+OO 

triangle inequality Ilx .. -x ... 1I < IIx .. -xll + IIx-x ... II, that {x .. } is a 
Cauchy sequence, i.e., {x .. } satisfies Cauchy's cOnt1ergence condition 

lim IIx .. -x ... I\=O. (1) 
",...-.00 

Definition 1. A quasi-normed (or normed) linear space X is called an 
F-space (or a B-space) if it is complete, i.e., if every Cauchy sequence {x .. } 
of X converges strongly to a point Xoo of X: 

lim IIx .. -xooll = O. (2) 
ot-+OO 

Such a limit xoo , if it exists, is uniquely determined because of the triangle 
inequality IIx-x'll:S;:; Ilx-x .. 1I + IIx .. -x' II· A complete pre-Hilbert 
space is called a Hilbert space. 

Remark. The names F-space and B-space are abbreviations of F,e­
chet space and Banach space, respectively. It is to be noted that BOUR­

BAKI uses the term Frechet spaces for locally convex spaces which are 
quasi-normed and complete. 

Proposition 1. Let D be an open set of R!', and denote by Q;(D) = 
Coo (D) the locally convex space, quasi-normed as in Proposition 6 in 
Chapter 1,1. This Q;(D) is an F-space. 

Proof. The condition lim 11/ .. -1 ... 11 = 0 in Q;(D) means that, for 
",...-.00 

any compact subset K of D and for any differential operator D"', the 
sequence {D"'I .. (x)} of functions converges, as n ---+ 00, uniformly bn 
K. Hence there exists a function I (x) E COO (D) such that lim D"'I .. (x) = 

ot-+OO 
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DC<I(x) uniformly on K. DC< and K being arbitrary, this means that 
lim III" -III = 0 in (f(.Q). 

n-->OO 

Proposition 2. LP(5) = LP(5, 58, m) is a B-space. In particular, L2(5) 
and (t2) are Hilbert spaces. 

Proof. Let lim Ilx,,-xmll = 0 in LP(5). Then we can, choose a 
".~ 

subsequence {x".\:} such that I Ilx".\:H - x,,'" II < 00. Applying the tri-

" angle inequality and the Lebesgue-Fatou Lemma to the sequence of 
functions 

1 

y,(S) = IX",(S)I -I--,,~ IX"'\:H(s)-x"k(s)IELP(5), 

we see that 

f(limYI(s)P)m(ds) < lim IIYIW~(lIx ... 11 -I-- i IIX"k+1- x"",II)P. 
!J 1-+00 1-+00 "=1 

Thus a finite lim Y, (s) exists a.e. Hence a finite lim x'" (s) = Xoo (s) exists 
'-+00 . '-+00 H 

a.e. and xoo(s) E LP(5), since Ix", (s) I < lim y,(s) E LP(5). Applying 
+t 1-+00 

again the Lebesgue-Fatou Lemma, we obtain 

IIxoo -x"",W = f (lim IX"t(s) - X"k(S) IP) m(ds) < (i IIx"I+' - x",II)P . 
!J 1-+00 1=" 

Therefore lim IIxoo-x"k II = 0, and hence, by the triangle inequality and 
"-+00 

Cauchy's convergence condition lim Ilx" - Xm II = 0, we obtain 
".~ 

lim II Xoo - x,,11 < lim II XOO - x,,'" II -I-- lim II X"k - x,,11 = O. 
10-+00 k-+OO ".10-+00 

Incidentally we have proved the following important 
Corollary. A sequence {x,,} E LP (5) which satisfies Cauchy's conver­

gence condition (1) contains a subsequence {x"",} such that 

a finite lim X"k(S) = xoo(s) exists a.e .. xoo(s) ELP(5) and 
k ..... oc 

s-lim x" = Xoo . 
10-+00 

(3) 

Remark. In the above Proposition and the Corollary, we have assumed 
in the proof that 1 < P < 00. However the results are also valid for the 
case p = 00, and the proof is somewhat simpler than for the case 
1 < P < 00. The reader should carry out the proof. 

Proposition 3. The space A2(G) is a Hilbert space. 
Proof. Let {/,,(z)} be a Cauchy sequence of A2(G). Since A2(G) is a 

linear subspace of the Hilbert space L2(G), there exists a subsequence 
{/ .. ",(z)} such that 

a finite lim I .. k(z) = loo(z) exists a.e .• /oo E L2(G) and 
"-+00 

lim f 1/00(z) -I,,(z) 12 dx dy = O. 
10-+00 G 
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We have to showthat/oo(z) isholomorphicin G. To do this, let the sphere 
Iz-zol < e be contained in G. The Taylor expansion I .. (z) - Im(z) = 

00 , 

.I c; (z - zo)' implies 
1-0 

II I .. - 1m 118 ~ f 1/ .. (z) - Im(z) 12 dx dy 
Iz-z.I~1! 

00 

= 23t .Ioe2H2Ic;12 (2i + 2)-1 > 3t Icol2 e2 ,-
= 3t e2 1/ .. (zo) - 1m (ZO) 12 • 

(4) 

Thus the sequence {/ .. (z)} itself converges uniformly on any closed sphere 
contained in G.I .. (z),s beingholomorphicin G, we see that 100 (z) = lim I" (z) 

10-+00 

must be holomorphic in G. 

Proposition 4. M(5, ~,m) with m(5) < 00 is an F-space. 
Proof. Let {x .. } be a Cauchy sequence in M(5, ~,m). Since the con­

vergence in M(5, ~,m) is the asymptotic convergence, we can choose a 
sub-sequence {x",t(s)} of {x .. (s)} such that 

m(Bk) < 2-k for Bk = {s E 5; 2-k ::;: IX"k+,(s) - x .. ,t(s) I}. 
k-l 

The sequence x",t (s) = x'" (s) + ;~ (x";+l (s) - x"J (s)) (k = 1, 2 , ... ) 
00 

is s-convergent to a function EM (5, ~,m), because, if s E .U B;, 

we have ~ Ix,,;+,(s) - x .. ;(s) I < j~ 2-j ::;: 21-1 and m (g: Bj ) 

00 00. 

< .I m(Bj ) < .I 2-3 < 21- 1; consequently we see, by letting 
3=1 3=1 

t ~ 00, that the sequence {x .. ,t(s)} converges m-a.e. to a func-
tion xoo(s)EM(5,~,m). Hence lim IIx"lc-xooll=O and so, by 

k-+oo 

lim IIx .. -xmll = 0, we obtain lim IIx,,-xooll = O. 
","'-+00 ~ 

The Space (s). The set (s) of all sequences {e .. } of numbers quasi-nor­
med by 

00 • 

II {e .. } II = ,I2-'lej l/(1 + le;l) 
3=1 

constitutes an F-space by {e .. } + {1] .. } = {e .. + 1] .. }, l¥{e .. } ={l¥e .. }. The 
proof of the completeness of (s) may be obtained as in the case of 
M(5, ~,m). The quasi-norm 

II{e .. }II = inftan-1 {e + the number of e .. 's which satisfy Ie .. I > e} 
0>0 

also gives an equivalent topology of (s). 
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Remark. It is clear that C (5), (co) and (c) are B-spaces. The complete­
ness of the space W) is a consequence of that of.LP (5). Hence, by Theo­
rem 3 in Chapter I, 5, the space H-L2 is a Hilbert space with (l2). 

Sobolev Spaces Wk,/> (.0). Let.Q be an open set of Rn , and k a positive 
integer. For 1 <p < 00, we denote by Wk,P(.Q) the set of all complex­
valued functions I (x) = I (Xl> X2, ... , xn) defined in .0 such that I and .. 
its distributional derivatives D S I of order I s I = . .I I Sj I < k all belong 

J~1 

to LP (.0). Wk,p (.0) is a normed linear space by 

(11 + 12) (x) = 11 (x) + 12 (x), (xl) (x) = rXI(x) and 

1I/IIkp = ( ~ f IDSI(x) IP dX)l/P, dx = dXl dX2' .. dXn , Is~kD 

under the convention that we consider two functions 11 and 12 as the same 
vector of Wk,p (.0) if 11 (x) = 12 (x) a.e. in.Q. It is easy to see that Wk,2 (.0) 
is a pre-Hilbert space by the scalar product 

(I,gh2 =(.I fDSI(x) DSg(x) dx). , Isl;:;;kD 

Proposition 5. The space Wk,p (.0) is a B-space. In particular, Wk (D) = 

Wk,2 (D) is a Hilbert space by the norm II I Ilk = II I ! Ik,2 and the scalar 
product (I, g)k = (I, gh,2' 

Proof. Let {M be a Cauchy sequence in Wk,P(D). Then, for any diffe­
rential operator DS with I S I < k, the sequence {DS M is a Cauchy sequence 
in LP (D) and so, by the completeness of LP (D), there exist functions 
I(s) E LP (D) (I S I <k) such that lim f I D~ Iii (x) - /s) (x)JP dx = O. By 

h-+COD 

virtue of Holder's inequality in Chapter I, 3, applied to compact sets 
of D, we easily see that Ih is locally integrable in D. Hence, for any func­
tion q; E Co (D) , 

TD'iT.(q;) = f DSI,,(x). q;(x) dx = (_I)lsl f I,,(x) DSq;(x) dx, 
D D 

and so, again applying Holder's inequality, we obtain, by 
lim filII (x) - /0) (x) IP dx = 0, 

"-+COD 

lim T DS/h(q;) = (_I)lsl Tf(o) (DSq;) = DS Tf(o) (q;) . 
II-+co 

Similarly we have, by lim f 1 DS In (x) - /s) (x)JP dx = 0, 
h-+co D 

lim T DSiT. (q;) = Tf(s) (q;). 
h-+OO 

Hence we must have DS Tf(o) = Tf (8), that is, the distributional deri­
vative D5/ O) equals 1(5). This proves that ~ Illh - /0) Ilk,p = 0 and 

Wk,p (D) is complete. 
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10. The Completion 

The completeness of an F-space (and a B-space) will play an important 
role in functional analysis in the sense that we can apply to such spaces 
Baire's category arguments given in Chapter 0, Preliminaries. The follow­
ing theorem of completion will be of frequent use in this book. 

Theorem (of completion). Let X be a quasi-normed linear space which 
is not complete. Then X is isomorphic and isometric to a dense linear 

subspace of an F-space X, i.e., there exists a one-to-one correspondence 

x ~ x of X onto a dense linear subspace of X such that 

{l) 

The space X is uniquely determined ~p to isometric isomorphism. If X 

is itself a normed linear space, then X is a B-space. 

Proof. The proof proceeds as in Cantor's construction of real numbers 
from rational numbers. 

The set of all Cauchy sequences {x .. } of X can be classified according 
to the equivalence {x .. } ~ {Y .. } which means that lim Ilx .. - y .. 11 = o. 

Il-+OO 

We denote by {x .. }, the class containing {x .. }. Then the set X of all such 
classes x = {x .. }' is a linear space by 

{x .. }' + {Y .. }' = {x .. + Y .. }', IX{X .. }' = {IXX,,}'. 

We have Illx .. II-llxmlll < Ilx .. -xmll and hence lim Ilx .. 11 exists. 
Il-+OO 

We put 
!I {x .. }' II = lim Ilx .. ll· 

Il-+OO 

It is easy to see that these definitions of the vector sum {x .. }' + {Y .. }', 
the scalar multiplication IX {x .. }' and the norm II {x .. }' II do not depend 
on the particular representations for the classes {x,,}', {Y .. }', respectively. 
For example, if {x,,} '"" {x~}, then 

lim II x" II ::;; lim IIx~ II + lim IIx~ - x .. II < lim Ilx~ II 
t~ n-+()O n---KX> tJ--ioOO 

and similarly lim IIx~1I < lim II x .. II, so that we have !I{x,,}, II = 
Il-+OO Il-+OO 

lI{x~}, II. 
To prove that II {x,,}' !I is a quasi-norm, we have to show that 

lim IIIX{x .. }' II = 0 and lim 1\ IX {x,,}, II = O. 
",--->0 1i{""YII--->o 

The former is equivalent to !~ ~ II IX x" II = 0 and the latter is 

equivalent to lim II IX x" !I = O. And these are true because II IX X \I is con-
"-+00 

tinuous in both variables IX and x. 
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To prove_ the completeness of X, let {x,,} = {{xl,R)}} be a Cauchy 
sequence of X. For each k, we can choose n" such that 

Ilxl!)-xl,R~II<k-l if m>n/l. (2) 

Then we can show that the sequence {x,,} converges to the class containing 
the Cauchy sequence of X: 

{ (1) (2) (")} x .... ' x ... ' ... ,x"I1:' •••• 

To this purpose, we denote by xl,R~ the class containing 

{xl,R~, xl,R~, ... , xl,R~, . .. }. 
Then, by (2), 

and hence 

(3) 

(4) 

(5) 

Ilxl,R~ -x~11 = Ilxl,R~ -x~11 < Ilxl,R~ -x,,11 + Ili,,-i ... 11 + Ilx ... -x~11 
< IIx,,-x ... 1I + k-1 + m-1 . 

Thus (3) is a Cauchy sequence of X. Let i be the class containing (3). 
Then, by (5), 

!lx-x,,11 < IIx-xl,R~1I + IIxl,R~-x,,1I ~ lIi-x~1I + k-1• 

Since, as shown above, 

IIx -xl,R~ II < lim IIxlC -xl,R~" < lim !lxp - i,,11 + k-1 
J>-+OO />-+00 

we prove that lim IIi - x~ II = 0, and so lim Ilx - x" II = O. 
k-+oo k-+oo 

The above proof shows that the correspondence 

X 3 x - i = {x, x, ... , x, ... }' = x 
is surely isomorphic and is.?metric, and the image of X in X by this 
correspondence is dense in X. The last part of the Theorem is clear. 

Example of completion. Let D be an open set of R" and k < CX>. The 
completion of the space C~ (D) normed by 

11/11,,=( ~ fI DS/ (x)12 dx)1/2 
IS~"D 

will be denoted by H~ (D); thus H~ (D) is the completion of the pre­
Hilbert sl'ace H~ (.0) defined in Chapter I, 5, Example 4. Therefore H~ (D) is a 
Hilbert space. The completion of the pre-Hilbert space H" (D) in Chap­
ter 1,5, Example 3 will similarly be denoted by H"(D). 

The elements of H~ (D) are obtained concretely as follows: Let {f,.} be a 
Cauchy sequence of C~(D) with regard to the norm 11/11". Then, by the 
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completeness of the space L2(Q), we see that there exist functions 
" /,) (x) E L 2 (Q) with I s I = . .I s; :::; k such that 

)=1 

lim J I/s) (x) - DS I" (x) 12 dx = 0 (dx = dX1 dX2 ... dx,,). 
11-+00 Q 

Since the scalar product is continuous in the norm of L2(Q), we see, for 
any test function q; (x) E COO (Q), that 

Tf(I)(q;) = lim <Dsf", q;) = lim (_I)'S, Tf,,(DSq;) 
11-+00 11-+00 

= (_I)'S, Urn <I", DSq;) = (_I)'S, </(0), DSq;) = (DsTjlo» (q;). 
11-+00 

Therefore we see that 1(') E L2(Q) is, when considered as a generalized 
function, the distributional derivative of 1(0) : t<') = DS /0). 

We have thus proved that the Hilbert spaceH~(Q) is a linear subspace 
of the Hilbert space W" (Q), the Sobolev space. In general H~ (Q) is a 
proper subspace of W" (Q). However, we can prove 

Proposition. H~ (R") = W" (R"). 
Proof. We know that the space W" (R") is the space of all functions 

I (x) E L 2 (R") such that the distributional derivatives DSI (x) with I s I = 
" . .I s; ~ k all belong to L 2 (R"), and the norm in W" (R") is given by 

1=1 

11/11" = (.I I DS/(x) 12 dx)1/2 • . 'sl~" 

Let lEW" (R") and define IN by 

IN(x) = OCN(x) I(x), 

where the function OCN(X) E Co (Rn) (N = 1,2, ... ) is such that 

OCN(X) = 1 for Ixl < Nand sup lD'ocN(x)j < 00. 
nR";'s' ~":N= 1.2 .... 

Then by Leibniz' formula, we have 

D'1(x)-D'IN(x) =0 for Ixl<N. 
= a linear combination of terms 

D' OCN(X) . D"/(x) with I" I + It I <k for Ix I> N. 

Hence. by DSI E L2(R") for Is I < k, we see that lim IIDslN - D"I 11o = 0 
N--+oo 

andso lim II/N-/II,,=O. 
N--+oo 

Therefore, it will be sufficient to show that, for any lEW" (R") with 
compact support. there exists a sequence {/ .. (x)} ~ COO(R") such that 
lim III .. -III" = o. To this purpose, consider the regularization of I 

Il--+OO 

(see (16) in Chapter I, 1): 

I .. (x) = J l(y) 0 .. (x - y) dy, a> O. 
R" 
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By differentiation, we have 

DSf" (x) = f f(y) D~O,,(x - y) dy = (_1)\s\ f f(y) D~O,,(x - y) dy 
R" R" 

= (DSTf ) (O",z) (where O",z(Y) = O,,(x-y) 

= f DSf(y)· O,,(x-y) dy (for lsi::;: k). 
R" 

Hence, by Schwarz' inequality, 

f IDs f,,(x) - D' f(x) 12 dx 
R" 

= f [f ID~f(Y) - D~f(y + e) 12 dy] O,,(e) de, where 
\.l~" R" 

Y + e = (Yl + e1> Y2 + e2, ... , y" + e,,). 
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We know that the inner integral on the extreme right tends to 0 as e _ 0 
(see Theorem 1 in Chapter 0, 3), and hence lim f IDs f" (x) - D S f (x) 12 dx 

a-->-O R" 

= O. Thus lim Ilf,,- fllk = O. Therefore, the completion H~(R") of C~(R") 
,,-+0 

with regard to the norm II !Ik is identical with the space Wk(R"). 

Corollary. H~(R") = Hk(R") = Wk(R"). 

11. Factor Spaces of a B-space 

Suppose that X is a normed linear space and that M is a closed linear 
subspace In X. We consider the factor spaceXjM, i. e., the space whose 
elements are classes modulo M. In virtue of the fact that M is closed, 
all these classes e are closed in X. 

Proposition. If we define 

lie II = inf II x II, 
%E~ 

(1) 

then all the axioms concerning the norm are satisfied by lIell. 
Proof. If e = 0, then e coincides with M and contains the zero vector 

of X; consequently, itfollowsfrom (1) that Ilell = O. Suppose, conversely, 
that lie II = O. It follows then from (1) that the class contains a sequence 
{x,,} for which we have lim Ilx,,11 = 0, and hence the zero vector of X 

n-+OO 

belongs to the closed set e of X. This proves that e = M and hence is 
the zero vector in XjM. 

Next suppose e, r;E XjM. By definition (1), there exists foranye > 0, 
vectors x E e, y E r; such that 

Ilxll < Ilell + e, Ilyll::;: 11r;11 + e. 
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Hence Ilx + yll ~ IIxli + lIyll ~ IIEII + 111711 + 28. On the other hand, 
(x + y) E (E + 17), and therefore liE + 17 II ~ IIx + y II by (1). Con­
sequently, we have liE + 1711 ~ liE II + 111711 + 28 and so we obtain the 
triangle inequality liE + 17 !I ~ liE II + Ii 1711· 

Finally it is clear that the axiom IIIXE \I = IIX IIIEII holds good. 
Definition. The space X/M, normed by (1), is called a normed factor 

space. 
Theorem. If X is a B-space and M a closed linear subspace in X, then 

the normed factor space X/M is also a B-space. 

Proof. Suppose {E .. } is a Cauchy sequence in X/M. Then {E .. } contains 
a subsequence {EftA:} such that IIE"A:+t -EftA: II < 2-1- 2• Further, by definition 
(1) of the nonll in X/M, one can choose in every class (EnA:+I - Ell",) 
a vector y" such that 

lIy,,11 < IIEftA:+I-En,,1I + 2-"-2 < 2-"-1. 

Let x ... E E .. ,. The series x .. , + Yl + Y2 + ... converges in norm and conse­
quently, in virtue of the completeness of X, it converges to an element x 
of X. Let E be the class containing x. We shall prove that E = s-lim Eft . 

...-.00 

Denote by s" the partial sum x ... + Yl + Y2 + ... + Y1 of the above 
series. Then lim II x - s" II = o. On the other hand, it follows from the 

k-+oo 

relations x .. , E E .. " Yp E (E"P+l - Eft,,) that Slo E Ent+l' and so, by (1), 

IIE-Eft .. 11 ~ IIx-s"II-O as k_oo. 

Therefore, from the inequality liE - E,.II ~ II E - E"A: II + II E"A: - E,.II and 
the fact that {E,.} is a Cauchy sequence, we conclude that lim liE - E .. II 

...-.00 

=0. 

12. The Partition of Unity 

To discuss the support of a generalized function, in the next section, 
we shall prepare the notion and existence of the partition of unity. 

Proposition. Let G be an open set of R". Let a family {U} of open 
subsets U of G constitute an open base of G: any open subset of G is 
representable as the union of open sets belonging to the family {U}. 
Then there exists a countable system of open sets of the family {U} with 
the properties: 

the union of open sets of this system equals G, (1) 
any compact subset of G meets (has a non-void inter-
section with) only a finite number of open sets of this 
system. (2) 

Definition 1. The above system of open sets is said to constitute a 
scattered open covering of G subordinate to {U}. 
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Proof of the Proposition. G is representable as the union of a countable 
number of compact subsets. For example, we may take the system of all 
closed spheres contained in G such that the centres are of rational coor­
dinates and the radii of rational numbers. 

Hence we see that there exists a sequence of compact subsets K, 
such that (i) K, ~ K'+1 (r = 1, 2, ... ), (ii) G is the union of K,'s and 
(iii) each K, is contained in the interior of K,+1' Set 

U, = (the interior of K,+1) - K,-2 and V, = K, - (the interior of K,-l) , 
where for convention we set Ko = K-l = the void set. Then U, is open and 

00 

V, is compact such that G = U V,. For any point x E V" take an open 
'~l 

set U(x; r) E {U} such that x E U(x; r) ~ U,. Since V, is compact, there 

exists a finite system of points X(1), X(2), ••• ,X(h,) such that V, ~ '~l U (x('); r). 

Then, since any compact set of G meets only a finite number of U,'s, it is 
easy to see that the system of open sets U (X(i); r) (r = 1, 2, ... ; 1 < i ::;: h,) 
is a scattered open covering of G subordinate to {U}. 

Theorem (the partition of unity). Let G be an open set of R", and let 
a family of open sets {G.; i E I} cover G, i.e., G = U G,. Then there 

iEI 
exists a system of functions {!¥i (x) ; i E J} of COO (R.") such that 

for each i E I, supp (<Xi) is contained in some Gt , (3) 
forev.eryiEI, O::;:!¥j(x) <1, (4) 

~ !¥i(x) = 1 for xE G. (5) 
tEl 

Proof. Let x(O) E G and take a G, which contains x(O). Let the closed 
sphere S (x(O) ; r) of centre x(O) and radius r be contained in G,. We 
construct, as in (14), Chapter 1,1, a function p<;~) (x) E COO(R") such that 

R(,) (x) > 0 for I x - x(O) I < r R(,) (x) = 0 for I x - x(O) I >- r. 
P;'(O) , P;'(O) • -

We put U(~~) = {x; P% (x) =F O}. Then U(~~) ~ G, and U U(~~) = G, 
"" ",,(O)EG,,>O " 

and, moreover, supp(P<;~» is compact. 
There exists, by the Proposition, a scattered open covering {Ui ; i E J} 

subordinate to the open base {U~~) ; x(O) E G, r> O} of G. Let Pi (x) be 
any function of the family {P<;~) (x)} which is associated with Ui . 

Then, since {Ui ; i E J} is a scattered open covering, only a finite number 
of Pi (x)'s do not vanish at a fixed point x of G. Thus the sum s (x) = 
~ Pi (x) is convergent and is> 0 at every point x of G. Hence the func­

lE! 
tions 

!¥i (x) = Pi (x)/s (x) (i E I) 
satisfy the condition of our theorem. 
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Definition 2. The system {/Xj(X); i E J} is called a partition of unity 
subordinate to the cClvering {G.; i E I}. 

13. Generalized Functions with Compact Support 

Definition 1. We say that a distribution T E ~ (.0)' vanishes in an 
open set U of.o if T (IP) = 0 for every IP E ~ (.0) with support contained 
in U. The support of T, denoted by supp (T). is defined as the smallest 
closed set F of.o such that T vanishes in.o - F. 

To justify the above definition, we have to prove the existence of the 
largest open set of.o in which T vanishes. This is done by the following 

Theorem 1. If a distribution T E ~ (.0)' vanishes in each U. of a family 
{U.; i E I} of open sets of.o, then T vanishes in U = U U •. 

'EI 
Proof. Let IPE ~(.o) be a function with supp(lP) ~ U. We construct 

a partition of unity {/Xj (x); i E J} subordinate to the covering of!l 
consisting of {U.; i E I} and .0 - supp (IP). Then IP = j~ /XjlP is a finite 

sum and so T(IP) = j~ T(/XjlP). If the supp(/Xj) is contained in some U., 

T (/XjlP) ='0 by the hypothesis; if the supp (/Xj) is containedin.o - supp (IP), 
then /XjlP = 0 and so T (/XjlP) = O. Therefore we have T (IP) = O. 

Proposition 1. A subset B of the space ~ (.0) is bounded iff, for any 
differential operator Dj and for any compact subset K of .0, the set of 
functions {D;f(x); fE B} is uniformly bounded on K. 

Proof. Clear from the definition of the semi-norms defining the topo­
logy of ~ (.0) . 

Proposition 2. A linear functional T on ~ (.0) is continuous iff T is 
bounded on every bounded set of ~(.o). 

Proof. Since ~ (.0) is a quasi-normed linear space, the Proposition is 
a consequence of Theorem 2 of Chapter I, 7. 

Proposition 3. A distribution T E ~ (.0)' with compact support can 
be extended in one and only one way to a continuous linear functional To 
on ~ (.0) such that To (I) = 0 if f E ~ (.0) vanishes in a neighbourhood 
of supp(T). 

Proof. Let us put supp (T) = K where K is a compact subset of .0. 
For any point xO f K and e> 0, we take a sphere S (xO, e) of centre 
xO and radius e. For any e > 0 sufficiently small, the compact set K is 
covered by a finite number of spheres S (xO, e) with xOE K. Let {/Xj (x);i E J} 
be the partition of the unity subordinate to this finite system of spheres. 
Then the function tp(x) = }; IX; (x), where K' is a compact 

supp(.x;)nK'9=void 

neighbourhood of K contained in the interior of the finite system of 
spheres above, satisfies: 

tp (x) E ego (.0) and tp (x) = 1 in a neighbourhood of K. 
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We define To(/) for IE COO (D) by ToU) = T("P/). This definition is in­
dependent of the choice of '1" For, if "PI E ego (D) equals 1 in a neighbourhood 
of K, then, for any IE COO (D), the function ("P-"Pl) IE ~(D) vanishes 
in a neighbourhood of K so that T ("PI) - T ("PI/) = T «("P - "PI) I) = O. 

It is easy to see, by applying Leibniz' formula of differentiation to 
"P I, that {"PI} ranges over a bounded set of ~ (D) when {t} ranges over 
a bounded set of ~(D). Thus, since a distribution TE ~(D)' is bounded 
on bounded sets of ~ (D), the functional To is bounded on bounded sets 
of ~(D). Hence, by the Theorem 2 of Chapter 1,7 mentioned above, To is 
a continuous linear functional on ~ (D). Let I E ~ (D) vanish in a neighbour­
hood U(K} of K. Then, by choosing a "PE Cgo(D} that vanishes in 
(D- U(K», we see that ToU) = T("P/} = O. 

Proposition 4. Let K' be the support of "P in the above definition of To. 
Then for some constants C and k 

I ToU) I < C sup I Dil(x) I forall IECOO·(!)). 
lil:iOk,xEK' 

Proof. Since T is a continuous linear functional on ~ (D), there exist, 
for any compact set K' of D, constants C' and k' such that 

IT(tp)I<C' sup IDitp(x) I forall tpE~K,(D) 
lil:;o,k',xEK' 

(the Corollary of Proposition 1 in Chapter 1,8). But, for any g E Coo (D), 
we have tp = "Pg E D K , (D). Consequently, we see, by Leibniz' formula of 
differentiation, that 

sup IDi("Pg) (x) I <C" sup I Dig (x) I 
lil~k',xEK' lil:;;;k',xEK' 

with a constant C" which is independent of g. Setting g = I and k = k', 
we obtain the Proposition. 

Proposition 5. Let So be a linear functional on Coo (D) such that, for 
some constant C and a positive integer k and compact subset K ofD, 

I SO U) I <C sup I Di I (x) I for all I E COO (D) . 
lil:iOk,xEK 

Then the restriction of So to cgo (D) is a distribution T with support con­
tained in K. 

Proof. We observe that SoU) = 0 if I vanishes identically in a neigh­
bourhood of K. Thus, if "PE Cgo(D) equals linaneighbourhoodofK, then 

SoU) = So("PI) for all IE Coo(D). 
It is easy to see that if {I} ranges over a bounded set of ~ (D), then, in 
virtue of Leibniz' formula, {"PI} ranges over a set which is contained in 
a set of the form 

{gE COO (D); sup /Dig(x) 1= Ck < oo}. 
lil:iik,nK 
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Thus So ("" I) = T (f) is bounded on bounded sets of ~ (.0) so that T is 
a continuous linear functional on i) (.0). 

We have thus proved the following 

Theorem 2. The set of all distributions in.o with compact support is 
identical with the space ~(.o)' of all continuous linear functionals on 
~ (.0), the dual space of ~ (.0). A linear functional T on Coo (.0) belongs to 
(f(.o)' iff, for some constants C and k and a compact subset K of .0, 

IT(I)I:S:;C sup IDil(x) I forall IECOO(.o). 
lil:;;;k,%EK 

We next prove a theorem which gives the general expression of distri­
butions whose supports reduce to a single point. 

Theorem 3. Let an open set.o of R!' contain the origin o. Then the 
only distributions T E i) (.0)' with supports reduced to the origin 0 are 
those which are expressible as finite linear combinations of Dirac's 
distribution and its derivatives at o. 

Proof. For such a distribution T, there exist, by the preceding Theo­
rem 2, some constants C and k and a compact subset K of.o which con­
tains the origin 0 in such a way that 

I T (I) I <C sup I Dj I (x) I for all I E COO (.0) . 
UI:;;;k,%EK 

We shall prove that the condition 

Dj/(O) = 0 for all i with Iii < k 

implies T (I) = o. To this purpose, we take a function"" E COO (.0) which is 
equal to 1 in a neighbourhood of 0 and put 

I. (x) = I (x) "" (x/e). 

We have T(I) = T(I.) since I = I. in a neighbourhood of the origin O. 
By Leibniz' formula, the derivative of I. of order < k is a linear com­
bination of terms of the form Ie I-i Di "" . D'I with I i I + I i I < k. Since, 
by the assumption, Dil(O) = 0 for Iii < k, we see, by Taylor's formula, 
that a derivative of order I s I of I. is 0 (e"+1-Iol) in the support of 
1p(x/e). Thus, when e,(. 0, the derivatives of I. of order < k converge to 0 
uniformly in a neighbourhood of O. Hence T (I) = lim T (I.) = O. 

'to 
Now, for a general I, we denote by I" the Taylor's expansion of I up 

to the order k at the origin. Then, by what we have proved above, 

This shows that T is a linear combination of linear fundionals in 
the derivatives of I at the origin of order < k. 
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14. The Direct Product of Generalized Functions 

We first prove a theorem of approximation. 
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Theorem 1. Let x = (xv X2, ... , x,,) E RIO, y = (Yv Y2 • .•. , Ym) E Rm 

and z = xxy = (xv X2,"" x .. , Yv Y2,"" Ym) E R"+m. Then, for any 
function rp (z) = rp (x. y) E ego (R"+m) , we can choose functions UOj (x) E ego (Rn) 
and functions Vij (y) E ego (Rm) such that the sequence of functions 

"I 
rpi(Z) = rp.(x, y) = ..,EUij(X) Vij(Y) (1) 

J=l 

tends, as i _ 00, to rp (z) = rp (x, y) in the topology of 'l) (R"+m). 
Proof. We shall prove Theorem 1 for the case n = m = 1. Consider 

00 00 

(/>(x, y, t) = (2 v;tt2 J J rp(~, 'YJ) exp(-((x_~)2 + (y-'YJ)2)/4t) ~d'YJ. 
-00-00 

t> 0; (/>(x. y, 0) = rp(x, y). (2) 

We have, bythechangeofvariables~1 = (~-x)/2Vi, 'YJ1 = ('YJ-y)/2 Vi, 
00 00 

(/>(x. y, t) = (vnt 2 J J rp (x + 2E1 Vi, Y + 2'YJ1 0) e-El-'1~ ~ld'YJ1' 
-00-00 

00 00 

Hence, by J J e-~-'1: d~1 d'YJ1 = 1t, 
-00-00 

00 00 

I(/> (x, y, t) -rp (x, y) I :s;; (V~)-2 J J Irp (x + 2E Vi, Y + 2'YJ Vt)-rp(x,y)1 
-00-00 

X e-I;'-'1' ~d'YJ 

:s;; 10
1 {<,+!.{T' + I;'+!.!T'}· 

Since the function rp is bounded and e-<'-'1' is integrable in R2, we see 
that the first term on the right tends to zero as T t 00. The second term 
on the right tends, for fixed T> 0, to zero as t to. Hence we have 
proved that lim (/>(x, y, t) = rp(x, y) uniformly in (x, y). 

'to 
Next, since supp(rp) is compact, we see, by partial integration, 

cr+k!l) (x. y, t) = JooJ (2.;;])-2 am+ktp(~. n) e-[(x-.j'+C"-'1j'li4t d~d1 t> 0 
axm ay" -00 y ,.. a~m an" 7· • 

cr+ktp(x, y) 
= m " ,t = O. ax ay 

Thus we see as above that 

li am+k!l) (y.. y, t) am+ktp (x, y) 'f l' ( ) 
m m" = m" um orm y In x, Y . 

ItO ax ay ax ay (3) 

It is easy to see that (/>(x, y, t) for t> 0 given by (2) may be extended 
as a holomorphic function of the complex variables x and y for I x I < 00, 

5 Yoslda. Functional Analysis 
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Iy 1< 00. Hence, for any given y> 0, the function (f>(x, y, t) for fixed 
t> 0 may be expanded into Tavlor's series 

00 ", 

(f>(x,y,t) = ~ ..Ec.(t)~ym-s 
",=0.=0 

which is absolutely and uniformly convergent for Ix I <y, Iy I < y and 
may be differentiated term by term: 

a'" + "4> (x. y, t) 00"" a"'+"xSy""-' 
----,-,-'-~~ = ..E ..E c. (t) --

ax'" ay" ",,=0.=0 ax'" ay" 
Let {t.} be a sequence of positive numbers such that t. t O. By the above 
we can choose, for each t., a polynomial section Pi (x, y) of the series 

00 ", 

.I .I c. (t) ~ y"'-' such that 
",=0.=0 

limP.(x, y) = <p(x, y) in the topology of (f(R2), 
i-+oo 

that is, for any compact subset K of R2, lim Y p.(x, y) = Y<p(x, y) 
i-+oo 

uniformly on K for every differential operator D S • Let us takee (x) E ego (Rl) 
and u(y) E ego (Rl) such that e (x) u(y) = 1 on the supp (9' (x, y)). Then 
we easily see that <p.(x, y) = e(x) u(y) P.(x, y) satisfies the condition of 
Theorem 1. 

Remark. We shall denote by il (R") X il (~) the totality of functions 
E il (R"+"') which are expressible as 

" . .I <Pi (x) 1I'j (y) with <pj (x) E il (R"), 1I'j (y) E il (R"') . 
1-1 

The above Theorem 1 says that il (R") X il (R"') is dense in il (R"+"') 
in the topology of il (R"+"'). The linear subspace il (R") X il (R"') of 
il (R"+m) equipped with the relative topology is called the direct product 
of il (R") and il (~). 

We are now able to define the direct product of distributions. To indi­
cate explicitly the independent variables x = (XI> X2, ••• , x,,) of the 
function <p (x) E il (R") , we shall write (il,,) for il (R"). We also write 
(il,,) for il(Rm) consisting of the functions tp(y), y = (Yl> Y2,"" Ym). 
Likewise we shall write (il"x,,) for il (R"+m) consisting of the functions 
X (x, y). We shall accordingly write T(,,) for the distribution T E il (R")' = 
(il,,), in order to show that T is to be applied to functions <p (x) of x. 

Theorem 2. Let T(,,) E (il,,), , 5(,,) E (il,,)'. Then we can define in one 
and only one way a distribution W = W("x,,) E (il"x,,)' such that 

W(u(x) v(y)) = T(,,) (u(x)) 5(,,) (v (y») for uE (il,,), vE (il,,) , (4) 

W {<p (x, y)) = S(y) (T(,,) (<p (x, y))) = T(",(S(,,) (<p (x, y))) for <p E (il"x,,) (0) 

(Fubini's theorem). 
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Remark. The distribution W is called the direct product or the tensor 
product of T(J<) and SlY)' and we shall write 

W = T(J<)XS(y) = S(y)xT(J<). (6) 
Proof of Theorem 2. Let 58 = {qJ (x, y)} be a bounded set of the space 

(ilJ<xy). For fixed y(O), the set {qJ(x,y(O»;qJE58} is a bounded set of 
(ils). We shall show that 

{tp(y(O»); tp(y(O») = T(J<) (qJ(x, y(O»)), qJE 58} (7) 

is a bounded set of (ilyIO»). The proof is given as follows. 
Since 58 is a bounded set of (ilJ<xy), there exist a compact set KJ< C Rn 

and a compact set K" C Rm such that 

supp(qJ) ~ {(x, y) E ~+"'; xE K z , yE Ky} whenever qJE 58. 

Hence y(O) E Ky implies qJ (x, y(O») = 0 and tp (y(O») = T(,,) (qJ (x, y(O»)) = o. 
Thus 

supp (tp) ~ Ky whenever qJ E 58. (8) 

We have to show that, for any differential operator Dy in R"', 

sup /Dytp(y) / < 00 where tp(y) = T(,,) (qJ(x, y), qJE 58. (9) 

To prove this, we take, e. g., Dy , = fJ/fJYl. Then, by the linearity of T(,,), 
'P (Yl + h, YZI •.. , y",) - 'P (Yll Y21 •.• , y",) 

h 
_ T {fP(X, Yl + h, Yz, ••• , y",) - fP(x, Yl' YD' : •• , y",)} 
- (s) h • 

When qJ ranges over 58, the functions E { } of x, with parameters y E Rm 

and h such that Ih I < 1, constitute a bounded set of (ilJ<). This we see 
from the fact that 58 is a bounded set of (ilJ<xy). Hence we !>ee, by letting 
h -+ 0 and remembering Proposition 1 in Chapter I, 8, that (9) is true. 

Therefore, by the same Proposition 1, we see that the set of values 

{S(y){T(,,)(qJ(x,y»); qJE58} (10) 

is bounded. Consequently, the same Proposition 1 shows that we have 
defined a distribution Well E (il"xy)' through 

W(l) (qJ) = Sly) (T(z) (qJ (x, y)). (11) 
Similarly we define a distribution W(2) E (il"xy)' through 

W(2)(qJ) = T(J<){S(y)(qJ(x,y)). (12) 
Clearly we have, for u E (il,,) and v E (ily), 

W(l) (u(x) v(y» = W(2) (u(x) v(y)) = T(J<) (u(x» . S(y) (v(y). (13) 
Therefore, by the preceding Theorem 1 and the continuity of the 

distributions WIll and W(2), we obtain W(l) = W(2). This proves our 
Theorem 2 by setting W = Well = W(2). 

5· 
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References for Chapter I 

For locally convex linear topological spaces and Banach spaces, see 
N. BOURBAKI [2], A. GROTHENDIECK [lJ, G. KOTHE [1], S. BANACH [1], 
N. DUNFORD-j. SCHWARTZ [1] and E. HILLE-R. S. PHILLIPS [1]. For 
generalized functions, see L. SCHWARTZ [1], I. M. GELFAND-G. E. SILOV 
[lJ, L. HORMANDER [6J and A. FRIEDMAN [1].* 

II. Applications of the Baire-Hausdorff Theorem 
The completeness of a B-space (or an F-space) enables us to apply 

the Baire-Hausdorff theorem in Chapter 0, and we obtain such basic 
principles in functional analysis as the uniform boundedness theorem, the 
resonance theorem, the open mapping theorem and the closed graph theorem. 
These theorems are essentially due to S. BANACH [1]. The termwise 
differentiability of generalized functions is a consequence of the uniform 
boundedness theorem. 

1. The Uniform Boundedness Theorem and the Resonance 
Theorem 

Theorem 1 (the uniform boundedness theorem). Let X be a linear 
topological space which is not expressible as a countable union of closed 
non-dense subsets. Let a family {Ta; a E A} of continuous mappings be 
defined on X into a quasi-normed linear space Y. We assume that, for 
any a E A and x, Y E X, 

IITa(x+Y)II<IITaxll+IITaYII and IITa(iXX)II=lliXTaxll foriX~O. 
If the set {Tax; aE A} is bounded at each xE X, then s-lim Tax = 0 

",-0 

uniformly in a EA. 
Proof. For a given e> 0 and for each positive integer n, consider 

X,. = hE X; sup {lln-1Taxll + I In-l Ta(- x)ll} < A Each set X" is 
l aEA J 

closed by the continuity of Ta. By the assumption of the boundedness of 
00 

{IITaxll; aE A}, we have X = U X". Hence, by the hypothesis on 
,,=1 

X, some X", must contain a neighbourhood U = Xo + V of some point 
Xo E X, where V is a neighbourhood of 0 of X such that V = - V. 
Thus X E V implies sup IlnolTa(xo + x) II < e. Therefore we have 

aEA 

IIT,,(nolx) II = II T,,(nol(xo + x-xo)11 < IlnOlTa(xo + x)11 
+ Ilno1Ta(-xo) II :::;;: 2e for xE V, aE A. 

Thus the Theorem is proved, because the scalar multiplication iXX in a 
linear topological space is continuous in both variables iX and x. 

* See also Supplementary Notes, p. 466. 
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Corollary 1 (the resonance theorem). Let {T,,; a E A} be a family of 
bounded linear operators defined on a B-space X into a normed linear 
space Y. Then the boundedness of {1!T"xll; aE A} at each xE X implies 
the boundedness of {IIT"II; aE A}. 

Proof. By the uniform boundedness theorem, there exists, for any 
e > 0, a ~ > 0 such that II x II <~ implies sup II T"x II ::;; e. Thus 
sup II T"II ::;; e/~. "EA 
"EA 

Corollary 2. Let {T II} be a sequence of bounded linear operators defined 
on aB-spaceX into a normed linear space Y. Suppose that s-lim T"x= Tx 

fI-+OO 

exists for each x E X. Then T is also a bounded linear operator on X into 
Y and we have 

IITII ::;; lim IIT"II· (1) 

Proof. The boundedness of the sequence {liT "x II} for each x E X is 
implied by the continuity of the norm. Hence, by the preceding Corol­
lary, sup IIT"II < 00, and so II T"x II ::;; sup IIT"II' II xII (n = 1, 2, ..• ). 

"~l "~l 
Therefore, again by the continuity of the norm, we obtain 

IITxll = lim IIT"xll::;; lim II T"II'lIxll, 
,,-+00 fI-+OO 

which is precisely the inequality (1). Finally it is clear that T is linear. 

Definition. The operator T obtained above is called the strong limit 
of the sequence {T II} and we shall write T = s-lim T ... 

fI-+OO 

We next prove an existence theorem for the bounded inverse of a 
bounded linear operator. 

Theorem 2 (C. NEUMANN). Let T be a bounded linear operator on a 
B-space X into X. Suppose that III - Til < 1, where I is the identity 
operator: I· x = x. Then T has a unique bounded linear inverse T-l 
which is given by C. Neumann's series 

T-1x = s-lim (I + (I - T) + (I _T)2 + ... + (I - T)")x, xEX. (2) 
fI-+OO 

Proof. For any x E X, we have 

II .. ~ (I -T)" xii <,,~ 11(1 - T)"xll < .. ~ 11(1 - T)"lIlIxll 

00 

::;; .I III - TII"llxll· 
,,=0 

The right hand side is convergent by III - Til < 1. Hence, by the com­

" pleteness of X, the bounded linear operator s-lim .I (I - T)" is defined. 
k--+oo ,,=0 
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It is the inverse of T as may be seen from 

T . s-lim 1: (I - T)" x = s-lim (I - (I - T)) (1: (I - T)" x) 
~,,-o ~ ,,-0 

= x - s~ (I - T)k+l x = x, 

and the similar equation s-lim ( 1: (I - T)") T x = x. 
~ ,,=0 

2. The Vitali-Hahn-Saks Theorem 

This theorem is concerned with a convergent sequence of measures, 
and makes use of the following 

Proposition. Let (5,)8, m) be a measure space. Let )80 be the set 
of all BE )8 such that m (B) < 00. Then by the distance 

d(Bv B2) = m(BI e B2), where BI e B2 = BI V B2 -BI (\ B2, (1) 

)80 gives rise to a metric space ()80) by identifying two sets BI and B'I, 
of )80 when m (BI e B2) = O. Thus a point 13 of ()80) is the class of sets 
BI E )80 such that m(B e BI) = O. Under the above metric (1), ()80) 
is a complete metric space. 

Proof. If we denote by CB(s) the defining function of the set B: 

C B (s) = 1 or 0 according as s E B or s E B, 
we have 

d (BI, B2) = f I C B, (s) - C B. (s) I m (ds) . (2) 
s 

Thus the metric space ()80) may be identified with a subset of the B-space 
V(5,)8, m). Let a sequence {CB,,(s)} with B"E)8o satisfy the condition 

lim d(B",Bk) = lim f ICB,,(s) - CBA:(s) I m(ds) = O. 
n,k-+oo n,k-+oo S 

Then, as in the proof of the completeness ofthe space V (5, )8, m), we can 
choose a subsequence {C B", (s)} such that lim C B". (s) = C (s) exists 

"'->00 

m-a.e. and lim f I C (s) - C B". (s) I m (ds) = O. Clearly C (s) is the 
"'->00 s 

defining function of a set Boo E )80' and hence lim d (Boo, Bn) = O. 
n->OO 

This proves that ()80) is a complete metric space. 

Theorem (VITALI-HAHN-SAKS). Let (5, <;23, m) be a measure space with 
m(5) < 00, and {An (Bn a sequence of complex measures such that the 
total variations IAnl (5) are finite for n = 1,2, ... Suppose that each 
An(B) is m-absolutely continuous and that a finite lim An(B) = A(B) 

,,--+00 

exists for every BE <;23. Then the m-absolute continuity of An (B) is uniform 
in n, that is, lim m(B) = 0 implies lim An (B) = 0 uniformly in n. And 
A (B) is a-additive on <;23. 
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Proof. Each An defines a one-valued function An,(B) on (~o) by 

1n (E) = )'n (B), since the value A." (B) is, by the m-absolute continuity 
of A." (B), independent of the choice of the set B from the class B. The 

continuity of A" (B) is implied by and implies the m-absolute continuity of 
A.,. (B). 

Hence, for any e > 0, the set 

F,.(e) = {E; sup 11,.(13) -1k+n(E) I < e~ 
l n~1 J 

is closed in (~o) and, by the hypothesis lim A.,. (B) = A (B), we have 
n-->'OO 

00 

(~o) = U F,.(e). The complete metric space (~o) being of the second 
"=1 

category, at least one F,.. (e) must contain a non-void open set of (~o)' 

This means that there exist a Eo E (~o) and an 'YJ > ° such that 

d(B,Bo) < 'YJ implies sup 11,..(B)-1".+n(E) I <e. 
n~1 

On the other hand, any B E ~o with m (B) < 'YJ can be represented as 
B = Bl - B2 with d(Bl' Bo) < 'YJ, d(B2' Bo) < 'YJ. We may, for example, 
take Bl = B V Bo' B2 = Bo-B (\ Bo. Thus, if m(B) < 'YJ and k > ko' 
we have 

I A" (B) I < I A,.. (B) I + I A". (B) - Ak (B) I 
< I A". (B) I + IA".(B1)-A,,(B1)1 + IAk.(B2)-Ak(B2)1 

< IAko(B) I + 2e. 

Therefore, by the m-absolute continuity of A". and the arbitrariness 
of e > 0, we see that m (B) -+ 0 implies An (B) -+ 0 uniformly in n. Hence, 
in particular, m (B) -+ 0 implies A (B) -+ O. On the other hand, it is clear 

that A is finitely additive, i.e., A('.1 Bj ) = ,1 A (Bj ). Thus, by 
J=1 J=1 

lim A(B) = 0 proved above, we easily see that A is a-additive since 
m(B)-~O 

m(5) < 00. 

Corollary 1. Let {A.,. (B)} be a sequence of complex measures on 5 such 
that the total variation I Ani (5) is finite for every n. If a finite lim An (B) 

.......00 

exists for every B E ~, then the a-additivity of {A.,.(B)} is uniform in n, 
in the sense that, lim A.,. (B,,) = 0 uniformly in n for any decreasing 

"'-+00 
00 

sequence {B,,} of sets E ~ such that n B" = 0. 
"=1 

Proof. Let us consider 
00 . 

m(B) = ,I 2-J f-t;(B) where f-t;(B) = IA;I (B)/IA;I (5) . 
J=1 
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The a-additivity of m is a consequence of that of the At's, and we have 
o < m (B) < 1. Each!-li and hence each At is m-absolutely continuous. 
Thus, by the above Theorem, we have lim An (Bk) = 0 uniformly in n, 

k-->oo 

because lim m(Bk) = O. 
k-->OO 

Corollary 2. A(B) in the Theorem is a-additive and m-absolutely 
continuous even if m(S) = 00. 

3. The Termwise Differentiability of a Sequence 
of Generalized Functions 

The discussion of the convergence of a sequence of generalized func­
tions is very simple. We can in fact prove 

Theorem. Let {Tn} be a sequence of generalized functions E :tI (.0)'. 
Letafinite lim Tn(q;) = T(q;) exist for everyq; E :tI (.0). Then T is also a 

n-->OO 

generalized function E :tI (.0)'. We say then that T is the limit in :tI (.0)' 
of the sequence {Tn} and write T = lim Tn (:tI (.0)'). 

n-->OO 

Proof. The linearity of the functional T is clear. Let K be any compact 
subset of .0. Then each T" defines a linear functional on the F-space 
:tI K (.0). Moreover, these functionals are continuous. For, they are bounded 
on every bounded set of :tIK(.o) as may be proved by Proposition 1 in 
Chapter 1,8. Thus, by the uniform boundedness theorem, T must be a 
linear functional on :tIK (.0) which is bounded on every bounded set of 
:tIK (.0). Hence T is a continuous linear functional on every :tIK (.0). Since 
:tI(.o) is the inductive limit of :tIK(.o)'S, T must be a continuous linear 
functional on :tI (.0). 

Corollary (termwise differentiability theorem). Let T = lim T" (:tI (.0)'). 
n-->OO 

Then, for any differential operator Di, we have DiT = lim Di T,,(:tI (.0)'). 
n-->OO 

Proof. lim T" = T(:tI(.o)') implies that lim Tn «(-l)liIDiq;) = 
n-->OO n-->OO 

T«(-l)lilDiq;) for every q; E :tI (.0). Thus we have 

(DiT) (q;) = lim (DiT,,) (q;) for every q; E :tI (.0). 
n-->OO 

4. The Principle of the Condensation of Singularities 

The Baire-Hausdorff theorem may be applied to prove the existence of 
a function with various singularities. For instance, we shall prove the 
existence of a continuous function without a finite derivative. 

Weierstrass'Theorem. There exists a real-valued continuous function 
x (t) defined on the interval [0, 1J such that it admits a finite differential 
quotient x' (to) at no point to of the interval [0, 1/2J. 
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Proof. A function x (t) admits finite upper- and lower-derivatives on 
the right at t = to iff there exists a positive integer n such that 

sup h-1 Ix(to + h) - x (to) I < n. 
2-'>">0 

Let us denote by M7I the set of all functions x(t) E C [0, 1J such that 
x (t) satisfies the above inequality at a certain point to of [0, 1/2J; here 
the point to may vary with the function x(t). We have only to show that 

00 

each M" is a non-dense subset of C [0, 1J. For, then, the set C [0, 1J -.!.'lJ M" 
,,=1 

is non-void since; by the Baire-Hausdorff theorem, the complete metric 
space C [0, 1J is not of the first category. 

Now it is easy to see, by the compactness of the closed interval [0, 1/2J 
and the norm of the space C [0, 1J, that M7I is closed in C [0, 1J. Next, 
for any polynomial z(t) and 8>0, we can find a function y(t) E qo, 1J -M" 
such that sup Iz(t) - y(t) I = liz - y II ::;; 8. We may take, for ex-

0:;;;/:;;;1 

ample, a continuous function y(t) represented graphically by a zig-zag 
line so that the above conditions are satisfied. Hence, by Weierstrass' poly­
nomial approximation theorem, M,. is non-dense in C [0, 1J. 

S. BANACH [lJ and H. STEINHAUS have proved a principle oj conden­
sation oj singularities given below which is based upon the following 

Theorem (S. BANACH). Given a sequence of bounded linear operators 
{Tn} defined on a B-space X into a normed linear space Y n. Then the set 

B =lxEX; ~IIT7Ixll <co} 

either coincides with X or is a set of the first category of X. 
Proof. We shall show that B = X under the hypothesis that B is of 

the second category. By the definition of B, we have lim sup II k-1 Tn x I ) 
k~nGl 

= ° whenever x E B. Thus, for any 8 > 0, 
00 

B ~ U Bk where Bk = ftXE X; sup Ilk-1Tnxll < d. 
k=l nGl J 

Each Bk is a closed set by the continuity of the T,,'s. Hence, if B is of the 
second category, then a certain Bk• contains a sphere of positive radius. 
That is, there exist an xoE X and a 15 > ° such that Ilx-xoll < 15 
implies sup Ilkol Tnx II ::;; 8. Hence, by putting x - Xo = y, we obtain, 

,,:;"1 

for Ilyll <:: 15, IIko1TnYII < II kOl Tn x II + II kOl Tnxo II < 28. We have 
thus 

sup IITnzll < 28, 
7IG1,1I'11 :;;;k,'d 

and so B = X. 
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Corollary (the principle of the condensation of singularities). Let 
{Tp,g} (q = I, 2, ... ) be a sequence of bounded linear operators defined 
on a B-space X into a normed linear space Y1' (P = 1, 2, ... ). Let, for 

each p, there exist an x1'E X such that]!! II T1',gx1' II = <Xl. Then the set 

B=fxEX;~IIT1',qxll=<Xl forall P=1,2, •.. } 

is of the second category. 

Proof. For each p, the set B1' = {xEX; ~ IIT1',gXl1 < <Xl} is, 

by the preceding Theorem and the hypothesis, of the first category. 
00 

Thus B = X - U Bp must be of the second category. 
1'-1 

The above Corollary gives a general method of finding functions with 
many singularities. 

Example. There exists a real-valued continuous function 
period 211: such that the partial sum of its Fourier expansion: 

q 1 n 
Ig(x; t) = .I (a ... cos kt + b ... sin kt) = - J x(s) Kg(s, t) ds, 

"'=0 :If_n 

where Kg(s, t) = sin(q + 2-1)(S - t)/2 sin 2-1(S - t). 

satisfies the condition that 

X(t) of 

(1) 

lim I/g(x; t) I = <Xl on a set P ~ [0,211:] which is of the 
~ (2) 
power of the continuum. 

Moreover, the set P may be taken so as to contain any countable sequence 
{til ~ [0, 211:]. 

Proof. The totality of real-valued continuous functions x (t) of period 
211: constitutes a real B-space C2n by the norm Ilxll = sup Ix(t) I. 

0:;;1:;;;211 

As may be seen from (1), Ig(x; t) is, for a given toE [0,211:], a bounded 
linear functional on C2". Moreover, the norm of this functional/g(x; to) 
is given by 

! j IKg(s, to) I ds = the total variatio~ of the function 
-" 

1 1 

-;; JKg(s,to)ds. 

(3) 

-" 
It is also easy to see that, for fixed to' (3) tends, as q ~ <Xl, to <Xl. 

Therefore, if we take a countable dense sequence {til ~ [0, 211:], thel" 
by the preceding Corollary, the set 

B={xEC2,,;~l/g(x;t)I=<Xl for t=tl>tll , ... } 
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is of the second category. Hence, by the completeness of the space C2n, 

the set B is non-void. We shall show that, for any x E B, the set 

P = ltE [0, 2nJ; q~ I/q(x; t) 1= oo} 
is of the power of the continuum. To this purpose, set 

00 

Fm,q = {tE [0, 2nJ; I/q(x; t) I::;: m}, Fm = /:21 Fm,q' 

By the continuity of x(t) and the trigonometric functions, we see 
that the set Fm,q and hence the set Fm are closed sets of [0, 2n]. If we 

00 

can show that U Fm is a set of the first category of [0, 2nJ, then the 
m=1 

set P = ([0, 2n] - m~1 Fm) 3 {t;} would be of the second category. 

Being a set of the second category of [0, 2nJ, P cannot be countable and 
so, by the continuum hypothesis, P must have the power of the conti­
nuum. 

Finally we will prove that each F m is a set of the first category of 
[0, 2 n J. Suppose some F m. be of the second category. Then the closed 
set Fmo of [0, 2nJ must contain a closed interval [lX, PJ of [0, 2nJ. This 
implies that sup I/q(x; t) I < mo for all t E [lX, PJ, contradicting the fact 

q~1 

that the set P contains a dense subset {t;} of [0, 2nJ. 

Remark. We can prove that the set P has the power of the con­
tinuum without appealing to the continuum hypothesis. See, for 
example, F. HAUSDORFF [lJ. 

5. The Open Mapping Theorem 

Theorem (the open mapping theorem of S. BANACH). Let T be a COIl­

tinuous linear operator on anF-spaceX onto anF-space Y. Then T maps 
every open set of X onto an open set of Y. 

For the proof, we prepare 
Proposition. Let X, Y be linear topological spaces. Let T be a con­

tinuou" linear operator on X into Y, and suppose that the range R (T) 
of T is a set of the second category in Y. Then, to each neighbourhood 
U of ° of X, there corresponds some neighbourhood V of ° of Y such that 
V ~ (TU)". 

Proof. Let W be a neighbourhood of ° of X such that W = - W, 
W + W ~ U. For every x EX, xjn -+ ° as n -+ 00, and so x En W for 

00 00 

large n. Hence X = U (n W), and therefore R (T) = U T (n W). Since 
n=1 n=1 

R (T) is of the second category in Y, there is some positive integer no such 
that (T(no W)t contains a non-void open set. Since (T(n W)t = n(T(W)t 
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and since n(T(W)t and (T(W)t are homeomorphic 1 to each other. 
(T (W))" also contains a non-void open set. Let Yo = T xo, Xo E W, be 
a point of this open set. Then, since the mapping x -+ - Xo + x is a 
homeomorphic mapping, we see that there exists a neighbourhood V 
of 0 of Y such that V ~ - Yo + (T (W))". The elements of -Yo + T (W) 
are expressible as -Yo + Tw = T(w - xo) with wE W. But w - xoE 
W + W ~ U, since W is a neighbourhood of 0 of X such that 
W = - Wand W + W ~ U. 

Therefore, -Yo + T(W) ~ T(U) and hence, by taking the closure, 
-yo + (T(W)t~ (T(U»" and so V~-yo+ (T(W»" ~ (T(U)t= (TU)". 

Proof of the Theorem. Since Y is a complete metric space, it is of the 
second category. Thus, by the preceding Proposition, the closure of the 
image by T of a neighbourhood of 0 of X contains a neighbourhood of 0 
of Y. . 

Let X., Y. denote the spheres in X, Y respectively, with centres 
at the origins and radii E > o. Let us set E, = E/2' (i = 0, 1, 2, ... ). 
Then by what we have stated above, there exists a sequence of positive 
numbers {11,} such that 

.lim 11i = 0 and Y '1; ~ (T X.J" (i = 0, 1, 2, ... ). (1) 
>--+00 

Let y E Y'I, be any point. We shall show that there is an x E X 2 •• such 
that Tx = y. Frorr, (1) with i = 0, we see that there is an xoE X .. such 
that Ily - Txo II < 111· Since (y - Txo) E Y'I,' we see again from (1) 
with i = 1 that there is an Xl E X., with Ily - Txo - TXll1 < 112" 
Repeating the process, we find a sequence {Xi} with x, E X./ such that 

(n = 0,1, 2, ... ). 

We have I[ i x,,[[ < i Ilx,,1I < i E" < ( i 2-") EO, and 
I "=m+l "=m+l "=m+l "-m+l 

so the sequence {i x,,} is a Cauchy sequence. Hence, by the complete­
"=0 

" ness of X, we see that s-lim .I x" = X E X exists. Moreover, we have 
n--+OO "=0 

Ilxll = lim [[ i x,,[[ < lim i Ilxkll < (i 2-") EO = 2Eo. 
n--+OO "=0 n--+OO "=0 k=O 

We must have y = T X since T is continuous. Thus we have proved that 
any sphere X 2., is mapped by T onto a set which contains a sphere Y'I,. 

After these preliminaries, let G be a non-void open set in X and 
x E G. Let U be a neighbourhood of 0 of X such that x + U ~ G. Let V 

1 A one-to-one mapping M of a topological space SI onto a topological 
space Sa is called a homeomo'Yphic mapping if M and M-l both map open 
sets onto open sets. . 
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be a neighbourhood of 0 of Y such that T U ;? V. Then T G ;? T (x + U) = 
Tx + TU ;? Tx + V. Hence TG contains a neighbourhood of each one 
of its point. This proves that T maps open set of X onto open sets of Y. 

Corollary of the Theorem. If a continuous linear operator T on an 
F-space onto an F-space gives a one-to-one map, then the inverse operator 
T-l is also a linear continuous operator. 

6. The Closed Graph Theorem 

Definition 1. Let X and Y be linear topological spaces on the same 
scalar field. Then the product space X X Y is a linear space by 

{Xl' YI} + {x2, Y2} = {Xl + x2, Yl + Y2}' IX{X, y} = {lXX, IXY}· 
I t is also a linear topological space if we call open the sets of the form 

GIXGa = {{x, y}; xE GI, yE Ga}, 

where Gv G2 are open sets of X, Y respectively. If, in particular, X and 
Yare quasi-normed linear spaces, then X X Y is also a quasi-normed 
linear space by the quasi-norm 

(1) 

Proposition 1. If X and Yare B-spaces (F-spaces), then Xx Y is also 
a B-space (F-space). 

Proof. Clear since s-lim {x"' Y .. } = {x, y} is equivalent to s-lim x" = x, 

s-lim y" = y. 
11-+00 

11-+00 

Definition 2. The graph G (T) of a linear operator Ton D (T) ~ X into 
Y is the set {{x, T x}; xED (T)} in the product space X X Y. Let X, Y be 
linear topological spaces. Then T is called a closed linear operator when 
its graph G (T) constitutes a closed linear subspace of X X Y. If X and Y 
are quasi-normed linear spaces, then a linear operator T on D (T) ~ X 
into Y is closed iff the following condition is satisfied: 

{x,,} ~ D(T), s-lim x" = x and s-lim Tx" = y imply that 
11-+00 11-+00 

xED (T) and T x = y. (2) 

Thus the notion of a closed linear operator is an extension of the notion 
of a bounded linear operator. A linear operator T on D (T) ~ X into Y is 
said to be closable or pre-closed if the closure in X X Y of the graph G (T) 
is the graph of a linear operator, say 5, on D (5) ~ X into Y. 

Proposition 2. If X, Y are quasi-normed linear spaces, then T is 
closable iff the following condition is satisfied: 

{x,,} ~ D(T), s-lim x" = 0 and s-lim Tx" = y imply that y = O. (3) 
11-+00 11-+00 
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Proof. The "only if" f 1It is clear since the closure in X X Y of G (T) 
is a graph G (S) of a linear operator S and so y = S . 0 = O. The "if" part 
is proved as follows. Let us define a linear operator S by the following 
condition and call S the smallest closed extension of T: 

xED (S) iff there exists a sequence {x .. } ~ D (T) such that 

s-lim x .. = x and s-lim Tx .. = y exist; and we define (4) 
.....00 .....00 

Sx=y. 

That the value y is defined uniquely by x follows from condition (3). 
We have only to prove that S is closed. Let w .. E D(S), s-lim w .. = wand 

.....00 

s-lim Sw .. = u. Then there exists a sequence {x .. } ~ D(T) such that 
8-+CX) 

IIw .. - x .. II < n-1, IISw .. - Tx .. II < n-1 (n = 1, 2, ... ). Therefore 
s-lim x .. = s-lim w .. = w, s-lim Tx .. = s-lim Sw .. = u, and so w F D(S), 
.....00.....00 8-+CX) ...-00 

S·w=u. 

An example of a discontinuous but closed operator. Let X = Y = 
C [0, 1]. Let D be the set of all x (t) E X such that the derivative x' (t) EX; 
and let T be the linear operator on D (T) = D defined by T x = x'. This 
T is not continuous, since, for x .. (t) = t", 

II x .. II =1, II Tx .. 11 = sup Ix~(t)l= sup Int"-ll=n (n=1,2, ... ). 
0:;;1:;;1 0:>;1:;;1 

But T is closed. In fact, let {x .. } ~ D(T), s-lim x .. = x and s-lim Tx .. = y . 
.....00 .....00 

Then x~(t) converges uniformly to y(t), and x .. (t) converges uniformly 
to x(t). Hence x(t) must be differentiable with continuous derivative 
y(t). This proves that xE D(T) and Tx = y. 

Examples of closable operators. Let D" be a linear differential operator 

D" = .I Cj(x) Dj (5) 
Ijl~" 

with coefficients Cj (x) E C" (D), where D is an open domain of R". Consider 
the totality D offunctions I (x) EL2(D) f\C"(D) such that D"I (x) EL2(D). 
We define a linear operator T on D(T) = D ~ V'(D) into L2(D) by 
(TI) (x) = D"/(x). Then T is closable. For, let {f,.} ~ D be such that 
s~/" = 0, s~ D" lit = g. Then, for any <p(x) E C~(D), we have, by 

partial integration, 

J D"/(x) . <p(x) dx = J 1 (x) . D~<p(x) dx, (6) 
!J !J 

where D: is the differential operator lormally adjoint to D,,: 

D:<p(x) = li!f" (-l)lil Dj(cj(x) <p{x»). (7) 
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The formula (6) is obtained, since the integrated term in the partial 
integration vanishes by !p(x) E C~(.Q). Hence, by the continuity of the 
scalar product in L2(.Q), we obtain, by taking 1 = I" and letting h -+ 00 

in (6), 
J g(x) '!p(x) dx = J O· D~!p(x) dx = O. (8) 

D U 

Since !p(x) E C~(Q) was arbitrary, we must have g(x) = 0 a.e., that is, 
g = 0 in L2(Q). 

Proposition 3. The inverse T-I of a closed linear operator on D (T) 
~ X into Y, if it exists, is a closed linear operator. 

Proof. The graph of T-I is the set {{Tx, x}; xE D(T)} in the product 
space YxX. Thus the Proposition is proved remembering the fact that 
the mapping {x, y} -+ {y, x} of Xx Yonto YXX is a homeomorphic one. 

We next prove Banach's closed graph theorem: 

Theorem 1. A closed linear operator defined on an F-space X into an 
F-space Y is continuous. 

Proof. The graph G(T) of T is a closed linear subspace of the F-space 
Xx Y. Hence, by the completeness of Xx Y, G{T) is an F-space. The 
linear mapping U defined by U{x, Tx} = x is a one-to-one, continuous 
linear transformation on the F-space G(T) onto the F-space X. Hence, 
by virtue of the open mapping theorem, the inverse U-I of U is continuous. 
The linear operator V defined by V{x, Tx} = Tx is clearly continuous 
on G (T) onto R (T) ~ Y. Therefore, T = V U-I is continuous on X into Y. 

The following theorem of comparison of two linear operators is due to 
L. HORMANDER: 

Theorem 2. Let X. (i = 0, 1, 2; :Ko = X) be B-spaces and T. (i = 1, 2) 
be linear operators defined on D (T.) ~ X into X.. Then, if TI is closed 
and T2 closable in such a way that D(TI) ~ D(T2), there exists a con­
stant C such that 

II T2x II < C(ilTIXll2 + IIXJJ2)1/2 for all xE D(T1). (9) 

Proof. The graph G(Tl) of TI is a closed subspace of XXXI' Hence 
the mapping 

(10) 

is a linear operator on the B-space G(Tl) into the B-space X 2. We shall 
prove that this mapping is closed. Suppose that {x .. , T1x .. } s-converges 
in G(TI) and that T2x .. s-converges in X 2. Since Tl is closed, there is an 
element xE D(Tl) such that x = s-lim x .. and T1x = s-Jim T1x ... By the 

n-+OO n-+OO 

hypothesis, we have xE D(T2), and, since T2 is closable, the existing 
s-Jim T2 x .. can only be T2 x. Hence the mapping (10) is closed, and so, 

n-+OO 

by the closed graph theorem, it must be continuous. This proves (9). 
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7. An Application of the Closed Graph Theorem 
(Hormander's Theorem) 

Any distribution solution u E L2 of the Laplace equation 

Ltu = IE L2 
is defined by a function which is equal to a Coo function after correction 
on a set of measure zero in the domain where I is Coo. This result is known 
as Weyl's Lemma and plays a fundamental role in the modem treatment 
of the theory of potentials. See H. WEYL [1J. There is an abundant 
literature on the extensions of Weyl's Lemma. Of these, the research 
due to L. HORMANDER [1J seems to be the most far reaching. We shall 
begin with his definition of hypoellipticity. 

Definition 1. Let Q be an open domain of R". A function u (x), x E Q, 
is said to belong to L~oc (Q) if flu (x) 12 dx < 00 for any open subdomain 

D' 

D' with compact closure in Q. A linear partial differential operator P (D) 
with constant coefficients: 

P(D) = P ...,.. -0 ,""" a-' ... , --,- -;;--, where ( 1 0 1 0 1 0) ) 
Z Xl Z X 2 Z vX" (1) 

P(~) = P(~v ~2' ••• , ~,,) is a polynomial in ~v ~2' ••• , ~'" 

is said to be hypoelliptic, if every distribution solution u E L[oc (Q) of 
P (D) u = I is Coo after correction on a set of measure zero in the sub­
domain where I is Coo. 

Theorem (HORMANDER). If P(D) is hypoelliptic, then there exists, for 
any large positive constant Cl ' a positive constant C2 such that, for any 
solution C = ~ + in of the algebraic equation P(C) = 0, we have 

lei = (.1 ICi I2 )1/2::;;: C1 if Inl = (.1 Ini12)1/2 < C2. (2) 
1=1 1=1 

Proof. Let U be the totality of distribution solutions u E L2 (Q') of 
P(D) u = 0, that is, the totality of u E L2(Q') such that 

f u . P' (D) rp dx = 0 for all rp E Cgo (Q'), (3) 
D' 

where the adjoint dilferential operator P' (D) of P (D) is defined by 

P' (~) = P(-~v -~2' .•. , -~,,). (4) 

We can prove that U is a closed linear subspace of L2(Q'). The linearity 
of U is obvious from the linearity of the differential operator P (D). Let 
a sequence {u,,} of U be such that s-lim u" = u in L2(Q'). Then, by the 

~ 

continuity of the scalar product in L2(Q'), we have 

0= lim f u" . P' (D) rp dx = f u . P' (D) rp dx = 0, i.e., u E U. 
10-.00 U' D' 
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Thus U is a closed linear subspace of L2({)'), and as such a B-space. 
Since P (D) is hypoelliptic, we may suppose that every u E U is COO 

in {)'. Let {)~ be any open subdomain with compact closure in {)'. Then, 
for any u E U, the function 8u/8xk is Coo in {)' (k = 1, 2, ... , n). By the 
argument used in the preceding section, the mapping 

U =)u~ ~ E L2({)~) (k = 1, 2, ... , n) 
rJX" 

is a closed linear operator. Hence, by the closed graph theorem, there 
exists a positive constant C such that 

J' "I au /2 J .I" dx ~ C lul2 dx, 
k=l uXk D: ~ 

for all uE U. 

If we apply this inequality to the function u(x) = ei(%,'), where C = 
E + in = (El + inl' E2 + in2'· .. , En + in,,) is a solution of P(C) = 0 

" 
and <x, C> = i~ <xi' Ci>' we obtain 

" .I ICkI2 • f e-2 ("·1J}dx < C f e-2 ("·1J)dx. 
k=l D: D' 

Therefore, when I n I is bounded, it follows that I C I must be bounded. 

Remark. Later on, we shall prove that condition (2) implies the 
hypoellipticity of P(D). This result is also due to HORMANDER. Thus, in 
particular, we see that Weyl's Lemma is a trivial consequence of Hor-

" mander's result. In fact, the root of the algebraic equation - . .I cj = 0 
1=1 

satisfies (2). 

References for Chapter II 

S. BANACH [1], N. BOURBAKI [2], N. DUNFORD-J. SCHWARTZ [1], 
E. HILLE-R. S. PHILLIPS [1] and L. HORMANDER [6]. 

III, The Orthogonal Projection and F. Riesz' Representation 
Theorem 

1. The Orthogonal Projection 

In a pre-Hilbert space, we can introduce the notion of orthogonality 
of two vectors. Thanks to this fact, a Hilbert space may be identified 
with its dual space, i.e., the space of bounded linear functionals. This 
result is the representation theorem 01 F. Riesz [1], and the whole theory 
of Hilbert spaces is founded on this theorem. 

6 Yosida, Functional Analysis 
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Definition 1. Let x, y be vectors of a pre-Hilbert space X. We say that 
x is orthogonal to y and write x..l y if (x, y) = 0; if x 1.. y then y ..1 x, 
and x ..1 x iff x = o. Let M be a subset of a pre-Hilbert space X. We 
denote by Mol the totality of vectors E X orthogonal to every vector m 
ofM. 

Theorem 1. Let M be a closed linear subspace of a Hilbert space X. 
Then Mol is also a closed linear subspace of X, and Mol is called the 
orthogonal complement of M. Any vector x E X can be decomposed 
uniquely in the form 

x = m + n, where mEM and nEMol. (1) 

The element m in (1) is called the orthogonal projection of x upon M and 
will be denoted by PMx; PM is called the projection operator or the 
proiector upon M. We have thus, remembering that M ~ (Mol)ol, 

X = PMx + PMolX, that is, I = PM + PMol. (I') 

Proof. The linearity of Mol is a cunsequence of the linearity in x of 
the scalar product (x, y). Mol is closed by virtue of the continuity of the 
scalar product. The uniqueness of the decomposition (1) is clear since a 
vector orthogonal to itself is the zero vector. 

To prove the possibility of the decomposition (1), we may assume 
that M =1= X and x EM, for, if x E M, we have the trivial decomposition 
with m = x and n = o. Thus, since M is closed and x E M, we have 

d = inf /Ix-mil> O. 
",EM 

Let {m .. } ~ Mbe a minimizing sequen,ce, i.e., lim Ilx - m .. 11 = d. Then 
ft-+OO 

{m .. } is a Cauchy sequence. For, by Iia + b Ils+ il a- b lis = 2(lla lis + lib liS) 
valid in any pre-Hilbert space (see (1) in Chapter 1,5), we obtain 

Ilmlt-m .. IIS = II(x-m .. ) - (x-mit) Ils= 2(llx-m .. lls + Ilx-mltIIS) 
-112x-m .. -m"lls 
= 2(llx-m .. lIs + Ilx-mkIIS) - 411x - (m .. + mlt)/21Is 
< 2 (II x - m"lls + II x - mit 112 - 4dZ) 

(since (m .. + mlt)/2 E M) 

-+ 2(dZ + dZ) - 4dZ = 0 as k, n-+oo. 

By the completeness of the Hilbert space X, there exists an element m E X 
such that s-lim m .. = m. We have mE MsinceM is closed. Also, by the 

ft-+OO 

continuity of the norm, we have II x - mil = d. 
Write x = m + (x - m). Putting n = x - m, we have to show that 

nE Mol. For any m' E M and any real number lX, we have (m + lXm') E M 
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and so 
d2 < Ilx-m-lXm'112= (n-lXm',n-lXm') 

= Il n I12-IX(n,m')-IX(m',n) + 1X2 I1 m'1I2. 

This gives, since lin 11= d, 0 <- 2IXRe(n, m') + 1X211m' 112 for every 
real IX. Hence Re(n, m') = 0 for every m' EM. Replaci,ng m' by im', 
we obtain Im(n, m') = 0 and so (n, m') = 0 for every ~tiE M. 

Corollary. For a closed linear subspace M of a Hilbert space X, we 
have M = M.ll. = (M.l).l. 

Theorem 2. The projector P = PM is a bounded linear operator such 
that 

P = p2 (idempotent property of P), 

(Px, y) = (x, Py) (symmetric property of P). 

(2) 

(3) 

Conversely, a bounded linear operator P on a Hilbert space X into X 
satisfying (2) and (3) is a projector upon M = R (P). 

Proof. (2) is clear from the definition of the orthogonal projection. 
We have, by (1') and PMx ..1 PM.lY, 

(PMX, y) = (PMx, PM.lY + PMy) = (PMx, PMy) 

= (PMx + PM.lX, PMy) = (x, PMy). 

Next let y = x + z, xEM, zE M.l and w = u + v, uEM, vEM.l. then 
Y + w = (x + u) + (z + v) with (x + u) E M, (z + v) E M.l and so, 
by the uniqueness of the decomposition (1), PM(y + w) = PMy + PMw; 
similarly we obtain PM (IXY) = IXPMy. The boundedness of the operator 
PM is proved by 

IIxl12 = IIPMx + PM.lXII2 = (PMx + PM.lX, PMx + PM.lx) 

= IIPMx!12 + !iPM.lXII2 > II P MxII2. 

Thus, in particular, we have 

(4) 

The converse part of the Theorem is proved as follows. The set 
M = R (P) is a linear subspace, since P is a linear operator. The condition 
x EM is equivalent to the existence of a certain Y E X such that x = P . Y, 
and this in tum is equivalent, by (2), to x = Py = p2y = Px. Therefore 
x EM is equivalent to x = Px. M is a closed subspace; for, x" EM, 
s-lim x .. = Y imply, by the continuity of P and x" = Px", s-lim x" = 

......00 .......00 

s-lim Px .. = Py so that Y = Py. 
n--+OO 

We have to show that P = PM. If x EM, we have Px = x = PM· x; 
and if 'V E M.l, we have PMY = O. Moreover, in the latter case, (Py, py)= 

6· 
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(y, ply) = (y, Py) = 0 and so Py = O. Therefore we obtain, for any 
yEX, 

Py = P(PMy + PMJ.Y) = PPMy + PPMJ.Y 

= PMy + 0, i.e., Py = PMy. 

Another characterization of the projection operator is given by 

Theorem 3. A bounded linear operator P on a Hilbert space X into X 
is a projector iff P satisfies P = pi and II P II s;: 1. 

Proof. We have only to prove the "if" part. Set M = R(P) and 
N = N(P) = {y; Py· O}. As in the proof of the preceding Theorem 2, 
M is a closed linear subspace and x E M is equivalent to x = P x. N is 
also a closed linear subspace in virtue of the continuity of P. In the 
decomposition x = Px + (1 -P)x, we have PxE M and (1 -P)xE N. 
The latter assertion is clear from P (1 - P) = P - pi = O. 

We thus have to prove thatN = MJ.. For every xEX, y=Px-xEN 
by pi = P. Hence, if, in particular, xE NJ., then Px = x + Y with 
(x, y) = O. It follows then that /lx/l2 ~ IIPxl12 = /lx/l2 + lIyl12 so that 
y = O. Thus we have proved that xE NJ. implies x = Px, that is, 
N1. ~ M = R(P). Let, conversely, zE M = R(P), so that z = Pz. Then 
we have the orthogonal decomposition z = y + x, YEN, x EN 1., and 
so z = pz = py + Px = Px = x, the last equality being already 
proved. This shows that M = R(P) ~ NJ.. We have thus obtained 
M = N1., and so, by N = (NJ.)1., N = M1.. 

2. "Nearly Orthogonal" Elements 

In general, we cannot define the notion of orthogonality in a normed 
linear space. However, we can prove the 

Theorem (F. RIESZ [2]). Let X be a normed linear space, and M be 
a closed linear subspace. Suppose M =1= X. Then there exists, for any 
e > 0 with 0 < 8 < I, an x. E X such that 

Ilx.11 = 1 and dis(x.,M) = ."ir~ IIx.-mll > 1-8. (1) 

The element x. is thus "nearly orthogonal" to M. 

Proof. LetyE X -M. SinceMisclosed, dis(y,M) = inf Ily-mll = 
fIIEM 

IX> O. Thus there exists an m.E M such that /ly-m.1I s;: IX (1 + 1 e e)' 
The vector x. = (y - m.)/lly - m.1I satisfies IIx.1I = 1 and 

IIx.-mll =lIy-m.lI-llly-m.-lIy-m.lI· mil ~ Ily-m.lI-llX 

~ (1 1 erl = I - 8 . 
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Corollary 1. Let there exist a sequence of closed linear subspaces M" 
of a normed linear space X such that 1~1" ~ M,,+l and M" =J=. M"+l 
(n = 1, 2, ... ). Then there exists a sequence {y,,} such that 

y"EM", lIy"ll=1 and dis(Y"+l,M,,) > 1/2 (n=I,2, ... ). (2) 

Corollary 2. The unit sphere 5 = {x EX; II x II ~ I} of a B-space X 
is compact iff X is of finite dimension. 

Proof. If xl> x2, ... , Xn be a base for X, then the map (IXl> IX2' ••• , IXn) -->-
n 

-->- L IX;X; of Rn onto X is surely continuous and so it is open by the 
i=1 

open mapping theorem. This proves the "if" part. The "only if" part 
is proved as follows. Suppose X is not of finite dimension. Then there 
exists, by the preceding Corollary 1, a sequence {y,,} satisfying the condi­
tions: II y" II = 1 and II Ym - y"ll ~ 1/2 for m > n. This is a contradiction 
to the hypothesis that the unit sphere of X is compact. 

3. The Ascoli-Arzela Theorem 

To give an example of a relatively compact infinite subset of a 
B-space of infinite dimension, we shall prove the 

Theorem (ASCOLI-ARZELA). Let 5 be a compact metric space, and 
C (5) the B-space of (real- or) complex-valued continuous functions x (s) 
normed by IIxll = sup Ix(s) I. Then a sequence {x,,(s)} ~ C (5) is relatively 

S E 5 

compact in C (5) if the following two conditions are satisfied: 
x,,(s) is equi-bounded (in n), i.e., sup sup Ix,,(s) 1< 00, (1) 

"G1 s E S 
X" (s) is equi-continuous (in n), i.e., (2) 

lim sup Ix,,(s') - x,,(s") I = O. 
6 to ,,<;;;1,dis(s',s")::;6 

Proof. A bounded sequence of complex numbers contains a convergent 
subsequence (the Bolzano-Weierstrass theorem). Hence, for fixed s, the 
sequence {x" (s)} contains a convergent subsequence. On the other hand, 
since the metric space 5 is compad, there exists a countable dense subset 
{s,,} ~ 5 such that, for every e> 0, there exists a finite subset 
{s,,; 1 :s;; n < k (e)} of {s,,} satisfying the condition 

sup inf dis(s,sj):Se. (3) 
s E 5 1;:;;;J::;>k(B) 

The proof of this fact is obtained as follows. Since 5 is compact, it is 
totally bounded (see Chapter 0, 2). Thus there exists, for any b> 0, a 
finite system of points E 5 such that any point of 5 has a distance :s;; b 
from some point of the system. Letting b = 1, 2-1 , 3-1 , .•. and collecting 
the corresponding finite systems of points, we obtain a sequence {s,,} 
with the stated properties. 
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We then apply the diagonal process of choice to the sequence {x" (s)}, 
so that we obtain a subsequence {x", (s)} of {x" (s)} which converges for 
s = s1> S2"'" s", ... simultaneously. By the equi-continuity of {x .. (s)}, 
there exists, for every e> 0, a <5 = <5 (e) > 0 such that dis (s', sIt) < <5 
implies Ix .. (s') - x .. (s") I < e for n = 1, 2, ... Hence, for every s E S, 
there exists a i with i < k (e) such that 

I x .. ' (s) - x"., (s) I < I x,,, (s) - x"' (Sj) I + I x"' (s;) - x"., (s;) I 
+ Ix"., (Sj) - Xm' (s) I :s 28 + Ix". (Sj) - x"., (s;) I· 

Thus lim max I x,,, (s) - x"., (s) I < 2e, and so lim II x"' - xm.1I = O. 
".m--+OO S n,fIt---+OO 

4. The Orthogonal Base. Bessel's Inequality and 
Parseval's Relation 

Definition 1. A set S of vectors in a pre-Hilbert space X is called 
an orthogonal set, if x 1. y for each pair of distinct vectors x, y of S. If, 
in addition, /Ix 1/ = 1 for each xES, then the set S is called an ortho­
normal set. An orthonormal set S of a Hilbert space X is called a complete 
orthonormal system or an orthogonal base of X, if no orthonormal set of X 
contains S as a proper subset. 

Theorem 1. A Hilbert space X (having a non-zero vector) has at 
least one complete orthonormal system. Moreover, if S is any ortho­
normal set in X, there is a complete orthonormal system containing S as 
a subset. 

Proof (by Zorn's Lemma). Let S be an orthonormal set inX. Suchaset 
surely exists; for instance, if x # 0, the set consisting only of x/llx II is 
orthonormal. We consider the totality {S} of orthonormal sets which 
contain S as a subset. {S} is partially ordered by writing SI -< S2 for 
the inclusion relation SI ~ S2. Let {S'} be a linearly ordered subsystem 
of {S}, then U S' is an orthonormal set and an upper bound of 

S'E{S'} 

{S'}. Thus, by Zorn's Lemma, there exists a maximal element So of {S}. 
This orthonormal set So contains S and, by the maximality, it must be 
a complete orthonormal system. 

Theorem 2. Let S = {x .. ; ex E A} be a complete orthonormal system 
of a Hilbert space X. For any I E X, we define its Fourier coelficients 
(with respect to S) 

I .. = (I, xc». (1) 
Then we have Parseval's relation 

11/112 = ~ 1/ .. 12 • (2) 

Proof. We shall first prove Bessel's inequality 

£1/ .. 12 :S 111112. (2') 
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Let lXI' IX2' ••• , IX,. be any finite system of IX'S. For any finite system 
of complex numbers C"", CCt" ••• , c"'n' we have, by the orthonormality of 
{x",}, 

II I -.i C"'1 X"') 1'2 = (I -- .1 C"'I X"'I' 1- .i Ca.; X"'I) 
, )=1 I J=l )=1 

,. n 

= 11/112- .. I 1/"'112 + .I 1/"1- C"'/12. 
)=1 J=l 

Hence the minimum of II 1-;4: C"'1 X"'lr for fixed lXI' IX2' ••• , IX,., is 

attained when CCII = 1"'1 (i = 1, 2, ... , n). We have thus 

11/- j4: /",;x",r = 11/112-;4:1/"'112, and hence /~1/"'112<1I/112. (4) 

By the arbitrariness of lXI' IX2' ••• , IX,., we see that Bessel's inequality (2') 
is true, and Ia< =1= 0 for at most a countable number of IX'S, say ,. 
lXI' IX2' ••• , IX", ••• We then prove that 1= s-fun .I·I"'I x"'l' First, the 

..-..001=1 

sequence {i 1"'1 xCtI} is a Cauchy sequence, since, by the orthonormality 
)-1 

of {x",}, 

n 
which tends, by (4) proved above, toOas k-,;oo. We sets-lim .I ICll x"" =/" 

~J==l ' 
and shall prove that (I - f') is orthogonal to every vector of S. By the 
continuity of the scalar product, we have 

(f - /" x,,;) = lim (I - 1 1"'1: X"'k' X"'I) = 1"'1- 1"'1 = 0, 
..-..00 k=l 

and, when IX =1= IX; (f = 1,2, ... ), 

(I-/', x",) = lim (/- i 1"'lI:x"'II:' x",) = 0- 0 = O . 
..-..00 k=l 

Thus, by the completeness of the orthonormal system 5 = {x,,}, we 
must have (I - f') = O. Hence, by (4) and the continuity of the norm, 
we have 

0= lim III - .il",; XC<I 112 = 11/112 - lim .11/"'112 = 11/112 - I 1/",12 . 
..-..00 I J=l ..-..ooJ=l ",EA 

Corollary 1. We have the Fourier expansion 

(5) 
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Coronary 2. Let lll(A) be the space LII(A. ~. m) where m({lX}) = 1 for 
every point lX of A. Then the Hilbert space X is isometricaUy isomorphic 
to the Hilbert space l2(A) by the correspondence 

X3/--{/ .. }El2 (A) (6) 
in the sense that 

(/+g)--{/",+g",}. PI--{{3/",} and 11/112= !1{/,,}II2=.I 1/",12 • (7) 
{_l_ iKl. 1 . ..EA 

Example. V2i e • n = o. ± 1. ± 2 •... J IS a complete orthonormal 

system in the Hilbert space LII(O. 2:rr:). 

Proof. We have only to prove the completeness of this system. We 
have. by (3). 

11
1----: i 1 cl eiit l1

2 ~ III ----: i 1 I; ewl12 = 11/112 -. 1: 2~ 1/;12. 
1= -10 V2:n 1= -·10 V2:n 1= -10 

where Ii = (I. ei;'). 

If IE LII (0. 2:rr:) is continuous and with period 2:rr:. then the left hand 
side of the inequality above may be taken arbitrarily small by virtue of 
Weierstrass' trigonometric approximation theorem (see Chapter O. 2). 
':lhus the set of all the linear combinations ~ c; eiil is dense. in the sense 

1 
of the norm, in the subspace of LII(O. 2:rr:) consisting of all continuous 
functions with period 2:rr:. Such a subspace is also dense, in the sense of 
the norm. in the space LII(O, 2:rr:). Therefore. any function IE LII(O, 2:rr:). 

orthogonal to all the functions of {vh ein,} must be a zero vector of 

L2(0. 2:rr:). This proves that our system offunctions vh eint is a complete 

orthonormal system of LII(O, 2:rr:). 

5. E. Schmidt's Orthogonalization 

Theorem (E. Schmidt's orthogonalization). Given a finite or countably 
infinite sequence {Xi} of linearly independent vectors of a pre-Hilbert 
space X. Then we can construct an orthonormal set having the same 
cardinal number as the set {Xj} and spanning the same linear subspace 
as {Xi}' 

Proof. Certainly Xl =F O. We define Yl' Y2' ••. and ul ' u\I • ••• recurrent­
ly as follows: 

Yl = Xl' 

Y2 = XII - (XII' Ul ) U1, 

" Yn+l = Xn+l - . .II (X,,+1, Uj) Uj, 
1= 

Ul = Yl/IIYllI, 
ttl = YIII II YIIII, 
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This process terminates if {Xj} is a finite set. Otherwise it continues 
indefinitely. Observe that y,. # 0, because Xl' X2, ••• , X,. are linearly 
independent. Thus u,. is well defined. It is clear, by induction, that each 
u,. is a linear combination of Xl' X2, •.. , X,. and that each X,. is a linear 
combination of U1> U2' ••• , U", Thus the closed linear subspace spanned 
by the u's is the same as that spanned by the x's. 

We see, by lIuIl1 = 1, that Ysl. ul and hence Us .1. "to Thus, by 
lIuIl1 = 1, Y3l. ul and hence u3 l. ul . Repeating the argument, we see 
that ul is orthogonal to us' u3, • •• , Un, ••• Thus, by lIu2 11 = 1, we have 
Y3 .1. Us and so Us .1. us' Repeating the argument, we finally see that 
Uk .1. u'" whenever k > m. Therefore {Uj} constitutes an orthonormal set. 

Corollary. Let a Hilbert space X be separable, i.e., let X have a dense 
subset which is at most countable. Then X has a complete orthonormal 
system consisting of an at most countable number of elements. 

Proof. Suppose that an at most countable sequence {aj} of vectors 
E X be dense in X. Let Xl be the first non-zero element in the sequence 
{aj}, Xs the first at which is not in the closed subspace spanned by Xl' 

and X,. the first ai which is not in the closed subspace spanned by 
Xl' Xs, ... , X,.-I' It is clear that the a's and the x's span the same closed 
linear subspace. In fact, this closed linear subspace is the whole space X, 
because the set {aj} is dense in X. Applying Schmidt's orthogonalization 
to {Xj}, we obtain an orthonormal system {Uj} which is countable and spans 
the whole space X. 

This system {Uj} is complete, since otherwise there would exist a 
non-zero vector orthogonal to every Uj and hence orthogonal to the 
space X spanned by u/s. 

Example of Orthogonalization. Let S be the interval (a, b), and con­
sider the real Hilbert space L2(S, ~, m), where ~ is the set of all Baire 
subsets in (a, b). If we orthogonalize the set of monomials 

1, S, Sl, sa, ... , s", ... , 
we get the so-called T chebyschev system 01 polynomials 

Po(s) = constant, Pds), Ps(s), P3(S), . .. , P,.(s), ... 
which satisfies 

b 

f Pi(s) Pj(s) m(ds) = {)ij (= 0 or 1 according as i# i or i = i). 
II 

In the particular case when a = -1, b = 1 and m(ds) = ds, we obtain 
the Legendre polynomials; when a = -(X), b = (X) and m(ds) = e"""",sl ds, 
we obtain the Hermite polynomials and finally when a = 0, b = (X) and 
m(ds) = e-S ds, we obtain the Laguerre polynomials. 
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It is easy to see that, when - 00 < a < b < 00, the orthononnal 
system {Pj(s)} is complete. For, we may follow the proof of the complete­
ness of the trigonometric system (see the Example in the preceding 
section 4); we shall appeal to Weierstrass' polynomial approximation 
theorem, in place of Weierstrass' trigonometric approximation theorem. 
As to the completeness proof of the Hennite or Laguerre polynomials, 
we refer the reader to G. SZEGO [lJ or to K. YOSIDA [1]. 

6. F. Riesz' Representation Theorem 

Theorem (F. Riesz' representation theorem). Let X be a Hilbert space 
and I a bounded linear functional on X. Then there exists a uniquely 
detennined vector y, of X such that 

I(x) = (x,y,) for all xEX, and 11/11 = Ily,ll. (1) 

Conversely, any vector y E X defines a bounded linear functionally on 
Xby 

Iy(x) = (x, y) for all xE X, and Il/yll = lIyll. (2) 

Proof. The uniqueness of y, is clear, since (x, z) = 0 for all x E X 
. implies z = O. To prove its existence, consider the null space N = N (/)= 

{x EX; I (x) = O} of I. Since I is continuous and linear, N is a closed 
linear subspace. The Theorem is trivial in the case when N = X; we 
take in this case, y, = O. Suppose N =1= X. Then there exists a Yo =1= 0 
which belongs to Nl. (see Theorem 1 in Chapter III, 1). Define 

(3) 

We will show that this y, meets the condition of the Theorem. First, 
if x EN, then I (x) = (x, y,) since both sides vanish. Next, if x is of 
the fonn x = IXYo, then we have 

(x, y,) = (IXYo, y,) = (IXYO, r~ll2 Yo) = IX/(yo) = I(IXYo) = I (x) . 

Since I(x) and (x, y,) are both linear in x, the equality I(x) = (x, y,), 
x E X, is proved if we have proved that X is spanned by N and Yo' To 
show the last assertion, we write, remembering that I (y,) =1= 0, 

( !(x) ) !(x) 
X= x-!(Yt)'Y, +!(Yt)y,· 

The first term on the right is an element of N, since 

I (x - :(~;) y,) = I(x) - :(~;) I (y,) = o. 

We have thus proved the representation I(x) = (x, y,). 
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Therefore, we have 

Ilf!1 = sup I/(x) I = sup I (x, Y/) I < sup IIxll· !lYIIi = IIYIII, 
1I~1I~1 1I~1I;:;;1 1I~1I;:;;1 

and also 11/11 = sup I/(x)1 ~ I/(YIIIIY/IDI = (-IIYt II 'YI) = IIYIII· 
11*11;:;;1 \ Yt 

Hence we have proved the equality 11/11 = IIY/Ii. 
Finally, the converse part of the Theorem is clear from Il,,(x) 1= 

j(x,y)1 ~lIxll·lIylI· 
Corollary 1. Let X be a Hilbert space. Then the totality X' of bounded 

linear functionals on X constitutes also a Hilbert space, and there is a 
norm-preserving, one-to-one correspondence I ~ YI between X' and X. 
By this correspondence, X' may be identified with X as an abstract set; 
but it is not allowed to identify, by this correspondence, X' with X as 
linear spaces, since the correspondence f ~ YI is conjugate linear: 

(4) 

where (Xl' (X2 are complex numbers. 
Proof. It is easily verified that X' is made into a Hilbert space by 

defining its scalar product through (/1,/2) = (Y/,' YI.), so that the state­
ment of Corollary 1 is clear. 

Corollary 2. Any continuous linear functional T on the Hilbert space 
X' is thus identified with a uniquely determined element t of X as 
follows: 

T(f) = I(t) for all IE X'. (5) 

Proof. Clear from the fact that the product of two conjugate linear 
transformations is a linear transformation. 

Definition. The space X' is called the dual space of X. We can thus 
identify a Hilbert space X with its second dual X" = (X')' in the above 
sense. This fact will be referred to as the reflexivity of Hilbert spaces. 

Corollary 3. Let X be a Hilbert space, and X' its dual Hilbert space. 
Then, for any subset F of X' which is dense in the Hilbert space X', we 
have 

(6) 

Proof. We may assume that Xo #- 0, otherwise the formula (6) is tri­
vial. We have (xo, xo/ll Xo I D = II Xo II, and so there exists a bounded linear 
functional 10 on X such that 11/0 II = 1, to (xo) = IIxo II· Since t(xo) = (xo' Yt) 
is continuous in YI' and since the correspondence t ~ YI is norm-preserving 
we see that (6) is true by virtue of the denseness of F in X'. 

Remark. Hilbert's original definition of the "Hilbert space" is the 
space (12). See his paper [1]. It was]. VON NEUMANN [1] who gave an 
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axiomatic definition (see Chapter 1,9) of the Hilbert space assuming 
that the space is separable. F. RIESZ [1] proved the above representation 
theorem without assuming the separability of the Hilbert space. In this 
paper, he stressed that the whole theory of the Hilbert space may be 
founded upon this representation theorem. 

7. The Lax-Milgram Theorem 

Of recent years, it has been proved that a variant of F. Riesz' repre­
sentation theorem, formulated by P. LAX and A. N. MILGRAM [1], is a 
useful tool for the discussion of the existence of solutions of linear partial 
differential equations of elliptic type. 

Theorem (LAX-MILGRAM). Let X be a Hilbert space·. Let B(x, y) be a 
complex-valued functional defined on the product Hilbert space XxX 
which satisfies the conditions: 

Sesqui-linearity, i.e., 

B (IXI Xl + 1X2 x2 , y) = 1X1 B (Xl' y) + IX'l.B (xz' y) and (1) 

B(x, PlYl + Pa yz) = PlB(x, Yl) + P.B(x, Y2). 
Boundedness, i.e., there exists a positive constant y such that 

IB(x, y) I ~y IIxll· IIyll, 

Positivity, i.e., there exists a positive constant !5 such that 

B(x, x) > !5 IIxliz. 

(2) 

(3) 

Then there exists a uniquely determined bounded linear operator S with 
a bounded linear inverse S-l such that 

(x,y) = B(x,Sy) whenever xandyE X, and liS II <15-1, IIS-l II ~ y. (4) 

Proof. Let D be the totality of elements y E X for which there exists 
an element y* such that (x, y) = B (x, y*) for all x E X. D is not void, 
because 0 ED with 0* = 0 . y* is uniquely determined by y. For, if w 
be such that B (x, w) = 0 for all x, then w = 0 by 0 = B (w, w) ~ 15 IIw !lz. 
By the sesqui-linearity of (x, y) and B (x, y), we obtain a linear operator 
S with domain D(S) = D: Sy = y*. S is continuous and IISyil < 
15-1 IIyll, yE D(S), because 

15 IISyliZ ~ B(Sy, Sy) = (Sy, y)~ IISyli' IIyll. 

Moreover, D = D(S) is a closed linear subspace of X. Proof: if y" E D(S) 
and s-lim y" = Yoo, then, by the continuity of S proved above, {Sy,,} 

.......00 

is a Cauchy sequence and so has a limit z = s-lim S y". By the continuity 
of the scalar product, we have lim (x, Y .. ) = (x, Yoo). We have also, by 

.......00 
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(2), lim B(x, 5 Yn) = B(x, z). Thus, by (x, Yn) = B(x, 5 Yn), we must 
n-+OO 

have (x, Yoo) = B(x, z) which proves that Yoo ED and 5yoo = z. 
Therefore the first part of the Theorem, that is, the existence of 

the operator 5 is proved if we can show that D (5) = X. Suppose 
D (5) #- X. Then there exists a Wo E X such that Wo #- 0 and Wo E D (5) 1.. 

Consider the linear functional F (z) = B (z, wo) defined on X. F (z) is 
continuous,since IF(z) 1= IB(z, wo) I <y IIzll·llwoli. Thus, byF. Riesz' 
representation theorem, there exists a w~ E X such that B (z, wo) = 
F (z) = (z, w~) for all z EX. This proves that w~ ED (5) and 5w~ = WOo 
But, by b Ilwol12 < B(wo' wo) = (wo' w~) = 0, we obtain Wo = 0 which 
is a contradiction. 

The inverse 5-1 exists. For, 5y = 0 implies (x, y) = B(x, 5y) = 0 
for all x E X and so Y = O. As above, we show that, for every Y E X there 
exists a y' such that (z, Y') = B (z, y) for all z EX. Hence y = 5y' and so 
5-1 is an everywhere defined operator, and, by I (z, 5-1 y) 1= IB(z; y) I < 
y Ilzll'llyll, we see that 115-111 < y. 

Concrete applications of the Lax-Milgram theorem will be given in 
later chapters. In the following four sections, we shall give some examples 
of the direct application of F. Riesz' representation theorem. 

8. A Proof of the Lebesgue-Nikodym Theorem 

This theorem reads as follows. 

Theorem (LEBESGUE-NIKODYM). Let (5, 58, m) be a measure space, 
and v (B) be a a-finite, a-additive and non-negative measure defined on 58. 
If v is m-absolutely continuous, then there exists a non-negative, m­
measurable function P (s) such that 

v(B)=jp(s)m(ds) forall BE58withv(B)<oo. (1) 
B 

Moreover, the "density" P(s) of v (B) (with respect to m(B) is uniquely 
determined in the sense that any two of them are equal m-a.e. 

Proof (due to J. VON NEUMANN [2]). It is easy to see that e(B) = 
m(B) + v(B) is a a-finite, a-additive and non-negative measure defined 

00 

on 58. Let {Bn} be a sequence of sets E 58 such that 5 = U Bn, Bn ~ Bn+! 
.. =1 

and e (Bn) < 00 for n = 1, 2, ... If we can prove the theorem for every 
B ~ Bn (for fixed n) and obtain the density P .. (s), then the Theorem is 
true. For, we have only to take P(s) as follows: 

P (s) = PI (s) for s E Bv and P (s) =P .. +! (s) for s E Bn+! - B" 

(n = 1, 2, ... ). 
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Therefore we may assume that e (S) < (X) without losing the gene­
rality. Consider the Hilbert space L2(S, ~,e). Then 

I(x) = J x(s) v(ds), xE L2(S,~, e), 
s 

gives a bounded linear functional on L2(S, ~,e), because 

I/(x) I ~ f Ix(s) I v (ds) < (/ Ix(s) 12 V (ds)/,2 (/1. V (ds)Y'2 

< II X IIQ . V (S)1/2 , 

where Ilx IIQ = (/ Ix(s) 12 e(ds)Y'2. Thus, by F. Riesz' representation 

theorem, there exists a uniquely determined y E L2 (S, ~, e) such that 

J x(s) v (ds) = J x(s) y(s) e(ds) = J x(s) y(s) m(ds) + J x(s) y(s) v (ds) 
s s s s 

holds for all x E L2(S, ~, e). Taking x as non-negative functions and con­
sidering the real part of both sides, we may assume that y(s) is a 
real-valued function. Hence 

f x(s) (1- y(s») v (ds) = J x(s) y(s) m(ds) if x(s) E L2(S, ~,e) (2) 
s s 

is non-negative. 
We can prove 0 <y(s) < 1 e-a.e. To this purpose, setE1 = {s; y(s) < o} 

and E2 = {s; y (s) ;;::::: I}. If we take the defining function e E, (s) of E1 
for x(s) in (2), then the left hand side is > 0 and hence J y(s) m(ds) ;;::::: o. 

E, 
Thus we must have m(E1) = 0, and so, by the m-absolute continuity 
of v, V(E1) = 0, e(E1) = O. We may also prove e(E2) = 0, by taking 
the defining function eE, (s) for x(s) in (2). Therefore 0::;: y(s) < 1 
e-a.€'. on S. 

Let x(s) be ~-measurable and > 0 e-a.e. Then, by e(S) < (X), the 
"truncated functions" x .. (s) = min (x(s), n) belong to L2(S,~, e} 
(n = 1, 2, ... ), and hence 

J x .. (s) (1- Y (s)) v (ds) = J x .. (s) y (s) m (ds) (n = 1, 2, ... ). (3} 
s s 

Since the integrals increase monotonely as n increases, we have 

lim J x .. (s) (1- y(s») v (ds) = lim f x .. (s) y(s) m(ds) = L < (X). (4) 
1>-+00 s 1>-+00 S 

Since the integrands are > 0 e-a.e., we have, by the Lebesgue-Fatou 
Lemma, 

L > f lim (x .. (s) (1- y (s» v (ds) = f x (s) (1 - Y (s» v (ds) , 
s ft-+OO s (5} 

L ;;::::: f lim (x .. (s) y(s» m(ds) = f x(s) y m(ds), 
s 1>-+00 s 
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under the convention that if x(s) (1- y(s)) is not "..integrable, the right 
hand side is equal tooo; and the same convention for x(s) y(s). If x(s)y(s) 
is m-integrable, then, by the Lebesgue-Fatou Lemma, 

L ~ J lim (xn (s) y (s» m (ds) = J x (s) y (s) m (ds). (6) 
s ~~ s 

This formula is true even if x (s) y (s) is not m-integrable, under the con­
vention that then L = 00. Under a similar convention, we have 

L ~ f x(s) (1-y(s»vCds). -'\;,(7) 

Therefore, we have 

J x(s) (1- y(s» v (ds) = J x(s) y(s) m(ds) for every x(s) which 
s s (8) 
is 58-measurable and :?; 0 e-a.e., 

under the convention that, if either side of the equality is = 00 then the 
other side is also = 00. 

Now we put 

x(s) (1- y(s» = z(s), y(s) (1- y(S»-l = P(s). 

Then, under the same convention as in (8), we have 

J z(s) v (ds) = J z(s) P(s) m(ds) if z(s) is 58-measurable 
s s 
and :?; 0 e-a.e. 

If we take the defining function C B (s) of BE 58 for z(s), we obtain 

v (B) = J P(s) m(ds) for all BE 58. 
B 

The last part of the Theorem is clear in view of definition (1). 

(9) 

Reference. For a straightforward proof of the Lebesgue-Nikodym theo­
rem based upon Hahn's decomposition (Theorem 3 in Chapter 1,3) see 
K. YOSIDA [2]. This proof is reproduced in HALMOS [1], p. 128. See also 
SAKS [1] and DUNFORD-SCHWARTZ [1]. 

9. The Aronszajn-Bergman Reproducing Kernel 

Let A be an abstract set, and let a system X of complex-valued func­
tions defined on A constitute a Hilbert space by the scalar product 

(I, g) = (!(a), g(a» ... (1) 

A complex-valued function K (a, b) defined on A xA is called a reproduc­
ing kernel of X if it satisfies the condition: 

For any fixed b, K (a, b) E X as a function of a, (2) 

l(b)=(J(a),K(a,b» .. andhence I (b) = (K(a, b),/(a»... (3) 
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As for the existence of reproducing kernels, we have 

Theorem 1 (N. ARONSZAJN [1], S. BERGMAN [1 J). X has a reproducing 
kernel K iff there exists, for any Yo E A, a positive constant Cy., depending 
upon Yo, such that 

II (Yo) I ~ Cy.1I1 II for all I EX. (4) 

Proof. The "only if" part is proved by applying Schwarz' inequality 
to I (Yo) = (t (x), K (x, Yo))x: 

I I(yo) I < II I II· (K(x, Yo). K(x, YO)!/2 = II I II K(yo' Yo)1I2. (5) 

The "if" part is proved by applying F. Riesz' representation theorem to 
the linear functional Fy. (I) = I (Yo) of lEX. Thus, there exists a uniquely 
determined vector gy. (x) of X such that, for every I E X, 

I(yo) = Fy.(I) = (f (x) , gy.(x)x' 

and so gyo (x) = K (x, Yo) is a reproducing kernel of X. The proof shows 
that the reproducing kernel is uniquely determined. 

Corollary. We have 

sup I/(yo) 1= K(yo' Yo) 1/2 , (6) 
11/11:>;1 

the supremum being attained by 

lo(x) = eK(x, yo)/K(yo, Yo) 1/2, lei = 1. (7) 

Proof. The equality in the Schwarz' inequality (5) holds iff I(x) and 
K (x, Yo) are linearly dependent. From the two conditions I (x) = IXK (x, Yo) 
and 11/11 = 1, we obtain 

1 = IIX I (K(x, yo),K(x'YO)!/2= IIX IK(yo,yo)1/2, thatis, IIX I = K(yo'YO)-1/2. 

Hence the equality sign in (5) is attained by 10 (x). 
Example. Consider the Hilbert space A2(G). For any IE A2(G) and 

z E G, we have (see (4) in Chapter I, 9) 

II (zo) 12 < (n r 2)-1 J !/(z) 12 dx dy (z = x + iy). 
1:-1.1:>;' 

Thus A 2 (G) has the reproducing kernel which will be denoted by KG (z I z'). 
This KG(z, z') is called Bergman's kernel of the domain G of the complex 
plane. The following theorem of Bergman illustrates the meaning of 
KG(z, z') in the theory of conformal mapping. 

Theorem 2. Let G be a simply connected bounded open domain of the 
complex plane, and Zo be any point of G. By Riemann's theorem, there 
exists a uniquely determined regular function w = I (z; zo) of Z which 
gives a one-to-one conformal map of the domain G onto the sphere 
!w 1< eG of the complex w-plane in such a way that 

10 (zo; zo) = 0, (dlo(z; zo)/dz),_z, = 1. 
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Bergman's kernel KG(z; zo) is connected with lo(z; zo) by 

• 
lo(z; zo) = KG (zo; ZO)-l f KG(t; zo) dt, (8) 

s. 

where the integral is taken along any rectifiable curve lying in G and 
connecting Zo with z. 

Proof. We set 

AHG) = {t(z) ;/(z) isholomorphicin G,I' (z)EA2(G),/(zo)=Oandl' (zo)=l} , 

and consider, for any IE AHG), the number 

111'112= fll'(z)12dxdy, z=x+iy. (9) 
G 

If we denote by z = lP(w) the inverse function of w = lo(z; zo), then, for 
any IE Af(G) , 

111'112 = r f II' (IP(W)) 12 lIP' (w) 12 du dv, w = u + iv. 
l ... r<QQ 

For, by the Cauchy-Riemann partial differential equations 

we have 

dx dy = 0((%' Y» du dv = (x .. y~ - y .. x~) du dv = (x; + y;) du dv o u, v 

= lIP' (w) 12 du dv. 

Let IE A~(G), and let F(w) = 1(IP(w» be expanded into power series: 

00 

F(w) = 1(IP(w)) = w + .I en wn for Iw 1< eGo ,,-2 
00 

Then F' (w) = I' (IP (w» IP' (w) = 1 + .I n en wn- 1 and so 
n-2 

111'112 = r f 11 + .i n e,. wn- 1f2 du dv 
1"'1<"6 n-2 

= ? d1' { j (1' + i n2 I en 12 ,-2 .. -1) dO} = 3t e~ + .i 3t n I ell 12 e~" . 
o 0 n-2 ,.-2 

Therefore minimum III' " = Vi eG, and this minimum is attained iff 
/EAI(G) 

F(w) = 1(IP(w» = w, that is, iff I(z) = lo(z; zo). 
Weset,forany/EA~(G),g(z) = I (z)/1I1' II. Then IIg'lI = 1. If we put 

A2(G) = {g(z); g(z) is holomorphic in G, g(zo) = 0, g' (zo) > 0 

and IIg'II = 1}, 
7 Yoslda. FUDctlonal Analysis 
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then the above remark shows that 

maxi.mumg'(zo) = 1/11/~11 = (V~ eG)-l, 
gEA'(G) 

and this maximum is attained iff g(z) is equal to 

go(z) = lo(z; zo)/II/~ II = lo(z; zo) / ~ eGo 

Hence, by (7), we obtain 

, () (II- )-ldfo(Z;Zo) 1 K (. )/K ( . )1/2 r I go z = r:n; eG dz = II G Z, Zo G zo, Zo ' J. = 1. 

Hence, by putting z = zO' we have 

(J. vn eGt l = KG (zo; zo)/KG(zo; zo)1/2 = KG (zo; ZO)1/2, 

and so we have proved the formula 

dfo(z;zo) K (. )/K ( . ) 
dz = G Z, Zo G zO' Zo • 

10. The Negative Norm of P. Lax 

Let Ho(D) be the completion of the pre-Hilbert space ego (D) endowed 
with the scalar product (rp, "P) s and the norm II rpll s: 

(rp, "P)s = ~ JDirp(X} Dj"P(x) dx, Ilrplls=(rp,rp}!/2. (1) 
li~sfJ 

Any element bE Hg (D) = L2 (D) defines a continuous linear functional 
Ib on Ho (D) by 

Ib(W) = (w,b)o' wE Ho(D). (2) 

For, by Schwarz' inequality, we have 

I(w, b}ol:S !Iwllo ·llbllo < Ilwlls ·llbllo· 

Therefore, if we define the negative norm of bE Hg(D) = L2(D) by 

Ilbll-s= sup I/b(W} I = sup I(w,b)ol, (3) 
wEH:(fJ),llwll,:;>l wEHf(fJ),IIwll,:;>l 

then we have 

II b ! I-s ~ I! b 110' 
and so, by Ilbll-s > I(w/llwlls, b}ol, 

I(w, b}ol < Ilwlls ·llbll-s. 
Hence we may write 

( 4) 

(5) 

Ilbl!-s = Il/bll-s = sup I(w, b)ol for any bE Hg(D). (3') 
11"'11,:;>1 

We shall prove 
Theorem 1 (P. LAX [2J). The dual space Ho (D)' of the space Ho (Q) 

may be identified with the completion of the space Hg (D) = L2 (D) with 
respect to the negative norm. 
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For the proof we prepare 

Proposition. The totality F of the continuous linear functionals on 
Ho (D) of the fonn tb is dense in the Hilbert space Ho (.0)', which is the dual 
space of Ho (D). 

Proof. F is total on Ho (D) in the sense that, for a fixed w E Ho (D), 
the simultaneous vanishing tb(W) = 0, bE Hg(D), takes place only if 
W = O. This is clear since any element wE H'O (D) is also an element of 
Hg(D). 

Now if F is not dense in the Hilbert space Ho(D)', then there exists 
an element T =1= 0 of the second dual space Ho (D)" = (Ho (.0)')' such 
that T (tb) = 0 for all tb E F. By the reflexivity of the Hilbert space 
Ho (D), there exists an element t E H~ (D) such that T (I) = t (t) for all 
t E Ho (.0)'. Thus T (tb) = tb (t) = 0 for all bE Hg (D). This implies, by the 
totality of F proved above, that t = 0, contrary to T =1= O. 

Corollary. We have, dually to (3'). 

Ilwlls= sup l(w,b)olforanywEHo(D). (6) 
bEH:(O),lIbll_.:;>l 

Proof. Clear from Corollary 3 in Chapter III, 6, because F = 
{tb; b E Hg (D)} is dense in Ho (.0)'. 

Proof of Theorem 1. Clear from the facts that i) F is dense in the 
dual space Ho (.0)' and ii) F is in one-to-one correspondence to the set 
Hg(D) = L2(D) preserving the negative nonn, i.e., 

F 3tb -- bE Hg(D) and IItbll-s = IIbll-s. 
We shall denote by Hr;s (D) the completion of H8 (D) with respect to 

the negative nonn II b II-s. Thus 

Ho (.0)' = Hr;s (D). (7) 

For any continuous linear functional t on Ho(D), we shall denote by 
<w, t> the value of t at wE Ho (D). Thus, for any b E Hg (.0). we may write 

tb(W) = (w, b)o = <W,tb> = <w,b), wE Ho(D). (8) 

and have the generalized Schwarz' inequality 

(9) 

which is precisely (5). 
Now we can prove 

Theorem 2 (P. LAX [2]). Any continuous linear functional g(b) on 
Hr;s (D) can be represented, by a fixed element wE Ho (D), as 

g(b) = gw(b) = <w, b>. (10) 
We have, in particular, 

H~ (.0)' = Hr;s (D), Hr;s (D)' = Ho (D) . (11) 

7* 
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Proof. If bE H8 (D) , then <w, b> = fb(W) = (w, b)o. Since F = 
{tb; bE H8(D)} is dense in the Hilbert space Ho(D)', we know, by (9), 

that <w, b> = (b, w)o with a fixed W E Ho(D), defines a linearfunctionalg. 
continuous on a dense subset F of Ho (D)'. The norm of this functional 
gw on F will be denoted by Ilgwll •. Then, by (6), 

Ilgwll. = sup I(b, w)ol = sup I(w, b)ol = Ilwlls. (12) 
Ilbll-,;;;;l IIbll-,:$i;l 

We may thus extend, by continuity, the functional gill on F to a con­
tinuous linear functional on the completion of F (with respect to the 
negative norm), that is, gill can be extended to a continuous linear func­
tional on Ho (D)' = HCi' (D) ; we denote this extension by the same letter 
gill' We have thus 

ligllIll = sup I gill (b) ! = Ilw II.· 
IIbll-..;;;;l 

(13) 

Hence, in view of the completeness of the space Ho(D), the totality G of 
the continuous linear functionals gill on HCi' (D) may be considered as 
a closed linear subspace of HCi' (D)' by the correspondence gill -++ w. If this 
closed subspace G were not dense in HCi' (D)', then there exists a continuous 
linear functional fol= 0 on HCi' (Dl' such that f(glll) = 0 for all glllE: G. But, 
since the Hilbert space HCi' (Q) is reflexive, such a functional f is given 
by f(gw) = glll(fo). foE HCi'(D), and so by (13) fo must be equal to 0, con­
trary to the fact f 01= O. Therefore we have proved HCi' (D)' = Ho(D). 

Remark. The notion of the negative norm was introduced by P. Lax 
with the view of applying it to the genuine differentiability of distribution 
solutions of linear partial differential equations. We shall discuss such 
differentiability problems in later chapters. It is to be noted that the 
notion of the negative norm is also introduced naturally through the 
Fourier transform. This was done by]. LERAY [1] earlier than LAX. 
We shall explain the point in a later chapter on the Fourier transform. 

11. Local Structures of Generalized Functions 

A generalized function is locally the distributional derivative of a 
function. More precisely, we can prove 

Theorem (L. SCHWARTZ [1]). Let T be a generalized function in 
D ~ R". Then, for any compact subset K of D, there exist a positive 
integer mo = mo(T, K) and a function f(x) = f(x; T, K, mol E L2(K) 
such that 

aRm, (x) 
T (q;) = J f (x) ffJ dx whenever q; E 'l)K (D). (1) 

K ax,:,", ax;'" .• ax::" 
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Proof. By the Corollary in Chapter 1,8, there exist a positive con­
stant C and a positive integer m such that 

IT(tp) 1 <C sup IDifll(x}1 whenever tpE $>K(D). (2) 
lil~m,sEK 

Thus there exists a positive number (j such that 

Pm(tp) = sup IDitp(x)! < (3, tpE $>K(D), implies IT(tp) I ~ 1. (3) 
lil~m,sEK 

We introduce the notation 

(4) 

and prove that there exists a positive constant e such that, for ""0 = 
m+1, 

f I 8 .... 11' (x)/8x .... 12 dx < e, tpE $>K(D), implies Pm(fII) < (3. (5) 
D 

This is proved by repeated application of the following inequality 

1'1' (x) 1 < f 18'P(x1, .•• , x'_1> y, xHI>· .. , x,,)/8yl dy 
K,,(-oo,sd 

~( J dy)1/2( J 18?p(Xl, ••• ,Xi_Vy,xHV .•. ,x,,)/8y!2dy)1/2 
Kr.( -oo,st) K,,( -OO,Si) 

= tl/2( J 18'1' (XI' •.. , X'_I> y, xHl' ... ' x,,)/8y 12 dy)1/2, 
K,,(-OO,Si) 

where t is the diameter of K, i.e., the maximum distance between two 
points of the compact set K. 

Consider the mapping 11' (x) -+ 'I' (x) = 8m• 11' (x)/8x .... defined on $>K(D) 
into $>K(D). As may be seen by integration, 'p(x) = 0 implies fII(x) = O. 
Hence the above mapping is one-to-one. Thus T(tp), fII E $>K(D), defines 
a linear functional 5('1'), 'p(x) = am. 11' (x)/8x .... , by 5('1') = T(tp). By (3) 
and (5), 5 is a continuous linear functional on the pre-Hilbert space X 
consisting of such 'II's and topologized by the norm II'll 11= (j I 'I' (x) 12dxY'2. 
Thus there exists, by F. Riesz' representation theorem, a uniquely deter­
mined function / (x) from the completion of X such that 

T(tp) = 5('1') = J (8""11' (x)/8x111o) ·/(x) dx for all filE $>K(D). 
K 

Actually, the completion of X is contained in L2(K) as a closed linear 
subspace, and so the Theorem is proved. 

References for Chapter m 
For general account of Hilbert spaces, see N. I. ACHIESER­

I. M. GLASMAN [1], N. DUNFORD-]. SCHWARTZ [2], B. Sz. NAGY [1], 
F. RIESZ-B. Sz. NAGY [3] and M. H. STONE [1]. 
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IV. The Hahn-Banach Theorems 
In a Hilbert space, we can introduce the notion of orthogonal coor­

dinates through an orthogonal base, and these coordinates are the values 
of bounded linear functionals defined by the vectors of the base. This 
suggests that we consider continuous linear functionals, in a linear topolo­
gical space, as generalized coordinates of the space. To ensure the exist­
ence of non-trivial continuous linear functionals in a general locally 
convex linear topological space, we must rely upon the Hahn-Banach 
extension theorems. 

1. The Hahn-Banach Extension Theorem in Real Linear Spaces 

Theorem (HAHN [2], BANACH [1]). Let X be a real linear space and 
let p (x) be a real-valued function defined on X satisfying the conditions: 

p (x + y) < P (x) + P (y) (subadditivity) , (1) 

P (IX x) = IXP (x) for IX > o. (2) 

Let M be a real linear subspace of X and 10 a real-valued linear functional 
defined on M: 

10(lXx + f3y) = 1X/0(x) + f3/o(Y) for x, y EM and real IX, f3. (3) 

Let 10 satisfy 10 (x) ::;: P (x) on M. Then there exists a real-valued linear 
functional F defined on X such that i) F is an extension of 10 , i.e., 
F(x) = 10 (x) for all xE M, and ii) F(x) < P(x) on X. 

Proof. Suppose first that X is spanned by M and an element Xo EM, 
that is, suppose that 

X = {x = m + IXXO; mE M, IX real}. 

Since Xo EM, the above representation of x E X in the form x = m + IXX,. 
is unique. It follows that, if, for any real number c, we set 

F(x) = F(m + IXXO) = lo(m) + IXC, 

then F is a real linear functional on X which is an extension of 10 • We 
have to choose csuch that F(x) < P(x), that is'/o(m) +IXC < p(m + IXXO). 

This condition is equivalent to the following two conditions: 

10 (m/IX) + C < P (xo + m/IX) for IX > 0, 
10Cm/(-IX)) - C < PC-xo + m/(-IX)) for IX < o. 

To satisfy these conditions; we shall choose c such that 

10 (m') - P (m' - xo) ::;: c < p (mil + xo) -/0 (mil) for all m', mil EM. 

Such a choice of c is possible since 

fo (m') + 10 (mil) = 10 (m' + mil) < p (m' + mil) = p (m' - Xo + mil + .~o) 
~ p(m' - xu) + p(m" -+ xo): 
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we have only to choose c between the two numbers 

sup[fo(m')-p(m'-xo)J and inf [p(m"+xo)-/o(m")J. 
~M ~M 
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Consider now the family of all real linear extensions g of 10 for which 
the inequality g(x) < P(x) holds for all x in the domain of g. We make 
this family into a partially ordered family by defining h > g to mean that h 
is an extension of g. Then Zorn's Lemma ensures the existence of a 
maximal linear extension g of 10 for which the inequality g (x) ~ p (x) 
holds for all x in the domain of g. We have to prove that the domain 
D (g) of g coincides with X itself. If it does not, we obtain, taking D (g) as 
M and g as 10 , a proper extension F of g which satisfies F (x) < P (x) for 
all x in the domain of F, contrary to the maximality of the linear exten­
sion g. 

Corollary. Given a functional P(x) defined on a real linear space X 
such that (1) and (2) are satisfied. Then there exists a linearfunctional I 
defined on X such that 

-P(-x) < I(x) < P(x). (4) 

Proof. Take any point xoE X and define M = {x; x = xXo' x real}. 
Set lo(xxo) = xP(xo)' Then 10 is a real linear functional defined on M. 
We have lo(x) < P(x) on M. In fact, xP(xo) = P(xxo) if x> 0, and 
if x < 0, we have xp (xo) ~ - xp (-xo) = p (xxo) by 0 = P (0) ~ P (xo) + 
P(-xo). Thus there exists a linear functional I defined on X such that 
I(x) = 10 (x) on M and I (x) < P(x) on X. Since -I (x) = I(-x) < P(-x), 
we obtain -P(-x) < l(x):S P(x). 

2. The Generalized Limit 

The notion of a sequence {x .. } of a countable number of elements x" 
is generalized to the notion of a directed set of elements depending on a 
parameter which runs through an uncountable set. The notion of the 
limit of a sequence of elements may be extended to the notion of the 
generalized limit of a directed set of elements. 

Definition. A partially ordered set A of elements x, p, ... is called a 
directed set if it satisfies the condition: 

For any pair x, p of elements of A, there exists arE A 
such that x -< r, P -< y. (1) 

Let, to each point x of a directed set A, there be associated a certain set 
of real numbers I(x). Thus I(x) is a, not necessarily one-valued, real 
function defined on the directed set A . We write 

lim/(x) = a (a is a real number) 
",EA 
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if, for any e > 0, there exists an IXo E A such that lXo -< lX implies 
I/(lX) - a I < e for all possible values of 1 at lX. We say, in such a case, that 
the value a is the generalized limit or Moore-Smith limit of l(lX) through 
the directed set A. 

Example. Consider a partition LI of the real interval [0, 1]: 

0=tO<t1 <···<t,,=l. 

The totality P of the partition of [0, 1] is a directed set A by defining 
the partial order LI -< LI' as follows: If the partition LI' is given by 
o = t~ < t~ < ... < t~ = 1, then LI -< LI' means that n < m and that 
every t, is equal to some tj. Let x (t) be a real-valued continuous function 
defined on [0,1], and let I(LI) be the totality of real numbers of the form 

.. -1 

. .Io (t;+1 - ti) x(tj), where tj is any point of [ti' ti+1]' 
1-

Thus I(LI) is the totality of the Riemann sum of the function x(t) per­
l 

taining to the partition LI. The value of the Riemann integral f x(t) dt 
o 

is nothing but the generalized limit of I(LI) through P. 
As to the existence of a generalized limit, we have the 
Theorem (S. BANACH). Let X(lX) be a real-valued bounded function 

defined on a directed set A. The totality of such functions constitutes a 
real linear space X by 

(x + y) (lX) = X(lX) + Y(lX), (fJx) (lX) = fJX(lX). 

We can then define a linear functional, defined on X and which we shall 
denote by LIM x (lX), satisfying the condition 

",EA 

lim x (lX) < LIM X (lX) < lim x (lX) , 
",EA ",EA ",EA 

where 
lim X (lX) = sup infx (fJ), lim x (fJ) = inf sup x (fJ) . 
",EA '" "'-<P .. EA '" "'''('P 

Therefore LIM X(lX) = lim X(lX) if the latter generalized limit exists. 
/SEA .. EA 

Proof. We put P(x) = lim X (lX). It is easy to see that this P(x) 
",EA 

satisfies the condition of the Hahn-Banach extension theorem. Hence, 
there exists a linear functional 1 defined on X such that -p (-x) < 
I(x) < P(x) on X. We can easily prove that lim X(lX) = -P(-x) so 

.. EA 

that we obtain the Theorem, by putting LIM X(lX) = I(x). 
",EA 

3. Locally Convex, Complete Linear Topological Spaces 

Definition. As in numerical case, we may define a directed set {x",} in 
a linear topological space X. {x",} is said to converge to an element x of 
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X, if, for every neighbourhood U (x) of x, there exists an index ~ such 
that Xc< E U (x) for all indices lX >-~. A directed set {xc<} of X is said to 
be fundamental, if every neighbourhood U (0) of the zero vector 0 of X 
is assigned an index ~ such that (xc<-xl1) E U (0) for all indices lX,,8 >-~. 
A linear topological space X is said to be complete if every directed 
fundamental set of X converges to some element x E X in the sense 
above. 

Remark. We can weaken the condition of the completeness, and 
require only that every sequence of X which is fundamental as a directed 
set converges to an element x EX; a space X satisfying this condition is 
said to be sequetttially complete. For normed linear spaces, the two defini­
tions of completeness are equivalent, However, in the general case, not 
every sequentially complete space is complete. 

Example of a locally convex, sequentially complete linear topological 
space. Let a sequence {f ... (x)} of ~ (.0) satisfy the condition 
lim (f ... - f ... ) = 0 in 'll (.0). That is, by the Corollary of Proposition 7 

Io,A--+oo 

in Chapter I, 1, we assume that there exists a compact subset K of.Q for 
which supp(f ... ) ~ K (h = 1, 2, ... ) and ... ,~ (DBt...(X) - DBf ... (x» = 0 

uniformly on K for any differential operator DB. Then it is easy to see, 
by applying the Ascoli-Arze.Ia. theorem, that there exists a functionfE 'll (.0) 
for which lim DBf ... (x) = D'f(x) uniformly on K for any differential 

A--+oo 

operator DB, Hence lim f ... = f in ~ (.0) and so 'll (.0) is sequentially 
A--+oo 

complete. Similarly, we can prove that @:(.Q) is also sequentially complete. 
As in the case of a normed linear space, we can prove the 
Theorem. Every locally convex linear topological space X can be 

embedded in a locally convex, complete linear topological space, in 
which X forms a dense subset. 

We omit the proof. The reader is referred to the literature listed in 
J. A. DIEUDONNE [1]. Cf. also G. KOTHE [1]. 

4. The Hahn-Banach Extension Theorem in Complex Linear Spaces 

Theorem (BOHNENBLUST-SOBCZYK). Let X be a complex linear space 
and p a semi-norm defined on X. Let M be a complex linear subspace of 
X and f a complex linear functional defined on M such that If (x) I <P(x) 
on M. Then there exists a complex linear functional F defined on X 
such that i) F is an extension of f, and ii) I F (x) I < P (x) on X. 

Proof. We observe that a complex linear space is also a real linear 
space if the scalar JIluItiplication is restricted to real numbers. If f (x) = 
g (x) + i h (x), where g (x) and h (x) are the real and imaginary parts of . 
f(x) respectively, then g and hare real linear functionals defined on M. 
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Thus 
Ig(x) I ~ I/(x) I <P(x) and Ih(x) I ~ I/(x) I <P(x) on M. 

Since, for each x EM, 

g(ix) + ih(ix) = I (ix) = il(x) = i(g(x) + ih(x)) = - h(x) + ig(x), 

we have 
h(x)=-g(ix) for all xEM. 

By the Theorem in Chapter IV, 1, we can extend g to a real linear func­
tional G defined on X with the properly that G (x) < P (x) on X. Hence 
-G(x) = G(-x) ~P(-x) = P(x), and so IG(x) I ~ P(x). We define 

F(x) = G(x) -iG(ix). 

Then, by F(ix) = G(ix) - iG(-x) = G(ix) + iG(x) = iF (x), we easily 
see that F is a complex linear functional defined on X. F is an extension 
of I. For, x E M implies that 

F(x) = G(x) - iG(ix) = g(x) - ig(ix) = g(x) + ih(x) = I (x) . 

To prove IF(x) I <P(x), we write F(x) = l'e- iO so that IF(x) 1= 
e'0 F (x) = F (e'o x) is real positive; consequently I F (x) I = I G (e'o x) I < 
P(e'°x) = Ie'°l P(x) = P(x). 

5. The Hahn-Banach Extension Theorem in Normed Linear Spaces 

Theorem 1. Let X be a normed linear space, M a linear subspace of X 
and 11 a continuous linear functional defined on M. Then there exists a 
continuous linear functional I defined on X such that i) I is an extension 
of 11> and ii) 11/111 = 11111· 

Proof. Set P(x) = 11/1 11. !lxll. Then P is a continuous semi-norm 
defined on X such that 111 (x) I < P (x) on M. There exists, by the Theorem 
in the preceding section 4, a linear extension I of 11 defined on the whole 
space X and such that I/(x) I <P(x). Thus 11111 < sup P(x) = 11/1 1!· 

11%11:;:1 
On the other hand, since I is an extension of 11' we must have 11111 > 11/111 
and so we obtain 111111 = 11/11. 

An Application to Moment Problems 

Theorem 2. Let X be a normed linear space. Given a sequence of 
elements {x .. } ~ X, a sequence of complex numbers {.x .. } and a positive 
number y. Then a necessary and sufficient condition for the existence of 
a continuous linear functional I on X such that I (x.) = .x. (i = 1, 2, ... ) 
and 11111 < y is that the inequalities 

Ii poocoi < y II i poxol'lO 
.=1 •• 1.-1' • 
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hold for any choice of positive numbers n and complex numbers 
PI' P2, ... , {J ... 

Proof. The necessity of this condition is clear from the definition of 
11/11. We shall prove the sufficiency. Consider the set 

Xl = {z; z = .1: {J.x. where n and {J are arbitrary} . 
• -1 

" m 
For two representations z = .I {J.x. = .I {J.,Xi' of the same element 

ts=l 1-1 
Z E Xl> we have, by the condition of the Theorem, 

I.~ {J.rx. - .-! {J.,rx., I < y II.~ {J.X. - .-! {J., X.' Ii = O. 

Thus a continuous linear functional 11 is defined on Xl' by 11 C~ (J.x.) = 
.. 

. I (J.rx •. We have only to extend, by the preceding Theorem 1, 11 to a .-1 
continuous linear functional I on X with 11/11 = 11/1 11. 

Remark. As will be shown in section 9 of this chapter, any continuous 
linear functional I on C [0, IJ is representable as 

1 

I(x) = f x(t) m(dt) 
o 

with a uniquely determined Baire measure m on the interval [0, 1]. Thus, 
if we take Xj(t) = t,- 1 (j = 1, 2, ... ), Theorem 2 gives the solvability 
condition of the moment problem: 

1 

f t i- 1 m(dt) = rxi (i = 1, 2, ... ). 
o 

6. The Existence of Non-trivial Continuous Linear Functionals 

Theorem 1. Let X be a. real or complex linear topological space, Xo a 
point of X and p (x) a continuous semi-norm on X. Then there exists a 
continuous linear functional F on X such that F (xo) = P (xo) and 
IF (x) I s;; P(x) on X. 

Proof. Let M be the set of all elements rxxo, and define I on M by 
/(rxxo) = rxp (xo)' Then I is linear on M and II (rxxo) I = Irxp (xo) I = p (rxxo) 
there. Thus there exists, by the Theorem in Chapter IV, 4, an extension 
F of I such that IF(x) I < P(x) on X. Hence F(x) is continuous at x = 0 
with P(x), and so, by the linearity of F, F(x) is continuous at every 
point of X. 

Corollary 1. Let X be a locally convex space and Xo =1= 0 be an element 
of X. Then there exists a continuous semi-norm p on X such that 
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P (xo) =F O. Thus, by Theorem 1, there exists a continuous linear func­
tionallo on X such that 

lo(xo) = P(xo) =F 0 and 1/0 (x) I <P(x) on X. 

Corollary 2. Let X be a normed linear space and Xo=F 0 be anyele­
ment of X. Then there exists a continuous linear functional 10 on X such 
that 

lo(xo) = IIxoll and 11/011 = 1. 

Proof. We take IIxll for P(x) in Corollary 1. Thus 1I/011:S::: 1 from 
I/o(x) I <llxll· But, by lo(xo) = IlxolI, we must have the equality 
11/011 = 1. 

Remark. As above, we prove the following theorem by the Theorem 
in Chapter IV, 1. 

Theorem 1'. Let X be a real linear topological space, Xo a point of X 
and P (x) a real continuous functional on X such that 

P(x + y) < P(x) + P(y) and P(IXX) = IXP(X) for IX ~ O. 

Then there exists a continuous real linear functional F on X such that 
F(xo) = P(xo) and -P(-x) :s::: F(x) < P(x) on X. 

Theorem 2. Let X be a locally convex linear topological space. Let M 
be a linear subspace of X, and I a continuous linear functional on M. 
Then there exists a continuous linear functional F on X which is an 
extension of I. 

Proof. Since I is continuous on M and X is locally convex, there exists 
an open, convex, balanced neighbourhood of 0, say U, of X such that 
xE M (\ U implies I/(x) I < 1. Let P be the Minkowski functional of U. 
Then P is a continuous semi-norm on X and U = {x; P(x) < 1}. For 
any x EM choose IX> 0 so that IX> P (x). Then P (X/IX) < 1 and so 
I/(x/IX) I :s::: 1, that is I/(x) I :s::: IX. We thus see, by letting IX t P(x), that 
I/(x) I < P (x) on M. Hence, by the Theorem in Chapter IV, 4, we obtain 
a continuous linear functional F on X such that F is an extension of I an d 
IF(x) I <P(x) on X. 

Theorem 3 (S. MAZUR). Let X be a real or complex, locally convex linear 
topological space, and M a closed convex balanced subset of X. Then, 
for any Xo E M, there exists a continuous linear ftIDctional1 on X such 
that 10 (xo) > 1 and I/o(x) I < 1 on M. 

Proof. Since M is closed, there exists a convex, balanced neighbourhood 
V of 0 such that M (\ (xo + V) = 0. Since V is balanced and convex, 

we have (M + :) (\ (xo + :) =0. The set (xo + :) being a neighbour­

hood of xo, the closure U of (M + :) does not contain xo. Since M ;, (, 

the closed convex balanced set U is a neighbourhood of 0, because U 
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contains ~ as a subset. Let p be the Minkowski functional of U. Since U 

is closed, we have, for any Xo E U, P (xo) > 1 and p (x) < 1, if x E U. 
Thus there exists, by Corollary 1 of Theorem 1, a continuous linear 

functional 10 on X such that 10 (xo) = P(xo) > 1 and I/o(x) I <P(x) on X. 
Hence, in particular, 110 (x) I < Ion M. 

Corollary. Let M be a closed linear subspace of a locally convex 
linear topological space X. Then, for any xoE X -M, there exists a 
continuous linear functional 10 on X such that 10 (xo) > 1 and 10 (x) = 0 
on M. Moreover, if X is a normed linear space and if dis (xo, M) > d, 
then we may take 11/0 II < lid. 

Proof. The first part is clear from the linearity of M. The second 
part is proved hy taking U = {x; dis (x, M) < d} in the proof of 
Theorem 3. 

Remark. As above, we prove the following theorem by virtue of 
Theorem 1'. 

Theorem 3' (S. MAZUR). Let X be a locally convex real linear topolo­
gical space, and M a closed convex subset of X such that M 3 o. Then, 
for any Xo E M, there exists a continuous real linear functional 10 on X 
such that 10 (xo) > 1 and 10 (x) < Ion M. 

Theorem 4 (S. MAZUR). Let X be a locally convex linear topological 
space, and M a convex balanced neighbourhood of 0 of X. Then, for 
any Xo E M, there exists a continuous linear functional 10 on X such that 

lo(xo) ~ sup 110 (x) I· 
"EM 

Proof. Let p be the Minkowski functional of M. Then p (xo) > 1 and 
P(x) < 1 on M. p is continuous since M is a neighbourhood of 0 of X. 
Thus there exists, by Corollary 1 of Theorem 1, a continuous linear func­
tionallo on X such that 

lo(xo) = P(xo) > 1 and I 10 (x) I <P(x) < 1 on M. 

Theorem 5 (E. HELLY). Let X be a B-space, and 11> 12, ... , I .. be a 
finite system of bounded linear functionals on X. Given n numbers 
(Xl>~' ••• , lX ... Then a necessary and sufficient condition that there exists, 
for each e > 0, an element x. E X such that 

I.(x.) = lX. (i = 1, 2, ... , n) and Ilx.1I s y + e 

is that the inequality 

holds for any choice of n numbers PI> P2, ... , P ... 
Proof. The necessity is clear from the definition of the norm of a 

continuous linear functional. We shall prove the sufficiency. We may 
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assume, without losing the generality, that f's are linearly independent; 
otherwise, we can work with a linearly independent subsystem of {t.} 
which spans the same subspace as the original system {t.}. 

We consider the mapping x-+ 91 (x) = (tdx), 12 (x), ... , I .. (x» of X 
onto the Hilbert space fI. (n) consisting of all vectors x = (~v ~2' .•• , ~,.) 

normed by !Ixll = C~I~jI2r2. By the open mapping theorem in 

Chapter II, 5, the image 91(5.) of the sphere S. = {XE X; Ilxll~ r + e} 
contains the vector 0 of fI.(n) as an interior point for every e > O. Let 
us suppose that (.xv .x2, ... , .x .. ) does not belong to 91 (5.). Then, by 
Mazur's theorem given above, there exists a continuous linear functional 
F on fI.(n) such that 

F «(.xv .x2, ... , .x .. »;;;:::: sup IF (91 (x» I. 
1/%1/:;;,,+-

Since 12(n) is a Hilbert space, the functional F is given by an element .. 
(Pv P2, ... , P .. ) E 12 (n) in such a way that F «(.xv .x!, ... , .x .. » = . .E1.xjpj. 

1-

Thus 

j~.xjpj >Ij,glj(x)pjl for Ilxll~r+e. 
But the supremum oftheright hand side for II x II ~ r + e is = (r + e) X 

II~ Ijpjll ' and this contradicts the hypothesis of the Theorem. 

7. Topologies of Linear Maps 

Let X, Y be locally convex linear topological spaces on the same scalar 
field (real or complex number field). We denote by L (X, Y) the totality 
of continuous linear operators on X into Y. L (X, Y) is a linear space by 

(.xT+PS)x=.xTx+pSx, where T,SEL(X,Y) and xEX. 

We shall introduce various topologies for this linear space L(X, Y). 

i) Simple Convergence Topology. This is, the topology of convergence 
at each point of X and thus it is defined by the family of semi-norms 
of the form 

P(T)=P(T;xVX2, ... ,X .. ;q)= sup q(Txj), 
1~:;;" 

where Xv X2, ... , x .. are an arbitrary finite system of elements of X and q 
an arbitrary continuous semi-norm on Y. L (X, Y) endowed with this 
topology will be denoted by L.(X, Y). It is clearly a locally convex 
linear topological space. 

ii) Bounded Convergence Topology. This is the topology of uniform 
convergence on bounded sets of X. Thus it is defined by the family of 
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semi-norms of the form 

P(T)=P(T;B;q)= supq(Tx) 
xEB 

where B is an arbitrary bounded set of X and q an arbitrary continuous 
semi-norm on Y. L (X, Y) endowed with this topology will be denoted by 
Lb (X, Y). It is clearly a locally convex linear topological space. 

Since any finite set of X is bounded, the simple convergence topology 
is weaker than the bounded convergence topology, i.e., open sets of 
Ls(X, Y) are also open sets of LdX, Y), but not conversely. 

Definition 1. If X, Yare normed linear spaces, then the topology of 
Ls (X, Y) is usually called the strong topology (of operators); the one of 
Lb(X, Y) is called the unilorm topology (of operators). 

Dual Spaces. Weak and Weak'" Topologies 

Definition 1 I. In the special case when Y is the real or complex number 
field topologized in the usual way, L (X, Y) is called the dual space of X 
and will be denoted by X'. Thus X' is the set of all continuous linear 
fundionals on X. The simple convergence topology is then called the 
weak* topology of X'; provided with this topology, X' will sometimes be 
denoted by X~. and we call it the weak* dual of X. The bounded con­
vergence topology for X' is called the strong topology of X'; provided 
with this topology, X' is sometimes denoted by X; and we call it the 
strong dual of X. 

Definition 2. For any x E X and x' E X', we shall denote by <x, x') 
or x' (x) the value of the functional x' at the point x. Thus the weak'" 
topology of X', i.e., the topology of X~. is defined by the family of semi­
norms of the form 

p (x') = p (x'; Xv X2' ... , X,.) = sup I <Xj' x') I, 
l::;;;j:;;,. 

where Xv X2, ... , x,. are an arbitrary finite system of elements of X. 
The strong topology of X', i.e., the topology of X; is defined by the family 
of semi-norms of the form 

p (x') = p (x'; B) = sup I <x, x') I 
xEB 

where B is an arbitrary bounded set of X. 
Theorem 1. If X is a normed linear space, then the strong dual space 

X~ is a B-space with the norm 

11/11= sup I/(x)l· 
IIxll::;;;1 

Proof. Let B be any bounded set of X. Then sup II b II = {3 < 00, 
bEB 

and hence II/II<x implies p(l;B) = sup I/(b) I < sup I/(x) I <x{3. 
bEB IIxll:;;/I 
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On the other hand, the unit sphere S = {x; Ilxll ~ 1} of X is a bounded 
set, and so 11/11 = p(f; S). This proves that the topology of X~ is equi­
valent to the topology defined by the norm 11/11. 

The completeness of X~ is proved as follows. Let a sequence {t .. } 
of X; satisfy lim III .. - 1m 11= O. Then, for any x EX, 1/ .. (x) - 1m (x) I ~ 

",m->OO 
III .. - 1m II· IIxll ~ 0 (as n, m~ 00), and hence a finite lim I .. (x) = I(x) 

..-..co 
exists. The linearity of I is clear. The continuity of I is proved by ob-
serving that lim I .. (x) = I (x) uniformly on the unit sphere S. Incident-

..-..co 
ally we have proved that lim III .. - I II = O • 

..-..co 
Similarly we can prove 
Theorem 2. If X, Yare normed linear spaces, then the uniform topo­

logy (of operators) Lb (X, Y) is defined by the operator norm 

IIT!I = sup IITxll. 
IIzll=a;l 

Definition 3. We define the weak topology of a locally convex linear 
topological space X by the family of semi-norms of the form 

P(x) = P(x; xi, x;, ••. , x~) = sup I (x, xi) I, 
l:;;i:;;" 

where xi. x~ • ...• x~ are an arbitrary finite system of elements of X'. 
Endowed with this topology, X is sometimes denoted by XIII' 

8. The Embedding of X in its Bidual Space X" 

We first prove 
Theorem 1 (S. BANACH). Let X be a locally convex linear topological 

space, and X' its dual space. A linear functional t(x') on X' is of the form 

I(x') = (xo. x') 

with a certain Xo E X iff I (x') is continuous in the weak· topology of X'. 
Proof. The "only if" part is clear since I (xo. x') I is one of the semi­

norms defining the weak· topology of X'. The "if" part will be proved 
as follows. The contiiluity of I (x') in the weak· topology of X' implies 
that there exists a finite system of points Xv X2 • •••• x .. such that 
I/(x') I < sup I (xi' x') I. Thus 

l:;OiS .. 

I. (x') . (Xi. x') = 0 (i = 1. 2 •...• n) implies I(x/) = O. 

Consider the linear map L: X' ~ 12 (n). defined by 

L(x/) = (tdX') , 12 (x') • ...• I .. (x'». 

L(xi) =L(x~)impliesL(xi-x~) = Osothatli(xi-x~) = O(i= 1. 2 •.. .• n) 
and hence I (xi - x~) = O. Hence we may define a continuous linear map F 
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defined on the linear subspace L (X') of 12(n) by 

F(L(X')) = F(fl(X/), ... , I .. (x') = I(x'). 

This map can be extended to a continuous linear functional defined on 
the whole space 12(n); the extension is possible since 12(n) is of finite 
dimension (easier than using the Hahn-Banach extension theorem in 
infinite dimensional linear spaces). We denote this extension by the same 
letter F. Writing .. 

(Yv Yz, ..• , Y .. ) = ,I Yiei' where ei = (0,0, ... , 0, 1, 0,0, ... , 0) 
1-1 

with 1 at the i-th coordinate, 

we easily see that 

Therefore 

.. 
F{Yl, Yz, ... , Y .. ) = . .I Yj ()(.j, ()(.j = F(ej). 

1=1 . 

.. " <''' > I(x') = . .I ()(.ili(x') = ,I ()(.i <xi' x') = ~ ()(.jXi' x' . 
1=1 1=1 -1 

Corollary. Each Xo E X defines a continuous linear functional 10 (x') 
on X~ by 10 (x') = <xo, x'). The mapping 

xo-+ 10 = Jxo 

of X into (X~)~ satisfies the conditions 

J(x1 + x2) = J Xl + J x"' J«()(.x) = ()(.J(x). 

Theorem 2. If X is a nonned linear space, then the mapping J is 
isometric, i.e., IIJxll = !Ixll. 

Proof. We have 1/0 (x') 1= I <xo, x') I S;; IIxolI'lIx' II so that 11/011 S;; 
IIxo II· On the other hand, if Xo #= 0, then there exists, by Corollary 2 of 
Theorem 1 in Chapter IV, 6, an element x~ E X' such that <xo, x~) = 
11%011 and Ilx~11 = 1. Hence/o(x~) = <xo, x~) = Ilxoll so that 11/011 ~ Ilxoll. 
We have thus proved IIJxl1 = IIxli. 

Remark. As the strong dual space of X~, the space (X=)~ is a B-space. 
Hence a nonned linear space X may be considered as a linear subspace 
of the B-space (X;)= by the embedding x -+ J x. Therefore the strong 
closure of J X in the B-space (X~)~ gives a concrete construction of the 
completion of X. 

Definition 4. A nonned linear space X is said to be reflexive if X may 
be identified with its second dual or the bidual (X=)~ by the correspon­
dence x -- J x above. We know already (see Chapter III, 6) that a Hilbert 
space is reflexive. As remarked above, (X~)~ is a B-space and so any re­
flexive nonned linear space must be a B-space. 
8 Y 08lda. Functional Analysis 
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Theorem 3. Let X be a B-space and x~ any bounded linear func­
tional on X~. Then, for any e> ° and any finite system of elements 
Iv 12, ... , I .. of X~, there exists an Xo E X such that 

/lxo 1/ < Ilx~!I + e and I;(xo) = x~ (fi) (j = 1,2, ... , n). 

Proof. We apply Helly's theorem I) in Chapter IV, 6. For any system 
of numbers Pv P2' •.. , P .. , we have 

Il Pi (Xi I = Il Pi x~ (fi) I = I x~ (i Pi Ii) I 
1-1 1-1 1-1 

< Y ·11~Pil;ll, wehre y = /lx~/I, (Xi = x~(fi)' 
and hence, again by Helly's theorem, we obtain an Xo E X with the 
estimate /lxoll ~ y + e = IIx~1I + e and xo(fi) = (Xi (j = 1, 2, ... , n). 

Corollary. The unit sphere S = {xE X; IIxll < 1} of a B-space X is 
dense in the unit sphere of (X=)= in the weak· topology of (X;)'. 

9. Examples of Dual Spaces 

Example 1. (co)' = (ll). 
To any I E (co)', there corresponds a uniquely determined YI = 

{11 .. } E (ll) such that, for all x = {~ .. } E (co), 
00 

<x, I) = .I~ .. 'f} .. and 1I/!1= /lYIII· 
.. -1 

(1) 

And conversely, any Y = {'f} .. } E (ll) defines an Iy E (co)' such that, for 
any x = {~ .. } E (co), 

00 

<x, I,) = .. ~~ .. 'f} .. and Illy II = lIy II· (1') 

Proof. Let us define the unit vector e" by 

"-1 . 
e" = (0, 0, ... , 0, 1, 0, 0, ... ) (k = 1, 2, ... ). 

" For any x = {~ .. } E (co) and I E (co)" we have, by s-lim ~ ~,.e .. = x. 
k-+oo .. =1 

<x, I) = lim < 1 ~ .. e .. , I) = lim l~" 'f},., 'f},. = I (e,.) • 
k-+oo ,.=1 k-+oo ,.=1 

Let 'f},. = e .. I 'f} .. 1 for 'f} .. :i= 0, and e,. = 00 for 'f} .. = 0. Take x<"') = 
{~ .. } E (co) in such a way that ~,. = e;1 for n < no, and ~,. = ° for n > no . ... 
Then /lx<"') /I ~ 1 and so 11/11 = sup I<x, I) I ~ I <x<",) , I) I = .I 1'f},.I· 

1~1~1 .. =1 

Thus, by letting no~oo, we see that YI={'f},.}E(ll) and IIYIII = 
00 

.I I 'f} .. I < 1/11/· 
.. -1 
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If, conversely, y = {'1 .. } E (ll), then Il E .. '1 .. 1 ~ II xl/ . II y II for all 
.. =1 

X = {E .. } E (co), and so y defines an I,. E (co)' and III,. II < IIy"· 
Example 2. (c)' = (P). 
For any x = {E .. } E (c), we have the representation 

" x = Eoeo + s-lim .I (E .. - Eo) e .. , where Eo = lim E .. , eo = (1, 1, 1, ... ). 
k-+oo .. =1 fI-+OO 

Thus, for any I E (c)', we have 

<x, I) = Eo<eo, I> + lim <.1 (E .. -Eo) e .. , I) = Eo'1~ + i (E .. -Eo)'1 .. , 
k-+oo .. =1 .. -1 (2) 

where '1~ = <eo, I> and '1 .. = <e .. , I> (n = 1, 2, ... ). As above, we may 
take X(fIo) = {E .. } E (co) ~ (c) which satisfies 

flo 
IIx(fIo) II < 1, Eo= lim E .. =O and <x("'>,I> =.I 1'1 .. 1. 

fI-+OO .. -1 

Hence, by [<x("'),I>1 ~ IIx("') II 11111, we see that {'1 .. }OOE (ll). We set 
00 

'I/~ - .I '1 .. = '10' Then, by (2), we have 
.. -1 

00 

<x, I> = Eo'1o + .I E .. '1 .. , where x = {E .. } E (c) and Eo = lim E... (2') 
.. =1 fI-+OO 

Let '1/ .. = B .. 1'1 .. 1 for '1 .. =1= 0, and B .. = 00 for '1 .. = 0 (n = 0, 1, 2, ... ). 
Take x = {E .. } E (c) such that 

E .. = B;l if n < no, and E .. = BO"l if n> no' 
"-

Then IIxll ~ 1, Eo = ,!~:J .. = eO!, and <x, I> = !'l/ol + .. ~ 1'1/ .. 1 + 
00 00 

BO"l .I '1 .. ' Hence, we must have 1'101 + .I 1'1 .. 1 < II/I! . 
.. = ... +1 .. =1 

00 

If, conversely, y = {'1 .. }0' is such that II y II = 1'10 I + .. ~ 1'1 .. 1 < 00, 

then 
00 

'I/o' lim E .. + .I E .. '1 .. , where x = {E .. }f E (c), 
fI-+OO .. -1 

00 

defines an I,.E (c)' such that 11/,.11 ~ 1'101 + .I 1'1 .. 1· 
.. =1 

Therefore, we have proved that (c)' = (P) as explained above. 
Example 3. LP(5,~, my = LI/(5, ~,m) (1 ~ P < 00 and p-1 + 

q-1 = 1). To any IE LP(5)', there corresponds a y,E Lq(5) such that 

<x, I> = ! x(s) y,(s) m(ds) for all xE LP(5) and 11/11 = Ily,lI, (3) 

and conversely, any y E Lq (5) defines an I,. E LP (5)' such that 

<x, I,.> = f x(s) y(s) m(ds) for all xE LP(5) and 11/,.11 = Ilyli. (3') 
s 

8* 
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00 " 
Proof. Let 5 = .U Bj with 0 < m (Bj ) < 00 and set B(") = .U Bj • 

J=1 1-1 
For a fixed n, the defining function CB(s) of the set B ~ B(") is E LP(5). 
Thus the set function tp (B) = <C B, I) is a-additive and m-absolutely 
continuous in B ~ B("). By the differentiation theorem of Lebesgue­
Nikodym (see Chapter III, 8), there exists a y .. (s)EV(B("),58("),m) 
such that 

tp(B) = f y .. (s) m(ds) whenever B ~ B("), 
B 

the family 58(n) of sets being defined by 58(n)= {B (\ B(n) ; BE 58}. 
Therefore, by setting y (s) = y" (s) for s E B("), we have 

<CB,I) = f y(s) m(ds) for BE 58(") (n = 1, 2, ... ). 
B 

Hence, for any finitely-valued function x with support in some B(n), 

<x, I) = f x(s) y(s) m(ds). (4) 
5 

Let x E LP (5) and put 

xn(s) = x(s) if Ix(s) I ~ nand sE B(n), 

= 0 otherwise. 

We decompose the set {z; I z I < n} of the complex plane into a finite 
number of disjoint Baire sets M .. ,k,t (t = 1, 2, ... , dk,,,) of diameters 
< 11k. Set, for the x,,(s) E Loo(5, 58, m), 

X .. ,k (s) = a constant z, such that zE (the closure M:,k,l) and I z 1= inf I wi 
wEMn,k,1 

whenever Xn (s) EM .. ,k,I' 

Then IX",k(S) I ~ Ix,,(s) I and 1~ Xn,k(S) = x .. (s) and so, by the Lebe­

sgue-Fatou Lemma, s-lim x" k = x,. (n = 1, 2, ... ). Thus, again by 
1>->00 ' 

the Lebesgue-Fatou Lemma, 

<Xn, I) = ~ <X .. ,k' I) = e / X .. ,k (s) Y (s) m (ds) (5) 

= f lim X,.,k (s) . Y (s) m (ds) = f x" (s) y (s) m (ds). 
5 1>->00 5 

Since s·lim x" = x, we see that <x, I) = lim <x .. , I). We put, for any 
Il--+OO Il--+OO 

complex number z, a(z) = e-ie if z = reie and a(O) = O. Then "xII;;::: 
"(lx"I' a (y)) " and so 

II til Ilxil > <IX,. I a(y), I) = f IX" (s)1 'IY(s) I m(ds). 
5 

Thus, by the Lebesgue-Fatou Lemma, III II . IIx II > f Ix(s)lIy(s)1 m(ds) 
5 

and so the function x(s) y(s) belongs to E V(5). Therefore, letting 
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n-+ 00 in (5), we obtain 

<x, I) = J x(s) y(s) m(ds) whenever x E LP(5). 
S 

We shall show that yE L'/(5). To this purpose, set 

y,,(s) = y(s) if ly(s)1 ~ nand sE B(n) , 

= 0 otherwise. 

Then y" E LIl (5) and, as proved above, 

1I/11'llxll > <Ixl' a (y),I) = J Ix(s)lly(s)1 m(ds) 
S 

:? ! /x(s)11 y,,(s) I m(ds). 

If we take x(s) = jy,,(s)IIlIP and apply Holder's equality, we obtain 

! Ix(s)lly.(s)1 m(ds) = (1 Ix(s)IP m(ds)Y'P (1 IYn(s)jll m(ds)Y'Il. 
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Hence I1I11 > lIy,,11 = (1 IYn(S) III m(ds)Y'Il, with the understanding 

that, when p = 1 we have 11/11 :? Ily,,1I = essential sup ly,,(s)l. 
sES 

Therefore, by letting n -+00 and applying the Lebesgue-Fatou Lemma, 
we see that yE LIl(5) and 11/11 > Ilyli. On the other hand, any YELIl(5) 
defines an IE LP(5)' by <x, I) = 1 x(s) y(s) m(ds) as may be seen by 

Holder's inequality, and this inequality shows that 11111 ~ I/y II. 
Remark. We have incidentally proved that 

(lP), = (lll) (1 ~ P < 00 and p-l + q-l = 1). 

Example 4. Let the measure space (5,58, m) with m (5) < 00 have the 
property that, for any B E 58 with 0 < m (B) =!5 < 00 and positive inte­
ger n, there exists a subset Bn of B such that!5 (n + 1)-1 < m (B,,) ~ !5n-1• 

Then no other continuous linear functionals EM (5, 58, m)' than the zero 
functional can exist. 

Proof. Any xE L1(5, 58, m) belongs to M(5, 58, m) and the topology 
of L1(5, 58, m) is stronger than that of M(5, 58, m). Thus any IE M(5, 58, 
m)', when restricted to the functions of L1 (5, 58, m), defines a continuous 
linear functional 10E L1(5, 58, m)'. Thus there exists ayE LOO(5, 58, m) 
such that 

<x, I) = <x, 10) = 1 x (s) y (s) m (ds) whenever xE L1 (5,58, m). 

Since L1(5, 58, m) is dense in M(5, 58, m) in the topology of M(5, 58, m), 
the condition I =1= 0 implies that 10 =1= O. Thus there exists an e > 0 
such thatB = {s; IY(s) I > e} has its measure m(B) =!5 > O. LetB" ~ B 
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be as in the hypothesis, and let y (s) = riB for s E B. Set x" (s) = e-iO 
for s E B" and x" (s) = 0 otherwise. Then z" (s) = nx" (s) converges to 0 
asymptotically, that is, s-lim z" = 0 in M(S, ~,m). But 

.......ao 

lim (z", I> = lim (Z", 10> = lim [z" (s) y (s) m (ds) > ~E > 0, 
.......ao .......ao .......ao 

contrary to the continuity of the functional I. 
Example 5. PO(S, ~,m)'. 
Let an IE LOO(S, ~,m)' be given and set, for any BE}8, I(CB ) 

= V' (B) where C B (s) is the defining function of the set B. We have then: 

Bl f\ B2 = 0 implies V'(B1 + B2) = V'(B1) + V'(B2), (6) 

that is V' is linitely additive. 

the real part V'1 (B) and the imaginary part V'2 (B) of 

V' (B) are of bounded total variation, that is, sup I V'i (B) I 
B 

< ex:> (i = I, 2), 

V' is m-absolutely continuous, that is m(B) = 0 implies 

V'(B) = o. 

(7) 

(8) 

The condition (6) is a consequence of the linearity of I, and (7) and (8) 
are clearfrom I V' (B) I < /I 1/1 . /I C B ". 

For any xE LOO(S,~, m), we consider a partition of the sphere 
{z; I z I < II x I/} of the complex plane into a finite system of disjoint Baire 
sets AI' A2, ••• , At! of diameters < E. If we set Bi = {SE S; x(s) E Ai}' 
then, no matter what point lXi we choose from Ai (i = I, 2, ... , n). we 
have 

and so 
Ilx-i~lXiCBjll ~ E, 

I/(x)- i~IX;V'(Bi)1 < /1//1· E. 

Thus, if we let n ~ ex:> in such a way that E to, we obtain 
.. 

I (x) = lim . .I lXiV' (B.) , 
.=1 

(9) 
.. 

independently of the manner of partition {z; I z I < II x /I} = . .I Ai and .-1 
choice of points IX'S. The limit on the right of (9) is called Radon's integral 
of x (s) with respect to the linitely additive measure '1/'. Thus 

I(x) = [x(s) 1p(ds) (Radon's integral) whenever xE LOO(S,~, m), (10) 

and so 

1//11 = sup If x(s) V'(ds)I' 
ess.sup!z(sll:;;;1 ,s 

(11) 
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Conversely, it is easy to see that any "p satisfying (6), (7) and (8) defines 
an IE Loo (5, 58, m)' through (10) and that (11) is true. 

Therefore, we have proved that Loo (5, 58, m)' is the space of all set 
functions "p satisfying (6), (7) and (8) and normed by the right hand side 
of (11), the so-called total variation of "p. 

Remark. We have so far proved that LP(5, 58, m) is reflexive when 
1 < p < 00. However, the space V (5,58, m) is, in general, not reflexive. 

Example 6. C (5)'. 
Let 5 be a compact topological space. Then the dual space C (5)' of the 

space C (5) of complex-valued continuous functions on 5 is given as 
follows. To any IE C (5)', there corresponds a uniquely determined 
complex Baire measure p, on 5 such that 

I (x) = J x(s)p,(ds) whenever xE C(5), (12) 
5 

and hence 

IIIII = sup If x(s) p,(ds) I = the total variation of p, on 5. (13) 
supl;>:(s)!;:>;l 5 

Conversely, any Baire measure p, on 5 such that the right side of (13) 
is finite, defines a continuous linear functional IE C (5)' through (12) 
and we have (13). Moreover, if we are concerned with a real functional I 
on a real B-space C (5), then the corresponding measure p, is real-valued; 
if, moreover I is positive, in the sense that I(x) > 0 for non-negative 
functions x(s), then the corresponding measure p, is positive, i.e.,p, (B) > 0 
for every B E 58. 

Remark. The result stated above is known as the F. Riesz-A. Markov­
S. Kakutani theorem, and is one of the fundamental theorems in topo­
logical measures. For the proof, the reader is referred to standard text 
books on measure theory, e.g., P. R. HALMOS [1J and N. DUNFORD­
]. SCHWARTZ [1J. 

References for Chapter IV 

For the Hahn-Banach theorems and related topics, see BANACH [1], 
BOURBAKI [2J and KOTHE [1J. It was MAZUR [2J who noticed the impor­
tance of convex sets in normed linear spaces. The proof of Helly's theorem 
given in this book is due to Y. MIMURA (unpublished). 

v. Strong Convergence and Weak Convergence 
In this chapter, we shall be concerned with certain basic facts per­

taining to strong-, weak- and weak* convergences, including the com­
parison of the strong notion with the weak notion, e.g., strong- and weak 
measurability, and strong- and weak analyticity. We also discuss the 
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integration of B-space-valued functions, that is, the theory of Bochner's 
integrals. The general theory of weak topologies and duality in locally 
convex linear topological spaces will be given in the Appendix. 

1. The Weak Convergence and The Weak* Convergence 

VVeakConvergence 

Definition 1. A sequence {x .. } in a normed linear space X is said to 
be weakly convergent if a finite lim I (x .. ) exists for each I E X;; {x .. } is 

f>--+OO 

said to converge weakly to an element xooE X if lim I(x .. ) = I(xoo) for 
f>--+OO 

all I E X;. In the latter case, Xoo is uniquely determined, in virtue of 
the Hahn-Banach theorem (Corollary 2 of Theorem 1 in Chapter IV, 6); we 
shall write w-lim x .. = Xoo or, in short, x .. ~ Xoo weakly. X is said to be 

......00 

sequentially weakly complete if every weakly convergent sequence of X 
converges weakly to an element of X. 

Example. Let {x .. (s)} be a sequence of equi-bounded continuous func­
tions of C [0,1] which is convergent to a discontinuous function z(s) on 
[0,1]. Then, since C [0,1]' is the space of Baire measures on [0, 1] of 
bounded total variation, we see easily that {x .. (s)} gives an example of 
a weakly convergent sequence of C [0,1] which does not converge weakly 
to an element of C [0, 1]. 

Theorem 1. i) s-lim x .. = Xoo implies w-lim x .. = xoo, but not conver-
......00 ......00 

sely. ii) A, weakly convergent sequence {x .. } is strongly bounded, and, in 
particular, if w-lim x .. = xoo, then {llx .. 11} is bounded and Ilxooll < 
lim Ilx .. ll. f>--+OO, 

......00 

Proof. i) The first part is clear from II (XII) -I (xoo) I :s;; 11/11· II x .. - XOO II· 
The second part is proved by considering the sequence {XII} in the Hilbert 
space (12): 

x .. = {El:l} where El:l = 15 ..... (= lor 0 according as n = m or not). 

For, the value of a continuous linear functional E (12)' at x = {E .. } is given 

by ] E .. ij .. with some {fJ .. }E (l2); consequently, w-lim x .. = 0 but {x .. } 
.. -1 f>--+OO 

does not converge strongly to 0 because Ilx .. 11 = 1 (n = 1,2, ... ). 
ii) Consider the sequence of continuous linear functionals X .. defined on 
the B-space X; by X .. (I) = <x .. , I), and apply the resonance theorem in 
Chapter 11,1. 

Theorem 2 (MAZUR). Let w-lim x .. = Xoo in a normed linear space X. 
f>--+OO .. 

Then there exists, for any E> 0, a convex combination .~ (XiXj 
3-1 

((Xi > 0, i~ IXj = 1) of x/s such that jjxoo - j~ (Xix;jj:s;; 8. 
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.. 
Proof. Consider the totality Ml of elements of the form .Z (XiXj 

3=1 .. 
with (Xi > 0, .Z (Xi = 1. We may assume that 0 E Ml by replacing Xoo 

3=1 
and xi by (XOO -x1) and (Xj-xl),respectively. Suppose that Ilxoo -u /I> e 
for every u E MI' The set M = {vE X; /Iv -u/l < e/2 for some u E Ml} 
is a convex neighbourhood of 0 of X and /I Xoo - v /I > e/2 for all v EM. 
Let p (y) be the Minkowski functional of M. Since Xoo = P-l Uo with 
p (uo) = 1 and 0 < P < 1, we must have p.(xoo) = [J-l > 1. Consider a 
real linear subspace Xl = {xE X; x = 'Y uo, -00 < 'Y < oo} and put 
11 (x) = 'Y for x = 'Y Uo E Xl' This real linear functional 11 on Xl satisfies 
I(x) < p (x) on Xl" Thus, by the Hahn-Banach extension theorem in Chap­
ter IV, 1, there exists a real linear extension I of 11 defined on the real 
linear space X and such that I (x) ~ P (x) on X. M being a neighbourhood 
of 0, the Minkowski functional p (x) is continuous in x. Hence I is a con­
tinuous real linear functional defined on the real linear normed space X. 
We have, moreover, 

sup I (x) ~ sup 1 (x) ~ sup P(x) = 1< P-1 = I(P-1 uo) = 1 (xoo) . 
"EM, "EM "EM 

Therefore, it is easy to see that Xoo cannot be a weak accumulation point 
of Mv contrary to Xoo = w-lim x ... 

.......00 

Theorem 3. A sequence {x .. } of a normed linear space X converges 
weakly to an element Xoo E X iff the following two conditions are satis­
fied: i) sup /I x .. /I < 00, and ii) lim I (x .. ) = I (xoo) for every I from any 

.. ~1 .......00 

strongly dense subset D' of X;. 
Proof. We have only to prove the sufficiency. For any g E X; and 

e> 0, there exists an lED' such that /lg -/1/ < e. Thus 

Ig(x,;) - g(xoo) 1 ~ Ig(x .. ) -/(x .. ) 1 + I/(x .. ) -/(xoo) 1 + I/(xoo) - g(xoo)! 

< e II x .. II + I/(x .. ) -/(xoo) I + e I/xoo l/, 
and hence lim !g(x .. ) -g(xoo)! < 2e sup /lx .. /I. This proves that 

00;;: .. ~1 
lim g(x .. ) = g(xoo) . 

.......00 

Theorem 4. A sequence {x .. } in V (S, 58, m) converges weakly to an ele­
ment xEV(S, 58,m) iff {II x .. II} is bounded and a finite lim f x .. (s) m(ds) 

.......ooB 

exists for every BE 58. 
Proof. The "only if" part is clear since the defining function C B (s) 

of BE 58 belongs to LOO(S, 58, m) = V(S, 58, m)'. 
The proof of the "if" part. The set function 'P (B) = lim J x" (s) m (d,s) 

.......ooB 

BE 58, is u-additive and'm-absolutely continuous by the Vitali-Hahn-Saks 
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theorem. Hence, by the differentiation theorem of LEBESGUE-NIKODYM, 
there exists an Xoo E Ll (5, ~, m) such that 

lim f x,,(s) m(ds) = f xoo(s) m(ds) for all B E ~. 
IS-+OOB B 

. k 
Thus, for any decomposition 5 = . .I B; with B; E ~, we have 

J~1 

lim f x,,(s) y(s) m(ds) = f xoo(s) y(s) m(ds), y(s) = llX;CB;(s). 
IS-+OO s s ;=1 

Since such functions as y (s) constitute a strongly dense subset of the 
space LOO (5, ~,m) = Ll(5, ~,m)', we see that the "if" part is true by 
Theorem 3. 

Theorem o. Let {x,,} converge weakly to Xoo in Ll(5, ~,m). Then 
{x .. } converges strongly to Xoo iff {x,,(s)} converges to xoo(s) in m-measure 
on every ~-measurable set B such that m(B) < 00. 

Remark. {x,,(s)} is said to converge to xoo(s) in m-ineasure on B, if, 
for any e> 0, the m-measure of the set {SE B; Ix .. (s) -xoo(s) 1 >- e} 
tends to zero as n ~ 00 (see the Proposition in Chapter I, 4). The space 
(ll) is an example ofLl(5, ~,m) for which 5 = {I, 2, ... }andm({n}) = 1 
for n = 1, 2, ... In this case, we have (ll)' = (lOO) so that the weak con-
vergence of {x .. }, x .. = (Er), E~"), . .. , Ei"), ... ), toxoo = (EiOO),E~OO), ... ,E~OO), ... ) 
implies that lim E1") = E1°O) (k = 1,2, ... ), as may be seen by taking 

....... 00 

IE (P), in such a way that I(x) = <x, I) = Ek for x = {E;} E (P). Thus, 
in the present case, {x,,} converges to Xoo in m-measure on every ~­
measurable set B of finite m-measure. In this way we obtain the 

Corollary (I. SCHUR). In the space (ll), if a sequence {x .. } converges 
weakly to an Xoo E (11), then s-lim x .. = XOO' 

.. -co 
Proof of Theorem o. Since the strong convergence in Ll(5, ~,m) 

implies the convergence in m-measure, the "only if" part is clear. We shall 
prove the "if" part. The sequence {x .. - xoo} converges weakly to 0, and so 

lim f (x .. (s) - Xoo (s» m (ds) = 0 for every B E ~. (1) 
IS-+OO B 

Consider the sequence of non-negative measures 

1fJ,,(B) = flx .. (s)-xoo(s)lm(ds), BE~. 
B 

Then we have 

lim 1fJ .. (B,,) = 0 uniformly in n, for any decreasing 
k-.oo 

00 

sequence {BII} of sets E ~ such that n BII = 0. 
k=1 

(2) 

If otherwise, there exists an e > 0 such that for each k there exists some 
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nIl for which ~ nk = 00 and tp",.(Bk) > e. Consequently, we must have 

J IRe(x",.(s)-xoo(s» Im(ds»eIV"2 or J 11m (x",.(s) -xoo(s)) I m(ds) 
~ ~ 

> e1V2, and so there must exist some B~ ~ B" such that IL (X"k (s) - Xoo (s» m (ds) I > e/2 V2 (k = 1, 2, ... ), 

'Contrary to the fact that, in virtue of (1), the m-absolute continuity oj 
the sequence of measures cp,,(B) = J (x,,(s) -xoo(s)) m(ds) is uniform 

B 

in n (see the proof of the Vitali-Hahn-Saks Theorem in Chapter II, 2). 
Next let Bo be any set of 58 such that m(Bo) < 00. We shall show that 

lim tp" (Bo) = O. (3) 
........00 

Suppose there exist an e > 0 and a subsequence {tp",} of {tp,,} such that 

tp",(Bo) > e (n = 1,2, ... ). (4) 

By the hypothesis that {(x" (s) - Xoo (s))) converges to 0 in m-measure on 
Bo' there exist a subsequence {(x"" (s) - Xoo (s))) of {(x"' (s) - Xoo (s))) and 
some sets B~ ~ Bo such that m (B~) < 2-"and I x,,·, (s) - Xoo (s) I < elm (Bo) 

00 

on (Bo - B~). We put Bk = U B~. Then {B,,} is a decreasing sequence 
,,=k 

such that 

m( Ii B,.)< i m(B~) < 2-k+1 (k= 1,2, ... ) and so m (Ii Bk)= O. 
"=1 "=,, k=l 

Hence, by (1) and the Corollary of the Vitali-Hahn-Saks Theorem referred 
to above, lim tp" (Bk) = 0 uniformly in n. Therefore 

"->00 
tp,," (Bo) < tp"" (B;) + e m (BO)-l . m (Bo - B;;) - (::;: e) as n _ 00, 

'Contrary to (4). This proves (3). 

Now we take a sequence {B~} of sets E 58 
00 

(k = 1, 2, ... ) and 5 = U B~. Then 
"=1 

J Ix,,(s) - xoo(s) I m(ds) = J + 
S I 

U B' 
"=1 ,. 

such that m (B~) < 00 

J 
I 

s- U B' 
k=l Ii: 

By (3) the first term on the right tends to zero as n _ 00 for fixed t, and 
the second term on the right tends, by (2), to zero as t_oo uniformly 
in n. Therefore we have proved that s-lim x,. = Xoo in £1(5,58, m) . 

........00 

A similar situation in the case of the space 'l) (D)' is given by 
Theorem 6. Let {T OJ} be a sequence of generalized functions E 'l) (D)'. 

If lim T" = T in the weak· topology of 'l) (D)" then lim T" = T in 
........00 . ........00 

the strong topology of 'l) (D)' . 
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Proof. The strong topology of the space :Il (.0)' is defined (see Defini­
tion 1 in Chapter IV, 7) through the family of semi-norms 

PB (T) = sup IT (rp) I, where 58 is any bounded set of :Il (D). 
q>E!8 

The weak· topology of the space :Il (D)' is defined through the family of 
semi-norms 

PF(T) = sup IT(rp) I, where iY is any finite set of :Il(D). 
q>E\i' 

Thus lim T,. = T in the weak· topology of :Il (.0)' is precisely 
..-.00 

lim T,. = T (:Il (.0)') defined in Chapter II, 3 . 
.......00 

Let 58 be any bounded set of :Il (D). Then there exists a compact 
subset KinD such that supp(rp) ~K for any rpE 58 and sup I D;rp (x) I 

xEK,q>E!8 
< 00 for any differential operator D; (Theorem 1 in Chapter I, 8). Thus, by 
the Ascoli-Arzela Theorem, !:B is relatively compact in ~K(D). We apply 
the uniform boundedness theorem to the sequence {Tn - T} to the effect 
that, for any e > 0, there exists a neighbourhood U of 0 of ~ K (D) such that 

sup I(T,,-T) (rp)l<e. 
";q>EU 

The compact subset 58 of :ilK (D) is covered by a finite system of sets of 
the form rp. + U, where rp. E 58 (i = 1, 2, ... , k). Hence 

I(T .. -T) (rp. + u)l::;;: I(T .. -T) (rp.) I + I(T .. -T) (u)1 

< I (T,. - T) (If.) I + e for any u E U. 

Since lim (T,.- T) (rp.) = 0 for i = 1, 2, ... , k, we have 

lim (T .. - T) (rp) = 0 uniformly in rp E 58 . 
.......00 

This proves our Theorem. 

Theorem 7. A reflexive B-space X is sequentially weakly complete. 

Proof. Let a sequence {X,.} of X be weakly convergent. Each x .. defines 
a continuous linear functional X" on X; by X,,(x' ) = <x,,, x'). Since 
X; is a B-space (Theorem 1 in Chapter IV, 8), we may apply the resonance 
theorem. Thus a continuous linear functional on X; is defined by a finite 
lim X,.(x' ) which exists by hypothesis. Since X is reflexive, there exists 

.......00 

an Xoo E X such that <xoo , x') = lim X" (x') = lim <x,,, x'), that is, 
.......00 n-+OO 

Theorem 8. Let X be a Hilbert space. If a sequence {x,,} of X converges 
weakly to Xoo EX, then s-lim x" = Xoo iff lim II x .. II = II XOO II· 

n-+OO n-+OO 
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Proof. The "only if" part is clear from the continuity of the norm. The 
"if" part is clear from the equality 

Ilx .. - Xoo 112 = (x .. - xoo, x .. - xoo) 

= II x .. 112 - (x .. , xoo) - (xoo• x .. ) + II Xoo 112. 

In fact, the limit, as n ~ 00, of the right hand side is !lxoo I12 -llxoo 112 _. 

IIxoo ll2 + IIXoo ll2 = O. 

Weak* Convergence 

Definition 2. A sequence {t .. } in the dual space X; of a normed 

linear space X is said to be weakly· convergent if a finite lim I .. (x) exists 
It-+OO 

for every x EX; {I .. } is said to converge weakly· to an element 100 E X; 
if lim I .. (x) = 100 (x) foralbE X. In the latter case, wewritew*-lim 1 .. =100 

It-+OO It-+OO 

or, in short, I .. ~ 100 weakly*. 

Theorem 9. i) s-lim I .. = 100 implies w*-lim I .. -100' but not con-
It-+OO It-+OO 

versely. ii) If X is a B-space, then a weakly* convergent sequence 
{I .. } ~ X; converges weakly* to an element 100 E X; and 11/00 H < lim 11/ .. 11. 

Proof. (i) The first part is clear from II .. (x) -100 (x) I::::;;: III .. -100 11·llx II· 
The second part is proved by the counter example given in the proof of 
Theorem 1. (ii) By the resonance theorem, we see that 100 (x) = lim I .. (x) 

It-+OO 

is a continuous linear functional on X and 11100 II ::::;;: lim 11/ .. 11. 
It-+OO 

Theorem 10. If X is a B-space, then a sequence {I .. } ~ X; converges 
weakly* to an element 100EX; iff (i){II/ .. II} is bounded, and ii) lim I .. (x) = 

It-+OO 

loo(x) on a strongly dense subset of X. 

Proof. The proof is similar to that of Theorem 3. 

Strong and Weak Closure 

Theorem 11. Let X be a locally convex linear topological space. and M 
a closed linear subspace of X. Then M is closed in the weak topology of X. 

Proof. If otherwise, there exists a point Xo E X - M such that Xo is 
an accumulation point of the set M in the weak topology of X. Then, 
by the Corollary of Theorem 3 in Chapter IV, 6, there exists a con­
tinuous linear functional 10 on X such that 10 (xo) = 1 and 10 (x) = 0 on M. 
Hence Xo cannot be an accumulation point of the set M in the weak 
topology of X. 
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2. The· Local Sequential Weak Compactness of Reflexive B-spaces. 
The Uniform Convexity 

Theorem 1. Let X be a reflexive B-space, and let {x .. } be any sequence 
which is norm bounded. Then we can choose a subsequence {x .. ,} which 
converges weakly to an element of X. 

We will prove this Theorem under the assumption that X is separable. 
since concrete function spaces appearing in applications of this Theorem 
are mostly separable. The general case of a non-separable space will be 
treated in the Appendix. 

Lemma. If the strong dual X~ of a normed linear space X is separable. 
then so is X. 

Proof. Let {x~} be a countable sequence which is strongly dense on the 
surface of the unit sphere {x' E X~; II x' II = I} of X~. Choose x .. E X so 
that II x .. II = 1 and I <x .. , x~> I ~ 1/2. Let M be the closed linear subspace 
of X spanned by the sequence {x .. }. Suppose M =1= X and xoE X - M. 
By Corollary of Mazur's Theorem 3 in Chapter IV, 6, there exists an 
x~ E X~ such that II x~ II = 1, <xo, x~> =1= 0 and <x, x~> = 0 whenever 
x E M. Thus <x .. , x~> = 0 (n = 1, 2, ... ), and so 1/2:5: I <x .. , x~> I < 
I <x .. , x~> - (x .. , x~> I + I <x .. , x~> I which implies that 1/2 < II x .. I ! II x~ - x~1t 
= Ilx~ - x~ II. This is a contradiction to the fact that {x~} is strongly 
dense on the surface of the unit sphere of X~. Thus M = X, and so linear 
combinations with rational coefficients of {x .. } are dense in X. This proves 
our Lemma. 

Proof of Theorem 1. As we have remarked above, we assume that X 
is separable and so (X~)~ = X is separable also. By the preceding Lemma. 
X~ is separable. Let {x~} be a countable sequence which is strongly dense 
in X~. Since {x .. } is norm bounded, the sequence {<x .. , x~>} is bounded. 
Thus there exists a subsequence {x .. J for which the sequence {<x .. " x~>} 
is convergent. Since the sequence {<x"" x;>} is bounded, there exists a 
subsequence {x .. ,} of {x .. J such that {<x .. " x;>} is convergent. Proceeding 
in this way, we can choose a subsequence {x"!+t} of the sequence {x .. J 
such that the sequence of numbers {<xn;+t' xi>} converges for i = 
1,2, ... , i + 1. Hence the diagonal subsequence {x .... } of the original 
sequence {x .. } satisfies the condition that the sequence {<x .... ' xi>} con­
verges for i = 1, 2, ... Thus, by Theorem 3 in the preceding section, 

lim <x .... ' x'> exists and is finite for every x' E X'. Hence, by Theo-
.......ao 
rem 7 of the preceding section, we see that w-lim x .... exists . 

.......ao 

Milman's Theorem 

We owe to D. P. MILMAN a theorem that a B-space is reflexive when 
it is uniformly convex in the sense that, for any e> 0, there exists a 
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15 = 15 (6) > 0 such that Ilx 1/ <1, Ily II < 1 and Ilx - y II > 6 implies 
Ilx + y II < 2(1- 15). A pre-Hilbert space is uniformly convex as may be 
seen from the formula 

1/ x + y 112 + II x - Y 112 = 2 (II X 1/2 + II y 112) 
valid in such a space. It is known that, for 1 < P < <Xl, the spaces LP and 
(lP) are uniformly convex (see ]. A. CLARKSON [1]). 

Theorem 2 (MILMAN [1]). A uniformly convex B-space X is reflexive. 

Proof (due to S. KAKUTANI). Given an x~ E (X;); with Ilx~ il = l. 
Then there exists a sequence {I .. } ~ X; with 11/ .. 11 = 1, x~ (I .. ) > 1-n-1 

(n = 1, 2, ... ). By Theorem 5 in Chapter IV, 6, there exists, for 
every n, an x .. E X such that 

1;(x .. )=x~(I.) (i=I,2, ... ,n) and Ilxnll<llx~ll+n-I=I+n-l. 

Since 

1-n-l < x~ (I .. ) = I .. (x .. ) < 11/ .. llllx" II = Ilx .. 11 :S: 1 + n-1 , 

we must have lim Ilx,,11 = l. 
n->OO ' 

If the sequence {x .. } does not converge strongly, there exists an 6 > 0 
and nl < ml < n2 < m2 < ... < nk < mk < . .. such that 6 < 
IIx"k-xmkll (k = 1, 2, ... ). Thus, by lim Ilx .. 11 = 1 and the uniform 

n->OO 

convexity of X, we obtain ~ IIx"k + xmkll < 2(1- 15(6)) < 2. But, 

since nk < mk, I"k (xnk) = I"k (Xmk) = X~ (I"k) and so 

2 (1- nkl) ::;; 2x~ (I .. ,,) = I"k (xnk + xmk) ::;; 11/"k II . Ilx"k + xmk II· 

Hence, by Illnkll = 1, we obtain a contradiction lim 11x-"k + xm,,11 > 2. 
k-..ao -

We have thus proved the existence of s-lim x" = xo, and Xo satisfies 
n->OO 

Ilxo II = 1, I.(xo) = x~ (I.) (i = 1, 2, ... ). (1) 

We show that the solution of the above equations in (1) is unique. Other­
wise, there exists an io ¥= Xo which satisfies the same equations. By the 
uniform convexity, Ilio + xoll < 2. We also have I;(xo + xo) = 2x~(I.) 
(i = 1, 2, ... ). Thus 

2(I-i-l) < 2x~(I;) = I.(xo + xo) < 11/.1111%0 + xol/ = Ilio + xoll, 
and so 11%0 + Xo 1/ > .lim 2 (1 - i-I) = 2 which is a contradiction . 

.. -+00 

Finally let 10 be any point of X;. If we show that 10 (xo) = x~ (10) > 

then (X;); ~ X and the reflexivity of X is proved. To prove that 10 (xo) = 
x~ (10), we take 10, Iv ... , In, .•• in place of Iv 12, ... , I .. , ... above, and 
hence we obtain Xo E X such that 

IIxoll = 1, I.(xo) = x~(I.) (i = 0, 1, ... , n, .. . ); 
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we must have Xo = Xo by virtue of the uniqueness just proved above, 
and so the proof of Theorem 2 is completed. 

3. Dunford's Theorem and The Gelfand-Mazur Theorem 
Definition 1. Let Z be an open domain of the complex plane. A map­

ping x (C) defined in Z with values in a B-space X is called weakly holo­
morphic in C in the domain Z if, for each f E X', the numerical function 

f(x(C)) = <x(C), f> 
of C is holomorphic in Z. 

Theorem 1 (N. DUNFORD [2]). If x(C) is weakly holomorphic in Z, 
then there exists a mapping x' (C) defined in Z with values in X such that, 
for each Co E Z, we have 

s-lim h-1 (x (Co + h) -x(Co)) = x'(Co). 
11-+0 

In other words, the weak holomorphic property implies the strong holo­
morphic property. 

Proof. Let C be a rectifiable Jordan curve such that the closed bounded 
domain "C enclosed by C lies entirely in Z and Co E "C - C. Let Zo be any 
open complex domain 3 Co such that its closure lies in the interior of "C. 
Then, by Cauchy's integral representation, we have 

f(x(Co)) = 2~i J~(X(~~ dC· 
c 

Hence, if both Co + h and Co + g belong to Zo' 

(h _ g)-l {,(X (Co + h~ - t(x(Co)) _ t(x(Co + g~ - t(X(Co))} 

= 2~i J l(x(C)) {(C - Co - h) (C -=- Co - g) (C-Co)} dC· 
c 

By the assumption, the distance between Zo and C is positive. Hence, for 
fixed f E X', the absolute value of the right hand side is uniformly boun­
ded when Co ,Co + h and Co + g range over ZOo Thus, by the resonance 
theorem, we have 

1 II Jx(Co + h) -x(Co) x(Co + g~ -X(Co)}11 < 00. 
sup Ih-gl 1 h 

C •• C.+h.C.+cEZ. 

Therefore, by the completeness of the space X, x (C) is strongly differenti­
able at every Co E Z. 

Corollary 1 (Cauchy's integral theorem). The strong differentiability 
of x(C) implies its strong continuity in C. Thus we can define the curvi­
linear integral f x (C) dC with values in X. Actually we can prove that 

c 
f x (C) dC = 0, the zero vector of X. 
c 
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Proof. We have, by the continuity and the linearity of I c X', 

I(j x (C) dC) = j l(x(C)dC. 

But the right hand side is zero, because of the ordinary Cau~hy integral 
theorem. Since IE X' was arbitrary, we must have f x (C) dC = 0 by 
Corollary 2 of Theorem 1 in Chapter IV, 6. c 

From the above Corollary, we can derive other Corollaries, as in the 
ordinary theory of functions of a complex variable. 

Corollary 2 (Cauchy's integral representation). 

1 J x(C) -x (Co) = 2ni C _ Co dC for any interior point Co of C. 
c 

Corollary 3 (Taylor's expansion). For any point Co which is in the 
interior of the closed domain C, the Taylor expansion of x(C) at C = Co 
converges strongly in the interior of the circle with centre at Co' if this 
circle does not extend outside of c: 

Corollary 4 (Liouville's theorem). If x (C) is (strongly) holomorphic in 
the whole finite plane: ICI < 00, and sup Ix(C) 1< 00, then x (C) must 
reduce to a constant vector x (0). 1,1<00 

Proof. If we take IC 1= r for the curve C, then, as r ~ 00, 

Ilx(n) (0) !I = ;' sup IIx(C) II J ':i~ ~ 0 (n = 1, 2, ... ). 
n 1,1<00 c r 

Hence the Taylor expansion of x(C) at C = 0 reduces to the constant 
term x(O) only. 

We shall now apply Corollary 4 to the proof of the Gelfand-Mazur theo­
rem. We first give 

Definition 2. A commutative field X over the field of complex numbers 
is called a normed lield, if it is also a B-space such that the following 
conditions are satisfied: 

i I ell = 1, where e is the unit of the multiplication in X, 

IIxyll < IHllIyll, where xyis the multiplication in X. 
(1) 

Theorem 2 (GELFAND [2]-MAZUR [1]). A normed field X is isometri­
cally isomorphic to the complex number field. In other words, every ele­
ment x of X is of the form x = ~e where ~ is a complex number. 
9 Yosida, Functional Analysis 
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Proof. Assume the contrary, and let there exist an x E X such that 
(x - ~e) =1= 0 for any complex number ~. Since X is a field, the non-zero 
element (x - ~e) has the inverse (x - ~e)-l EX. 

We shall prove that (x - A e)-l is (strongly) holomorphic in A for 
IA I < 00. We have, in fact. 

h-1«(x- (A + h)e)-l- (x-Ae)-l) 

= h-1(x - (A + h) e)-l {e - (x- (A + h) e) (x _Ae)-l} 

= h-1(x - (A + h) e)-l {e - e + h(x - Ae)-I} 

= (x- (A + h) e)-I (x-Ae)-l. 

On the other hand, forsufficientlysmallih I. the seriesy-I (e + Jl (hy-Ir), 

where y = (x - Ae), converges by (1). and it represents the inverse 
(y - he)-l = y-l (e - hy-l)-l. as may be seen by multiplying the series 
by (y - he). Hence. by the strong continuity in h of the series. we can 
prove that (x - Ae)-l is (strongly) holomorphic in A with the strong 
derivative (x - Ae)-2. 

Now. if IA I > 2 IIx II. then. as above. (x - A e)-l = - A-I (e - A-I X)-l 

= - A-I (e + i (A-I X)") and so 
.. =1 

II (x - Ae)-I II < lA-II (1 + "~I (1/2)")-+ 0 as IA 1-+ 00. 

Moreover, the function (x - Ae)-l, being continuous in A, is bounded on 
the compact domain of A: IAI < 211xll. Hence, by Liouville's theorem, 
(x - Ae)-l must reduce to the constant vector X-I = (x - 0 e)-I. But, 
since s-lim (x - A e)-l = 0 as proved above. we have arrived at a contra-

IAI~ 
diction X-I = O. e = X-I X = o. 

4. The Weak and Strong Measurability. Pettis' Theorem 

Definition 1. Let (S. ~. m) be a measure space, and x(s) a mapping 
defined on S with values in a B-space X. x (s) is called weakly ~-mea­
surable if, for any fE X'. the numericalfunction f(x(s)) = <x (s), f) of s 
is ~-measurable. x (s) is said to be finitely-valued if it is constant =1= 0 on 
each of a finite number of disjoint ~-measurable sets Bj with m (Bj ) < 00 

and x(s) = 0 on S -l) B j • x(s) is said to be strongly ~-measurable if 
3 

there exists a sequence of finitely-valued functions strongly convergent 
to x(s) m-a.e. on S. 

Definition 2. x(s) is said to be separably-valued ifits range {x(s); s E S} 
is separable. It is m-almost separably-valued if there exists a ~-measurable 
set Bo of m-measure zero such that {x(s); s E S - Bo} is separable. 
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Theorem (B. J. PETTIS [lJ). x(s) is strongly )B-measurable iff it is 
weakly )B-measurable and m-almost separably-valued. 

Proof. The "only if" part is proved as follows. The strong ~-measu­
rability implies the weak )B-measurability, because a finitely-valued func­
tion is weakly )B-measurable, and, by the strong ~-measurability of 
x (s), there exists a sequence of finitely-valued functions x" (s) such that 
s-lim Xn (s) = X (s) except on a set Bo E)B of m-measure zero. Thus the 

1>->00 

union of the ranges of x" (s) (n = 1, 2, ... ) is a countable set, and the 
closure of this set is separable and contains the range {x(s); s E 5 - Bo}. 

The proof of the "if" part. Without losing the generality, we may 
assume that the range {x (s); s E S} is itself separable. So we may assume 
that the space X is itself separable; otherwise, we replace X by the 
smallest closed linear subspace containing the range of x(s). We first 
prove that Ilx(s) II is itself )B-measurable. To this purpose, we shall make 
use of a lemma, to be proved later, which states that the dual space X' 
of a separable B-space satisfies the condition 

there exists a sequence {In} ~ X' with III .. II :s::: 1 such 

that, for any 10E X' with 11/011 < 1, we may choose a 

subsequence {In'} of {In} for which we have lim In' (x) 
1>->00 

= 10 (x) at every x EX. 

Now, for any real number a, put 

(1) 

A={s;llx(s)ll<a} and Af={s;l/(x(s))I:S:::a}, where lEX'. 
00 

If we can show that A = ,n Afp then, by the weak )B-measurability of 
J=1 

x(s), the function Ilx(s) II is )B-measurable. It is clear that A ( n Af · 
-llfll:;o1 

But, by Corollary 2 of Theorem 1 in Chapter IV, 6, there exists, for 
fixed s, an 10E X' with 11/011 = 1 and fo(x(s)) = Ilx(s) II. Hence the re­
verse inclusion A d n Af is true and so we have A = n Af . By 

-lIfll;>;1 IIfl/:;o1 
00 00 

the Lemma, we obtain n Af = n Af , and so A = n Af . 
1If/I:;01 j=1' j=1 ' 

Since the range {x (s); s E S} is separable, this range may, for any 
positive integer n, be covered by a countable number of open spheres 
Sj,n (j = 1, 2, ... ) of radius ~ lin. Let the centre of the sphere Sj,,. be 
Xj,n' As proved above, II x (s) - Xj,n II is )B-measurable in s. Hence the 

00 

set Bj,n = {s E 5; x (s) E Sj, .. } is )B-measurable and 5 = j~1 Bj,n' We set 

00 

Then, by 5 = ~ B~n' we have Ilx(s) - xn(s) II < lin for every s E S. 
i=l ' 

9* 
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Since B;,. is 58-measurable, it is easy to see that each x,. (s) is strongly 58-
measurable. Therefore x(s), which is the strong limit of the sequence 
{x,.(s)}, is also strongly 58-measurable. 

Proof of the Lemma. Let a sequence {X,.} be strongly dense in X. 
Consider a mapping I -HP,. (I) = {I (Xl), I (X2), ... , I (X,.)} of the unit 
sphere 5' = {I E X'; // 1// < 1} of X' into an n-dimensional Hilbert space 

(,. )1/2 l2 (n) of vectors (;1> ;2' ... , ;,.) normed by /I (;1' ;2, ... , ;,.) /I = v~ /;jI2 . 
The space l2(n) being separable, there exists, for fixed n, a sequence 
{/,.,k} (k = 1, 2, ... ) of 5' such that {q;,. (I,.,k); k = 1, 2, ... } is dense in the 
image q;,.(5') of 5'. 

We thus have proved that, for any 10 E 5', we can choose a subsequence 
{t,.,m,.} (n = 1, 2, ... ) such that / I,.,m,. (Xi) - 10 (Xi) / < lin (i = 1, 2, ... , n). 
Hence lim Inm (Xi) =/O(Xi) (i= 1,2, ... ), and so, by Theorem lOin Chap-..-co ,,. 

terV, 1, we obtain that lim I,.,m,.(x) = 10 (x) for every xE X. 

o. Bochner's Integral 

Let X (s) be a finitely-valued function defined on a measure space 
(5,58, m) with values in a B-space X; let x(s) be equal to Xi =F- 0 on 
B; E 58 (i = 1, 2, ... , n) where B/s are disjoint and m (Bi) < ex:> for 

i = 1, 2, ... , n, and moreover, x(s) = 0 on (5 -.1 B;). Then we can 
.=1 

define the m-integral J X (s) m (ds) of x (s) over 5 by 1 Xi m (B;). By 
s <=1 

virtue of a limiting procedure, we can define the m-integral of more 
general functions. More precisely, we have the 

Definition. A function x (s) defined on a measure space (5, 58, m) with 
values in a B-space X is said to be Bochner m-integrable, if there exists 
a sequence of finitely-valued functions {X,. (s)} which s-converges to x (s) 
m-a.e. in such a way that 

lim J I/ x (s) - x,,(s) /I m(ds) = O. (1) 
..-cos 

For any set BE 58, the Bochner m-integral of x (s) over B is defined by 

J x(s) m(ds) = s-lim J CB(s) x,.(s) m(ds), where CB is the 
B "--?OO S (2) 

defining function of the set B. 

To justify the above definition, we have to verify that the s-limit on 
the right of (2) exists and that the value of this s-limit is independent of 
the approximating sequence of functions {X,. (s)}. 

Justification of the Definition. First, x(s) is strongly 58-measurable 
and consequently the condition (1) has a sense, since I/x(s) -- X,.(s) /I is 
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~-measurable as shown in the proof of Petti's Theorem. From the in­
equality 

111 x,,(s) m(ds) -1 x,,(s) m(ds)il = 111 (x,,(s) -x,,(s)) m(ds) II 
< J II x" (s) - x,,(s) II m(ds) < J IIx .. (s) - x(s) II m(ds) 

8 S 

+ J IIx(s) - x,,(s) II m(ds) 
s 

and the completeness of the space X, we see that s-lim J x .. (s) m(ds) 
t>-+OO 8 

exists. It is clear also that this s-lim is independent of the approximating 
sequence, since any two such sequences can be combined into a single 
approximating sequence. 

Theorem 1 (S. BOCHNER [1]). A strongly ~-measurable function x (s) is 
Bochner m-integrable iff II x (s) II is m-integrable. 

Proof. The "only if" part. We have IIx(s)11 < II x .. (s)1I + IIx(s) -x" (s)lI. 
By the m-integrability of IIx .. (s) II and the condition (1), it is clear that 
IIx(s) II is m-integrable and 

J IIx(s) II m(ds) < J IIx,,(s) II m(ds) + J IIx(s) - x,,(s) II m(ds). 
B 8 B 

Moreover, since 

J IlIx,,(s) 1I-lIx,,(s) III m(ds) < J IIx,,(s) - x,,(s) II m(ds) , 
B 8 

we see from (1) that lim J II x" (s) II m (ds) exists so that we have 
t>-+OO B . 

J II x (s) II m(ds) < lim J II x" (s) II m(ds). 
8 t>-+OO B 

The "if" part. Let {x" (s)} be a sequence of finitely-valued functions 
strongly convergent to x (s) m-a.e. Put 

y .. (s) = x .. (s) if I Ix .. (s) 1/;:;;; I/x(s) 1/(1 + 2-1), 

= 0 if I/x .. (s) 1/> I/x(s) 1/(1 + 2-1). 

Then the sequence of finitely-valued functions {y .. (s)} satisfies II y" (s) II < 
IIx(s) II· (1 + 2-1) and lim IIx(s) - y,,(s) 11= 0 m-a.e. Thus, by the 

t>-+OO 

m-integrabilityof IIx(s) II, we may apply the Lebesgue-Fatou Lemma to 
the functions IIx(s) - y,,(s) II < IIx(s) II (2 + 2-1) and obtain 

lim Jllx(s)-y,,(s)lIm(ds) =0, 
t>-+OO s 

that is, x(s) is Bochner m-integrable. 
Corollary 1. The above proof shows that 

l"x(s) II m(ds) ~ 111 x(s) m(ds) II, 
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and hence J x(s) m(ds) is m-absolutely continuous in the sense that 
B 

s-lim J x(s) m(ds) = O. 
m(B)--+O B 

" The finite additivity J x(s) m(ds) = . .I J x(s) m(ds) is clear and 
.. J=1 B; 
I: B; 

;=1 

so, by virtue of the a-additivity of J II x (s) Ii m (ds) , we see that 
B 

J x(s) m(ds) is a-additive, i.e., 
B 

00 

B = . .I Bj with m (Bj ) < <Xl implies 
J=1 

" = s-lim . .I J x (s) m (ds). 
_00)=1 B; 

J x(s) m(ds) 
00 
I: B; 

1=1 

Corollary 2. Let T be a bounded linear operator on a B-space X into a 
B-space Y. If x(s) is an X-valued Bochner m-integrable function, then 
Tx(s) is a Y-valued Bochner m-integrable function, and 

J Tx(s) m(ds) = T J x(s) m(ds). 
B B 

Proof. Let a sequence of finitely-valued functions {Yn (s)} satisfy 

Ily,,(s) II < Ilx(s) II (1 + n-1) and s-limYn(s) = x(s) m-a.e . 
...-..00 

Then, by the linearity and the continuity of T, we have J TYn (s) m (ds) = 
B 

T J Yn(s) m(ds). We have, moreover, by the continuity of T, 
B 

IITy,,(s) II ~ IITII·IIYn(s) II < IITII'lIx(s) II· (1 + n-1) and 

s-lim TYn(s) = Tx(s) m-a.e. 
~ 

Hence T x (s) is also Bochner m-integrable and 

J Tx(s) m(ds) = s-lim J Ty,,(s) m(ds) = s-lim T J Yn(s) m(ds) 
B ,,->00 B _00 B 

= T J x(s) m(ds). 
B 

Theorem 2 (S. BOCHNER [lJ). Let 5 be an n-dimensional euclidean 
space, )8 the family of Baire sets of 5, and m(B) the Lebesgue measure 
of B. If x (s) is Bochner m-integrable, and it P (so; (X) is the parallelopiped 
with centre at So E 5 and side length 2(X, then we have the differentiation 
theorem 

s-lim (2(X)-n J x (s) m (ds) = x (so) for m-a.e. so' 
,,+0 P(s,;,,) 
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Proof. Put 
(2ar n J x(s) m(ds) = D (x; so' 1X). 

P(s,;",) 

If {xn(s)} is a sequence of finitely-valued functions such that Ilxn(s) II < 
llx(s) II· (1 + n-1) and s-lim xn(s) = x(s) m-a.e., then 

~ 

D (x; so, 1X) - x (so) = D (x - Xk; so, 1X) + D (Xk; so, 1X) - X (so) , 

and so 
lim liD (x; so, 1X) -x (so) II < lim D(llx - Xk II; SO,1X) 
"'to "'to 

+ lim IID(xk;so,1X) -Xk(SO) II + Ilxk(so)-x(so)ll· 
"'to 

The first term on the right is, by Lebesgue's theorem of differentiation of 
numerical functions, equal to Ilx (so) - Xk(SO) II m-a.e. The second term 
on the right is = 0 m-a.e., since Xk(S) is finitely-valued. Hence 

lim II D (x; SO' 1X) - X (so) II < 211xk (so) - X (so) Il for m-a.e. so· 
", ... 0 

Therefore, by letting k --+ 00, we obtain Theorem 2. 

Remark. Contrary to the case of numerical functions, a B-space­
valued, a-additive, m-absolutely continuous function need not necessarily 
be represented as a Bochner m-integral. This may be shown by a counter 
example. 

A Counter Example. Let 5 = [0, 1J and ~ the family of Baire sets 
on [0, 1J, and m (B) the Lebesgue measure of B E ~. Consider the totality 
m [1/3, 2/3J of real-valued bounded functions ~ = ~ (0) defined on the 
closed interval [1/3,2/3J and normed by II~ II = sup I~(O) I. We define 

o 
an m [1/3, 2/3J-valued function x (s) = ~ (0; s) defined on [0, 1J as follows: 

jthe graph in s-y plane of the real-valued function y = Yo (s), 
which is the O-coordinate ~ (0; s) of x (s), is the polygonal line 
connecting the three points (0, 0), (0, 1) and (1, 0) in this order. 

Then, if s oF s', we have Lipschitz' condition: 

II (s - S')-1 (x(s) - x(s') II = sup I (s - S')-1 (~(O; s) - ~(O; s') I < 3. 
o 

Thus, starting with the interval function (x(s) - x(s') taking values in 
m [1/3, 2/3J, we can define a a-additive, m-absolutely continuous set 
function x (B) defined for Baire set B of [0, 1]. 

If this function x(B) is represented as a Bochner m-integral, then, 
by the preceding Theorem 2, the function x (s) must be strongly differen­
tiable with respect to s m-a.e. Let the corresponding strong derivative 
x' (s) be denoted by 'fJ (0; s) which takes values in m [1/3, 2/3]. Then, for 
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every 0 E [1/3, 2/3J and m-a.e. s, 

0= lim II h-1 (x (s + h) - x (s)) - x' (s) II > lim I h-1 (~(O; s + h) -~ (0 ;s)) 
h-o h-o 

-1](O;s)l· 

This proves that ~ (0; s) must be differentiable in s m-a.e. for all 0 E 
[1/3,2/3]. This is contradictory to the construction of ~(O; s). 

References for Chapter V 

S. BANACH [lJ, N. DUNFORD-J, SCHWARTZ [lJ and E. HILLE-R. S. 
PHILLIPS [1]. 

Appendix to Chapter V. Weak Topologies and Duality 
in Locally Convex Linear Topological Spaces 

The present book is so designed that the reader may skip this appen­
dix in the first reading and proceed directly to the following chapters. 

1. Polar Sets 

Definition. Let X be a locally convex linear topological space. For 
any set M £;; X, we define its (right) polar set MO by 

MO = {x' E X'; sup I<x, x') I ::;; 1}. (1) 
"EM 

Similarly, for any set M' £;; X', we define its (lelt) polar set OM' by 

OM' = {xE X; sup I<x, x') I < 1} = X (\ (M')O, (2) 
"'EM' 

where we consider X to be embedded in its bidual (X;)'. 
A fundamental system of neighbourhoods of 0 in the weak topology 

of X is given by the system of sets of the form OM' where M' ranges over 
arbitrary finite sets of X'. A fundamental system of neighbourhoods of 
o in the weak· topology of X' is given by the system of sets of the form 
MO where M ranges over arbitrary finite sets of X. A fundamental 
system of neighbourhoods of 0 in the strong topology of X' is given by 
the system of sets of the form MO where M ranges over arbitrary bounded 
sets of X. 

Proposition. MO is a convex, balanced set closed in the weak· topology 
of X'. 

Proof. For any fixed x E X, the linear functional I (x') = <x, x') is 
continuous in the weak· topology of X'. Thus MO = n {m}O is closed 

mEM 
in the weak· topology of X'. The balanced convexity of MO is clear. 
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An Application of Tychonov's Theorem 

Theorem 1. Let X be a locally convex linear topological space, and A 
a convex, balanced neighbourhood of 0 of X. Then AO is compact in the 
weak* topology of X'. 

Proof. Let p (x) be the Minkowski functional of A. Consider, for each 
xE X, a sphere 5,. = {zE C; Izl < P(x)} and the topological product 
5 = lIS,.. 5 is compact by Tychonov's theorem. Any element x' EX' 

,.EX 

is determined by the set of values x' (x) = <x, x'), x EX. Since x E 
(P(x) + e)A for any e> 0, we see that x' E X' implies <x, x') = 
«P(x) + e)a, x') with a certain aE A. Thus x E AO implies that 
lx' (x) I <P(x) + e, that is, x' (x) E 5,.. Hence we may consider AO as a 
subset of S. Moreover, it is easy to verify that the topology induced on 
A ° by the weak* topology of X' is the same as the topology induced on 
AO in the Cartesian product topology of 5 = lIS". 

xEX 
Hence it is sufficient to prove that A ° is a closed subset of S. Suppose 

Y = II y (x) is an element of the weak* closure of AO in S. Consider any 
"EX 

e > 0 and any Xl' x2 EX. The set of all U = II U (x) E 5 such that 
"EX 

Iu(xl ) -y(xl ) I < e, lu(x2) -y(x2) I < e and IU(XI + x2) -Y(XI + x2) I < e 

is a neighbourhood of y in S. This neighbourhood contains some point 
x' E AO and, since x' is a continuous linear functional on X, we have 

IY(XI + x2) - y(xl ) - y(x2) I < IY(XI + x2) - <Xl + x2 , x') I 
+ I <xl' x') - Y (Xl) I + I <x2 , x') - Y (x2) I < 3e. 

This proves that Y (Xl + x2) = Y (Xl) + Y (x2). Similarly, we prove that 
Y ({3 x) = {3 Y (x), and so Y defines a linear functional on X. By the fact 
that Y = II y(x) E 5, we know that IY(x) I <P(x). Since P(x) is con-

xEX 
tinuous, Y (x) is a continuous linear functional, i.e., y E X'. On the other 
hand, since y is a weak* accumulation point of AO, there exists, for any 
e> 0 and a E A, an x' E AO such that Iy(a) - <a, x') I <e. Hence 
Iy(a) I < I<a, x') 1+ e < 1 + e, and so Iy(a) I < 1, that is, yE AO. 

Corollary. The unit sphere 5* = {x' E X'; II x' II < I} of the dual space 
X; of a normed linear space X is compact in the weak* topology of X'. 

An Application of Mazur's Theorem 
Theorem 2. Let M be a convex, balanced closed set of a locally convex 

linear topological space X. Then M = O(MO). 
Proof. It is clear that M ~ O(MO). If there exists an Xo E O(MO) - M, 

then, by Mazur's theorem 3 in Chapter IV, 6, there exists an x~ EX' 
such that <xo' x~) > 1 and I <x, x~) I < 1 for all x EM. The last inequality 
shows that x~ E MO and'so Xo cannot belong to O(MO). 
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2. Barrel Spaces 

Definition. In a locally convex linear topological space X, any convex, 
balanced and absorbing closed set i<; called a barrel (tonneau in Bourbaki's 
terminology). X is called a barrel space if each of its barrels is a neighbour­
hood of O. 

Theorem 1. A locally convex linear topological space X is a barrel 
space if X is not of the first category. 

Proof. Let T be a barrel in X. Since T is absorbing, X is the union of 
closed sets nT = {nt; t E T}, where n runs over positive integers. Since 
X is not of the first category, at least one of the (n T)' s contains an interior 
point. Hence T itself contains an interior point xO. If Xo = 0, T is a neigh­
bourhood of o. If Xo # 0, then -xo E T by the fact that T is balanced. 
Thus -xo is an interior point of T with xO. This proves that the convex 
set T contains 0 = (xo - xo)/2 as an interior point. 

Corollary 1. All locally convex F-spaces and, in particular, all B­
spaces and ~ (Rn) are barrel spaces. 

Corollary 2. The metric linear space 'tI K (Rn) is a barrel space. 

Proof. Let {rpk} be a Cauchy sequence with respect to the distance 

d· ( ) ~ 2-m Pm (ffJ - tp) h P ( ) / Dj () / IS rp, 1p = __ 1 + P ( _ )' were .m rp = sup rp x . 
m=O m ffJ tp liI;;;;m,xEK 

For any differential operator Dj, the sequence {Djrpk (x)} is equi-contin­
liOUS and equi-bounded, that is, 

lim sup /Dirpk (Xl) - Dirpk (x2) / = 0 and sup /Djrpk (x) / < 00. 
IX'_X'I j, 0 k~l xEK,k~l 

This we see from the fact that, for any coordinate x" 

XE~~~l i8~. Dirpk(X)i < 00. Hence, by the Ascoli-Arzela theorem, there 

exists a subsequence of {DJ rpk' (x)} which converges uniformly on K. 
By the diagonal method, we may choose a subsequence {rpk" (x)} of {rpk (x)} 
such that, for any differential operator Di, the sequence {Dirpk" (x)} 
converges uniformly on K. Thus 

lim Dirpk"(X) = Dirp(x) where rp(x) = lim rpk"(X), 
k" --->00 k"--->oo 

and these limit relations hold uniformly on K. Hence the metric space 
'tIK (Rn) is complete and so it is not of the first category. 

Remark. (i) The above proof shows that a bounded set of 'tI (Rn) is 
relatively compact in the topology of 'tI (Rn). For, a bounded set B of 
<1) (R") is contained in some 'tIK (Rn) where K is a compact set of R~, and, 
moreover, the boundedness condition of B implies the equi-boundedness 
and equi-continuity of {Dirp; rp E B} for every Di. (ii) Similarly, we see 
that any bounded set of ~ (R") is a relative I y compact set of ~ (Rn). 
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Corollary 3. 'l) (R") is a barrel space. 

Proof. 'l) (R") being an inductive limit of {'l)K (R"n when K ranges 
over compact subsets of R", the present corollary is a consequence of 
the following 

Proposition. Let a locally convex linear topological space X be an 
inductive limit of its barrel subspaces XIX' 1X EA. Then X itself is a barrel 
space. 

Proof. Let V be a barrel of X. By the continuity of the identical 
mapping T",: x-+ x of XIX into X, the inverse image T;l(V) = V f\ XIX 
is closed with V. Thus V f\ XIX is a barrel of XIX' XIX being a barrel space, 
V f\ XIX is a neighbourhood of 0 of XIX' X being an inductive limit ofX",'s, 
V must be a neighbourhood of 0 of X. 

Theorem 2. Let X be a barrel space. Then the mapping x -+ J x of X 
into (X;);, defined in Chapter IV, 8, is a topological mapping of X onto 
J X, where the topology of J X is provided with the relative topology 
of J X as a subset of (X;);. 

Proof. Let B' be a bounded set of X;. Then the polar set (B')O = 
{x" E (X;)'; sup I <x', x") I < 1} of B' is a neighbourhood of 0 of (X;);, 

rEB' 
and it is a convex, balanced and absorbing set closed in . (X.:);. Thus 
(B')O f\ X = O(B') is a convex, balanced and absorbing set of X. As a 
(left) polar set, O(B') is closed in the weak topology of X, and hence 
O(B') is closed in the original topology of X. Thus O(B') = (B')O f\ X is 
a barrel of X, and so it is a neighbourhood of 0 of X. Therefore, the 
mapping x -+ J x of X into (X;); is continuous, because the topology of 
(X;); is defined by a fundamental system of neighbourhoods of 0 of the 
form (B')O, where B' ranges over bounded sets of X'. 

Let, conversely, U be a convex, balanced and closed neighbourhood of 
o of X. Then, by the preceding section, U = O( UO). Thus J U = J X f\ (UO)o. 
On the other hand, UO is a bounded set of X;, since, for any bounded set 
B of X, there exists an 1X> 0 such that 1XB ~ U and so (1XB)O ~ UO. 
Hence (UO)O is a neighbourhood of 0 of (X;);. Thus the image J U of the 
neighbourhood U of 0 of X is a neighbourhood of 0 of J X provided with 
the relative topology of J X as a subset of (X;);. 

3. Semi-reflexivity and Reflexivity 
Definition 1. A locally convex linear topological space X is called 

semi-reflexive if every continuous linear functional on X: is given by 

<x, x,), with a certain x EX. (1) 

Thus X is semi-reflexive iff 

(2) 
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Definition 2. A locally convex linear topological space X is called 
reflexive if 

X=(X;);. (3) 

By Theorem 2 in the preceding section, we have 

Proposition 1. A semi-reflexive space X is reflexive if X is a barrel space. 
It is also clear, from Definition 2, that we have 

Proposition 2. The strong dual of a reflexive space is reflexive. 
Theorem 1. A locally convex linear topological space X is semi­

reflexive iff every closed, convex, balanced and bounded set of X is 
compact in the weak topology of X. 

Proof. Let X be semi-reflexive, and T a closed, convex, balanced and 
bounded set of X. Then, by Theorem 2 in Section I of this Appendix, 
T = O(TO). T being a bounded set of X, TO is a neighbourhood of 0 of X;. 
Thus, by Theorem 1 in Section 1 of this Appendix, (TO)O is compact in the 
weak'" topology of (X;)'. Hence, by the semi-reflexivity of X, T = O(TO) 
is compact in the weak topology of X. 

We next prove the sufficiency part of Theorem 1. Take any x" E (X;)'. 
The strong continuity of x" on X; implies that there exists a bounded 
set B of X such that 

I <x', x"> I < 1 whenever x' E BO, that is, x" E (BO) ° . 
We may assume that B is a convex, balanced and closed set of X. Thus, 
by the hypothesis of Theorem 1, B is a compact set in the weak topology 
of X. Hence B = B wa where Bwa denotes the closure of B in the weak 
topology of X. Since Xw is embedded in (X:)~. as a linear topological 
subspace, we must have (BO)o:;;? B wa = B. Therefore we have to show 
that x" is an accumulation point of B in (X~)~ •. Consider the mapping 
x -~ cp (x) = {<x, x~>, ... , <x, x~>} of X into l2 (n), where x~; .... , x~ E X'. 
The image cp(B) is convex, balanced and compact, since B is convex, 
balanced and weakly compact. If {<x.i, x"), ... , <x~, x")} does not belong 
to cp(B), then, by Mazur's theorem, there would exists a point 
{cl , ... , cn} E l2(n) such that sup I.E ci<b, xi)rl ;;;; I and (.E Ci<X~, XII») > 1, 

~B i i 

proving that .E cixi E BO and x" cannot belong to BOO. 
i 

Theorem 2. A locally convex linear topological space X is reflexive 
iff it is a barrel space and every closed, convex, balanced and bounded set 
of X is compact in the weak topology of X. In particular, ~ (Rn) and 
~ (Rn) are reflexive. 

Proof. The sufficiency part is proved already. We shall prove that 
the first condition of Theorem 2 is necessary. 
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Let T be a barrel of X. We shall prove that T absorbs any bounded 
set B of X so that BO ;:;? IX TO, IX > O. BO being a neighbourhood of 0 of 
X;, we see that TO is a bounded set of X;. By the Proposition and Theo­
rem 2 in Section 1 of this Appendix, we have T = O(TO). By the hypothesis 
that X is reflexive, we have O(TO) = (TO)O and so T = (TO)o. Therefore we 
have proved that the barrel T is a neighbourhood of 0 of X = (X;);. 
Hence X is a barrel space. 

By hypothesis, the closed, convex and balanced set K=Conv ( U cxB)" 
1"'1:;>1 

is compact in the weak topology of X. Here we denote by Conv(N)a the 

closure inX of the convex closure (see p.28) Conv(N) ofN. Set Y = U nK 
n=l 

and let p (x) be the Minkowski functional of K. Then since K is w-compact in 
Y, p (x) defines a norm of Y. That is, the system {ocK} with oc > 0 defines a 
fundamental system of neighbourhoods of the normed linear space Y, and 
Y is a B-space since K is w-compact. Hence Y is a barrel space. On the 
other hand, since K is a bounded set of X, the topology of Y defined by the 
norm p (x) is stronger than the relative topology of Y as a subset of X. 
As a barrel of X, T is closed in X. Hence T {\ Y is closed in Y with respect 
to the topology defined by the norm p (x). Therefore T {\ Y is a barrel 
of the B-space Y, and so T {\ Y is a neighbourhood of 0 of the B-space 
Y. We have thus proved that T {\ Y and, a fortiori, T both absorb 
K;:;?B. 

4. The Eberlein-Shmulyan Theorem 

This theorem is very important in view of its applications. 

Theorem (EBERLEIN-SHMULYAN). A B-space X is reflexive iff it is 
locally sequentially weakly compact; that is, X is reflexive iff every 
strongly bounded sequence of X contains a subsequence which converges 
weakly to an element of X. 

For the proof we need two Lemmas: 

Lemma 1. If the strong dual X; of a B-space X is separable, then X 
itself is separable. 

Lemma 2 (S. BANACH). A linear subspace M' of the dual space X' of a 
B-space X is weakly* closed iff M' is boundedly weakly* closed; that is, 
M' is weakly* closed iff M' contains all weak* accumulation points of 
every strongly bounded subset of M'. 

Lemma 1 is already proved as a Lemma in Chapter V, 2. For Lemma 2, 
we have only to prove its "if" part. It reads as follows. 

Proof. (E. HILLE-R. S. PHILLIPS [1]). We remark that M' is strongly 
closed by the hypothesis. Let x~ f M'. Then we can prove that, for each 
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constant C satisfying the condition 0 < C < inf /Ix' -x~ ii, there exists 
x'EM' 

an Xo E X with Ilxo II :::; l/C such that 

<xo' x~> = 1 and <xo, x'> = 0 for all x' E M' . (1) 

Thus the strongly closed set M' must contain all of its weak* accumula­
tion points. 

To prove the existence of xo, we choose an increasing sequence of 
numbers {Cn} such that C1 = C and lim Cn = 00. Then there exists a 

"-+00 

finite subset 0'1 of the unit sphere 5 = {xE X; IIxll:::; I} such that 

Ilx' - x~ II :;;; C2 and sup I <x, x' > - <x, x~> I :;;; C1 implies x' E M'. 
;fEul 

If not, there would exists, corresponding to each finite subset a of 5, an 
x: EM such that 

/lx~ - x~ II ~ C2 and sup I <x, x:> --;- <x, x~> I :::; C1 · 
xEer 

We order the sets a by inclusion relation and denote the weak* closure of 
the set {x:; a' ~ a} by N~. It is clear that N~ enjoys the finite intersection 
property. On the other hand, since M' is boundedly weakly* closed, 
the Corollary of Theorem 1 in this Appendix, 1, implies that the set 

M;, = {x' EM'; II x' II < C'} 

is weakly* compact. Hence N~ t;;; M~ for C' = C2 + IIx~ /I, and so there 
exists an x~ E n N~ t;;; M'. Hence we have sup I <x, x{> - <x, x~> I :::;; C1 

er xES 

and so Ilx~ -x~II:::;; C1' contrary to the hypothesis that 0< C1 < 
inf II x' - x~ /I. 

x'EM' 
By a similar argument, we successively prove the existence of a se-

quence of finite subsets aI' a2, ... of 5 such that 

l
"X'-X~"<Ck and supl<x,x'>-<x,x~>I<Ci 

sEerl 
(i = 1, 2, .•. , k - 1) 

do not imply x' E M' . 

Thus, since lim Ci = 00, we see that x' E M' if 
i-HX) 

l<x,x'>-<x,x~>1 <C for all xE (C/Cj)aj (j = 1, 2, ... ). 

Let {x,,} be a sequence which successively exhausts the sets (C/Cj)aj 
U = 1,2, ... ). Then lim x" = 0 and so L(x') = {<xn , x'>} is a bounded 

n-+OO 

linear transformation of X: into the B-space (co). We know that the 
point {<x,,, x~>} E (co) lies at a distance> C from the linear subspace 
L (M'). Thus, by Corollary of Theorem 3 in Capter IV, 6, there exists a 
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continuous linear functional {a .. } E (co)' = (ll) such that 
00 00 

II {a .. } II = .I la,,1 < lie, .I a .. <x .. , x~) = 1 and 
.. =1 n=1 

00 

.I an <x .. , X') = 0 for all x' E M' . 
.. =1 

00 

The element Xo = .I a .. x .. clearly satisfies condition (1) . 
.. =1 

Corollary. Let <x', x~) = F(x/) be a linear functional defined on 
the dual space X' of a B-space X. If N (F) = N (x~) = {x' E X'; F (x') = O} 
is weakly* closed, then there exists an element Xo such that 

F (x') = <x', x~) = <xo' x') for all x' E X' . (2) 

Proof. We may assume that N(F) #- X'. Otherwise we can take 
Xo = O. Let .'j;~ E X' be such that F (x~) = 1. By (1) of the preceding 
Lemma 2, there exists an Xo E X such that 

<xo, x~) = 1 and <xo' x') = 0 for all x' E N (F) . (3) 

Hence, for any x' E X', the functional 

x' _F(X/)X~ = y' E X' 

satisfies F(y/) = 0, i.e. y' E N(F). Therefore, by (3), we obtain (2). 

Proof of the Theorem. "Only if" part. Let {xn } be a sequence of X 
such that "x .. " = 1. The strong closure Xo of the subspace spanned by 
{X,.} is a separable B-space. Being a B-space, Xo is a barrel space. We 
shall show that Xo is reflexive. Any strongly closed, bounded set Bo of 
Xo is also a strongly closed, bounded set of X and hence Bo is compact 
in the weak topology of X by the reflexivity of X. But, as a strongly 
closed linear subspace of X, Xo is closed in the weak topology of X (see 
Theorem 3 in Chapter IV, 6). Hence Bo is compact in the weak topology 
of Xo' Thus Xo is reflexive by Theorem 2 in the preceding section. We 
have thus Xo = ((Xo););' By Lemma 1 above, (Xo): is thus separable. Let 
{x:} be strongly dense in (Xo);. Then the weak topology of Xo is defined 
by an enumerable sequence of semi-norms Pm (x) = I <x, x~) I (m = 
1, 2, ... ). Hence it is easy to see that the sequence {x .. }, which is compact 
in the weak topology of Xo, is sequentially weakly compact in Xo and 
in X as well. We have only to choose a subsequence {X,..} of {X,.} such 
that finite lim <x ... , x~) exists for m = 1, 2, ... 

"-+00 

"It" part. Let M be a bounded set of X, and assume that every in-
finite sequence of M contains a subsequence which converges weakly to 

an element of X. We have to show that the closure M of M in X in the 
weak topology of X is weakly compact in X. For, then the barrel space 
X is reflexive by Theorem 2 in the preceding section. 
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Since Xw <;:; (X;)~., we have M = M f'I X w, where M is the closure 

of M in the weak· topology of (X~)'. Let 5; be the sphere of X~ of radius 
r > 0 and centre O. By the correspondence 

M:3 m ~ {<x', m); Ilx' II < I} E /15/-'" where 

Ix' = {z; Izi < sup I<x', m>I}, 
mEM 

M may be identified with a closed subset of the topological product 

II Ix" By Tychonov's theorem, II Ix' is compact and hence Mis 
x'E:S~ .%'ES~ 

compact in the weak· topology of (X;)'. Hence we have only to show 

M<;:;Xw. 

Let x~ E (X;)' be an accumulation point of the set M in the weak· 
topology of (X;)'. To prove that x~ E Xw we have only to show that the 
set N (x~) = {x' E X'; <x', x~) = O} is weakly· closed. For, then, by the 
above Corollary, there exists an Xo E X such that <x', x~) = <xo' x') for 
all x' E X'. We shall first show that 

for every finite set x~, x~, .. " x: of X', there exists a z EM 
h I" , (. ) (4) such t at <Xj' xo) = <z, Xj) J = 1,2, ... , n . 

The proof is as follows. Since x~ is in the weak· closure of M, there is an 

element Zm E M such that 

I <zm, xj) - <Xj, x~) I < 11m (i = 1, 2, ... , n). 

By hypothesis there exists a subsequence of {zm} which converges weakly 
- -

to an element Z E X and so Z EM, since the sequential weak closure of M 
is contained inM. We have thus (4). 

Now, by Lemma 2, N(x~) is weakly· closed if, for every r> 0, the 
set N (x~) (\ 5; is weakly· closed. Let y~ be in the weak· closure of 
N (x~) (\ S~. We have to show that y~ E N (x~) f'I S~. To this purpose, we 

choose an arbitrary e> 0 and construct three sequences {Z,.} <;:; Jf, 
{X,.} <;:; M and {y:} <;:; N(x~) (\ S~ as follows: By (4) we can choose 

a, Zl E M such that <Zl' y~) = <y~, x~>. zl being in the weak closure 
of M, there exists an Xl EM such that I <xl' y~) - <zv y~) I < e/4. y~ being 
in the weak. closure of N (x~) (\ S~, there exists a y~ E N (x~) f'I S~ such 
that I <Xl' y~) - <Xl' y~) I :s e14. Repeating the argument and remember-



4. The Eberlein-Shmulyan Theorem 145 

ing (4), we obtain {z .. } ~ M, {x .. } ~ M and {y~} ~ N(x~) (\ S~ such that 

<ZI' y~> = <y~, x~>, 

<z .. , y;"> = <y;", x~> = 0 

I <x .. , y;"> - <z .. , y;"> I :S 13/4 

I <Xi, y~> - <Xi' y~> I < 13/4 

Thus we have 

(m = 1, 2, ... , n - 1) , 

(m = 0, 1, ... , n -1), 

(i = 1, 2, ... , n). I (5) 

I<Y~, x~> - <Xi, y~> I <13/4 + 13/4 = 13/2 (i = 1, 2, ... , n). (6) 

Since {x .. } ~ M, there exists a subsequence of {x .. } which converges weakly 

to an element X EM. Without losing the generality, we may assume that 

the sequence {x .. } itself converges weakly to x EM. Hence, from (5), 
I <x, y;"> I <13/4. From w-lim x .. = x and Mazur's theorem 2 in Chapter V, 1, 

n->OO 

there exists a convex combination u = .1: O(.jXj(O(.j ::2: 0, .1: O(.j = 1) 
J=1 J=1 

such that Ilx - u II < 13/4. Therefore, by (6), 

.. 
I <y~, x~> - <u, y~> I < . .J: O(.j I <y~, x~> - <Xj, y~> I ~ 13/2, 

J=l 

and hence 

I <y~, x~> I < I <y~, x~> - <u, y~> I + I <u, y~> - <x, y~> I + I <x, y~> I 
< 13/2 + Ilu-xIIIIY~11 + 13/4 < e. 

As 13 was arbitrary, we see that <y~, x~> = 0 and so y~ E N (x~). Combined 
with the fact that S~ is weakly* closed, we finally obtain y~ E N (x~) (\ S~. 

Remark. As for the weak topologies and duality in B-spaces, there 
is an extensive literature. See, e.g., the references in N. DUNFORD­
]. SCHWARTZ [1]. Sections 1, 2 and 3 of this Appendix are adapted 
and modified from N. BOURBAKI [IJ and A. GROTHENDIECK [IJ. It is 
remarkable that necessary tools for proving this far reaching theorem of 
EBERLEIN [1]-SHMULYAN [1] are found, in one form or other, in the book 
of S. BANACH [1]. 

VI. Fourier Transform and Differential Equations 

The Fourier transform is one of the most powerful tools in classical 
and modern analysis. Its scope has recently been strikingly extended 
thanks to the introduction of the notion of generalized functions of 
S. L. SOBOLEV [1 J and L. SCHWARTZ [1]. The extension has been applied 
successfully to the theory of linear partial differential equations by 
L. EHRENPREIS, B. MALGRANGE and especially by L. HORMANDER [6J. 

10 Yoslda, Functional Analysis 
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1. The Fourier Transform of Rapidly Decreasing Functions 

Definition 1. We denote by (5 (R") the totality of functions / E Coo (R") 
such that 

(1) 

for every oc = (OCl> OC2, ... , oc,,) and f3 = (f3l> f32' .. " f3,,) with non-negative 
integers OCj and f3k' Such functions are called rapidly decreasing (at ex». 

Example. exp (-I x 12) and functions t E ego (R") are rapidly decreas­
ing. 

Proposition 1. (5 (R") is a locally convex linear topological space by 
the algebraic operation of function sum and multiplication of functions 
by complex numbers, and by the topology defined by the system of 
semi-norms of the form 

p (f) = sup \P(x) D'"/(x) I, where P(x) denotes a polynomial. (2) 

Proposition 2. (5 (R") is closed with respect to the application of 
linear partial differential operators with polynomial coefficients. 

Proposition 3. With respect to the topology of (5 (R") , ego (R") is a 
dense subset of (5 (R") . 

Proof. Let / E (5 (R") and take 'IjJ E COO (R") such that 'IjJ (x) = 1 when 
I x I ::;; 1. Then, for any e > 0, /. (x) = / (x) 'IjJ (ex) E ego (R"). By applying 
Leibniz' rule of differentiation of the product of functions, we see that 

D'" U. (x) - /(x)) = D'"{/(x) ('IjJ(ex) -1)} 

is a finite linear combination of terms of the form 

D{J/(x). (e)I,,1 {D"'IjJ(y)},.=ul where 1f31 + Irl = l.xl with Irl> 0, 

and the term D'"/(x) . ('IjJ(ex) -1). Thus it is easy to see that /.(x) tends 
to / (x) in the topology of (5 (R") when e t 0. 

Definition 2. For any / E (5 (R"), define its Fourier trans/arm f by 

t (e) = (2n)-"/2 J e-;(~'%) / (x) dx, (3) 
R" .. 

where e = (el> e2, ... , e .. ), x = (Xl> X2' ... , x,,), <e, x) = Z ejXj and 
j=1 

dx = dXl dX2 ... dx". We also define the inverse Fourier transform g of 

gE (5 (R") by 

(4) 

Proposition 4. The Fourier transform: / -+ i maps (5 (R") linearly 
and continuously into (5 (R"). The inverse Fourier transform: g -+ g also 
maps (5 (R") linearly and continuously into IS (R"). 
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Proof. Differentiating formally under the integral sign, we have 

D"'{(E) = (231;r,,/2 f e-i(~,~) (-i)I"'1 x"'f(x)dx. (5) 

The formal differentiation is permitted since the right hand side is, by 
(1), uniformly convergent in E. Thus i E COO (R"). Similarly, we have, by 
integration by parts, 

(i)11I1 Ell i(E) = (231;)-"/2 I e-i(e,~) Dllf(x)dx. (6) 

Thus we have 

(i)llIl+i"'IEIID"'l(E) = (231;)-,,/2f e-·(E,~) DII(x"'f(x))dx, (7) 

and (7) proves that the mapping f -+ 1 is continuous in the topology of 
S(R"). 

Theorem 1 (Fourier's integral theorem). Fourier's inversion theorem 
holds: 

1 (x) = (231;)-"/2 f ei(%,n 1 (e) de = f(x), i.e., we have (8) 

I = f, and similarly; = f. (8') 

Therefore it is easy to see that the Fourier transform maps S (R") onto 
S (R") linearly and continuously in both directions, and the inverse Fourier 
transform gives the inverse mapping of the Fourier transform. 

Proof. We have 

fg(e) 1 (e) ei(%,e) de = f g(y) f(x + y) dy (f and gE S(R")). (9) 

In fact, the left hand side is equal to 

fg(e) ((231;) -n/2fri(E,y) f(y) dy} e i(:<,e)de 

= (231;)-n/2 f {f g(e) e-i(e,y-%) de} f(y) dy 

= f g (y - x) f (y) dy = f g (y) f (x + y) dy. 

If we take g(ee) for g(e), e> 0, then 

(231;)-n/2 f e-i(Y,e) g(ee) de = (231;)-n/2 e-n f g(z) e-i(y,./s) dz = e-" g (Yle). 

Hence, by (9), 

f g(ee) i (e) ei{%,~) de = f g (y) f(x + ey) dy. 

We shall take, following F. RIEsz, g(x) =e- I:<I'/2 and let e,). O. Then 

g(O) f 1 (E) ei(%,e) de = f(x) f g (y) dy. 

This proves (8), since g(O) = 1 and f g(y) dy = (231;)"/2 by the well­

known facts: 

10· 

(231;)-n/2 f e-1xl'/2 e-i(y,x) dx = e- 1Y1 '/2, 

(231;)- .. /2 f e-1xl'/2 dx = 1. 

(10) 

(10') 
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Remark. For the sake of completeness, we will give the proof of (10). 
We have 

4 4 
(2n)-1/2 J e-I'/2 e- iU1 dt = e-u'/2 (2n)-1/2 J e-(I+iu)'/2 dt. 

-4 -A 

Let u > 0, and integrate the function e-z'/2, which is holomorphic in z = 
t + iu, along the curve consisting of the oriented segments 
~ , -+ -+-

-A, A, A, A + iu, A + iu, -A + iu and - A + iu, - A 
in this order. By Cauchy's integral theorem, the integral vanishes. Thus 

,\ 4 
(2n)-1/2 J e-(I+iu)'/2 dt = (2n)-1/2 J e-I'/2 dt 

-4 -,\ 

o 
+ (2n)-1/2 J e-(-A+iu)'/2 idu .. 

u 
+ (2n)-1/2 J e-().+iu)'/2 idu. 

o 
The second and third terms on the right tend to 0 as A --+ 00, and so, by 
(10'), 

00 00 /'/2 '12 
(2ntl/2 J e-I'/2 e- itu dt = e-u'/2 (2n)-1/2 J e- dt = e-u • 

-00 -00 

We have thus proved (10) for the case n = 1, and it is easy to prove the 
case of a general n by reducing it to the case n = l. 

Corollary (Parseval's relation). We have 

J i(~) g(~) d~ = J t(x) g(x) dx, (11) 

Jt(~) g(~) d~ = J7(x) g(x) dx, (12) 

/'- IA /'- A 

(f*g) = (2nt2t .g and (2nt/2 (/-g)=t*g, (13) 

where the convolution t * g is defined through 

(f *g) (x) = J t(x - y) g(y) dy = J g(x - y) t(y) dy. (14) 

Proof. (11) is obtained from (9) by putting x = O. (12) i~ obtained 

from (11) by observing that the Fourier transform of g is equal to g . We 
next show that 

(2n)-n/2 J (f * g) (x) e-i(~,,,) dx 

= (2n)-n/2 J g (y) e-i(~,'Y) {f t (x - y) e-i(~,,,-'Y.) dx} dy (15) 

= (2nt/2 j(~) g(~). 

Since the product r g of functions i and g E (; (Rn) is again a function 
of (; (R"), we know that the right hand side of (15) belongs to (; (R"). 



2. The Fourier Transform of Tempered Distributions 149 

It is easy to see that, the convolution I * g oftwo functions of IS (R") belongs 
also to IS (R"). Thus we have proved the first fonnula of (13). The second 
fonnula may be proved similarly to (9) by (15). 

Theorem 2 (Poisson's Summation Fonnula). Let cp E IS (Rl) and 
fJ E IS (Rl) its Fourier transfonn. Then we have 

00 00 

.I cp (2:rrn) = .I ~ (n). 
8=-00 #=-00 

(16) 

00 

Proof. Set I(x) = .I cp(x + 2:rrn). This series is absolutely conver-
,,=-00 

gent, E Coo and I (x + 2:rr) = I(x), as maybe proved by the fact that cp(x) 
is rapidly decreasing at 00. In particular, both sides of (Hi) are convergent. 
We have to prove the equality. 

The Fourier coefficients Ck of I (x) with respect to the complete ortho­
nonnal system {(2:rr)-1/2 e-ikz ; k = 0, ± 1, ± 2, ... } of L2 (0, 2:rr) are given 
by 

211 00 2 .. 

Ck = (2:rr)-1/2 J I(x) e-ikz dx = .I (2:rr)-1/2 I cp(x + 2:rrn) e- ik" dx 
o "=-00 0 

00 211(,,+1) 

= .I (2:rr)-1/2 f cp(x) e-ikzdx =;P(k). 
,,=-00 2nn 

Thus, by IE L2(0, 2:rr), we have 
00 s 

I (x) = .I cp (x + 2:rrn) = l.i.m. .I;P (k) e'k". 
"=-00 s too k=-s 

00 

However, since ;p (x) E IS (R"), the series .I ;p (k) eikz converges absolu­
k=-oo 

tely. Hence 
00 00 

.I cp (x + 2:rrn) = .I ;p (k) eikz , 
"=-00 k=-oo 

and so we obtain (16) by setting x = O. 
Example. We have, by (10), 

00 00 

(2:rr)-1/2 f e-IJ<' e-i"y dx = (2:rr)-1/2 f e-"'/2 e- i"y/V2i (2t)-1/1! dx 
-00 -00 

= (2t)-1/2 e- Y'/4I, t > O. 

Hence, by (16), we obtain the so-called O-Iormula: 
00 00 
I e-4t ..... • = .I (2t)-1/2 e-"'/4t, t> o. 

"=-00 #=-00 
(17) 

2. The Fourier Transform of Tempered Distributions 

Definition 1. A linear functional T defined and continuous on IS (R") 
is called a tempered distribution (in R"). The totality of tempered distri-
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butions is denoted by 6(R")'. As a dual space of 6(R"), 6(R")' is a 
locally convex linear topological space by the strong dual topology. 

Proposition 1. Since ego (R") is contained in 6 (R") as an abstract set, 
and since the topology in i) (R") is stronger than the topology in 6 (R"), 
the restriction of a tempered distribution to CIf (R") is a distribution in 
R". Two different tempered distributions define, when restricted to 
CIf (R"), two different distributions in R", because CIf (RIO) is dense in 
6 (RIO) with respect to the topology of 6 (R"), and hence a distribution 
E 6 (RIO), which vanishes on ego (R") must vanish on 6 (R"). Therefore 

6 (R")' ~ i) (R")'. (1) 

Example 1. A distribution in R" with a compact support surely be­
longs to 6 (RIO),. Therefore 

~ (R")' ~ 6 (RIO), . (2) 

Example 2. A a-finite, non-negative measure", (dx) which is a-additive 
on Baire sets of R" is called a slowly increasing measure, if, for some non­
negative k, 

f (1 + Ix 12)-" ",(dx) < 00. 
R· 

Such a measure", defines a tempered distribution by 

T,,(rp) = f rp(x) ",(dx), rpE 6(R"). 

(3) 

(4) 

For, by the condition rpE 6(R"), we have rp(x) = 0((1 + IxI2)-") for 
large Ixl. 

Example 3. As a special case of Example 2, any function 1 E LP (RIO), 
P ~ 1, defines a tempered distribution 

TJ(rp) = f rp(x) I(x) dx, rp E 6 (R"). (4') 
R" 

That an 1 E LP (R") gives rise to a slowly increasing measure", (dx) = 
I/(x) I dx may be proved by applying HOlder's inequality to 

f (1 + Ix I2)-" I/(x) I dx. 
Rfl 

Definition 2. A function 1 E Coo (RfI) is called slowly increasing (at 
00), if, for any differentiation Dj, there exists a non-negative integer N 

such that 
lim Ix!-N ID; 1 (x) 1= O. 

1%1-+00 
(5) 

The totality of slowly increasing functions will be denoted by () M (RfI). 
It is a locally convex linear topological space by the algebraic operations 
of function sum and multiplication of functions by complex numbers, 



2. The Fourier Transform of Tempered Distributions 151 

and by the topology defined by the system of semi-norms of the form 

P (I) = Ph,Di (I) = sup I h (x) Di t (x) I, t E (J M (R") , (6) 
-<ER" 

where h (x) is an arbitrary function E 6 (Rn) and Di an arbitrary differen­
tiation. As may be seen by applying Leibniz' formula of differentiation 
of the product of functions, h (x) Di t (x) E 6 (Rn) and so hDi (I) is finit~ 
for every t E (J M (Rn). Moreover, if Ph,Dj (I) = 0 for all h E 6 (R") and D', 
then t(x) 0 as may be seen by taking D = I and hE '1) (Rn). 

Proposition 2. ego (R") is dense in (JM (R") with respect to the topology 
of (JM(Rn). 

Proof. Let t E (J M (Rn), and take 'If E ego (Rn) such that 'If (x) = 1 for 
I x I < 1. Then t. (x) = t (x) 'If (8 x) E ego (Rn) for any 8 > O. As in Pro­
position 3 in Chapter VI, 1, we easily prove that Ie (x) tends to t (x) in the 
topology of (JJl.dRn) when 8 to. 

Proposition 3. Any function t E (J M (Rn) defines a tempered distribu­
tion 

Tf(CP) = J t (x) cp (x) dx, cp E 6 (R"n). (7) 
R" 

Definition 3. As in the case of a distribution in Rn , we can define the 
generalized derivative of a tempered distribution T by 

DjT(cp) = (-I)liIT(Djcp), cpE 6 (Rn) , (8) 

since the mapping cp (x) -+ Djcp (x) of 6 (Rn) into 6 (Rn) is linear and 
continuous in the topology of 6 (Rn). We can also define a multiplication 
by a function IE (J M (Rn) to a distribution T E 6 (Rn)' through 

(IT) (cp) = T (tcp) , cp E 6 (R)n, (9) 

since the mapping cp (x) -+ I (x) cp (x) of 6 (Rn) into 6 (Rn) is linear and 
continuous in the topology of 6 (Rn). 

The Fourier Transform of Tempered Distributions 
Definition 4. Since the mapping cp (x) -+ ;p (x) of 6 (Rn) onto 6 (R") 

is linear and continuous in the topology of 6 (R"), we can define the 
Fourier transform j of a tempered distribution T as the tempered 

distribution T defined through 

T(cp) = T(£j;), cpf 6(Rn). (10) 

Example 1. If tEL l (R"), then 

Tf = Tj, where ({x) = (2n)-n/2 J e-i(x,<) t(~) d~, (11) 
R" 

as may be seen by changing the order of integration in Tf(cp) = 

J I(x) . ~(x) dx = (2n)-n/2 J I(x) { J e-i(x,n cp(~) d~} dx. 
R" R" 
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Remark. In the above sense, the Fourier transform of a tempered 
distribution is a generalization of the ordinary Fourier transform of 
functions. 

Proposition 4. If we define 

t(X) =f(-x), (12) 

then Fourier's integral theorem in the preceding Section 1 is expressed by 

(13) 

Corollary 1 (Fourier's integral theorem). Fourier's integral theorem 
is generalized to tempered distributions as follows: 

:It y y 

1 = T, where T(rp) = T(ip). (14) 

In particular, the Fourier transform T -+ T maps 6 (R")' linearly onto 
6 (R")'. 

Proof. We have, by definition, 

T(rp) = T(~) = T(ip) = T(rp) for all rp E 6 (R") . 

Corollary 2. The Fourier transform T -+ f and its inverse are linear 
and continuous on 6 (Rn)' onto 6 (Rn)' with respect to the weak* topology 
of 6 (R")': 

lim Th(rp) = T(rp) for all rpE 6 (R") implies that 

lim fh(rp) = f(rp) for all rpE 6(R"). (15) 

Here the inverse of the mapping T -+ T is defined by the inverse Fourier 
transform T -+ T given by 

Example 2. 

R" 

(271:)-,,/2 TI (rp), and T6 = T6 = 1-6 = (271:)-,,/2 TI· 

Example 3. 
/"--... ~ 

(oT/oxj) = iXjT, 
/'''-. ~ 

(ixjT) = - (aT/ox;). 

(10') 

(16) 

(17) 

(18) 
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Proof. We have, by (5) in Chapter VI, 1, 
/" ~ /" "---

(8T/8xj) (rp) = (8T/8xj) (I/;) = - T(8cj/8xj) = - T(-ixjrp (x» 
/'-. ~ 

= T (ixjrp) = (ixj T) (rp). 

We also have, by (6) in Chapter VI, 1, 
/'-. /'-. ~ 

(ixjT) (rp) = (ixjT) (<p) = T(ixjrj;) = T(8rp/8xj) = T(8rp/8xj) 

=-(8T/8xj) (rp). 

Plancherel's Theorem. If IE L2 (Rn), then the Fourier transform Tf 
of Tf is defined by a function f E L 2 (Rn), i.e., 

Tf = TJ with fE L2 (Rn) , (19) 

and 

11/11 = (t If(x) 12 dxt2 = (t I/(x) 12 dXY'2 = 11/11· (20) 

Proof. We have, by Schwarz' inequality, 

I Tf(rp) I = I Tf(cP) I = It I (X) cj(X) dxl < II/llllcjll = 1I/1111rpll· (21) 

The equality above IlcPll = Ilrp I! is proved in (12) of the preceding section 
1. Hence, by F. Riesz' representation theorem in the Hilbert space L2 (Rn), 
there exists a uniquely determined fE L2 (Rn) such that 

Tf(rp) = J rp(x) f(x) dx = Tj (rp), that is, 
Rn 

(22) 
J /(x) rp (x) dx = J I (x) rj; (x) dx for all rp E 6 (Rn) . 

Rn Rn 

Moreover, we have, from (21), IIIII :;:::: !Il II since 6 (Rn) is dense in L2 (Rn) 

in the topology of L2(Rn). We have thus 111// :S IIi" < 11///. On the other 
hand, we have, by (13) and (22), 

J!(x)rp(x)dx= Jl(x)rj;(x)dx= JI(-xjfJ!(x)dx foraH rpE6(Rn ), 
Rn Rn Rn 

that is, 

i(X) = I(-x) = 1 (x) a.e. (23) 

Thus 11/11 = 11/1/ and so, combined with 1111/::::: 11111 :S 11111, we obtain 
(20). 

Definition 5. The above obtained f (x) E L 2 (Rn) is called the Fourier 
translorm of the function I (x) E L 2 (Rn). 
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Corollary 1. We have, for any IE L 2 (R"), 

i(x) = l.i.m. (2n) -n/2 f e-i(x,y) I(Y) dy. 
II too Ixl;>;" 

(24) 

Proof. Put 

I" (x) = I (x) or = 0 according as Ix I < h or Ix I> h. 

Then lim 1/1" -III = 0 and so, by (20), lim I/i" - ill = 0, that is, 
11-->00 11-->00 

i(x) = l.i.m. til (x) a.e. But, by (22), 
h-->OO 

f i" (x) rp (x) dx = f 11. (x) iF (x) dx 
R" R" 

= f I(x) {(2n)-n/2 f e-i(x,y)rp(y) dY}dX, 
Ixl;>;" R" 

which is, by changing the order of integration, equal to 

f (2n)-"/2{ f e-i(.<,y) I (x) dX}rp(y) dy, 
R" 1.<1;:;;11 

since I" (x) is integrable over I x I ~ h as may be seen by Schwarz' ine­
qUality. Thus in (x) = (2n)-n/2 I e-i(X,y) I(y) dy a.e., and so we obtain 
(24). 1.<1;:;;10 

Corollary 2. The Fourier transform 1-+ 1 maps L 2 (R") on to L 2 (R") 
in a one-one-manner such that 

(25) 

Proof. Like the Fourier transform 1-+ f. the inverse Fourier trans­
form 1-+ 7 defined by 

!(x) = l.i.m. (2n)-n/2 f e'(x,y) I(y) dy (26) 
"-+00 Iyl;:;;h 

maps L2 (Rn) into L2 (Rn) in such a way that 1/11/ = 1/1 II. Hence we see 
that the Fourier transform 1-+ 1 maps L2(R") onto L2 (R") in a one-one 
way such that IIlil = 11/11. Hence, by the linearity of the Fourier trans­
form and 

(x, y) = 4-1 (IIx + Yll2_ IIx-yll2) + 4-1 i(IIx + iYll2_ IIx-iyI12). 

we obtain (25). 

Parseval's Theorem for the Fourier Transform. Let 11 (x) and 12 (x) 
both belong to L2 (R") , and let their Fourier transforms be II (u) and 12 (u), 
respectively. Then 

f 11 (U)i2 (u) du = f 11 (x) 12 (-x) dx, (27) 
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and so 

R" R" 

Thus, if idu) 12(u) as well as both its factors belong to L2(R"), it is the 
Fourier transform of 

(231:)-,,/2 f 11 (y) 12 (x - y) dy. (29) 
R" 

This will also be true if 11 (X), 12 (x) and (29) all belong to L 2 (R"). 

Proof. It is easy to see that 

(231:)-"/2 f 12 (-x) e-i(u.z) dx = i2 (u)~ 
R" 

and so, by (25), we obtain (27). Next, since the Fourier transform of the 

function of y, 12 (x - Yf, is i2 (u) e-i(u,x) containing a parameter x, we 

obtain (28) by (25). The rest of the Theorem is clear from (28) and i = I. 
The Negative Norm. The Sobolev space W k•2 (.0) was defined in 

Chapter 1,9. Let I (x) E Wk•2 (R"). Since I(x) E L2 (R"), I gives rise to a 
slowly increasing measure I/(x) I dx in R". Thus we can define the Fourier 
transform T, of the tempered distribution T,. We have. by (17). 

/, n .... 

D"'T, = (i)'''''j-g xji T,. 

By the definition of the space W k,2(R"), D'" T,E L2(R") for I(XI < k. 
Thus. by Plancherel's theorem for L2(R"). 

/ ........ 
II D'" T,llo = II D'" T,llo, where 11110 is the L 2 (R")-norm. 

Hence we see that (1 + Ix 12)k'2 T,E L2 (R"). and so it is easy to show that 
the norm II I II ... = ( 2 f I D'" Tl dX)1/2 is equivalent to the norm 

'","[S;k R" 

11(1 + /xI2)k'2 T, 110 = 1I/11~. (30) 

in the sense that there exist two positive constants c1 and c2 for which we 
have 

Cl < 1I/IIk/ll/ll~ < C2 whenever IE wk.2(Rn). 

We may thus renorm the space Wk•2(R") bYI!/II~; Wk,2(R") may thus 
be defined as the totality of IE L2(R") such that 11/11~isfinite. One ad­
vantage of the new formulation of W k,2 (Rn) is that we may also consider the 
case of a negative exponent k. Then, as in the case of L 2 (Rn) pertaining 
to the ordinary Lebesgue measure ax, we see that the dual space of the 
renormed space W k,2 (R") is the space W- k,2 (R") normed by 1/ I II~k. 
This observation due to L. SCHWARTZ [5] is of an earlier date than the 
introduction of the negative norm by P. LAX [2J. 
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3. Convolutions 

We define the convolution (Faltung) of two functions I, g of C (R") , one 
of which has a compact support, by (cf. the case in which I, g E 6 (R") 
in Chapter VI, 1) 

(f * g) (x) = J I(x - y) g(y) dy = J t(y) g(x - y) dy = (g* f) (x). (1) 
R" R" 

Suggested by this formula, we define the convolution of aTE 'Il (R")' and 
a f{! E 'Il (Rn) (or aTE ~(Rn)' and a f{! E ~(R")) by 

(T * f{!) (x) = T[y] (f{!(x - y)), (2) 

where T[y) indicates that we apply the distribution T on test functions 
of y. 

Proposition 1. (T * f{!) (xl E COO (Rn) and supp (T * f{!) ~ supp (T) + 
supp (f{!) , that is, 

supp(T * f{!) ~ {w ERn; w = x + y, x E supp(T), y E supp(f{!)}. 

Moreover, we have 

(3) 

Proof. Let f{! E 'Il (Rn) (or E ~ (R"). If lim Xh = x, then, as func-
. h~O 

tions of y, lim f{!(xh - y) = f{!(x - y) in 'Il (Rn) (or in ~(R")). Hence 
h~O 

T[y] (f{! (x - y) = (T * f{!) (x) is continuous in x. The inclusion relation 
of the supports is proved by the fact that T[y] (f{! (x - y) = 0 unless the 
support of T and that of f{! (x - y) as a function of y meet. Next let ej be 
the unit vector of R" along the xj-axis and consider the expression 

T[y) «(f{! (x + hej - y) - f{! (x - y))jh). 

When h --+ 0, the function enclosed by the outer parenthesis converges, 

as a function of y, to (::J (x - y) in 'Il (Rn) (or in ~(Rn)). Thus we have 

proved 

Moreover, we have 

( aq; ) ( aq;(x - Yl) aT[v] (aT) 
T* aXI (x) = T[y) - aYI = aYI (f{!(x-y)) = ax! *f{! (x). 

Proposition 2. If f{! and 1p are in 'Il (Rn) and T E 'Il (R")' (or f{! E ~ (R") , 
1p E 'Il (Rn) and T E ~ (R")'), then 

(T * f{!) * 1p = T * (f{! * 1p). (4) 
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Proof. We approximate the function (gJ * 1p) (x) by the Riemann sum 

I,,(x) = hn ~gJ(x - kh) 1p(kh), 

" where h > ° and k ranges over points of Rn with integral coordinates. 
Then, for every differentiation D'" and for every compact set of x, 

D"'I,,(x) = hn ~ D"'gJ(x - kh) 1p(kh) 
II 

converges, as h to, to «(D"gJ) * 1p) (x) = (D'" (gJ * 1p)) (x) uniformly in x. 
Hence we see that lim I" = gJ * 1p in ~ (Rn) (or in ~ (Rn)). Therefore, by 

IotO 

the linearity and the continuity of T, we have 

{T* (gJ * 1p») (x) = lim (T * I,,) (x) = lim hn ~ (T * gJ) (x - kh) 1p(kh) 
Iqo Iqo k 

= «(T * gJ) * 1p) (x). 

Definition. Let gJ E ~ (Rn) be non-negative, f gJ dx = 1 and such that 
R" 

supp(gJ) ~ {XE R"; Ixl < I}. We may, for instance, take 

gJ (x) = exp (l/(lx 12 -1)/ f exp (l/(lx 12_1» dx if Ix 1< 1, 
1"1<1 

We write gJ.(x) for e-ngJ(x/e), e> 0, and call T*gJ. the regularization 
of T E ~ (Rn)' (or E ~(Rn)') through gJ.(x)'s (Cf. Chapter I, 1). 

Theorem 1. Let T E ~ (Rn)' (or E ~ (Rn)'). Then lim (T * gJ.) = T in 
·to 

the weak* topology of ~(Rn)' (or of ~(Rn)'). In this sense, gJ. is called 
an approximate identity. 

For the proof we prepare a 

Lemma. For any 1p E ~ (Rn) (or E ~ (Rn), we have lim 1p * gJ. = 1p 
·t o 

in ~(Rn) (or in ~(Rn). 

Proof. We first observe that supp(1p * gJ.) ~ supp(1p) + supP(gJ.) = 
supp(1p) + e. We have, by (3), D"'(1p * gJ.) = (D"'1p) * gJ •. Hence we 
have to show that lim (1p * gJ.) (x) = 1p(x) uniformly on any compact set 

atO 

of x. But, by f gJ.(y) dy = 1, 

(1p * gJ.) (x) -1p (x) = f {1p (x - y) - 1p (x)} gJ. (y) dy. 
R" 

Therefore, by gJ.(x) > 0, f gJ.(y) dy = 1 and the uniform continuity of 
R" 

1p(x) on any compact interval of x, we obtain the Lemma. 

Proof of Theorem 1. We have, by iP(x) = 1p(-x), 

T (1p) = (T * 1/1) (0). (5) 



158 VI. Fourier Transform and Differential Equations 

Hence we have to prove that lim «(T * CPo) * ip) (0) = (T * ip) (0). But, ,,,,0 
as proved in (4). (T *cp,) * ip = T·tEo (cp. * ip) and so, by (5), 
(T* (cp.* Vi)) (0) = T«(cp. * Vif). Hence we obtain lim «(T * CPo) * Vi) (0) = ."'0 
T«(ip) Y) = T(W) by the Lemma. 

We next prove a theorem which concerns with a characterization of 
the operation of convolution. 

Theorem 2 (L. SCHWARTZ). Let L be a continuous linear mapping on 
Cl) (RIO) into ~ (R") such that 

L7:},cp = 7:"Lcp for any hER" and cp E Cl) (R") , (6) 

where the translation operator 7:" is defined by 

7:hCP (x) = cp (x - h) . (7) 

Then there exists a uniquely determined T E Cl) (RIO), such that Lcp =-= 
T * cpo Conversely, any T E Cl) (R")' defines a continuous linear map L 
on Cl) (R") into (f(R") by Lcp = T * cp such that L satisfies (6). 

Proof. Since cp -'?- ip is a continuous linear map of Cl) (R") onto Cl) (R"), 
the linear map T: ip -'?- (Lcp) (0) defines a distribution T E Cl) (R")'. Hence, 
by (5), (Lcp) (0) = T(ip) = (T * cp) (0). If we replace cp by 7:"cp and make 
use of condition (6), then we obtain (Lcp) (h) = (T * cp) (h). The 
converse part of Theorem 2 is easily proved by (2), Proposition 1 and (5). 

Corollary. Let TI E Cl) (R")' and Ta E (f(R")'. Then the convolution 
TI * Ta may be defined, through the continuous linear map L on 
Cl) (RIO) into (f (R") as follows: 

(TI * Ta) * cp = L (cp) = TI * (Ta * cp), cp E :t:l (R"). (8) 

Proof. The map cp -'?- Ta * cp is continuous linear on :t:l (R") into 
Cl)(R"), since supp(Ta) is compact. Hence the mapcp-'?- TI * (Ta * cp) 
is continuous linear on :t:l (R") into (f (R"). It is easily verified that condi-
tion (6) is satisfied for the present L. • 

Remark. We see, by (4), that the above definition of the convolution 
TI * Tz agrees with the previous one in the case where Ta is defined by 
a function E :t:l (R"). It is to be noted that we may also define Tl * Ta by 

(TI * Ta) (cp) = (Tl(..)XT2(y») (cp(x + y)),cpE :t:l(R"), (8)' 

where TI(%) X T2(y) is the tensor product of TI and Ta. See L. SCHWARTZ 
[1]. 

Theorem 3. Let TIE:t:l (R")' and T a E (f (R")'. Then we can define 
another "convolution" Ta 00 TI through the continuous linear map L: 

cp-'?-Ta*(TI*cp) on :t:l(R") into (f(R") 
as follows. (T2 OO TI) (*cp) = L (cp), cp E Cl) (R"). Then we can prove Ta 00 
TI = Tl * Ta so that the convolution is commutative if it is defined 
either as TI * Ta or a~ Ta 00 T I. 
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Proof. The map q; ~ T 1 * q; is linear continuous on '1l (R") into 
G;(Rn). Hence the map q; ~ T2 * (Tl * q;) is linear continuous on 
'1l(Rn) into @;(Rn). Thus T200 Tl is well-defined. Next, we have for any 
q;v q;2 E '1l (Rn) , 

(Tl * T2) * (q;1 * q;2) = Tl * (T2 * (q;1 * q;2) = Tl * «T2 * q;1) * q;2) 

= Tl * (q;2 * (T2 *q;I» = (Tl * q;~ * (T2 * q;1) 

by the commutativity of the convolution of functions and Proposition 2, 
observing that supp (T 2 * q;1) is compact because of T a f @; (Rn)'. 
Similarly we obtain 

(T2oo T1) * (q;1 * q;2) = T2 * (Tl * (q;1 * q;2» = T2 * «Tl * q;2) * q;J 

= T2 * (q;1 * (Tl * q;2» = (T2 * q;1) * (Tl * q;a)· 

Thus (Tl * T2) * (q;1 * q;2) = (T2oo TJ * (q;1 *q;~, and so, by (5) 
and the Lemma above, we obtain (Tl * T2) (q;) = (T2oo 1'1) (q;) for all 
q; E '1l (Rn) , that is, (Tl * T2) = (T2 oo T1). 

Corollary 
Tl * (T2* T3) = (Tl * T2) *Ts 
if all Ti except one have compact support, 

DD«TI * T,) = (DD<T1) * Ta = Tl * (DD<T~. 
Proof. We have, by (5) and the definition of Tl * T2, 

(T1 * (T2 * T3» (q;) = (Tl * (T2 * Ts» * q;) (0) 

= (Tl * «T2 * Ts) * q;» (0) 

= (Tl * (Ta * (Ts * ~») (0) 

and similarly 

«Tl * T2) * Ts) (q;) = (Tl * (T2 * (Ts * q;») (0), 

so that (9) holds. 
The proof of (10) is as follows. We observe that, by (3), 

(9) 

(10) 

(DD<T,,) *q; = T" * (~q;) = D"'(T" *q;) = DD<q;, (11) 
which implies 

(DD<T) *q; = T* (D"'q;) = T*«DD<T,,) *q;) = (T*DD<T,,) *q;, 

that is, by (5), 
DD<T = (DD<T,,) * T. (12) 

Hence, by the commutativity (Theorem 3) and the associativity (9), 

D"'(TI * T2) = (D"'T,,) * (Tl * T2) = «DD<T,,) * T1)* T2 = (DD<T1) * T2 

= (D"'T,,) * (T2 *T1) = «ifT,,)*T2)* Tl = (DD< T2)*T1. 
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The Fourier Transform of the Convolution. We first prove a theorem 
which will be sharpened to the Paley-Wiener theorem in the next sec­
tion. 

Theorem 4. The Fourier transform of a distribution T E ~ (R")' is 
given by the function 

T (~) = (2:n;r,,/2 T[s] (e-i(s.~»). (13) 

Proof. When e to, the regularization T. = T * qJs tends to T in the 
weak* topology of ~ (R")' and a fortiori in the weak* topology of 6 (R") , . 
This we see from (T * qJ.) (tp) = (T * (qJ. * 1jJ)) (0) = T[s]«qJ. * 1jJ) (-x)) 
and the Lemma. Thus, by the continuity of the Fourier transform in the 

.,./, A 

weak* topology of 6 (R")', lim (T * qJ.) = T in the weak* topology of 
•• 0 

6 (R")'. Now formula (13) is clear for the distribution defined by the 
function (T * qJ.) (x). Hence 

(2:n;)"/2 ('I~.) (~) = (T * qJ.hs] (e-i(S,o») , 

which is, by (5), = (T[s] * (qJ. * e-t(s.O)) (0) = T[s] (~. * e-i( ... e»). 
The last expression tends, as e to, to T[s] (ei(s.e») uniformly in E on any 
bounded set of E of the complex n-space. This proves Theorem 4. 

Theorem 5. If we define the convolution of a distribution T E 6 (R")' 
and a function qJ E 6 (R") by (T * qJ) (x) = T lY] (qJ (x - y)), then the 
linear map L on 6 (R") into ~ (R") : qJ -+ T * qJ is characterized by the 
continuity and the translation invariance 7:"L = L7:". 

Proof. Similar to the proof of Theorem 2. 

Theorem 6. If T E 6 (Rn)' and qJ E 6 (R"), then 

/'--.. A 

(T * qJ) = (2:n;)"/2 ~ T (14) 

If TIE 6 (R")' and T2 E ~ (R") , , then 

(15) 

which has a sense since, as proved above in Theorem 4, Til is given by 
a function. 

Proof. Let tp E 6 (R"). Then the Fourier transform of ~ . tp is, by (13) 
of Chapter VI, 1, equal to (2:n;)-"/2 ~ * ip = (2:n;)-"/2 ip *;p. Thus 

./, Y Y 

(T * qJ) (tp) = (T * qJ) (ip) = «T * qJ) *;P ) (0) = (T * (qJ * ip )) (0) 

= T «qJ *~) Y) = T (ip * ip) = T «2:n;)"/2 (;p . tp() 

= (2:n;)"/2 t (;Ptp) = (2:n;)"/2 ;p T(tp), 

which proves (14). 
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Let 'Ip. be the regularization T2 * ({l •• Then the Fourier transform of 
T1 *'P. = T1 * (T2 * ({l.) = (T1 * T2) * ({l. is, by (14), equal to 

(2n)n/2 1'1 • ip. = (2n)n/2 1'1 • (2n)n/2 1'2 . ;Po = (2n)"/2 (r;;r2) . ;p •. 
Hence we obtain (15), by letting e .} 0 and using lim cP.(x) = 1 . 

• ~o 

4. The Paley-Wiener Theorems. The One-sided Laplace Transform 

The Fourier transform of a function E CZO (Rn) is characterized by the 
Paley-Wiener Theorem for Functions. An entire holomorphic function 
F (C) = F (Cl> C2' •.. , Cn) of n complex variables Cj = Ej + i 'YJi (i = 
1, 2, ... , n) is the Fourier-Laplace transform 

F(C) = (2n)-nI2 f ri(c''')/(x)dx (1) 
R" 

of a function / E CZO (R") with supp (f) contained in the sphere I x I < B 
of R" iff there exists for every integer N a positive constant C N such that 

IF (C) I < CN (1 + IC I)-N eBI/~I. (2) 
Proof. The necessity is clear from 

ii (iCi)PI F(C) = (2n)-n/2 f e-i(c.,,) IJP/(x) dx 
,=1 I"I~B 

which is obtained by partial integration. 
The sufficiency. Let ~s define 

/(x) = (2n)-"/2 f i("·E) F(E) dE. (3) 
R" 

Then, as for the case of functions E @)(R"). we can prove that the Fourier 
transform i (E) is equal to F (E) and / E Coo (Rn). The last assertion is 
proved by differentiation: 

n 
IJP/(x) = (2n)-n/2 f i<"·E) .II (iEj)P, F(E) dE, (4) 

R" ,-1 
by making use of condition (2). The same condition (2) and Cauchy's 
integral theorem enable us to shift the real domain of integration in (3) 
into the complex domain so. that we obtain 

/(x) = (2n)-n/2 f i(",Hif}) F(E + i'YJ) dE (3') 
R" 

for arbitrary real 'YJ of the form 'YJ = lXxll x I with lX> o. We thus obtain, 
by taking N = n + 1, 

1/ (x) I < C N eB1f}1- (".f}) (2 n)-n/2 f (1 + IE I)-N dE. 
R" 

If Ixl> B, we obtain /(x) = 0 by letting lX t + 00. Hence supp(/) ~ 
{XE R"; Ixl ~ B}. 
11 Yoalda. Functional Analysia 
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The above theorem may be generalized to distributions with compact 
support. Thus we have 

The Paley-Wiener Theorem for Distributions E i (R") I (L. SCHWARTZ). 
An entire holomorphic function F (C) = F (C1 , ..• , C~) ot n complex vari­
ables Cj = ~j + i 'YJj (i = I, 2, ... , n) is the Fourier-Laplace transform 
of a distribution T E ~ (Rn)' iff for some positive constants B, Nand C 

IF(C)I < C(1 + ICIlN eBllmCI. (5) 

Proof. The necessity is clear from the fact (Theorem 2 in Chapter I, 13) 
that, if TE ~(Rn)', there exist positive constants C, Nand B such that 

IT(tp)I<C ~ sup IDPtp(x) I whenever tpE~(Rn). 
IP~Nlxl;:;;:B 

For, we have only to take tp (x) = e-i(x,<) and apply (13) of the preceding 
section. 

The sufficiency. F (~) is in ~ (Rn)' and so it is the Fourier transform 
of a distribution T E @)(Rn),. The Fourier transform of the regularization 

T. = T * tps is (2:n:t/2 f . ~. by (14) of the preceding section. Since the 
supp (tp.) is in the sphere I x I < E of R", we have, by the preceding theorem, 

I~.(~) I < C' . e·llmCI. 

Moreover, since f is defined by the function F (~), we see that (2:n:t/2 i'.~. 
is defiend by a function (2:n:t/2 F (~) .~. (~) which, when extended to the 
complex n-space analytically, satisfies the estimate of type (5) with 
B replaced by B + E. Thus, by the preceding theorem, T. = T * rp. 
has its support in the sphere I x I :s B + E of Rn. Thus, letting E ~ 0 and 
making use of the Lemma in the preceding section, we see that the supp(T) 
is in the sphere Ix I < B of Rn. 

Remark. The formulation and the proofs of the Paley-Wiener theorems 
given above are adapted from L. HORMANDER [2J. 

The Fourier Transform and the One-sided Laplace Transform. Let 
g(t) E L2(O, 00). Then. forx> 0, 

g(t) e- tx E L1(O, 00) f\ L2(O, 00) 

as may be seen by Schwarz' inequality. Hence, by Plancherel's theorem, 
we have, for the Fourier transform 

the inequality 

00 

I (x + i y) = (2:n:)-1/2 J g (t) e- tx e- ity dt 
o 

00 

= (2:n:)-1/2 f g (t) e-t(x+iy; dt (x> 0), 
o 

00 00 00 

(6) 

J I/(x + iy) 12 dv = J Ig(t) 12 e-2tx dt::;; J Ig (t) 12 dt. (7) 
-00 0 0 
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The function I(x + iy) is holomorphic in z = x + iy in the right half­
plane Re (z) = x > 0, as may be seen by differentiating (6) under the 
integral sign observing that g(t) te-1Zasa function oft belongs to Ll (0,00) 
and to L2 (0,00) when Re(z) = x> 0. We have thus proved 

Theorem 1. Let g(t) E P(O, 00). Then the one-sided Laplace translorm 
00 

I(z) = (2n)-1/2 f g(t) e-"dt (Re(z) > 0) 
o 

(6') 

belongs to the so-called Hardy-Lebesgue class H2 (0), that is, (i) 1 (z) is 
holomorphic in the right half-plane Re (z) > 0, (ii) for each fixed x > 0, 
I(x + iy) as a function of y belongs to P(-oo,oo) in such a way that 

;~~ C[ I/(x + iy) 12 dY) < 00. (7') 

This theorem admits a converse, that is, we have 

Theorem 2 (PALEY-WIENER). Let I(z) E H2(0). Then the boundary 
lunction I(iy) E L2(-00, 00) of I(x + iy) exists in the sense that 

00 

lim f I/(iy) -/(x + iy) 12 dy = ° 
x.j.O -00 

in such a way that the inverse Fourier transform 
N 

g (t) = (2 n)-1/2l.i.m. f 1 (i y) ei1y dy 
N--+oo -N 

(8) 

(9) 

vanishes for t < ° and 1 (z) may be obtained as the one-sided Laplace 
transform of g (t). 

Proof. By the local weak compactness of L2(-00, 00), we see, that 
there exists a sequence {x,,} and an I(iy) E P(- 00,00) such that 

x,,-j.O and weak-lim/(x.,+iy)=/(iy). 
n--+OO 

For any <5 > 0, there exists a sequence {Nk} such that 

" lim Nk = 00 and lim f I/(x ± iNk) 12 dx = 0, 
k--+OO k--+oo 0 + 

as may be seen from 

_[ tf I/(x + i Y)12 dX}dY <o£ L[ I/(x + iy) 12dY}dX < 00 

(for all N> 0). 
Thus, by Schwarz' inequality, 

" lim f I/(x ± iNk) 1 dx = 0. 
k--+OOo+ 

11* 

(10) 
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From this we obtain 
00 

f(z) = (2n)-1 f !(i1t dt (Re(z) > 0). (11) 
-00 

The proof may be obtained as follows. By Cauchy's integral representa­
tion, we obtain 

f(z) = (2ni)-1 f !~)zd!; (Re(z) > 0), (12) 
c 

where the path C of integration is composed of the segments 

------------~) ) 

Xl + iNk, Xo + iNk, Xo + iN", Xo - iN" 

(xo < Re(z) < Xl> -Nk < Im(z) < N,,) 

so that the closed contour C encloses the point z. Hence, by letting k -+ 00 

and observing (10), we obtain 
00 00 

f(z) = (2n)-1 f I(xo + it~ dt + (2n)-1 f I(xl + it) dt 
z- (xo + ~t) (Xl + it) -z . 

-00 -00 

We see that the second term on the right tends to 0 as Xl -+ 00, because 
of (7') and Schwarz' inequality. We set, in the first term on the right, 
Xo = X" and letting n -+ 00 we obtain (11). Similarly, we obtain 

00 

o = (2 n)-l f !t(it) dt (Re (z) < 0). 
~ -z 

-00 

Let us put, for Re (z) > 0, 

h(x)=O (forx<O); h(x)=e-zx (forx>O). 

We then have 
00 00 

J h (x) eixi dx = J ei"I-." dx = (z - it)-l , 
-00 0 

and so, by Plancherel's theorem, 
N 

(13) 

. fe-II.. { 0 (for X < 0) 
LI.m. (2n)-1 --'t dt = -zx (f 0) if Re(z) > O. (14) 
N-+<XJ -N z-~ e or x> 

Similarly we have 
N . f e-Itz {_e- ZX (for X < 0) 

1.1.m. (2n)-1 --'t dt = 0 (f 0) if Re(z) < O. (14') 
N-+<XJ -N z-~ or x> 

Therefore, by applying the Parseval theorem (27) of Chapter VI, 2 
to (11), we obtain the result that f(z) is the one-sided Laplace transform 
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of g(t) given by (9). By applying the Parseval theorem to (13), we see also 
that g(t) = 0 for t < o. 

We finally shall prove that (8) is true. By adding (11) and (13), we 
see that I(z) admits Poisson's integral representation 

00 

. x J I(it) 
I(z) = I(x + ~y) = n (t-y)1 + xadt whenever x> O. (15) 

-00 

By virtue of 
00 

x J de -;; (I _ y)1 + X2 = 1, (16) 
-00 

we have 
00 

I/(x + iy) - f(iy) I < ~ J 1/+($ -;/~ -:-t(y) I ds, where j+(y) = 1 (iy). 
-00 

and so 

11/(% + iy) - I (iYll' dy < (:)' _[ /1"+(' ;. t:tCY) I "'r dy 

< X2 JOO( JOO ~)( JOO 1/+($ + Y)-I+(Y) 12 dS)d 
- on2 S2 + Xl S2 + X2 Y 

-00 -00 -00 

~ ; 1 ,,~.{[I!+(' + y) - !+(Y) I' dY} 

00 

=.!...- f p.(I+; s) ds 
on Sl + Xl ' 

-00 

where 0 ~ p, (j+; S) ::;: 4 II j+ 112 and p, (j+; s) is continuous in S and has 
value 0 at S = O. 

To prove that the right side tends to zero as x.} 0, we take, for any 
e> 0, a 6 = 6 (e) > 0 such that p,(j+; s) < e whenever lsi < 6. We 
decompose the integral 

; 1 ~.(f; ;~ '" ~ ~ Ii + j + !} ~ l. +1, +1, 

We have 1121 < e by (16), and 11;1 < 43£1 11j+112. cot-1 (6/x) (j = 1, 2). 
Hence the left integral must tend to zero as x .} O. This proves the Theo­
rem. 

Remark 1. For the original Paley-Wiener theorem, see Paley­
Wiener [1]. For the one-sided Laplace transform of tempered distribu­
tions, see L. SCHWARTZ [2]. 
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Remark 2. M. SATO [1] has introduced a happy idea of defining a 
"generalized func ... ion" as the "boundary value of an analytic function". 
His idea may be explained as follows. Let ~ be the totality of functions 
f1i (z) which are defined and regular in the upper-half and the lower-half 
planes of the complex z-plane, and let ffi be the totality of functions 
which are regular in the whole complex z-plane. Then ~ is a ring with 
respect to the function sum and function multiplication, and ffi is a sub­
ring of ~. Sato calls the residue class (mod ffi) containing f1i (z) as the 
"generalized function" rP (x) on the real axis Rl defined through f1i (z). 
The "generalized derivative drP (x)jdx of the generalized function rP (x)" 
is naturally defined as the residue class (mod ffi) containing df1i (z)jdz. 
Thus the "delta function 15 (x)" is the residue class (mod ffi) containing 
-(2:ni)-lZ-1. Sato's theory of "generalized function of many variables" 
admits the following very interesting topological interpretation. Let M be 
an n-dimensional real analytic manifold and let X be a complexification 
of M. Then the n-th relative cohomology group H"(X mod (X - M)) 
with the germ of regular functions in X as coefficients gives rise to a 
notion of the "generalized function on M". That is, the relative cohomo­
logy class is a natural definition of the "generalized function". 

Remark 3. For more detailed treatment of the Fourier transform of 
generalized functions, see L. SCHWARTZ [1] and GELFAND-SILOV [lJ. 
In the latter book, many interesting classes of basic functions other than 
'l) (Rn ), IE) (R") and £) M (R") are introduced to define generalized functions; 
the Fourier transform of the corresponding generalized functions 
are also discussed in GELFAND-SlLOV [lJ. Cf. also A. FRIEDMAN [11 
and L. HORMANDER [6]. 

5. Titchmarsh's Theorem 
Theorem (E. C. TITCHMARSH). Let f(x) and g(x) be real- or complex­

valued continuous functions. 0 :S x < 00, such that 
" ~ 

(f*g}(x) = f j(x-y)g(y)dy= f g{x--y)f(y)dy = (g*f) (x) (1) 
o 0 

vanishes identically. Then either one of f (x) or g (x) must vanish identically. 
There is a variety of proofs of this important theorem, !:Iuch as by 

TITCHMARSH [lJ himself and also by CRUM and DUFRESNOY. The follow­
ing proof is elementary in the sense that it does not appeal to the theory 
of functions of a complex variable. It is due to RYLL-NARDZEWSKI [lJ and 
given in the book by J. MIKUSINSKI [1 J. 

Lemma 1 (PHRAGMEN). If g(u) is continuous for 0;;;; tt ~ T, and 
o <t::;:: T, then 

lim i (-lP~ f ekx(t-uig(u) du= J g(u) duo (2) 
%-+00 k=l k. 0 0 



5. Titchmarsh's Theorem 167 

00 

Proof. We have .I (_1)k-l (k!)-l ekx(t-u) -.1 - exp(_ex(t-u)), and, 
k=l 

for fixed x and t, the series on the left converges uniformly in u for 
o < u < T. Thus the summation in (2) may be carried out under the 
integral sign and we obtain (2) by the Lebesgue-Fatou Lemma. 

Lemma 2. If j(t) is continuous for 0 ::;:; t :S T and Ii enl j(t) dtl ~ M 

for n = 1; 2, ... , where M is a positive constant which is independent 
of n, then j(t) must be = 0 for 0 < t :S T. 

Proof. We have 

j i; ! (-lt1 ekn(I-U) j(T -u) dul! ~ i ~ ekn(I-T) j !In(T-U) j(T -u) du 
k=l 0 k. k=l k. 0 

::::;; M (exp(e-n(T-t)) -1). 

If t < T, the last expression tends to zero as n ->- 00. Hence, by Lemma 1, 
I 

with g(u) = j(T -. u), we see that f j(T -- u) du = 0 for 0 ~ t < T. 
o 

Since j is continuous, it follows that j(t) = 0 for 0 < t < T. 
Corollary 1. If g(x) is continuous for 1 < x < X and if there exists 

a positive number N such that II xng(x) dxj :S N (n = 1, 2, ... ), 

then g(x) = 0 for 1 < x < X. 
Proof. Putting x = el, X = eT and xg(x) = j(t), we obtain, by 

Lemma 2, that j(t) = 0 for 0 < t < T. Thus xg(x) = (l for 1 < x < X, 
and so g (x) = 0 for 1 < x < X. 

Corollary 2 (Lerch's theorem). If j(t) is continuous for 0 ::::;:: t ::::;; T and 
T 

f tnj(t) dt = 0 (n = 1, 2, ... ), then j(t) = 0 for 0 < t < T. 
o 

Proof. Let to be any number from the open interval (0, T), and put 
t = tox, T = toX, j(t) = g(x). We then obtain 

x 
t~+l f xng(x) dx = 0 (n = 1, 2, ... ), 

o 

I x I I 1 I 1 and so ! xng(x) dx = II x"g(x) dx <! Ig(x) I dx = N (n = 1, 2, ... ). 

Hence, by Corollary 1, we obtain g(x) = 0 for 1 < x <X, and so 
j(t) = 0 for to::::; t < T. Since to was an arbitrary point of (0, T), we 
must have j(t) = 0 for 0 ::::;; t < T. 

The proof of Titchmarsh's theorem. We shall first prove the Theorem 
for the special case when j = g, that is, if j(t) is continuous and (j * j) (t) 

t 
= f j(t - u) j(u) du = 0 for 0 < t < 2T, then j(t) = 0 for 0:::;: t < T. 

o 
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We have 

2T ( I ) ! &,(2T-I) / I(u) I(t - u) du dt = 0, 

and, by the change of variables u = T - v, t = 2T - v - w, we obtain 

II 6'(V+W) I(T - v) I(T - w) dv dw = 0 
,4 

where ..1 is the triangle v + w > 0, v S T, W < T in the v - w plane. 
Let ..1' be the triangle v + w S 0, v > - T, w > - T. Then the join 
..1 + ..1' is the square -T < v, w < T. The above equality shows that 
the integral of e"(v+w) I(T - v) I(T - w) over..1 + ..1' is equal to the inte­
gral over ..1'. The integral over ..1 + ..1' is the product of two single inte­
grals, and in the integral over ..1' we have e"(v+w) < 1. Thus 

II ! e .... /(T - u) dul2= I II e"(V+W) I(T - v) I(T - w) dv dw I 
-T .1+,4' 

< I I I/(T - v) I(T - w) I dv dw S 2T2· A2, 
,4' 

where A is the maximum of I/(t) I for 0 <t S 2T, and 2T2 is the area 
of ..1'. We thus have 

I-l e .... /(T-u) dul S V2T. A, 

and, moreover, I-I e .... /(T - u) dul< T A. Therefore 

I! e .... /(T - u) dul = I ! - II < (1 + V2) T A (n = 1, 2, ... ), 
o -T -T 

and so, by Lemma 2, I(t) = 0 for 0;£ t ~ T. 
We are now ready to prove Titchmarsh's theorem for the general case. 

I 

Let J I(t-u) g(u) du = 0 for O<t<oo. Then we have, for Ost<oo, 
o 

, I I 

J (t-u) I(t-u) g(u) du + I I(t-u) ug(u) du = t I I(t-u) g(u) du = o. 
o 0 0 

This may be written as 

Thus 

and so 

(11 * g) (t) + (f * gl) (t) = 0 (0 < t < 00), 

where 11 (t) = tl(t), gl (t) = tg (t). 

[f * {gl * (/1 * g + 1* gl)}J (t) = 0 

[(f * g) * (11 * gl)] (t) + [(f * gl) * (I * gl)] (t) = O. 
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Thus, by (j * g) (t) = 0, we have [(f * gl) * (I * gI)J (t) = 0, and so, 
by the special case proved above, (I * gl) (t) = 0, that is, 

I 

f I(t-u) ug(u) du = 0 (0 < t < 00). 
o 

From this we obtain, similarly to above, 
I 

fl(t-u)u2 g(u)du=0 (O<t<oo). 
o 

Repeating the argument, we find that , 
f I(t-u) u"g(u) du = 0 (O<t< 00; n = 1, 2, ... ). 
o 

Hence, by Lerch's theorem proved above, we obtain 

l(t-u)g(u)=O for O;:S:u<t<oo. 

If a Uo exists for which g (uo) 0:/= 0, then 1 (t - uo) = 0 for all t > uo' 
that is, I(v) = 0 for all v ~ O. Therefore, we have either I(v) = 0 for 
all v > 0 or g(v) = 0 for all v > O. 

6. Mikusinski's Operational Calculus 

In his "Electromagnetic Theory", London (1899), the physicist 
O. HEAVISIDE inaugurated an operational calculus which he successfully 
applied to ordinary linear differential equations connected with electro­
technical problems. In his calculus occured certain operators whose 
meaning is not at all obvious. The interpretation of such operators as 
given by HEAVISIDE himself is difficult to justify. The interpretation 
given by his successors is unclear with regard to its range of validity, 
since it is based upon the theory of Laplace transforms. The theory of 
convolution quotients due to J. MIKUSINSKI provides a clear and simple 
basis for an operational calculus applicable to ordinary differential equa­
tions with constant coefficients, as well as to certain partial differen­
tial equations with constant coefficients, difference equations and integral 
equations. 

We shall give, adapted from K. YOSIDA-S. OKAMOTO [40J, a simpli­
fied presentation of Mikusinski's theory by introducing the notion of the 
ring ct' H in place of his operators (= the convolution quotients). By virtue 
of this ring we can derive the operational calculus without appealing 
to Titchmarsh's theorem given in Chapter VI,S. 
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The ring f(f H. We denote by f(f the totality of complex-valued con­
tinuous functions defined on [0,00). In this section, we shall denote 
such a function by {/(t)} or simply by I, while I(t) means the value at 
t of this function I. For I, g E f(f and a., f3 E Cl (the complex number field), 
we define 

l+g={/(t)+g(t)} and Ig= {jl(t-u)g(U)dU}. (1) 

Then, as proved in Chapter VI,3, we have 

Ig = gl, I (gh) = (fg) h and I (g + h) = Ig + Ih . 
Hence f(f is a commutative ring with respect to the above addition and 
multiplication over the coefficients field Cl. 

We shall denote by h (l in J. MIKUSINSKI [lJ) the constant function 
{I} E f(f so that we have 

hn = Ln~~)! } (n = 1, 2, ... ) (2) 

and 

hi = {jl(U) dU} for IE f(f , (3) 

i. e., h behaves as an operation 01 integration. Thus we have the fairly 
trivial 

Proposition 1. For kEH={k;k=hn(n= 1,2, ... )} and IEf(f, the 
equation kl = ° implies 1= 0, where ° denotes {o} E f(f. 

Therefore, as in the algebra, we can construct the commutative ring 
f(f H consisting of Iractions of the form Ilk, i. e., 

f(fH=U =llk;/Ef(fandkEH}, (4) 

where the equality of two fractions is defined by 

~ = ~', iff Ik' = f' k , (5) 

and the addition and multiplication of two fractions are defined through 

I t' Ik' + f'k I f' If' 
k + k' = kk' and k k' = kk' . (6) 

By identifying IE f(f with kl IkE f(f H' the ring f(f can isomorphic ally 
be embedded as a subring of f(f H. 

We next introduce, after MIKUSINSKI, the important notion of the 
operation 01 scalar multiplication. We define, for every a. E Cl, 

{ IX} 
[a.J = -h- = {a.}/hE f(f H. (7) 



6. Mikusinski's Operational Calculus 171 

Then we have, for ex, {3 E C1, 1 E 't' and k E H, 

[exJ + [{3J = [ex + {3J, [exJ [{3J = [ex{3J , (8) 
/ IX / 

[ex J 1 = ex 1 = {ex 1 (t)}, [ex] k = k . 

Proof. [ex J + [{3J = [ex + {3J is clear. We have 

[exJ [{3J = {~} {!} = {lXh~ t} = h {;/} = {IX!} = [ex{3] , 

[ Jill1L= {IX} {f(t)} = {j1X/(U)dU} = {IX/(t)} 
ex k hk hk k' 

Hence [ex] can be identified with the complex number ex, not with {ex}, 
and we see that the effect of the multiplication by [ex] is exactly the 
scalar multiplication by ex. [1J may be identified with the multiplicative 
unit I of the ring 't' H' i.e., 

hn 
I = Tn (n = 1,2, ... ) . (9) 

We next define 

hn 

s = hn+1 E 't' H (n = 0, 1,2, ... ; hO = I) so that sh = hs = I. (10) 

Proposition 2. If both 1 and its derivative I' belong to 't', then 

I' = sl- 1(0), where 1(0) = [f(O)l ' 

i. e., s behaves as an operation 01 dilferentiation. 
Proof. Clear from (10) and Newton's formula 

hI' = {i I' (u) dU} = {I (t) - 1 (O)} = 1- [f (0)] h . 

Corollary. For n-times continuously differentiable function 1 E 't', 

(11) 

I(n) = sn 1- sn-1/(0) - sn-21'(0) - ... _/(n-l) (0) , (12) 
where IU) (0) = [fU) (0) J . 

Proposition 3. For any ex E C1 and for any positive integer 1f' 

(s - ex)n = (s - [exJ)n = ( h -121X ] h2 r = (h -l;:] h2)n E 't' H 

admits a uniquely determined multiplicative inverse in 't' H given by 

(s I lX)n = {(n tn-II)! eat} 

Proof. We have, by (11), 

(S - ex) {e'"t} = ex {eat} + [1] - ex {eat} = I, i. e., I/(s - ex) = {eat} . 
t 

Hence, we have I/(s'- ex)2 = {jec«t-U) eau dU} = {t eat} and so on. 
o 

(13) 
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Application to the integration 01 the Cauchy's problem lor linear ordinary 
dilferential equations with constant coelficients E Cl: 

ocny(n) + ocn_1y(n-l) + ... + OCoY = IE <'t' (ocn =1= 0) , (14) 
y(O) = Yo, y'(O) = Yl"'" y(n-l)(O) = Yn-l . 

By (12), we rewrite (14) into 

(ocnsn + ocn_1sn- 1 + ... + oco) Y = 1+ f3n_lSn- 1 + f3n_2Sn- 2 + ... + f3 0' (14)' 

f3v = OCv+1 Yo + ocv+2Yl + ... + C(nYn-v-l (v = 0, 1,2, ... , n - 1) . 

The polynomial ring of polynomials in s with coefficients E Cl is free 
from zero lactors, because of the fact that 

(onsn + On_lsn-1 + ... ) ('Y/msm + 'Y/m_lsm-1 + ... ) = on'Y/m sn+m + ... 
Hence we can define rational functions in s: 

F - I and F _ P"-l sn-l + ... + Po 
1 - iXn sn + ... + iXo 2 - iXn Sn + ... + iXo 

(15) 

and obtain their partiallraction expressions: 

F1= LI (S~:j)k and F2=Lf (S~~)k' (15)' 
ik~1 ik~1 

where both C;k and djk belong to CI and r/s are distinct roots of the 

algebraic equation C(n zn + C(n-l zn-l + ... + C(o = 0 so that E mj = n. 
1 

By virtue of (13), both Fl and F2 given in (IS)' belong to <'t'~<'t' H so 
that we obtain the solution of (14)' and hence of (14) as well: 

'V ~ { t k - 1 

{y(t)} = L..J L..J C;k (k - I)! (16) 

i k ~ 1 

'V ~ { t k - 1 

+ L..JL..Jdjk (k-l)! 
i k ~ 1 

Example 1. Solve the equation 

x"(t) - x'(t) - 6x(t) = 2, x(O) = 1, x'(O) = 0 . 

Solution. We rewrite the equation 

{x"(t) - x'(t) - 6x(t)} = 2(s 

by (12), obtaining 

S2 x - S x(O) - x'(O) - s x + x(O) - 6x = 2(s 
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and so, by substituting the initial condition, we get 

(S2 - S - 6) x = s - 1+ 2/s . 

Hence, by (13), 

52 - 5 + 2 1 1 8 1 4 1 
x = 5 (5 - 3) (5 + 2) = - 3 S + 15 5 - 3 +"5 5 + 2 

= {_ ~ + ~ e3t + .! e-2t} 3 15 5 . 

Example 2. Solve the system of equations 

x' (t) - (X x(t) - {3 y(t} = {3 e"t , y' (t) + {3 x(t} - (X y(t) = 0 , 
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under the initial condition x(O} = 0, y(O} = 1. We here assume that (X and 
{3 are real numbers. 

Solution. Rewrite the equations by (11) and (13), obtaining 

sx - (XX - {3y = {31 (s-(X), sy - I + {3x - cxy = 0 . 

Hence 

2P 
x = (5 _ a)2 + p2 , 

from which we get 

x = -!-{ 1. _ I.} = -!- {e<"HII)t _ e<"-ill)t} = {2e"t sin {3t}, 
~ 5-a-zp 5-a+zp z 

2 (5 - a) . 1 1 1 1 
y= (5-a)2+ p2 - (5-a) = 5-a-ip + 5-a+ip - 5-a 

= {e<"HII)t + e<"-ill)t - e"t} = {e"t(2 cos {3t - I)} . 

Remark. Suggested by (2), we can define the fractional power inte­
gration through 

hoc = h {t"-llr ((X)}/h E <"t' H (0 < (X < I) . (17) 

Accordingly, we can define the fractional power differentiation through 

SOC = h{t-" Ir(1 - (X)}/h2 E <"t' H (0 < (X < I), (18) 

because we obtain 

h"s"=I (19) 

by the Gamma function formula B(I - (x, (X) = r(1 - (X) r((X). 
For further applications of the operational calculus, we refer the 

reader to J. MIKUSINSKI [I] and also to A. ERDELYI [I]. 

7. Sobolev's Lemma 

A generalized function is infinitely differentiable in the sense of 
the distribution (see Chapter 1,8). So the differentiability in the gene­
ralized sense has no bearing on the ordinary differentiability. However, 
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we have the following result which is of fundamental importance III 

modern treatment of partial differential equations. 
Theorem (Sobolev's Lemma). Let G be a bounded open domain of 

Rn. Let a function u (x) belong to Wk (G) for k > 2-1 n + (J, where (J is an 
integer ~ O. We thus assume that the distributional derivatives of 
u (x) of order up to and including k all belong to L2 (G). Then, for any open 
subset Gl of G such that the closure G~ is a compact subset of G, there 
exists a function u l (x) E cO' (G l ) such that u (x) = u l (x) a.e. in Gl . 

Proof. Let ex (x) be a function E cgo (Rn) such that 

Gl t;;; supp(ex) C G, 0 < ex (x) :s 1 and ex (x) = 1 on Gl . 

We define a function v (x) defined on Rn by 

v (x) = ex (x) u (x) for x E G; v (x) = 0 for x E Rn - G. 
Then v (x) = u (x) whenever x E Gl . Since v (x) is locally integrable over 
Rn, it defines a distribution E 'tI (Rn)'. By the assumption that u E Wk (G), 
the distributional derivatives DS v (x) E L2 (Rn) when I s I < k. For example, 
the distributional derivative 

a a fu a 
- (v) = - (exu) = - . u + ex - u aXj ax; ax; ax; 

belongs to L 2 (Rn) by the fact that u, au/aXj both belong to L2 (G) and 
that the infinitely differentiable function ex (x) has its support contained 
in a compact subset of the open domain G. By the Fourier transformation 
v (x) -+ V (y), we obtain 

/"--... 
(DSv) (y) = (i) lsi yi' Y2' ... y~n . V (y). 

Since, by Plancherel's theorem, the L2-norm is preserved by the Fourier 
/"--... 

transfonnation, we have (DSv) (y) E L2(Rn) for lsi < k. Thus 

v(y)yi'y2· ... y~nEL2(Rn) for Isl~k. (1) 

In particular we have 
(1') 

Let q = (qv q2, ... ,qn) be a system of non-negative integers. Then 
by (1), we can prove that 

v (y) yi' y~' ... y~n is integrable over Rn whenever I q I + ; < k. (2) 

For the proof, take any positive number C. We have, by Schwarz' ine­
quality, 

f Iv (y) yi' y~ • ... y~"1 dy 
lyl;;;C 

< ( f Iyi' y~ • ... y~fll2 dy· f Iv(Y) 12 dy )li2 < 00, 
lyl;;;C lyl;S:C 

f IV(Y) yi' y~' ... y~"1 dy 
lyl>C 

« f 1(1 + lyI2)-k/2Yl'y~·,,,Y~"12dy. f Iv(y) (1 + IYI2)k/212dy)1/2. 
lyl>C lyl>C 
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The second factor on the right of the last inequality is < 00 by (1). The 
first factor is finite by 

dy = dYI dY2 ... dYn = y,,-l dr dQ", 1 
where dQ" is the hypersurface element of the surface I 
of tIle unit sphere of Rn with the origin 0 as its centre, 

provided 

2Iql--2k+n-1<-1, that is, if k>; + Iql. 
Now, by Plancherel's theorem, we have 

v(x) = l.i.m. (2:rr)-n/2 J v(y) exp(i <y, x») dy 
IJ....>oo Iyl;>;h 

(3) 

and so, as in the proof of the completeness of L 2 (Rn ), we can choose a 
subsequence {h'} of positive integers h such that 

v(x) = Fm (2:rr)-n/2 J v (y)exp(i<y,x»)dy for a.e. xERn. 
h -+00 Iyl ;>;h' 

But, since v (y) is integrable over R" as proved above, the right side is 
equal to 

vdx) = (2:rr)-n/2 J v(y) exp(i <x, y») dy, 
R" 

that is, v (x) is equal to vdx) for a.e. x E R". By (2), the differentiation of 
VI (x) under the integral sign is justified up to tlie order (J; and the result 
of the differentiation is continuous in x. By taking u1 (x) = VI (x) for 
x E GI , we have proved the Theorem. 

Remark. For the original proof, see S. L. SOBOLEV [IJ, [2J and 
L. KANTOROVITCH-G. AKILOV [IJ.* 

8. Girding's Inequality 

Consider a quadratic integral form defined for Coo function u (x) = 
U (Xl> X2, ••• , x,,) with compact support in a bounded domain G of Rn : 

B [u, uJ = ~ (cstDSu, Dtu)o, 
Isl,lir:S;m 

(1) 

where the complex-valued coefficients Cst are continuous on the closure 
G" of G, and (u, v)o denotes the scalar product in P(G). 

Then we have 
Theorem (L. GARDING [1]). A sufficient condition for the existence of 

positive constants c, C so that the inequality 

lIull!<cReB[u,uJ+Cllull~ (2) 

holds for all u E ego (G), is that, for some positive constant co' 

Re ~ Cst ~ ~t > Co I ~ 12m for all x E G and all real vectors 
Isl,iIr=m (3) 

~ = (~l> ~2' ••. , ~m) . 

* See also Supplementary Notes, p. 466. 
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Remark. The inequality (2) is called Garding's inequality. If condi­
tion (3) is satisfied, then the differential operator 

L = .I (-1)111 D'cslDs (4) 
l'I=III:;;;m 

is said to be strongly elliptic in G, assuming that Csl is Cm on Ga. 
Proof. We first prove that, for every e > 0, there is a constant C (e»O 

such that for every CO' (G) function u, 

To this purpOse, we consider u to belong to CO' (R"), defining its value as 
o outside G. By the Fourier transformation we have 

/'-. I " 12 I!D'ull~ = II (D'u) II~= [ II yjiu(y) dy, 
R 

in virtue of Plancherel's theorem. Thus (5) is a consequence from the fact 
that 

(ISI~-ljd yjSJ) I (c + IIi'fmjd yj's)(ls I = j~ Sj' It I = j~ tj) 

tends to zero uniformly with respect to y = (Yv Y2, ... , y,,) as C t 00. 

Suppose that the coefficients Csl are constant and vanish unless 
I s I = I t I = m. By the Fourier transformationu (x) -+ u (E) and Plan­
cherel's theorem, we have, by (3), 

Re B [u, u] = Re J .I csIESE'lu(E) 12 dE 
',I 

~ J Co IE 1
2m lu(E) 12 dE ~ Cl (!Iu II! -Ilu 11!-I), 

where c1 > 0 is a constant which is independent of u. Hence, by (5), we see 
that (2) is true for our special case. 

We next consider the case of variable coefficients C". Suppose, first, 
that the support of u is sufficiently small and contained, say, in a small 
sphere about the origin. By the preceding case, we have, with a constant 
c~ > 0 which is independent of u, 

c~ lIu II! < ReB [u, u] + Re,s,=i=m J (C"{O) - Cst (x) DSu . D'udx 

- Re .I J Cst (x) DSu· D':Udx + C{e) lIull~. 
Isl+liT<2m 

If the support of u is so small that C" has very small oscillation there, 
we see that the second term on the right may be bounded by 2-1 C~ II u ! I!. 
The third term on the right is bounded by constant times II u 11m' II u 11m-I' 
Hence we find that, constants denoting positive constants, 

2-1~lIull! < ReB[u, u] + constant lIulim ·lIullm-l + C{e) lIull~. 
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Thus, by 

2 IlX I . 1.81 < E 1(( 12 + e-1 1.812 which is valid for every 

E>O, (6) 

we obtain Ilull~ < constant· ReB[u, u] + constant '1Iull!-1 + C(e) . 
Ilull~, and so, by (5), we obtain (2). 

Next we consider the general case. Construct a partition of unity in G: 
N 

1= . .Iwl,wjECO"(G) and Wj(x»OinG, 
,~I 

such that the support of each Wj may be taken as small as we please. 
Then, by Leibniz' rule of differentiation of the product of functions. 
Schwarz' inequality and the estimate of the case obtained above, we have 

Re B [u, u] = Re.I f cslDsuDludx = Re.I ~ f wlcslDsuD'udx 
~ ~ 1 

= Re f ;:; J) Cst D'(W; u) Dt(w; u) dx + o (I/ullm lIullm - 1) 
1 s,1 

~ ~ constant (1IWjU II~ -IIWjU II~-I) + O(llu 11m' Ilu 11m-I) 
1 

> constant lIull~ + O(llullm ·llullm - 1)· 

Thus we obtain (2) by (5). We remark that the constants c, C in (2) 
depend upon co' Csl and the domain G. 

Let 
9. Friedrichs' Theorem 

L = 2 DScs' (x) D' 
Isl,l/r:::;;m 

(1) 

be strongly elliptic with real CC'" coefficients CsI (x) in a bounded open domain 
of R". For a given locally square integrable function j(x) in G. a locally 
square integrable function u (x) in G is called a weak solution of 

Lu=t. (2) 
if we have 

(u. L*q;)o = (I. q;)o, L* = 2 (_I)lsl+II1 D'c.,(x) D'. (3) 
Isl,fif~m 

for every q; E COO (G). Here (I. g)o denotes the scalar product of the Hilbert 
space P(G). Thus a weak solution uof (2) is a solution in the sense of the 
distribution. Concerning the differentiability of the weak solution u. we 
have the following fundamental result: 

Theorem (K. FRIEDRICHS [1]). Any weak solution u of (2) has square 
integrable (distributional) derivatives of order up to (2m + p) in the 
domain GI ~ G where t has square integrable (distributional) derivatives 
of order up to p. In otheJ; words. any weak solution u of (2) belongs to 
WP+2m (GI ) whenever t belongs to WP(G1)· 

12 Yoalda, Functional Analysis 
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Corollary. If P = 00, then, by Sobolev's lemma, there exists a func­
tion uo(x)E Coo (G1) such that u(x) = uo(x) for a.E'. xE Gj • Thus, after a 
correction on a set of measure zero, any weak solution u (x) of (2) is Coo 
in the domain ~ G where j (x) is Coo; the corrected solution is hence a 
genuine solution of the differential equation (2) in the domain where j(x) 
is Coo. 

Remark. When L = .1, thE' Laplacian, the above Corollary is Weyl's 
Lemma (see Chapter II, 7). There is extensive literature concerning 
the extensions of Weyl's Lemma to general elliptic operator L; 
such extensions are sometimes called the Weyl-Schwartz theorem. 
Among an abundant literature, we refer to the papers by P. LAX [2J, 
L. NIRENBERG [lJ and L. NIRENBERG [2J. The proof below is due 
to the present author (unpublished). A similar proof was given by L. BERS 

[1]. It is to be noted that a non-differentiable, locally integrable function 
j (x) is a distribution solution of the hyperbolic eq1~ation 

8/ 
.~ = 0 

8x8y , 

as may be seen from 

0= _[ L[ j(x) 8~~~:) dY}dX (rp(X,Y)ECgo(R2)). 

Proof of the Theorem. We shall be concerned only with real-valued 
functions. Replacing, if necessary, L by I + Oi.L with a certain constant 
Oi. =I=- 0, we may assume that the strongly elliptic operator L itself satisfies 
Garding's inequality 

(rp,L*rp)o?bllrpll~(b>O), (4) 

I (rp, L* 11')0 I < y II rp 11m 1111' 11m (y > 0), whenever rp, 11' E Cgo (G) . 

The latter inequality is proved by partial integration. We assume here 
that each of the derivatives of the coefficients Cst (x) up to order m is 
bounded in G, so that the constants band yare independent of the 
test functions 11', rp E Cgo (G). 

Suppose that G1 is a periodic parallelogram 

(i = 1, 2, ... , n), (5) 

and that the coefficients of Land j periodic with the period 2n in each 
Xj' Under such assumptions, we are to deal with functions rp (x) defined 
on a compact space without boundary, the n-dimensional torus GI given 
by (5), and the distribution E Coo (GIl' associated with the space of test 
functions rp E Coo (GI ) consisting of Coo functions rp (x) = rp (Xl' x2, ... , xn ) 

periodic with peri.od 2n in each of the variables Xj' It is to be noted that, 
since G1 is without boundary, "We need not restrict the supports of our 
test functions rp(x). 
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The condition v E W q (GI ) thus means that the Fourier coefficients Vk 
of v (x) defined by the Fourier expansion 

V (x) ,....,,I Vk exp(ik. x) 
k 

(k = (kl' ...• k .. ), x = (xv . ..• x .. ), and k· x =-= jil kjxj) (6) 

satisfy 

(7) 

For, by partial integration, the Fourier coefficients of the distributional 
derivative D S v satisfy 

(DS v (x), exp (ik . x))o = (_1)lsl (v (x). DS exp (i k . x))o 

_ . lsi .. 'I _ - (-z) .II kj Vk. s - (Sv S2, ... , S,,), 
J~l 

and so, by Parseval's relation for the Fourier coefficients of Dqv E L 2 (GI ). 

we obtain (7). 
It is convenient to introduce the space W q (GI ) with integer q ~ 0, by 

saying that a sequence {Wk; k = (kv k2' ... , k .. )} of complex numbers Wk 
with Wk=W_k belongs to W q (GI ) if (7) holds. This space W q (GI ) isnormedby 
!1{Wk}llq = (f IWkl2 (1 + Ik I2)T/2 . By virtue of the Parse val relation 

with respect to the complete orthonormal system {(2n)-"/2 exp(ik· x)} of 
L2 (GI ). we see that. when q ~ 0, the norm! 1 Vllq = (~ J 1 D S v (x) 12 dX)1/2 

IsT~q G, 

is equivalent to the norm II{vk}llq, where v (x) ,...., ,Ivkexp(ik ·x). 
k 

The above proof of (7) shows that, if I E wP (GI ) , then D S I E WP- Is, (GI ) • 

and rp I E wP (GI ) for rp E Coo (GI ). Hence 

if IE WP(GI ), then, for any differential operator N of 

order q with Coo (GI ) coefficients. N IE WP-Iql (GI ). 
(8) 

To prove the Theorem for our periodic case. we first show that we may 
assume that the weak solution u E L2(GI ) = WO(GI ) of (2) belongs to 
wm (GI ). This is justified as follows. Let 

u(x) ,....,,Iukexp(ik.x), v(x) ,....,,Iuk(1 + IkI2)-mexp(ik.x). 
k k 

Then it is easy to see that v (x) E W 2m (G I ) and that v is a weak solution .. 
of (J -- L1)m v = u, wh~re L1 denotes the Laplacian .,I 02/0XJ. Hence v is 

J~l 

a weak solution of the strongly elliptic equation of order 4m: 

(2') 

If we can show that this weak solution v E W 2m (GI ) actually belongs to 
W4m+P(GI ). then, by (8), u =, (J _L1)m v belongs to W4m+P-2"'(GI ) = 

12* 
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WP+2m (G1). Therefore. without losing the generality. we may assume 
that the weak solution u of (2) belongs to wm(G1). where m is half of 
the order 2 m of L. 

Next. by Garding's inequality (4) for L and that for (I _L1)m. we may 
apply the Lax-Milgram theorem (Chapter III, 7) to the following effect. 
The bilinear forms on Coo (G1) : 

(cp, ",,)' = (cp. L*",,)o and (cp, ",,)" = (cp, (I _L1)m",,)o (9) 

can both be extended to be continuous bilinear forms on wm (GIl such 
that there exist one-one bicontinuous linear mappings T', T" on wm(G1) 

onto wm(G1) satisfying the conditions 

(T' cp, ",,), = (cp, "")m, (T" cpo ",,)" = (cp, "")m for cp, "" E wm (G1). 

Therefore, there exists a one-one bicontinuous linear map T m = T" (T')-l 
on wm(G1) onto wm(G1) such that 

(cp. ",,)' = (T mCP' ",,)" whenever gJ, "" E wm (G1). (10) 

We can show that 

for any i > 1, T m maps Wm+j (G1) onto W m+i (G1) in 

a one-one and bicontinuous way. 
(11) 

In fact. we have 

(cp, L*(I _L1)i "")0 = (TmCP. (I -L1)m+i ",,)o for cp, ""E COO(G1). 

On the other hand, there exists, bv the Lax-Milgram theorem as applied 
to the strongly elliptic operators (I - L1)i L and (I - L1)m+i, a one-one 
bicontinuous linear map T m+i of wm+i (G1) onto W m+i (G1) such that 

(cp, L * (I - L1)i "")0 = (T m+i cp, (I - L1)m+j "")0 for cp, "" E Coo (G1). 

Therefore, the function w = (T m+i - T m) cp is, for any cp E Coo (G1) , a 
weak solution of (I - L1)m+i w = o. But, such a w (x) is identically zero. 
For, the Fourier coefficient w" of w (x) satisfies 

0= «(I _L1)m+i w(x), exp(ik· x»o = (w(x), (I _L1)m+i exp(ik . x)o 

= (1 + [k[2)m+i (w(x), exp(ik· x)o = (1 + jk[2)m+i w", 

and so w" = 0 for all k. Thus (T m+i - T m) is 0 on Coo (G1). The space 
COO(G1) is dense in Wm+j(G1) ~ Wm(G1), since trigonometric polynomials 
~ w" exp (ik . x) are dense in the space W m+i (G1). Hence T m+i = T m 

1"1<00 
on wm+i (G1). 

We are now ready to prove the differentiability theorem for our 
periodic case. We have, for"" E Coo (G1) , 

(I, "")0 = (u, L*",,)o = (u, ",,), = (T mU, ",,)" =.(T mU, (I - L1)m "")0. 
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Hence, for 
T mU"""'.I c" exp(ik· x), "P(x),.....,.I "P" exp(ik. x), 

" k 
we obtain, by Parseval's relation, 

(T mU, (I _.1)m "P)o =.I c.dl + Ik 12)m~" = .I Ik~'" 
k " 

By the arbitrariness of "P E C<'O (G1), we have c,,(1 + Ik 12)m = I, .. and so, 
by IE WP(G1), we must have TmuE wp+2m(G1). Hence, by (11), 
uE wp+2m (G1) .It is to be noted that the above conclusion uE wP+2m (G1) 

is true even in the case 0 > p > (1- m), i.e., the case {Ik} E WP(G) 
with 0 > p > (1- m). For, by p + 2m > m + 1, we can apply (11). 

We finally shall prove, for the general non-periodic case, our differen­
tiability theorem. The following argument is due to P. LAX [2]. 

We want to prove, for the general non-periodic case, the differentia­
bility theorem in a vicinity of a point xO of G. Let P (x) E CO" (G) be identi­
cally one in a vicinity of xo. Denote pu by u'. u' is a weak solution of 

Lu' =PI + Nu, (12) 

where N is a differential operator of order at most equal to (2m -1) 
whose coefficients are, together with P(x), zero outside some vicinity V 
of xO, and the operator N is to be applied in the sense of the distribution. 
We denote the distribution PI+ Nu by 1'. 

Let the periodic parallelogram G1 contain V, and imagine the coeffi­
cients of L so altered inside G1 but outside V that they become periodic 
without losing their differentiability and ellipticity properties. Denote 
the so altered L by L'. Thus u' is a weak solution in G of 

L'u' = /" where I' = PI + Nu. (13) 

We can thus apply the result obtained above for the periodic case to 
our weak solution u'. We may assume that the weak solution u' belongs 
to W'" (G1). Thus, since N is of order < (2m -1) and with coefficients 
vanishing ontside V, t' =PI + Nu must satisfy, by (8), 

I'EWP' (G1) with P' = min(p, m- (2m-I» = min(p, I-m) >- I-m. 

Therefore, the weak solution u' of (13) must satisfy 

u' E WP" (G1) with p" = min (P + 2m, 1 - m + 2m) 

= min(p + 2m, m + 1). 

Hence, in a certain vicinity of xo, u has square integrable distributional 
derivatives up to order p" which is? (m + 1).Thus I' = PI + Nu 
has, in a vicinity of xO, square integrable distributional derivatives of 
order up to 

P"' = min(p, p" - (2m -1» ~ min(p, 2 - m). 
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Thus again applying the result already obtained, we see that u' has, in a 
certain vicinity of xO, square integrable distributional derivatives up to 
order 

p(4) = min(p + 2m, 2-m + 2m) = min(p + 2m, m -+ 2). 

Repeating the process, we see that u has, in a vicinity of xO, square 
integrable distributional derivatives up to order p + 2m. 

10. The Malgrange-Ehrenpreis Theorem 

There is a striking difference between ordinary differential equations 
and partial differential equations. A classical result of PEANO states 
that the ordinary differential equation dy/dx = I(x, y) has a solution 
under a single condition of the continuity of the function I. This result 
has also been extended to equations of higher order or to systems of 
equations. However, for partial differential equations, the situation is 
entirely different. H. LEWY [1] constructed in 1957 the equation 

.8u au 2( .) 8u I() 
-l - + -- - Xl + u 2 - = x3 ' 

8xl 8x2 8xa 

which has no solution at all if I is not analytic, even if I is COO. Lewy's 
example led L. HORMANDER [3] to develop a systematic method of 
constructing linear partial differential equations without solutions. Thus 
it is important to single out classes of linear partial differential equations 
with solutions. 

Let P (~) be a polynomial in ~1' ~2' ... , ~n' and let P (D) be the linear 
differential operator obtained by replacing ~j by Dj = £-18/8%j. P (D) may 
be written as 

P(D) = 1: CaD", where, for oc = (oc, oc2, ••• , ocn ) , 
a 

Definition 1. By a lundamental solution of P(D) we mean a distribu­
tion E in R" such that 

P(D) E = 15 = T b • 

The importance of the notion of the fundamental solution is due to the 
fact that 

u = E * I, where I E ego (R") , 

gives a solution of the equation 

P(D) u = I. 
In fact, the differentiation rule (10) III Chapter VI, 3 implies that 
P(D) u = (P(D) E) * 1= 15 * I = I. 
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Example. Let P (D) be the Laplacian ,1 = t aas in R" with n > 3. 
j=1 axs 

Then the distribution 
1 

E=Tg, where g(x) = (2-n)S" IxI2-" and 5" = the area of the 
surface of the unit sphere of R", 

is a fundamental solution of ,1. 

Proof. We have, in the polar coordinates, dx = Ixl,,-1 d Ixl dS .. , and 
so the function g(x) is locally integrable in R". Hence 

L1TI~IH' (q?) = lim J Ix 12-" • L1q? dx, q? E :i) (R") . 
•• 0 I~I~. 

Let us take two positive numbers e and R (> e) such that the supp (q?) 
is contained in the interior of the sphere I x I < R. Consider the domain G: 
e < Ixl < R of R" and apply Green's integral theorem, obtaining 

where 5 = 8G is the boundary surfaces given by ! x I = e and I x I = R, 
and" denotes the outwards normal to S. Since q? vanishes around Ixl =R, 

we have, remembering that ,1 I X 12- n = 0 for x =F 0 and that - :v = al~ I 
at the points of the inner boundary surface Ixl = e, 

JlxI2-"L1q?dx=- J e2-" aal~ldS + ( (2-n)e1-"q?dS. 
Rn I~I=. I~r=. 

n 
When e to, the expression 8q?/8Ix I = j~ (Xj/lx \) .8q?/8xj is bounded 

and the area of the boundary surface Ixl = e is S"e"-I. Consequently 
the first term on the right tends to zero as e t O. By the continuity of q? 
and a similar argument to above, the second term on the right tends, as 
e t 0, to (2 - n) 5" . q? (0). Thus Tg is a fundamental solution of ,1. 

The existence of a fundamental solution for every linear partial diffe­
rential equation with constant coefficients was proved independently by 
B. MALGRANGE [1] and L. EHRENPREIS [1] around 1954-55. The exposition 
of the result given below is due to L. HORMANDER [4J. 

Definition 2. Set 

P(~) = ( .I Ip("')(~) 12)1/2 where p( .. )(~) = D~P(~), 
I"i~o I 

(1) 
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We say that a diffE.rential operator Q(D) with constant coefficients is 
weaker than P (D) if 

Q (;) < C P (;), ; ERn, C being a positive constant. (2) 

Theorem 1. If Q is a bounded domain of R n and t E V (Q), then there 
exists a solution u of P (D) u = t in Q such that Q (D) u E V (Q) for all Q 
weaker than P. Here the differential operators P (D) and Q (D) are to be 
applied in the sense of the theory of distributions. 

The proof is based on 
Theorem 2. For every e> 0, there is a fundamental solution E of 

P(D) such that, with a constant C independent of u, 

I (E * u)(O) I < C sup J lu (; + i 1]) liP (;) d;, It E C'if (Rn). (3) 
1'1I~B Rn 

Here u is the Fourier-Laplace transform of u: 

u (e) = (2n)-n/2 f e-i(x,C) u (x) dx, e = ; + iI], 
Rn 

and the finiteness of the right side of (3) is assured by the Paley-Wiener 
theorem in Chapter VI, 4. 

Deduction of Theorem 1 from Theorem 2. Replace u in (3) by 
Q (D) u * v, where u and v are in C'if (Rn). Then, by (10) in Chapter VI, 3, 

I(Q(D) E * u * V) (0) 1= I(E * Q(D) u * v) (0) I :::; CN(Q(D) u * v), 

where N(u) = sup J lu(; + i1])I/P(;) . d;. 
1'11~. Rn 

The Fourier-Laplace transform of Q (D) u * v is. by (17) in Chapter VI, 2 
and (15) in Chapter VI, 3, equal to (2nt/2 Q (e) u (e) v (e). Since, by 
Taylor's formula, 

1 n 

Q(;+i1])=~ cd (-1]) "'D"Q(;),where (-1])"=ll(-I];)";, (4) 
IX i-I 

we have, by (2), 

I Q (; + i 1]) II P (;) ::c;; C' for I I]! ;;;: e and ; E Rn , 

where the constant C' may depend on e. Thus 

N(Q(D) u*v) < (2nt/2 C'. sup f lu(; + i1]) v (; + i1]) I d;. 
1'1I~e Rn 

By Parseval's theorem for the Fourier transform, we obtain, denoting 
by II il the V (Rn)-norm, 

J lu(; + i1])12 d;= Jlu(x) 12 e2 (%,'1) dx::C;; !Iu(x) e<lxll12 when 11]!;;;:e, 
Rn Rn 

and a similar estimate for v. Thus, by Schwarz' inequality, 

N (Q (D) u * v) ;;;: C" II u (x) eel .. ' II II v (x) e<lxlll whenever u and v E C'if (Rn) , 

C" denoting a constant which may depend on e. 
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Therefore we have proved 

J (Q (D) E * u) (x) v (-x) dxi ~ (CC") Iluee!x'llllvee,x'll (u, vE C~(R"». 
P I W 

We shall write L; (R") for the Hilbert space of functions w (x) normed by 

(R[ I w (x) 12 eelxl dx Y'2 = II w (x) ee!xlll· 

Since Cgo (Rn) is dense in L; (R") and, as may be proved easily, L:'s (R") 
is the conjugate space of L; (Rn) , we obtain, by dividing (5) by II v (x) eslxlll 
and taking the supremum over v E cgo (Rn) , 

II (Q(D) E * u) (x) e-slx'll < (CC") lI u (x) eelxl II, ft E cgo (Rn). 

Hence the mapping 
(6) 

can be extended by continuity from Cgo (R") to L; (R"), so that it becomes 
a continuous linear mapping on L;(Rn) into L:'.(Rn). Thus, to prove 
Theorem 1, we have to take 11 = I in Q and 11 = 0 in R" -Q and define 
u as equal to u = E * 11. 

For the proof of Theorem 2, we prepare three Lemmas. 

Lemma 1 (MALGRANGE). If I (z) is a holomorphic function of a complex 
variable z for ! z I < 1 and p (z) is a polynomial in which the coefficient 
of the highest order term is A, then 

n 

IA 1(0) I «2n)-I J I/(eiB) p(e'B) I dO. (7) 
-" 

Proof. Let z;'s be the zeros of p (z) in the unit circle 1 z 1 < 1 and put 

P(z) = q(z) JI z:z \. , 
Then q (z) is regular in the unit circle and I p (z) 1 = 1 q (z) 1 for I z 1 = 1. Hence 
we have 

n n 

(2n)-1 J II (eiB) p(eiB) 1 dO = (2n)-I J I/(eiB) q(e'B) 1 dO 
-n -n 

> (2n)-11_1 1(e'B) q(eiB) dO 1= 1/(0) q(O) I· 

Thus Lemma 1 is proved since Iq(O)jA 1 is equal to the product of the 
absolute values of zeros of p (z) outside the unit circle. 

Lemma 2. With the notations in Lemma 1, we have, if the degree of 
P(z) is < m, 

I/(O)p(kl(0)1«mm!k)!(2n)-1 j I/(eiB) p(eiB) I dO. (8) 
-" 



186 VI. Fourier Transform and Differential Equations 

Proof. We may assume that the degree of p (z) is m and that 
m 

p (z) = .II (z - Zj) . 
3=1 

k 
Applying the preceding Lemma 1 to the polynomial .II (z-Zj) and the 

3=1 
m 

holomorphic function I (z) .. II (z - Zj), we obtain 
3=k+l 

A similar inequality will hold for any product of (m - k) of the numbers 
Zj on the left hand side. Since p(k) (0) is the sum of m!j(m-k)! such terms, 
multiplied by (_1)m-k, we have proved the inequality (8). 

Lemma 3. Let F (C) = F ('1' C2 , ••• , Cn) be holomorphic for I C I = 
(j~ I Cj 12 t2 < 00 and P (C) = P (C1' C2' ... , Cn)' a polynomial of degree 

::;:: m. Let if> (C) = if> (C1' C2 , ••• , Cn) be a non-negative integrable function 
with compact support depending only on IC1 1, IC2 1, ... , ICnl. Then we 
have 

IF(O)D<xP(O)1 J IC<XIif>(C)dC~ ( :' )1 J IF(C)P(C)Iif>(C)dC, (9) 
1_1<00 m DC. 1_1<00 

where dC is the Lebesgue measure d~1 d1h ... d~nd'Yjn (Ck = ~R + i'YjR) and 
m is regarded as multi-index (m, m, ... , m). 

Proof. Let I (z) be an entire holomorphic function and apply (8) to the 
functions I (r z) and p (r z), where r > O. Then we obtain 

II (0) p(k) (0) I . rk :::; (m m !kf! (2n)-1 j II (reiO ) p (reiO ) I dO. 
-n 

Let tp (r) be a non-negative, integrable function with compact support. 
Multiplying the above inequality by 2 n r tp (r) and integrating with 
respect to r, we obtain 

II (0) p(k) (0) I J It Ik tp (I t!) dt ;;:;; (m m !kf! J II (t) P (t) I tp (I t I) dt (10) 

where dt = rdrdO and the integration is extended over the whole complex 
t-plane. Lemma 3 is obtained by applying (10) successively to the va­
riables C1' C2' ••• , Cn, one at a time. 

Proof of Theorem 2. Put P (D) u = v, where u E ego (Rn). Then 
P(C) u(C) = ii(C). Apply Lemma 3 with F(C) = u(~ + C), with P(C) 
replaced by P(~ + C) and with lIP (C) 1= 1 when IC I < e and = 0 other­
wise. Since P(~) ::;:: ~ ID" P(~) I, we obtain, from (9), 

'" 
I 14 (~) P (~) I < e 1 J lu (~ + C) P (~ + C) I dC = e 1 J I V (~ -+- ~) I dC· 

lei;;;;' lei::;;· 
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Hence, by Fourier's integral theorem, 

lu(O) 1 ~ (2n)-"/2 1 lu(~) 1 ~ ~ Ci 1 (I Iv (~ + C) IIP(~) de) de 
ICI~· 

~ c; 1 ( 1 Iv (~ + ~' + i1j') IIP(~) d~' d1j') d~. 
~.+t(.:o. 

On the other hand, we have 

because 
p(e + nIP(e) < CD when· WI ~ E, 

D'"P(~ + n =.I (E{J'~P D,"HP(~), 
P . 

187 

so that ! D'" P (~ + ~') 1/ p (~) is bounded when! f I < E. Therefore we have 

IU(0)I~C~C2/( 1 Iv(~ +~' + i1j')IIP(~+~')dfdr/)d~ 
~"+7J":iO.' 

< Csllvll', where (11) 

II vll' = 1 (I Iv(~ + iYJ) 1/j5(~) d~)' dTJ (uE CO (R .. )) , 
17J1~' 

Cs denoting a constant depending only on E. 

By the way, the finiteness of Ilvll' is a consequ"nce of the Paley-Wiener 

theorem in Chapter VI, 4. Consider the space ~ (R") which is the 
completion of cgo (RIO) with respect to the norm II v II'. Then, by the Hahn­
Banach extension theorem, the linear functional L: 

v = P(D) u_ u(O) (where uE Ggo(R")) 

can be extended to a continuous linear functional L defined on Cgo(R"). 
As in the case of the space V (RIO), we see that there exists a Baire func-

tion k(~ + i1j) bounded a.e. with respect to the measure P(~)-ld~d'fJ 
such that the extended linear functional L is represented as 

L(v) = 1 (f v(~ + iTJ) k(~ + iTJ)IP(~). d~) d1J. (12) 
17J1~' 

When VII (x) E cgo (RIO) tends, as h _ 00, to 0 in the topology of il (RIO), 
VII (x) e (",'1) also tends to zero in the topology of il (RIO), uniformly with 
respect to TJ for ITJ 1 ~ E. Hence, as in Chapter VI, 1, we see easily that 
VII (~ + i TJ), as function of ~, tends to zero in the topology of (5 (RIO), 
uniformly in 1j for ITJ I ~ E. Therefore, by (12), L defines a distribution 
T E il (R"),. Thus, by (0) in Chapter VI, 3. 

L(v) = (T * v) (0) = (t * v) (0). (13) 

We have thus proved Theorem 2 by taking E = T. (3) is clear from (11). 
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11. Differential Operators with Uniform Strength 

The existence theorem of the preceding section may be extended to a 
linear differential operator 

P(x, D) = .I a",(x) D", (1) 
'" 

whose coefficients aD< (x) are continuous in an open bounded domain Q of 
Rn. 

Definition. P(x, D) is said to be of uniform strength in Q, if 

sup P(x, mp(y,~) < 00, (2) 
",,,ED.~ER" 

where P (x, ~) is defined by (~ J p(<» (x, ~) J2Y'2 considering x as para­

meters. 

Examples. The differential operator P(x, D) = L DSas,(x) D' 
isi,jIf;:;;", , 

with real, bounded Coo coefficients as.' (x) = a,.s (x) in Q is strongly elliptic 
in Q (see Chapter VI, 9) if there exists a positive constant 15 such that 

L ~sas.1 (x ) ~' > 15 ( .1 ~j)'" in Q. 
isi.Tir='" \;=1 

(3) 

In such a case, P(x, D) satisfies the condition (2). Next let P(x, D) be 
strongly elliptic in an open bounded domain Q of Rn- 1• Then 

a 
ax" - P(x, D) (4) 

is said to be parabolic in the product space Q X {xn ; 0 < x,,}. It is easy 
to see that the operator (4) is of uniform strength in the above product 
space. 

Theorem (HoRMANDER [5J). Let P(x, D) be of uniform strength in an 
open bounded domain Q of Rn. For any point xo, there exists an open 
subdomain Q1 of Q such that :>.,.fJ E Q1 and the equation P (x, D) u = f has, 
for every f E L2 (Ql)' a distribution solution u E L2 (Q1) for which, more­
over, Q (D) u E L2 (Q1) for every Q (D) weaker than P (x, D) for any fixed 
xEQl' 

Proof. Write P(xO, D) = Po (D). The set of all the differential opera­
tors with constant coefficients weaker than Po (D) is a finite dimensional 
linear space. For, the degree of such operators Q (D) cannot exceed that 
of Po (D). Thus there exist PI (D), P2(D), ... , PN(D) which form a basis 
for the differential operators weaker than Po (D). Hence we can write 

N 

P(x, D) = Po (D) + . .I bj(x) Pj(D), bj(xO) = 0, (5) 
J=1 

with uniquely determined bj(x) which are continuous in Q. 
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By the result of the preceding section, there exists a bounded linear 
operator T on P (Q1) into P (Q1) such that 

Po(D) TI = I for all IE P(Q1) , (6) 

and that the operators Pj (D) T are all bounded as operators on P (Q1) 

into L2(Q1). HereQl is any open sub domain ofQ. We have only to take 
TI as the restriction to Q1 of E * 11 where 11 = I in Q1 and 11 = 0 in 
Rn-Q1• 

The equation P(x, D) u = I is equivalent to 

(7) 

We shall seek a solution of the form u = Tv. Substituting this in (7), we 
obtain, by (6), 

N 

V + . .I bj(x) Pj(D) Tv = I. 
J~l 

(8) 

Let the sum of the norms of the bounded linear operators P j (D) T on 
L2(Q1) into P(Q1) be denoted by C. Since bj(x) is continuous and 
bj(xO) = 0, we may choose Q1:3 XO so small that 

C Ibj(x) I < liN whenever xEQ1 (j = 1, 2, ... , n). 

We may assume that the above inequalities hold whenever x belongs 
to the compact closure of Q1. Thus the norm of the operator 

N 
. .I bj (x) Pj (D) T is less than 1, and so the equation (8) may be solved 
J~l 

by Neumann's series (Theorem 2 in Chapter II, 1): 

v = (I + .1 bjPj(D) T)-ll = AI, 
;=1 

where A is a bouned linear operator on P (Q1) into P (Q1). Hence 
u = TAl is the required solution of P(x, D) u = I. 

12. The Hypoellipticity (Hormander's Theorem) 

We have defined in Chapter II, 7 the notion of hypoellipticity of 
P(D) and proved Hormander's theorem to the effect that, if P (D) is 
hypoelliptic, then there exists, for any large positive constant C1' a 
positive constant C2 such that, for all solutions C = ; + ifJ of the alge­
braic equation P (C) = 0, 

1;I<C2iflfJl<C1. (1) 

To prove conversely that (1) implies the hypoellipticity of P (D), 
we prepare the 

Lemma (HORMANDER [lJ), (1) implies that 

1",-tO IP<"') (;)12/1"'~o I p<"') (;)12 ~ 0 as ;E Rn, 1;1- 00. (2) 
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Proof. We first show that, for any real vector e E R", we have 

PC; + ell PC;) ~ 1 as;E R", 1;1 ~ 00. (3) 

We may assume that the coordinates are so chosen that e = (1,0,0, ... ,0). 
We have, by (1), 

PC; + i'YJ) =1= 0 when I'YJI < C1 and 1;/ > C2 • 

Then the inequality \; -l;' I ~ C1 holds if 1;1 ~ C1 + C2 and P (") = O. 
For, setting " = ;' + i'YJ', we have either I'YJ'I ~ C1 or else WI < C2 so 
that I; - ;'1 ~ C1· Giving fixed values to, ;2' ;3' ... , ;" we can write 

'" P (;) = C II (;1 - tk), C =1= 0, 
k=1 

where (tk' ;2' ... , ;,,) is a zero of P. Hence we have Itk - ;11 > C1 if 
!;I > C1 + C2 · Thus 

?(~+ 0) = fj ~1 +.1-t" = fj(l + _1_) 
P(~) k=1 ~l - tk k=1 ~l - t" 

satisfies 

I P(~;) 0) - 11 < mCl l (1 + Cl 1),"-1 if I,; I > C1 + C2 • 

As we may take C1 arbitrarily large by taking C2 sufficiently large, we 
have proved (3). 

We have, by Taylor's formula, 

and so 

(4) 

where 'YJ(i) are arbitrary real vectors and ti arbitrary complex numbers. 
k 

The coefficients 1: ti ('YJ(i))", loci;;:;:; m, can be given arbitrary values by 
;=1 

a convenient choice of k, ti and 'YJ(i). If otherwise, there would exist con-
stants C", loci;;:;:; m, not all equal to zero and such that 1: C,,'YJ" = 0 for 
every 'YJ. Thus " 

k 
p(a<) (,;) = i~ ti P (,; + 'YJ(i)) with real vectors 'YJ(i). 

Since the principal part on the right must cancel out when loci =1= 0, we 
k 

must have .I ti = O. Hence, by (3), we obtain (2) . 
• =1 

Corollary. Suppose that PI (,;) and P2(,;) satisfy (2). Then PC';) = 
P1 (,;) . P2(,;) also satisfies (2). Moreover, if Qj(D) is weaker than Pj(D) 
(f = 1, 2), it follows that Q1 (D) Q2 (D) is weaker than P (D). 
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Proof. By applying Leibniz' formula of differentiation of product of 
functions, we see that pea) (~) is a linear combination of products of 
derivatives of Pl(~) and P2(~) of the order sum < ((X). Hence (2) holds 
for P(~). The latter part of the Corollary may be proved similarly. 

We are now ready to prove 

Theorem (HORMANDER [1]). P(D) is hypoelliptic iff the condition (2) 
is satisfied. 

Proof. The "only if" part is already proved (Chapter II, 7 and what 
was proved above). We shall prove the "if" part. 

Let D be an open subdomain of R". A distribution u E il (D)' is said 
to belong to Hfoe(D) if, for any tpoE C(f(D), the Fourier transform Uo 
of Uo = tpou satisfies (see Chapter VI, 2) 

f (1 + I~ 12)k luo(~) 12 d~ < 00, that is, if Uo = tpou E Wk,2 (R"). (5) 
Rn 

By virtue of Sobolev's lemma in Chapter VI, 7, the "if" part is 
proved by the following proposition: 

Let P (~) satisfy (2). If a distribution u E 'I> (D)' satisfies 

P(D) uE Hfoe(D) with a positive s, then u belongs to (6) 

H:oe(D) . 

For, if P (D) u E Coo in D, then P (D) u E Bloe (D) for every positive s 
because of Leibniz' formula of differentiation. 

The following proof of (6) is based upon two Lemmas: 

Lemma 1. Let IE W·,2(R") and "P E Co (R") , s ~ O. Then "PI E W·,lI(R"). 

Lemma 2. Let P(~) satisfy (2). Then there exists a positive constant 
I' such that IP(<<) (~) ~ I/IP(~) 1-+ 0 as ~ E R", I~ 1-+ 00 for every £x =F O. 

The proof of Lemma 1 will be given later, and the proof of Lemma 2 
will not be given here (for the latter, we refer the reader to L. HOR­
MANDER [6] or to A. FRIEDMAN [1]). 

Next,letDI and Do be arbitrary open subdomains ofD such that their 
closures ~ and DO are compact and ~ S;; Do, .ao S;; D. By Schwartz' 
Theorem in Chapter III, 11, the distribution u E il (D)' is, when conside­
red as a distribution E 'I> (Do)" a distributional derivative of the form 
D'v of a function v (x) E LlI (Do). Let tp E ego (Do) be such that tp (x) = 1 
inDI . Then tt = Uo = Dttpv as distributionsE 'I> (D1),. tpv beingEL2(R"), 
we see that there exists a (possibly) negative integer k such that 

pea) (D) Uo = pea) (D) Dttpv E W'~,2 (R") for every £x. (7) 

Hence, by Lemma 1 and the generalized Leibniz formula (see Chapter 1,8) 

P (D) tpl Uo = PI P (D) Uo + (ido (~I D .. tpl . pea) (D) uo, (8) 
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we see by P (D) uoE Hfoc(Q) that, whenever <PI E C~ (Ql ) , 

P(D) Tl uoEWkl,2(Rn) with kl = min(s, k). 

Thus the Fourier transform ul (~) of u l (x) = Tl (x) Uo (x) satisfies 

J IP(~) ul (~) 12 (1 + I~ 12)kl d~ < ex:> 
Rn 

and hence, by Lemma 2, 

J IP<<» (~) Ul (~) 12 (1 + I~ 12)k1+P d~ < ex:>, that is, 
Rn 

p<<» (D) ul E W k, +p,2 (R") for every IX # O. 

(9) 

(10) 

(11) 

Let Qz be any open subdomain of Q l such that its closure D2 is compact 
and contained in Ql' Then, for any Tz E C~ (Qz) , we prove, by (8) and (11) 
as above, that 

P(D) Tzu! E Wk.,2(Rn) with kz = min(s, kl + p,) and hence 

p<<»(D) Tzu! E Wk.+p,2(Rn) for every IX # O. 

Repeating the argument a finite number of times, we see that, for any 
open subdomain Q' of Q such that its closure is compact and contained 
in Q, 

p<<» (D) TU E ws,2 (Rn) for all IX # 0 whenever T E C~ (Q'). 

Thus, p<<» (~) = constant =1= 0 gives TU E ws,2 (Rn). 

Proof of Lemma 1. The Fourier transform of "PI is 

(2n)-n/2 J;p (1]) 1 (~ - 1]) d1] (see Theorem 6 in Chapter VI, 3) 
Rn 

and thus we have to show that, for s ~ o. 
J (1 + I ~ IZ)S I J ~ (1]) 1 (~ - 1]) d1]12 d ~ < ex:>. 

RR Rn 

By Schwarz' inequality, this can be estimated from above by 

i (1 + 1~12)' [i \~(1]) I d1]' i 1~(1]) l'lf(~ -1]) 1
2 d1]] d~ 

= i 1~(1]) I d1] [i i (1 + I~ 12)S I~ (1]) I· 11 (~-1]) IZ d~ d1]]. 

We then make use of the inequality 
(1 + I ~ 12)S < 41s1 (1 + 11] !2)lsl (1 + I ~ -r; 12)' 

which may be proved by 

1 + 1~12 < 4(1 liZ) 4(1 + 11:.12) > 1 + 1~-1]12 
1 + I; - 1] 12 = + 'Y}. s- = 1 + 11] 12 • 

By (13), the right side of (12) is estimated by J 1;P ('Y}) I d'Y}-times 
Rn 

(12) 

(13) 
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This integral converges since IE WS •2 (Rn) and iP('YJ) E 6 (Rn). 
We have thus proved our Theorem. 

Further Researches 

1. A linear partial differential operator P (x, D) with Coo (Q) coeffi­
cients is said to be lormally hypoelliptic in Q ~ Rn if the following two 
conditions are satisfied: i) P (xO, D) is hypoelliptic for every fixed xO E Q 
and ii) P(xO,;) = O(P(x', m as; ERn, I; 1-+ 00 for every fixed xO and 
x' E Q. L. HORMANDER [5 J and B. MALGRANGE [2J have proved that, 
for such an operator P (x, D), any distribution solution u E 'I) (Q)' of the 
equation P(x, D) u = I is Coo after correction on a set of measure zero 
in the open subdomain ~ Q where I is Coo. The proof above for the con­
stant coefficients case may be modified so as to apply for the formally 
hypoelliptic case, see. e.g., ]. PEETRE [1]. 

2. It was proved essentially by 1. G. PETROWSKY [lJ that all distri­
bution solutions u E 'I) (Rn) of P (D) u = 0 are analytic functions in Rn 
iff the homogeneous part Pm (;) of pm of the highest degree m does not 
vanish for; ERn. If this condition is satisfied then P (D) is said to be 
(analytically) elliptic. It is proved that in such a case the degree m is 
even and P (D) is hypoelliptic. It is to be noted that the hypo ellipticity 
of an analytically elliptic operator P(D) can also be proved by Friedrichs' 
Theorem in Chapter VI, 9. For, by the non-vanishing of Pm (;), we easily 
see, by the Fourier transformation, that P (D) or -P (D) is strongly 
elliptic. For the proof of Petrowsky's Theorem, see, e.g., L. HORMANDER 
[6J, F. TREvEs [lJ and C. B. MORREY-L. NIRENBERG [lJ.* 

VII. Dual Operators 

1. Dual Operators 

The notion of the transposed matrix may be extended to the notion of 
dual operator through 

Theorem 1. Let X, Y be locally convex linear topological spaces and 
X;, Y; their strong dual spaces, respectively. Let T be a linear operator on 
D(T) ~ X into Y. Consider the points {x', y'} of the product space X;X Y; 
satisfying the condition 

<T x, y') = <x, x') for all xED (T). (1) 

Then x' is determined uniquely by y' iff D (T) is dense in X. 
Proof. By the linearity of the problem, we have to consider the condi­

tion: 
<x, x') = 0 for all xED (T) implies x' = O. 

• See also Supplementary Notes, p. 466. 

13 Yosida, Functional Analysis 
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Thus the "if" part is clear from the continuity of the linear functional 
x'. Assume that D (Tt =1= X. Then there exists, by the Hahn-Banach 
theorem, an x~ =1= 0 such that (x, x~) = 0 for all xE D (T); consequently, 
the "only if" part is proved. 

Definition 1. A linear operator T' such that T' y' = x' is defined 
through (1) iff D (Tt = X. T' is called the dual or coniugate operator of 
T; its domain D (T') is the totality of those Y' E Y; such that there exists 
x' E X; satisfying (1), and T' y' = x'. Hence T' is a linear operator defined 
on D (T') ~ Y; into X; such that 

(T x, y') = <x, T' y') for all xED (T) and all y' E D (T') . (2) 

Theorem 2. If D (T) = X and T is continuous, then T' is a conti­
nuous linear operator defined on Y; into X;. 

Proof. For any y' E Y;, (Tx, y') is a continuous linear functional of 
x E X and so there exists an x' E X; with T' y' = x'. Let B be a bounded 
set of X. Then, by the continuity of T, the image T· B = {Tx; xE B} 
is a bounded set of Y. Thus, by the defining relation (Tx, y') = (x, x'), 
the convergence to 0 of y' in the bounded convergence topology of Y' 
(given in Chapter IV, 7) implies the convergence of x' in the bounded 
convergence topology of X'. Thus T' is a continuous linear operator on 
Y; into X;. 

Example 1. Let X = Y be n-dimensional euclidean spaces normed by 
the (l2)-norm. For any continuous linear operator TE L(X, X), set 

Tx = y, where x = (Xl, X2,.··, X") and y = (Yv Y2' ... , y,,). 

" Then Yi = .~ t;jXj (i = 1, 2, ... , n) and so, for Z = (zv Z2, ... , z,,), 
J~l 

(Tx, z) = (y, z) = ~ YjZj = ~ (~t;jXj) Z; = ~ Xj (~tijZi) . 
J 'J . J \ , 

n 

Thus T' Z = W is given by Wj = .~ tijZi U = 1, 2, ... , n). This proves 
,~l 

that the matrix corresponding to T' is the transposed matrix of the matrix 
corresponding to T. 

Example 2. Let X = Y be the real Hilbert space (l2) , and let 
T" E L (X, X) be defined by 

Then from 

(Tn (xv X2, ... ), (Zv Z2, ... ) = X"Zl + Xn+lZZ + xn+2 ZS + ... , 
we obtain n-l 

T~ (Zv Z2, ... ) = (0, 0, ... , 0, Zv Z2, . ... ) . 

( CO) 1/2 
Since i I Tn (Xl' X2, ••• ) 1/ = m~" X~ -+ 0 as n-+ 00 and II T~ (Zl' Z2, ... ) II 
= II (Zl' Z2' ... ) II, we have 
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Proposition 1. The mapping T -?- T' of L (X, Y) into L (Y~, X~) is 
not, in general, continuous in the simple convergence topology of opera­
tors, that is, lim Tnx = Tx for all xE X does not necessarily imply 

1>-+00 ' 

lim T~y' = T'y' for all y' E Y', in the strong dual topology of X~. 
n-oo 

Theorem 2'. Let T be a bounded linear operator on a normed linear 
space X into a normed linear space Y. Then the dual operator T' is a 
bounded linear operator on Y~ into X~ such that 

IITII = IIT'II· (3) 

Proof. From the defining relation <Tx, y') = <x, x'), we obtain 

II T' y' II = Ilx' II = sup I <x, x') I 
1I"11~1 

= sup I<Tx,y'>1 <!ly'll· sup IITxl1 < Ily'II·IITII, 
1~1~1 1~1~1 

and so II T' II < II T II. The reverse inequality is proved as follows. For 
any xoE X, there exists an loE Y' such that 11/011 = 1 and lo(Txo) = 
<T xO' 10) = ! IT Xo II· Thus I~ = T'/o satisfies <xo' I~) = II T Xo II and so 

IITxol1 = <xo' T'/o) < IIT'II 11/0 11. Ilxoll = IIT'II·llxoll, i.e., 
IITII< IIT'II· 

Theorem 3. i) If T and S are E L (X, Y), then (IX T + P S)' = 
(IXT' + PS'). ii) Let linear operators T, S be such that D(T), D(S), 
R (T) and R (S) are all contained in X. If S is E L (X, X) and D (Tt = X, 
then 

(ST)' = T' S'. (4) 

If, moreover, D (T st = X, then 
(TS)' ~S'T', i.e., (TS)' is an extension of S'T'. (5) 

Proof. i) is clear. ii) D (S T) = D (T) is dense in X, and so (S T)' 
exists. If yE D(ST),), then, for any xE D(T) = D(ST), <Tx, S'y) = 
<S T x, y) = <x, (S T)' y). This shows that S' y ED (T') and T' S' y = 
(ST)' y, that is, (ST)' ~ T' S'. Let, conversely, y E D (T'S'),i.e.,S' yED (T'). 
Then, for any x E D(T) = D(ST), <STx, y) = <Tx, S'y) = <x, T' S' y). 
This shows that y E D«ST)') and (ST)'y =T' S'y, thatis, T' S' ~ (ST)'. 
We have thus proved (4). 

To prove (5), let y ED (S' T') = D (T'). Then, for any xED (T S), 
<TSx, y) = <Sx, T'y) = <x, S'T'y). This shows that yE D(TS)') 
and (TS)'y = S'T'y, that is, S'T' ~ (TS)'. 

2. Adjoint Operators 

The notion of transposed conjugate matrix may be extended to the 
notion of adjoint operator through 

13* 
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Definition 1. Let X, Y be Hilbert spaces, and T a linear operator 
defined on D (T) ~ X into Y. Let D (T)" = X and let T' be the dual 
operator of T. Thus <Tx, y') = <x, T'y') for xE D(T), y' E D(T'). If 
we denote by J x the one-to-one norm-preserving conjugate linear corre­
spondence X; 3f ~ yjE X (defined in Corollary 1 in Chapter III, 6), then 

<Tx, y') = :v' (Tx) = (Tx,] yy'), <x, T' y') = (T' y') (x) = (x,] xT' y'). 

We have thus 

(Tx, ]yy') = (x,] xT' y'), that is, (Tx, y) = (x,] xT' Fiy). 

In the special case when Y = X, we write 

T* = ]xT']x1 

and call T* the adfoint operator of T. 
Remark. If X is the complex Hilbert space (12), we see, as in the Exam­

ple in the preceding section, that the matrix corresponding to T* is the 
transposed conjugatp. matrix of the matrix corresponding to T. 

As in the case of dual operators, we can prove 
Theorem 1. T* exists iff D(Tt = x. It is defined as follows: y EX 

is in the domain of D (T*) iff there exists a y* E X such that 

(Tx,y) = (x,y*) holds for all xED(T), (1) 

and we define T* y = y*. 
We can rewrite the above theorem in terms of the graph G(A) of the 

linear operator A (the graph was introduced in Chapter II, 6): 
Theorem 2. We introduce a continuous linear operator V on X X X 

into XxX by 
V{x, y} = {-y, x}. (2) 

Then (VG(T)l. is the graph of a linear operator iff D(T)" == X, and, in 
fact, we have 

G(T*) = (VG(T)l.. (3) 

Proof. The condition {-Tx, x} 1.. {y, y*} is equivalent to (Tx, y) = 
(x, y*). Thus Theorem 2 is proved by Theorem 1. 

Corollary. T* is a closed linear operator, since the orthogonal comple­
ment of a linear subspace is a closed linear subspace. 

Theorem 3. Let T be a linear operator on D (T) ~ X into X such that 
D(T)" = X. Then T admits a closed linear extension iff T** =(T*)* 
exists, i.e., iff D (T*)" = X. 

Proof. Sufficiency. We have T** ~ T by definition, and T** = (T*)* 
is closed by the above Corollary. 

Necessity. Let S be a closed extension of T. Then G(S) contains 
G (T)" as a closed linear subspace, and so G (T)" is the graph of a linear 
operator. But G(T)" = G(T)l.l. = (G(T)l.)l. by the continuity of the 
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scalar product, and, moreover, by VG(T*) = G(T)l., we obtain 
(VG(T*))l. = G(T)l.l.. Therefore, (VG(T*))l. is the graph of a linear 
operator. Thus by Theorem 2 D (T*t = X and T** exists. 

Corollary. Under the condition that D (Tt = X, T is closed linear iff 
T = T**. 

Proof. The sufficiency is clear. Necessity is proved by observing the 
formula G (Tt = G (T**) obtained above. For, G (T) = G (Tt implies 
that T = T**. 

Theorem 4. An everywhere defined closed linear operator T is a con­
tinuous linear operator. 

Proof. Clear from the closed graph theorem. 
Theorem 5. If T is a bounded linear operator, then T* is also bounded 

linear and 

IITII = IIT*II· ( 4) 

Proof. Similar to the case of dual operators. 

3. Symmetric Operators and Self-adjoint Operators 

A Hermitian matrix is a matrix which is equal to its transposed 
conjugate matrix. It is known that such a matrix can be transformed 
into a diagonal matrix by a suitable (complex) rotation of the vector 
space on which the matrix operates as a linear operator. The notion of the 
Hermitian matrices is extended to the notion of self-adjoint operators 
in a Hilbert space. 

Definition 1. Let X be a Hilbert space. A linear operator on D (T) ~ X 
into X is called symmetric if T* ~ T, i.e., if T* is an extension of T. Note 
that the condition of the existence of T* implies that D(Tt = X. 

Proposition 1. If T is symmetric, then T** is also symmetric. 
Proof. Since T is symmetric, we have D (T*) ~ D (T) and D (Tt =X. 

Hence D(T*t = X and so T** = (T*)* exists. T** is surely an exten­
sion of T and so D(T**) ~ D(T). Thus, again by D(Tt = X, we have 
D(T**)" = X and so T*** = (T**)* exists. We have, from T* ~ T, 
T** ~ T* and hence T*** ~ T** which proves that T** is symmetric. 

Corollary. A symmetric operator T has a closed symmetric extension 
T** = (T*)*. 

Definition 2. A linear operator T is called self-adfoint if T = T*. 
Proposition 2. A self-adjoint operator is closed. An everywhere defined 

symmetric operator is bounded and self-adjoint. 
Proof. Being the adjoint of itself, a self-adjoint operator is closed. 

The last assertion is proved by the fact that an everywhere defined closed 
operator is bounded (closed graph theorem). 

Example 1 (integral operator of the Hilbert-Schmidt type). Let 
-ex:> < a < b < ex:> and consider L2(a, b). Let K(s, t) be a complex-
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valued measurable function for a < s, t < h such that 
b b 

I I IK(s, t) 12 ds dt < 00. 
II II 

For any x(t) E L2(a, b), we define the operator K by 
b 

(K . x) (s) = I K(s, t) x(t) dt. 
II 

We have, by Schwarz' inequality and the Fubini-Tonelli theorem. 
b b b b 

I I(K. x) (s) \2 ds ~ I I IK(s, t) 12 dtds I Ix(t) 12 dt. . . " " 
Hence K is a bounded linear operator on P(a, b) into P(a, b) such that 

(
bb )1/2 11K II ~ ! ! IK(s, t) 12 ds dt . It is easy to see that the operator K* 

b 

is defined by (K* y) (t) = J K (t, s) Y (s) ds. Hence K is self-adjoint iff 
a 

K (s, t) = K (t, s) for a.e. s, t. 
Example 2 (the coordinate operator in quantum mechanics). Let 

X = P (- 00, 00). Let D = {x (t); x (t) and t· x (t) both E P (- 00, oo)}. 
Then the operator T defined by T x (t) = t . x (t) on D is self-adjoint. 

Proof. It is clear that D" = X, since the linear combinations of 
defining functions of finite intervals are strongly dense in L2(-oo, 00). 
Let y E D(T*) and set T*y = y*. Then, for all xED = D(T), 

00 00 

I tx(t} y(t) dt = I x(t} y*(t) dt. 
-00 -00 

If we take for x(t} the defining function of the interval [(X, toJ, we have 
,. I. 

It. y (t) dt = I y* (t) dt, and hence, by differentiation, to . Y (to) = y* (to) .. .. 
for a.e. to. Thus yE D and T*y(t) = t· y(t). Conversely, it is clear that 
y ED implies that y ED (T*) and T*y(t) = t . y{t). 

Example 3 (the momentum operator in quantum mechanics). Let 
X = L2(-00, 00). Let D be the totality of x(t) E L2(-00, 00) such that 
x (t) is absolutely continuous on every finite interval with the derivative 
x'(t)EP{-oo,oo). Then the operator T defined by Tx(t) =i-1 x'(t) 
on D is self-adjoint. 

Proof. Let a continuous function x,. (t) be defined by 

x,. (t) = 1 for t E [(X, toL 

x,. (t) = 0 for t ~ (X - n-1 and for t ~ to + n-1 , 

X,.(t) is a linear function on [(X - n-1, (X] and on [to' to + n-1]. 
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Then the linear combinations of functions of the form x,. (t) with different 
values of IX, to and n are dense in L2(-00, 00). Thus D is dense in X. 

Let yE D(T*) and T*y = y*. Then for any xE D, 
00 00 

J i-I x' (t) Y (t) dt = f x (t) y* (t) dt. 
-00 -00 

If we take x,. (t) for x (t), we obtain 
" 1.+,.-1 00 

n I i-Iy(t)dt-n J i-Iy(t)dt= J X,.(t)y*(t)dt, 
~_n-l to -00 

10 
and so, by letting n -+ 00, we obtain i-I (y (ix) - y (to» = J y* (t) dt for 

" a.e. IX and to. It is clear, by Schwarz' inequality, that y* (t) is integrable 
over any finite interval. Thus y (to) is absolutely continuous in to over 
any finite interval, and so we have i-Iy' (to) = y* (to) for a.e. to. Hence 
y E D and T*y (t) = i-Iy' (t). Let, conversely, y ED. Then, by partial 
integration, 

b b 

J i-lX' (t) y(t) dt = i-I [x(t) y(t)J! + J x(t) (i-Iy' (t») dt. 
a a 

By the integrability of x(t) y(t) over (-00,00), we see that 
00 00 

lim l[x(t)y(t)J!I=O,andso J i-Ix'(t)y(t)dt= J x(t)(i-IY'(t»dt. 
a~-oo.btoo -00 -00 

Thus yE D(T*) and T*y(t) = i-Iy'(t). 
Theorem 1. If a self-adjoint operator T admits the inverse T-I, then 

T-I is also self-adjoint. 

Proof. T = T* is equivalent to (VG(T»)l. = G(T). We have also 
G(T-I) = VG(-T). Hence, by (-T)* = -T* = -T, (VG(-T»)l. = 
G(-T) and so 

(VG(T-I»l. = G(-T)l. = (VG(-T»l.1. = VG(-T) = G(T-I), 

that is, (T-I)* = T-I. 

We have used, in the above proof, the fact that (VG(-T»" = VG(-T) 
in virtue of the closedness of (-T). 

Corollary. A symmetric operator T in a Hilbert space X is self-ad­
joint if D(T) = X or if R(T) = X. 

Proof. The case D(T) = X was proved already. We shall prove the 
case R(T) = X. Tx = 0 implies 0 = (Tx, y) = (x, Ty) for all 
yE D(T), and so, by R(T) = X, we must have x = o. Therefore the 
inverse T-I exists which is surely symmetric with T. D (T-I) = R (T) = X, 
and so the everywhere defined symmetric operator T-I must be self-ad­
joint. Hence T = (T-I)-l is self-adjoint by Theorem 1. 
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We can construct self-adjoint operators from a closed linear operator. 
More precisely, we have 

Theorem 2 (J. VON NEUMANN [5]). For any closed linear operator T 
in a Hilbert space X such that D (T)" = X, the operators T* T and T T* 
are self-adjoint, and (I + T* T) and (I + TT*) both admit bounded 
linear inverses. 

Proof. We know that, in the product space XxX, G(T) and VG(T*) 
are closed linear subspaces orthogonal to each other and spanning the 
whole product space X X X. Hence, for any hEX, we have the uniquely 
determined decomposition 

{h,O}={x,Tx}+{-T*y,y} with xED(T), YED(T*). (1) 

Thus h = x - T*y, 0 = Tx + y. Therefore 

xED (T* T) and x + T* T x = h. (2) 

Because of the uniqueness of decomposition (1), x is uniquely deter­
mined by h, and so the everywhere defined inverse (I + T* T}-l exists. 

For any h, k E X, let 

x = (I + T*T)-lh, y = (I + T*T)-lk. 

Then x and y ED (T* T) and, by the closedness of T, (T*)* = T. Hence 

(h, (I + T*T)-lk) = ((I + T*T) x, y) = (x, y) + (T*Tx, y) 
= (x, y) + (Tx, Ty) = (x, y) + (x, T*Ty) 
= (x, (I + T*T) y) = ((I + T*T)-1 h, k), 

which proves that the operator (I + T*T)-l is self-adjoint. As an every­
where defined self-adjoint operator, (I + T* T}-1 is a bounded operator. 
By Theorem 1, its inverse (I + T* T) and hence T* T are self-adjoint. 

Since T is closed, we have (T*)* = T, and so, by what was proved 
above, TT* = (T*)*T* is self-adjoint and (I + TT*) has a bounded 
linear inverse. 

We next give an example of a non-self-adjoint, symmetric operator: 
Example 4. Let X = P(O, 1). Let D be the totality of absolutely 

continuous functions x(t) E P(O, 1) such that x(O) = x(l) = 0 and 
x' (t) E P(O, 1). Then the operator Tl defined by TIX(t) = i-IX' (t) on 
D = D (T 1) is symmetric but not self-adjoint. 

Proof. We shall prove that Tt = T 2 , where T2 is defined by: 
T2x(t)=i-1x'(t) on D(T2)={x(t)EP(O,1);x(t) is 

absolutely continuous such that x' (t) E P(O, I)}. 

Since D = D(Tl) is dense in L2(O, 1), the operator Tt is defined. 
Let yE D(Tt) and set Tty = y*. Then, for any xE D = D(Tl), 

1 1 

J i-I x' (t) Y (t) dt = J x (t) y* (t) dt. 
o 0 
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By partial integration, we obtain, remembering x (0) = x (1) = 0, 

I I t 

J x (t) y* (t) dt = - J x' (t) y* (t) dt, where y* (t) = J y* (s) ds. 
000 

I 

Hence, by x(l) = J x' (t) dt = 0, we have, for any t:onstant c, 
o 

I 

J x' (t) (y* (t) - i-I y(t) - C) dt = ° for all xED (Tl)' 
o 

t 

On the other hand, for any z (t) E P (0, 1), the function Z (t) = J z (t) dt­
o 

1 

t J z (t) dt surely belongs to D (TI). Hence, taking Z (t) for the above 
o 

x (t), we obtain 

j {z\t) - j z(t) dt}. (Y*(t) _i-I y(t) - C) dt = 0. 

I 

If we take the constantc in such a way that J (y* (t)_i-I y(t) -c)dt= 0, 
o 

then 
I 

J z(t) (Y*(t) - i-I y(t) - C) dt = 0, 
o 

and so, by the arbitrariness of zE P(O, 1), we must have Y*(t) = 
t 

J y*(t) dt= i-I y(t) + c. Hence yE D(T2) and T2y = y*. This proves 
o 
that T~ ~ T 2• It is also clear, by partial integration, that T2 ~ Ti and 
so T2 = Tj. 

Theorem 3. If H is a bounded self-adjoint operator, then 

IIHII= sup I(Hx,x)l. (3) 
Ilxll;;>1 

Proof. Set sup I(Hx,x)1 =y. Then, by I(Hx,x)1 ~ IIHxllllxll, 
Ilxll;;>1 

y ~ IIHII. For any real number A, we have 

I(H(y ± AZ), y ± AZ) 1= I (Hy, y) ± 2A Re(Hy, z) + J...2(Hz, z) I 
~ y Ily ± J... zI12. 

Hence 

14J... Re(Hy. z) I <y(lly + Azl12 + Ily-J...zI12) = 2y(llyl12 + J...21I zI12). 
By taking A = IIYII/llzll, we obtain IRe(Hy, z) I <y IIYllllzll. Hence, 
by substitutiag zeiB for z, we obtain I (H y, z) I < y Ily II liz II, and so 

(Hy, Hy) = IIHYl12 ~ y IlyllllHyll, i.e., IIHII < y. 
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4. Unitary Operators. The Cayley Transform 

A symmetric operator is not necessarily a bounded operator. Various 
investigations of a symmetric operator H may be made through the 
continuous operator (H - if) (H + iI)-l called the Cayley transform 
of H. We shall begin with the notion of isometric operators. 

Definition 1. A bounded linear operator T on a Hilbert space X into 
X is called (bounded) isometric if T leaves the scalar product invariant: 

(Tx, Ty) = (x, y) for all x, y EX. (1) 

If, in particular, R (T) = X, then a (bounded) isometric operator T 
is called a unitary operator. 

Proposition 1. For a bounded linear operator T, condition (1) is 
equivalent to the condition of the isometry 

IITxl1 = Ilxll for all xE X. 

Proof. It is clear that (1) implies (2). We have, by (2), 

4Re(Tx, Ty) = IIT(x + y) 112-IIT(x-y) 112 
= IIx + yI12_lIx_yI12 = 4Re(x, y). 

(2) 

By taking iy in place of y, we also obtain 4Im(Tx, Ty) = 4Im(x,y), 
and so (2) implies (1). 

Proposition 2. A bounded linear operator on a Hilbert space X into X 
is unitary iff T* = T-l. 

Proof. If T is unitary, then T-l surely exists in virtue of condition (2), 
and D (T-l) = R (T) = X. Moreover, by (1), T* T = I and so T* = T-l. 
Conversely, the condition T* = T-l implies T* T = I which is the con­
dition of the invariance of the scalar product. Moreover, T* = T-l 
implies that R (T) = D (T-l) = D (T*) = X and hence we see that T 
must be unitary. 

Example 1. Let X = P (- CX), CX)). Then, for any real number a, the 
operator T defined by Tx(t) = x(t + a) on P(-CX),CX) is unitary. 

Example 2. The Fourier transform on L 2 (R") onto L 2 (R") is unitary, 
since it leaves the scalar product (f, g) = f f(x) g(x) dx invariant. 

R" 
Definition 2. Let X be a Hilbert space. A linear operator T defined 

on D (T) ~ X into X such that D (T)a = X is called normal if 

TT* = T*T. (3) 

Self-adjoint operators and unitary operators are normal. 

The Cayley Transform 

Theorem 1 (J. VON NEUMANN [1]). Let H be a closed symmetric 
operator in a Hilbert space X. Then the continuous (but not necessarily 
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everywhere defined) inverse (H + i1)-1 exists, and the operator 

U H = (H -i1) (H + i1)-1 with the domain D (U H) = D((H + iI)-I) (4) 

is closed isometric (I JU H x II = II x II), and (I - U H)-1 exists. 

We have, moreover, 
H = i(1 + UH ) (I - UH )-I. 

Thus, in particular, D (H) = R (I - U H) is dense in X. 

Definition 3. U H is called the Cayley transform of H. 
Proof of Theorem 1. We have, for any xE D(H), 

(5) 

((H ± if) x, (H ± if) x) = (Hx, Hx) ± (Hx, ix) ± (ix, Hx) + (x, x). 

The symmetry condition for H implies (H x, ix) = - i (H x, x) = 
-i(x,Hx) =-(ix,Hx) and so 

II(H ± i1) xl12 = IIHxl12 + Ilx112. (6) 

Hence (H + iI) x = 0 implies x = 0 and so the inverse (H + i1)-1 
exists. Since II (H + i1) x II > Ilx II, the inverse (H + iI)-1 is continuous. 
By (6), it is clear that II U HY II = II y II, i.e., U H is isometric. 

U H is closed. For, let (H + iI) x" = y" --+ y and (H - i1) x" = z" --+ z 
as n--+oo. Then we have, by (6), IIY,,-YmI12= IIH(x,,-xm ) 112 + 
Ilx" - Xm 11 2 , and so (x" - X m) --+ 0, H (x" - X m) --+ 0 as n, m --+ 00. Since 
H is closed, we must have x = s-lim x" E D (H) and s-lim H x" = H x. 

11--?00 11--?00 

Thus (H + i1) x" -)- Y = (H + i1) x, (R - i1) x" --+ z = (H -i1) x and 
so U HY = z. This proves that U H is closed. 

From Y = (H + iI) x and U HY = (H - iI) x, we obtain 
2-1 (I - UH) Y = ix and 2-1(1 + UH) Y = Hx. Thus (I - UH) Y = 0 
implies x = 0 and so (I + U H) Y = 2H x = 0 which implies Y = 
2-1 ((I - U H) Y + (I + U H) y) = O. Therefore the inverse (I - U H)-1 
exists. By the same calculation as above, we obtain 

Hx = 2-1 (I + UH) Y = i(1 + UH) (I - UH)-1 x, that is, 

H = i(1 + UH ) (I - UH )-I. 

Theorem 2 (J. VON NEUMANN [lJ). Let U be a closed isometric opera­
tor such that R (I - ut = X. Then there exists a uniquely determined 
closed symmetric operator H whose Cayley transform is U. 

Proof. We first show that the inverse (I - U)-1 exists. Suppose that 
(I - U) Y = O. For any z = (I - U) wE R(I - U), we have, by the 
isometric property of U, (y, w) = (Uy, Uw) as in Section 1. Hence 

(y, z) = (y, w) - (y, Uw) = (Uy, Uw) - (y, Uw) = (Uy - y, Uw) = O. 

Hence, by the condition R(1 - ut = X, Y must be = o. Thus (I - U)-1 
exists. Put H = i(I + U) (I - U)-I. Then D(H) = DC(1 - U)-I) = 
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R (I - U) is dense in X. We first prove that H is symmetric. Let 
:x:, y E D (H) = R (I - U) and put x = (I - U) u, y = (I - U) w. Then 
(Uu, Uw) = (u, w) implies that 

(Hx, y) = (i(I + U) u, (1- U) w) = i((Uu, w) - (u, Uw) 

= ((I - U) u, i(I + U) w) = (x, Hy). 

The proof of U H = U is obtained as follows. For x = (I - U) u, we have 
Hx = i(I + U) u and so (H + iI) x = 2iu, (H - iI) x = 2iUu. Thus 
D(UH) = {2iu; uE D(U)} = D(U), and UH(2iu) = 2i· Uu = U(2iu). 
Hence UH = U. 

To complete the proof of Theorem 2, we show that H is a closed 
operator. In fact, H is the operator which maps (I - U) u onto i (I + U) u. 
If (I - U) u,. and i (I + U) u,. both converge as n ~ 00, then u .. and 
U u .. both cOhverge as n ~ 00. Hence by the closure property of U, we 
must have 

u,.~ u, (I - U) u .. ~ (I - U) u, i(I + U) u .. ~ i(I + U) u. 

This proves that H is a closed operator. 
For the structure of the adjoint operator of a symmetric operator, 

we have 

Theorem 3 (J. VON NEUMANN [1]). Let H be a closed symmetric 
operator in a Hilbert space X. For the Cayley transform U H = 
(H - iI) (H + iI)-1 of H, we set 

(7) 
Then we have 

xii = {xE X; H*x = ix}, Xii = {xE X; H*x = -ix}, (8) 

and the element x of D (H*) is uniquely expressed as 

x = Xo + Xl + X2, where Xo E D(H), Xl E Xli, X2 E Xii so that 

H* x = H Xo + iXI + (-ix2). (9) 

Proof. xE D(UH)1. = D((H + iI)-I)1. implies (x, (H + iI) y) = 0 
for all yE D(H). Hence (x, Hy) = - (x, iy) = (ix, y) and so xE D(H*), 
H* x = ix. The last condition implies (x, (H + iI) y) = o for allYE D(H), 
i.e. xE D((H + iI)-I)1. = D(UH)1.. This proves the first half of (8); 
the latter half may be proved similarly. 

Since UH is a closed isometric operator, we see that D(UH ) and 
R (U H) are closed linear subspaces of X. Hence any element x E X is 
uniquely decomposed as the sum of an element of D (U H) and an element 
of D (U H) 1. . If we apply this orthogonal decomposition to the element 
(H* + iI) x, we obtain 

(H* + iI) x = (H + iI) Xo + x' where xoE D(H), x' E D(UH)J·. 
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But we have (H + if) Xo = (H* + if) Xo by xoE D(H) and H ~ H*. 
We have also H*x' = ix' by x' E D(UH)1. and (8). Thus 

x' = (H* + if) Xl> Xl = (2irl x' E D(UH )1., 
and so 

(H* + if) x = (H* + if) Xo + (H* + if) Xl where 

xoED(H), X1ED(UH)1. 

Therefore (x - Xo - Xl) E R(UH)1. by H*(x - Xo - Xl) = -i(x-xo-xl} 
and (8). This proves (9). The uniqueness of the representation (9) is 
proved as follows. Let 0 = Xo + Xl + X2 with Xo E D (H), Xl E D (U H) 1. , 

x2 E R(UH )1.. Then, by H*xo = Hxo' H*xl = iXl> H*x2 = -ix2' 

o = (H* + if) 0 = (H* + if) (xo + Xl + x2) = (H + if) Xo + 2ixl . 

But by the uniqueness of the orthogonal decomposition of X as the sum 
of D(UH) and D(UH)1., we obtain (H + iI) Xo = 0, 2ixl = O. Since the 
inverse (H + if)-l exists, we must have Xo = 0 and so x2 = 0 - Xo-
Xl = 0 - 0 - 0 = O. 

Corollary. A closed symmetric operator H in a Hilbert space X is self­
adjoint iff its Cayley transform U H is unitary. 

Proof. The condition D (H) = D (H*) is equivalent to the condition 
D (U H)1. = R (U H)1. = {O}. The last condition in tum is equivalent to the 
condition that U H is unitary, i.e. the condition that U H maps X onto 
X one-one and isometrically. 

o. The Closed Range Theorem 
The closed range theorem of S. BANACH [1] reads as follows. 
Theorem. Let X and Y be B-spaces, and T a closed linear operator 

defined in X into Y such that D (Tt = X. Then the following proposi­
tions are all equivalent: 

R (T) is closed in Y, (1) 

R (T') is closed in X' , (2) 

R (T) = N (T')1. = {y E Y; <y, y*) = 0 for all y* E N (T')}, (3) 

R(T')=N(T)1.={x*EX';<x,x*)=O forall xEN(T)}. (4) 
Proof. The proof of this theorem requires five steps. 
The first step. The proof of the equivalence (1) -++ (2) is reduced to 

the equivalence (1) -++ (2) for the special case when T is a continuous 
linear operator such that D (T) = X. 

The graph G = G (T) of T is a closed linear subspace of X X Y, and so 
G is a B-space by the norm II {x, y} II = Ilx II + lIy" of Xx Y. Consider a 
continuous linear operator 5 on G into Y: 

S{x, Tx} = Tx. 
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Then the dual operator 5' of 5 is a continuous linear operator on Y' into 
G', and we have 

<{x, T x}, 5' y*) = (5 {x, T x}, y*) = (T x, y*) 

= <{x, Tx}, {O, y*}), xE D(T), y* E Y'. 

Thus the functional 5' . y* - {O, y*} E (XX y)' = X' X Y' vanishes at 
every point of G. But, the condition <{x, Tx}, {x*, yt}) = 0, xE D(T). 
is equivalent to the condition <x, x*) = (-Tx, yt), xE D(T), that is, 
to the condition - T' yt = x*. Hence 

5'· y* = {O, y*} + {-T'yt, yt} = {-T'yt, y* + yt}, y* E Y'. 

By the arbitrariness of y*, we see that R (5') = R (-T') X Y' = R (T') X Y'. 
Therefore R (5') is closed in X' X Y' iff R (T') is closed in X', and, since 

R(5) = R(T), R(5) is closed in Y iff R(T) is closed in Y. Hence we 
have only to prove the equivalence (1) - (2) in the special case of a 
bounded linear operator 5, instead of the original T. 

The second step. Let X and Y be B-spaces, and T a bounded linear 
operator on X into Y. Then (1) --.. (2). 

We consider T as a bounded linear operator Tl on X into the B-space 
Y1 = R(T)" = R(T). We have to prove that (2) is true. Ti.yi, yt E Yip 
is defined by 

<T1 x, yt) = (Tx, yt) = <x, Tiyt>, xE D(Tl) = D(T) = X. 

By the Hahn-Banach theorem, the functional yt can be extended to a 
y* E Y' in such a way that <Tx, yt> = <Tx, y*), xE D(T) = X. Hence 
Tiyi = T'yt and so R(TiJ = R(T'). Thus it suffices to assume that 
R (T) = Y. Then, by the open mapping theorem in Chapter II, 5, there 
exists a c > 0 such that for each y E Y, there exists an x E X with 
Tx = y, Ilxll < c Ilyli. Thus, for each y* in D(T'), we have 

Hence 

l<y,y*>1 = I<Tx,y*>1 = I <x, T'y*) I 
< Ilxll·IIT'y*11 < c Ilyll·IIT' y*ll· 

lIy*1I = sup l(y,y*>1 s c IIT'y*1I 
11,,11:;;1 

and so (T')-l exists and is continuous. Moreover, (T')-l is a closed linear 
operator as the inverse of a bounded linear operator. Hence we see that 
the domain D«(T')-l) = R(T') must be closed in X'. 

The third step. Let X and Y be B-spaces, and T a bounded linear 
operator on X into Y. Then (2) -+ (1). 

As in the second step, we consider T as a bounded linear operator 
Tl on X into Y1 = R (Tt. Then Ti has the inverse, since Tiyt = 0 
implies 

<T1x, yt> = <Tx, yt> = <x, Tiyt> = 0, xE D(Tl) = D(T) = X, 
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and so, since R(Tl) = R(T) is dense in Yl = R(Tt, yi must be o. There­
fore, the condition that R (T') = R (T~) (proved above) is closed, implies 
that T~ is a continuous linear operator on the B-space (R (TtY = Y 1 

onto the B-space R (T~) in a one-one way. Hence, by the open mapping 
theorem, (T~)-l is continuous. 

We then prove that R(T) is closed. To this purpose, it suffices to 
derive a contradiction from the condition 

I there exists a positive constant e such that the image 
{T 1 x; II x II :s: e} is not dense in allthe spheres II Y II <n-1 

(n = 1, 2, ... ) of Y1 = R(Tt = R(Tl)a. 

For, if otherwise, the proof of the open mapping theorem shows that 
R(T1) = R(T) = Y 1. Thus we assume that there exists a sequence 
{Yn} ~ Y1 with 

s-lim Yn = 0, Yn E {TIX; IIx II < et (n = 1, 2, ... ). 
n->OO 

Since {TIX; IIxll:S: e}aisaclosedconvex, balanced set of theB-space Y1 

there exists, by Mazur's theorem in Chapter IV, 6, a continuous linear 
functional In on the B-space Y1 such that 

In(Yn) > sup lin (TIX) I (n = 1, 2, ... ). 
11 .. 11 ;;;;. 

Hence II T~/n II < e-1 II In II llYn II, and so, by s-lim Yn = 0, T~ does not have 
n->OO 

a continuous inverse. This is a contradiction, and so R (T) must be closed. 
The lourth step. We prove (1) -+ (3). First, it is clear, from 

<Tx, y*) = <x, T'y*), xE D(T), y* E D(T'), 

thatR(T) ~N(T').L. We show that (1) impliesN(T').L ~ R(T). Assume 
that there exists aYoE N(T').L with YoE R(T). Then, by the Hahn-Banach 
theorem, there exists a yri E Y' such that <Yo, Y6) of=- 0 and <T x, yri) = 0 
for all xED (T). The latter condition implies <x, T' yri) = 0, xED (T), 
and hence T' yri = 0, i.e., Yo E N {T').L. This is a contradiction and so we 
must have N(T').L ~ R(T). 

The implication (3) -~ (1) is clear, since N (T').L is closed by virtue 
of the continuity in y of <y, y*). 

The lilth step. We prove (2) -+ (4). The inclusion R (T') ~ N (T).L is 
clear as in the case of (3). We show that (2) implies that N (T).L ~ R (T'). 
To this purpose, let x* E N (T).L, and define, for y = T x, the functional 
11 (y) of y through 11 (y) = <x, x*). It is a one-valued function of y, since 
Tx = Tx' implies (x-x') E N(T) and so, by x*EN (T).L, «x-x'),x*) =0. 
Thus 11 (y) is a linear functional of y. (2) implies (1), and so, by the open 
mapping theorem applied to the operator S in the first step, we may 
choose the solution x of the equation y = Tx in such a way that s-lim 
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y = 0 implies s-lim x = o. Hence II (y) = <x, x*) is a continuous linear 
functional on YI = R(T). Let IE Y' be an extension of II. Then 

I(Tx) = II (Tx) = <x, x*). 
This proves that T'I = x*. Hence N (T).l ~ R (T'). 

That (4) implies (2) is clear, since <x, x*) is a continuous linear func­
tional of x. 

Corollary 1. Let X and Y be B-spaces, and T a closed linear operator 
on D (T) ~ X into Y such that D (T)" = X. Then 

R (T) = Y iff T' has a continuous inverse, (5) 

R (T') = X' iff T has a continuous inverse. (6) 

Proof. Suppose that R(T) = Y. Then, from <Tx, y*) = <x, T'y*), 
xED (T) and T' y* = 0, we obtain y* = 0; that is, T' must have the 
inverse (T')-I. Since, by R(T) = Yand (2), R(T') is closed, the closed 
graph theorem implies that (T')-I is continuous. Next let T' admit a 
continuous inverse. Then N(T') = {O} and also (2) holds since T' is 
closed. Thus, by (3), R(T) = Y. 

Suppose that R(T') = X'. Then, from <Tx, y*) = <x, T'y·), 
y* E D(T') and Tx = 0, we obtain x = 0, i.e., T must have the inverse 
T-I. Since, by R(T') = X' and (1), R(T) is closed, the closed graph 
theorem implies that T-I must be continuous. Next let T admit a con­
tinuous inverse. Then N (T) = {O} and also (1) holds since T is closed. 
Thus, by (4), R(T'} = X'. 

Corollary 2. Let X be a Hilbert space with a scalar product (u, v), and 
T a closed linear operator with dense domain D (T) ~ X and range 
R (T) ~ X. Suppose that there exists a positive constant c such that 

Re(Tu,u) >c IIullz forall uED(T). (7) 

Then R (T*) = X. 
Proof. By Schwarz' inequality, we have 

II Tu II ·lluli > Re(Tu, u) > c Iluliz for all uE D(T). 

Hence II T u II > c II u II, u E D (T), and so T admits a continuous inverse. 
Thus, by the preceding Corollary, R (T') = X. Hence R (T*) = R (T') = X. 

Remark. A linear operator T on D (T) ~ X into X is called accretive 
(the terminology is due to K. FRIEDRICHS and T. KATO) if 

Re (T u, u) > 0 for all u E D (T) . (8) 

T is called dissipative (the terminology is due to R. S. Phillips) if -T 
is accretive. 

References for Chapter VII 
For a general account concerning Hilbert spaces, see M. H. STONE 

[1], N. I. ACHIESER-I. M. GLASMAN [1] and N. DUNFORD-J. SCHWARTZ 
(5]. The closed range theorem is proved essentially in S. BANACH [1]. 
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VIII. Resolvent and Spectrum 

Let T be a linear operator whose domain D (T) and range R (T) both 
lie in the same complex linear topological space X. We consider the linear 
operator 

T;.=U-T, 

where A is a complex number and I the identity operator. The distribution 
of the values of A for which T;. has an inverse and the properties of the 
inverse when it exists, are called the spectral theory for the operator T. 
We shall thus discuss the general theory of the inverse of T;.. 

1. The Resolvent and Spectrum 

Definition. If Ao is such that the range R (T;..) is dense in X and TAo 
has a continuous inverse (loI - T)-l, we say that Ao is in the resolvent 
set e (T) of T, and we denote this inverse (loI - T)-l by R (lo; T) and 
call it the resolvent (at lo) of T. All complex numbers A not in e(T) form 
a set a(T) called the spectrum of T. The spectrum a(T) is decomposed 
into disjoint sets P,,(T), C,,(T) and R,,(T) with the following properties: 
P,,(T) is the totality of complex numbers A for which T;. does not have 

an inverse ;P,,(T) is called the point spectrum of T. 
C,,(T) is the totality of complex numbers A for which T;. has a discon­

tinuous inverse with domain dense in X; C" (T) is called the con­
tinuous spectrum of T. 

R" (T) is the totality of complex numbers A for which T;. has an inverse 
whose domain is not dense in X; R" (T) is called the residual 
spectrum of T. 

From these definitions and the linearity of T we have the 
Proposition. A necessary and sufficient condition for lo E P" (T) 

is that the equation T x = lox has a solution x =1= o. In this case lo is 
called an eigenvalue of T, and x the corresponding eigenvector. The null 
space N (AoI - T) of TAo is called the eigenspace of T corresponding to the 
eigenvalue Ao of T. It consists of the vector 0 and the totality of eigen­
vectors corresponding to lo. The dimension of the eigenspace correspond­
ing to lo is called the multiplicity of the eigenvalue lo. 

Theorem. Let X be a complex B-space, and T a closed linear operator 
with its domain D (T) and range R (T) both in X. Then, for any lo E e (T), 
the resolvent (loI - T)-l is an everywhere defined continuous linear 
operator. 

Proof. Since Ao is in the resolvent set e (T), R (loI - T) = D«(loI - T)-l) 
is dense in X in such a way that there exists a positive constant c for 
which 

II (loI - T) x II > c II x II whenever xED (T) . 
14 Yoslda, Functional Analysis 
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We have to show that R (/.0 I - T) = X. But, if s-lim (AoI - T) x" = Y 
Il--+OO 

exists, then, by the above inequality, s-lim x" = x exists, and so, by the 
Il--+OO 

closure property of T, we must have (/.oI - T) x = y. Hence, by the 
assumption that R(AoI - T)" = X, we must have R(AoI - T) = X. 

Example 1. If the space X is of finite dimension, then any bounded 
linear operator T is represented by a matrix (t;j)' It is known that the 
eigenvalues of T are obtained as the roots of the algebraic equation, 
the so-called secular or characteristic equation of the matrix (tij): 

det (A!5ij - t;j) = 0, (1) 

where det (A) denotes the determinant of the matrix A. 
Example 2. Let X = L2 (- 00,00) and let T be defined by 

T· x(t) = tx(t) , 

that is, D(T) = {x(t); x(t) and tx(t) E L2(-00,00)} and Tx(t) = tx(t) 
for x (t) E D (T). Then every real number Ao is in Ca (T). 

Proof. The condition (AoI - T) x = 0 implies (Ao - t) x (t) = 0 a.e., 
and so x(t) = 0 a.e. Thus (AoI - T)-l exists. The domain D«(AoI - T)-l) 
comprises those y (t) E L2 (- 00,00) which vanish identically in the neigh­
bourhood of t = Ao; the neighbourhood may vary with y(t). Hence 
D«(AoI - T)-l) is dense in L2(- 00,00). It is easy to see that the operator 
(AoI - T)-l is not bounded on the totality of such y(t)'s. 

Example 3. Let X be the Hilbert space (12), and let To be defined by 

To(~l' ~2' .•• ) = (0, ~l' ~2' ... ). 

Then 0 is in the residual spectrum of T, since R (To) is not dense in X. 
Example 4. Let H be a self-adjoint operator in a Hilbert space X. 

Then the resolvent set e (H) of H comprises all the complex numbers A 
with 1m (A) =1= 0, and the resolvent R(A; H) is a bounded linear operator 
with the estimate 

IIR(A;H)II < 1/1 1m (A) I· (2) 
Moreover, 

Im«(U - H) x, x) = Im(A) IIx1l2, x E D(H). (3) 

Proof. If xE D(H), then (Hx, x) is real since (Hx, x) = (x, Hx) = 

(Hx, x). Therefore we have (3), and so, by Schwarz' inequality, 

II(U-H)xll'lIxll > 1«(U-H)x,x)1 > Ilm(A)I·llxIl2 (4) 
which implies that 

II (U - H) xii2=: Ilm(A) I· IIxll, xE D(H). (5) 
Hence the inverse (AI - H)-l exists if 1m (A) =1= o. Moreover, the range 
R (U - H) is dense in X if 1m (A) =1= o. If otherwise, there would exist a 
y =1= 0 orthogonal to R(U - H), i.e., «(U - H) x, y) = 0 for all x E D(H) 
and so (x, (J.I - H) y) = 0 for all xED (H). Since the domain D (H) of a 
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self-adjoint operator H is dense in X, we must have (AI - H) Y = 0, 
that is, Hy = J:y, contrary to the reality of the value (Hy, y). 

Therefore, by the above Theorem, we see that, for any complex 
number A with 1m (A) =1= 0, the resolvent R(A; H) is a bounded linear 
operator with the estimate (2). 

2. The Resolvent Equation and Spectral Radius 
Theorem 1. Let T be a closed linear operator with domain and range 

both in a complex B-space X. Then the resolvent set e (T) is an open 
set of the complex plane. In each component (the maximal connected 
sets) of e (T), R (A; T) is a holomorphic function of A. 

Proof. By the Theorem of the preceding section, R (A; T) for A E e (T) 
is an everywhere defined continuous operator. Let Ao E e (T) and consider 

S(A) = R(Ao; T) {I + ,,~(Ao-A)"R(Ao;T)"}. (1) 

The series is convergent in the operator norm whenever lAo - A I . 
IIR(Ao; T) II < 1, and within this circle of the complex plane, the series 
defines a holomorphic function of A. Multiplication by (AI - T) = 
(A - Ao) I + (AoI - T) on the left or right gives I so that the series 
5 (A) actually represents the resolvent R (A; T). Thus we have proved 
that a circular neighbourhood of Ao belongs to e (T) and R (A; T) is 
holomorphic in this neighbourhood. 

Theorem 2. If A and f.t both belong to e (T), and if R (A; T) and 
R (f.t; T) are everywhere defined continuous operators, then the resolvent 
equation holds: 

R(A; T) -R(fl,; T) = (fl,-A) R(A; T) R(fl,; T). (2) 
Proof. We have 

R(A; T) = R(A; T) (fl,I - T) R(fl,; T) 
= R(A; T) {(fl, -A) I + (AI - T)} R(fl,; T) 
= (fl, - A) R (A; T) R (fl,; T) + R (fl,; T). 

Theorem 3. If T is a bounded linear operator on a complex B-space X 
into X, then the following limit exists: 

lim 11T"lll/n= r,,(T). (3) 
11-+00 

It is called the spectral radius of T, and we have 

r,,(T) < IITII. (4) 
If I A I > r" (T), then the resolvent R (A; T) exists and is given by the 
series 

00 

R(A; T) = .I A-"T"-l 
,,=1 

which converges in the norm of operators. 

14* 

(5) 
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Proof. Set r = inf IIT'II*. We have to show that lim 11T'111In<7. n:2:1 n->OO 

For any E> 0, cho-;;se m such that II Tm Wlm < r + E. For arbitrary n, 
write n = pm + q where ° <q:S (m-l). Then, by IIABII < IIA II· 
liB II, we obtain 

\I T' 11 1/n < II ym IIPln . II T Ilqln < (r + E)mPln II T Ilql" . 

Since pm/n-'? 1 and q/n-'? ° as n-'?oo, we must have lim 1IT'111/" < 
.. ->00 

r + E. Since E was arbitrary, we have proved lim IIT'Wln < r. 
n->OO 

Since IIT'II < IITlln, we have lim 11T'111/" < IITII. The series (5) 
n->OO 

is convergent in the norm of operators when IAI> ra(T). For, if IAI > 
ra(T)+E with e>O, then, by (3), IIA-nT'II«ra(T)+e)-". 
(ra(T) + 2-1Et for large n. Multiplication by (AI - T) on the left or 
right of this series gives I so that the series actually represents the resol­
vent R(A; T). 

Corollary. The resolvent set e (T) is not empty when T is a bounded 
linear operator. 

Theorem 4. For a bounded linear operator TEL (X, X), we have 

ra(T) = sup IAI. (6) 
,lEa(T) 

Proof. By Theorem 3, we know that ru(T) ~ sup IA I. Hence we 
,lEu(T) 

have only to show that ru (T) < sup IA I. 
,lEu(T) 

By Theorem 1, R(A; T) is holomorphic in A when IAI> sup IAI. 
,lEu(T) 

Thus it admits a uniquely determined Laurent expansion in positive and 
non-positive powers of A convergent in the operator norm for IAI > 
sup IA [. By Theorem 3, this Laurent series must coincide with 

,lEa(T) 
00 

.I A-" T'-1. Hence lim IIA-nT'11 = ° if IAI> sup IAI, and so, for 
,,=1 n->OO .lEu(T) 

any E> 0, we must have IIT'II ~ (E + sup IAif for large n. This 
proves that ,lEa(T) 

r.,(T) = lim 11T'111/n~ sup IAI. 
n->OO ,lE.,(T) 

00 

Corollary. The series .I A-"yn-1 diverges if IA 1< ra(T). 
,,=1 

Proof. Let r be the smallest number ;;::: ° such that the series 
00 

.I it-"T'-l converges in the operator norm for lit I > r. The existence ,,-I 
of such an r is proved as for ordinary power series in it-I. Then, for 
litl> r, lim Ilit-"T'11 = ° and so, as in the proof of ra(T):-S;; sup litl, 

n->OO ,lEu(T) 

we must have lim IIrWln:-s;; r. This proves that ra(T) < r. 
n->OO 



3. The M;ean Ergodic Theorem 213 

3. The Mean Ergodic Theorem 

For a particular class of continuous linear operators, the mean ergodic 
theorem gives a method for obtaining the eigenspace corresponding to the 
eigenvalue 1. In this section, we shall state and prove the mean ergodic 
theorem from the view point of the spectral theory, as was formulated 
previously by the present author. The historical sketch of the ergodic 
theory in connection with statistical mechanics will be given in 
Chapter XIII. 

Theorem 1. Let X be a locally convex linear topological space, and T 
a continuous linear operator on X into X. We assume that 

the family of operators {1"'; n = 1,2, ... } is equi­
continuous in the sense that, for any continuous semi­
norm q on X, there exists a continuous semi-norm q' on 
X such that sup q (1'" x) < q' (x) for all x E X. (1) 

"~1 

Then the closure R (1 - T)a of the range R (1 - T) satisfies 

R(I-T)a={XEX; lim T"x=O, T,,=n-1 1: T"'}, (2) 
n-->OO m=1 

and so, in particular, 

R(1 - Tt (\ N(1 - T) = {OJ. (3) 

Proof. We have T" (1 - T) = n-1 (T - 1"'+1). Hence, by (1), 
wE R(I - T) implies that lim T"w = O. Next let zER(1 - Tt. Then, 

n-->OO 

for any continuous semi-norm q' on X ande> 0, there exists awER(1 -T) 
such that q' (z - w) < E. Thus, by (1), we have q(T" (z - w)) < 

" n-1 .I q(T"'(z-w)) < q'(z-w) < E. Hence q(T"z) < q(T" w) + 
m=1 

q(T,,(z - w)) < q(T"w) + E, and so lim T"z = o. This proves that 
n-->OO 

R (1 - Tt ~ {x EX; ~ T "x = O} . 
Let, conversely, lim T"x = O. Then, for any continuous semi-norm 

n-->OO 

q on X and E> 0, there exists an n such that q(x - (x - T"x)) = 
q(T"x) < E. But, by 

" x- T"x = n-1 .I (I - T"') x 
m=1 

" = n-1 .I (I - T) (I + T + T2 + ... + T"'-1) x, 
m=1 

(x - T"x) E R(I - T). Hence x must belong to R(1 - T)a. 

Theorem 2 (the mean ergodic theorem). Let condition (1) be 
satisfied. Let, for a given x E X, there exist a subsequence {n'} of {n} 
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such that 
weak-lim T",x = Xo exists. 

"'-->00 

Then Txo = Xo and lim T"x = Xo. 
f>-+O() 

(4) 

Proof. We have TT" - T" = n-1 (PH - T), and so, by (I), 
lim (TT"x-T"x) =0. Thus, for any lEX', lim<TT",x,/)= 

f>-+O() f>-+O() 

lim <T", x, T'/) exists and = lim <T", x, I) = <xo' I). Therefore 
f>-+O() f>-+O() 

<xo, I) = <T xo, I) and so, by the arbitrariness of I E X', we must have 
Txo = xo· 

We have thus T"'x = T"'xo + T"'(x - xo) = Xo + T"'(x - xo) and 
so T"x = Xo + T,,(x - xo). But, (x - xo) = weak-lim (x - Tn'x) and, 

f>-+O() 

as proved above, (x- Tn,x) E R(1 - T). Therefore, by Theorem 11 in 
Chapter V, 1, (x-xo)ER(I-T)". Thus, by Theorem I, lim T,,(x-xo) =0 

and so we have proved that lim T"x = Xo. 
n-->OO 

f>-+O() 

Corollary. Let condition (1) be satisfied, and X be locally sequen-
tially weakly compact. Then, for any x E X, lim T"x = Xo exists, and 

f>-+O() 

the operator To defined by Tox = xi! is a continuous linear operator such 
that 

To = T~ = TTo = ToT, 

R(To) = N(1 - T), 

N(To) = R(1 - T)" = R(1 - To). 

Moreover, we have the direct sum decomposition 

X = R (I - T)" e N (I - T) , 

(5) 

(6) 

(7) 

(8) 

i.e., any x E X is represented uniquely as the sum of an element ER (I - T)" 
and an element E N(1 - T). 

Proof. The linearity of To is clear. The continuity of To is proved by 
the equi-continuity of {T,,} implied by (1). Next, since Txo = xo, we have 
TTo = To and so PTo = To, T • .To = To which implies that T~ = To. 
On the other hand, Tn - T"T = n-1 (T - PH) and (1) imply that 
To = ToT. The equality (6) is proved as follows. Let Tx = x, then 
T" x = x, T •• x = x . and so Tox = x, that is, x E R (To). Let conversely, 
xE R(To). Then, by T~ = To, we have Tox = x and so, by TTo = To, 
Tx = TTox = Tox = x. Therefore, the eigenspace of T corresponding 
to the eigenvalue 1 of T is precisely the range R (To). Hence (6) is proved. 
Moreover, we have, by Theorem I, N (To) = R (I - T)". But, by T~ = To, 
we have R (I - To) ~ N (To)' and if x EN (To), then x = x - Tox E 
R (I - To). Thus N (To) = R (I - To). 
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Therefore, by I = (I - To) + To and (6) and (7), we obtain (8). 
Remark. The eigenspace N (AI - T) of T belonging to the eigenvalue .. 

J. with IA 1= 1 may be obtained as R (T(A)), where T(J.) x = lim n-1 .I 
n--+oo ,,,=1 

(TIA)'" x. 

The Mean Ergodic Theorem of J. von Neumann. Let (5, ~,m) be a 
measure space, and P an equi-measure transformation of 5, that is, P 
is a one-one mapping of 5 onto 5 such that P . B E ~ iff B is E ~ and 
m(P. B) = m(B). Consider the linear operator Ton L2(5, ~,m) onto 
itself defined by 

(Tx) (s) = x (Ps), x E L2(5, ~,m). (9) 

By the equi-measurable property of P, we easily see that the operator T 
is unitary and so the equi-continuity condition (1) is surely satisfied by 
IIT"II = 1 (n = 1,2, ... ). Therefore, by the sequential weak compactness 
of the Hilbert space L2(5, ~,m), we obtain the mean ergodic theorem of 
f. von Neumann: 

.. 
For any x E L2(5, ~,m), s-lim n-1 ,I Tmx = Xo E L2(5, ~,m) 

n--+OO m=l (10) 
exists and T Xo = xo' 

Remark. Theorem 1 and Theorem 2 are adapted from K. YOSIDA [3J. 
Cf. also S. KAKUTANI [lJ and F. RIESZ [4J. Neumann's mean ergodic 
theorem was published in ]. VON NEUMANN [3J. 

4. Ergodic Theorems of the Hille Type Concerning Pseudo-resolvents 

The notion of resolvent is generalized to that of pseudo-resolvent by 
E. HILLE. We can prove ergodic theorems for pseudo-resolvents by a 
similar idea to that used in the proof of the mean ergodic theorems in the 
preceding section. See K. YOSIDA [4J. Cf. T. KATO [lJ. These ergodic 
theorems may be considered as extensions of the abelian ergodic theo­
rems of E. HILLE given in E. HILLE-R. S. PHILLIPS [lJ, p. 502. 

We shall begin with the definition of the pseudo-resolvent. 

Definition. Let X be a locally convex complex linear topological 
space, and L (X, X) the algebra of all continuous linear operators defined 
on X into X. A pseudo-resolvent fA is a function defined on a subset 
J) (J) of the complex A-plane with values in L (X, X) such that 

fA - fp = (p, - A) fdp (the resolvent equation). (1) 

Proposition. All f;., A E D (J), have a common null space, which we 
denote by N (J), and a common range which we denote by R (J). Simi­
larly, all (I - AfA), J. E D(J), have a common null space, which we denote 
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by N (I - J), and a common range which we denote by R (I - J). More­
over, we have the commutativity: 

Id" = I"I;. (A'ftE D(J). (2) 
Proof. By interchanging A and ft in (1), we obtain 

I" - I;. = (A - ft) I"I;. = - (ft -A) 11'];.' 
and hence (2) is true. The first part of the Proposition is clear from (1) 
and (2). The second part is also clear from 

(I - AI;.) = (I - (A - ft) I;.) (I - ftI,,) (I') 
which is a variant of (1). 

Theorem 1. A pseudo-resolvent I;. is a resolvent of a linear operator A 
iff N (J) = {O}; and then R (J) coincides with the domain D (A) of A. 

Proof. The "only if" part is clear. Suppose N m = {O}. Then, for 
any AE D(J), the inverse IiI exists. We have 

AI - IiI = ftI - I;;l (A, ft E D(J). (3) 
For, by (1) and (2), 

Id I' (AI - IiI - ftI + I;/) = (A - ft) Idl' - Id I' (J-;l - I;;l) 

= (A-ft) Idl'-(JI'-I;.) = O. 
We thus put 

Then I;. = (AI - A)-l for A ED (J). 

( 4) 

Lemma 1. We assume that there exists a sequence {)..,.} of numbers 
E D (J) such that 

lim An = 0 and the family of operators {AnI;'n} is equi-continuous. (5) 
n->OO 

Then we have 
R(I - It = hE X; lim AnI;. X = 01, 

1. n->OO n J 
(6) 

and hence 
N(I - J) f\ R(I - It = {O}. (7) 

Proof. We have, by (1), 

AI;. (I - ftII') = (1- ft(ft - A)-I) AI;. - A(A - ft)-l ftII'" (8) 

Hence, by (5), the condition x E R (I - ftII') = R (I - J) implies that 
~ A"I;'nx = o. Let y E R (I - It. Then, for any continuous semi-norm 

q on X and B > 0, there exists an x E R (I - J) such that q (y - x) < B. 

By (5), we have, for any continuous semi-norm q' on X, 

q'()..,.I;'n(y-x) < q(y-x) (n = 1, 2, ... ) 

with a suitable continuous semi-norm q on X. Therefore, by AnI;'nY = 
AnI;. X + AnI;. (y - x), we must have lim AnI;. y = o. 

n n ~ n 
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Let, conversely, lim )"'h."x = O. Then, for any continuous semi-
.......00 

norm qon X ande> 0, there exists a).,. such that q(x-(x -).,.h"x»< e. 
Hence x must belong to R (I - )"'h"Y' = R (I - I)". 

Lemma I'. We assume that there exists a sequence {).,.} of numbers 
E D (J) such that 
lim IAn I = 00 and the family of operators {).,.I An} is equi-continuous. (5') 

n--->OO 

Then we have 

and hence 
R(J)" = {xE X; lim )"'h. x = xl, 

.......00 n f 

N(J) (\ R(J)" = {O}. 
Proof. We have, by (1), 

I' 1 
AI;,],. =TA h.JJ'-TAI .. + I,.· 

(6') 

(7') 

Hence, by (5'), the condition xE R(J,.) = R(J) implies that 
lim A"h x = x. Let y E R (J)". Then, for any continuous semi-norm q 

.......00 " 

on X and e > 0, there exists an x E R (J) such that q (y - x) < e. By 
(5'), we have, for any continuous semi-norm q' on X, 

q'(A"I).,,(Y-x) < q(y-x} (n = 1,2, ... ) 

with a suitable continuous semi-norm q on X. Therefore, by (5') and 

A"I .. "y - y = ()"'h"x - x) + (x - y) + )"'I .. " (y - x), 

we must have lim AnI)."y = y . 
.......00 

Let, conversely, lim )"'I .. "x = x. Then, for any continuous semi­
.......00 

norm q on X and e> 0, there exists a An such that q(x-AnI .. "x) < e. 
Hence x must belong to R(JAn)" = R(J)". 

Theorem 2. Let (5) be satisfied. Let, for a given x E X, there exist a 
subsequence {n'} of {n} such that 

weak-lim).,.,IAn,x = x" exists. (9) 
.......00 

Then x" = lim AnI .. X and x" E N(J - J), x ... = (x - x,,) E R(I - I)" . 
.......00 n y 

Proof. Setting I-' =).,., in (1') and letting n' ~OO, we see, by (5), 
that (I -AI).} x = (I -AI).) (x-x,,), that is, (I -AI).} x" = O. Hence 
x"E N(I - J) and so 

An I)." X = x" + AnI)." (x - x,,). (10) 

Therefore we have only to prove that lim).,.I An (x - x,,) = 0, or, by 
.......00 

Lemma 1, (x -- x,,) E R (I - J)". But (x - )"'I .. " x) E R (J - J), and so, 
by Theorem 11 in Chapter V, 1, we must have (x - x,,) E R(I - J)". 

Corollary 1. Let (5) be satisfied, and let X be locally sequentially 
weakly compact. Then 

X = N (I - I) (fj R (I - J)" . (11) 
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Proof. For any x E X, let Xh = lim A .. I). x and xp = (x - x,,) be the 
~ n 

components of x in N (I - ]) and R (1 - I)a, respectively. 
Theorem 2'. Let (5') be satisfied. Let, for a given x E X, there exist 

a subsequence {n'} of {n} such that 

weak-lim A .. , I" ,x = x"' exists. (9') 
~ n 

Then x"' = lim A .. I;.. x and x"' E R(ft, xP' = (x - x",) E N(f). 
~ n 

Proof. Setting f1- = An' in (8) and letting n' --+ 00, we see, by (5'), that 
}.]). (x - Xh') = 0, that is, (x - x",) E N (f). Hence 

(10') 

Therefore we have only to prove that lim A,.];.. x"' = x"" or, by 
~ n 

Lemma 1', x",E R(f)". But An'];..n,x",E R(f), and so, by Theorem 11 in 
Chapter V, 1, we must have x"' E R (ft. 

Corollary I'. Let (5') be satisfied, and let X be locally sequentially 
weakly compact. Then 

X = N(f) Efj R(ft· (11') 

Proof. For any x E X, let x"' = ~ A .. IAn X and xP' = (x - x",) be 

the componerts of X ~n R (f)" and N (f), respectively. 
Remark. As a Corollary we obtain: In a reflexive B-space X, a pseudo­

resolvent I;.. satisfying (5') is the resolvent of a closed linear operator A 
with dense domain iff R (f)" = X. This result is due to T. KATO, loco 
cit. The proof is easy, since, by Eberlein's theorem, a B-space X is 
locally sequentially weakly compact iff X is reflexive. 

5. The Mean Value of an Almost Periodic Function 

As an application of the mean ergodic theorem we shall give an 
existence proof of the mean value of an almost periodic function. 

Definition 1. A set G of elements g, h, ... is called a group if in G a 
product (in general non-commutative) gh of any pair (g, h) of elements 
EGis defined satisfying the following conditions: 

ghEG, (1) 
(gh) k = g(hk) (the associativity), (2) 

there exists a unique element e in G such that eg = 
g e = g for all g E G; e is called the identity element 
of the group G, (3) 

for every element g E G, there exists a uniquely deter-
mined element in G, which is denoted by g-l, such 
that gg-l = g-lg = e; the element g-l is called the 
inverse element of g. (4) 
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Clearly, g is the inverse of g-I so that (g-I)-I = g. A group G is said to be 
commutative if gh = hg for all g, hE G. 

Example. The totality of complex matrices of order n with determi­
nants equal to unity is a group with respect to the matrix multiplication; 
it is called the complex unimodular group of order n. -The identity of this 
group is the identity matrix and the inverse element of the matrix a is 
the inverse matrix a-I. The real unimodular group is defined analogously. 
These groups are non-commutative when n > 2. 

Definition 2 (J. VON NEUMANN [4J). Given an abstract group G. A 
complex-valued function I (g) defined on G is called almost periodic on G 
if the following condition is satisfied: 

the set of functions {gs (I, h); s E G}, where Is (g, h) = 
I(gsh), defined on the direct product GxG ~s totally 
bounded with respect to the topology of m orm con-
vergence on GxG. (5) 

Example. Let G be the set RI of all real numbers in which the group 
multiplication is defined as the addition of real numbers; this group RI 
is called the additive group 01 real numbers. The function I(g) = eic<g, 
where £x is a real number and i = V-I, is almost periodic on RI. This 
we easily see from the addition theorem I(gsh) = eifXg eilxs eifXh and the 
fact that {eiat ; t E RI} is totally bounded as a set of complex numbers 
of absolute value l. 

Proposition 1. Suppose I(g) is an almost periodic function on G. If 
we define, following A. WElL, 

dis(s,u) = sup I/(gsh)-/(guh) I, 
g,hEG 

(6) 

then 
dis(s, u) = dis (asb, aub). (7) 

Proof. Clear from the definition of the group. 
Corollary 1. The set E of all elements s which satisfies dis (s, e) = 0 

constitutes an invariant subgroup in G, that is, we have 

if eI , e2 E E, then el e2 E E and ael a-I E E for every a E G. (8) 

Proof. Let dis(ev e) = 0, dis (e2 , e) = O. Then, by (7) and the triangle 
inequality, we obtain 

dis(~e2' e) < dis (eI e2 , e1e) + dis (e1e, e) = 0 + 0 = o. 
Similarly we have dis (a el a-I, e) = dis (ae1a- l , aea-I ) = 0 from 
dis (el , e) = o. 

Corollary 2. If we write s = u (mod E) when su-1 E E, then s == u 
(mod E) is equivalent to dis (s, u) = o. 

Proof. Clear from dis (su-1, e) = dis(s, eu) = dis(s, u). 
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Corollary 3. The concept s = u (mod E) has all the general properties 
of equivalence, namely 

s = s (mod E) , (9) 
s = u (mod E), then u = s (mod E), (10) 

if sl = S2 (mod E) and Sz = sa (mod E), then Sl = sa 
(mod E) . (11) 

Proof. Clear from Corollary 2 and the triangle inequality for the 
dis (s, u). 

Hence, as in the case of the factor space in a linear space, we can 
define the factor group or residue class group GJE as follows: we shall 
denote the set of all elements E G equivalent (mod E) to a fixed element 
x E G by E~, the residue class (mod E) containing x; then the set of all 
residue classes E~ constitutes a group GJE by the notion of the product 

E~Ey = E~y. (12) 

To justify this definition (12) of the product, we have to show that 

if Xl = XII (mod E), Y1 = Y2 (mod E), then X1Y1 = xIIYz (mod E). (13) 

This is clear, since we have by (7) and Corollary 2, 

dis (X1Y1' X2Y2) < dis (X1Y1' X2Y1) + dis (xzY1' xIIYz) 

= dis (xl> x2) + dis(Yl> Y2) = 0 + 0 = O. 

Since the function f (x) takes the same constant value on the residue 
class E~, we may consider f (x) as a function F (E~) defined on the residue 
class group GJE. 

Corollary 4. The residue class group is a metric space by the distance 

dis (E~, Ey) = dis (x, y). (14) 

Proof. x = Xl (mod E) and Y = Y1 (mod E) imply 

dis (x, y) < dis (x, Xl) + dis (Xl' Y1) + dis (Yl> y) = 0 + dis (xl> Y1) + 0 

and dis (Xl' Y1) < dis (x, y) to the effect that dis (x, y) = dis (xl> Y1)' Thus 
(14) defines a distance in GJE. 

Corollary 5. The group GJE is a topological group with respect to the 
distance dis(E~, Ey), that is, the operation of multiplication E~Ey is con­
tinuous as a mapping from the product space (GJE) X (GJE) onto GJE. 
and the operation E;l is continuous as a mapping from GJE onto GJE. 

Proof. We have, by (7), 

dis (su, s' u') < dis (su, s' u) + dis (s' u, s' u') = dis (s, s') + dis (u, u') 
and 

dis (S-l, u-1) = dis (SS-l U , su-1u) = dis(u, s) = dis(s, u). 

We have thus proved the following 
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Theorem 1 (A. WElL). The topological group GIE, metrized by (14), 
is totally bounded, and the function t (x) gives rise to a function F (~x) 
(= t(x)) which is uniformly continuous on this group GjE. 

Proof. The uniform continuity of the function F (~x) is clear from 

IF(~x) -F(~y) 1= It(x) - t(y) I < dis (x, y) = dis(~x, ~y). 
The almost periodicity of the function t(x) implies, by (7) and (14), that 
the metric space GjE is totally bounded. 

By the above theorem, the theory of almost periodic functions is 
reduced to the study of a uniformly continuous function t (g), defined on a 
totally bounded topological group G, metrized by a metric dis(gl' gz) 
satisfying condition (7). By virtue of this fact, we shall give a proof for 
the existence of the mean value of an almost periodic function. 

Since G is totally bounded, there exists, for any e > 0, a finite 
system of points gl' g2' ... , gn such that min dis (g, gil < dor any gE G. 

l::;;.::;;n 
Hence, collecting these finite systems of points corresponding to e = 
1,2-1,3-1 , .. " respectively, we see that there exists a countable 
system {gj} of points E G such that {gj} is dense in G. We take a sequenc~ 

00 

of positive numbers!Xj such that .2:!Xj = 1. Let C (G) be the set of all 
J~1 

uniformly continuous complex-valued functions h (g) defined on G. C (G) 
is a B-space by the operation of the function sum and the norm II h II = 
sup Ih(g) I. We define an operator T defined on C(G) into C(G) by 
gEG 

(15) 

By the uniform continuity of h (g) on G, there exists, for any e> 0, a 
b> 0 such that dis (g, g') < b implies 1 h(g) - h (g') 1 <e. Thus, by (7), 
Ih(gjg) - h(gjg') 1 ~ e (f = 1, 2, ... ) whenever dis(g, g') :::; b. Hence it is 

00 

easy to see, bY!Xj > 0 and j~ !Xj = 1, that T is a bounded linear opera-

tor on C (G) into C (G). By the same reasoning we see that the set of 
functions hn (g) defined by 

n 
hn(g) = n-1 2: (T"'h) (g), which is of the form 

m~l 

00 00 
(16) 

hn(g) = .2: (Jjh(gjg) 
J~l 

with {Jj> 0,.2: {Jj = 1, 
J~l 

is equi-bounded and equi-continuous with respect to n. Hence, by the 
Ascoli-Arzela theorem, the sequence {hn (g)} contains a subsequence which 
is uniformly convergent on G. 

Therefore, by the mean ergodic theorem, there exists an h* (g) E C (G) 
such that 

lim sup I hn (g) - h* (g) I = 0 and T h* = h* . (17) 
11--+00 g 
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Proposition 2. h* (g) is identically equal to a constant. 

Proof. We may assume, without losing the generality, that h(g) and 
h* (g) are real-valued. Suppose that there exist a point go E G and a posi­
tive constant ~ such that 

h* (go) < {J - 2~, where {J = sup h* (g). 
gEG 

By the continuity of h* (g), there exists a positive number e such that 
dis (g', gil) ::::: e implies 1 h* (g') - h* (gil) 1 < ~; in particular, we have 
h* (gil) < {J - ~ whenever dis (go' gil) < e. Since the sequence {gil is dense 
in G, there exists, for any e > 0, an index n such that, for any g E G, we 
have m~n dis(g, gj) < e. Hence, by (7), we have, for any gE G, 

l:;OJ:;O" 

m~n dis (go' gj g) < e. 
l:;OJ:;O" 

Let the minimum be attained at 1 = 10' Then 

contrary to the assumption that g was an arbitrary point of G. Therefore 
h* (g) is identically equal to a constant. 

Definition 3. We shall call the constant value h*(g) the left mean 
value of h(g) and denote its value by M~(h(g): 

.. 
M~ (h (g) = lim n-1 .I (T" h) (g). (18) 

~ m=l 

Theorem 2 (J. VON NEUMANN). We have 

M~(~h(g) = ~M~(h(g)), (i) 

M~(h1(g) + h2(g)) = M~(hdg) + M~(h2(g), (ii) 

M~(I) = 1, (iii) 

if h(g) ~ ° on G, then M~(h(g) > 0; 

if, moreover, h(g) * 0, then M~(h(g» > 0, (iv) 

IM~(h(g) I ~ M~(lh(g) I), (v) 

M~(h(g)) = M~(h(g), (vi) 

M~(h(ga)) = M~(h(g)), (vii) 

M~(h(ag» = M~(h(g), (vii') 

M~(h(g-l)) = M~(h(g». (viii) 

Proof. By definition (18), it is clear that (i), (ii), (iii), the first part of 
(iv), (v) and (vi) are true. The truth of (vii) is proved by Proposition 2. 
(vii') is proved as follows. 
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Starting with the linear operator T' defined by 
n 

(T' h) (g) = . .I !Xjh (g gj), 
J=1 

we can also define a right mean M;(h(g» which, as a functional of h(g), 
satisfies (i), (ii) , (iii), the first part of (iv), (v), (vi) and (vii'). We thus 
have to prove that the left mean M~(h (g» coincides with the right mean 
Wg(h(g». By its definition of the left mean, there exist, for anye > 0, 
a sequence of elements {kj} ~ G and a sequence of positive numbers {Jj 

00 

with . .I {Jj = 1 such that 
J=l 

sup I.] {3jh (kjg) - M~ (h (g» 1 < e. (19) 
g J=l 

Similarly, there exist a sequence of elements {Sj} ~ G and a sequence of 
00 

positive numbers Yj with . .I Yj = 1 such that 
J=l 

supl.,Iyjh(gSj)-M;(It(g»l<e. (20) 
g J=l 

We have, from (19) and (vii) 

sup II ~ Yi{3jh(kj gsi) - M~(h (g» I <e, 
g ,"',J 

and, similarly from (20) and (vii'). 

SUpl~Yi{3jh(kjgSi) -M;Ch(g»1 < e. 
g '.J I 

Hence we must have M~Ch(g» = M;(h(g». 
We next remark that a linear functional Mg (h(g» defined on C(G) is 

uniquely determined by the properties (i), (ii), (iii), the first part of (iv). 
(v), (vi) and (vii) (or (vii') as well). In fact, we have, by (20), 

00 

M;(h(g» - e < . .IYih(gSi) < Wg(h(g» + e for real-valued h(g) . 
• =1 

Hence, for real-valued h(g), Mg(h(g» must coincide with the right mean 
M;(h(g» and hence with the left mean M~(h(g» as well. Therefore we 
see that we must have Mg = M; = M~. Being equal to the right mean, 
Mg must satisfy (vii'). Moreover, since M~(h(g-l)) satisfies, as a linear 
functional, (i). (ii), (iii), the first part of (iv), (v), (vi) and (vii'), we must 
have M~(h(g-l» = M;(h(g» = M~(h(g». 

Finally we shall prove the last part of (iv). Suppose h (go) > O. For 
any e> 0, there exists, by the total boundedness of G, a finite system 
of elements S1> S2, ... , Sn such that 

m.in sup Ih(gsi) - h(gs) 1< e 
1:;>.:;;;n g 



224 VIII. Resolvent and Spectrum 

for all s E G. This we see by the uniform continuity of h (g) and the fact 
that dis (gSi' gs) = dis (Si' s). Hence, for e = h(go)/2, we obtain, for any 
s E G, a suffix i, 1 < i < n, such that 

h(gos;IS) > h(go)/2. 

Thus, by the non-negativity of the function h (g), we obtain .. 
. .Ih(gos-;IS) > h(go)/2> 0 forall sEG . 
• =1 

Therefore, by taking the right mean of both sides, we have 

M;C4 h(gos;I S)) = n ~(h(s» > h(go)/2 > O. 

Remark. The happy idea of introducing the distance (1) is shown in 
A. WElL [1]. The application of the mean ergodic theorem to the exi­
stence proof of the mean value is due to the present author. See also 
W. MAAK [1]. 

6. The Resolvent of a Dual Operator 

Lemma 1. Let X and Y be complex B-spaces. Let T be a linear 
operator with D (Tt = X and R (T) ~ Y. Then (T')-1 exists iff R (T)" = Y. 

Proof. If T' y~ = 0, then 

(x, T' yri) = (T x, yri) = 0 for all xED (T), 

and hence yri (R (Tt) = O. Thus R(T)" = Y implies yri = 0 and so T' 
has an inverse. On the other hand, if YoE R(T)", then, the Hahn-Banach 
theorem asserts that there exists a continuous linear functional yri E Y' 
such that yri (Yo) = 1 and yri (R (T)") = O. Hence (T x, yri) = 0 for all 
xED (T), and so yri E D (T') and T' yri = 0, whereas yri (Yo) =1= 0, i.e., 
yri =1= O. Therefore, the condition R (T)" =1= Y implies that T' cannot 
have an inverse. 

Theorem 1 (R. S. PHILLIPS [2]). Let T be a linear operator with an 
inverse and such that D (T)" = X and R (T)" = Y, where X and Yare 
B-spaces. Then 

(T')-1 = (T-l)'. (1) 

T-l is bounded on Y iff T is closed and (T')-l is bounded on X~. 
Proof. (T-l)' exists because D (T-l) = R (T) is dense in Y. (T')-l 

exists by Lemma 1. We have to show the equality (1). If y E R (T) and 
y* E D (T'), then 

(y, y*) = (TT-ly, y*) = (T-ly, T'y*). 

Hence R (T') ~ D((T-l)') and (T-l)' (T' y*) = y* for all y* E D (T'). Thus 
(T-l)' is an extension of (T')-l. Next, if xED (T), then 

(x, x*) = (T-ITx, x*) = (Tx, (T-l)' x*) for all x* E D((T-l)'). 
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Hence R«(T-l)') ~ D (T') and T' (T-l)' x* = x* for all x* E D«(T-l)'). 
Thus (T-l), is a contraction of (T')-l. Therefore we have proved (1). 

If, in addition, T-l is bounded on Y, then (T-l), is also bounded. 
Conversely, if (T')-l is bounded on X;, then, for ali xE R(T) and 
x* E X', we have, by (1), 

I (T-l X, x*) I = I (x, (T-l), x*) I = I (x, (T')-l x*) I 
< II(T')-lll· Ilx* II· Ilxll· 

Since T-l is closed and R(T)/J = Y, T-l must be bounded. 
Lemma 2. Let T be a linear operator with D (T)/J = X and R (T) ~ Y, 

where X and Yare B-spaces. If R (T') is weakly* dense in X', then T has 
an inverse. 

Proof. Suppose that there exists an Xo #- 0 such that T Xo = O. Then 

<xo' T' y*) = (T xo' y*) = 0 for all y* E D (T') . 

This shows that the weak* closure of R (T') is a proper linear subspace 
of X', contrary to the hypothesis. 

Theorem 2 (R. S. PHILLIPS [2]). Let X be a complex B-space, and T a 
closed linear operator with D (T)/J = X and R (T) ~ X. Then 

e (T) = e (T') and R (A; T)' = R (A; T') for A E e (T). (2) 

Proof. If AE e(T), then, by Theorem 1, AE e(T') and R(A; T)' = 
R(A; T'). On the other hand, if AE e(T'), then Lemma 2 shows that 
(AI - T) has an inverse (AI - T)-l which is closed with (AI - T). 
Lemma 1 then shows that D«(AI - T)-l) = R(AI - T) is strongly dense 
in Y. Hence, by Theorem I, AE e(T). 

7. Dunford's Integral 

Let X be a complex B-space and T a bounded linear operator E L (X, X). 
We shall define a function I(T) of T by Cauchy's type integral 

I(T) = (2ni)-1 ! I (A) R(A; T) dA. 

To this purpose, we denote by F (T) the family of all complex-valued 
functions I (A) which are holomorphic in some neighbourhood of the spec­
trum O'(T) of T; the neighbourhood need not be connected, and can 
depend on the function I (A). Let IE F (T), and let an open set U ~ 0' (T) 
of the complex plane be contained in the domain of holomorphy of I, 
and suppose further that the boundary au of U consists of a finite num­
ber of rectifiable Jordan curves, oriented in positive sense. Then the 
bounded linear operator I (T) will be defined by 

I(T) = (2ni)-1 J I().) R(A; T) dA, (1) 
au 

15 Yoslda, FunctIonal Analysis 
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and the integral on the right may be called a Dunlord's integral. By 
Cauchy's integral theorem, the value I(T) depends only on the function I 
and the operator T, but not on the choice of the domain U. 

The following operational calculus holds: 

Theorem (N. DUNFORD). If I and g are in F(T), and IX and {J are 
complex numbers, then 

IXI + (Jg is inF(T) and IX/(T) + (Jg(T) = (IXI + (Jg)(T) , 

I· g is in F(T) and I(T) . g(T) = (f. g) (T), 

if I has the Taylor expansion ;(A) = .. ! IX .. A .. con-] 

vergent in a neighbourhood U of a(T), then 

J 
00 

I (T) = .I IX .. T" (in the operator norm topology) , 
.. =0 

let I .. E F(T) (n = 1, 2, ... ) be holomorphic in a fixed 1 
neighbourhood U of a(T). If I .. (A) converges to I(A) I 
uniformly on U, then I .. (T) converges to I(T) in the 

operator norm topology, 

if IE F(T), then IE F (T') and I(T') = I(T)' . 

(2) 

(3) 

(4) 

(5) 

(6) 

Proof. (2) is clear. Prool 01 (3). Let U1 and U2 be open neighbourhoods 
of a(T) whose boundaries 8U1 and 8U2 consist of a finite number of 
rectifiable Jordan curves, and assume that U1 + 8U1 ~ U2 and that 
U2 + 8U2 is contained in the domain of holomorphy of I and g. Then, 
by virtue of the resolvent equation and Cauchy's integral theorem, we 
obtain 

I(T) g(T) = - (4n2)-1 f I (A) R(A; T) dA· f g(ll) R(Il; T) dll 
au, au, 

= _(4n2)-1 f f I (A) g(ll) (Il- A)-l (R(A; T) -R(Il; T))dAdll 
aU,au, 

= (2ni)-1 f I(A)R(A; T) ·If (2ni)-1 J ~ -A)-l g(ll) dlllJ dA 
au, au, 

- (2ni)-1 J g~) R ~; T) . f(2ni)-1 J (Il- A)-l I (A) dAIl dll 
au, au, 

= (2ni)-1 J I (A) g(A) R(A; T) dA = (I· g) (T). 
au, 

Prool of(4). Byhypothesis, Umust contain a circle {A; IA\ <r,,(T) +e} 
e> 0, in its interior, where r,,(T) is the spectral radius of T (Theorem 4 

00 

in Chapter VIII,~. Hence the power series I(A) = .I IX"An converges 
n=O 

uniformly on the circle C = {A; IAI < r,,(T) + e}, for some e > o. Hence, 
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by Cauchy's integral theorem and Laurent's expansion R(A; T) = 
00 

.I A-nT'-l of R(A; T) (Chapter VIII, 2, (5)), 
,,=1 

f(T) = (2ni)-1 J (i fXkAk) R(A; T) dA = (2ni)-1 i fXk J AkR(A; T) dA 
ac k=O k=O ac 

(5) is proved by (1), and (6) is also proved by (1) and formula (2) of 
the preceding section. 

Corollary 1 (Spectral Mapping Theorem). If f is in F(T), then 
f(a{T) = a(f(T). 

Proof. Let A E a (T), and define the function g by g (P) = (f (A) - f (ft)/ 
(A-ft). By the Theorem, f(A)I-f(T) = (AI-T)g(T). Hence, if 
(f(A) 1- f(T) had a bounded inverse B, then g(T) B would be the boun­
ded inverse of (AI - T). Thus AE a(T) implies that f(A) E a(f(T)). Let, 
conversely, A E a(f{T), and assume that A E f(a(T)). Then the function 
g(P) = (f(ft) -A)-l must belong to F(T), and so, by the preceding 
Theorem, g (T) (f (T) - AI) = I which contradicts the assumption 
A E a(f(T). 

Corollary 2. If fE F{T), gE F(f(T) and h(A) = g(f{A), then h is 
in F(T) and h(T) = g(f{T). 

Proof. That h E F (T) follows from Corollary 1. Let U 1 be an open 
neighbourhood of a(f{T)) whose boundary Ul consists of a finite number 
of rectifiable Jordan curves such that Ul + 8Ul is contained in the 
domain of holomorphy of g. Let U2 be a neighbourhood of a(T) whose 
boundary 8U2 consists of a finite number of rectifiable Jordan curves 
such that U2 + 8U2 is contained in the domain of holomorphyoff and 
f{U2 + 8U2) ~ Ul • Then we have, for A E aul , 

R(A; f(T)) = {2ni)-1 J (A - f(P))-l R(ft; T) dft, 
au, 

since the right hand operator S satisfies, by (3), the equation 
(AI - f(T) S = S(AI - f(T)) = I. Hence, by Cauchy's integral theo-
rem, 

g(f(T)) = (2ni)-1 J g(A)R(A; f(T» dA 
au, 

= (2ni)-1 J R(P; T) g(f(ft» dft = h(T). 
DU, 

Remark. The introduction of the operational calculus based on a 
formula like (1) goes back to the investigations by H. POINCARE on 

15* 
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continuous groups (1899). The exposition of the operational calculus in 
this section is adapted from N. DUNFORD-J. SCHWARTZ [1]. In the next 
chapter on semi-groups, we shall frequently make use of Dunford's inte­
gral for a closed unbounded operator T. 

8. The Isolated Singularities of a Resolvent 

Let Ao be an isolated singular point of the resolvent R (A; T) of a closed 
linear operator T on a complex B-space X into X. Then R(A; T) can be 
expanded into Laurent series 

00 

R(A; T) = :I (A-~)" A", A" = (2ni)-1 f (A_~)-"-1 R(A; T) dA, 
,,=-00 c (1) 

where C is a circumference of sufficiently small radius: I A - ~ I = e 
such that the circle I A - ~ I < e does not contain other singularities 
than A =~, and the integration is performed counter-clockwise. By 
virtue of the resolvent equation we obtain 

Theorem 1. A's are mutually commutative bounded linear operators 
and 

T Ak X = Ak Tx for xED (T) (k = 0, ± 1, ± 2, ... ), 

A"A ... =O for k>O,m:S;;:-l, 

A" = (-1)" Ao+! (n > 1), 

A_p_q+! = A_pA_q (P, q > 1). 

(2) 

Proof. The boundedness and the mutual commutativity of A's 
and the commutativity of A's with T are clear from the integral 
representation of A's. 

We substitute the expansion of R(A; T) in the resolvent equation 
R (A; T) - R (p; T) = (p - A) R (A; T) R (p; T), and obtain 

00 (,l. - ;...) .. _ (p - ;...).. 00 " .. 

,,-~oo A" (,l. _;...) _ (p _;...) = - " .... ~oo A"A ... (A - Ao) (p - Ao) . 
The coefficient of A" on the left is 

(A-~)"-] + (A_~)"-2(P_~) + ... + (P_~)"-l, n> 1, 

_{ (A - ~)" (p - ~)-1 + (A _ ~)"+1 (p _ ~)-2 + ... 
+ (A-~)-1(p-Ao)"}, n< O. 

Hence the terms containing .(A - ~)" (p - ~)'" with k > 0 and m :s;;: - 1 
are missing so that we must have the orthogonality A"A", = 0 (k ;;::: 0, 
m :s;;: - 1). Hence 

00 -1 

R+(A; T) = :I A,,(A-Ao)" 
,,=0 

and R-(A; T) = :I A,,(A - Ao)" 
"'=-00 
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must both satisfy the resolvent equation. Substituting the expansion 
of R+ (A; T) in the resolvent equation 

R+ (A; T) - R+(A; T) = (p, - A) R+ (A; T) R+ (p,; T), 

we obtain, setting (A - Ao) = h, (ft - Ao) = k, 

p~ Ap(hP - kP) = (k - h) ~~o Ap hP)C~ Aq kq). 

Hence, dividing both sides by (k - h), we obtain 
00 00 

- I A (hP- 1 + M-2 k + ... + kP- 1) = I hP kq A A 
P=l P p,q=O P q 

so that we have -Ap+q+l = ApAq (p, q ::::::: 0). Thus, in particular, 

Al = -A~, A2 = -AIAo = (-1)2A~, ... , A .. = (-It Ao+1 (n > 1). 

Similarly, from the resolvent equation for R-(A; T), we obtain, 
setting (A - Ao)-l = h, (p, - Ao)-l = k, 

00 00 

~ A (hP- I -L hP- 2 k + ... + kP- 1) = ~ hP- 1 kq- l A A -- -P .. .... -P -q' p=l P.q=l 

so that we have A-P_q+l = A_pA_q (P. q > 1). In particular, we have 

A_I = A:'1• A-2 = A-I A_2 • ... , A_n = A_I A_ .. (n > 1). 

Theorem 2. We have 

A .. = (T - AoI) A"+1 (n > 0). 

(T - AoI) A_n = A-( .. +l) = (T - Aolt A_I (n ~ 1). (3) 

(T - AoI) Ao = A-I - I. 

Proof. By the integral representation of A k • we see that the range 
R (Ak) is in the domain of T. so that we can multiply Ak by T on the left. 
Thus our Theorem is proved by the identity 

Theorem 3. If Ao is a pole of R(A; T) of order m. then Ao is an eigen­
value of T. We have 

so that. in particular, 

x = N((AoI - Tn (f) R((J.oI - T)") for n > m. (5) 
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Proof. Since A_I is a bounded linear operator satisfying A=-l = A_I' 
it is easy to see that 

(6) 

We put Xl = N(A_I) = R(I - A-I)' and put also 

X2 = R(A_I)' N" = N((J..oI - Tn and R" = R,,«loI - Tt). (7) 

Let x EN" where n > 1. Then we see, by (T - AoIt A"_l = (T - AoI)Ao 
= A_I - I, that 0 = A,,_l (T - AoI)" x = (T - AoI)n A n- l x = 
(T - J..oI) Aox = A_IX - X so that x = A_IX E X 2 • Thus N" with n 2: 1 
belongs to X 2• Let, conversely, x E X 2• Then we have x = A_Iy and so 
x = A_IA_Iy = A_Ixby A-I = A=-l; consequently, we have (T -AoI)" 
x = A_("+ll x by (T - AoI)" A_I = A-("+ll' Since A-("+ll = 0 for n ~ m 
by hypothesis, it follows that X 2 ~ N" for n ;;::: m and so 

(8) 

Because (T - AoI) A_m = A-(m+ll = 0 and A_m oF 0, the number Ao 
is an eigenvalue of T. 

We see that Xl = N(A_I) = R (I - A_I) ~ R" by (T - AoI)" A n _ 1 = 
A_I-I. If n > m, then xER,,/\ N" implies X = O. For, if x = (AoI -Tty 
and (AoI - Ttx = 0, then, by (8), Y E N 2n = N .. and therefore x = O. 
N ext suppose x E R" with n ;;::: m, and write x = Xl + X2 where Xl = 
(I -A-I) xE Xl' X2 = A_IX E X 2· Then, since Xl ~ R .. , X2 = X - Xl ERn. 
But X2 E X2 = N" by (8), and so X2 E R" /\ N", X2 = O. This proves that 
x = Xl E Xl' Therefore we have proved that R" = Xl if n > m. 

Theorem 4. If, in particular, T is a bounded linear operator such that 
X 2 = R (A_I) is a finite dimensional linear subspace of X, then Ao is a pole 
of R(A; T). 

Proof. Let Xv X2, ... , Xk be a base of the linear space X 2 . Since 
Xl' T Xl' T2 Xl' ... , Tk Xl are linearly dependent vectors of X 2 , there 
exists a non-zero polynomial PI (A) such that PI (T) Xl = O. Similarly 
there exist non-zero polynomials P2 (A), ... , Pk (A) such that Pj (T) Xj = 0 

k 

(i = 2, 3, ... , k). Then for the polynomial P(A) =.II Pj(A), we must 
J=l 

have P(T)xj = 0 (i = 1, ... , k) and hence P(T)x = 0 for every X E X 2• 

Let 
s 

P (A) = IX .ll (A - A;Y; (IX oF 0) 
J=O 

be the factorization of P (A). Then we can prove that (T - J..oIr· X = 0 
for every X E X 2• Assume the contrary, and let Xo E X 2 be such that 
(T-J..oI)'· Xo oF O. Then, by P(T)xo = 0, we see that there exist at 
least one Aj (i oF 0) and a polynomial Q (A) such that 

(T -A;I) Q (T) (T -J..o I)"Xo = 0 
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and y = Q (T) (T - AoI)'"' Xo =1= O. Thus Y E X 2 is an eigenvector of T 
corresponding to the eigenvalue Aj. Hence (U - T) y = (A - A;) y and 
so, multiplying both sides by R(A; T), we obtain y = (A-A;) R(A; T)y 
which implies 

y = A_1y = (2ni)-1 f R(A; T) Y dA = (2ni)-1 f (A -A;)-1 y dA = 0, 
c c 

by taking the circumference C with Ao as centre sufficiently small. This 
is a contradiction, and so there must exist a positive integer m such 
that (T - AoI)m X 2 = O. Thus, by X 2 = R (A-1) and (T - AoI)" A-1 = 
A_(,,+1)' we see that A_(n+1) = 0 for n ~ m. 

Comments and References 

Section 6 is adapted from R. S. PHILLIPS [2]. Section 8 is adapted 
from M. NAGUMO [lJ and A. TAYLOR [1]. Parts of these sections can 
easily be extended to the case of a locally convex linear topological space. 
See, e.g., section 13 of the following chapter. 

IX. Analytical Theory of Semi-groups 
The analytical theory of semi-groups of bounded linear operators in a 

B-space deals with the exponential functions in infinite dimensional 
function spaces. It is concerned with the problem of determining the 
most general bounded linear opera tor valued function T (t), t :2': 0, which 
satisfies the equations 

T(t + s) = T(t) . T(s), T(O) = I. 

The problem was investigated by E. HILLE [2J and K. YOSIDA [5J inde­
pendently of each other around 1948. They introduced the notion of the 
infinitesimal generator A of T (t) defined by 

A = s-lim t-1 (T (t) - I), 
t.j.o 

and discussed the generation of T(t) in terms of A and obtained a cha­
racterization of the infinitesimal generator A in terms of the spectral 
property of A. 

The basic result of the semi-group theory may be considered as a 
natural generalization of the theorem of M. H. STONE [2J on one-para­
meter group of unitary operators in a Hilbert space, which will be ex­
plained in a later section. Applications of the theory to stochastic processes 
and to the integration of the equations of evolution, which include diffusion 
equations, wave equations and Schrodinger equations, will be discussed 
in Chapter XIV. * 

In this chapter, we shall develop the theory of semi-groups of con­
tinuous linear operators in locally convex linear topological spaces rather 
than in Banach spaces. 

* See also Supplementary Notes, p. 468. 
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1. The Semi-group of Class (Co) 

Proposition (E. HILLE). Let X be a B-space, and T" t > 0, a one­
parameter family of bounded linear operators E L (X, X) satisfying the 
semi-group property 

T,T. = T,+. for t, s > o. (1) 

If P(t) = log IIT,II is bounded from above on the interval (0, a) for each 
positive a, then 

lim t-1log II T,II = inf t-1log II T,ll. (2) 
~ '>0 

Proof. We have P(t + s) < P(t) + P(s) from IITt+.11 = IIT,T.II :S 
IIT,II·IIT.II. Let (3=inft-1 .p(t). (3 is either finite or -CXl. Suppose 

1>0 
that (3 is finite. We choose, for any e > 0, a number a > 0 in such a way 
that p (a) < ((3 + e) a. Let t> a and n be an integer such that na < 
t < (n + 1) a. Then 

R < P(t) < 1! (na) + p(t-na) < ~ p(a) + P(t- na) 
I'=t= t t =t a t 

:::;:: nta ((3 + e) + p (t -; na) . 

By hypothesis, p (t - na) is bounded from above as t -+ CXl. Thus, 
letting t -+ CXl in the above inequality, we obtain lim t-1 p (t) = (3. The 

1-+00 

case (3 = - CXl may be treated similarly. 
Definition 1. If {T,; t > O} ~ L (X, X) satisfy the conditions 

T,T. = TH • (for t, s > 0), 

To=I, 

s-lim T,x = T,ox for each to > 0 and each x EX, 
t--+lo 

then {T,} is called a semi-group 01 class (Co). 

(I') 

(3) 

(4) 

In virtue of the Proposition, we see that a semi-group {T,} of class 
(Co) satisfies the condition 

II Till < M eP' (for 0 < t < CXl), (5) 

with constants M > 0 and fJ < CXl. 
The proof is easy. We have only to show that II T,II is, for any interval 

(O,a) withCXl >a > 0, bounded on (O,a). Assume the contrary and let there 
exist a sequence {tn} ~ (0, a) such that II T'nll > n and lim tn = to < a. 

n-->OO 

By the resonance theorem, 1/ T'n x II must be unbounded at least for one 
x E X, which surely contradicts the strong continuity condition (4). 

Remark. By multiplying e-fJl , we may assume that a semi-group 
{T,} of class (Co) is equi-bounded: 

IIT,II < M (for 0 <t < 00). (6) 
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If, in particular, Mis < 1, i.e., if 

liT/II < 1 (for 0 < t < cx», (7) 

then the semi-group {T/} is called a contraction semi-group 0/ class (Co). 
As for the strong continuity condition (4). we have the following 
Theorem. Let a family {T/; t :::: O} of operators E L (X, X) satisfy (I') 

and (3). Then condition (4) is equivalent to the condition 

w-lim T,x = x for every x EX. (8) 
etO 

Proof. Suppose that (8) is satisfied. Let Xo be any fixed element of 
X. We shall show that s-lirn T,xo = T,.xo for each to > O. Consider the 

1-+4. 

function x(t) = T,xo. For each to > 0, x(t) is weakly right continuous at 
to' because w-lim T,x = w-lim T" T, Xo = T, xo. We next prove that 

q/. ,,~o' • 
II Ttll is bounded in a vicinity of t = O. For, otherwise, there would exist 
a sequence {t .. } E such that t .. t 0 and ~ II T/"xo II =cx>, contrary 

to the resonance theorem implied by the weak right continuity of x (t) = 
Ttxo. Thus by (I'), we see that Ttxo = x(t) is bounded on any compact 
interval of t. Moreover, x (t) is weakly measurable. For, a right continuous 
real-valued function / (t) is Lebesgue measurable, as may be proved from 
the fact that, for any <x, the set {t; /(t) < <X} is representable as the union 
of intervals of positive length. Next let {t .. } be the totality of positive 
rational numbers, and consider finite linear combinations ~ f1;x (ti ) 

j 

where Pi are rational numbers (if X is a complex linear space, we take 
Pi = aj + ibi with rational coefficients aj and bi)' These elements form a 
countable set M = {x .. } such that {x (t) ; t :2:: O} is contained in the strong 
closure of M. If otherwise, there would exist a number t' such that x (t') 
does not belong to M". But, being a closed linear subspace of X, M" is 
weakly closed by Theorem 11 in Chapter V, 1; consequently, the condi­
tion x (t') E M" is contradictory to the weak right continuity of x (t), i.e., 
to x(t') = w-lirnx(t,,). 

/,,~t' 

We may thus apply Pettis' theorem in Chapter V, 4 to the effect that 
x(t) is strongly measurable, and so by the boundedness of Ilx(t) II on any 

fJ 
compact interval of t, we may define the Bochner integral J x (t) dt .. 
and we have III x(t) dtll < I IIx(t) II dt for 0 < <X < P < cx>. By virtue 

fJ P+s 
of the strong continuity in s of the integral J x (t + s) dt = J x (t) dt, 

D&. t¥+S 

which is implied by the boundedness of x (t) on any compact interval 
of t, N. DUNFORD [3] proved that x(t) is strongly continuous in t> O. 
We shall follow his proof. 
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Let ° <IX < 'I] < f3 < ~ - e < ~ with e> 0. Since x(~) = Tcxo = 
T", T~_", Xo = TTl x(~ - '1]), we have 

p p 

(f3-IX)x(~)= J x(~)d'l]= J T",x(~-'I])d'l], 
'" '" and so, by sup II T",II < 00 which is implied by (1') and (3), combined 

at~"'~p 

with the boundedness of IIT,II near t= 0, we obtain 
p 

(f3 - IX){X(~ ± e) - x(~)} = J T",{x(~ ± e - '1]) - x(~ - 'I])} d'l], 
at 

<-at 
(f3-IX)"x(~±e)-x(~)II< sup IIT",II' J I/x(T±e)-x(,r)/IdT. 

at~"'~p ~-p 

The right hand side tends to zero as e t 0, as may be seen by approximat-
ing X(T) by finitely-valued functions. 

We have thus proved that x(t) is strongly continuous in t> 0. To 
prove the strong continuity of x(t) at t = 0, we proceed as follows. For 
any positive rational number tn, we have T,x(tn) = T,T'nxO = TH'nxO = 
x (t + tn). Hence, by the strong continuity of x (t) for t > ° proved 
above, we have s-lim T,x (tn ) = x (tn ). Since each Xm E M is a finite linear 

I.j.O 

combination of X (tn)'s, we have s-lim T,xm = Xm (m = 1, 2, ... ). On the 
itO 

other hand, we have, for any t E [0, IJ, 

/I x (t) - Xo /I < /I T,xm - Xm /I + /I Xm - Xo /I + II T, (xo - xm ) /I 
< I/T,xm-xm l/ + II xm- xoll + sup IIT,II' IIxo-xml/. 

0~1~1 

Hence lim IIx(t) - Xo II < (1 + sup "T, II) I/xm - Xo II, and so s-lim x(t) 
I.j. 0 0';;/';;1 t.j. 0 

= Xo by inf IIxo-xmll = 0. --
%mEM 

2. The Equi-continuous Semi-group of Class (Co) in Locally 
Convex Spaces. Examples of Semi-groups 

Suggested by the preceding section, we shall pass to a more general 
class of semi-groups. 

Definition. Let X be a locally convex linear topological space, and 
{T,; t >- o} be a one-parameter family of continuous linear operators 
E L (X, X) such that 

T,Ts = THs , To = I, 
lim T,x = T,.x for any to > ° and xE X, 
1-..1. 

the family of mappings {T,} is equi-continuous in t, 
i.e., for any continuous semi-norm p on X, there 
exists a continuous semi-norm q on X such that 
P(T,x) < q(x) for all t > ° and all xE X. 

(1) 

(2) 

(3) 

Such a family {T,} is called an equi-contimwus semi-grmtp of class (Co). 
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The semi-groups {T,} satisfying conditions (1'). (3), (4) and (6) of 
Section 1 are example of such equi-continuous semi-groups of class (Co). 

We shall give concrete examples. 

Example 1. Let C [0, 00] be the space of bounded uniformly con­
tinuous real-valued (or complex-valued) functions on the interval [0,00), 
and define T t , t > 0, on C [0, 00] into C [0, 00] by 

(T,x) (s) = x(t + s). 

Condition (1) is trivially satisfied. (2) follows from the uniform con­
tinuity of x(s). Finally IITdl < 1 and so {Tt} is a contraction semi­
group of class (Co), In this example, we could replace C [0, 00] by 
C [-00, 00] or by LP(-oo, 00). 

Example 2. Consider the space C [- 00, 00]. Let 

Nt(u) = (211:t)-1/2 e-"'/2t, -00 < u < 00, t> 0, 

which is the Gaussian probability density. Define T"t > 0, on C [-00,00] 
into C [- 00,00] by 

00 

(Ttx) (s) = J N,(s - u) x(u) du, for t> 0, 
-00 

= x(s). for t = 0. 
00 

Each T, is continuous, since, by J N,(s -u) du = 1, 
-00 

00 

IIT,xl1 < Ilxll J N,(s-u) du = Ilxll· 
-00 

To = I by the definition, and the semi-group property T, Ts = T,+s 
is a consequence from the well-known formula concerning the Gaussian 
probability distribution: 

00 

1 e-u'/2(t+1'J = 1 1_ J e-(u-v)'/2t e-v'/2t' dv. 
V2:n (t + t'l V2:nt Y2:nt' _00 

This formula may be proved by applying the Fourier transformation 
on both sides, remembering (10) and (13) in Chapter VI, 1. To prove the 

00 

strong continuity in t of T" we"observe that x (s) = J Nt (s - u) x (s) duo 
-00 

Thus 
00 

(Ttx)(s)-x(s) = J Nt(s-u) (x(u)-x(s)du, 
-00 

which is, by the change of variable (s - u)/~ z, equal to 
00 

J N1 (z) (x(s - Vtz) - x (s) dz. 
-00 
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By the uniform continuity of x(s) on (-=,=), there exists, for any 
e> 0, a number b = b(e) > 0 such that /X(Sl) - x (S2) / <e whenever 
lSI - S2/ < b. Splitting the last integral, we obtain 

j(Ttx)(s)-x(s)l< I N1(z) Ix(s-Vt:z)-x(s)ldz+ f ( .. . )dz 
Ivizl;:>;o IVlzl >" 

s:;: e I N1(z) dz + 211 x ll I Ndz) dz 
Ivizl ;:>;6 Ivi _I >0 

~e+2I1xll f N 1 (z)dz. 
Iv'tzl >6 

The second term on the right tends to 0 as t -+ 0, since the integral 
00 

I N 1 (z) dz converges. Thus lim sup / (Ttx) (s) - x (s) / = 0 and hence 
-00 qo s 

s- lim Ttx = x; consequently, by the Theorem in the preceding section, 
qo 

we have proved (2). 
In the above example, we can replace C [- =, =] by LP (-=, =). 

Consider, for example, V(-=, =). In this case, we have 

00 

IITtXIl< IINt(s-u) Ix(u)ldsdu< /lxII, 
-00 

by Fubini's theorem. As for the strong continuity, we have, as above, 

00 

II Ttx - x II = III Nl (z)(x(s - Vt-. z) - x(s)) dzlds 
-00 

~ -I Nl (z) l-L I x(s -- vt . z) - x(s) IdS] dz 

00 

< 2 I N1(z)dz·lIxll· 
-00 

Hence, by the Lebesgue-Fatou lemma, we obtain 

lim IITtx - xii ~ j Nl(Z) (lim j Ix(s - Vt· z) - x (s)ldS) dz = 0, 
t.j.o -00 qo -00 

because of the continuity in the mean of the Lebesgue integral. which may 
be proved by approximating x(s) by finitely-valued functions. 

Example 3. Consider C [-=, = ]. Let ). > 0, fl > O. Define Til 
t 2: 0, on C[-=,=] into C[-=,=] by 

At 00 (At)k 
(Ttx) (s) = e- L ~ x(s - kfl). 

k=O . 
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We have 

00 (A )'" [ 00 (AtJk ] (Tw(Tt x)) (s) = e-Aw ~ :1 e-J.t &0 kT- x(s - kp, - mp,) 

= -).(w+t) ~ ~ [p I ~ (Aw)m (At)p-m (_ p )] 
e ~ P' . ~ '(P_) ,x s p, p=o· m=O m. m . 

00 1 
= e-A(w+t) ~ P 1 ().w + ).W x (s --! p,) = (T UI+tX) (s) . 

Thus it is easy to verify that T t is a contraction semi-group of class (Co). 

3. The Infinitesimal Generator of an Equi-continuous 
Semi-group of Class (Co) 

Let {Tt ; t > O} be an equi-continuous semi-group of class (Co) 
defined on a locally convex linear topological space X which we assume 
to be sequentially complete. We define the infinitesimal generator A of Tt 
by 

A x = lim h-1 (T h - J) X, 
h.j.O 

(1) 

i.e., A is the linear operator whose domain is the set D(A) = 
{xEX; lim h-1 (TII -1)x exists in X}, and, for xED(A), Ax= 

1I.j.0 

lim h-1 (T" - 1) x. D (A) is non-empty; it contains at least the vector O. 
".j.0 
Actually D(A) is larger. We can prove 

Theorem 1. D (A) is dense in X. 

Proof. Let 'P .. (s) = ne-"', n> o. Consider the linear operator C"," 
which is the Laplace transform of Tt multiplied by n: 

00 

C"'nx = J 'P .. (s) Tsx ds for x EX, (2) 
o 

the integral being defined in the sense of Riemann. The ordinary proce­
dure of defining the Riemann integral of numerical functions can be 
extended to a function with values in a locally convex, sequentially 
complete space X, using continuous semi-norms p on X in place of the 
absolute value of a number. The convergence of the improper integral is a 
consequence of the equi-continuity of T t , the inequality 

p('P .. (s) Tsx) = ne-mp(T.x) 

and the sequential completeness of X. 
We see, by 

00 

p(C"'nx) < J ne-m P(Tsx) ds:O:::;; supP(T.x), 
o s~O 
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that the operator Clf,. is a continuous linear operator E L (X, X). We shall 
show that 

and 

00 

R(C"n) ~ D(A) for each n> 0, 

lim C" x = x for each x EX. 
n--+OO n 

(3) 

(4) 

Then U R(C"n) will be dense in X, and a fortiori D(A) will be dense in 
.. =1 

X. To prove (3), we start with the formula 
00 00 

h-1 (T"-1)C",,x=h-1 J <p .. (s)T"Tsxds-h-1 J <p,,(s) Tsxds. 
o 0 

00 00 

The change of the order: Til J ... = J T" ... is justified, using the 
o 0 

linearity and the continuity of T". Thus 
00 00 

h -I (T~ - I) C"nx = h-1 J <P .. (s) T.+bxds - h-1 J <p,,(s) T.xds 
o 0 

enA -1 00 1 II 
----n J e-tI<1T xda--n J e-ns T xds 
- k II a kO • 

= en";: 1 {C"n X - i ne-tI<1TaXda}-~! <p,,(s) T.xds. 

By the continuity of <P .. (s) Tsx in s, the second term on the right tends 
to - <P .. (0) To x = - nx as h t O. Similarly, the first term on the right 
tends to nC"nx as h to. Hence we have 

AC"nx = n(C"n- I )x, xEX. (5) 
00 

We next prove (4). We have, by J ne-ns ds = 1, 
o 

00 

C""x-x = n J e-ns (Tsx-x) ds, 
o 

00 d 00 

p(C"nx-x) < n J e-ns P(Tsx-x) ds = nJ + n J = II + 12 , say, 
o 0 d 

where 15 > 0 is a positive number. For any e > 0, we can choose, by the 
continuity in s of Tsx, a 15 > 0 such that p (Tsx - x) < e for 0 < s < 15. 
Then d 00 

II :::; en J e-ns ds < en J e-ns ds = e. 
o 0 

For a fixed 15 > 0, we have, by the equi-boundedness of {Tsx} in s > O. 
00 

I 2 <nJ e-ns(p(Tsx) +P(x))ds~O as ntoo. 
d 

Hence we have proved (4). 
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Definition. For x E X, we define 

Dt Ttx = lim h-1 (Tt+h - T t) x 
"->0 

if the right hand limit exists. 
Theorem 2. If xE D(A), then xE D(DtTt) and 

DtTtx = ATtx = TtAx, t ~ O. 

Thus, in particular, the operator A is commutative with T t • 

Proof. If xE D(A), then we have, since T t is continuous linear, 

(6) 

(7) 

TtAx=Tt lim h-1 (T,,-I) x = limh-1(Tt T,,-Tt)x= Jimh-1(Tt+h-Tt)x 
hiO h+O h+O 

= limh-1(T" - I) Ttx = A Ttx. 
h+O 

Thus, ifxED(A), then TtxED(A) and TtAx=ATtx= lim h-1 
"+0 

(Tt+h - Tt)x. We have thus proved that the right derivative of Ttx 
exists for each xED (A). We shall show that the left derivative also 
exists and is equal to the right derivative. 

For this purpose, take any 10 E X'. Then, for a fixed xED (A), the 
numerical function 10 (Ttx) = <Ttx, 10> is continuous in t ::::: 0 and has 
right derivative d+ 10 (Ttx)jdt which is equal to 10 (A Ttx) = 10 (TtA x) by 
what we have proved above. Hence d+/o(Ttx)jdt is continuous in t. We 
shall prove below a well-known Lemma: if one of the Dini derivatives 

D+/(t), D+/(t), D-/(t) and Q-/(t) 

of a continuous real-valued function 1 (t) is finite and continuous, then 
I(t) is differentiable and the derivative is, of course, continuous and equals 
1!± I(t). Thus 10 (Ttx) is differentiable in t and 

t t 

10 (Ttx - x) = 10 (Ttx) - 10 (Tox) = f d+/o (Tsx)jds . ds = f 10 (TsA x)ds 
o 0 

= 10 (j TsAXdS). 

Since 10 E X' was arbitrary, we must have 
t 

Ttx-x=fTsAxds foreach xED(A). 
o 

Since TsA x is continuous in s, it follows that Ttx is differentiable in t in 
the topology of X and 

t+h 

DtTtx = lim h-1 f TsAx ds = TtAx. 
"-+0 t 

Thus we have proved (7). 
Proof of the Lemma. We first prove that the condition: D+ 1 (t) > 0 

for a :s t ::;:; b implies that I(b) - I(a) ::::: o. Assume the contrary, and 
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let I(b) -/(a) < - e(b - a) with some e> O. Then, for g(t) = I(t)­
I(a) -+- e(t - a), we have n+g(a) = TJ+/(a) -+- e> 0, and so, by g(a) = 0, 
we must have g (to) > 0 for some to > a near a. By the continuity of g (t) 
and g(b) < 0, there must exist a tl with a < to < t1 < b such that 
g(t1) = 0 and g(t) < 0 for t1 < t < b. We have then n+g(t1) < 0 which 
surely contradicts the fact 15+g(t1) = Jj+/(t1) -+- e> o. 

By applying a similar argument to /(t) - ott and to pt -/(t}, we prove 
the following: if one of the Dini derivatives D I (t) satisfies 

IX < DI(t) < P on any interval [t1' t2], 

then IX < (I(t2) -/(t1))/(t2 - t1} ~ p. Hence, the suprema (and the infima) 
on [t1' t2 ] of the four Dini derivatives of a continuous real-valued func­
tion I (t) are the same. Thus, in particular, if one of the Dini derivatives of 
a continuous real-valued function I(t} is continuous on [tl> t2], then the 
four Dini derivatives of I (t) must coincide on [tl' t2]. 

4. The Resolvent of the Infinitesimal Generator A 

Theorem 1. If n> 0, then the operator (nI - A) admits an inverse 
R(n; A) = (nI _A)-IE L(X, X), and 

00 

R(n;A) x = f e-n·T.xds for xE X. 
o 

(I) 

In other words, positive real numbers belong to the resolvent set e (A) 
of A. 

Proof. We first show that (nI - A}-l exists. Suppose that there 
exists an xo# 0 such that (nI -A) Xo = 0, that is, Axo = nxo. Let 10 be a 
continuous linear functional E X' such that 10 (xo) = 1, and set rp (t) = 
10 (T,xo)· Since Xo E D (A), rp (t) is differentiable by Theorem 2 in the prece­
ding section and 

If we solve this differential equation under the initial condition rp (O) = 
10 (xo) = 1, we get rp(t} = eHl. But, rp(t) = 10 (T,xo) is bounded in t, 
because of the equi-boundedness of T,xo in t ~ 0 and the continuity of 
the functional 10• This is a contradiction, and so the inverse (nI - A)-l 
must exist. 

Since, by (5) of the preceding section, ACq.nx = n(C"'n -I) x, we have 
(nI - A) C"'nx = nx for all x EX. Thus (nI -A) maps R (C"'n) ~ D (A) 
onto X in a one-one way. Hence, a fortiori, (nI -A) must mapD(A) 
onto X in a one-one way, in virtue of the existence of (nI - A)-I. There­
fore, we must have R(C'P7I) = D(A) and (nI - A)-l = n-1C",,,. 
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Corollary 1. The right half plane of the complex A-plane is in the 
resolvent set etA) of A, and we have 

00 

R(A;A)x=(U-A)-lX= J e-)'tT1xdt for Re(A)>'O and xEX. (2) 
o 

Proof. For real fixed T, {e- iTI T t ; t ~ O}, constitutes an equi-continuous 
semi-group of class (Co). It is easy to see that the infinitesimal generator 
of this semi-group is equal to (A -iT I). Thus, for any a > 0, the resolvent 
R(a + iT; A) = ((a + iT) 1- A)-l exists and 

00 

R ((a + iT) I - A) x = J e-(a+iT)s Tsxds for all x EX. (2') 
o 

Corollary 2. 
D(A) = R((U - A)-I) = R(R(A; A) when Re(A) > 0, (3) 

AR(A;A)x=R(A;A)Ax=(AR(A;A)-I)x for xED(A), (4) 

AR(A;A)x=(AR(A;A)-I)x for xEX, 

lim AR(?; A) x = x for xE X. 
). too 

(5) 

(6) 

Proof. Clear from R (A; A) = (U - A )-1 and (4) of the preceding 
section. 

Corollary 3. The infinitesimal generator A is a closed operator in the 
following sense (Cf. Chapter II, 6): 

if xhED(A) and limxh=xEX, lim AXh=yEX, then 
h--->oo h--->oo 

xED(A) and Ax=y. 

Proof. Put (I - A) Xh = Zh' Then lim Zh = x - y and so, by the 
h--->OO 

continuity of (I - A)-I, lim Xh = lim (I - A)-l Zh = (I -- A)-l (x - y) 
h--->OO h--->OO 

that is, x = (I - A)-l (x - y), (I - A) x = x - y. This proves that 
y=Ax_ 

Theorem 2. The family of operators 

{(AR(A; A)"} (7) 

is equi-continuous in A > 0 and in n = 0, 1, 2, .. 
Proof. From the resolvent equation (Chapter VIII, 2, (2)) 

R(,u;A)-R(A;A) = (A-,u)R(,u;A)R(A;A), 

we obtain 

lim (,u-A)-l(R(,u; A) -R(A; a)) x = dR(A;A) XjdA=-R(A; A)2 x, xEX. 
1-'--+). 

To derive the above formula, we have to appeal to (2) in order to show 
that lim R(,u; A) y = R(A; A) y, y EX. 

1-'--+). 

16 Yoslda. }'unctiona) Anaiysis 
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Therefore, R (A; A) x is infinitely differentiable with respect to A when 
Re(A) > ° and 

dnR(A; A) x/dAn = (-W n! R(A; A)n+1 X (n = 0, 1, 2, ... ). (8) 

On the other hand, we have, by differentiating (2) n-times with respect 
~A, 00 

d"R(A;A) x/dAn = J e-At(-t)" Ttxdt. (9) 
o 

Here the differentiation under the integral sign is justified since {Ttx} 
00 

is equi-bounded in t and J e-At r dt= (n !)/A." +1 when Re (A) > 0. Hence 
o 

An+! 00 

(AR(A; A)n+1 X = -, J e-At tn Ttxdt for xE X and Re(A) > 0, (10) 
n. 0 

and so, for any continuous semi-norm p on X and A > 0, n> 0, 

An+! 00 

P«(AR(A; A)n+1 x) < -, J e-At t" dt· sup P(Ttx) = sup P(Ttx). (11) 
n. 0 t~O t;:;;O 

This proves Theorem 2 by the equi-continuity of {Tt} in t. 

o. Examples of Infinitesimal Generators 

We first define, for n > 0, 

J" = (I - n-1A)-1 = nR(n; A), 
so that 

AJn = nUn-I). 

Example 1. (Ttx) (s) = x(t + s) on C[O,OO]. 
00 00 

( 1) 

(2) 

Writing Yn(s) = Unx) (s) = n J e- nt x(t + s) dt = n J e-n(t-S)x(t) dt, 
o s 

00 

we obtain y~ (s) = - n e-n(s-s)x (s) + n2 J e-n(t-s) x (t) dt = - nx (s) + 
s 

n Yn(s}. Comparing this with the general formula (2): 

(AJnx)(s) = n(U,,-I) x)(s) , 

we obtain AYn(s) = y~(s). Since RUn) = R(R(n; A) = D(A), we have 

Ay(s) = y'(s) for every yE D(A). 

Conversely, let Y (s) and Y' (s) both belong to C [0, 00]' We will then show 
that yE D(A) and Ay(s) = y'(s). To this purpose, define x(s) by 

y' (s) - ny(s) = - nx(s). 

Setting Unx)(s) = y,,(s), we obtain, as shown above, 

y~(s) - nYn(s) = - nx(s}. 
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Hence w (s) = y (s) - y" (s) satisfies w' (s) = nw (s) and so w (s) = c em. 
But, w must belong to C [0, 00] and this is possible only if C = o. Hence 
y(s) = y,,(s) E D (A) and Ay(s) = y' (s). 

Therefore, the domain D (A) of A is precisely the set of functions y E 
C [0, 00] whose first derivative also E C [0, 00], and for such a function 
y we have Ay = y'. We have thus characterized the differential operator 
dJds as the infinitesimal generator of the semi-group associated with the 
operation of translation by t on the function space C [0, 00]' 

Example 2. We shall give a characterization of the second derivative 
d2Jds2 as the infinitesimal generator of the semi-group associated with 
the integral operator by Gaussian kernel. The space is C [- 00, 00] and 

00 

(Ttx)(s) = (2nt)-1/2 f e-Cs- v)'/2t x(v) dv if t> 0, = x(s) if t = o. 
-00 

We have 

y,,(s) = (J"x)(s) = j x (v) [j n(2nt)-1/2e-nt-CS-V)'/2tdt] dv 
-00 0 

= j x (v) f2 Vn j (2n)-1/2 e-a'-,,(s-v)'/2a' dG] dv 
-00 0 

(by substituting t = a2Jn) . 

Assuming, for the moment, the formula 

j e-Ca'+e/a') da = V; e-2e , c = Vn Is - v 1!V2 > 0, (3) 
o 

we get 
00 

y" (s) = f x (v) (nJ2)1/2 e- '12" Is-vi dv. 
-00 

x (v) being continuous and bounded, we can differentiate twice and obtain 

00 S 

y,.' (s) = n f x (v) e-V2n Cv-s) dv - n f x (v) e-V2f; Cs-v) dv, 
S -00 

y,."(s) = n{- x(s) -x(s) + V2Vn l x (v) e-V2f;Cs-v) dv 

+ V2 Vn -L X (71) e- '12,. (s-v) dV} 
= - 2n x(s) + 2n y,,(s). 

Comparing this with the general formula (2): 

(Ay,.)(s) = (A J ,.x)(s) = n«(J" - I) x)(s) = n(y" (s) - x (s», 

we find that Ay .. (s) = y~(s)J2. Since R(J .. ) = R(R(n; A» = D(A), we 

16* 
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have proved that 

Ay(s) = y"(s)/2 for every yE D(A). 

Conversely, let y(s) and y" (s) both belong to C [-c:x>,c:x>]. Define x(s) by 

y" (s) -- 2ny(s) = - 2nx(s). 

Setting y" (s) = (J "x)(s). we obtain, as shown above, 

y~ (s) - 2nYn (s) = - 2nx (s). 

Hence w (s) = y (s) - Yn (s) satisfies w" (s) - 2nw (s) = 0, and so w (s) = 

C1 e¥2n. + C2 e-V2ns . This function cannot be bounded unless both C1 

and C2 are zero. Thus y(s) = Yn(s), and so Y E D(A), (Ay) (s) = y" (s)/2. 

Therefore, the differential operator ~ !II is characterized as the 

infinitesimal generator of the semi-group associated with the integral 
transform by the Gaussian kernel on the function space C [- c:x>, c:x> ]. 

The proof of (3). We start with the well-known formula 
00 

f e-'" dx = Vn/2. 
o 

Setting x = a - cia, we obtain 

V;; 00 00 

-.!!.. = f e-(I1-c/I1)'(1 + cl(2) da = e2c f e-(I1'+cI/a') (1 + cl(2) da 
2 'Ie Vc 

= e'l.c { j e-(a'+cI/a') da + j e-(I1'+c'/a') c Ida} . 
'Ie vc a 

Setting a = cit in the last integral, we obtain 

v;;21t = e2c { j e-(a'+c'/I1') da - I e-(c'/"+I') dt} = e2c j e-("+c'/") dt. 
'Ie 'Ie 0 

Exercise. Show that the infinitesimal generator A of the semi-group 
{T,} on C [- c:x>, c:x>] given by 

~, (A4' 
(T,x)(s) = e-AI 2: -kl x(s--kp.) (A,P. > 0), 

k=O . 

is the ditterence operator A : 

(A x)(s) = A {x(s - p.) - x(s)}. 

6. The Exponential of a Continuous Linear Operator 

whose Powers are Equi-continuous 

Proposition. Let X be a locally convex, sequentially complete,·linear 
topological space. Let B be a continuous linear operator E L (X, X) such 
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that {BII; k = 1, 2, ... } is equi-continuous. Then, for each x E X, the 
series 

00 

X (k !)-1 (tB)1I x (t > 0) 
11=0 

(1) 

converges. 
Proof. For any continuous semi-norm p on X, there exists, by the 

equi-continuity of {B"}, a continuous semi-norm q on X such that 
P(B"x) < q(x) for all k > 0 and xE X. Hence 

( 
III ) III III 

P .I (tB)" xJk! < .I t"P(B"x)Jk! < q(x) . .I t"Jkl. "-,, "-,, "-,, 
Therefore \J i (tB)"xJk!} is a Cauchy sequence in the sequentially 

"=0 
complete space X. The limit of this sequence will be denoted by (1). 

00 

Corollary 1. The mapping x-+ .I (tB)" xJk! defines a continuous 
"=0 

linear operator which we shall denote by exp (tB). 
Proof. By the equi-continuity of {B"}, we can prove that B" = 

" .I (tB)"lk! (n = 0, 1, 2, ... ) are equi-continuous when t ranges over 
A-O 
any compact interval. In fact, we have 

" " P(B"x) :::;: .I t"P(B"x)Jk! < q(x) . .I t"Jk! < el· q(x). 
11=0 11-0 

Hence the limit exp (tB) satisfies 

P (exp (tB) x) < exp (t) . q (x) (t ~ 0). (2) 

Corollary 2. Let B and C be two continuous linear operators E L (X, X) 
such that {BII} and {CII} are equi-continuous. If, moreover, BC = CB, 
then we have 

exp(tB) exp(tC) = exp(t(B + C». (3) 
Proof. We have 

II " 
p«(B + C)II x) < .I "C. P(Bk-. cs x) < .I "C. q(C'x) < 2k sup q(C·x) . 

• -0 .=0 o~. 

Hence {2-k (B + C)k} is equi-continuous, and we can define exp (t (B + C». 
By making use of the commutativity B C = C B, we rearrange the series 

00 

.I (t(B + C»" xJk! "-0 
so that we obtain(i (tB)"Jk!) (i(tC)IIXJk!) as in the case of 

"=0 "-0 
00 

numerical series .I (t(b + c»"Jk!. "-0 
Corollary 3. For every x E X, 

lim k-1 (exp (kB) - J) x = Bx, 
"to 

(4) 
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and so, by making use of the semi-group property 

exp«(t + h) B) = exp(tB) exp(hB) 

proved above, we obtain 

D, exp(tB) x = exp(tB) Bx = B exp(tB) x. 

(0) 

(6) 

Proof. For any continuous semi-norm p on X, we obtain, as above 
00 00 

p(h-1(exp(hB) - I) x -Bx) < ~ h"-1 P(B"x)/k! < q(x) ~ h"-1/k! 
"=2 "=2 

which surely tends to 0 as h to. 

7. The Representation and the Characterization of Equi-continuous 
Semi-groups of Class (Co) in Terms of the Corresponding 

Infinitesimal Generators 

We shall prove the following fundamental 
Theorem. Let X be a locally convex, sequentially complete, linear 

topological space. Suppose A is a linear operator with domain D(A) 
dense in X and range R(A) in X such that the resolvent R(n; A) = 
(nI - A )-1 E L (X, X) exists for n = 1, 2, ... Then A is the infinitesimal 
generator of a uniquely determined equi-continuous semi-group of class 
(Co) iff the operators {(I - n-1 A )-m} are equi-continuous in n = 1, 2, ... 
and m = 0, 1, ... 

Proof. The "only if" part is already proved. We shall prove the "if" 
part. 

Setting 

we shall prove 
lim l .. x = x for every xE X . 

..-.00 

(1) 

(2) 

In fact, we have, for xED(A), A I .. x = I .. A x = nU .. -I)x and so 
J .. x - x = n-1 I .. (A x) tends to 0 as n -+ 00, in virtue of the equi­
boundedness of {J .. (Ax)} in n= 1, 2, .... Since D(A) is dense in X and 
{J .. } is equi-continuous in n, it follows that lim l .. x = x for every 

..... 00 

xEX. 
Put 

T~") = exp (tA I .. ) = exp (tn U .. - I)) = exp (-nt) exp (nt] .. ) , t > O. (3) 

Since {J!} is equi-bounded in n and k, the exp(tnl .. ) can be defined, and 
we have, as in (2) of the preceding section, 

00 

p(exp(ntl .. ) x) <,,~ (nt)"(kl)-1PU!· x)~ exp(nt)· q(x). 
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Consequently, the operators {Tin)} are equi-continuous in t > 0 and 
n = 1, 2, ... in such a way that 

p (Tin) x) < q (x) . (4) 

We next remark that Inlm = Imln for n, m > O. Thus I .. is commu­
tative with T1m). Hence, by D,Tln) x = A 1 .. Tin) x = Tl") A 1 .. x, proved 
in the preceding section, 

p(Tln)x- Tlm)x) = p (i Ds(Tl~~Tin)x) dS) 
(5) 

= P (i Ti~~T;n)(Aln-Alm) x dS). 
Hence, if xED (A), there exists a continuous semi-norm q on X such that 

, 
p (Tin) X - TIm) x) :::;: f q «(AI" - AJ m) x) ds = tq(UnA - ImA) x). 

o 
Therefore, by (2), we have proved that lim p (Tin) X - Tim) x) = 0 

... ........00 

uniformly in t when t varies on every compact interval. Since D (A) is dense 
in the sequentially complete space X, and since the operators {T(")} are 
equi-continuous in t > 0 and in n, we see that lim Ti") x = Tlx 

.......00 

exists for every xE X and t?: 0 uniformly in t on every compact interval 
of t. Thus the operators {Tt} are equi-continuous in t > 0, and from the 
uniform convergence in t, Tlx is continuous in t > O. 

We next prove that T, satisfies the semi-group property T, T. = T/+ s' 
Since T(n) - T(n)T(n) we have I+s - Is' 

P(T,+sx - T,Tsx) < P (T,+sx - Tl~sx) + P (Tl~sx - T\n) Ti") x) 

+ P (Tin) Tin) X - Tl") Tsx) + p(Ti")Tsx - TITsx) 

< P (T,+.x - Tl~sx) + q (Tin) X - Tsx) 

+ P «(Ti") - T,) Tsx) --+ 0 as n --+ 00. 

Thus P (T,+sx - T, Tsx) = 0 for every continuous semi-norm p on X, 
which proves that T,+s = T, Ts. 

Let A be the infinitesimal generator of this equi-continuous semi­

group {T,} of class (Co), We have to show that A = A. Let x E D(A). 
Then lim Tl") A 1 .. x = T,Ax uniformly in t on every compact interval 

.......00 

of t. For, we have, by (4), 

P(T,Ax - Tin) A In x) < P(T,Ax - Tin) Ax) + p(TI") Ax - Tl") A 1 .. x) 

< P «(TI- Tl"») Ax) + q(Ax - 1 .. A x) 
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which tends to 0 as n ----+ 00, since lim InA x = A x. Hence 
n-->OO 

t 

Ttx - x = lim (T~") x - x) = lim J T~") A I"xds 
n-->OO n-->OO 0 

t t 

= J (lim T~n) A I"x) ds = J TsA xds 
o n-->OO '0 

t 

so that lim t-I (Ttx - x) = lim t-I J TsA xds exists and equals A x. We 
qo tj.O 0 

have thus proved that xE D(A) implies xE D(A) and Ax = Ax, i.e. 

A is an extension of A. A being the infinitesimal generator of the semi-
~ ~ 

group Tt, we know that, for n> 0, (n1 - A) maps D(A) onto X in 
one-one way. But, by hypothesis, (n1 -A) also maps D(A) onto X in 

A 

one-one way. Therefore the extension A of A must coincide with A. 
Finally, the uniqueness of the semi-group T t is proved as follows. 

Let T t be an equi-continuous semi-group of class (Co) whose infinitesimal 
generator is precisely A. We construct the semi-group Ti"). Since A is 

commutative with fe, we see that AI" and T~") are commutative with 

T t• Then, for xE D(A), we obtain, as in (5), 

p (T~") x - f t x) = P (i D s ('jt-.T~") x) dS) 

= p (i -ft_.T~")(A - AI,,) XdS). 

(6) 

Thus, by virtue of lim AI"x=Ax for all xED(A), we prove lim 
n-->OO n-->OO 

Tj") x = ftx for all x E X similarly to the above proof of the existence of 
lim Tj")x, xE X . 

..-00 - -
Therefore, Ttx = Ttx for all x E X, that is, Tt = Tt. 
Remark. The above proof shows that, if A is the infinitesimal genera­

tor of an equi-continuous semi-group T t of class (Col. then 

Ttx = lim exp (tA (I - n-I A)-I) x, x EX, (7) 
"-+00 

and the convergence in (7) is uniform in t on every compact interval of t. 
This is the representation theorem for semi-groups. 

Corollary 1. If X is a B-space, then the condition of the Theorem 
reads: D (A)a = X and the resolvent (I - n-I A )-1 exists such that 

11(1 _n-IA)-mll < C (n = 1, 2, ... ; m = 1, 2, ... ) (8) 

with a positive constant C which is independent of nand m. In particular, 
for the case of a contraction semi-group, the condition reads: D (A)a = X 



7. The Representation and the Characterization 249 

and the resolvent (I - n-1 A )-1 exists such that 

I [(I _n-1A)-111 < 1 (n = 1, 2, ... ). (9) 

Remark. The above result (9) was obtained independently by E. HIL­
LE [2J and by K. YOSIDA [5J. The result was extended by W. FELLER 
[lJ, R. S. PHILLIPS [3J and 1. MIYADERA [lJ and the extension is 
given in the form (8). It is to be noted that in condition (8) and (9), we 
may replace (n = 1, 2, ... ) by (for all sufficiently large n). The exten­
sion of the semi-group theory to locally convex linear topological spaces, 
as given in the present book, is suggested by L. SCHWARTZ [3]. 

Corollary 2. Let X be a B-space, and {Tt ; t 2: O} be a family of 
bounded linear operators L (X, X) such that 

TtTs = TI+S(t, s 2: 0), To = I, 

s-lim Ttx = x for all xE X, 
qo 

II Tt II < M e(J1 for all t > 0, where M > 0 and fJ > 0 are 

independent of t. 

(10) 

(11) 

(12) 

Then (A - fJI) is the infinitesimal generator of the equi~continuous semi­
group SI = e-(JITI of class (Co), where A is the operator defined through 
A x = s-lim t-l (Tt - I) x. Thus, by Corollary 1, we see that a closed 

qo 
linear operator A with D (A)a = X and R (A) ~ X is the infinitesimal 
generator of a semi-group T t satisfying (10), (11) and (12) iffthe resolvent 
(I - n-1 (A - fJI))-1 exists such that 

11(1 -n-1(A _fJI)-mll <M (for m = 1, 2, ... and all large n). (13) 
This condition may be rewritten as 

I [(I _n-1A)-m11 < M(1-n-1fJ)-m (for m = 1,2, ... and all large n. 
(13') 

In particular, for those semi-groups T t satisfying (10), (11) and 

IITtl1 < e(Jt for all t;;:::: 0, (14) 

condition (13') may be replaced by 

I [(I - n-1 A)-III < (1 - n-1 fJ)-1 (for all large n). (13") 

A n application of the representation theorem to the proof of Weierstrass' 
polynomial approximation theorem. Consider the semi-group Tt defined by 
(T,x) (s) = x (t + s) on C [0, <Xl]. The representation theorem gives 

00 tm 

(T,x) (s) = x(t + s) = s-lim exp(tAlnx) (s) = s-lim ~,(Aln}mx(s), 
A~ ~m~om. 

and the above s-lim is uniform in t on any compact interval of t. From 
~ 

this result we can derive Weierstrass' polynomial approximation theo-
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rem. Let z(s) be a continuous function on the closed interval [0,1]. Let 
x(s) E C [0, ooJ be such that x(s) = z(s) for s E [0, 1J. Put s = 0 in the 
above representation of x (t + s). Then we obtain 

00 

(Tjx) (0) = x(t) = s-lim 2: tm(Aln)m x (O)/m! in C [0, 1J, 
n-.oo m=O 

uniformly in t on [0, 1J. Hence z(t) is a uniform limit on [0, 1J of a sequence 
of polynomials in t. 

8. Contraction Semi-groups and Dissipative Operators 

G. LUMER and R. S. PHILLIPS have discussed contraction semi-groups 
by virtue of the notion of semi-scalar product. The infinitesimal generator 
of such a semi-group is dissipative in their terminology. 

Proposition. (LuMER). To each pair {x, y} of a complex (or real) 
normed linear space X, we can associate a complex (or real) number 
[x, yJ such that 

[x + y, zJ = [x, zJ + [y, z], [Ax, yJ = A [x, y], [x, xJ = Ilx 112 , (1) 
I [x, yJ I < Ilxll·llyll· 

[x, yJ is called a semi-scalar product of the vectors x and y. 

Proof. According to Corollary 2 of Theorem 1 in Chapter IV, 6, there 
exists, for each Xo E X, at least one (and let us choose exactly one) 
bounded linear functional l •. E X' such that I I Ix. II = Ilxoll and 
<xo, Ix.) = Ilxo l1 2• Then clearly 

[x, yJ = <x, Iy) (2) 

defines a semi-scalar product. 
Definition. Let a complex (or real) B-space X be endowed with a 

semi-scalar product [x, y]. A linear operator A with domain D(A) and 
range R(A) both in X is called dissipative (with respect to [x, yJ) if 

Re[Ax, x] < 0 whenever xE D(A). (3) 

Example. Let X be a Hilbert space. Then a symmetric operator A such 
that (A x, x) < 0 is surely dissipative with respect to the semi-scalar 
product [x, y] = (x, y), where (x, y) is the ordinary scalar product. 

Theorem (PHILLIPS and LUMER). Let A be a linear operator with do­
main D(A) and range R(A) both in a complex (or real) B-space X such 
that D(A)a = X. Then A generates a contraction semi-group of class (Co) 
in X iff A is dissipative (with respect to any semi-scalar product [x, yJ) 
and R(I -A) = X. 

Proof. The "if" part. Let A be dissipative and A > O. Then the inverse 
(U - A)-I exists and II (U - A)-I y II ::s;; A-Illy II when y E D«(U -A)-I). 
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For, if y = AX - Ax, then 

Allxl12 = A [x, xJ < Re(A[x, xJ - [Ax, xJ) = Re[y, xJ < Ilyll'llxll, (4) 
since A is dissipative. By hypothesis, R (I - A) = X so that A = 1 is in 
the resolvent set e(A) of A, and we have IIR(I; A) II < 1 by (4). If 
lA - 11 < 1, then the resolvent R (A; A) exists and is given by 

R(A; A) = R(I; A) (I + (A-I) R(I; A))-l 
00 

= R(I; A) . .I ((1- A) R(I; A))n, 
n=O 

(see Theorem 1 in Chapter VIII, 2). Moreover, (4) implies that 
IIR(A; A) II < A-I for A> 0 with IA -11 < 1. Hence, again by 

R(p.; A) = R(A; A) (I + (,u - A) R (A; A))-l, 

which is valid for ,u > 0 with l,u - A IIIR (A; A) II < 1, we prove the exi­
stence of R(p.; A) and IIR(,u; A) II < ,u-l. Repeating the process, we see 
that R (A; A) exists for all A> 0 and satisfies the estimate II R (A; A) II < A-I. 
As D (A) is dense by hypothesis, it now follows, from Corollary 1 of the 
preceding section, that A generates a contraction semi-group of class (Co). 

The "only if" part. Suppose {T f ; t ~ O} is a contraction semi-group 
of class (Co). Then 

Re [Ttx - x, xJ = Re [Ttx, xJ -lix 112 < II Ttx II· Ilxll-llxl12 < O. 

Thus, for xED (A), the domain of the infinitesimal generator A of T, we 
have Re [Ax, xJ = lim Re{t-1 [Ttx - x, xJ} ~ O. Hence A is dissipative. 

qo 
Moreover, we know that R(1 -A) = D(R(I; A)) = X, since A is the 
infinitesimal generator of a contraction semi-group of class (Co), 

Corollary. If A is a densely defined closed linear operator such that 
D (A) and R (A) are both in a B-space X and if A and its dual operator 
A' are both dissipative, then A generates a contraction semi-group of 
class (Co). 

Proof. It sufficies to show that R (I - A) = X. But, since (I - A )-1 
is closed with A and continuous, R (I - A) is a closed linear subspace of X. 
Thus R (I - A) -=I=- X implies the existence of a non-trivial x' E X' such 
that «X_AX),X/)=O for all xED(A). 

Hence x' - A' x' = 0, contrary to the dissipativity of A' and x' -=I=- 0. 
Remark. For further details concerning dissipative operators, see 

G. LUMER-R. S. PHILLIPS [1]. See also T. KATO [6J. 

9. Equi-continuous Groups of Class (Co), Stone's Theorem 

Definition. An equi-continuous semi-group {Tt} of class (Co) is called 
an equi-continuous group 0/ class (Co), if there exists an equi-continuous 

semi-group (ft} of class (Co) with the condition: 
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If we define St by St = Tt for t > 0 and S_t = 1't for t > 0, then 
the family of operators St, -ex> < t < ex>, has the group property 

StS, = St+, (-ex> < t, S < ex», So = 1. (1) 

Theorem. Let X be a locally convex, sequentially complete linear 
topological space. Suppose A is a linear operator with domain D (A) dense 
in X and range R (A) in X. Then A is the infinitesimal generator of an 
equi-continuous group of class (Co) of operators St E L (X, X) iff the 
operators (1 _n-1 A)-m are everywhere defined and equi-continuous in 
n = ± 1, ± 2, ... and in m = 1, 2, ... 

Proof. The "only if" part. Let Tt = St for t > 0 and 1', = S_, for 
t > O. Let A and A be the infinitesimal generator of f, and Tt , respec­
tively. W~ have to show that A =-A. If xED(A), then, by putting 
Xh= h-1 (Th - 1) x and making use of the equi-continuity of Th, 

P(T"x" - Ax) ::::;. P(T"x" - ThAx) + P«(T" -1) Ax) 

< q(Xh - Ax) + P «(Th -1) Ax) 

where P and q are continuous semi-norms on X such that, for a given p, we 
can choose a qsatisfying the above inequality for all h::::::: o and all xE D(A) 

simultaneously. Thus lim T"x" = Ax, and so xE D(A) implies Ax = 
",,"0 

limT,,(h-1 (1\-1)x= limh-l(I-T,,) x=-Ax, Hence -A is an 
h.j.O h,,"O 

extension of A~ In the same way, we can prove that A is an extension of 
-A. Therefore A = -A. 

The "if" part. Define, for t > 0, 

Ttx = lim TIft)x = lim exp(tA (1 - n-1A)-1) x, 
fI.-+OO fI.-+OO 

fIx = lim TIft) x = lim exp(tA(I-n-lA)-l)x, where A =-A. 
fI.-+OO fI.-+OO 

Then Tt and Tt are both equi-continuous semi-groups of class (Co). We 
have 

P (T, ftx - TIft) fIft) x) ::::;. P (Tt Ttx - TIft) Ttx) + P (TIft) ftx - TIft) Tift) x) 

< P«(Tt - TIft») 1'tx) + q(T,x- fIft) x) 

by the equi-continuity of {TIft)} in nand t > O. Thus we have 
lim TIft) fIft) x = T,f,x. We have incidentally proved the equi-con-

Il-+OO 

tinuity of T,T, by the equi-continuity of Tjft) fIft). On the other hand, 
we have TIft) f~m) = f~m) TIft) by the commutativity of (1 - n-1 A )-1 

and (1 - m-1 A)-l Thus (T(ft) T(ft») (T(ft) T!ft») - T(ft) T<ft) and so • t t ,,- I+s ,+" 
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(T, T,) with t > 0 enjoys the semi-group property (T, T,) (T. is) = 

TH.TH •. Hence {T,T,} is an equi-continuous semi-group of class (Co). 
If xE D(A) = D(A), then 

lim h-1(T"T" - 1) x = lim T"h-1(T" - 1) x + lim h-1(T" - 1) x ".0 "lo 11.0 
= Ax + Ax = 0, 

so that the infinitesimal generator Al of {T,T,} is 0 at every xE D(A). 
Since (1 - AI) is the inverse of a continuous linear operator (1 - A1)-1 E 
L(X, X), we see that Al must be closed. Hence Al must be = 0, in virtue 
of the fact that Al vanishes on a dense subset D(A) = D(A) of X. 
Therefore (T,T,) x = lim exp(t . O· (1 - n-1 • 0)-1) X = x, that is, 

Il-+OO 

T,T, = 1. We have thus proved the group property of 5,,-00 < t < 00, 
where 5, = T, and 5_, = T, for t > O. 

Corollary 1. For the case of a B-space X, the condition of the Theorem 
reads: D (A)4 = X and the resolvent (1 - n-1 A )-1 exists such that 

11(1 _n-1 A)-mll :S;;M (for m = 1,2, ... and a1llarge Inl, n~O). (2) 

For the group 5, satisfyingli5,II < M elJ/lI (fJ > 0) for alit, -00< t < 00, 
the condition reads: D (A)4 = X and the resolvent (1 - n-1 A )-1 exists 
sllch that 

IJ(I - n-1A)-mll < M (1-1 n-1 1 fJ)-m (for m = 1,2, ... 

and ali large Inl, n ~ 0). 
(3) 

For the particular case 115,11 < ePl'l for ali t, -00 < t < 00, the condi­
tion reads: D (A)4 = X and the resolvent (1 - n-1 A )-1 exists such that 

11(1 - n-1 A)-III < (1-1 n-11fJ)-1 (for all large In I, n e. 0). (4) 

Proof. As the proof of Corollary 1 and Corollary 2 in Chapter IX, 7. 
Corollary 2 (Stone's theorem). Let U" -00 < t < 00, be a group of 

unitary operators of class (Co) in a Hilbert space X. Then the infinitesimal 
generator A of U, is V-I times a self-adjoint operator H. 

Proof. We have (U, x, y) = (x, U,ly) = (x, U_,y) and so, by diffe­
rentiation, 

(Ax,y) = (x,-Ay) whenever x and YED(A). 

Thus -iA = H is symmetric. A being the infinitesimal generator of U" 
(1 - n-1 A )-1 = (1 - n-1 i H)-I must be a bounded linear operator such 
that II (1 - n-1 iH)-111 :s;; 1 for n = ± 1, ± 2, ... Hence, taking the case 
n = ± 1, we see that the Cayley transform of H is unitary. This proves 
that H is self-adjoint. 
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Remark. If A is of the form A = V 1· H, where H is a self-adjoint 
operator in a Hilbert space X, then condition (4) of Corollary 1 is surely 
satisfied, as may be proved by the theory of Cayley's transform. There­
fore, A is the infinitesimal generator of a group of contraction operators 
U, in X. It is easy to see that such U, is unitary. For, a contraction 
operator U, on a Hilbert space X into X must be unitary, if U,l= U_1 

is also a contraction operator on X into X. 

10. Holomorphic Semi-groups 

We shall introduce an important class of semi-groups, namely, semi­
groups T, which can, as functions of the parameter t, be continued holo­
morphically into a sector of the complex plane containing the positive 
t-axis. We first prove 

Lemma. Let X be a locally convex, sequentially complete, linear 
topological space. Let {T,; t > O} ~ L (X, X) be an equi-continuous semi­
group of class (Co). Suppose that, for all t > 0, T,X ~ D(A), the domain 
of the infinitesimal generator A of T,. Then, for any x EX, T,x is in­
finitely differentiable in t > 0 and we have 

(1) 

where T; = D,T" T;' = D,T;, ... , Ti") = D,Ti"-1). 

Proof. If t> to> 0, then T;x = A T,x = T,_,.A T,.x by the com­
mutativity of A and T., s > O. Thus T; X ~ T H • X ~ D (A) when 
t > 0, and so T;' x exists for all t > 0 and x EX. Since A is a closed linear 
operator, we have 

T;' x = D,(AT,) x = A . lim· n(T'+1/11 - T,) x = A (A T,) x 
11-+00 

= A T'/2A T'/2X = (T;/2)2 x. 

Repeating the same argument, we obtain (1). 
Let X be a locally convex, sequentially complete, complex linear 

topological space. Let {T,; t > O} ~ L (X, X) be an equi-continuous semi­
group of class (Co), For such a semi-group, we consider the following three 
conditions: 

(I) For all t> 0, T,xE D(A), and ther:e exists a positive constant 
C such that the family of operators {(CtT;)"} is equi-continuous in 
n > 0 and t, 0 < t :5: 1. 

(II) T, admits a weakly holomorphic extension TA given locally by 
00 

TAX = .I (A - t)" T~") x/n! for I arg AI < tan-1 (C e-1) , (2) 
and 11-0 

the family of operators {e-AT.a} is equi-continuous in A for 

I arg AI < tlln-1 (2- lc C e-1) with some positive constant k. (3) 
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(III) Let A be the infinitesimal generator of Tt• Then there exists 
a positive constant C1 such that the family of operators {(C1AR(A;A))"} 
is equi-continuous in n ;;:::: 0 and in A with Re (A) > 1 + e, e> o. 

We can prove 

Theorem. The three conditions (I), (II) and (III) are mutually equi­
valent. 

Proof. The implication (I) -+ (II). Let p be any continuous semi­
norm on X. Then, by hypothesis, there exists a continuous semi-norm q 
on X such that P((tT;)" x) < C-"q(x), 0 < C for 1 ;;:::: t> 0, n > 0 
and xE X. Hence, by (1), we obtain, for any t> 0, 

P((A-t)" Tl"lxln!) < IA-;W :~ ~n P ((~ CT;,,,)" x) 

< (IA t tl C-1e)". q(x), whenever 0 < tin < 1. 

Thus the right side of (2) is convergent for I arg A I < tan-1 (C e-1), and 
so, by the sequential completeness of the space X, T;.x is well defined 
and weakly holomorphic in A for largAI < tan-1(Ce-1). That is, for any 
xEX and lEX', the numerical function I(Ttx) of t, t> 0, admits a 
holomorphic extension I(T}.x) for largA/ < tan-1(Ce-1); consequently, 
by the Hahn-Banach theorem, we see that TJ..x is an extension of Ttx for 
larg A / < tan-1(C e-1). Next put St = e-tTt. Then 5; = e-tT; - e-tT, 
and so, by 0 < te-t < 1 (0 < t) and (I), we easily see that the family 
of operators {(2-k CtS;)"} is equi-continuous in t > 0 and n > 0, in virtue 
of the equi-continuity of {Tt} in t > o. The equi-continuous semi-group 
St of class (Co) satisfies the condition that t > 0 implies S,X ~ D (A - I) 
= D(A), where (A -I) is the infinitesimal generator of St. Therefore, 
by the same reasoning applied above to T t , we can prove that the weakly 
holomorphic extension e-;'T;. of St = r'T, satisfies the estimate (3). 

By the way, we can prove the following 

Corollary (due to E. HILLE). If, in particular, X is a complex B-space 

and lim IltT;1I < e-1, then X = D(A). 
ItO 

Proof. For a fixed t > 0, we have lim II (tin) T;,n II < e-1, and so the 
n-->OO 

series 

i (A-t)"T(nlxln! = i {A_/)n nn(~T')" x 
11=0 t ,,=0 tn n! n t/" 

strongly converges in some sector 

{A; II. - tilt < 1 + 15 with some 15 > O} 

of the complex A-plane. This sector surely contains A = 0 in its interior. 
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The implication (II) ~ (III). We have, by (10) in Chapter.IX, 4, 

An+1 00 

(AR(A;A))"+lx=nT/e-Atf'T1xdt for Re(A»O,xEX. (4) 

Hence, putting SI = e-I T I, we obtain 

((0" + 1 + iT) R(O" + 1 + iT; A))"+l x 

= (0" + 1 ;- iT)R+l j e-(a+ir)If'Slxdt, 0" > O. 
n. 0 

Let T < o. Since the integrand is weakly holomorphic, we can deform, 
by the estimate (3) and Cauchy's integral theorem, the path of integra­
tion: 0 <t < 00 to the ray: reiO (0 < r < 00) contained in the sector 
o < arg A < tan-1 (2- k C e-1) of the complex A-plane. We thus obtain 

((0" + 1 + iT) R(O" + 1 + iT; A))"+l x 

( + 1 + . )R+l 00 . 
0" 1 T J -(a+ir),.,O" inO S iOd = , ere ,.iO x e r, 

n. 0 

and so, by (3), 

P(((O" + 1 + iT) R(O" + 1 + iT; A))"+l x) 

1(0" + 1 + iT) IR+I 00 • < sup P (S"iOX) n' J e(-acosO+TSmO), r"dr 
O<r<OO . 0 

10" + 1 + iTIR+l 
< q' (x) 1 T sin () _ 0" cos () IR+I' where q' is a continuous semi-norm on X. 

A similar estimate is also obtained for the case T > o. Hence, combined 
with (7) in Section 4, we have proved (III). 

The implication (III) ->' (I). For any continuous semi-norm p on X, 
there exists a continuous semi-norm q on X such that 

p ((C1AR(A; A)" x) ~ q(x) whenever Re(A) > 1 + e, e> 0, and n > o. 
Hence, if Re(~) > 1 + e, we have 

P((A-~)" R(Ao; A)" x) < i~:r~;:q(x) (n = 0, 1, 2, ... ). 

Thus, if IA - ~ IIC1 I~ I < 1, the resolvent R (A, A) exists and is given by 
00 

R(A;A)x= ~ (~-A)" R(~;A)"+lx such that 
,,=0 

p (R (A; A) x) < (1 - Cl 1 lAo 1-1 I A - Ao I) -1 q (R (Ao; A) x). 

Therefore, by (III), there exists an angle 00 with 11:/2 < 00 < 11: such that 
R (A; A) exists and satisfies the estimate 

p (R (A; A) x) < I~I q' (x) with a continuous semi-norm q' on X (5) 
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in the sectors 11:/2 < arg A < 00 and -00 :::;: arg A < - 11:/2 and also for 
Re (A) > 0, when I A I is sufficiently large. 

Hence the integral 

1',x=(211:i)-1 fe"'R(A;A)xdA (t>O, xEX) (6) 
c. 

converges if we take the path of integration Ca = A(O'), -ex:> < 0' < ex:>, 

in such a way that lim IA(O') I = ex:> and, for some E > 0, 
1"1 too 

11:/2 + E < arg A (0') < 00 and -00 :::;: arg A (0') < -11:/2 - e 

when 0' t + ex:> and 0' i-ex:>, respectively; for 10'1 not large, A (0') lies 
in the right half plane of the complex A-plane. 

We shall show that T, coincides with the semi-group T, itself. We 

first show that lim f,x = x for all xE D(A). Let Xo be any element 
'to 

E D (A), and choose any complex number Ao to the right of the contour 
Ca of integration, and denote (AoI - A) Xo = Yo' Then, by the resolvent 
equation, 

1',xo = 1', R(Ao; A) Yo = (211:i)-1 f e"'R(A; A) R(Ao; A) yodA 
c. 

= (211:i)-1 f i'(AO-'A)-lR(A;A) yodA 
c, 

- (211:i)-1 f e"'(Ao-A)-l R(Ao; A) yodA. 
c. 

The second integral on the right is equal to zero, as may be seen by 
shifting the path of integration to the left. Hence 

t,xo = (211:i)-1 f i'(Ao-A)-l R(A; A) yodA, Yo = (AoI -A) Xo' 
c, 

Because of the estimate (5), the passage to the limit t i 0 under the 
integral sign is justified, and so 

lim t,xo = (211:i)-1 f (Ao - A)-l R (A; A) yodA, Yo = (AoI - A) Xo. 
'.0 c. 

To evaluate the right hand integral, we make a closed contour out of the 
original path of integration Ca by adjoining the arc of the circle I A I = l' 

which is to the right of the path Ca, and throwing away that portion 
of the original path Ca which lies outside the circle IA I = 1'. The value of 
the integral along the new arc and the discarded arc tends to zero as 
l' t ex:>, in virtue of (5). Hence the value of the integral is equal to the 
residue inside the new closed contour, that is, the value R(Ao; A) Yo = xO' 
We have thus proved lim T,xo = Xo when Xo ED (A). 

'.0 
We next show that f' x = A f,x for t> 0 and x EX. We have 

R(A; A) X = D(A) and AR(A; A) = AR(il.; A) -I, so that, by the 
17 Yoslda, Functional Analysis 
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convergence factor ;t, the integral (2ni)-1 f ;t AR(A; A)x dA has a 
A C. 

sense. This integral is equal to A T,x, as may be seen by approximating 
the integral (6) by Riemann sums and using the fact that A is closed: 
lim x,. = x and lim Ax" = y imply xE D(A) and Ax = y. Therefore 

tI-+OO tI-+OO 

A f,x = (2ni)-1 f eAJ AR(A; A) XdA, t> o. 
c. 

On the other hand, by differentiating (6) under the integral sign, we 
obtain 

T,x = (2ni)-1 f e'JAR(A; A) XdA, t> O. (7) 
c. 

The difference of these two integrals is (2ni)-1 f eAJxdA, and the value 
c. 

of the last integral is zero, as may be seen by shifting the path of integra-
tion to the left. 

Thus we have proved that x(t) = T,xo, xoE D(A), satisfies i) 
limx(t) = xO' ii) dx(t)/dt = Ax(t) for t> 0, and iii) {x(t)} is by (6) of '.0 
exponential growth when t t 00. On the other hand, since Xo E D (A) 
and since {T,} is equi-continuous in t > 0, we see that x(t) = T,xo also 
satisfies limx(t) = xo, dx(t)/dt = Ax(t) for t > 0, and {x(t)} is bounded 

'.0 
when t > O. Let us put x (t) - x (t) = Y (t). Then lim y (t) = 0, dy (t)/dt = '.0 
Ay (t) for t > 0 and {y (t)} is of exponential growth when t too. Hence we 
may consider the Laplace transform 

We have 

00 

L (A; y) = f e-AJ y (t) dt for large positive Re (A). 
o 

/I II P 
f e-AJy' (t) dt = f e-AJ Ay(t) dt = A f e-JJy(t) dt, 0 ~ IX < (J < 00, 

.. '" '" 
by approximating the integral by Riemann sums and using the fact that 
A is closed. By partial integration, we obtain 

, II 
f e-JJy'(t) dt = e-J.fIy({J) -e-Nsy(lX) + A f e-JJy(t) dt, .. .. 

which tends to AL (A; y) as IX t 0, {J t 00. For, y (0) = 0 and {y ({J)} is 
of exponential growth as (J t 00. Thus again. by using the closure pro­
perty of A, we obtain 

AL(A; y) = AL(A; y) for large positive Re(A). 

Since the inverse (U _A)-l exists for Re(A) > 0, we must haveL (A; y) = 0 
when Re (A) is large positive. Thus, for any continuous linear functional 
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IE X', we have 
00 J e-All (y (t)) dt = 0 when Re (A) is large positive. 

o 

We set A = <1 + iT: and put 

ga(t) = e-at/(y(t) or = 0 according as t:2::: 0 or t < o. 
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Then, the above equality shows that the Fourier transfonn 
00 

(2n}-1 J e- iTI ga(t) dt vanishes identically in T:, -00 < T: < 00, so 
-00 

that, by Fourier's integral theorem, ga(t) = 0 identically. Thus I(y(t)) = 0 
and so we must have y(t) = 0 identically, in virtue of the Hahn-Banach 
theorem. 

Therefore Tlx = Ttx for all t > 0 and xE D(A). D(A) being dense in 

X and TI , Tt both belonging toL (X, X), we easily conclude that T,x = Tlx 
for all x E X and t> o. Hence, by defining To = I, we have 1't = TI 
for all t > O. Hence, by (7), T;x = (2ni)-1 J ~AR(A; A) XdA, t> 0, 

C, 

and so, by (1) and (5), we obtain 

(T;,,,)" x = Tl") x = (2ni)-1 JeAtA"R(A; A) XdA, t>O. 
c. 

Hence 
(tT;t x = (2ni)-1 /. enAl(tA)" R(A; A) XdA, t> O. 

Therefore, by (III), 

P «(tT;)" x) < (2n)-1 q(x) J I enAll t"IA 1"-1 d IA I. 
c. 

If 0 < t ~ 1, then the last integral is majorized by C3 where C3 is a 
certain positive constant. This we see, by splitting the integration path 
C2 into the sum of that in the right half-plane Re(A} > 0 and those in 
the left half-plane Re(A) < 0, and remembering the integral representa­
tion of the F-function. 

References. The result of the present section is due to K. YOSIDA [6J. 
See also E. HILLE [3J and E. HILLE-R. S. PHILLIPS [IJ. 

11. Fractional Powers of Closed Operators 

Let X be a B-space, and {Tt ; t :2::: O} ~ L (X, X) an equi-continuous 
semi-group of class (Co), We introduce 

1 a+ioo 
I,.",(A) = 2ni J ~-Ir' dZ(<1 > 0, t > 0, A > 0,0 < (X < 1). 

a-soo 

= 0 (when A < 0) I (1) 
17· 
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where the branch of z'" is so taken that Re (~) > 0 for Re (z) > O. This 
branch is a one-valued function in the z-plane cut along the negative 
real axis. The convergence of the integral (1) is apparent in virtue of the 
convergence factor e- Iz",. Following S. BOCHNER [2J and R. S. PHILLIPS 
[5J, we can show that the operators 

00 

ft,,,,x = ftx = J I"", (s) T.xds (t > 0), 
o 

= x (t = 0), (2) 
constitute an equi-continuous semi-group of class (Co). Moreover, we can 

show that {i,} is a holomorphic semi-group (K. YOSIDA [8J and V. BALA­

KRISHNAN [lJ). The infinitesimal generator A = A", of i , is connected 
with the infinitesimal generator A of T, by 

A",x=-(-A)"'x for xED(A), 

where the fractional power (-A)'" of (-A) is given by 
. 00 

(3) 

(-A)'" x = sm om J J.",-1 (AI - A)-l (-A x) dJ. for xED (A) (4) 
:n; 0 

and also by 
00 

(-A)"'x=r(-.x)-l J J.-"'-l(T).-I)xdJ. for xED(A). (5) 
o 

Formula (4) and (5) were obtained by V. BALAKRISHNAN. For the 

resolvent of A"" we have the following formula due to T. KATO: 
.00", 

(p,I - 1",)-1 = sm rx:n; J (r 1- A)-l r dr. (6) 
:n; 0 ",2 - 2",r'" cos rx:n; + r2'" 

In this way, we see the abundance of holomorphic semi-groups among 
the class of equi-continuous semi-groups of class (Co). 

To prove the above result, we have to investigate the properties of 
the function I"", (J.) in a series of propositions. 

Proposition 1. We have 
00 

e-1a'" = J e-J.a I"", (J.) dJ. (t> 0, a > 0). (7) 
o 

Proof. It is easy to see, by the convergence factor e-z"'t, that the 
function I"", (J.) is of exponential growth in J.. By Cauchy's integral theo­
rem, integral (1) is independent of a > o. Let a > a = Re (z) > O. 
Then, by Cauchy's theorem of residue, . 

00 1 a+loo [ J.(z-a)] ).=00 J e-J.a I, '" (J.) dJ. = ~ J _8 - e-z"'1 dz 
0' :lU a-ioo z - a ).=0 

a +;00 

-1 J 1 -z"'1 d -la'" 
=2:n;i . z_a e z=e . 

<1-<00 
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Proposition 2. We have 

I" .. ().) ~ 0 for all ). > o. (8) 

Proof. If we set a" = g(a), e-'" = h(x), then 

(_1),,-1. g(") (a) ~ 0 (n = 1, 2, ... ), g(a) > 0 and 

(-1)"· h(") (x) > 0 (n = 0, 1, ... ), when a >0 and x > O. 

Hence k(a) = h(g(a» = e-/(J" satisfies 

(-I)" k(") (a) = (-1) h' (x) (_1)"-1 g(") (a) 

+.I C~!"l".",.J (-I)'" h(P,) (x)(-I)"l g(P1+1) (a) ... (-I)". g(".+1) (a) (P) 

(C!;!~ 0, Po > 2, PI ~ 0, ... , P. > 0 with Po < .i P. = n, and 11 arbitrary) 
.~1 

> 0, (n = 0, 1, ... ). 

(9) 

That is, the function k(a) = e-/(J" is completely monotone in a > O. 
We next prove the Post-Widder inversion lormula 

I ().) = Jim (-1)~ (~)"+1 k(") (~) ). > 0 (10) 
'," fI-+<X) n ! l l ' 

so that, by (9), I, ... ().) ~ O. The proof of (10) is obtairied as follows. We 
find, differentiating (7) n-times, 

k(") (;) = (-I)" j s"e-·"/''/" .. (s) ds. 
o 

Substituting this into the right side of (10), we get 
00 

n,*l 1 f [$ ($ )J" ~ e"n ITT' exp 1-T I" .. (5) ds. 
o 

Since 
lim n"!V2nn e"n! = 1 (Stirling's formula), 

fI-+<X) 

we have to prove that 

. y'2; fOO 8/2 [ S (S )J") \ 1",.(Ao) = ~ Ton Ao' exp 1- Ao 1" .. (5 ds, Ao> O. (11, 

Let 'fJ be a fixed positive number such that 'fJ < Ao. We decompose the 
last integral into three parts, 

00 A.-Oj A.+'1 00 

f = f + f + f = II + I,. + 13' 
o 0 A.-Oj A.+'1 

Since x . exp (1 - x) increases monotonically in [0, 1] from 0 to 1, we see, 
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by the boundedness of I",,(s) in s, that lim Jl = O. Next, since 
, 11-+00 

x· exp(l- x) decreases monotonically in [1,00] from 1 to 0, we have 

Ao ~ "I . exp (1- Ao t "I) < (J < 1, 

and so, since I" .. (s) is of exponential growth as s t 00, 

IJal < n3/2 e"o {J"-"o i (~t exp (- n;J 1/" .. (s) Ids -+ 0 as n -+ 00. 

By the continuity of I" .. (s) in s, we have, for any positive number e, 

I"", (-lo) - e ~ I" .. (s) < I" .. (-lo) + e whenever Ao - 'YJ < s ~ Ao + 'YJ, 

if we take 'YJ > 0 sufficiently small. Thus 

(I"", (-lo) - e) J 0 ~ J 2 ~ (I" .. (-lo) + e) J 0, (12) 
where 

.lo+'1 [S (S )]" Jo = J n3/2 l • exp 1- l ds. 
.lo-'1 "0 "0 

(13) 

The whole preceding argument is true for the particular case of the 
completely monotone function 

00 

k(a) = a-I = J e-MdA. 
o 

In this case, kCII) (n/A-o) = (-1)" n! (Ao/n)"+1. Substituting this in (10), we 
find that (10) holds for I"", (A) = 1. Since (10) and (11) are equivalent, 
(11) must also hold for I, '" (A) = 1. Thus, since lim J1 = 0 and lim J 3 = 0 

, 11-+00 11-+00 

for a general I" .. , we obtain 

1 = lim ~ A;IJo. 
11-+00 

Therefore, by (12), we get (11) and the equivalent formula (10) is proved. 

Proposition 3. 
00 

J It, .. (A) dA = 1, (14) 
o 

00 

IH 5,,,, (A) = J I" .. (A - p.) Is, .. (p.) dp.. (15) 
o 

Proof. Since the function I" .. (A) is non-negative, we have, by the 
Lebesgue-Fatou lemma and (7). 

00 

J lim (e-MI" .. (A») dA~ lim e-""" = 1. 
o aj,O aj,O 

Thus I" .. (A) is integrable with respect to A over (0,00) and so, again by 
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the Lebesgue-Fatou lemma and (7), we obtain (14). We next have, by (7), 

fe-All U I"" (A -I-') Is,,, <1-') dl-'} dA 
= f e-(.l.-I')" I"" (A -I-') d (A -I-') . J e-I'" Is,,, <1-') dl-' 
- -/a" -s,," _ -(,+s)"" _ f -AlII (1) d 1 '-,. 0 - e e - e - e '+s," II. 11., a" . 

Hence, by inverting the Laplace transform as in the preceding section, 
we get (15). 

Proposition 4. We have 
00 

J 8f"" (A)/8t . dA = 0, t> O. (16) 
o 

Proof. By deforming the path of integration in (1) to the union of 
two paths re-i6 (-00 < - r < 0) and rei6 (0 < r < 00), where n/2 :::;; 
() < n, we obtain 

1 00 

I",,(s) = n J exp(sr· cos () - tr" cos ex 0) 
o 

X sin (sr· sin 0 - tr" sin exO + 0) dr. 
Similarly, by deforming the path of integration in 

a+ioo 

81"" (A)/8t = 2~i f &,,"-"" (-z") dz 
a-.oo 

(17) 

to the union oftwo paths, re-·6 (- 00 < - r < 0) and re·8 (0 < r < 00), 
we obtain 

I:,,,(s) = 8I",,(s)/8t = ( n1) j exp(sr. cos 0 - tr" cos ex 0) 
o 

X sin (sr. sin 0 - tr" sin ex 0 + ex 0 + 0) r" dr. (IS) 
If we take 

o = 0" = n/(1 + ex), 
then 

I:,,,(s) ==! j exp(sr+ tr") cosO,,)· sin(sr-tr")sinO .. )r"dr. (19) 
o 

Thus we see, by the factor r" (0 < ex < 1), that I:, .. (s) is integrable with 
respect to s over (0,00). Hence, by differentiating (14) with respect to t, 
we get (16). 

Weare now able to prove 
Theorem 1. {T,} is a holomorphic semi-group. 

Proof. That {T,} enjoys the semi-group property T, T. = T,+. 
(t, s> 0) is clear from (2) and (15). We have, by (2) and (17) with 0 = 0"" 

A 1 00 00 

T,x = - f T.xds J exp(sr + tr") cos 0 .. ) 
no 0 

. X sin (sr - trj sin 0 .. + 0 .. ) dr, (20) 
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which gives by the change of variables 

s = vtl/"', r = ur llIX , (21) 

1 00 00 

T,x = - J Tv/II",' xdv J exp«(uv + u"') cos 8",) 
no 0 

X sin «(uv - u"') sin 8", + 8",) duo (20') 

The second integral on the right is exactly 1t. A,,,, (v), and so, by the 
equi-boundedness of {II T,x Ii} in t > 0, we see, by (14), that 

00 

"i,x" < sup" T,x" J A,,,, (v) dv = sup" T,x". (22) 
@o 0 @O 

By passing to the limit t to in (20'), which is justified by the integra­
bility of A,,,,(v) over [0,00), we obtain, by (14), 

00 

s-lim T,x = J A ",(v) dv· x = X. 
'to 0' 

Hence {T,} is an equi-continuous semi-group of class (Co) such that (22) 
holds. 

By the integrability of I:, .. (s) = 81" .. (s)/8t over [0,00) and the equi­
continuity of {T,}, we obtain, by differentiating (2) with respect to t 
under the integral sign, 

00 

:r;x = J I:,,,,(s) T.xds 
o 
1 00 00 

= - J T.xds J exp«(sr + tr"') cos 8",)· sin«(sr-tr"') sin 8",) r"'dr, 
no 0 

which is, by the change of variables (21). 

00 

= J (T ",11'" • x) '/~,,,, (v) dv . rl. 
o 

(23) 

Thus, by the integrability of I~,,,,(v) over [0,00) and the equi-continuity 
of {T,} in t > 0, we see that 

lim "ti;" < 00, 'to 
that is, {T,} is a holomorphic semi-group. 

Theorem 2. The infinitesimal generator A".x of i, is connected with 
the infinitesimal generator A of T by (3), where (-A)'" is defined by (4) 
and also by (5). We have, moreover, (6). 
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Proof. By (16) and (23), we obtain 

A 1 00 00 

T;x=- f (T.-1)xdsJ exp«(sr + tr") cosO,,) 
no 0 

X sin«(sr-tr") sin 0,,) r"dr. (24) 

If x E D(A), then s-lim s-l(T. - I) x = Ax and II (T. - I) . x II is boun­
• .j,o 

ded in s > O. Thus, we obtain, letting t to in (24), 

s-lim t;x =...!.. j (T. - I) x ds j exp (sr. cos 0,,) . sin (sr· sin 0,,) r'" dr 
40 no 0 

00 

= (-T (_IX))-l f s-,,-1 (T. -1) xds, 
o 

because, by the T-function fonnulae 
00 

T(z) = c' f e-cr ,.-1 dr (Re (z) > 0, Re (c) > 0) (25) 
o 

and 
T(z) T(l - z) = nIsin nz, 

we obtain, by (IX + 1) 0" = n, 

(26) 

...!.. j exp (sr. cos 0",) . sin (sr. sin 0,,) r" dr = (ni)-l 1m {j e-,(-seiO,,) r"dT} 
no 0 

= (ni)-1 1m «(_seiO,,)-,,-l) T(1 + IX) = S-,,-l n-1 sin (IXn) T(l + IX) 

_ -"'-1 -r(l + <X) _ (-T(- ))-1 -,,-1 
- S r (-<X) r(l + <X) - IX s . 

Thus, by i;x = AA",i,x (when t > 0), the continuity at t = 0 of f,x and 

the closure property of the infinitesimal generator A",., we obtain 

00 

A",. x = (-T(-IX))-l f S-"'-l (Ts -1) xds when xED (A). 
o 

00 

Hence, by (25),. (26) and (t1 - A)-l = f e-tsTsds, we obtain 
o 

A"x = T(- IX)-l T(l + IX)-l i {I e-st rdt} (I - Ts) xds 
. 00 

= SIll <xn f r «(t1 - A)-l - t-1 1) xdt 
n 0 

. 00 

=sIll<xn f r-1 (t1-A)-lAxdt for xED(A). 
n 0 
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Finally we have, by taking () = n in (17) and (2), 

00 

(p,1 - 1,,)-1 = f e-P'T,dt 
o 

00 00 00 

= n-1 f dr f e-srT.ds f exp (-,ut - tr'" cos IXn) . sin (tr" sin IXn) dt 
000 

= n-11 (1'1 - A)-1 {l exp (-,ut - tr" cos IXn) . sin (tr'" sin IXn) dt} dr 

.00" 

= SIll 1X~ f (1'1 _ A)-1 l' dr. 
jf 0 ",2 - 21'''''' cos lXjf + ,-2" 

Remark. Fonnula (2) was devised by S. BOCHNER [2J without de­

tailed proof. Cf. R. S. PHILLIPS [5]. That T, is a holomorphic semi-group 
was proved by K. YOSIDA [8], V. BALAKRISHNAN [1] and T. KATO [2]. 
Fonnulae (4) and (5) are due to V. BALAKRISHNAN [1], who, by virtue of 
(4), defined the fractional power (-A)'" of a closed linear operator A 
satisfying the condition: 

the resolvent R (A; A) = (U - A )-1 exists for Re (A) > 0 

and sup IRe (A) I· !IR(A; A) II < 00. (27) 
Re(A) >0 

He also proved that (-At enjoys properties to be demanded for the 
fractional power. In fact we have 

Theorem 3. Let a closed linear operator A satisfy condition (27). Then, 
by (4), a linear operator (-A)'" is defined, and we have. 

(-A)'" (-A)P x = (_A)'"+Il x if x E D(A2) and 

with IX+P<l, 

0< IX, P 
(28) 

s-lim (-A)'" x = - A x if xED (A), (29) 
"t1 

s-lim (-A)'" x = x if s-lim AR(A; A) x = 0, (30) 
"to AtO 

and, if A is the infinitesimal generator of an equi-continuous semi-group 
T, of class (Co). 

(A,,)p = A..p, where A" is the operator A" defined through 
(31) 

Kato's formula (6). 

Remark. The last fonnula (31) is due to J. WATANABE [1]. 

Proof. 11r'"-1(r1-A)-1(-Ax) II is, by (27), of order o (r'"-2) when 
rtoo, and, by (r1-A)-1(-Ax)=x-r(r1-A)-1x and (27), it is 
of order 0 (r'"-1) when l' -i- O. Thus the right side of (4) is convergent. 
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It is clear that xED (A2) implies (-A)II xED (A). For, by approximat­
ing the integral by Riemann sums and making use of the closure property 
of A, we have (-A)lI x ~ D(A). We can thus define (-A}"'(-A}lIx. 

(-A)'" (-A}II x = Sinncxn sin !n j j ;!-If.t,,,-lR(A; A) R(P;A}A2 xdAdf.t 
o 0 

can be rewritten, decomposing the domain of integration into those for 
which A > I' and A < 1', as follows. 

sinncxn sin !n J (<1-1 + (1'"-1) eta j A"'+1I-1 R(AO"; A) R(A; A} A2xdA. 
o 0 

By the resolvent equation R(A; A} - R(P; A) = (p -A) R(A; A} R(P; A) 
and R(A; A) (-A) = I -AR(A; A) valid on D(A), we obtain 

R(AO"; A} R()'; A) AIX = (l-O"}-l{-O"R()'O"; A) + R()'; An (-Ax), 
and hence 

(-A}'" (-A}II x 
, 

= sin cxn sin fJn s-lim J (d'-1 + 0-"'-1) (1 _ 0")-1 dO" 
n n ttl 0 

00 

X J )."'+11-1 (-O"R(lO"; A) + R()'; A») (-Ax) dl 
o 

= JOO (sin cxn sin fJn J1 ,jI-l + a"'-I_ a-'" - a-II dO") 
n n 1-a 

o 0 

X )."'+11-1 R()'; A}(-Ax) d)'. 

The coefficient ( ) above is evaluated as n-1 sin n (lX + (i), as may be 
seen by expanding (1- 0"}-1 into powers of 0". We have thus proved (28). 

00 

To prove (29), we shall make use of f ).",-1 (1 + ).)-ld)' = n/sinlXn. 
o 

Thus 

(-A}'" x- (-A) x = sinncxn i l"'-l(R(l; A) -,l ! 1) (-Ax) d)'. 

We split the integral into two parts, one from 0 to C and the other from 
C to cx>. For a fixed C, the first part goes to zero as lX t 1, since 
R(l; A) (-Ax) = x-)'R(i.; A} x is bounded in). > O. The second part 
is, in norm, 

::;: nst; .::) C",-l ;~~ /I ()'R(A; A) -,l ~ 1) A x /I. 
We have s-lim).R().; A} x = xby X-).R(A; A) x = R(l; A) (-Ax) and 

Atoo 
(27). Hence s-lim of the second part is arbitrarily near 0 if we take C 

"'t1 
sufficiently large. This prove~ (29). 
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To prove (30), we split the integral into two parts, one from 0 to C and 
the other from C to 00. Because of (27), the second part tends to zero 
as IXtO. By R(A;A)(-Ax)=X-AR(A;A)x and the hypothesis 
s-limAR(A; A) x = 0, the first is, for sufficiently small C, arbitrarily 

.qo 
near the value (IXn)-1 sin IXn· C'x, which tends to x when IX t o. This 
proves (30). 

We shall prove (31). By virtue of the representation (6), we obtain 

(PI - (A~)fJ)-1 = j j (2ni)-'I.f- : -VrfJ - ; VrfJ) 
o 0 \i.t-i..·e I'-i..·e 

X ( 1. ___ 1_:--)(1"1 _A)-ldAdC. 
i.. - CD< • e-m .. i.. - C~· e"'~ .. 

This double integral is absolutely convergent in norm, and so we may 
interchange the order of integration. Hence we obtain (31), because the 
inner integral is 

= (2ni)-'1. J~(- 1 -m~ - 1 "",,)dz 
l'-zIl z-~e z-~e 

C 

= (2ni)-1 f- -:/ -m..p- -..p1 m..p) 
\i.t-c e I'-C e 

where the path of integration C runs from 00 ein to 0 and from 0 to 
00 e-m. 

An example of the fractional power. If IX = 1/2, then we have, by 
taking (J = n in (17), 

00 

11,1/2 (s) = n-1 f e-sr sin (trl/2) dr = n-1 Vn t(23 VstS . e-"/4s. (32) 
o 

Thus, if we take the semi-group {T,} associated with the Gaussian kernel: 

(T,x) (u) = 2 ,~ j e-(u-v)'/4s x (v) dv, xE C [-00,00]' 
I'.ns -00 

then (t,,1/2 X) (u) = j 1 j x (v) 4:S2 e-«(U-V)'+")/4s dsj dv 
-00 0 

00 

.n J t2 + (~_V)2x(v)dv, 
-00 

that is, the semi-group {t,} is associated with the Poisson kernel. In this 
case, the infinitesimal generator A of T, is given by the differential opera­
tor d2/ds'l., while the infinitesimal generator .J of 1', is given by the singular 
integral operator 00 

A • 1 J x(s-v) -x(s) 
(Al/2X) (s) = s-hm - I + hI dv, 

lI~O .n v 
-00 

and not by the differential operator d/ds. For another example, see 
K. YOSIDA [30]. 
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12. The Convergence of Semi-groups. The Trotter-Kato Theorem 

We shall denote by exp(tA) the semi-group of class (Co) with the 
infinitesimal generator A. Concerning the convergence of semi-groups, 
we have 

Theorc:m 1. Let X be a locally convex, sequentially complete complex 
linear space. Let {exp(tA,,)} ~ L (X, X) be a sequence of equi-continuous 
semi-groups of class (Co) such that the family of operators {exp(tA,,)} is 
equi-continuous in t > 0 and in n = 1, 2, ... Thus we assume that, for 
any continuous semi-norm p (x) on X, there exists a continuous semi-norm 
q (x) on X such that 

p(exp(tA,,) x) < q(x) for all t > 0, xE X and n = 1, 2,... (1) 

Suppose that, for some Ao with Re(Ao) > 0, 

lim R (At>; A,,) x = J (Ao) x exists for all x E X in such 
......00 

a way that the range R (J (Ao» is dense in X. 
(2) 

Then J (Ao) is the resolvent of the infinitesimal generator A of an equi­
continuous semi-group exp(tA) of class (Co) in X and 

limexp(tA,,)x=exp(tA)x for every xEX. (3) 
.......00 

Moreover, the convergence in (3) is uniform in t on every compact interval 
of t. 

For the proof, we prepare 

Lemma. Let T, = exp(tA) be an equi-continuous semi-group of class 
(Co) in X. Then, for any continuous semi-norm p (x) on X, there exists a 
continuous semi-norm q (x) on X such that 

P(T,x - (1 - tn-1 A)-" x) < (2n)-1 t2 q(A2 x) (n = 1, 2, .•. ) 
(4) 

whenever xED (A 2) . 

Proof. Set T(t, n) = (I -n-1tA)-". Then we know (Chapter IX,7) 
that {T(t, n)} is equi-continuous in t > 0 and n = 1,2, ... Moreover, 
we have (Chapter IX,4), for any xED (A), 

D,T(t, n) = (I - n-1tA)-"-1 Ax = A (1 - n-1tA)-"-1 x, 

D,Tx = T,Ax = AT,x. 

Thus, by the commutativity of T, and T(t, n), 
, 

T,x - T(t, n) x = J [D.T(t - s, n) T.x] ds 
o 

= i T(t-s,n)T.(Ax-(I- t n S Atl AX)ds, xED(A). 

(5) 



270 IX. Analytical Theory of Semi-groups 

Hence, if x E D(AZ), we have, by (I - m-1A)-lAx = - m (I -­
(I - m-1A)-1)x, 

t 

p(Ttx-T(t,n)x)< J p[T(t-s,n)Ts(l-n-1 (t-s)A)-lS n t AZxJds. 
o 

and so, by a continuous semi-norm q(x) on X which is independent of x 
andn, 

Corollary. For any xED (A2), s> 0 and t ~ 0, 

P (Ttx - (I - sA)-[tls) x) < sql (A x) + t; q(A2X), where 

ql (x) is a continuous semi-norm on X which is indepen- (6) 

dent of x, t and s, and [tis] is the largest integer < tis. 

Proof. We have, for t = ns, 

P(Tnsx- (I -sAt" x) < 2-1 stq(A~x). 

If t = ns + u with ° ::;: u < s and n = [tis], 

P(Ttx - T nsx) = P ( i T~Xda)::;: i P (Ta Ax) da < sql (Ax). 
ns "s 

Proof of Theorem 1. By (1) and by (11) in Chapter IX, 4, we see that 
{(Re (A) R (A; A,,)"')} is equi-continuous in Re (A) > 0, in n = 1, 2, ... and 
in m = 0, 1, 2, . .. From this and by (2), we can prove that] (Ao) = 
(AoI - A)-l with some A and 

lim R(A; A,,) x = R(A; A) x whenever Re(A) > 0, and) 

t;::'onvergence is uniform with respect to A on every com- (7) 

pact subset of the right half-plane Re(A) > 0. 

To this purpose, we observe that 
00 

R(A; An) X = .I (,1.0-,1.)'" R(Ao; A,,)"'+! x (for IA-AoIIRe(Ao) < 1) 
",=0 

and that the series is, by the equi-continuity of {(Re(Ao) R(~; A;.»"'} in 
n = 1, 2, ... and m = 0, 1, 2, •.. , uniformly convergent for IA-AoII 
Re (Ao) < 1 - e and n = 1, 2, ... Here e is a fixed positive number. There­
fore, for any (J > 0, there exists an mo and a continuous semi-norm q(x) 
on X such that, for 1,1. - Ao II Re (Ao) ::;: 1 - e, 

.... 
p (R (A; An) X - R (A; An') x) < .I lAo-AI"'. 

",=0 
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Hence, by (2), we see that lim R (.l; A .. ) x = J (.l) x exists uniformly for 
~ 

IA - Ao II Re (Ao) < 1 - E. In this way, extending the convergence domain 
of the sequence {R(.l; A .. )}, we see that 

lim R (.l; A) x = J (.l) x exists and the convergence is uniform 
~ 

on any compact set of .l in the right half-plane Re (.l) > o. 
Thus J (.l) is a pseudo-resolvent, because J (.l) satisfies the resolvent 
equation with R (.l; A .. ) (n = 1, 2, ... ). However, by R (J (Ao))" = X and 
the ergodic theorem for pseudo-resolvents in Chapter VIII, 4, we see that 
J (.l) is the resolvent of a closed linear operator A in such a way that 
J(.l) = R(.l; A) and D(A) = R (R(.l; A)) is dense in X. 

Thus we see that exp(tA) is an equi-continuous semi-group of class 
(Co) in X. We have to show that (3) is true. But we have, by (6), 

P ((exp (tA .. ) - (1 - SA .. )-[I/']) (1 - A .. )-2 x) 

:::;; sq1 (A .. (1 - A .. )-2 x) + 2-1 tsq(A;(1 - A .. )-2X) , 

for any xE X, s> 0 and t ~ o. 
The operators 

A .. (1 - A .. )-1 = (1 - A .. )-1 - 1, A .. (1 - A)-II = A .. (1 - A .. )-1 (1 - A .. )-l 

and A;(1 -A .. )-II = (A .. (1 -A .. )-1)1I 

are equi-continuous in n = 1, 2, ... On the other hand, by (7), 

lim (1 - SA .. )-[I/S] (1 - A .. )-2 x = (1 - sA) -[II.] (1 - A)-2 x 
~ 

uniformly in s and t, if s> 0 is bounded away from 0 and 00, and if t 
runs over a compact interval of [0,00). Moreover, we have, by (6), 

P (exp(tA) - (1 - SA)-[I/']) (1 _. A)-2x) :::;; sq1 (A (1 - A)-2X ) 

+ 2-1tsq(A2(1 _A)-2x) 

for every x E X, s > 0 and t > O. Thus, by taking s > 0 sufficiently 
small, we see that 

lim exp(tA .. ) y = exp(tA) y for any y E R(1'; A)2. X, 
~ 

and the convergence is uniform in t on every compact interval of t. 
R(1;A)2. X being dense in X, we see, by the equi-continuity of exp 
(tA) and exp(tA .. ) in t > 0 and in n = 1,2, ... , that (3) holds. 

Theorem 2. Let a sequence {exp(tA .. )} of equi-continuous semi-groups 
of class (Co) in X be such that {exp (tA .. )} is equi-continuous in t ~ 0 and 
in n = 1,2, ... If, for each xE X, 

lim exp(tA .. ) x = exp(tA) x 
~ 
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uniformly with respect to t on every compact interval of t, then 

lim R(A; All) x = R(A; A) x for each xE X and Re(A) > 0 
11-+00 

and the convergence is uniform on every comp;'lct set of A 
in the right half-plane Re(A) > o. 

Proof. We have 
00 

R(A; A) x - R(A; All) x = J e-Al(exp(tA) - exp(tAII» xdt. 
o 

Hence, splitting the integral into two parts., one from 0 to C and the 
other from C to 00, we obtain the result. 

Remark. For the case of a Banach space X, Theorem 1 was first 
proved by H. F. TROTTER [1]. In his paper, the proof that] (A) is the 
resolvent R(A; A) is somewhat unclear. This was pointed out by T. KATO. 
The proof given above is adapted from Kato's modification of Trotter's 
proof. For perturbation of semi-groups, see E. HILI.E-R. S. PHILLIPS [I], 
T. KATO [9] and K. YOSIDA [31]. 

13. Dual Semi-groups. Phillips' Theorem 
Let X be a locally convex sequentially complete linear topological 

space, and {T,; t > O} ~ L(X, X) an equi-continuous semi-group of 
class (Co). Then the family {Ti; t > O} of operatorsE L(X', X') where (*) 
denotes the dual operators in this section, satisfies the semi-group 
property: Ti T: = Ti+s, Tt = J* = the identity in X; (see Theorem 3 
in Chapter VII, 1). However, it is not of class (Co) in general. For, the 
mapping T, -+ Ti does not necessarily conserve the continuity in t (see 
Proposition 1 in Chapter VII, 1). But we can show that {T*} is equi­
continuous in t > O. For, we can prove 

Proposition 1. If {S,; t > O} ~ L (X, X) is equi-continuous in t > 0, 
then {sj; t > O} ~ L (X', X') is also equi-continuous in t > o. 

Proof. For any bounded set B of X, the set U S, . B is by hypothesis 
,~o 

a bounded set of X. Let U' and V' be the polar sets of Band U S, . B: 
,~o 

U'={x'EX'; sup l<b,x'>I<l}, V'={x'EX'; sup I<S,.b,x'>I<l}. 
bEB bEB,'~O 

Then (see Chapter IV. 7), U' and V' are neighbourhoods of 0 of X;. From 

I (S, . b, x'> I = 1< b, sj x'> I ::;:; 1 (when bE B, x' E V') 
we see that si· V' ~ U' for all t > O. This proves that {si} is equi­
continuous in t ~ O. 

Let A be the infinitesimal generator of the semi-group T,. Then 
D(A)" = X, R(A) ~ X, and, for A> 0, the resolvent (U - A)-l E 
L (X, X) exists in such a way that 
{Am (U - A)-m} is equi-continuous in A> 0 and in m = 0, 1 . . . (1) 
We can prove (d. Theorem 2 in Chapter VIII, 6) 
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Proposition 2. For A > 0, the resolvent (AI· - A .)-1 exists and 

(U· - A .)-1 = ((U - A)-I). . (2) 

Proof. We have (U -A)· = U· -A·. Since (U -A)-IE L(X, X), 
the operator ((U - A)-I). E L (X', X') exists. We shall prove that 
(U· - A·)-l exists and equals ((U - A)-I) •. Suppose there exists an 
x' E X' such that (U· - A·) x' = O. Then 0 = <x, (U· - A·) x') = 
«U -A) x, x') for all xE D(A). But, since R(U -A) = X, we must 
have x' = O. Hence the inverse (AI· - A .)-1 must exist. We have, for 
xE X, x' E D(A·), 

<x, x') = «U -A) (U _A)-l x, x') = «U _A)-l x, (U. -A·) x'). 

Thus D(((U -A)-I).) ~R (U· -A·) and ((U _A)-I) •. (U· -A.) x' = x' 
for every x' E D (A .). This proves that ((U - A)-I). ~ (U. - A .)-1. 
On the other hand, if xE D(A) and x' E D(((U -A)-I).), then 

<x, x') = «U - A)-l (U -A) X,X/) = «U -A) x, ((U -A)-I). x'). 
This proves that D(A·) = D((U - A)·) ~ R(((U - A)-I).) and 
(U - A)· . ((U - A)-I). x' = x' for every x' E D(((U - A)-I).), that 
is, ((U - A)-I). ~ (U· - A·)-l. We have thus proved (2). 

We are now ready to prove 

Theorem. Let X be a locally convex sequentially complete linear 
topological space such that its strong dual space X' is also sequentially 
complete. Let {Tt} ~ L(X, X), t > 0, be an equi-continuous semi-group 
of class (Co) with the infinitesimal generator A. Let us denote by X+ the 
closure D (A .)a of the domain D (A .) in the strong topology of X'. Let T,+ 
be the restriction of r, to X+. Then T,+ E L (X+, X+) and {T,+ ; t > O} 
is an equi-continuous semi-group of class (Co) such that its infinitesimal 
generator A + is the largest restriction of A • with domain and range in X+. 

Remark. The above Theorem was proved by R. S. PHILLIPS [2] for 
the special case of a B-space X. The extension given above is due to 
H. KOMATSU [4]. 

Proof of the Theorem. We have the resolvent equation R(A; A)-­
R(P; A) = (p -A) R(A; A) R(P; A) and the equi-continuity of 
{A'" R (A; A)"'} in A> 0 and in m = 0, I, 2, ... Thus, by Proposition 1 
and 2, 

(U. - A .)-1 - (pl. - A .)-1 = (p - A) (U. - A .)-1 (pl. - A .)-1 (3) 

{A'" (U· - A .)-"'} is equi-continuous in A > 0 and in m = 0,1,2, ... (4) 

Thus, if we denote by ] (A) the restriction to X+ of (U·_A·)-l, we have 

] (A) - ] (P) = (p - A) ] (A) ] (P) , (3/) 

{A'" ] (A)"'} is equi-continuous in A> 0 and in m = 0, I, . . . (4/) 
18 Yoelda, Functional Analysis 
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Since D (A "') is dense in X+ and since (4') holds, we see, as in Chapter IX, 7, 
that limAJ(A)x=x for xEX+. Thus we haveR(J(A)Y=X+ and 

).-->00 

so, by (7') in Chapter VIII, 4, that N(J (A» = {O}. Thus the pseudo­
resolvent J (A) must be the resolvent of a closed linear operator A+ in X+. 
Hence. by the sequential completeness of X+ and (4'), A+ is the infinite­
simal generator of an equi-continuous semi-group of class (Co) of operators 
Tt E L(X+, X+). For any xE X and y' E X+, we have 

«(I - m-1tA)-m x, y') = (x, (I'" - m-1tA +)-m y'), 

and so, by the result of the preceding section, we obtain by letting 
m ~ 00 the equality (Tex, y') = (x, Tt y'). Hence Ti y' = Tt y', that 
is, Tt is the restriction to X+ of Tj. 

We finally show that A+ is the largest restriction of A'" with domain 
and range in X+. It is clear, by the above derivation of the operator A+, 
that A+ is a restriction of A"'. Suppose that x' E D(A"') and that x' E X+, 
A'" x' E X+. Then (AI'" -A"') x' E X+ and hence (AI'" -A+)-l(AI'" -A"') 
x' = x'. Thus, applying (AI'" -A+) from the left on both sides, we obtain 
A"'x' = A+x'. This proves that A+ is the largest restriction of A'" with 
domain as well as range in X +. 

x. Compact Operators 
Let X and Y be complex B-spaces, and let 5 be the unit sphere in X. 

An operator TEL (X, Y) is said to be compact or completely continuous 
if the image T . 5 is relatively compact in Y. For a compact operator T E 
L (X, X), the eigenvalue problem can be treated fairly completely, in 
the sense that the classical theory of Fredholm concerning linear integral 
equations may be extended to the linearfunctional equation TX-AX = y 
with a complex parameter A. This result is known as the Riesz-5chauder 
theory. F. RIESZ [2J and J. SCHAUDER [1]. 

1. Compact Sets in B-spaces 

A compact set in a linear topological space must be bounded. The 
converse is, however, not true in general; we know (Chapter III, 2) that 
the closed unit sphere of a normed linear space X is strongly compact 
iff X is of finite dimension. Let 5 be a compact metric space and C (5) 
the B-space of real- or complex-valued continuous functions x(s) on 5, 
normed by Ilxll = sup Ix(s) I. We know (Chapter III, 3) that a subset 

sES 

{x .. (s)} of C (5) is strongly relatively compact in C (5) iff {x", (s)} is equi­
bounded and equi-continuous in IX. For the case of the space LP (5, ~, m), 
1 < P < 00, we have 
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Theorem (FRtCHET-KoLMOGOROV). Let S be the real line, ~ the 
a-ring of Baire subsets B of Sand m (B) = f dx the ordinary Lebesgue 

B 

measure of B. Then a subset K of LP(S, ~,m), 1 <P < <Xl, is strongly 
pre-compact iff it satisfies the conditions: 

sup Ilxll = sup (f Ix(s) IP dS)l/P < <Xl, (1) 
sEK :&EK S 

lim f Ix(t + s) - x(s) IP ds = 0 uniformly in xE K, (2) 
t-+O S 

lim f I x (s) IP ds = 0 uniformly in x E K. (3) 
"'too lsi>'" 

Proof. Let K be strongly relatively compact. Then K is bounded and 
so (1) is true. Let 8 > 0 be given. Then there exists a finite number 
of functions E LP : Iv 12, ... , I.. such that, for each IE K, there is a i 
with II f -Ij II < 8. Otherwise, we would have an infinite sequence {/j} ~ K 
with II Ii - 1.11 > 8 for i =1= i, contrary to the relative compactness of 
K. We then find, by the definition of the Lebesgue integral, finitely­
valued functions gl, g2, ... , g .. such that II/j - gi II <8 (1· = 1,2, ... , n). 
Since each finitely-valued function gj (x) vanishes outside some sufficiently 
large interval, we have, for large (x, 

(j + -1'" I/(s) IP dSY1P < (100 + -1'" I/(s) - gi(S)jP dstP 

+ (100 + -1'" Igi(S) IP dSY1P ~ 11/-gjll + (j + -1'" Igj(S) IP dstP. 

This proves (3) by II I - gill < II I -Ii II + II Ii - gj II ~ 28. 
The proof of (2) is based on the fact that, for the defining function 

00 

C1 (s) of a finite interval I, Jim f ICI(s + t) - CI(s) IP ds = 0 (see 
t-+O -00 

Chapter 0, 3). Thus (2) holds for finitely-valued functions gj(s) 

(i = 1,2, ... , n). Hence we have, for any IE K, 

~ C[I/(S + t) -/(s) IP dSY1P ~ ~ C[I/(s + t) -Ij(s + t) IP dstP 

+ ~C[l/i(s+t)-gi(s+t)IPdSrp + ~C[lgj(s+t)-gj(S)IPdSrp 

+ C[lgi (s) -li(s) IP ds tP + C[l/i(S) -/(s)IP ds rp 
<8 + 8 + 0 + 8 + 8, 

by taking Ii in such a way that III -I; II ~ 8. This proves (2). 
We next prove the converse part of the Theorem. We define the trans­

lation operator T t by (Ttl) (s) = I(t + s). Condition (2) says that 
lS* 
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salim T,f = I uniformly in IE K. We next define the mean value 
1-+0 

a 

(Mal) (s) = (2a)-1 f (T,f) (s) dt. Then, by Holder's inequality and 
-a 

the Fubini-Tonelli theorem, 

( OO{ a }P )I/P 
IIMal-/ll< -L _[(2a)-II/(s+t)-:-/(s)ldt ds 

( 
00 a )1~ 

< (2a)-1 -L _[ I/(s + t) -/(s) IP dt . (2a)PIP' ds 

( a 00 ) lIP 
< (2a)-I_[ dt_L I/(s+t)-/(s)IPds if l<p<oo. 

Thus we pave 
IIMal-/lI::;: sup IITd-/lI, 

111;5;a 

so that s-lim Mal = I uniformly in IE K. Therefore, we have to prove ,..0 
the relative compactness of the set {Mal; IE K} for a sufficiently small 
fixed a> 0. 

We will show that, for a fixed a > 0, the set of functions {(Mal) (s); 
IE K} is equi-bounded and equi-continuous. In fact, we have, as above, 

a 

I (Mal) (sl)-(Mal) (S2) I < (2 a)-1 f I/(sl + t)-/(s2 + t) I dt 
-a 

( a ) lIP 
::;: (2a)-1 _[ I/(sl + t) -/(s2 + t) IP dt . 

Thus, by (2), we have proved the equi-continuity of the set of functions 
{(Mat) (s); IE K} for a fixed a > 0. The equi-boundedness of the set may 
be proved similarly. Thus, by the Ascoli-Arzela theorem, there exists, for 
any positive a > 0, a finite number of functions Malv Ma/2' ... , Mal .. 
with Ii E K (i = 1, 2, ... , n) such that, for any IE K, there exists some i 
for which sup I (Mal) (s) - (Mali) (s) i < B. Therefore 

1*.", 
'" 

II Mal- Mal; W < J I (Mal) (s) - (Mal;) (s) IP ds 

+ J I (Mat) (s) - (Mal;) (s) IP ds. (4) 
lsi>'" 

The second term on the right is, by Minkowski's inequality, smaller than 

(II Mal-I II + ( J I/(s)-I;(s)IPds)I/P + ( J Iii (s)-(Mal;) (s) IPds)I/P)P. 
lsi>'" lsi>'" 

The term IIMal-/1i is small for sufficiently small a> 0, and, by virtue 
of (3), J II (s) -I; (s) IP ds and J II; (s) - (Mali) (s) IP ds are both 

lsi>", lsi>'" 
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small for sufficiently large IX> 0, if a> 0 is bounded. Also the first term 
on the right of (4) is ::;; 2IXeP for an appropriate choice of i. These esti­
mates are valid uniformly with respect to IE K. Thus we have proved 
the relative compactness in LP of the set {Mal; IE K} for sufficiently 
small a > 0.* 

2. Compact Operators and Nuclear Operators 

Definition 1. Let X and Y be B-spaces, and let S be the unit sphere of 
X. An operator TEL (X, Y) is 5aid to be compact or completely continuous 
if the image T . S is relatively compact in Y. 

Example 1. Let K(x, y) be a real- or complex-valued continuous 
function defined for....o. (X) < a ~ x, y < b < (X). Then the integral opera­
tor K defined by 

b 

(KI) (x) = f K(x, y) I(y) dy (1) 
a 

is compact as an operator E L (C [a, b], C [a, b]). 
Proof. Clearly K maps C[a, b] into C[a, b]. Set sup IK(x,y)1 = M. 

:t.y 
Then IIK·/II«b-a)MII/II so that K·S is equi-bounded. By 
Schwarz' inequality, we have 

b b 

I (KI) (Xl) - (KI) (x2) 12 < f IK (Xl' y) -K (x2 , y) 12 dy . f I/(y) 12 dy, 
a a 

and hence K . S is equi-continuous, that is, 

lim sup I (K I) (Xl) - (K I) (x2) I = 0 uniformly in IE S. 
"",ol:t,-:t.I:;;" 

Therefore, by the Ascoli-ArzeIa theorem (Chapter III, 3), the set K· Sis 
relatively compact in C [a, b]. 

Example 2. Let K (x, y) be a real- or ~omplex-valued ~-measurable 
function on a measure space (S, ~, m) such that 

f f IK(x, y) 12 m(dx) m(dy) < (X). (2) 
55 

Then the integral operator K defined by the kernel K (x, y): 

(KI) (x) = f K(x, y) I(y) m(dy), IE L2(S) = L2(S, ~, m). (3) 
5 

is compact as an operator E L(P(S), P(S)). The kernel K(x, y) satis­
fying ,(2) is said to be of the Hilbert-Schmidt type. 

Proof. Take any sequence {In} from the unit sphere of P(SJ. We have 
to show that the sequence {K . In} is relatively compactinP(S). Since a 
Hilbert space L2 (S) is locally sequentially weakly compact, we may assume 
that {in} converges weakly to an element IE L2 (S) ; otherwise, we choose a 
suitable subsequence. By (2) and the Fubini-Tonelli theorem, 

* See also Supplementary Notes. p. 466. 
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I IK(x, y) 12 m(dy) < 00 for m-a.e. x. Hence, for such an x, 
s 
lim (KI .. ) (x) = lim I K(x, y) I .. (y) m(dy) = lim (1 .. (.), K(x,. ) = 

n->OO 1J-+OO S 1J-+OO 

(1(.), K (x,. ) = I K (x, y) I(y) m(dy). On 'the other hand, we have, by 
s 

Schwarz' inequality, 

I (KI .. )(x) 12 < 11K (x, y) 12m (dy) . I II .. (y) 12 m (dy) :S 11K (x, y) 12 m (dy) 
s s s 
for m-a.e. x. (4) 

Hence, by the Lebesgue-Fatou theorem, lim I I (KI .. ) (x) 12 m(dx) = 
... ~s 

II (KI) (x) 12 m(dx). This result, if combined with w-lim K . I .. = K . I, 
s n-+OO 

implies s-lirn K . I .. = K . I by Theorem 8 in Chapter V, 1. But, as proved 
n-+OO 

above in (4), we have 

I I (Kh) (x) 12 m(dx) < /1 IK(x, y) 12 m(dy) m(dx) . I Ih(y) 12 m(dy) , 
s s s 

and so 
(5) 

Hence, from w-lim In = I, we obtain w-lim K . I,. = K . I, because, for 
1J-+OO 1J-+OO 

auy gE L2(S), lim (K· In, g) = lim (I .. , K*g) = (I, K*g) = (K. I, g). 
n-+OO 1J-+OO 

Theorem. (i) A linear combination of compact operators is compact. 
(ii) The product of a compact operator with a bounded linear operator 
is compact; thus the set of compact operators E L (X, X) constitutes a 
closed two-sided ideal of the algebra L (X, X) of operators. (iii) Let a 
sequence {T .. } of compact operators E L(X, Y) converge to an operator 
T in the sense of the uniform operator topology, i.e., lim II T - T .. II = O. 

1J-+OO 

Then T is also compact. 

Proof. (i) and (ii) are clear from the definition of compact operators· 
The closedness, in the sense of the uniform operator topology, of the ideal 
of compact operators in the algebra L (X, X) is implied by (iii). 

We shall prove (iii). Let {x,,} be a sequence from the closed unit sphere 
5 of X. By the compact property of each T,., we can choose, by the dia­
gonal method, a subsequence {x",} such that s-lim T,.x", exists for every 

/1--0.00 

fixed n. We have 

II Tx",- TXk' 11 < IITx",- T .. x", II + IIT .. x",- T,.Xk' II + IIT .. Xk'- TXk,1I 

< IIT-T .. II + IIT .. x",-TnXk,1I + IIT,.-TII, 

and so lim liT. x"' - T· x-",II < 211T - Tn II· Hence {TXk'} is a 
",10-+00 

Cauchy sequence in the B-space Y. 
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Nuclear Operator. As an application of the Theorem, we shall consider 
the nuclear operator introduced by A. GROTHENDIECK [2]. 

Definition 2. Let X, Y be B-spaces and TEL (X, Y). If there exist a 
sequence {/~} ~ X', a sequence {Y .. } ~ Y and a sequence {c .. } of numbers 
~uch that 

sup /l/~11 < 00, sup liy .. 11 < 00,.2' Ic .. 1 < 00 and .. .. .. 
m 

T· x = s-lim .2' c" <x, I~) y .. in Y for every x EX, 
...-.00,,=1 

(6) 

then T is called a nuclear operator on X into Y. 
Remark. The existence of the s-lim in (6) is clear, since 

Ilj~ Cj <x, Ii) y;11 < j~ ICjl·llx 11·11/; /I·lly; II < constant ';~ ICj I· Ilxll· 

The nuclear condition says that the s-lim is equal to T· x for every 
xEX. 

Proposition. A nuclear operator T is compact. 
Proof. Define the operator T .. by .. 

T .. x = . .2' Cj <x, Ii) yj. 
1=1 

(7) 

Since the range R(T .. ) is of finite dimension, T .. is compact as may be 
proved by the Bolzano-Weierstrass theorem. Moreover, by (6) and 

IITx-T .. xll=II . .I Cj<x,li)Yjll<constant . .I ICjl·llxll, 
1= .. +1 ,= .. +1 

we have lim liT - T "II = 0 and so T must be compact. 
11->00 

An Example of the Nuclear Operator. Let G be a bounded open do-
main of R", and consider the Hilbert space H~(G). Suppose (k-1) > n. 
Then the mapping T 

H~(G) 3cp -+ cp E Hb(G) 

is a nuclear operator E L(H~(G), Hb(G». 

(8) 

Proof. We may assume that the bounded domain G is contained in the 
interior of the parallelogram P: 

o < Xj < 237: (f = 1, 2, ... , n). 

We recall that H~(G) is the completion of il~(G) = C~(G) with respect 
to the norm Ilcpllk=(.2' JIDscp(x)12 dx)1/2 (see ChapterI,10). We 

Isl~kG 

extend the functions E jj~ (G) to be periodic with period 237: in each 
variable Xs by defining the function values as 0 in P - G. The functions 

1{J(x) = (237:r .. /2 exp(ifJ· x), wherefJ = (fJl> fJ2'· •• , fJ .. ) 
.. 

is an n-tuple of integers and fJ . x = .2' fJsxs, 
s=1 

(9) 
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form a cO~J>lete orthonormal system of L 2 (P) = Hg(P). Thus, denoting 
by D' the distributional derivative, we have, for I s I ::;: k, the Fourier 
expansion in L 2 (P) of functions D' fIJ (x) where fIJ E H~ (G) : 

D'fIJ (x) = .I (DsfIJ, /{J)o /{J' where ("1', /{J)o = ftp (x) /{J (x) dx. (10) 
{J p 

We have, by .. 
(D'fIJ, /{J)o = (_1)1'1 (fIJ, D' /{J)o = II (ifJm)'m (fIJ, /{J)o 

m=1 
and the Parseval relation 

fl (D'fIJ, /(J)O 12 = jID'fIJ(X) 12 dx < IlfIJ Iii (Is I < k), 

the inequality 

ICfIJ, (1 + IfJI2)/O/2 /{J)oI2 < constant .I I (D'fIJ, /(J)oI2 < constant IlflJll~. 
li[-:;;/o 

Therefore the functional /'p E H~ (G)' defined by 

<fIJ, /'p) = CfIJ, (1 + IfJ 12)/0/2 /{J)O 

satisfies sup 11611 < 00. Moreover, 
{J 1 

Y{J = (1 + IfJ 12)-1 2 /{J 
.. 

satisfies sup IIY{JII; < 00 by D'/{J = II (ifJt)S' /{J. We also have 
{J 1=1 

.I I C{J I < 00, where c{J = (1 + IfJI2)U-~l/2, 
(J 

because, for positive integers fJs, 

"')' 1 "')' ( 1 )(II-;J/ .. 
.,. (PI + PI + ... + P,,)/I-; =.,. (PI + PI + ... + P .. )" 

< "')' ( ~.. )("-;J/IO = L (..!.)(/o-m... "')' (..!.)(k-;l/fl 
..,. PI PI P.. {J. PI 1:" P. 

,...., ( 1 )(k-;J/" b (k - i) 1 ... ..::;,.- <ooy-->. 
(J" P.. n 

Therefore, we have proved the (Fourier) expansion 

fIJ = .I c{J < fIJ, /'p ) Y{J' (J 

Remark. If there exists a complete orthonormal system {fIJi} of eigen­
functions of a given bounded linear operator K E L(LZ(S), L2(S)) such 
that KfIJ; = ;, fIJi (i = 1, 2, ... ), then, from the Fourier expansion 

we obtain 
00 

K / = . .I ;'U, fIJ;) fIJ;' 1=1 
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We have A; = (KgJj' gJj), and so, if the eigenvalues A; are all > 0 and 
~ ~ 

.;E Aj < 00, then the operator K is nuclear. The condition .;E I (KgJj, gJi) I 
)=1 1=1 
< 00 is surely satisfied, if the operator K is defined by a kernel 

For, 

{ 
K (x, y) = f Ka(z, x) Kl (z, y) m(dz), where the kernels 

Kl (x, y) and K2 (x, y) are of the Hilbert-Schmidt type. 

~ * ~ (~~ )1/2 
i~ I (K2 K 1gJj' gJj) I = j~ I (K1gJj' K 2gJj) I :::;; \;~ II K1gJj 112 • j~ IIK2IPj 1111 

and, by Parseval's relation, we have 
~ ~ 

.;E IIK1gJj 112 = .~ f I J Kl (z, y) gJi(Y) m(dy) 12m (dz) 
1=1 1=1 S 

~ 

= f .;E If K] (z, y) gJj(y) m(dy) 12m (dz) 
s 1-1 S 

= f if IK1 (z,y) IlIm(dY)I m(dz) < 00, 

~ 

and similary for .;E IIK2gJilill • A bounded linear operator K in a sepa-
1=1 

~ 

rable Hilbert space X is said to be of the trace class if .;E I (KgJi' 'Pi) I < 00 
1=1 

for arbitrary complete orthonormal systems {gJj} and {'Pi} of X. For a 
general account concerning the trace class and the nuclear operator, see 
R. SCHATTEN [I], and 1. M. GELFAND-N. Y. VILENKIN [3]. 

3. The Rellich-Garding Theorem 

Theorem (GARDING [1]). Let G be a bounded open domain of R". If an 
operator TE L(H~(G), H~(G» satisfies, for i < k, 

IITgJII,,:::;; c IIgJllj for all gJE H~(G), where C is a constant, (1) 

then T is compact as an operator E L(H~(G), H~(G». 
Proof. By the definition of the space H~(G) (see Chapter 1,10), it 

would be sufficient to show the following: Let a sequence {gJ,,} ~ H~(G) = 
C~(G) be such that IIgJ"II,,:::;; 1 (" = I, 2, ... ). Then the sequence {TgJ.} 
contains a subsequence strongly convergent in H~(G). The Fourier 
transform ~,,(~) = (2n)-.. /2 ! gJ,,(x) exp(-ix~)dx satisfies, by Schwarz' 

inequality, 

I~,,(~) 12 < (2n)-" f dx f IgJ,,(X) 12 dx:::;; (2n)-"jdx, 
G G 

and hence {~.(~)} is equi-bounded in ~ER" and in". We may assume, 
by the boundedness of IIgJ" 11o, that a subsequence {gJ".} is weakly conver-
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gent in L2 (G) = H8 (G). Since, for each ~, the function exp (-ix~) 
belongs to L2(G), we know that the sequence of bounded functions 
CP., (~) = (cp,l, (2n)-n/2 exp (-ix;))o converges at every ~. Thus, by (1) 
and the Parseval relation for the Fourier transform (Chapter VI, 2), 

II Tcp., - Tcpp' II~ = II T (cp,.. - CPp') II~ < C2I1cp., - CPp' 111 
./''----

./' "----
= c2 I. liDs (cp.' _ CPp') II~ = C2 I.II(DS (cp.' -CPp')) II~ 

Isl~1 lsi:>;, 

= C2 .I.lllh (i~,)St (cp.,_CPp') (~)112 
Is~, '~1 0 

< C2
1I1 . J I h ~:t (cp.' (~) -CPp' (m 112 d~ 
S ~'IEI:>;' 1=1 

+ C2 C1 J I~ 12j I CP., (~) - ~p' (~) 12 d~, 
lEI>' 

where C1 is a positive constant. 
The first term on the right converges, for fixed Y, to Oasv' and,u'-+oo. 

This we see by the Lebesgue-Fatou Lemma. The second term on the right 
is, for Y > 1. 

::;:: C2 C 1 ,-2j-2k J I ~ 12k Icp,.. (~) - cP 1" (~) 12 d~ 
lEI>' 

~ C2 C 1 y2j- 2k J I ~ 12k I ;P., (~) - cP 1" (~) 12 d~ 
R" 

. 2k /"----< C2 C C ,-2'- I II (DSm, - DSm ,) 112 
- 1 2 Isl:>;k -rv orp 0 

= C2 C1 C2 ,-2j-2k ~ liDs (cp.' - CPp') II~ 
Is~k 

= C2 C1 C2 y2j- 2k IIcp., -CPp' II~ < 4C2 C1 C2 y2j-2k 

with a constant C2 • 

The last term converges, by j < k, to 0 as y -+ 00. Therefore, 
lim IITcp, .. -Tcpp,lIk=O. 

",JJ~ 

4. Schauder's Theorem 

Theorem (SCHAUDER). An operator TEL (X, Y) is compact iff its 
dual operator T' is compact. 

Proof. Let S,S' be the closed unit sphere inX, Y', respectively. Let 
TEL (X, Y) be compact. Let {yj} be an arbitrary sequence in S'. The 
functions Fj (y) = (y, yj> are equi-continuous in the sense that 

I F j (y) - F j (z) I = I (y - z, yj> I < II y - z II· 
Moreover, {Fj(Y)} is equi-bounded in j on any bounded set of y, since 
IFj (y) I ::;:: lIy II· Therefore, by the Ascoli-Arzela theorem, as applied to the 
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functions {F;(y)} defined on the compact set (T. 5)", we see that some 
subsequence {~;' (y)} converges uniformly in y E (T . 5)4. Hence 
<Tx, yj> = <x, T'yj> converges uniformly in xE 5, and so {T'. yj} 
converges in the strong topology of X'. This proves that T' is compact. 

Conversely, let T' be compact. Then, by what we have proved above, 
T" is compact. Hence, if 5" is the closed unit sphere in X", (T" . 5") is 
relatively compact. We know that Y is isometrically embedded in Y" (see 
Theorem 2 in Chapter IV, 8). Hence T· 5 ~ T" . 5" and so T . 5 is relati­
vely compact in the strong topology of Y" and so in the strong topology 
of Y. Therefore, T is compact. 

o. The Riesz-Schauder Theory 
We prepare 
Lemma (F. RIESZ [2]). Let V be a compact operator E L (X, X), where 

Xis aB-space. Then, for any complex numberAo# 0, the rangeR(Aol - V) 
is strongly closed. 

Proof. We may assume that 10 = 1. Let {x,,} be a sequence of X such 
that y" = (1 - V) x" converges strongly to y. If {x,,} is bounded, then by, 
the compactness of the operator V, there exists a subsequence {x",} such 
that {V x,,} converges strongly. Since x"' = Y,,' + V x"" {x",} converges to 
some x, and so y = (1 - V) x. 

We next assume that {llx" /I} is unbounded. Set T = (I - V) and put 
eX" = dis(x", N(T)), where N(T) = {x; Tx = o}. Take a w"E N(T) such 
that eX,,~ Ilx" - w,,11 < (1 + n-1) eX". Then T(x" - w,,) = Tx", and so 
in the case when {eX,,} is bounded, we can prove, as above, that y E R (T) = 
R (1 - V). Suppose that lim eX" = 00. Since z" = (x" - w,,)/II x" - w" II 

flo-+()() 

satisfies IIz,,/i = 1 and s-lim Tz" = 0, we can prove, as above, that 
flo-+()() 

there exists a subsequence {z",} such that s-lim z,,' = wo, s-Jim Tz", = O. 
flo-+()() n-->OO 

Hence Wo E N (T). But, if we put z" - Wo = U,,' then, in 

x,,-w,,-wo /lx,,-w,,11 = u" /lx,,-w,,/I, 

the second and the third terms on the left belong to N (T) so that we must 
have /lu" /I . /Ix" - w" /I > eX". This is a contradiction, since s-lim u" = 0, 

flo-+()() 

/Ix" - w" /I < (1 + n-1) eX" and lim eX" = 00. 
flo-+()() 

We are now able to prove the Riesz-5chauder theory; for convenience 
sake, we shall state the theory in a series of three theorems. 

Theorem 1. Let V be a compact operator E L (X, X). If Ao # 0 is not 
an eigenvalue of V, then Ao is in the resolvent set of V. 

Proof. By the preceding Lemma and the hypothesis, the operator 
T J." = (101 - V) gives a one-one map of X onto the set R (T J.,,) which is 
strongly closed in X. Hence, by the Corollary of the open mapping theo­
rem in Chapter II, 5, T J." has a continuous inverse. We have to show that 
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R (TAo) = X. If not, the topological image Xl = T AoX of X is a proper 
closed subspace of X. Hence, if we set X2 = T AoX1, Xs = T AoX2, ... , 
then X .. +1 is a proper closed subspace of X .. (n = 0, 1, 2, ... ; Xo = X). 
By F. Riesz' theorem in Chapter III, 2, there exists a sequence {Y .. } such 
that y .. E X .. , Ily .. 11 = 1 and dis (Y .. , X .. +1) > 1/2. Thus, if n > m, 

A01 (VYm - VY .. ) = Ym + {-Y .. - (T AoYm - T Aoy,,)/A.o} = Ym - Y 

with some Y E X m +1 . 

Hence IIV Y .. - VYm II :?: lAo 1/2, contrary to the compactness of the 
operator V. 

Theorem 2. Let V be a compact operator E L(X, X). Then, (i) its 
spectrum consists of an at most countable set of points of the complex plane 
which has no point of accumulation except possibly A = 0; (ii) every 
non-zero number in the spectrum of V is an eigenvalue of V of finite 
multiplicity; (iii) a non-zero number is an eigenvalue of V iff it is an 
eigenvalue of V'. 

Proof. By Theorem 1, a non-zero number in the spectrum of V is an 
eigenvalue of V. The same is also true of V', since, by Schauder's theo­
rem, V'is compact when V is. But the resolvent sets are the same for V 
and V' (see Chapter VIII, 6). Hence (iii) is proved. Since the eigenvectors 
belonging respectively to different eigenvalues of V are linearly indepen­
dent, the proofs of (i) and (ii) are completed if we derive a contradiction 
from the following situation: 

(There exists a sequence {x,,} of linearly independent vectors 

[such that Vx" = A .. X (n = 1, 2, ... ) and ~ A.,. = A #- o. 

To derive a contradiction, we consider the closed subspace X" spanned by 
Xv X2, ... , x". By F. Riesz' theorem in Chapter III, 2, there exists a 
sequence {y,,} such that y" E X"' II y,,11 = 1 and dis (y", X"_l) ~ 1/2 
(n = 2, 3, ... ). If n > m, then 

A;l Vy" - A;;;l VYm = y" + (-Ym - A;l TAny" + A.;;;1 TAmYm) = y" - z, 

where z E X,,-l. 

" " For, if y" = . .I Pi Xi' then we have Y .. - A;l Vy" = . .I Pi Xi-
1=1 1=1 

" i~ PiA;l A.;Xj E X,,_l and similarly TAmYm E X m· Therefore IIA;l Vy" -

A;;;l V Ym II > 1/2. This contradicts the compactness of V combined with 
the hypothesis lim A" "1= o. 

110-+00 

Theorem 3. Let Ao #- 0 be an eigenvalue of a compact operator V E 
L (X, X). Then Ao is also an eigenvalue of V' by the preceding theorem. 
We can prove: (i) the multiplicities for the eigenvalue Ao are the same for V 
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and V'. (ii) The equation (AoI - V) x = y admits a solution x iff y E 
N (AoI' - V').L, that is, iff V' I = Aol implies <y, I) = o. (iii) The equa­
tion (AoI' - V' f) = g admits a solution I iff g EN (AoI - V).L, that is, 
iff V x = Aox implies <x, g) = o. 

Proof. Since the eigenvalue Ao =1= 0 is an isolated singularity of the 
resolvent R(A; V) = (U - V)-I, we can expand R(A; V) in Laurent 
series 

00 

R(A; V) = I (A-).o)" A". 
11=-00 

We are particularly interested in the residue A_I = (2ni)-1 (R (A; V)dA. 
IA-Ae1=· 

As was proved in Chapter VIII, 8, A-I is an idempotent, i.e., A:'I = A-I. 
If we set (U - V)-I = A-I I + VA:then from (AI - V) (A-II + VA) = I 
we obtain VA = V(A-I VA + A-2I), and so VA is compact when V is. 
Hence, by 

A_I =(2ni)-1 J R(A;V)dA=(2ni)-1 J A-IdA·] 
IA-Ael=. IA-AeI=B 

+ (2ni)-1 J VAdA = (2ni)-1 J VAdA. 
IA-Ael=s IA-Ael=. 

Thus, by the Theorem in Chapter X, 2, A-I is a compact operator. 
Therefore, by A_IX = A-I (A_IX) and the compactness of A_v the 

unit sphere ofthe normed linear space A-I X is relatively compact. Hence, 
by F. Riesz' theorem in Chapter III, 2, the range R(A_I) is of finite 
dimension. On the other hand, V x = Aox, x =1= 0, implies that 
(AI - V)-IX = (A-Ao)-IX by (AI - V)x= (A-Ao)x, and so A_IX = 
(2ni)-1 J (A - Ao)-I dA . x = x. Therefore, the eigenvalue equa-

IA-Ael=· 
tion V x = Aox is equivalent to V x = Aox, x E R (A-I). In the same way, 
we can prove that the eigenvalue equation V' I = Aol is equivalent to 
V'I = AoI, IE R (A~I)· But R (A_I) and R (A~I) are of the same dimen­
sion. For, A~d = g satisfies A~lg = A~I (A~d) = g, and this is equi­
valent to <x, g) = <A_IX, g) for all x E X and so the functional g may be 
considered as a functional defined on the finite dimensional space R (A-I). 

Now, by the well-known theorem in matrix theory, the eigenvalue 
equation Vx =Aox (in R(A_I)) and its transposed equation V'I = Aol 
(in R (A~I)) both have the same number of linearly independent solu­
tions. We have thus proved (i). The propositions (ii) and (iii) are already 
proved by the Lemma and the closed range theorem (Chapter VII, 5). 

Extension of the Riesz-Schauder Theory. Let a power V" of VEL (X, X) 
be compact for some positive integer n. Then, by the spectral mapping 
theorem in Chapter VIII, 7, a(V") = a(V)" and, by the compactness of 
V", a (V") is either a finite set or else a countable set accumulating only 
at o. Therefore, a(V) is either a finite set or a countable set accumulating 
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only at O. V" being compact, 

(2 ni)-l f R (A; V") dA 
Il-AoI=8 

is, for any ~ =1= 0 of O'(V") and sufficiently small B > 0, of finite-dimen­
sional range. Hence ~ is a pole of R (A; V") (see Chapter VIII, 8). But 
(A" I - V") = (A - V) (1."-11 + 1."-2 V + .. , + V"-l) and hence 

(A" 1- V,,)-l (1."-1 I + ... + V"-l) = (AI _ V)-l, 

which proves that any ~ =1= 0 of 0' (V") is a pole of R (A; V) and so is an 
eigenvalue of V. These facts enable us to extend the Riesz-Schauder theory 
to operators V for which some power V" is sompact. This extension is 
highly important in view of its application to concrete problems of 
integral equations, such as the Dirichlet problem pertaining to potentials. 
See, e.g., O. D. KELLOGG [IJ. It can be proved that the Riesz-Schauder 
theory for ).0 = 1 is valid also for an operator VEL (X, X) if there exist a 
positive integer m and a compact operator K E L (X, X) such that 
11K - vm II < 1. See K. YasIDA [9]. It is to be noted here that, if 
K1 (s, t) and K2 (s, t) are bounded measurable for 0 < s, t < 1, then the 
integral operator T defined by 

1 

X (s) -+ (T x) (s) = (K1 K2X) (s), where (Kjx) (s) = f K j (s, t) x (t) dt, 
o 

is compact as an operator L(V(O, 1), V(O, 1). See K. YasIDA-Y. MI­
MURA-S. KAKUTANI [10]. 

6. Dirichlet's Problem 

Let G be a bounded open domain of R", and 

L = L DScst(x) Dt 
Isl,l/r:a;m 

a strongly elliptic differential operator with real Coo (Ga) coefficients 
Cst (x) = Cts (x). We shall deal only with real-valued functions. LettE L2 (G) 
and U1 E H m (G) be given. Consider a distribution solution Uo E L2 (G) of 

Lu = t such that (uo - U1) E H'O (G) . (I} 

The latter condition (uo - U1) E H'O(G) means that each of the distribu­
tional derivatives 

(2} 

is the L2(G)-limit of a sequence {DjIP",j}' where IP",;E Cgo(G) (see Chap­
ter I, 10). Thus it gives roughly the boundary conditions: 

D;uo = D;u1 on the boundary 8G of G for Iii < m. (3) 

In such a sense, (1) will be called a Dirichlet's problem for the operator 
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L. We shall follow the treatment of the problem as formulated and solved 
by L. GARDING [IJ. 

We first solve 
U + IXLu = I, (U-Ul) E HO(G) , (4) 

where the positive constant IX is so chosen that Garding's inequality 

(rp + IXL*rp,rp)o > <5l1rpll~ holds whenever rpE ego(G). (5) 

Here L* = .I (_I)I'I+Jt1 D' C.,(x) D$ and <5 is a positive con-
Isl,~m 

stant. The existence of such an IX is guaranteed if the coefficients Csl (x) 
are continuous on the closure G" of G. We also have, by m-times partial 
differentiation, the inequality 

I(rp + IXL*rp, tp)ol < Y Ilrpllm ·lltpllm whtmever rp, tpE ego (G) , (6) 
where y is another positive constant independent of rp and tp. 

We have, for ~ E Hm(G) and rpE ego (G), 

(L*rp, Ul)O = .I ((_I)lsl+Jt1 Dlc.,Dsrp, Ul)O =.I (_I)lsl (c.,Dsrp, D'Ul)O, 
s,I s,' 

by partial differentiation. By Schwarz' inequality, we obtain, remember­
ing that the coefficients CsI are bounded on G", 

I (L*rp, Ul)O I <'YJ .I IIDsrp 110 IID'u1110 (sup I Csl (x) I = 'YJ). 
Isl,fir;:>;m s,l;s 

The right hand side is smaller than constant times II rp 11m. 
Thus the linear functional 

F (rp) = (rp + IXL *rp, ul)O, rp E ego (G), 

can be extended to a bounded linear functional defined on HO(G) which 
is the completion of ego (G) with respect to the norm Ilrp 11m. Similarly, we 
see, from 

I (rp,/)ol < IIrpllo' 11//10 < Ilrpllm ,11/110, 
that the linear functional (rp,/)o of rp E ego (G) can be extended to a 
bounded linear functional of rpE HO(G). Hence, by F. Riesz' represen­
tation theorem as applied to the Hilbert space HO(G), there exists an 
I' = I' (/, Ul) E H'O(G) such that 

(rp, /)0 - (rp + IXL *rp, Ul)O = (rp, /')m whenever rp E ego (G). 

Hence, by the Milgram-Lax theorem in Chapter III, 7, applied to the 
Hilbert space HO (G), we have 

(rp, /)0 - (rp + IXL*rp, Ul)O = (rp, /')m = B(rp, 5/,), 51' E HO(G) , (7) 
where 

B(rp,tp)=(rp+IXL*rp,tp)o for rpEego(G), tpEHO(G). (8) 
Thus 

(rp,/)o = (rp + IXL*rp, Ul + 5/')0 whenever rp E ego(G), 

and so Uo = u1 + 51' is the desired solution E L"(G) of (4). 
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We shall next discuss the original equation (1). If uoE LS(G) satisfies 
(1), then U2 = Uo - Ul E H'O(G) satisfies 

(uo, L *-P)o = (uv L *-P)o + (U2' L *-P)o = (I, -P}o, -P E c: (G) . 

We obtain, by partial integration as above, 

I(uv L*-P}ol < a constant times II-PII ... , 

1(1, -P)ol ~ 11/110 II-Pllo ~ 11/110 ·II-PII ... · 

We may thus apply F. Riesz' representation theorem in HO(G) to the 
linear functional (I, -P}o - (uv L *-P)o of -P E ego (G). Hence there exists a 
uniquely determined v E HO (G) such that 

(I, -P)o - (uv L *-P)o = (v, -P)... whenever -P E c: (G). 

By the Milgram-Lax theorem,applied to (v,-p) ... , weobtainanSlvEHO(G) 
such that 

(v, -P) ... = B(SlV, -P) whenever -P E C:(G), v E HO(G). 

Thus the Dirichlet problem (1) is equivalent to the problem: For a given 
SlvE H'O(G), find a solution u2E H'O(G) of 

(U2' L *-P)o = B (SI v, -P), -P E c: (G). (1') 

Now, for a given uE L2(G} = Hg(G), 

I(u, -P)ol < lIulio 'II-Pllo ~ IIulio' II-PII ... 

so that, by F. Riesz' representation theorem in the Hilbert space HO(G), 
there exists a uniquely determined u' = Tu E HO(G) such that, whenever 
-pEC:(G), 

(u,-P)o = (u',-p) ... and IIu'lI ... < IIulio. 

Hence, by the Milgram-Lax theorem, we obtain 

(u, -P)o = (u',-p} ... = B (SI u', -P) =B(SI Tu,-p}, II SI Tu II ... < 15-1 IIu 110' (9) 

Therefore, by (1'), we have, whenever -P E C:(G), 

that is, 

B (us' -P) = (us' -P + fXL *-P)o = (us' -P)o + fX (us' L *-P)o 

=B(SlTu.,-p) +fXB(SIV,-p), 

B(uZ-SITus-fXS1V,-p) = O. 

Because of the positivity B (-p, -P) > 0 of B, we must have 

S T S (1") uz- I us=a IV. 

The right hand term a SlvE HO' (G) is a known function. By IISITu II ... ~ 
t5-1 Ilullo, we see that the operatorSlT defined on HO(G) into HO(G) is 
compact (the Rellich-Garding theorem in Chapter X, 3). Therefore, we 
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may apply the Riesz-Schauder theory to the effect that one of the 
following alternatives holds: 

jEither the homogeneous equation u - 51 T u = 0 has a non-trivial 
solution u E H'O(G), or the inhomogeneous equation u - SITu = w has, 
for every given w E H'O (G), a uniquely determined solution u E H'O (G). 

The first alternative corresponds to the case (u, cp + o('L *Cp)o = (u, cp)o, 
that is, to the case Lu = o. Hence, returning to the original equation (1), 
we have 

Theorem. One of the following alternatives holds: Either i) the homo­
geneous equation Lu = 0 has a non-trivial solution uE HO(G), Or ii) for 
any IE L 2 (G) and any Ul E Hm (G), there exists a uniquely determined 
solution Uo E L2 (G) of Lu = I, u - Ul E H'O (G). 

Appendix to Chapter X. The Nuclear Space of 
A. Grothendieck 

The nuclear operator defined in Chapter X, 2 may be extended to 
locally convex spaces as follows. 

Proposition 1. Let X be a locally convex linear topological space, and 
Y a B-space. Suppose that there exist an equi-continuous sequence 
{Ii} of continuous linear functionals on X, a bounded sequence {Yj} of .. 
elements E Y and a sequence of non-negative numbers {Cj} with ,I Cj < 00. 

3=1 

Then 

" T . x = s-lim .I c· (x, t> y. 
n->OO j=1 3 3 3 

(1) 

defines a continuous linear operator on X into Y. 

Proof. By the equi-continuity of {tj}, there exists a continuous semi­
norm p on X such that sup I (x, I;> I < P (x) for x EX. Hence, for m > n, 

j 

Ili~. Cj (x, Ii> Yjll < p (x) ;~~ IIYj II· ji Cj. 

This proves that the right hand side of (1) exists and defines a continuous 
linear operator T on X into the B-space Y. 

Definition 1. An operator T of the form (1) is said to be a nuclear 
operator on X into the B-space Y. 

Corollary. A nuclear operator T is a compact operator in the sense 
that it maps a neighbourhood of 0 of X into a relatively compact set 
of Y. 

19 Yoslda, Functional Analysis 
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Proof. We define 
n 

Tn' X = ~ Cj (x, I;> Yj· 
J~l 

Tn is compact, since the image by T" of the set V = {x; P (x) :-:;; I} of 
X is reiatively compact in Y. On the other hand, we have 

I/Tx - T"xll = II. i Cj (x, I;> Yjll < P(x) sup IiYjli. i Cj' 
J~,,+l j~l ,~"+l 

and so T"x converges to Tx strongly and uniformly on V. Hence the 
operator T is compact. 

As was proved in Chapter X, 2, we have a typical example of a nuclear 
operator: 

Example. Let K be a compact subset of R. Then, for (k - i) > n, the 
identity mapping T of H~ (K) into H~ (K) is a nuclear operator. 

Proposition 2. Let X be a locally convex linear topological space, and 
V a convex balanced neighbourhood of 0 of X. Let Pv(x) = inf A 

xjAEV,A>O 
be the Minkowski functional of V. Pv is a continuous semi-norm on X. 
Set 

Nv={xEX;Pv(x)=O}={xEX;hEV for all A>O}. 

Then N v is a closed linear subspace of X, and the quotient srace Xv = 
X / N v is a normed linear space by the norm 

Ilxllv = Pv(x), where xis the residue class mod N v 

containing the element x. 
(2) 

Proof. Let (x - Xl) E N v. Then Pv (Xl) < Pv (x) + Pv (Xl - x) = Pv (x), 
and similarly Pv(x) < PV(XI)' Thus Pv(x) = PV(XI) if x and Xl are in the 
same residue class modNv. We have Iixllv::2:0 and IiOllv=O. If 
Ilxllv=O, then xEx implies xENv and so x=O. The triangle ine­
quality is proved by II x + Y I/v = Pv (x + y) < Pv (x) + Pv (y) = 
Iii Ilv + liS; IIv. We have also lIiXi Ilv = PV(iXX) = tiX I pv(x) = liX t Ilx I/v. 

Corollary. By the equivalence 

(Pv, :s Pv,) -- (V2 ~ VI), 

we can define the canonical mapping 

Xv. -+ Xv, (when V2 S; VI) 

(3) 

by associating the residue class xv, (mod N v,) containing x to the residue 
class xv, (mod N v,) containing X. The mapping thus obtained is continuous, 
since 

Ilxv, II v, = Pv,(x)::2: Pv,(x) = Iliv,llv,. 
We are now ready to give the notion of a nuclear space, introduced in 

analysis by A. GROTHENDIECK [2J. 
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Definition 2. A locally convex linear topological space X is said to 
be a nuclear space, if, for any convex balanced neighbourhood V of 0, 
there exists another convex balanced neighbourhood U ~ V of 0 such 
that the canonical mapping 

(4) 

is nuclear. Here it v is the completion of the normed linear space Xv. 

Example 1. Let RA be the topological product of real number field 
R in such a way that RA is the totality of real-valued finite functions x (a) 
defined on A and topologized by the system of semi-norms 

Pa(x) = Ix(a) I, aEA. (5) 
Then RA is a nuclear space. 

Proof. N v is the totality of functions x (a) ERA such that, for some 
finite set {aj E A; j = 1,2, ... , n}, x(aj) = 0 (i = 1,2, ... , n). Hence 
Xv = RAINv is equivalent to the space of functions xv(a) such that 
Xv (a) = 0 for a =1= aj (i = 1, 2, ... , n) and normed by 

IIxv(a)llv= sup Ix(aj)l. 
l:;;j:;;" 

We take Nu the totality of functions x (a) E RA such that x(a",) = 0 for 
ex E A' where A' is any finite set of integers containing 1,2, ... , n. 
Thus, for U ~ V, the canonical mapping Xu = RA IN u -+ RA IN v = X v 
is nuclear. For the mapping is a continuous linear mapping with a finite­
dimensional range. 

Example 2. A nuclear B-space X must be of finite dimension. 

Proof. Since X = Xv for any convex balanced neighbourhood Vof 0 
of a B-space, the compactness of the identity mapping X -+ X implies 
that X is of finite dimension by F. Riesz' theorem in Chapter III, 2. 

Example 3. Let K be a compact subset of R". Then the space '!!K(R") 
introduced in Chapter I, 1 is a nuclear space. 

Proof. As in Chapter I, 1, let 

PK,kU) = sup IDSI(x) I 
xEK,lsl:;;k 

be one of the semi-norms which define the topology of '!!K (Rn). Let 
Vk = {IE '!!K(Rn); PK,kU) < I}. Then NVk is {O}, and X Vk = XINv" = 
'!!K (R")INvk is precisely the space '!!K (Rn) normed by PK,k. If (k-j) > n, 
then it is easy to prove, as in the example following the Corollary of 
Definition 1 above, that the canonical mapping of X Vk intoXvJis a nuclear 
transformation. Hence '!!K(R") is a nuclear space. 

Theorem 1. A locally convex linear topological space X is nuclear, 
iff, for any convex balanced neighbourhood V of 0, the canonical mapping 
X -+ X v is nuclear. 

19* 
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Proof. Necessity. Let U ~ V be a convex balanced neighbourhood 
of 0 of X such that the canonical mapping Xu --+ it y is nuclear. The 
canonical mapping T : X --+ X y is the product of the canonical mapping 
X --+ Xu and the canonical nuclear transformation Xu --+ it y. Hence T 
must be a nuclear transformation. 

Sutliciency. Let the canonical mapping T: X --+ Xy be given by a 
nuclear transformation 

00 

Tx = . .I Cj (x, I;> Yj. 
1=1 

For any IX> 0, the set {x EX; I(x, I;> / :s;;;. IX for i = 1, 2, ... } is a convex 
balanced neighbourhood U'" of 0 of X, because of the equi-continuity of 
{Ii} ~ X'. Moreover, 

/I Tx /ly = IIf Cj (x, I;> Yj Ilv < IX s~p //Yj /ly f Cj whenever x E U"'. 

Let IX be so small that the right hand side is< 1. Then /lTxl/y< 1 and 
U'" ~ V. Each I; may be considered as belonging to the dual space X~"" 
and so 

Tx = Tz = ~ Cj (x, I;> Yj whenever (x-z) E N u",. 
1 

Thus the canonical mapping Xu", --+ Xy is given by a nuclear transforma­
tion 

Xu", --+ ~ Cj (xu"" I;> Yj· 
1 

Theorem 2. Let a locally convex linear topological space X be nuclear. 
Then, for any convex balanced neighbourhood V of 0 of X, there exists a 
convex balanced neighbourhood W ~ V of 0 of X such that X w is a Hilbert 
space. 

Proof. The nuclear canonical mapping Xu --+ X y (U ~ V) defined by 

T Xu = .1l Cl (xu' I;) Yj 
1 

is factored as the product of the two mappings 

IX : Xu --+ (11) and p: (12) --+ it y, where IX is given by 

Xu --+ {cFI (xu, I;>} and p is given by {M --+ ~ cFI ejYj' 
1 

The continuity of IX is clear from 

~ IcJ'2 (xu, I;> II ~ (sup I/!; /I. IIxu lIu)2. ~ ci' 
, j , 

and that of p is proved by 

II~ c]/2eiYil12 < ~ CjIIYjll~' ~ leil2 :s;;;. sup IIYj/l~' /I{MIlr.· ~ Cj' , v, '; , 
Let Us be the inverse image in (12) by P oftheunitsphereofXy. Then U. 
is a neighbourhood of 0 of (12) and so contains a sphere S of centre 0 of (ZI). 
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Let W be the inverse image in X of S by the continuous mapping Ii 
defined as the product of continuous canonical mapping X -+ Xu and the 
continuous mapping eX: Xu -+ (l2). Then clearly W ~ V and, for any 
xwEXw, 

Ilxwllw = inf A = _ inf A = lI;Xx Ill' (the radius of S) . 
.. /AE W,A>O D<X/AES,A>O 

Since II Ill' is the norm in the Hilbert space (l2) , X W is a pre-Hilbert space. 
Corollary. Let X be a locally convex nuclear space. Then, for any 

convex balanced neighbourhood Vof 0 of X, there exist convex balanced 
neighbourhoods WI and W2 of 0 of X with the properties: 

W2 ~ WI ~ V, XW, and .xw• are Hilbert spaces and the canonical 

mappings X -+ Xw., Xw. -+ Xw" Xw,-+ Xv are all nuclear. 

Therefore, a nuclear space X has a fundamental system {V,,} of neigh­
bourhoods of 0 such that the spaces X v are Hilbert spaces. 

'" Further Properties of Nuclear Spaces. It can be proved that: 
1. A linear subspace and a factor space of a nuclear space are also 

nuclear. 
2. The topological vector product of a family of nuclear spaces and 

the inductive limit of a sequence of nuclear spaces are also nuclear. 
3. The strong dmu of the inductive limit of a sequence of nuclear 

spaces, each of which is an F-space, is also nuclear. 
For the proof, see the book by GROTHENDIECK [lJ referred to above, 

p. 47. As a consequence of 2., the space '!J (Rn), which is the inductive 
limit of the sequence {'!JK~(Rn); r = 1,2, ... } (here K, is the sphere 
I x I :s r of Rn), is nuclear. Hence, by 3., the space '!J (Rn)' is also nuclear. 
The spaces ~ (Rn), ~ (Rn)" e; (R") and e; (Rn)' are also nuclear spaces. 

The importance of the notion of the nuclear space has recently been 
stressed by R. A. MINLOS [lJ. He has proved the following generalization 
of Kolmogorov's extension theorem of measures: 

Let X be a nuclear space whose topology is defined through a countable 
system of convex balanced neighbourhoods of O. Let X' be the strong dual 
space of X. A cylinder set of X' is defined as a set of the form 

Z' = {I' E X'; a; < <Xi, 1'> < b; (i = 1, 2, ... , n)}. 

Suppose there is given a set function flo, defined and ~ 0 for all cylinder 
sets. Let flo be a-additive for those cylinder sets Z' with fixed Xl' X 2 , ... ,X". 

Then, under a compatibility condition and a continuity condition, there 
exists a uniquely determined extension of flo which is a-additive and 
> 0 for all sets of the smallest a-additive family of sets of X' containing all 
the cylinder sets of X'. 

For a detailed proof and applications of this result, see 1. M. GELFAND-

N. Y. VILENKIN [3].* 

* See also Supplementary Notes, p. 466. 
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XI. Normed Rings and Spectral Representation 

A linear space A over a scalar field (F) is said to be an algebra or 
a ring over (F), if to each pair of elements x, yEA a unique product 
xy E A is defined with the properties: 

(xy) z = x (yz) (associativity), 

x(y + z) = xy + xz (distributivity), 

O(.(J(xy) = (0(.'%) ((Jy). I (1) 

If there exists a unit element e such that ex = xe = x for every x E A, 
then A is said to be an algebra with a unit. A unit e of A, if it exists, is 
uniquely determined. For, if e' be another unit of A, then we must have 
ee' = e = e'. If the multiplication is commutative, i.e., xy = yx for 
every paIr x, YEA, then A is called a commutative algebra. Let A be an 
algebra with a unit e. If, for an x E A, there exists an x' E A such that 
xx' = x' x = e, then x' is called an inverse of x. An inverse x' of x, if it 
exists, is uniquely determined. For, if x" be another inverse of x, then 
we must have 

x" (xx') = x" e = x" = (x" x) x' = ex' = x' . 

Thus we shall denote by x-I the inverse of x if x has an inverse. 
An algebra is called a Banach algebra, or in short a B-algebra if it is a 

B-space and satisfies 
(2) 

The inequality 

Ilx"y" - xyl/ < IIx"(y,, - y) 1/ + I/(x" - x) y 1/ 

< II x" II I/(y,,-y)li + II(x,,-x) II IIyll 
shows that xy is a continuous function of both variables together. 

Example 1. Let X be a B-space. Then L (X, X) is a B-algebra with a 
unit by the operator sum T + 5 and operator product T 5; the identity 
operator I is the unit of this algebra L(X, X), and the operator norm 
II Til is the norm of the element T of this algebra L(X, X). 

Example 2. Let 5 be a compact topological space. Then C (5) is a 
B-algebra by (XI + x2) (s) = xl(s) + X2(S), (O(.x) (s) = O(.x(s), (XI X2) (s) = 
xl(s) x2 (s) and Ilxil = sup Ix(s) I. 

sES 

Example 3. Let B be the totality of continuous functions x (s), 
o < s < 1, which are representable as absolutely convergent Fourier 
series: 

00. 00 

x(s) = .I c"e2""'" with .I Ic,,1 < 00. 
n=-~ n~-oo 

(3) 
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Then it is easy to see that B is a commutative B-algebra with a unit by 
the ordinary function sum and function multiplication, normed by 

00 

Ilxll= ~ le"l· 
1&=-00 

(4) 

In the last two examples, the unit is given by the function e(s) = 1 
and II ell = 1. In the following sections, we shall be concerned with the 
commutative B-algebra with the unit e such that 

Ilell = 1. (5) 

Such an algebra is called a normed ring. 
A Historical Sketch. The notion of Banach algebras was introduced 

in analysis by M. NAGUMO [1]. He proved that Cauchy's complex func­
tion theory can be extended to functions with values in such an algebra, 
and applied it to the investigation of the resolvent of a bounded linear 
operator around an isolated singular point. The result is an abstract 
treatment of those given in our Chapter VIII, 8. K. YOSIDA [11] proved 
that a connected group embedded in a B-algebra is a Lie group iff the 
group is locally compact. This result is an extension of a result due to 
]. VON NEUMANN [6] concerning matrix groups. Cf. E. HILLE-R. S. PHIL­
LIPS [1], in which the result of K. YOSIDA [11] is reproduced. 

The ideal theory of normed rings was initiated by 1. M. GELFAND [2]. 
He has shown that such a ring can be represented as the ring of continuous 
functions defined on the space of maximal ideals of the ring. By virtue of 
this representation, we can give an integration free treatment of the 
spectral resolution of bounded normal operators in a Hilbert space; see 
K. YOSIDA [12]. This result will be exposed in the following sections. The 
Gelfand representation may also be applied to a new proof of the Tauberian 
theorem of N. WIENER [2]. We shall expose this application in the last 
section of this chapter. For further details about B-algebras, see N. A. NAI­
MARK [1], C. E. RICKART [1] and 1. M. GELFAND-D. A. RAIKOV­
G. E. SILOV [5].* 

1. Maximal Ideals of a Normed Ring 

We shall be concerned with a commutative B-algebra B with a unit e 
such that lie II = 1. 

Definition 1. A subset J of B is called an ideal of B if x, y E J implies 
that (1¥X + (3y) E J and zx E J for every z E B. B itself and {O} are ideals 
of B. Ideals other than B and {O} are called non-trivial ideals. A non­
trivial ideal J is said to be a maximal ideal if there exists no non-trivial 
ideal containing J as a proper subset. 

Proposition 1. Each non~trivial ideal Jo of B is contained in a maximal 
ideal J. 

* See also Supplementary Notes, p. 467. 



296 XI. Normed Rings and Spectral Representation 

Proof. Let Uo] be the set of all non-trivial ideals containing Jo. We 
order the ideals of Uo] by inclusion relation, that is, we denote Jl -< J2 
if Jl is a subset of J2. Suppose that {j",} is a linearly ordered subset of 
Uo] and put fp = U J",. We shall show that fp is an upper bound 

I ",E{J oJ 
of {j",}. For, if x, yE fp, then there exist ideals J",. and J",. such that 
x E J .... and y E J ..... Since {j "'} is linearly ordered, J .... -< J .... (or J .... >- J .... ) 
and so x and y both belong to J",,; consequently (x - y) E J "'. ~ fp and 
zx E J "" ~ fp for any z E B. This proves that fp is an ideal. Since the unit 
element e is not contained in any J""e is not contained infp = U J",. 

l",E{J",} 

Thus fp is a non-trivial ideal containing every J",. Therefore, by Zorn's 
Lemma, there exists at least one maximal ideal which contains J o. 

Corollary. An element x of B has the inverse x-1 E B such that 
X-IX = XX-I = e iff x is contained in no maximal ideal. 

Proof. If x-1 E B exists, then any ideal J 3 x must contain e = xx-1 

so that J must coincide with B itself. Let conversely, x be contained in 
no maximal ideal. Then the ideal xB = {xb; bE B} =1= {O} must coincide 
with B itself, since, otherwise, there exists at least one maximal ideal 
containing xB 3 x = xe. It follows that xB = B, and so there must exist 
an element bE B such that xb = e. By the commutativity of B, we have 
xb = bx = e, that is, b = x-1. 

Proposition 2. A maximal ideal J is a closed linear subspace of B. 
Proof. By the continuity of the algebraic operations (addition, multi­

plication and scalar multiplication) in B, the strong closure r is also an 
ideal containing J. Suppose r =1= J. Then r = B, because of the maxi­
mality of the ideal J. Thus eE r, and so there exists an xE J such that 
lie-xII < 1. x has the inverse x-1 E B which is given by Neumann's 

series e + (e-x) + (e-x)2 + ... 
For, by II (e - x)" II < II e - x II", the series converges to an element E B 
which is the inverse of x, as may be seen by multiplying the series by 
x = e - (e - x). Hence e = X-I X E J and so J cannot be a maximal ideal. 

Proposition 3. For any ideal J of B, we write 

x= y (modJ) or x,...., y (mod]) or in short x,...., y, if (x-y) E J. (1) 
Then x ,...., y is an equivalence relation, that is, we have I x '" x (reflexivity), 

x ,...., y implies y,...., x (symmetry), 
x ,...., y and y,...., z implies x'" z (transitivity). 

We denote by x the set {51; (y - x) E ]}; it is called the class (mod lJ 
containing x. Then the classes (x + y), iXX and (xy) are determinedinde­
pendently of the ehoice of elements x and y from the classes x and y, 
respectively. 
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Proof We have to show that x '" x', y '" y' implies that (x + y) '" 
(x' + y'), (Xx '"" (Xx' and xy '" x' y'. These are clear from the condition 
that I is an ideal. For instance, we have xy - x' y' = (x - x') y + 
x' (y - y') E I by (x - x') E I and (y - y') E ]. 

Corollary. The set of classes x (mod]) thus constitutes an algebra by 

x + Y = x + y, (Xx =.iX, xy = xy. (2) 

Definition 2. The above obtained algebra is called the residue class 
algebra of B (mod I) and is denoted by BIJ. Thus the mapping x -+ x 
of the algebra B onto B = BIJ is a homomorphism, that is, relation (2) 
holds. 

Proposition 4. Let I be a maximal ideal of B. Then B = B / I is a 
field, that is, each non-zero element x E B has an inverse X-I E B such 
that X-I X = X X-I = e. 

Proof. Suppose the inverse X-I does not exist. Then the set xB = 
{xb; b E B} is an ideal of B. It is non-trivial since it does not contain e, 
but does contain x =1= O. The inverse image of an ideal by the homomor­
phism is an ideal. Therefore, B contains a non-trivial ideal containing I 
as a proper subset, contrary to the maximality of the ideal ]. 

We are now able to prove 
Theorem. Let B be a normed ring over the field of complex numbers, 

and I a maximal ideal of B. Then the residue class algebra B = BIJ is 
isomorphic to the complex number field, in the sense that each X E B is 
represented uniquely as x = ee, where e is a complex number. 

Proof. We shall prove that B = BIJ is a normed ring by the norm 

Ilxll = in! Ilx II. (3) 
:rE:r 

. If this is proved, then BIJ is a normed field and so, by the Gelfand­
Mazur theorem in Chapter V, 3, B = BIJ is isomorphic to the complex 
number field. 

Now we have I I (Xx II = I(XI IIxll, and Ilx + yll = !.nfJlx + yll < 
SES,l'Ey 

inJ II x II + i~! II y II = Ilx II + Ily II; IIx y II < Ilx II II-Y II is proved simi-
:rE:r ,.E,. 
larly. If IIx II = 0, then there exists a sequence {x .. } ~ x such that 
s-lim x .. = O. Hence, for any x E x, (x - x .. ) E I and so s-lim (x - x .. ) = x 

fI-+OO fl--K'O 

which proves that x E l" = I, that is, x = O. Hence IIx II = 0 is equi­
valent to x = O. We have lie II < II ell = 1. If lie II < 1, then there exists 
an element x E I such that lie - x II < 1. As in the proof of Proposition 2, 
the inverse X-l exists, which is contradictory to the Corollary of Propo­
sition 1. Thus we must have lie II = 1. Finally, since B is a B-space and ] 
is a closed linear subspace by Proposition 2, the factor space B = BIJ 
is complete with respect to the norm (3) (see Chapter I,ll). We have 
thus proved the Theorem. 
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Corollary. We shall denote by x(n the number ~ in the representation 
:x = reo Thus, for each x E B, we obtain a complex-valued function x(J) 
defined on the set {J} of all the maximal ideals of B. Then we have 

(x + y) (]) = x(]) + y(]), (IXX) (]) = IXX(]), 

(xy) (]) = x(]) y(n, and e(]) = 1. 

We have, moreover, 

and 

sup Ix(]) I < IIxll, 
lE{J} 

(4) 

(5) 

sup Ix(]) 1= 0 implies x = 0 iff n J = to}. (6) 
~m ~m 

Proof. The mapping x ---+ :x = x (]) e of the algebra B onto the residue 
class algebra B = BIJ is a homomorphism, that is, relation (2) holds. 
Hence we have (4). Inequality (5) is proved by 

I~I = 1~llrell = Ilxll = in! Ilxll < Ilxll· 
sEs 

Property (6) is clear, since x (]) = 0 identically on {J} iff x E n J. 
lEm 

Definition 3. The representation 

x ---+ x(]) (7) 

of the normed ring B, by the ring of functions x (]) defined on the set {J} 
of all the maximal ideals J of B, is called the Gelfand-representation of B. 

2. The Radical. The Semi-simplicity 

Definition 1. Let B be a normed ring over the complex number field, 
and {J} the totality of the maximal ideals J of B. Then the ideal 
n J is called the radical of the ring B. B is said to be semi-simple if its 

lEU} 
radical R = n J reduces to the zero ideal to}. 

lEm 

Theorem 1. For any x E B, lim II x" W,,, exists and we have 
.....00 

lim IIx"W'''=suplx(])I. (1) 
.....00 lEU} 

Proof. Set IX = sup Ix(n I. Then, by Ilx"II > Ix"(]) I = I x (J) I", we have 
lEm 

II x" II ~ IX", and so lim II x" W,,, > IX. We have thus to prove 
.....00 

lim Ilx" Ill'" < IX • 
.....00 

Let IfJ I> IX. Then, for any J E {J}, x(]) - fJ =1= 0, i.e., (x - fJe) E: J. 
Hence the inverse (fJ e - X)-l exists. Setting fJ-1 = A, we see that the 
inverse (fJe - X)-l = A (e - AX)-I exists whenever IAI < IX-I. Moreover, 
as in Theorem 1 in Chapter VIII, 2, we see that A (e - AX)-I is, for 
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IAI < ~-1, holomorphic in A. Hence we have the Taylor expansion 

A(e - Ax)-1 = A(e + Axl + A2X2 + ... + A"X" + ... ). 
00 

299 

That x" = x" may be seen by Neumann's series (e - AX)-1 = I A" x" 
,,=0 

which is valid for /lAX /I < 1. By the convergence of the above Taylor 
series, we see that 

Thus /lx"/I = IAI-" /lA"X"/I < IAI-n for large n when IAI < ~-1, and so 

lim I/x"W'" < IAI-1 when IAI-1 >~, that is, lim /lx"W'''<~. 
fO-+OO ' fO-+OO 

Corollary. The radical R = n I of B coincides with the totality 
JE{J} 

of the generalized nilpotent elements x E B which are defined by 

lim /lx"W'" = O. (2) 
fO-+OO 

Definition 2. A complex number A is said to belong to the spectrum 
of x E B, if the inverse (x - A e)-1 does not exist in B. 

If A belongs to the spectrum of x, then there exists a maximal ideal 
I such that (x - Ae) E I. Conversely, if (x - Ae) belongs to a maximal 
ideal I, then the inverse (x - Ae)-1 does not exist. Hence we obtain 

Theorem 2. The spectrum of x E B coincides with the totality of 
values taken by the function x (J) on the space {J} consisting of all the 
maximal ideals I of B. 

Application of Tychonov's theorem. We define, for any 10 E {J}, 
a fundamental system of neighbourhoods of 10 by 

{IE {J}; Ix.(]) -x.(Io) 1< e. (i = 1, 2, ... , n)}, (3) 

where e. > 0, n and Xi E B are arbitrary. Then {J} becomes a topological 
space and each x(]), xE B, becomes a continuous function on {J}. We 
have only to verify that if 10 =I=- 11> then there exist a neighbourhood 
Vo of 10 and a neighbourhood VI of II with empty intersection. This may 
be done as follows. Let xoE 10 and xoE II so that xo(]o) = 0 andxO(]I) = 
~ =I=- O. Then Vo = {J E {J}; Ixo(]) I < I~ 1/2} and VI = {J E {J}; 
Ixo(]) -XO(]I) I < 1~1/2} have an empty intersection. 

Theorem 3. The space {J}, topologized as above, is a compact space. 

Proof. We attach, to each xE B, the compact set 

K" = {z; Izl::;: I/xli} 
of the complex z-plane. Then the topological product 

S=llK 
"EB " 
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is a compact space, by virtue of Tychonov's theorem. See Chapter O. To 
any maximal ideal 10 E {J}, we assign the point 

II x(Jo) = s(Jo) E 5. 
"EB 

{J} is in one-one correspondence with a subset 51 of 5 by the above 
correspondence 10 ~ s (Jo)' Moreover, the topology of {J} is the same as 
the relative topology of 51 as a subset of 5. Hence, if we can show that 51 
is a closed subset of the compact space 5, then its topological image {J} 
is compact. 

To prove that 51 is a closed set, we consider an accumulation point 
w = IT A" E 5 of the set 51 in 5. We shall show that the mapping 

"EB 
x ~ A" is a homomorphism of the algebra B into the complex number field 
(K). Then 10 = {x; A" = O} becomes, as may be seen from the isomor­
phism of B/lo with (K), a maximal ideal of B and (x - A"e) E 10, that 
is, x(Jo) = A". This proves that the point w = IT A" = IT x(Jo) belongs 

"EB "EB 
to 51' 

We thus have to show that 

A"+,, = A" +;.,., A,.,. = o.;A", A"" = A"A,., Ae = 1. 
We shall, for instance, prove that A"+,, = A" +;.,.. Since w = II A" is 

"EB 
an accumulation point of 51> there exists, for anye > 0, a maximal ideal 
1 such that 

I)." - x(J) 1< e, I;.,. - y(J) 1< e, IA"+,, - (x + y) (J) 1< e. 
By (x + y) (J) = x(J) + y(J) and the arbitrariness of e > 0, we easily 
see that A"H = A" + ;.,. is true. 

We can now state the fundamental facts about the Gelfand represen­
tation x ~ x (J) of the normed ring B in the form of 

Theorem 4. A normed ring B over the complex number field is repre­
sented homomorphically by the ring of functions x (J) on the compact 
space {J} of all the maximal ideals 1 of B. The radical R of B consists of 
those and only those elements which are represented by functions iden­
tically equal zero on {J}. The representation x ~ x (J) is isomorphic iff 
the ring B is semi-simple. 

Application of the Stone-Weierstrass Theorem (of Chapter 0). The 
above obtained ring of functions is dense in the space of all complex­
valued continuous functions on {J} with uniform convergence topology 
if the ring B is symmetric (or involutive) in the following sense: 

For any x E B, there exists an x*EB such that x* (J) = xU) on {J}. (4) 

Examples of GeHand Representations 

Example 1. Let B = C (5) where 5 is a compact topological space, and 
10 a maximal ideal of C(5). Then there exists a point soE 5 such that 
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X(so) = 0 for all xE 10. Otherwise, for any s",E 5, there exists an x",Elo 
such that x'" (s",) =1= o. x'" (s) being a continuous function, there exists a 
neighbourhood V", of SIll such that x",(s) =1= 0 in V",. Since 5 is compact, 

" there exists a finite system, say, V"" V"" ... , V", such that U V",. = s. 
1 I 11 j=l' 

Hence the function 
"--

x(s) =.~ X"'i(S) X"'i(S) E 10 

does not vanish over 5, and the inverse X-I, X-I(S) = X (S)-I, of xElo 
exists, contrary to the maximality of the ideal 10. Thus we see that 10 is 
contained in the maximal ideal J' = {x E B; x (so) = o}. By the maxi­
mality of 10, we must have 10 = J'. In this way we see that the space 
{J} of the maximal ideals I of B is in one-one correspondence with the 
points s of S. 

Example 2. Let B be the totality of functions x(s), 0 < s :::;: 1, which 
can be represented by absolutely convergent Fourier series: 

00 00 

x(s) = .I e"e2ms", .I le,,1 < 00. 
11==-00 ,,==-00 

B is a normed ring by (x + y) (s) = x(s) + y(s), (xy) (s) = x(s) y(s) 
and II x II = ~ I ej I . Let lobe a maximal ideal of B. Set e2nis = Xl. Then . , 
XII = e-2ms , and so, by IXdlo) I < II Xl II = 1,Ixi l (fo) I = IXI (fo)-II < 
II XII II = 1, we see that IXI (fo) I = 1. Hence there exists a point so' 
o < So < 1, such that Xl (fo) = e2ms,. Thus x" = e2ms" = x;' satisfies 

00 

X" (f 0) = e2ms,,,, and so x (f 0) = .I e" e2nis,,, = x (so). In this way, we 
n=-oo 

see that for any maximal ideal 10 of B, there exists a point so' 0 :::;: so:::;: 1, 
such that the homomorphism x-+x(fo) is given by x(fo) = x (so), for all 
X E B. It is also clear that the mapping x -+ x (so) gives a homomorphism 
of the algebra B into the complex number field. Therefore we see that 
the maximal ideal space of B coincides with {e2ms ; 0 < s < 1}. 

Corollary (N. Wiener's theorem). If an absolutely convergent Fourier 
00 

series x(s) = .I e"e2mS" does not vanish on [0,1], then the function 
#==-00 

1jx(s) is also representable as an absolutely convergent Fourier series. 
For, x does not belong to any of the maximal ideals of the normed ring 
of the above Example 2. 

Example 3. We take BI = C [0, 1], and define, for x, y E B l , 

(x + y) (s) = x (s) + y (s). (£xx) (s) = £xx (s), (xy) (s) = 
s 

f x(s - t) y(t) dt and IIx II = sup Ix(s) I. 
o sE[O,I] 
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Bl is a commutative B-algebra without unit. Adjoining formally a unit e 
by the rule ex = xe = x, Ilell = I, the set B = {z = Ae + x; xE B I } 

becomes a normed ring by the operations 

1 
(A1e + Xl) + (A2e + x2) = (AI + A2) e + (Xl + x2), /X(Ae + X) 

=/XAe + /XX, (Ale + Xl) (A2 e + x2) = AI A2e + AI X2 + AzxI + Xl x2 

and IIAe + xii = IAI + Ilxll· 

We have, by induction, 
2 ..... 1 

Ix2(s) I <M2S , Ix3(s) I :s M3 ~, .. ·,Ix"(s) I <M"(n s 1)1'··· 

where M = sup Ix(s) 1= Ilxli. Thus every xE BI is a generalized 
sES 

nilpotent element of B, due to the fact that lim (n!?'" = 00. 
"=00 

3. The Spectral Resolution of Bounded Normal Operators 

Let X be a Hilbert space, and let a system M of bounded normal 
operators E L (X, X) satisfy the conditions: 

T, S EM implies T S = S T (commutativity), (1) 

T E M implies T* EM. (2) 

A systemM consisting of a bounded normal operator TEL (X, X) and its 
adjoint T* surely satisfies (1) and (2). 

Let M' be the totality of operators E L (X, X) which commute with 
every T EM, and let B = M" = (M')' be the totality of operatorsE L (X, X) 
commutative with every operator S E M'. 

Proposition 1. Every element of B is a normal operator. B is a normed 
ring over the complex number field by the operator sum, the operator 
product, the unit I (the identity operator) and the operator norm II T II. 

Proof. M ~ M' by (1). and so M' ;JM". Hence Mill = (M")';J Mil 
and so B = M" is a commutative ring. The identity operator I belongs 
to B and is the unit of this algebra B. By (2), we easily see that every 
operator E B is normal. Since the multiplication T S and the adjoint 
formation T -+ T* in the algebra B are continuous with respect to the 
norm of the operator, it is easy to see that the ring B is complete with 
respect to the operator norm. 

Theorem 1. By the Gelfand representation 

(3) 

the ring B is represented isomorphically by the algebra C ({]}) of all 
continuous functions T (J) on the compact space {J} of all the maximal 
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ideals J of B in such a way that 

IITII = sup IT(J) I, (4) 
lEU} 

T(J) is real-valued on {J} iff T is self-adjoint, (5) 

T(J) > 0 on {J} iff T is self-adjoint and positive, 

that is, (Tx, x):::=:: 0 for all xE X. (6) 

Proof. We first show that, for any bounded normal operator T, 

II T2 II = IITII2. (7) 

By the normality of T, we see that H = TT* = T*T is self-adjoint. 
Hence, by Theorem 3 in Chapter VII, 3, 

IITII2= ~ap (Tx,Tx) = sup I(T*Tx,x)l= IIHII= IIT*TII= IITT*II. 
Iixll::;;1 Ilxll::;;1 

Since (T*)2 = (TZ)*, T2 is normal with T. Thus, as above, we obtain 
II TZ 112 = II T*2TZ II, which is, by the commutativity TT* = T*T, equal 
to II (T* T)211 = II H211· Since H2 is self-adjoint, we obtain, again by 
Theorem 3 in Chapter VII, 3, 

IIHII2= sup (Hx,Hx) = sup I(H2x ,x)1 = IIH211. 
INI::;;1 INI::;;1 

Therefore, 1IT2112 = IIH211 = IIHII2 = (II T 112)2, that is, 11T211 = IITII2. 
We have, by (7), II T II = lim II 1'" WI", because we know already that 

n-+OO 

the right hand limit exists (see (3) in Chapter VIII, 2). Hence, by Theo-
rem 4 of the preceding section, the representation (3) is isomorphic and 
(4) is true. 

Proof of (5). Let a self-adjoint TE B satisfy, for a certain JoE {J}, 
T(Jo) =a + ibwithb# O. Then the self-adjoint operator5 = (T -aI)/bEB 
satisfies (1 + 52) (Jo) = 1 + i 2 = 0, and so (1 + 52) does not have an 
inverse in B. But, by Theorem 2 in Chapter VII, 3, (1 + 52) has an 
inverse which surely belongs to B. Thus, if T E B is self-adjoint, 
T (J) must be real-valued. Let T E B be not self-adjoint, and put 

T + T* . T- T* 
T = 2 + 1 --21-' - • 

Then, since the first term on the right is self-adjoint, the self-adjoint 
operator (T - T*)/2i must be # O. Thus, by the isomorphism of 

T-T* 
representation (3), there must exist a JoE{J} such that-2-i - (Jo) # O. 

T + T* T-T* 
Hence T(Jo) = --2- (Jo) + i-2-i - (Jo) is not real. For, as proved 

above, self-adjoint operators are represented by real-valued functions. 
Proof of (6). We first show that 

T*(J) = T(J) on {J}. (8) 
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This is clear, since self-adjoint operators (T + T*)/2 and (T - T*)/2i 
are represented by real-valued functions. Therefore, by (4) and the result 
of the preceding section, the ring B is represented by the ring of all con­
tinuous complex-valued functions on {J} satisfying (5) and (8). Let 
T (J) 2': 0 over {J}. Then 5 (J) = T (J)1/2 is a continuous function on 
{J}. Hence, by the isomorphism of the representation (3), 52 = T. By 
(5), we have 5 = 5*. Hence (Tx, x) = (52x, x) = (5x, 5x) > O. To 
prove, conversely, that the condition (T x, x) > 0 for all x E X implies 
T(J) > 0 over{J}, we set Tl (J) =max(T(J), 0) and T 2(J) = Tl (J)-T(J). 
Then, by what we have proved above, Tl and T2 are both E B, self-ad­
joint and positive: (Tjx, x) > 0 for all x EX (j = 1, 2). Moreover, we 
have Tl T2 = 0 and T2 = Tl - T. The former equality is implied by 
Tl (J) T 2(J) = O. 

Therefore, we have 

o < (TT2X, T2X) = (-nx, T2X) = - (T~x, x) = - (T2T2X, T2X) < O. 

Thus (T~x, x) = 0 and so, by Theorem 3 in Chapter VII, 3, we must 
have T~ = O. Hence, by IIT211 = lim 1112111/", we obtain T2 = o. We 

~ 

have thus proved T = Tl and hence T(J) > 0 on {J}. 
We shall thus write T > 0 if T is self-adjoint and positive. We also 

write 5 2': T if (5 - T) > O. 

Theorem 2. Let {T,.} ~ B be a sequence of self-adjoint operators such 
that 

(9) 

Then, for any x EX, s-lim Tnx = Tx exists, i.e., s-lim Tn = T exists and 
~ ~ 

T E B, 5:::2: T > T., (n = 1, 2, ... ). 

Proof. We first remark that, by (6), 

E,FEB and E>O, F>O imply E+F~OandEF>O. (10) 

Thus 0 < Tr < T~ < ... < T; < ... < 52. Hence, for any xE X, a 
finite lim (T;x, x) exists. Since, by (6), T;+k > T"+kTn > T;, we also 
~ 

have 
lim (T;+kx, x) = lim (T"+kT.,x, x) = lim (T;x, x). 

n,k-+oo ft.,k-+oo ~ 

Therefore, lim ((Tn - T m)2 x, x) = lim II T"x - Tmx 112 = 0 so that 
fJ,m-+OO 1I,fIS-Io()() 

s-lim Tnx = Tx exists. That TE Band 5:::2: T > T,. is clear from the 
~ 

process of the proof. 

Theorem 3. Let a sequence of real-valued functions {T,.(J)}, where 
T .. E B, satisfy the condition 

o < TdJ) < T 2 (J) < ... ~ T,.(J) < ... < a finite constant on {J}. (11) 
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Then, by (6) and Theorem 2, s-lim Tn = T exists. In such a case, we can 
n-+oo 

prove that 
D = {J E {J}; T (J) =1= lim Tn (J)} 

n-+OO 

is a set of the first category, and so DC = {J} - D is dense in {J}. 

Proof. By Theorem 2, T ~ Tn and so T(J) > lim T .. (J) on {J}. 
n-+OO 

By Baire's theorem in Chapter 0, 2, the set of points of discontinuity of 
the function lim Tn (J) is of the first category. Hence, if the set D is not 

n-+OO 

of the first category, then there exists at least one point 10 E D at which 
lim Tn (J) is continuous. In other words, there exists a positive number ~ 

n-+OO 

and an open set V (Jo) "310 of {J} such that 

T tI) > ~ + lim Tn (J) whenever 1 E V (J 0) . 
n-+OO 

Since the compact space {J} is normal, and since T (J) 2: lim T to (J) on 
n-+OO 

{J}, we may construct, by Urysohn's theorem an open set VI (Jo) :1 10 
and a function W (J) E C ({J}) such that 0::; W (J) ::; ~ on {J}, 

VI (Jot ~ V (Jo), W (J) = ~/2 on VI (Jo) and W (J) = 0 on V (Jo)c. 

Hence T(J) - W(J) > lim Tn(J) on {J}, and so, by (6), T - W > Til 
n-+OO 

(n = 1, 2, ... ). W (J) =$: 0 implies, by the isomorphism (3), that W =1= 0, 
W > O. Thus, again by (6), T - W > s-lim Tn' contrary to T = s-lim Tn. 

n-+OO n-+OO 

Finally, since {J} is a compact space, the complement DC = {J} - D 
of the set D of the first category must be dense in {J}. 

We are now able to prove (K. YOSIDA [12J) 

The spectral resolution or the spectral representation of operators E B. 

Consider the set C' ({I}) of all complex-valued bounded functions 
T' (J) on {J} such that T' (J) is different from a continuous function T (J) 
only on a set of the first category. We identify two functions from C' ({J}) 
if they differ only on a set of the first category. Then C' ({J}) is divided 
into classes. Since the complement of a set of the first category is dense 
in the compact space {I}, each class T' contains exactly one continuous 
function T(J) which corresponds, by the isomorphism B ~ C ({J}) , to 
an element T E B. 

For any T E B and for a!ly complex number z = A. + iJ-l, we put 
E z = the element E B which corresponds to the class E; containing the 
defining function E: (J) of the set {J E {J}; Re T(J) < A., 1m T(J) < J.l}. 
I t is clear that there exists a monotone increasing sequence of continuous 
functions In of complex argument such that E;(J) = lim In (T(J) and 

n-+OO 

20 Yosida. Functional Analysis 
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so E~(J) E C' ({I}). We have then 
n 

IT m - .~ (Ai + illj ) (E;;+,,..; (J) + E;;_1+;"';_1 (J) - E;I_1+''''; (J) 
1=2 

- E;;+;"';_1 (J) I < e on {J} if 

A1 = - (¥ -~ ~ A2::S .•• ::s An = (¥ = sup IReT(J) I, 
~ fiW 

III = - f3 __ E_ < 112 < ... ::s Il .. = f3 = SUp IImT(J) I, 
~ fiW 

(s~p (Aj - .1.;_1)2 + S? (ftj - Ilj-1)T/2 ~ e. 

Thus, by the definition of E.(J)' we have .. 
IT (J) - .~ (Ai + illj ) (E).;+,,..; (J) + E).;_,+'1J;" (J) 

}=2 

- E).;_1+;"'; (J) - E)';+'''';_1 (J) I < e 
on {I}, since the complement of a set of the first category is dense in the 
compact space {I}. Therefore, by (4), we have 

.. 
Ii T - j~ (Ai + ill;) (E).;+,,..; + E).;_1+',..1_1 - E).;_1+i,..; - E).;+i,..;J II :-:;;: e, 

which we shall write as 
T = f f zdE., 

and it is called the spectral resolution of the normal operator T. 

4. The Spectral Resolution of a Unitary Operator 

If T is a unitary operator E B, then, by 

T (J) T* (J) = T (J) T (J) = 1, 

(12) 

(1) 

we see that the values taken by the function T (J) on {J} are complex 
numbers of absolute value 1. From this fact, we can simplify the spectral 
resolution f f z dE, of T. 

The defining function E~ (J) of the set {J E {I}; arg(T (J» E (0, O)}, 
0< 0 < 2n, belongs to C' ({J}) , and we have, by setting E~(J) = 0, 
E;,,(J) = 1, 

I T (J) - .i1 e'8; (E~; (J) - E~;_1 (J) I :-:;;: max I e,8j - e,8;-1 I 
J= } 

(0 = 00 < 01 < ... < 0 .. = 2n). 

Let E8 (J) be the continuous function on {J} which is different from 
E~(J) only on a set of the first category, and let E8 be the operator E B 
which corresponds to E 8(J) by the isomorphic representation B 3 T --T(J). 
Then, as in the preceding section, 
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This we write, in view of the fact e'bri = 1, 
2n 

T = J e'o dF (0), where 
o 

F(O) = EB+o - E+o for 0 < 0 < 2n, F(O) = 0, F(2n) = I. (2) 

Here Eo+o is defined by Eo+ox = s-lim Eox, the existence of this limit 
OtO 

will be proved below. 

Theorem 1. The system of operators F(O), 0 < 0 ::s;: 2n, satisfies the 
conditions: 

each F (0) is a projection operator, commutative with 
every bounded linear operator commutative with T, (3) 

F(O) F(O') = F(min(O, 0')), (4) 

F(O) =0, F(2n) =1. (5) 

F (0 + 0) = F (0), 0 < 0 < 2n, in the sense that 
s-lim F(O') x = F(O) x for every xE X. (6) 

8'.0 
Proof. It is sufficient to prove that Eo, 0 ~ 0 < 2n, satisfies the 

conditions: 

each Eo is a projection operator E B, 

EoE8' = Enrln(O,8') ' 
Eo = 0, E2n = I, 

Eox = s-lim E8'x for every xE X and 0 <0 < 2n. 
8'.0 

(3') 

(4') 

(5') 

(6') 

We have E~(J) =Eo(J) and E~(J)2 = E~(J). Hence, by the result of 
the preceding section, we obtain Eo = E: and Ei = Eo. This proves (3'). 
(4') is proved similarly from E~ (J) E:r (J) = E:run(O,8') (J), and (5') is 
proved similarly. Next let 0" to. Then E~" (J) > E~n+1 (J) > E~ (J), and 
so, by the result in the preceding section, s-lim Eo = E exists and 

fO-+OO " 

E (J) = E~ (J) = lim E~" (J) on {J} except possibly on a set of the first 
O"tO 

category. Thus E = Eo. 
Example 1. Let a linear operator T defined by 

Ty(s)=ei'y(s), where y(s)EL2(-oo,OO). 

T is unitary. We define, when 2nn < s::s;: 2(n + 1) n, 

F(O) y(s) = y(s) for s < 0 + 2nn::S;: 2(n + J) n, 

F(O) y(s) = 0 for 0 + 2nn < s. 
2n 

It is easy to see that T = J e'o dF (0). 
o 

20· 
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Example 2. Let a linear operator T 1 be defined by 

Tlx(t) = x(t + 1) in L2(-00, 00). 

Tl is unitary. By the Fourier transformation 
n 

y(s) = Ux(t) = l.i.m. (2n)-l/2 f e-i'lx(t) dt, 
....-..00 -n 

we obtain Ux(t + 1) = i'Ux(t) = ei'y(s). Thus 

TlX(t) = x(t + 1) = U-leisy(S) = U-lTy(s) = U-lTUx(t) , 

that is, Tl = U-lTU. Therefore, we have 
2n 

Tl = f ei8 dFl (()), where F l (()) = U-lF(()) U. 
o 

The uniqueness of the spectral resolution. Since T-l = T* and 
T-l(J) = T*(J) = T(J)-l, we easily see that 

2,. 

T- l = f e-i8 dF (()). 
o 

Let m~x I ei8; - ei8;-1 I < e. Then, from 
J 

T = ~ e<8;(F(()j) -F(()j_l) + b, Ilb// < e, 
J 

we obtain, by (4), 

T2 = ~ e2i8;(F(()j) - F(()j-l) + b', where 
1 

I W 1/ < 1/ (T - b) b 1/ + 1/ b (T - b) 1/ + /I b2 1/ 

< (I/TII + e) e + e(IITil + e) + e2 • 

2n 

Hence we have T2 = f e2i8 dF (()), and, more generally, 
o 

2" 
yn = f i n8 dF(()) (n = 0, ± 1, ± 2, ... ). 

o 

(7) 

(8) 

2" 
Therefore, if there exists another spectral resolution T = f ei8 dFl (()) 

o 
satisfying (3) to (6), then, for any polynomial P (()) in e,6 and e-'8, 

2,. 

f P (()) d ((F (()) x, y) - (Fl (()) X, y) = 0, (x, y EX). 
o 

Thus, by continuity, the above equality holds for any continuous func­
tion P(()) with P(O) = p(2n). Let 0 < ()o < ()l < 2n, and take 

1 
Pn(())=OforO<()<()o and for ()l+n<()<2n, 

1 
= 1 for ()o + n < () < ()l' 

= linear for ()o < () < ()o + ~ and for ()1 < () < ()1 + ~ . 
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Then letting n ~ 00, we obtain, by (6), 
2n 
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~ f P .. (0) d [(F (0) x,y) -(Fl(O) x, y)J= [(F (0) X, y)-(FI (0) x, y)]~~= 0, 
o 

which is valid for all x, y EX. Hence, letting 00 to and making use of 
conditions (5) and (6), we see that F (01) = F 1(0). Therefore, the spectral 
resolution for a unitary operator is uniquely determined. 

o. The Resolution of the Identity 

Definition 1. A family of projections E (A), - 00 < A < 00, in a Hil­
bert space X is called a (real) resolution 01 the identity if it satisfies the 
conditions: 

E (A) E (P) = E(min (A, ,u), (1) 

E(-oo) = 0, E(+ (0) = I, where E(-oo) x = s-lim E(A) x and 
.q-oo (2) 

E(+ (0) x = s-lim E(A) x, 
Atoo 

E(A + 0) = E(A), where E(A + 0) x = s-limE(p) x. (3) 
I'P 

Proposition 1. For any x, y E X, the function (E (A) x, y) is, as a func­
tion of A, of bounded variation. 

Proof. Let Al < A2 < ... < An- Then, by (1), E (lX,,8] = E (,8) - E (lX) 
is a projection. Thus we have, by Schwarz' inequality, 

~ I (E (Aj-l' Aj] x, y)1 = ~I (E (Aj-l' Aj] x, E (Aj-V Aj] y) I 
} } 

< ~ liE (Aj-l' Aj] x II· liE (Aj-V Aj] y II 
} 

< (f liE (A,--I' AjJ x W)I/2. (f liE (Aj_l, Aj] y Wf/2 
= (liE (AI ,An] x 112)1/2. (liE (Al,An]Y 112)1/2 < II x 11·lly II· 

For, by the orthogonality 

E (Aj_l> Aj] . E (Ai-I, Ai] = 0 

implied by (1), we have, for m> n, 

(i -=1= i) ( 4) 

Corollary. For any A, - 00 < A < 00, the operators E (A + 0) = 
s-lim E (A') and E (A - 0) = s-lim E (X) do exist. 

A'·P A'tA 
Proof. From (5), we see that, if An t A, then 

.lim II E (A,-, As] X 112 = 0, 
},k-+oo 

and the same is true for the case An t A. 
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Proposition 2. Let I(}.) be a complex-valued continuous function 
on (-00,00), and let xE X. Then we can define, for -OO<lX < fJ<oo, 

{J 

J I (}.) dE (}.) x .. 
as the s-lim of the Riemann sums 

~ 1(1:;) E (A;, A;+1] x, where lX =}.1 < ~ < ... < ;... = fJ, xjE (A,-, A;+1]' 
1 

when the m!IX 1A;+1 -}.j I tends to zero. 
1 

Proof. I(}.) is uniformly continuous on the compact interval [lX, fJ]. 
Let II (}.) - I (A') I :s;; e whenever I}. - }.' I < «5. We consider two partitions 
of [lX, fJ] : 

and let 

lX =}.1 < ... <}.n = fJ, m!IX 1;"'+1 -;"'1 < «5, 
1 

lX = PI < ... < Pm = fJ, m!IX IPH1 -Pi I :s;; «5, 
1 

lX = '1'1 < ... < 'l'p = fJ, P < m + n, 

be the superposition of these two partitions. Then, if p~ E (p.,., PHI], we 
have 

.I 1(1:;) E (A;, ;"'+1] x -.I I(p.~) E (p.,., PHI] x i ,. 

= .I e, E ('1'" '1',+1] x, with I e, I < 2e, 
s 

and so the square of the norm of the left side is, as in (5), 

< e211.f E('I's, '1',+1] x W = e2 1IE(lX, fJ] x112:S;; e211x1l2. 

~ {J 

Corollary. We may define J I(}.) dE (}.) x as the s-lim J I(}.) dE (}.) x, 
~ .. ,j.-~.{Jt~", 

when the right side limit exists. 

Theorem 1. For a given x E X, the following three conditions are 
mutually equivalent: 

~ 

J I (}.) dE (}.) x exists, (6) 
-~ 

~ 

J II (}.) 12 d II E (}.) x 112 < 00 , (7) 
-~ 

~ 

F (y) = J f (}.) d (E ().) y, x) defines a bounded linear functional. (8) 
-~ 

Proof. We shall prove the implications (6) -4- (8) -+ (7) -+ (6). 
(6) -+ (8). The scalar product of y with the approximate Riemann 
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00 

sum of / I (A) dE (A) x is a bounded linear functional of y. Hence, by 
-00 

(y, E (A) x) = (E (A) y, x) and the resonance theorem, we obtain (8). 
(8) ~ (7). We apply the operator E (~, fJJ to the approximate Riemann 

fI_ 
sum of y= /I(}.) dE (}.) x. We then see, by (l),that y=E(a,fJJy. 

" Thus, again by (1), 
00 , 

F(y) = / 1(}')d(E(}')x,y) = lim / I(A)d(E(A)X,y) 
-00 ,,' + -oo,fI' too !Yo' 

fI' 
=, lim / I (A) d (E (A) x, E (~, fJJ y) 

'" ,j.-oo., too ",' , 
=, lim, /1(A)d(E(~,fJJE(A)X,y) 

'" ,j.-oo,fI too ",' 

fI_ 
= / I (A) d(E(}') x, y) = Ily112. 

'" 
Hence IIyl12 < IIFII'llyll, i.e., llyll < IIFII. On the other hand, by 

fI_ 
approximating y = / I (}.) dE (A) x by Riemann sums, we obtain, by (1), 

'" 
II Y 112 = II J I(}.) dE (A) x 112 = J II (}.) 12 d liE (}.) x 112, 

fI 
so that / I/(}.) 12 d liE (A) x 112 < IIF 112. Therefore, by letting ~ t - 00, 

I> 

fJ t 00, we see that (7) is true. 
(7) ~ (6). We have, for~' < ~ < fJ < fJ', 

IiI I (A) dE (A) x -! I(}.) dE(}.) X il 2 

I> , 

=/ 1/(}.)12dIIE(}.)xI12+ / 1/(}.)12d IIE(}.)xI1 2 

~ fI 

as above. Hence (7) implies (6). 

Theorem 2. Let I (A) be a real-valued continuous function. Then, 
a self-adjoint operator H with D (H) = D is defined through 

00 

(H x', y) = / I (}.) d (E ().) x, y), where (9) 
-00 

xE D = {x; -L I/(A) 12 d liE (A) xW < oo} and any yE X, 

and we have HE (A) ;;? E (}.) H, that .is, HE (}.) is an extension of E (A) H. 
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Proof. For any y E X and for any e> 0, there exist 0; and fJ with 
- 00 < 0; < fJ < 00 such that II y - E (0;, fJ] y II < e. Moreover, we have 

00 p 

J I/(A) 12 d liE (A) E(o;, fJ] y 112 = J I/(A) 12 d liE (A) Y 112. 
-00 ~ 

Hence E (0;, fJ] Y ED and so, by (2), Da = X. H is symmetric by 

I(A) = I(A), (E(A) x, y) = (E(A) y, x). 

If y ED (H*) and H*y = y*, then, by E (0;, fJ] zED and (1), 
p 

(z, E(o;, fJ] y*) = (E(o;, fJ] z, H*y) = (H E (0;, fJ] z,y) = J 1 (A) d(E (A) z,y). 
IX 

Thus, by the resonance theorem, 
00 

lim (z, E (0;, fJ] y*) = J I(A) d (E (A) z, y) = F (z) 
IX t -oo,p too -00 

is a bounded linear functional. Hence, by the preceding theorem, 
00 

J I/(A)12d IlE(A)yIl2<00, that is, YED. 
-00 

Therefore, D = D (H) ~ D (H*). Since H is a symmetric operator, we 
have H ~ H* and so H must be self-adjoint, i.e., H = H*. 

Finally, let xED (H). Then, by applying E (,u) to the approximate Rie-
00 

mann sums of H x = J I(A) dE (A) x, we obtain, by (1), 
-00 

00 

E (f-l) H x = J f (A) d ( E (f-l) E (A) x) 
-00 

00 

= J I(A)d(E(A)E{f-t)x) = HE({l)x. 
-00 

Corollary 1. In the particular case 1 (A) = A, we have 
00 

(Hx,y)= J Ad(E(A)X,y), for xED(H), yEX. (10) 
-00 

We shall write it symbolically 
00 

H = J AdE(A}, 
-00 

and call it the spectral resolution or the spectral representation of the self­
adjoint operator H. 

00 

Corollary 2. We have, for H = J I(A) dE (A) given by (9), 
-00 

00 

IIHx112= J I/(A)12d IIE(A) X 112 whenever xED(H). (11) 
-00 
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In particular, if H is a bounded self-adjoint operator, then 
00 

(Hn x , y) = f I (A)n d (E (A) x, y) for x, y EX (n = 0, 1, 2, ... ). (12) 
-00 

Proof. Since E(A) Hx = HE (A) x for xE D(H), we have, by (1), 

(H x, H x) = f I (A) d (E (A) x, H x) = f I (A) d (H E (A) x, x) 

= f i(A) d). {f 1(P) d,,(E(P) E(A) x, x)} 

= f I (A) d). LL j(,u) deE (,u) X,X)} = f I(A)2d liE (A) x 11 2 • 

The last part of the Corollary may be proved similarly. 

Example. It is easy to see that the multiplication operator 

H x (t) = tx (t) in L2 (- 00,00) 
00 

admits the spectral resolution H = f A dE (A), where 

For, 

-00 

E (A) x (t) = x (t) for t < A, 

= 0 for t> A. 

00 (0). 00 

(13) 

f A2 d II E (A) X 112 = f A2 d). fix (t) 12 dt = f t2 1 x (t) 12 dt = I' H x W, 
-00 -00 -00 -00 

00 oo.t 00 

f Ad(E(A)X,y) = fAd). f x(t)y(e)dt = ft. x(t) y(t) dt= (Hx,y). 
-00 -00 -00 -00 

6. The Spectral Resolution of a Self-adjoint Operator 

Theorem 1. A self-adjoint operator H in a Hilbert space X admits 
a uniquely determined spectral resolution. 

Proof. The Cayley transform U = U H = (H - il) (H + il)-l of the 
2n 

self-adjoint operator H is unitary (see Chapter VII, 4). Let U = f i,6 dF (0) 
o 

be the spectral resolution of U. Then we have 

F(2n- 0) =s-limF(2n- 0) = F(2n) = I. 
6-!-0 

If otherwise, the projectionF(2n)-F(2n-0) would not be equal to the 
zero operator. Thus there exists an element y =1= 0 such that 

(F(2n) - F(2n - 0) y = y. 
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Hence, by F(O) F(O') = F(min(O, 0'), 
2" 

Uy= J eiO d(F(O)(F(2n) -F(2n- 0)) y 
o 

= (F(2n) - F(2n - 0) y = y. 

Thus (y,z) = (Uy, Uz) = (y, Uz) and so (y,z-Uz)=O for every 
z EX. U being the Cayley transform of a self-adjoint operator H, we 
know (see Chapter VII, 4) that the range R (I - U) is dense in X. Hence 
we must have y = 0, which is a contradiction. 

Thus, if we set 
A = - cot 0, E (A) = F (0), 

then 0 < 0 < 2 n and - 00 < A < 00 are in a topological correspondence. 
Hence E(A) is a resolution of the identity with F(O). We shall show 
that the self-adjoint operator 

00 

H' = J AdE(A) 
-00 

is equal to H. Since H = i(I + U) (I - U)-l, we have only to show 
that 

(H'(y- Uy),x) = (i(y + Uy),x) for all x,yEX. 

But, since D (H')" = X, we may restrict x to be in the domain D (H'). 
Now, by F(O) . F(O') = F(min(O, 0'), 

2" 
(y - U y, F (0) x) = J (1- eiO') dO' (F (0') y, F(O) x) 

o 
2" 

= J (l_eiO' ) do' (F(O) F(O') y, x) 
o 

o 
= J (1- eiO') d (F (0') y, x). 

o 
Hence 

00 

(y-Uy,H'x) = J Ad(y-Uy,E(A) x) 
-00 

2" {O } =/ -cotOd j(l-eiO,)d(F(O')Y,x) 

2" 
= J i(l + eiO)d(F(O)y,x)=(i(y+ Uy),x). 

o 
00 

The uniqueness 01 the spectral representation. Suppose H = J A dE (A) 
-00 

00 

admits another spectral representation H = JAdE' (A) such that 
-00 
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E' (Ao) =1= E (Ao) for some Ao. Then, by setting 

A = - cot 0, E' (A) = F' (0), 

we have F' ((Jo) =1= F (00), where Ao = - cot 00 • By a similar calculation 
00 

to the above, we can prove that the Cayley transform of JAdE' (A) is equal 
-00 

2" 
to J ei8 dF' (0). Hence the unitary operator U admits two different 

o 
2" 2" 

spectral representations U = J eiS dF(O) and U = J ei8 dF'(O), con-
o 0 

trary to what we have proved in Chapter XI, 4. 
We have thus proved (see Chapter VII, 3 and 4) the fundamental 

result due to J. VON NEUMANN [1]: 

Theorem 2. A symmetric operator H has a closed symmetric extension 
H**. A closed symmetric operator H admits a uniquely determined spec­
tral representation iff H is self-adjoint. H is self-adjoint iff its Cayley 
transform is unitary. 

Remark. It sometimes happens, in applications, that H is not self­
adjoint but H* is self-adjoint. In such a case, H is said to be essentially 
self-adjoint. In this connection, see T. KATO [7] concerning SchrOdinger's 
operators in quantum mechanics. 

The spectral representation of the momentum operator HI: 

1 d 
HIx(t) = i dt x(t) in L2(- 00, 00). 

The Fourier transform U defined by 

" x(t) = U . y(s) = !.i.m. (2:n)-1/2 J eis'y(s) ds 
......00 _" 

is unitary and U-Ix(t) = U*x(t) = Ux(-t). Hence, denoting by E(A) 
the resolution of the identity given by (13) in Chapter XI, 5, we obtain a 
resolution of the identity {E' (A)}, E' (A) = U E (A) U-1. If both y (s) and 
sy(s) belong to L2(-00, 00) n V(-oo,oo), then 

i :e x(t) = i :e ((2:n)-1/2 _[ eis' y (s) dS) 

00 

= (2:n)-1/2 J e's'sy(s) ds = U(sy(s)) = USU-1X(tJ, 

or, symbolically, 
-00 

~~- UsU- 1 
i dt - (1) 
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00 

Hence, for the self-adjoint operator H = s . = J A dE (A), we have 
-00 

{ U-IH1 U· y(s) = s· y(s) = Hy(s) whenever y(s), 
sy(s) both belong toLS(-oo,oo) n V(-oo, (0). 

For any y(s) E D(H) = D(s .), set 

y,,(s) = y(s) or = 0 according as ]s] < n or ]s] > n. 

Then surely y,,(s), sy,,(s) both E P(-oo,oo) n V(-oo,oo) and, more­
over, s-lim y" = y, s-lim H y" = H y. Thus, since the self-adjoint opera-

n--+OO n-+OO 

tors U-IH1 U and H are closed, we have, by (U-IHI U) y" = Hy", 
(U-l HI U) Y = H y whenever y ED (H), 

that is, U-IH1 U is a self-adjoint extension of the self-adjoint operator 
H. Hence, by taking the adjoint, we see that H* = H is also an exten­
sion of (U-IHI U)* = U-IH1 U; consequently U-IH1 U = H and so 

00 00 

HI = UHU-l = J Ad(UE(A) U-l)= J A dE' (A) . 
-00 -00 

7. Real Operators and Semi-bounded Operators. 
Friedrichs' Theorem 

Real operators and semi-bounded operators, defined below, have self­
adjoint extensions. Thus we can apply von Neumann's theorem to these 
extensions to the effect that they admit spectral resolutions. 

Definition 1. Let X = P(S, ~, m) and let H be a symmetric operator 
defined in X into X. H is said to bea real operator, if i) X(S)ED(H) then 
x(s) E D(H), and ii) H maps real-valued functions into real-valued func­
tions. 

Example. Let I(s) be a real-valued continuous function in (-00, (0). 
Then, for X = P(-oo,oo), the operator of multiplication by I(s) is a 
real operator. 

Theorem 1 (1. VON NEUMANN [1J). A real operator H admits a self­
adjoint extension. 

Proof. Let U = UH be the Cayley transform of H. Then D(U) = 
{(H + iI) x; xE D(H)} consists of the functions obtained by taking the 
complex-conjugate of the functions of R(U) = {(H -iI) x; xE D(H)}. 
Thus, if we define an extension U1 0f U through 

U1 = U in D(U), 

U1 ( f c .. tp .. ) = f c .. ip .. , where {tp .. } is a complete 

orthonormal system of the Hilbert space D (U).L , 

then U1 is a unitary extension of U. Therefore the self-adjoint extension 
HI of H exists such that U1 = UH , (see Chapter VII, 4). 
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Definition 2. A symmetric operator H is said to be upper semi­
bounded (or lower semi-bounded) if there exists a real constant tx such that 

(Hx, x) < tx /lxl12 (or (Hx, x) > tx /lx/l 2) for all xE D(H). 

If (H x, x) > 0 for all xE D (H), then H is said to be a positive operator. 

Example. Let q(s) be continuous and non-negative in (-00,00). 
Consider the operator H defined for C2 functions x (s) with compact 
support by 

(H x) (s) = - x" (s) + q(s) x(s). 

Then H is a positive operator in the Hilbert space L2(- 00, 00), as may be 
verified by partial integration. 

Theorem 2 (K. FRIEDRICHS [3]). A semi-bounded operator H admits 
a self-adjoint extension. 

Proof (due to H. FREUDENTHAL [1]). -H is lower semi-bounded if H 
is upper semi-bounded. If H is lower semi-bounded as above, then 
Hl = H + (l-tx) I satisfies the condition that (Hlx, x) > /lx/l 2 for all 
xE D(Hl ). Therefore, since at! is self-adjoint, we may assume that the 
symmetric operator H satisfies the condition 

(Hx,x) > /lxl12 for all xED(H). (1) 

We introduce a new norm 11 x II' and the associated new scalar product 
(x, y)' in D (H) through 

Ilxll' = (Hx,x), (x,y), = (Hx,y). (2) 

Since H is symmetric and satisfies (1), it is easy to see that D (H) becomes 
a pre-Hilbert space with respect to IIxll' and (x, y),. We denote by D(H)' 
the completion of this pre-Hilbert space. 

We shall show that D (H)' is, as an abstract set without topology, a 
subset of the set X which is the original Hilbert space. Proof: A Cauchy 
sequence {x,,}, of the pre-Hilbert space D (H) satisfies II x" - x", II' > 
II x" - x", /I and lim /I x" - x", /I' = 0; consequently {x,,} is also a Cauchy 

".m-+OO 
sequence of the original Hilbert space X. If we can show, for a Cauchy 
sequence {y,,} of D (H)', that 

~IIY"II'#O does not imply ~IIY"II=O, (3) 

then the correspondence 

{x,,}, -+ {x,,} (4) 

is one-one from the Cauchy sequences of D (H) into the Cauchy sequences 
of X. Two Cauchy sequences {x,,}', {z,,}, of D(H) (of X) being identified 
if ~ Ilx" - z .. II' = 0 (if ~ Ilx" - z .. 11 = 0). Since X is complete, we 

may thus identify its Cauchy sequence {x,,} with the element x E X such 
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that lim Ilx,,-xll = O. Therefore, D(H)' may, as an abstract set with-
n-+OO 

out topology, be identified with a subset of X by the correspondence (4). 
The proof of (3) is obtained, remembering the continuity of the scalar 
product in D(H)' and in X, as follows. lim Ilx"-x,,.II'=O, 

",m-+OO 

lim II x .. II' = '" > 0 and lim II x .. II = 0 imply a contradiction 
n-+OO n-+OO 

",2 = lim (x .. , x".), = lim (H x .. , xm ) = lim (H x .. , 0) = O. 
n,m-+OO ",m--+<X) ~oo 

We next set 

D = D(H*) n D(H)'. (5) 

Since D(H) ~ D(H*), we must have D(H) ~ fj ~ D(H*). Hence we can 

define an extension H of_ H by restricting H* to the domain fj = D ( ii). 
We have to show that H is self-adjoint. 

We first show that ii is symmetric. Suppose x, y E jj; there exist two 
sequences {x .. }" {Y .. }' of D(H) such that Ilx-x .. II' --+ 0, Ily-y .. II' --+ 0 
as n --+ (Xl. Hence, by the continuity of the scalar product in D (H)" 

we see that a finite lim (x .. , y".), = lim (H x,. 'ji".), = lim (x .. , H y".) 
n,m-+OO n,m--+OO n,m--+OO 

exists. This limit is equal to 

- -
lim lim (H x .. , y".) = lim (H x .. , y) = lim (x .. , H y) = (x, H y) 
~, fIJ-+OO n--+OO n-+OO 

and also to 
- -

lim lim (H x .. , y".) = lim (x, H y".) = lim (H x, y".) = (H x, y). 
m-+OO n-+OO m-+OO m-+OO 

Hence H is symmetric, that is, H ~ (H)*. 

Next let xE D(H), yE X. Then, by 

l(x,y)1 < Ilxllllyll ~ Ilxll' '1Iyll, 
we see that I (x) = (x, y) is a bounded linear functional on the pre-Hilbert 
space D(H). Hence I(x) can, by continuity, be extended to a bounded 
linear functional on the Hilbert space D (H)'. Hence, by F. Riesz' repre­
sentation theorem as applied to the Hilbert space D (H)', there exists a 
uniquely determined y' E D (H)' such that 

I (x) = (x, y) = (x, y')' = (H x, y') for all xED (H). 

This proves that y' E D (H*) and H* y' = y. Hence y' E fj and ii y' = y. 
We have thus proved that R (ii) = X, and so, by the Corollary of Theo­

rem 1 in Chapter VII, 3, H must be self-adjoint. 
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8. The Spectrum of a Self-adjoint Operator. Rayleigh's 
Principle and the Krylov-Weinstein Theorem. The Multiplicity of 

the Spectrum 

Theorem 1. Let H = J it dE (it) be a self-adjoint operator in a Hilbert 
space X. Let a(H), Pa(H), Ca(H) and Ra(H) be the spectrum, the point 
spectrum, the continuous spectrum and the residual spectrum of H, 
respectively. Then (i) a (H) is a set on the real line; (ii) ito EPa (H) is 
equivalent to the condition E (~) =1= E (ito - 0) and the eigenspace of H 
corresponding to the eigenvalueAo is R (E (ito) - E (ito - 0»; (iii) ito E Ca (H) 
is equivalent to the condition E (~) = E (ito - 0) in such a way that 
E (itl ) =1= E (A2) whenever itl < ito < ~; (iv) Ra (H) is void. 

Proof. We know already that, for a self-adjoint operator H, the resol­
vent set e (H) of H comprises all the complex numbers it with 1m (it) =/= 0 

00 

(see Chapter VIII, 1). Hence (i) is clear. We have ~l = ~ J dE (it) by 
-00 

the definition of the resolution of the identity {E (it)} and so (H -ito I) = 
00 

J (it - ito) dE (it). Hence, as in Corollary 2 of Theorem 2 in Chapter XI, 5, 
-00 

we obtain 
00 

II(H-~I)xI12= f (it-~)2dIIE(it)xIl2, xED(H). (1) 
-00 

Thus, by E (- 00) = 0 and the right continuity of II E (it) x 112 in it, we see 
that H x = ~x iff 

{
E(it) x = E(ito + 0) x = E(~) x for it >ito and 
E(it) x = E(ito- 0) x = 0 for it <~, 

that is, H x = ~x iff (E (~) - E (~- 0» x = x. This proves (ii). Next 
we shall prove (iv). If ito E R~(H), then, by (i), ito is a real number. By 
the condition R (H - ~l)" = D ((H - ~I)-l)" =1= X, we see that there 
exists ay =1= o which is orthogonal to R(H -itol), i.e.,((H -itol)x,y) =0 
for all xED (H). Hence. (H x, y) = (~x, y) = (x, itoy) and so y ED (H*) , 
H*y = itoY. This proves that Hy = itoY, i.e., ito is an eigenvalue of H. 
Hence we have obtaint!d a contradiction ito E Ra(H) n Pa(H), and so 
Ra (H) must be a void set. 

Let ito be a real number not belonging to a(H). Then the resolvent 
(itol - H)-l exists. Hence HAo = (H - itol) has a continuous inverse 
(H - itol)-l. The last condition is, by (iv) , equivalent to ito E e (H) and 
to the {;ondition that there exists a positive number IX such that 
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This condition is by (1) equivalent to 
00 

J (A-Ao)2d IIE(A) X 112 > 1X2llxll2 for all xE D(H). (2) 
-00 

Suppose that we have, for At < Ao < A2 with Ao - Al = ~ - Ao < IX, 

E(A1) = E(~). Then, contrary to (2), we obtain 
00 00 

J (A-Ao)2dIIE(A)xI12 <1X2 J dIlE(A)xIl2=1X21IxI12. 
-00 -00 

This proves (iii) by (i), (ii), (iv) and (2). 

Remark. The Example in Chapter XI, 5 gives a self-adjoint operator H 
for which all real numbers are in the continuous spectrum of H. 

Theorem 2. Let H be a bounded self-adjoint operator. Then 

sup A = sup (H x, x), inf A = inf (H x, x). (3) 
AEa(H) IIzll~l AEa(H) IIzll:>;l 

Proof. Since (H x, x) = (x, H x) = (H x, x) = real number, we can 
consider 

1X1 = ini (H x, x) and 1X2 = sup (H x, x) . 
IIzll~l lIzll~l 

Let AoE a(H). Then, by Theorem 1, there exists, for every pair 
(A1'~) of real numbers with Al < Ao <~, a y = yA"A, =1= 0 such that 
(E(~) -E(~)) y = y. We may assume that Ilyll = 1. Hence 

(H y, y) = J .'.d(E (A) y,y) = fAd liE (A) y 112 

= fAd liE (A) (E (~) -E (AI) y 112 
A. 

= fAd II (E (A) - E (AI) Y 112 . 
A, 

Thus, by letting Al t Ao, ~ ..j.. Ao, we obtain lim (H yA"A,' YA,.A.) = Ao. This 
proves that sup A= sup Ao < 1X2• 

AEa(H) 
Let us assume that 1X2 E a(H). Then, by Theorem 1, there exists a pair 

(AI' ~) of real numbers such that Al < 1X2 < A2 and E (~) = E (~). Hence 
1 = 1 - E (~) + E (~), (1 - E (~) E (AI) = E (AI) (I - E (~)) = 0 and 
so either (I - E (~» or E (AI) is not equal to the zero operator. If 
(I - E(A2) =1= 0, then there exists a Y with lIy II = 1, (I - E (A2» Y = y. 
In this case, we have 

(Hy,y) = fAd IIE(A) Yl12 = fAd IIE(A) (I _E(~»yI12 
00 

= J AdIIE(A)YI12~~>1X2; 
A. 

and in the case E (At) =1= 0, we obtain 

(Hz, z) ~ At < 1X2 for a z with liz II = I, E(AJ z = z. 
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Therefore the assumption IX2 E q (H) is absurd and so we have proved that 
sup A = sup, H (x, x). Similarly, we can prove that inf ,t = inf 

AEaCH) 11.11::;;1 AEaCH) 11·11::;;1 
(Hx ,x). 

Theorem 3 (KRYLOV-WEINSTEIN). Let H be self-adjoint, and define, 
for any xE D(H) with Ilxl/ = 1, 

IX. = (H x, x), (J" = IIH x II. (4) 

Then, for any £ > 0, we can find a AoE q(H) satisfying the inequality 

IX. - ({J~ _IX~)1/2_ £ :::;;: A.o < IX. + ({J~ _IX~)1/2 + £. (5) 

Proof. We have 

and so 

{J~ = (H x, H x) = (H2 x, x) = J ,1.2 d liE (,1.) x 112, 

IX" = (H x, x) = fAd II E (,1.) x 112, 

Ilxl/' = J d liE (A) x112, 

~ -IX~ = J ,1.2 d II E (A) x 112 - 2lX "J ,1. d II E (,1.) x 112 + IX~ J d II E (,1.) x 112 

= J (,t-IX,,)2d liE (A) x112. 

Therefore, if II E (A) x 112 does not vary in the interval given by (5), we 
would obtain a contradiction 

{J; -IX~ > ({J~ _IX~)1/2 + £)2 > {J~ -IX~. 
Remark. The so-called Rayleigh principle consists in taking IX" as 

an approximation to the spectrum of the operator H. If we calculate {J", 
then Theorem 3 gives an upper bound of the error when we take 
IX" as an approximation of the spectrum of H. For a concrete application of 
such error estimate, we refer the reader to K. YOSIDA [1]. 

The Multiplicity of the Spectrum. We shall begin with the case of a 
self-adjoint matrix H = J A dE (A) in an n-dimensional Hilbert space X,.. 
Let ,1.1> ~, .. . ,,1,p (p :::;;: n) be the eigenvalues of H with the multiplicity 

m1> '"'2, ... , mp , respectively C! mj = n). Let Xi,' Xj., ... , Xjm; be ortho­

normal eigenvectors of H belonging to the eigenvalue ,1,j (H Xj. = A.,- Xj.) so 

that{xj.; S = 1, 2, ..• ,mj} spans the eigenspace EAI = R (E (,tj) -E (A.,--O)) 
of H belonging to the eigenvalue A.,-. Then the set {Xj.; i = 1, 2, ... , p 
and S = 1, 2, ... , mil is a complete orthonormal system of vectors of 
the space X,., and hence every vector y of X,. is represented uniquely as 
the linear combination of xi:s: 

P ml 

y = ,I I"'i.Xj. 
1=1 <=1 • 

(6) 

21 Yoslda, Functional Analysis 
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Thus, denoting by PAj the projection (E (J,) - E (Aj - 0) upon the 
eigenspace EAj , we have, for any x < (J, 

(E({J) - E(x)) y = I (1 Xj.Xj.) = I Pljy, (7) 
ct<).j:;;;P 5=1 ",<Aj:;;;P mj 

Plj(E ((J) - E (x) y = 5.?1 Xi, Xj, or = 0 according as x <: Aj < (J or not. 
- (~ 

Hence, for fixed x < (J and a fixed linear subspace M of X, the set 

{(E((J) - E(x)) Y; yE M} 
does not contain EAj if the dimension of M, dim (M), is < mi" Moreover, 
for a suitable M with dim(M) = mj' the set {(E((J) -E(x)) Y; yE M} 
with x < Aj < (J contains Eli" In fact, the statement is true for M con­
taining Xj" Xj" ... , xims. In particular, m1 = m2 = ... = mp = 1 with 
P = n iff there exists a fixed vector y E X .. such that the set of vectors 

{(E((J) - E(x)) y; x < (J} 
spans the whole space X ... 

These considerations lead to the following definitions: 
Definition 1. The spectrum of a self-adjoint operator H = f A dE (A) 

in a Hilbert space X is said to be simple, if there exists a fixed vector 
yE X such that the set of vectors {(E({J) -E (x) y; x < (J} spallS a linear 
subspace strongly dense in X. 

Definition 2. Let H = f A dE (A) be a self-adjoint operator in a Hilbert 
space X. For fixed ac < (J, consider linear subspaces M of (E ({3) -
E (x» . X such that 

(E((J) - E(x) . M = (E({J) - E(x» . X. (9) 

We may take, for example, M = (E ((J) - E (x)) . X to meet condition 
(9). The minimum of the set of values dim(M), where M satisfies 
condition (9), will be called the total multiplicity 01 the spectrum of H 
contained in the interval (x, (JJ. 

Definition 3. The multiplicity 01 the spectrum 01 a sell-adjoint operator 
H = f A dE (A) at A = A.o is defined as the limit, as n -+ 00, of the total 
multiplicity of the spectrum of H contained in the interval (Ao - n-1 , 

A.o + n-1]. 

Example. The coordinate operator H, i.e., the operator H defined by 
H· x(t) = t· x(t) in L2(-oo, 00). is of the simple spectrum. 

Proof. We know that the spectral resolution H = f A dE (A) is given by 

E (A) x (t) = x (t) or = 0 according as t ~ A or t > A. 
Let y (t) be defined by 

y(t) = ck > 0 for k -1 < t :'S k (k = 0, ± I, ± 2, ... ) 

with Ic~<oo so that y(t) E L2(-oo, 00). 
k 
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Then it is easy to see that the linear combinations of vectors of the form 
(E ({J) - E (IX» y, IX < (J, are strongly dense in the totality of step functions 
with compact support and consequently strongly dense in L2(-00,00). 

The Problem of the Unitary Equivalence. Two self-adjoint operators 
HI and H2 in an n-dimensional Hilbert space X,. are said to be unitarily 
equivalent to each other if there exists a unitary matrix U in X,. such 
that HI = U H2 U-I. It is well-known that HI and H2 are unitarily 
equivalent to each other iff they have the same system of eigenvalues 
with respectively the same multiplicities. Thus the eigenvalues together 
with the respective multiplicities are the unitary invariants of a self-ad­
joint matrix. 

The investigation of the unitary invariants for a self-adjoint opera­
tor in an infinite dimensional Hilbert space goes back to a paper by 
E. HELLINGER [lJ published in 1909. See, e.g., M. H. STONE [1]. There 
the Hilbert space is assumed to be separable. For the non-separable Hilbert 
space case, see F. WECKEN [lJ and H. NAKANO [lJ and also P. R. HAL­
MOS [2J. K. YOSIDA [13J proved the following theorem: 

Let H be a self-adjoint operator in a Hilbert space X, and let us 
denote by (H)' the totality of bounded linear operators E L (X, X) which 
are commutative with H. Then two self-adjoint operators HI and H2 in 
X are unitarily equivalent to each other iff there exists a one-to-one 
mapping T of (HI)' onto (H2), such that T defines a ring-isomorphism 
of the ring (HI)' with the ring (H2), in such a way that (T . B)* = T . B* 
for every BE (HI)'. 

Thus the algebraic structure of the ring (HI)' is the unitary invariant 
of HI. 

9. The General Expansion Theorem. A Condition for the Absence 
of the Continuous Spectrum 

Let H = f A dE (A) be a self-adjoint operator in a Hilbert space X. 
Then, by E (+ 00) = I and E (- 00) = 0, we have the representation 

AI 

X = s-lim f dE (A) x = s-lim (E (A2) -E (AI» x for every xEX. 
A, t -00)., too A, A, t -OO,A, too 

(1) 

We shall call (1) the general expansion theorem associated with the self­
adjoint operator H. In concrete cases, it sometimes happens that the 
resolvent (AI - H)-I is obtainable more easily than the spectral resolu­
tion H = f A dE (A). In such a case, the general expansion theorem (1) 

21* 
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may be replaced by 

x = s-lim s-lim -21 . [j (u - iv) 1-Hr1 x du 
II<.j.-oo.lltoo v.j.O :11$ II< 

+ i «u + iv)1 -Hr1 XdU] , xEX. 

(1') 

Proof. If v =1= O. then 
00 

«u + iv) 1- H)-l X = J -+ ~-, dE (A) x, for every xE X. 
U ~V-A 

-00 

For. by approximating the integral by Riemann sums and remembering 
the relation E(A) E(A') = E(min(A, A')), we obtain. for 1m (p.) =1= o. 

_I (.:1-1') dE (.I) LI A' 1 p dE (1')] 

-_I (.:1-1') d. LI (A' 1 p) d., (E (1) E (1'))] 

_I (.:I-I') d. LL A' 1 pdE(.I')j ~ _I dE (.:I) ~ I, 

_I A 1 pd'{E(l) _I (1' -I') dE(.I')] 

1, 1 p d, LI (l' - 1') d, (E (A) E (.:I'))] 

-_I A 1 pd.LL (X -I') dE (.:I')] ~ _I dE (.:I) ~ I. 

Therefore, we have 
II II< J «u - iv) I - H)-I X du + J «u + iv) I - H)-I X du 

II< II 

- j dE (A) xlj U-~:-l± j u +~:-l] 
-00 II< II 

-1 dE (.:I) xlj d.1og (u-;, -.:I) + j d.log (u H, . 1)\ 
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which tends, when v + 0, strongly to 
{J-O 
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f 2nidE ().) x + ni (E (fJ) - E (fJ - 0)) x + ni (E (IX) - E (IX - 0)) x 
",+0 

= ni(E({J) + E({J - 0)) x - ni(E(IX) + E(IX - 0)) x. 

This proves formula (I'). 
Remark. The eigenfunction expansion associated with the second 

order differential operator 
dB 

- fix! + q(x) 

with real continuous q(x) in an open interval (a, b) was inaugurated by 
H. WEYL [2], further developed by M. H. STONE [1], and completed 
by E. C. TITCHMARSH [2] and K. KODAIRA [1] who gave a formula which 
determines the expansion explicitly. The expansion is exactly a 
concrete application of (1). The crucial point in their theory is to give the 
possible boundary conditions at x = a and x = b so that the operator 

dB 
- dxB + q(x) 

becomes a self-adjoint operator H in the Hilbert space L2 (a, b). Their 
theory is very important in that it gives a unified treatment of the 
classical expansions in terms of special functions, such as the Fourier 
series expansion, the Fourier integral representation, the Hermite poly­
nomials expansion, the Laguerre polynomials expansion and the Bessel 
functions expansion. We do not go into details, and refer the reader to 
the above cited book by TITCHMARSH and the paper by KODAIRA. Cf. 
also N.A. NAIMARK [2], N.DuNFORD-J. SCHWARTZ [5] andK. YOSIDA [1]. 
The last cited book gives an elementary treatment of the theory. 

If the continuous spectrum Ca(H) is absent, then the expansion (1) 
will be replaced by a series rather than the integral. We have, for in­
stance, the following 

Theorem 1. Let H = J). dE ().) be a self-adjoint compact operator in 
a Hilbert space X. Then (i) Ca (H) contains no real number except possibly 
0; (ii) the eigenvalues of H constitute at most a countable system of real 
numbers accumulating only at 0; (iii) for any eigenvalue Ao =1= 0 of H, 
the corresponding eigenspace EA" is of finite dimension. 

Proof. Suppose a closed interval [)", )."] on the real line does not 
contain the number o. Then the range R (E ().") - E ().')) is of finite 
dimension. If otherwise, there exists, by E. Schmidt's orthogonalization 
in Chapter III, 5, a countable orthonormal system {Xi} contained in 
R(E().II) -E().')). We have w-limx; = 0, since, by Bessel's inequality, 

~ 
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Hence, by the compactness of the operator H, there exists a subsequence 
{xi'} such that s-.lim H xi' = w-:lim H xi' = O. On the other hand, we have 

J-+OO J-+OO 

II H x;j 12 = f ).2 d II E ().) Xj 112 = f ).2 d II E ().) (E ().") - E ().')) Xii 12 
A" 

= f ).2 d II(E ().) - E ().') Xj 112 > IIXj II~' min (1).' 12, I)." 12) 
A' 

= min (I).' 12, I)." 12), 
which is a contradiction. 

If C,,(H) contains a number Ao # 0, then, by Theorem 1 in the preced­
ing section, s-lim (E (Ao - 8) - E (Ao - 8)) x = 0 for any x EX. As proved 

~,j.O 

above, the range R(E (Ao + 8) - E (Ao - 8) is of finite dimension and 
this dimension number is monotone decreasing as 8 t o. Hence we see 
that (E (Ao + 8) - E (Ao - 8)) = 0 for sufficiently small 8> 0, and so, 
by Theorem 1 in the preceding section,).o cannot be contained in C,,(H). 

This proves our Theorem. 
Corollary 1. Let {A,;} be the system of all eigenvalues of H different 

from O. Then, for any x E X, we have 

" x = (E (0) - E (0 - 0) x + s-lim . .I (E (A,;) - E (A,; - 0)) x. (2) 
n-+001=1 

Proof. Clear from (1). 
Corollary 2 (The Hilbert-Schmidt Expansion Theorem). For any xE X, 

we have 
" H x = s-lim . .I ~. (E (1.) - E ().. - 0)) X. 

n-+001~1'~" 1 (3) 

Proof. Clear from the continuity of the operator H and the fact that 
H (E (0) - E (0 - 0)) = 0 and H (E (A,;) - E (A,; - 0)) x = A,; (E (A,;) 
-E(A,;- 0)) x, the latter being implied by R(E(A,;) -E(A,;-O)) = EA1 , 

the eigenspace of H belonging to the eigenvalue .4;. 
Remark. The strong convergence in (3) is uniform in the unit circle 

{x; I/xl/ < 1}. For, we have 
o 

IIHx- f )'dE().)xI12 =11 f )'dE().)xI12 = f ).2d IIE().) xll2 
IAI>o IAI~8 -8 

• 
< e2 f d II E ().) x 112 < 82 f d II E ().) x 112 = 82 II X 112 ::;: 82. 

-0 

10. The Peter-Weyl-Neumann Theory 

Let G be a totally bounded topological group, metrized by a 
distance satisfying the condition (see Chapter VIII, 5) 

dis (x, y) = dis (axb, ayb) for every x, y, a and bEG. (1) 
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Let I(g) be a complex-valued bounded uniformly continuous function 
defined on G. For any e > 0, set 

V = ly E G; sup I/(x) - I (y-Ix) 1< e1. (2) 
l sEG J 

Then, by the continui~y of I, the set V is an open set containing the unit 
e of the group G. Hence the set U = V (\ V-I, where V-I = {y-I; Y E V}, 
is also open and 3 e. If we put 

k(x) = 2-I (k1(x) + k1(X-1)), where 

~(x) = dis(x, if) 
dis (x, e) + dis (x, Uo) (dis (x, Uc) = inf dis (x, y)) , 

yEUO 

(3) 

then we have the results: 

k(x) is bounded uniformly continuous on G, and 

k(x) = k(X-l), 0 < k (x) < 1 on G, k(e) = 1 and (4) 

k (x) = 0 whenever x E Uc . 

Hence, for all x, y E G, we obtain 

Ik(y) (I(x) - I (y-lX)) I ~ e k(y). 
By taking the mean value (see Chapter VIII, 5) of both sides, we obtain 

IMy(k(y)) I (x) - My (k(y) I (y-1x)) I ~ e My(k(y)). 

We have My (k(y) > 0 by k(y) > 0 and k(y) * O. Hence 

I/(x) - My (ko (y) l(y-1x) I <e, where ko(x) = k(x)jMs(k(x)). (5) 

Thus, by virtue oftheinvariance My (g(y-l» = My (g (y» = My (g(ay» = 
My (g(ya)) of the mean value, we obtain, from (5), 

I/(x)-My(ko(xy-l)/(y)I<e for all xEG. (6) 

Proposition 1. We shall denote by C (G) the set of all complex-valued 
bounded uniformly continuous functions h(g) defined on G. Then 
C (G) is a B-space by the norm II h 110 = sup I h (g) I. Then, for any band 
hEC(G), 

(7) 

also belongs to C (G). 
Proof. By dis (x, z) = dis (axe, aze) and the uniform continuity of the 

function b(g), there exists, for any <5 > 0, an 'fj = 'fj(<5) > 0 such that 

sup I b (xy-I) - b (x' y-I) I <<5 whenever dis (x, x') ~ 'fj. 
y 

Hence, as in the case of Schwarz' inequality, we obtain 

IMy(b(xy-l) h(y)) -My(b(X'y-l) h(y» 12 
< My(b(xy-l) - b(x' y-l)2) . My (Ih(y) 12) < <52 My(lh(y) 12) 

whenever dis (x, x') ~ 'fj. This proves our Proposition 1. 

(8) 
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Proposition 2. C (G) is a pre-Hilbert space by the operation of the 
function sum and the scalar product 

(b, h) = (bXh*) (e) = M" (b (y-l) h(y-l)) = M,,(b(y) h(y)), where 

h*(y) = h(y-l). We shall denote this pre-Hilbert space by C(G). 

Proof. Easy. 

(9) 

Proposition 3. We shall denote the completion of the pre-Hilbert space 

C (G) by C (G), and the norm in t~e Hilbert ,:;pace C (G) by II h II = (h, h)1/2. 
Then the linear mapping Ton C (G) into C (G) defined by 

(Th) (x) = (koXh) (x), xE G, (10) 

can, by the continuity in C (G), be extended to a compact linear operator - - -Ton C (G) into C (G). 
Proof. By virtue of M" (1) = 1, we obtain 

IIhll = (h, h)1/2 = M,,(h(y) h(y))1/2 < sup Ih(y) 1= IIhllo. (11) 

" 
The continuity of the operator T in C (G) is clear from the Schwarz 

~ -
inequality for (7), and so, by the denseness of C (G) in C (G), we can 

extend T to a bounded linear operator fin C (G). On the other hand, we 

see, by (8), that T is a compact operator on C (G) into C (G). We prove 

this by the Ascoli-Arzela theorem. Thus, by (11), we easily see that T is a 
A ~ 

compact operator on C (G) into C (G). 
~ -

Therefore, by the denseness of C (G) in C (G), we see that the extended 

operator T is also compact as an operator on C (G) into C (G). 
We are now ready to prove the Peter-Weyl-Neumann theory on the 

representation of almost periodic functions. 

It is easy to see that,by kO(xy-l) = ko (yx-1) , the compact operator Tis 

self-adjoint in the Hilbert space C (G). Hence, by the Hilbert-Schmidt 
expansion theorem in the preceding section, we obtain 

Th = s-lim i AmP;.".h uniformly in h satisfying Ilh II < 1, (12) 
n--+OO m=l 

if we denote by {Am} the system of all eigenvalues o~ T different from 
0, and by P;.". the projection upon the eigenspace of T belonging to the 
eigenvalue Am' 

Since t (g), introduced at the beginning of this section, belongs to - -
C (G), we have Tt = Tt E C (G). Since the eigenspace R(PAm) = PAm' C (G) 
is of finite dimension, there exists, for every eigenvalue A"" a finite 

system {hmj};=l ..... nm of elements E C (G) such that each hER (PAm) = 
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PAm' C (G) can be represented as a uniquely detennined linear combina­
tion of h"./s (i = 1, 2, ... , n ... ). Let 

..... , 
PAmh = ,.1: cjh ... j , where c's are complex numbers. (13) 

J=l 

Then, since h ... jE R(PAm), we have Th ... j = ).".h ... j, and so, by applying 
(8) to the operator T given by (10), we see that h ... j = ;':;,! (1' h",j) must 
belong to C (G). Hence, by (13), we see that, for each eigenvalue).". of T, 
the eigenspace R (PAm) = PAm' C (G) is spanned by the functions h ... jE C (G). 

Therefore, we have, by (12), 

(T f) (x) = s~ "'~1 )""1,,, (x) in the strong topology of C (G), } 

where I ... = PAm ·1 E C (G) for each m. 

By applying (8) to the operator T given by (10), we see that 

(PI) (x) = ~ My (ko(xy-1) • "'~1 A ... I ... (y») unifonnly in x. (14) 

On the other hand, by (6) and My(ko(Y» = 1, we obtain 

IM~(ko(xZ-1) I(z» - M z (ko(xz-1) My(ko(zy-1) I (y» 1 :s;; e, 

and so, combined with (6), we have 

II (x) -M~(ko(xZ-1) My (kO(zy-1) I (y») I:S;; 2e. (15) 

The left hand side is precisely I/(x) - (PI) (x) 1 < 2e. 
Since T·R(PA ... )<;,R(PA ... ), we have proved 

Theorem 1. The function I (x) can be approximated uniformly on G by 
linear combinations of the eigenfunctions of T belonging to the eigen­
values which are different from O. 

We shall take a fixed eigenvalue A =f=. 0 of T, and shall denote the 
base {hj} ~ C(G) of the corresponding eigenspace PA • C(G) by edx), 
e2(x), ... , ek(x). Then, by the invariance of the mean value, we obtain, 
for any aE G, 

My (ko (xy-1) ej (ya» = My (ko (xa. a-1y-1) ej (ya» = M. (ko (xa. Z-l) ej (z» 

= (Tej) (xa) = Aej(xa). 

Since the left hand side is equal to the result of applying the operator T 
upon the function ej(ya) of y, we see that, for any given a E G, the func­
tion ej(xa) of x must be uniquely represented as a linear combination of 
the functions edx), e2(x), ... , ek(x). We have thus 

k 
ej (x a) = ,.1: d;i (a) e. (x) (f = 1, 2, ...• k) , (16) .-1 
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or, in vectorial notation, 
e(xa)=D(a)e(x). (16') 

By e(x. ab) = D(ab) e(x), e(xa. b) = D(b) e(xa) = D(b) D(a) e(x), we 
see, remembering the linear independence of edx), e2(x), ... , e,.(x), that 

D(ab) = D(b) D(a), D(e) = the unit matrix of degree k. (1'7) 

By applying E. Schmidt's orthogonaliz~tion, we may assume that {ej(x)} 
constitutes an orthonormal system in C (G). Then, by (16), 

Mx(ej(xa) ei(x) = dj;(a) (18) 

and so the elements dj ; (a) of the matrix D (a) belong to C (G). By the 
invariance of the mean value, we see that 

My(ej(ya) e;(ya) = My (ej(Y) e;(y» = {J;j' 

Hence the matrix D (a) gives a linear mapping transforming the ortho­
normal system {ej(x)} onto the orthonormal system {ej(xa)}. Therefore 
D (a) must be a unitary matrix. Hence the tranposed matrix D (a)' of 
D (a) is also unitary and we have 

D (a b)' = D (a), D (b)', D (e)' = the unit matrix of degree k. (17') 

Hence D (a), gives a unitary matrix representation of the group G such that 
its matrix elements are continuous functions of a. Letting x = e in (16), 
we see that each ej (a) is a linear combination of the matrix elements of 
the representation D(a)'. 

We have thus proved 

Theorem 2 (PETER-WEYL-NEUMANN). Let G be a totally bounded 
topological group, metrized by a distance satisfying dis (x, y) = 

dis (axb, ayb). Let f (g) be any complex-valued bounded uniformly 
continuous function defined on G. Then, f(g) can be approximated uni­
formly on G by linear combinations of the matrix elements of unitary 
uniformly continuous matrix representations D (g)' of the group G. 

Referring to A. Weil's reduction given in Chapter VIII, 5, we obtain 
the following 

Corollary. Let G be an abstract group, and f (g) an almost periodic 
function on G. Then t (g) can be approximated uniformly on G by linear 
combinations of the matrix elements of unitary matrix representations 
D (g)' of the group G. 

Remark 1. Let the degree of a unitary matrix representation D (g)' 
of the group G be d, i.e., the degree of the matrix D (g)' be d. Then each 
D (g)' gives a linear mapping of a fixed d-dimensional complex Hilbert 
space Xd onto itself. The representation D (g)' is said to be irreducible if 
there is no proper linear subspace =I=- {O} of Xd which is invariant by 
applying the mappings D (g)' '. g E G. Otherwise, the representation 



10. The Peter-Weyl-Neumann Theorem 331 

D (g)' is called reducible, and there exists a proper linear subspace 
XII,l =1= {O} invariant by every D(g)', gE G. Then the orthogonal com­
plement XJ;I of Xtl,l in X tl is, by the unitarity of the representation 
D (g)', also invariant by every D (g), g E G. If we take for the base of the 
linear space X tl the orthonormal system of vectors composed of one 
orthonormal system of vectors of Xtl,l and one of XJ;I' then, by this 
choice of an orthonormal base of X tl , the representation D (g)' will be 
transformed into the form 

U D(g)' U- I = (D1Jg), D2~g)')' where U is a fixed unitary matrix. 

Hence a reducible unitary representation D (g)' is completely reducible 
into the sum of two unitary representations Dl (g)' and D2 (g)' of the 
group G acting respectively upon Xtl,l and XJ;l. In this way, we finally 
can choose a fixed unitary matrix Utl such that the representation 
Utl D (g)' Udl is the sum of irreducible unitary representations of' the 
group G. Therefore, in the statements of Theorem 2 and its Corollary, 
we can impose the condition that the matrix representations D (g)' are all 
irreducible. 

Remark 2. In the particular case when G is the additive group of real 
numbers, a unitary irreducible representation D (g)' is given by 

D (g)' = eiag , where (X is a real number and i = VI. (19) 

For, by the commutativity of the unitary matrices D(g)', gE G, the 
representation D (g)' is completely reducible into the sum of one-dimen­
sional unitary representations X (g), that is, complex-valued solutions 
X(g) of 

X(gl + g2) = x (gl) . x (g2) , Ix (gl) 1= 1 (gl' g2E G),X (0) = 1. (20) 

It is well known that any continuous solution of (20) is of the form 
X(g) = eiag• Hence, any continuous almost periodic function f(g) on the 
additive group G of real numbers can be approximated uniformly on G 
by linear combinations of eiag with real (X's. This constitutes the fun­
damental theorem in H. Bohr's theory of almost periodic functions. 
According to the original definition by Bohr, a continuous function f (x) 
(-00 < x < (0) is called almost periodic if for each e > 0 there exists a 
positive number p = p (e) such that any interval of the form (t, t + P) 
contains at least one r such that 

If(x+r)-f(x)l<e for -oo<x<oo. 

See H. BOHR [1]. S. BOCHNER [4] has shown that a continuous function 
f(x) (-00 < x < (0) is almost periodic in Bohr's sense iff the following 
condition is satisfied: For any sequence of real numbers {an}, the system 
of functions {tan (x); fan (x) ~ f(x + an)} is totally bounded in the topology 
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of the uniform convergence on (-00,00). It was extended by J. VON 
NEUMANN [4] to almost periodic lunctions in a group. Neumann's result 
contains as a special case, the Peter-Weyl theory 01 continuous representa­
tion 01 a compact Lie group (PETER-WEYL [1]). According to our treat­
ment, Bohr's result is easily proved by observing that lim Is - tl = 0 
implies lim [sup I/(asb) -1(atb)l] = o. 

a,b 

11. Tannaka's Duality Theorem for Non-commutative Compact 
Groups 

Let G be a compact (topological) group. This means that G is a compact 
topological space as well as a group in such a way that the mapping 

(;, y) -+ xy-I 

of the product space G X G onto G is continuous. 

Proposition 1. A complex-valued continuous function I(g) defined 
on a compact group G is unilormly continuous in the following sense: 

for any e> 0, there exists a neighbourhood U (e) of I 
the unit element e of G such that I/(x) -/(y) 1< e 

whenever xy-l E U (e) and also whenever x-ly E U (e). 

(1) 

Proof. Since I (x) is continuous at every point a E G, there exists a 
neighbourhood Va of a such that x E Va implies I/(x) -/(a) 1< e/2. 
If we denote by Ua the neighbourhood of e defined by Ua = Vaa- I = 
{va-I; vE V}, then xa-1 E Ua implies I/(x) -I(a) 1< e/2. Let us denote 
by Wa the neighbourhood of e such that W; ~ Ua, where W; = 
{WI W2; W, E Wa (i = 1, 2)}. Obviously, the system of all open sets of 
the form Wa· a, where a is an arbitrary element of G, covers the whole 
space G. G being compact, there exists a finite set {a,; i = 1, 2, ... , n} 
such that the system of open sets W iii· a, (i = 1, 2, ... , n) covers G. 
We denote by U (e) the intersection of all open sets of the system {W iii}. 
Then U(e) is a neighbourhood of e. We shall show that if xy-1E U(e), 
then I/(x) -I(Y) I <e. Since the system W iii· a, covers G, there exists 
a number k such that ya;;1 E Wa/c ~ Uak and therefore II (y) -I (a,,) I < e/2. 
Furthermore we have xa;;1 = xy-Iya;;1 E U(e) Wa/c ~ W;/c ~ Ua"so that 
II (x) -I (ak) I < e/2. Combining these two inequalities we get 
I/(x) -/(y) 1< e. 

If we start with a neighbourhood U a of e such that X-I a E U a implies 
II (x) -I (a) I < e/2, we would obtain a neighbourhood U (e) of e such 
that I/(x)-/{y)l<e whenever x-1YEU(e). Thus taking the inter­
section of these two U (e)'s as the U (e) in the statement of the Proposi­
tion, we complete the proof. 
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Corollary. A complex-valued continuous function I(x) on a compact 
group G is almost periodic on G. 

Proof. Let U (e) be the neighbourhood of e given in Proposition 1. 
For any a E G, U (e) a is a neighbourhood of a. The compact space G is 
covered by the system of open sets U(e) a, aE G, and therefore some 
finite subsystem {U (e) a.; i = I, 2, ... , n} covers G. That is, for any 
a E G, there exists some a" with k < n such that aak"l E U (e). Hence, by 
(ax) (a"x)-l = aa;;l, we have sup I/(ax) - I (a" x) 1< e. Similarly, we ,. 
can find a finite system {bj , i = 1,2, ... , m} such that, for any bEG, 
there exists some bj with i :5: m satisfying the inequality 

sup I/(a.xb) - I (a. x bi ) I < e. 
i,% 

Therefore, for any pair a, b of elements E G, we can find a" and bi 
(k < n, i :5: m) such that 

sup I/(axb) - I (a"xbj ) 1< 2e. ,. 
This proves that the system of functions {t .. ,b(X); 1 .. ,b(X) = I(axb), a and 
bE G} is totally bounded by the maximum norm II h II = sup I h (x) I. Hence ,. 
I(x) is almost periodic on G. 

We are now able to extend the Peter-Weyl-Neumann Theory of the 
preceding section to complex-valued continuous functions I(x) on a 
compact group G. For such a function I(x) and e> 0, we set 

V = fY E G; s~p I/(x) - I (y-1x) 1< e}. 

Then, by the continuity of I, the set V is an open set containing e. By 
Urysohn's theorem as applied to the normal space G, we see that there 
exists a continuous function kl (x) defined on G such that 

0:5: k(x) < 1 on G, kl(e) = 1 and kl(X) = 0 whenever xE Vc . 

Then the continuous function 

k (x) = 2-1 (kl (x) + kl (X-l» 

satisfies the condition k(X-l) = k(x) and 

0:5: k(x) < 1 on G, k(e) = 1 and k(x) = 0 } 

whenever xE UC, where U = VV V-I. 

(2) 

Therefore, if we denote by C (G) the B-space of all complex-valued 
continuous functions h(x) defined on G normed by the maximum norm, 

we can define a linear operator T on C (G) into C (G) by 

(Th) (x) = (koxh) (x), xE G. (3) 
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Here, as in the preceding section, 

ko(x) = k(x)jMxCk(x)) (4) 

and C (G) is the the space C (G) endowed witht the scalar product 
- --

(b, h) = My (b(y) h(y)) = (bXh*) (e), h*(y) = h(y-l). (5) 

Thus, as in the preceding section, we obtain 
Theorem 1. Any complex-valued continuous function t (g) defined on a 

compact group G is almost periodic, and t(g) can be approximated uni­
formly on G by linear combinations of the matrix elements of unitary, 
continuous, irreducible matrix representations of G. 

We shall say that two matrix representations Al (g) and A2 (g) of a 
group G are equivalent if there exists a fixed non-singular matrix B 
such that B-1 Al (g) B = A2 (g) for all g E G. 

Proposition 2 (1. Schur's lemma). If the representations Al (g), A 2 (g) 
are irreducible and inequivalent, then there is no matrix B such that 

(6) 

holds identically in g, except B = 0. In (6), the matrix B is assumed 
to be of nl rows and n2 columns, where nl , n2 are the degrees of Al (g), 
A 2 (g), respectively. 

Proof. Let Xl and X 2 be the linear spaces subject to the linear 
transformations Al (g) and A2 (g), respectively. B in (6) can be inter­
preted as a linear mapping x2 --+ Xl = BX2 of X 2 onto Xl' The linear 
subspace of Xl consisting of all vectors Xl of the form B x2 is invariant, 
for Adg) Xl = B X; with x; = A2 (g) X2' By virtue of the irreducibility 
of Al (g), there are only two possibilities: either B x2 = ° for all x2 in X 2 • 

i.e. B = 0, or Xl = B X 2• On the other hand, the set of all vectors x2 

in X 2 such that B x2 = ° is an invariant subspace of X 2, for B A2 (g) x2 = 
Al (g) B x2 = 0. From the irreducibility of A2 (g) we conclude: either 
BX2 = ° for all x2 in X 2, i.e. B = 0, or x2 = ° is the only vector in X 2 
such that B x2 = 0, so that distinct vectors in X 2 go into distinct vectors 
in Xl under the linear mapping B. Hence if B =1= ° we conclude that B 
defines a one-one linear mapping of X 2 onto Xl' But this means that B 
is a non-singular matrix (nl = n2) and so Al (g) and A2 (g) would be equi­
valent. 

Proposition 3 (the orthogonality relations). Let Adg) = (at (g)) and 
A2 (g) = (a~l (g)) be unitary, continuous, irreducible matrix representa­
tions of a compact group G. Then we have the orthogonality relations: 

Mg(a;j(g) ;~l(g)) = 0, if Adg) is inequivalent to A 2(g), 
(7) 

Mg (a;j (g) a~l (g) = nIl OikOjl where nl is the degree of AdG). 
Proof. Let nl , n2 be the degrees of Al (g). A2 (g) respectively. Take any 

matrix B of n l rows and n2 columns, and set A (g) = Al(g) BA2(g-I). 
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Then tIle matrix A =Mg(A(g» satisfies Al (g) A =AA2(g). For, we 
have, by the invariance of the mean value, 

Ady) AAz(y-l) = Mg(Ady) Adg) BA2(g-l) A2(y-I) 

= Mg(AI (yg) BA2 ((yg)-l) = A. 

'By Schur's lemma, A must be equal to a zero matrix. If we take B = (bjz) 
in such a way that only the element bjz is not zero, then, by the unitarity 
condition A2 (g-I) = A2 (g)', we obtain 

Mg(at(g) a~/(g) = O. 

Next we have, as above, Al (g)A=AAI (g) for A= MiAI (g) BAI (g-l). 
Let ~ be anyone of the eigenvalues of the matrix A. Then the matrix 
(A - ~In.), where In. denotes the unit matrix of degree nl, satisfies 

Adg) (A - ~In.) = (A - ~In.) Adg). 

Therefore, by Schur's lemma, the matrix (A -~In.) is either non-singular. 
or (A - ~In.) = O. The first possibility is excluded since ~ is an eigen­
value of A. Thus A = ~In.' By taking the trace (the sum of the diagonal 
elements) of both sides of A = Mg (Adg) B Al (g-l), we obtain 

nl~ = trace (A) = Mg (trace (Adg) BAdg)-I) = Mg(trace(B) 

= trace(B). 

Therefore, if we take B = (bjz) in such a way that bjz = 1 while 
the other elements are all zero, then, from Mg (AI (g) B Al (g-l» = nIl 
trace (B) In., we obtain 

Mg(a}j(g) alz(g) = nilbikbj/' 

Corollary. There exists a set U of mutually inequivalent, continuous, 
unitary, irreducible matrix representations U (g) = (Uij (g» of G satisfy­
ing the following three conditions: 

i) for any pair of distinct points gl' g2 of G, there exists an U (g) E U 
such that U(gl) 01= U(g2)' 

ii) if U (g) E U, then the complex confugate representation U (g) of 
U (g) also belongs to U, 

iii) if UI(g), U2 (g) are in U, then the product representation UI(g) X 
U2 (g), explained below, is completely reducible to a sum of a 
finite number of representations E U. 

Proof. The definition of the product representation U I (g) X U 2 (g) 
is given as follows. Let (eL e~, ... , e;) and (ei, e~, ... , e;') be orthonormal 
bases respectively of the finite dimensional complex Hilbert spaces 
subject to the linear mappings UI (g) and U2 (g), respectively. The product 
space of these two Hilbert spaces is spanned by the product base con-
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sisting of nm vectors e} X ej (i = 1, 2, ... , n; i = 1, 2, ... , m). Referring 
to this base, the product representation Udg) X U2(g) of UI (g) = 
(ut (g)) and U 2 (g) = (ut (g)) is given by 

(UI (g) X U2 (g» (e} X eJ) = .I u; (g) u~ (g) (e} X ej). 
_,I 

Let us take a maximal set n of mutually inequivalent, continuous, 
unitary, irreducible matrix representations U (g) satisfying the condition 
ii). Then, by Theorem 1, condition i) is satisfied. Condition iii) is also 
satisfied since the product representation of two unitary representations 
is also unitary and hence is completely reducible. 

We are now ready to formulate T. Tannaka's duality theorem. Let 81 
be the set of all Fourier polynomials: 

x (g) = .I y~j) ulj) (g) , 

that is, finite linear combinations of ulJl (g), where (u~j) (g) E nand ytr) 
denote complex numbers. Then 81 is a ring with the multiplicative unit 
u (u (g) = 1 on G) and with complex multipliers; the sum and the multi­
plication in the ring 81 being understood as the function sum and the 
function multiplication, respectively. Let ~ be the set of all linear 
homomorphisms T of the ring 81 onto the field of complex numbers such 
that 

Tu = 1, Tx = Tx, the bar indicating the complex-conjugate. (8) 

~ is not void since each g E G induces such a homomorphism Tg : 

~x=xOO· ~ 

By the condition i) for n, we see that 

(10) 

Proposition 4. ~ may be considered as a group which contains G as 
a subgroup. 

Proof. We shall define a product T I • T 2 = T in ~ as follows. Let 

U<"')(g) = (u~j)(g)) (i, i = 1, 2, ... , n) 

be members of 11. We put, for u~1)(gh) = E uh)(g)u~~)(h), 
h 

Tu~1) = E T1uh)· T2U~~) . (11) 
h 

By the orthogonal relations (7), we see that the functions ulj) (g)'s, where 
(ulj) (g)) En, are linearly independent on G. Hence, we see that T may 
be extended linearly on the whole 81. It is easy to see that the extension T 
is also a member of ~ and that ~ is a group with the unit T. (e = the 
unit of G) and Til = T r'. G is isomorphically embedded in this 
group ~ by the correspondence g _ T t , as will be seen from (11) and (10). 
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In truth, we have 

Theorem 2 (T. TANNAKA). :t = G, viz. every T E:t is equal to a 

Tx = x (g) for all x Em. (12) 

Proof. We introduce a weak topology in the group :t by taking the 
sets of the form 

{TE:t; ITxi - Tex. I < e. (i = 1, 2, ... , n)} (13) 

as neighbourhoods of the unit T. of the group:t. Then :t is a compact 
space. For, by .I I T u~i) (g) 12 = (T· T) (1) = 1 implied by (8) and (11), 

$ 

:t is a closed subset of the topological product of compact spaces: 

II fz; Izl~ sup ITxl~, 
xEm l TE~ J 

and so we can apply Tychonov's theorem. It is easily seen that the 
isomorphic embedding g ~ Tg is also a topological one, because a one­
one continuous map of a compact space onto a compact space is a topo­
logical map. Therefore G may be considered as a closed subgroup of the 
compact group :to 

By the above weak topology of :t, each x (g) E m gives rise to a 
continuous function x(T) on the compact group:t such that x (Tg) = x (g). 
We have only to set x(T) = T· X. The set of all these continuous func­
tions x(T) constitutes a ring m(:t) of complex-valued continuous func­
tions on :t satisfying the conditions: 

1) l=u(T)Em(:t), 

2) for any pair of distinct points T1, T2 of:t, there exists an x(T) E 
m(:t) such that X(Tl) #- x(T2), 

3) for any x(T) E m(:t), there exists the complex-conjugate function 

x(T) = x(T) which belongs to m(:t). 

Now let us suppose that :t - G is not void. Since a compact space:t 
is normal, we may apply Urysohn's theorem to the effect that there exist 
a point To E (:t - G) and a continuous function y (T) on ~ such that 

y(T) > 0 on :t, y(g) = 0 on G and y(To) = 1. (14) 

By the Stone-Weierstrass theorem in Chapter 0, as applied to the ring 
m(:t) satisfying 1),2) and 3), we see that there exists, for any e> 0, a 
function x(g) = .I rljluJfl (g) E m such that ly(T) -.I rljlu~jl (T) 1 < e 
on:t, and, in particular, ly(g)-.Ir~jlu~jl(g)l<e on G. Let ui'i"l(g) 
= u (g) = 1. Then, by taking the mean value and remembering the ortho­
gonality relation (7), as applied to the compact groups :t and G, we obtain 

IMT(y(T))-ri'i"ll<e,IMg(y(g))-rii,ll<e. (15) 
22 Yoslda, Functional Analysis 
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We have thus arrived at a contradiction, since M T (y (T) > 0 and 
Mg (y (g) = 0 by (14). 

Remark 1. The above proof of Tannaka's theorem is adapted from 
K. YOSIDA [14]. The original proof is given in T. TANNAKA [1]. Since a 
continuous, unitary and irreducible matrix representation of a compact 
abelian group G is precisely a continuous function X (g) on G satisfying 

X (gl)x (gz) = X (gl gz) and Ix (g) I = 1, 

Tannaka's theorem contains, as a special case, the duality theorem of 
L. PONTRJAGIN [1]. For further references, see M. A. NAIMARK [lJ. 

Remark 2. To define mean values of continuous functions tk (g) (k = 
1,2, ... , m) on G by the method given in Chapter VIII, 5, we have only 
to replace the dis (gl' gz) there by dis (gl' gz) = sup Ilk (g gl h) -
Ik (g g2 h) I. g,II.G;k=I,2, ... ,m 

12. Functions of a Self-adjoint Operator 

Let H = f )..dE (A) be the spectral resolution of a self-adjoint operator 
H in a Hilbert space X. For a complex-valued Baire function t(A), we 
consider the set 

D(t(H) = {XEX; _[ I/(A) IZd I IE ().) xI12 < ex} (1) 

where the integral is taken with respect to the Baire measure m deter­
mined by m«(Al'Az]) = lIE (Az) xIIZ-IIE(A.1) x112. As in the case of a 
continuous function t(A), treated in Chapter XI. 5, we see that the inte­
gral 

.xl 

f I(A)d(E(A)x,y),xED(t(H),yEX, (2) 
-00 

exists and is finite with respect to the Baire measure m determined by 
m«(Al' ~]) = (E (A2) x, y) - (E(A.l) X, y). Further we see that (2) gives the 
complex conjugate of a bounded linear functional of y. Hence we may 
write (2) as (t(H) x, y) by virtue of F. Riesz' representation theorem in 
Chapter III, 6. In this way, we can define functions of H: 

00 

I(H) = f I(A) dE (A) (3) 
-00 

through (1) and (2). 
n . 

Example 1. If H is bounded self-adjoint and I(A) = .I <x·A', then, 
j=1 ' 

as in Chapter XI, 5, 
00 .. 

t(H) = f t(A) dE (A) = . .I <XjHj. 
-00 ,=1 
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Example 2. If 1 (i..) = (i.. - i) (i.. + i)-I, then 1 (H) is equal to the 
Cayley transform UH of H. We have, in this case, D(f(H)) = X since 
II (i..) 1= 1 for real i... It is easy to see, by E(i..1) E(Aa) = E(min(At, Aa)), 
that if we apply the bounded self-adjoint operator (H - iI)-1 = 
f (i.. - i)-1 dE (i..) to the operator 1 (H) = f 1 (i..) dE (i..) then the result is 
equal to (H + iI)-1 = f (i.. + i)-1 dE (i..). Hence I(H) = UH. 

Example 3. As in Chapter XI, 5, we have 
00 

III (H) X 112 = f 1/(i..)12d IlE(i..)xIl2 wh~never xED (f(H)). (4) 
-00 

Definition. Let A be a not necessarily bounded linear operator, and 
B a bounded linear operator in a Hilbert space. If 

xE D(A) implies BxE D(A) and ABx = BAx, (5) 

that is, if A B ~ BA, then we shall write BE (A)' and say that B is 
commutative with A. We shall thus write the totality of bounded linear 
operators B commutative with A by (A)'. 

Theorem 1. For a function I(H) of a self-adjoint operator H = 
fAdE (i..) in a Hilbert space X, we have 

(f(H)' ~ (H)" (6) 

that is, I (H) is commutative with every bounded linear operator which 
commutes with H. (Since E (i..) E (H)' by Theorem 2 in Chapter XI, 5, we 
see, in particular, that I(H) is commutative with every E(i..).) 

Proof. Suppose S E (H)'. Then we can show that S is commutative 
with every E (i..). We first show that S is commlltative with the Cayley 
transform U H of H. For, if xED (H), then we have, by S E (H)', 

S(H + iI) x = (H + iI) Sx, (H -iI) Sx = S(H -iI) x. 

By putting (H + iI) x = y, we see, from the first of the above relations, 
that 

(H + iI)-1 Sy = S(H + iI)-1 y for all yE X = R(H + iI). 
Hence 

S(H -iI) (H + iI)-1 = (H -iI) (H + iI)-IS, that is, SUH= UHS . 
. , 

2,. 

Therefore, Sis commutative with (UH)" = f e"'o dF(O) (n = 0, ± 1, ... ) 
o 

and so 

r e"'o deS F(O) x, y) = (s j e"'o dF(O) x, y) = j e"'0 d(F(O) Sx, y). 
o 0 0 

Hence, as in the proof of the uniqueness of the spectral resolution of a 
unitary operator, given in Chapter XI, 4, we obtain SF(O) = F(O) S. 
This proves SE ().) = E (i..) S since E (-cot O)=F(O). Thus, for xED(/(H), 
22* 
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we obtain 

(5 J I().) dE().) x, y) = J I().) d(5E()') x, y) = J I().) d(E().) 5 x, y), 

that is, 51(H) ~ I(H) 5. 
The above Theorem 1 admits a converse in the form of 

Theorem 2 (NEUMANN-RIEsz-MIMURA). Let H be a self-adjoint opera­
tor in a separable Hilbert space X. Let T be a closed linear operator in X 
such that D (T)" = X. Then a necessary and sufficient condition in order 
that T be a function I (H) of H with an everywhere finite Baire function 
I ().) is that 

(T)' ~ (H)'. (7) 

Proof. We have only to show that condition (7) is sufficient. We may 
assume that H is a bounded self-adjoint operator. If H is not bounded, 
then we consider HI = tan-1H. Since I tan-I). I < :n;/2, we easily see that 
HI is bounded self-adjoint. By Theorem 1, the operator H = tan HI is 
commutative with every operator E (HI)'. Thus, by hypothesis, we have 

(T)' ~ (H)' ~ (HI)' . 

Therefore, if Theorem 2 is proved for bounded HI> then T = 11 (HI) = 
11 (tan-1 H) = Iz (H) , where Iz().) = 11 (tan-1 ).). 

We may thus assume that H is bounded and self-adjoint. 

The first step. For any fixed xoE D(T), we can find a Baire function 
F ().) such that T Xo = F (H) xo. This may be proved as follows. Let 
M (xo) be the smallest closed linear subspace of X spanned by xo' H xo' 
It'-xo' ... , H"xo' ... We denote by L the projection upon M(xo). Then 
(T)'3L. For, by HM(xo)~M(xo), we obtain HL=LHL and so 
LH = (HL)* = (LHL)* = LHL = HL, that is, LE (H)'. Hence, by 
hypothesis, (T)' 3 L. 

Therefore T Xo = T L Xo = L T Xo E M (xo) , and so there exists a 
sequence {P .. ().)} of polynomials such that 

Txo = s-lim P .. (H) Xo. 
Il-+OO 

(8) 

Hence, by (4), we obtain 
00 

IIp .. (H) xo- Pm (H) Xo liS = J Ip .. ().) - Pm().) IZ d IIE().) Xo liZ. 
-00 

As in the proof of the completeness of P(5, ~,m), we see that there 
exists a Baire function F ().) which is square-integrable with respect to 
the measure m determined by m( (~, As]) = II E (As) Xo liS - II E (~) Xo liS 
such that 

00 

lim J IF().) - P .. ().) IS d liE ().) Xo liS = o. 
Il-+OO -00 
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Hence, for F(H), we have 
00 

lim II(F(H)-P .. (H)xoI12 = lim f IF(A)-p .. (A)12d IIE(A)xoI12 =0. 
n-->OO n-->OO -00 

This proves that T Xo = F (H) xo. Since F (A) is finite almost everywhere 
with respect to the measure m determined by m((Al' A2J) = 

II E (~) Xo 112 - II E (AI) Xo 112, we may assume that F (A) is a Baire function 
which takes a finite value at every A; we may put F(A) = 0 for those A 
for which I F (A) I = 00. 

The second step. Since X is separable and D (Tt = X, we may choose 
a countable sequence {g .. } ~ D (T) such that {gn} is strongly dense in X. 
We set 

71-1 
11 = gv 12 = g2 - L1 g2, ... , I .. = g .. - 1o~ L1ogn, where L10 

is the projection on the closed linear subspace M (/10). 

By the first step, we have (T)' 3 L10 and so 

L1og .. ED (T) which implies I .. ED (T) (n = 1, 2, ... ). 

We may show that 

and 
00 

I=.IL 1o · 10=1 
Suppose that (11) is proved for i, k < n. Then, for i < n, 

Ld .. = L.g .. - L. (".il L1og .. ) = L.g .. - L;g" = L.g" - L.g" = 0, 10=1 
L.H1o'/" = H1o'Ld .. = o. 

Thus M (In) is orthogonal to M (I.). This proves L.L .. = LnL. = O. 
00 

(9) 

(10) 

(11) 

(12) 

Next we put .I L" = P and show that Pg .. = g" (n = 1,2, ... ). 10=1 . 
Then, since {g .. } is dense in X, we obtain P = I. But, by (9), we have 

71-1 
Pg .. = PI .. + .I P L"g ... 10=1 

We also have PI .. = I .. by I .. E M(/ .. ). Hence, by P L10 = L10 implied by 
(11), we obtain Pg" = g .. (n = 1, 2, ... ). 

The third step. Take a sequence {cn} of positive numbers such that 
10 10 

s-lim .I c .. I", s-lim .I c .. Tln 
10->00 .. =1 10->00 .. =1 

both exist. For instance, we may take c .. = 2- 71 (11/7111 + IITlnJl)-I. 
Since T is a closed operator, we have 
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Hence, by the first step, 
Txo = F(H) xo' (14) 

Let B E (H)' be a bounded self-adjoint operator. Then, by hypothesis, 
BE (T)'. By Theorem 1, F(H) is commutative with B. Hence 

F(H) Bxo = BF(H) Xo = BTxo = T Bxo' (15) 

Let e,,(A.) be the defining function of the set {A.; IF (A.) I :S n}, and put 

B = c;/P"HkLm, where P" = e,,(H). 

Then we can show that 

TP" = F(H) P". (16) 

00 

In fact, we have LmxO = ~ c"Lml" = cmlm, by (11) and 1m E MUm). 
,,=1 

Hence, by (15), 

F(H) P"Hklm = F(H) C;.l PnHk LmxO = F(H) Bxo = T Bxo 

= Tc;.lp"HkLmxo = TP"Hklm, 

that is, for h spanned by Hk 1m with fixed m, we have 

F(H) P"h = TP"h. (16') 

But such h's are dense in MUm) and so, by (12), we see that if we let m 
take all positive integers then the h's are dense in X. Hence we have pro­
ved (16') for those h's which are dense in X. 

Now P" is bounded by (4). By the operational calculus given below, 
the operator F (H) P" is equal to the function F" (H) where 

F,,(A.) = F(A.) e,,(A.) = F(A.), for IF(A.) I < n, 

= 0, for IF (A.) I> n. 

Thus F n (H) = F (H) P" is bounded. 
Let h* E X be arbitrary, and let h* = s-.lim hj where h;s are linear 

J-+OO 

combinations of elements of the form Hk 1m. Such a choice of hj is possible 
as proved above. By the continuity of the operator F (H) P,., we have 

F(H)P,.h* = s-.lim F (H) P,.hj • 
J-+OO 

Hence, by s-.lim P,.hj = P,.h* and (16'), we see that the closed operator T 
J-+OO 

satisfies (16). 

The lourth step. Let YED(F(H)) and set y,. = P"y. SinceF(A.) is finite 
everywhere, we must have s-lim P" = I. Thus s-lim y" = s-lim P"y = y. 

n-+OO n-+OO n-+OO 

Hence, by (16), we obtain T ~ F(H). For, s-lim F(H) PnY = s-lim F,,(H) 
n~ 11---+00 

y = F(H) y whenev.er y E D(F(H)). 
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Let y E D (T) and set y" = F "y. Then 

Ty" = TF"y = F(H) F"y (by (16), 

TF"y = F"Ty (by F" = e,,(H) E (H)'). 

343 

By the operational calculus given below, the function F (H) of H is a 
closed operator. Hence, letting n -7 (Xl in the above relations, we see 
that F(H) ~ T. We have thus proved that T = F(H). 

An Operational Calculus. We have 

Theorem 3. (i) Let 1()..) be the complex-conjugate function of I()..). 
Then D(/(H) = D(t(H) and, for x, yE D(t(H) = D(l(H), we have 

(f(H)x,y) = (x,l(H) y). (17) 

(ii) If xED (I (H), y ED (g(H), then 
00 

(t(H) x, g(H) y) = f I()..) g()..) d(E()") x, y). (18) 
-00 

(iii) (Oil) (H) x = OiI(H) x if xED(t(H). If xE D(t(H)f\D(g(H), then 

(f + g) (H) x = I (H) x + g(H) x. (19) 

(iv) If xED(t(H), then the condition I(H)xED(g(H) is equivalent 
to the condition xED (t . g (H), where I . g ()..) = I ()..) g ()..), and we have 

g(H) I(H) x = (g. I) (H) x. (20) 

(v) If I ()..) is finite everywhere, then I (H) is a normal operator and 

I(H)* = I (H) . (21) 

In particular, I(H) is self-adjoint if I()..) is real-valued and finite every­
where. 

Proof. (i) D(f(H» = D(t(H) is clear and 
00 00 

(f(H) x, y) = f I()..) d(E()..) x, y) = f I()..) d(x, E()") y) 
-00 -00 

= (f(H) y, x) = (x,7(H) y). 

(ii) We know, by Theorem 1, that E ()..) is commutative with g(H). Thus 
00 00 

(I (H) x,g(H) y) = f I()..) d(E()..) x, g(H) y) = f I()..) d(x,E()") g(H) y) 
-00 -00 

= _[ I()..) d(g(H) E()") y,x) = _[ I()")d C[ g(P) d(E(P) E()")Y,X») 

= _[ I()..) d CL g(P) dey, E(P) x») = _[ I()..) g()..) d(E()..) x, y). 
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00 

(iii) is clear. (iv) Let x satisfy f If(A) 12 d liE (A) x 112 < 00. Then, by 
-00 

00 

E (A) E (P) = E(min (A,Il)), the condition f Ig(A) f2d liE (A) f(H) x 112< 00 
-00 

implies, by virtue of the commutativity of E (A) with f (H), 
00 00 

00> f Ig(A)12d IlE(A)f(H)xI12 = f Ig(A)12d Ilf(H) E(A) xl12 
-00 -00 

= _[ Ig(A) 12 d C[ If(P) 12 d IIE(P) E(A) x 112) 

= _[ Ig(A) 12d CL If(P) 12 d IIE(P) X 112) = _[ Ig(A) f(A) 12 d liE (A) x 112. 

Since the above calculation may be traced conversely, we see that, under 
the hypothesis xE D(f(H), the two conditions f(H) xE D(g(H» and 
x E D(f . g(H» are equivalent and we have 

00 

(g(H) f(H)x,y) = f g(A} d(E(A) f(H) x,y) 
-00 

= _[ g(A)dCLf(P)d(E(P)X,Y») 

00 

= f g(A) f(A) d(E(A) x, y) = «(g. f) (H) x, y). 
-00 

(v) Let us put h(A) = If (A) I + ex, k(A) = h(A)-I, g(A) = f(A) h(A)-I, 
where ex is any positive integer. Then k(A) and g(A) are both bounded 
functions. Hence D(k(H) = D(g(H) = X. Thus, by (iv), 

f(H) = h(H) g(H) = g(H) h(H). (22) 

We have, by (i) and D(k(H» = X, k(H)* = k(H), i.e., k(H) is self­
adjoint. By (iv) we have x = h (H) k (H) x for all x E X and x = k (H) h (H) x 
for all x E D(h(H). Hence h(H) = k(H)-I. Thus, by Theorem 1 in 
Chapter VII, 3, h(H) is self-adjoint. Therefore D(f(H) = D(h(H» is 
dense in X and so we may define f (H) *. We shall show that f (H) * = 7 (H). 
Let a pair {y, y*} of elements E X be such 'that (f(H) x, y) = (x, y*) for 
all xE D(f(H). Then, by g(H)* = g(H) (implied by (i» and (22), 

(f(H) x, y) = (g(H) h(H) x, y) = (h(H) x, g(H) y). 

Hence, by xE D(f(H) = D(h(H» and the self-adjointness of h(H), 
we obtain 

g(H)YED(h(H) and h(H)g(H)y=y*. 

Thus, again by (~2), we obtain 7 (H) Y = y* so that f (H) * = l(H). There­
fore, by (iv) , we see that f(H) is normal, that is, f(H)* f(H) = j(H) f(H)* . . 
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Corollary. If I(}.) is finite everywher-e, then I (H) is closed. 
Proof. Clear from I(H)** = l(H)* = l(H) = I(H). 
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A historical note. Theorem 2 was first proved by J. VON NEUMANN 
[7] for the case of a bounded self-adjoint operator T. Cf. F. RIESZ [5]. 
The general case of a closed linear operator T was proved by Y. MIMURA 
[2]. The exposition given above is adapted from Y. MIMURA [2] and 
B. Sz. NAGY [1]. 

13. Stone's Theorem and Bochner's Theorem 

As an example of functions of a self-adjoint operator, we give 
Theorem 1 (M. H. STONE). Let {U,}, -ex> < t < ex>, be a one-para­

meter group of class (Co) of unitary operators in a Hilbert space X. Then 

U, = I, (H), where I,(}.) = exp(it}.) and iH = A, H* = H, 

is the infinitesimal generator of the group U t . (1) 

Conversely, for any self-adjoint operator H in X, U, = I,(H) defines a 
one-parameter group of class (Co) of unitary operators. 

Proof. We have, by the representation theorem of the semi-group 
theory, 

U,x = s-lim exp (tiH (I - n-1iH)-1) x. 
tt-+OO 

Since the function g (t) = exp (ti). (1 - n-1i}.)-1) is smaller than 
exp«(-nt}.2)/(n2 + }.2» in absolute value, we have, for H = J }'dE(}'), 

exp (tiH (I - n-1iH)-1) = j exp (1 t:~lil) dE (}.) 
-00 

and, moreover, 

00 1 t')" 12 ~ J exp(1_:_1i)..)-exp(ti}.) d IIE(}.) xl12 
-00 

= ~_[ I exp(n t:2)..)_112 d IIE(}.) X 112 = O. 

00 

This proves that U, = I, (H) = J exp(it}.) dE (}.). 
-00. 

For the converse part of Theorem 1, we observe that, by the opera­
tional calculus of the preceding section, 

I, (H) * = I-I (H) and I, (H) Is (H) = I,+s (H), 10 (H) = I. 

We also have the strong continuity of I, (H) at t = 0 by 
00 

11/,(H)x-xI12= J lexp(it}')-112d IIE(}.)xI12 -+O as t-+O. 
-00 

Hence U, = I, (H) is a one-parameter group of class (Co) of unitary 
operators. 
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Remark. For the original proof, see M. H. STONE [2J, Cf. also J. VON 
NEUMANN [8J. Another proof given by E. HOPF [lJ is based on a 
theorem due to S. BOCHNER: 

Theorem 2 (BOCHNER). A complex-valued continuous function I(t), 
- 00 < t < 00, is representable as 

00 

I (t) = J ellA dv (J.) with a non-decreasing, 
-00 

right-continuous bounded function v (J.) , 

iff I (t) is positive delinite in the following sense: 
00 00 

J J I(t- s) q;(t) q;(s) dt ds > 0 
-00-00 

(2) 

for every continuous function q; with compact support. (3) 

The proof of Theorem 1 given by E. HOPF starts with the fact that 
I(t) = (U,x, x) satisfies condition (3) as may be seen from 

00 00 00 00 

J J (U'_sx,x)q;(t) q;(s)dtds= J J (U,x,Usx)q;(t)q;(s)dtds 
-00-00 -00-00 

= C[ q;(t) U,xdt, _[ q;(s) UsXdS) 2 o. 

We shall show that Bochner's theorem is a consequence of Stone's theo­
rem. 

Deduction of Theorem 2 from Theorem 1. Consider the totality 
tr of complex-valued functions x(t), -00 < t < 00, such that x(t) = 0 
except possibly for a finite set of values of t; the finite set may vary with 
x. tr is a pre-Hilbert space by 

(x + y) (t) = x (t) + Y (t), «(Xx) (t) = (Xx (t) and 

(x,y)= :E l(t-s)x(t)y(s)forx,YEtr, (4) 
-00<',5<00 

excepting the axiom that (x, x) = 0 implies x = O. That (x, x) 2 0 for 
any x E tr is a simple consequence of the positive definiteness of the func­
tion I(t). 

Let us set 9l = {x E tr; (x, x) = O}. Then the factor space tr/9l is a 
pre-Hilbert space with respect to the scalar product (x, y) = (x, y) where 
x is the residue class mod 9l containing x E tr. Let X be the completion 
of the pre-Hilbert space X = tr/9l. The operator U .. defined by 

(U .. x) (t) = x(t - T), xE tr, (5) 

surely satisfies the conditions 

(U .. x, U .. y) = (x, y), UTUq = U .. +q and Uo = I. (6) 
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Therefore, it is easy to see that {U~} naturally defines a unitary operator 

(;~ in X in such a way that F\}, -(X) < l' < (X), constitutes a one­
parameter semi-group of class (Co) of unitary operators in X; the strong 
continuity in t of [;, follows from the continuity of the function I (t). 

00 

Hence, by Stone's theorem, [;, = f ill dE (A). Letxo (t) E ~ be defined 
-00 

by xo(l') = 1 and xo(t) = 0 whenever t =1= l'. Then, by (4) and (5), 
I(l') = (U~ xo, xo). Therefore, 

00 

I(l')= .r eiTi. d IIE(A)xoIl2, 
-00 

which proves Bochner's theorem. 
Remark. The idea of using a positive definite function to define a pre­

Hilbert space as in (4) was systematically applied by B. Sz. NAGY [3J to 
various interesting problems concerning the Hilbert space. 

14. A Canonical Form of a Self-adjoint Operator 
with Simple Spectrum 

Let H = f A dE (A) be a self-adjoint operator in a Hilbert space X 
with simple spectrum as defined in Chapter XI, 8. Thus there exists an 
element y E X such that the set {( E ((J) - E (IX)) y; IX < {J} spans a dense 
linear subspace of X. We put 

a(A) = (E(A) y, y). (1) 

Then a(A) is monotone non-decreasing, right-continuous and bounded. 
We shall denote by 0' (B) the Baire measure determined on Baire sets 
on Rl from a«(a, bJ) = 0' (b) - 0' (a). We denote by L~(- (X), (X») the tota­
lity of complex-valued Baire-measurable functions I (A), -(X) < A < (X), 

such that 11/11,,= C[ I/(A) 12 0' (dA)Y'2 <(X). ThenL~(-(X),(X») is aHil-

00 

bert space by the scalar product (I, g)" = f I (A) g(A) 0' (dA) with the 
-00 

convention to consider 1= g in L~ iff I (A) = g (A) a-a.e. 
Theorem. With any I (A) E L~ (- (X), (X») we associate a vector I of 

X defined by 
00 

i = f I (A) dE (A) y. (2) 
-00 

Then the correspondence I (A) -+ i is a one-one linear isometric mapping 
of L~(-(X),(X») onto X. Let this mapping be denoted by V, i.e., / = VI. 
Then the operator HI = V-I H V ia L~ (- (X), (X») is precisely the 
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operator of multiplication by A: 

D(Hl) =D(V-IHV) = {/(A);/(A) and Af(A) both EL~(-oo,oo)} 

and (HI/) (A) = AI (A) whenever I(A)ED(HI). (3) 

Proof. We have, by E(A) E(p,) = E(min(A,,u)), 
00 00 

(E(A) y,j) = J I(p,) d,,(E(A) y,E(p,) y) = J I(p,) d,,(E(p,) E(A) y, y) 
-00 -00 

A A 
= J I(p,) d(E(p,) y, y) = J I(p,) a (d,u), 

-00 -00 

and so 
00 00 

(j,g) = J I (A) d(E(A) y, i) = J I(A) g(A) a(dA) = (I, g)". (4) 
-00 -00 

00 

Therefore, V maps D(V) =L~(-oo,oo) onto {iJ= J I (A) dE (A) y, 
-00 

IEL~ (-oo,oo)} one-to-one, linearly and isometrically. Hence, in particular, 
R (V) is a closed linear subspace of X. But R (V) surely contains the 

{J 

elements of the form J dE (A) Y = (E ({3) - E (ex)) y, - 00 < ex < (3 < 00, 
D< 

and so, by the hypothesis that the spectrum of H is simple, we see that 
R (V) = R (V)" = X. Thus the first half of the Theorem is proved. 

Next we have 
00 00 

E(A)i=E(A) J I(p,)dE(p,)y = J I(p,) d,,(E(A)E(p,) y) 
-00 -00 

A 

= JI(p,)dE(p,)y, 
-00 

and so, by (4), 
A 

(E (A) j, i) = J I(,u) g(p,) a (d,u) . (5) 
-00 

00 

Hence the condition J A2d(E(A)j,i) <00, equivalent to /ED(H), 
-00 

00 

is equivalent to the condition J A21/(A) 12 a (dA) < 00. Moreover, in the 
-00 

last case, we have, by (20) in Chapter XI, 12, 
00 

HVI=H!= J AdE(A)j, 
-00 

and hence, by (4) and (5), 

(Hd, g)" = (V-IHVI, g)" = (HV ·1, V· g) = (H. j, g) 
00 00 

= J Ad (E(A)j,g) = J A I (A) g(A} a(dA}. 
-00 -00 
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On the other hand, we have 
00 

(HI f, g)a = J (Hd) ().) g ().) a (d)'). 
-00 

Therefore we must have 

(H If) ().) = ). f ().) a-almost everywhere. 

Remark. There is a close connection between self-adjoint operators 
with simple spectrum and the Jacobi matrices. See M. H. STONE [lJ, 
p. 275. For a canonical form of a self-adjoint operator with not necessarily 
simple spectrum, see J. von Neumann's reduction theory: NEUMANN [9J. 

15. The Defect Indices of a Symmetric Operator. 
The Generalized Reselution of the Identity 

Definition 1. Let U = U H = (H - iI) (H + iI)-I be the Cayley 
transform of a closed symmetric operator H in a Hilbert space X. Let 
xii = D(UH)J.., Xii = R(UH)J.., and let m = dim (XiiL n = dim (Xii) 
be the dimension numbers of Xii, Xii respectively. Then H is said to be 
of the defect indices (m, n). H is self-adjoint iff it is of the defect indices 
(0,0) (see Chapter VII, 4). 

Proposition 1. The defect indices (m, n) of a closed symmetric operator 
H may be defined as follows: m is the dimension number of the linear 
subspace {x EX; H* x = ix}; n is the dimension number of the linear 
subspace {xE X; H*x = -ix}. 

Proof. Clear from Theorem 3 in Chapter VII, 4. 

Example 1. Let X = L2(0, 1). Let D be the totality of absolutely 
continuous functions x (t) E L2 (0, 1) such that x (0) = x (1) = ° and 
x'(t)EL2(O, 1). Then the operator Tl defined by TIX(t) = i-1x'(t) on 
D = D(Tl ) is of the defect indices (1, 1). 

Proof. As was shown in Example 4 of Chapter VII, 3, Ti = T2 is 
defined by 

T2X(t) = i-lX' (t) on D(T2) = {x(t) E L2(0, 1); x(t) is 
absolutely continuous such that x' (t) E L2 (0, I)}. 

Thus the solution y E L2 (0, 1) of Ti y = T2 y = iy is a distribution solu­
tion of the differential equation 

y' (t) = - y(t) (y, y' E L2(0, 1)). (1) 

Then z (t) = Y (t) exp (t) is a distribution solution of the differential equa­
tion 

z' (t) = ° (z, z' E L2 (0, 1)). (2) 

We shall show that there exists a constant C such that z(t) = C for a.e. 
t E (0, 1). To this purpose, take any function Xo (t) E COO (0, 1) such that 



350 Xl. Normed Rings and Spectral Representation 

1 

J xo(t) dt = 1 and put 
o 

1 t 

x(t) -xo(t) J x(t) dt = u(t), w(t) = J u(s) ds, 
o 0 

where x (t) is an arbitrary function from ego (0, 1). We have wE ego (0,1) 
1 

by J u(s) ds = O.'Therefore, by (2), we have 
o 

1 1 

- J z (t) w' (t) dt = - J z (t) u (t) dt = 0, 
o 0 

that is, 
1 1 1 

J z(t) x(t) dt = e J x(t) dt. where e = J z(t) xo(t) dt. 
o 0 0 

This proves, by the arbitrariness of x(t) E ego (0, 1), that z(t) = e for a.e. 
tE(O,I). 

Hence any solution of T*y = iy is of the form y(t) = e exp(-t). 
In the same manner we see that any solution of T*y = - i y is of the 
form y(t) = e exp(t). Thus T is of the defect indices (1, 1). 

Definition 2. A symmetric operator H in a Hilbert space X is called 
maximal symmetric if there is no proper symmetric extension of H. 

Proposition 2. A maximal symmetric operator H is closed and H = H**. 
A self-adjoint operator H is maximal symmetric. 

Proof. By Proposition 1 in Chapter VII, 3, H** is a closed symmetric 
extension of H. Thus the first half of Proposition 2 is clear. Let Ho be a 
symmetric extension of a self-adjoint operator H. Then, from H ~ Ho' 
Ho ~ Hri, we obtain Ho ~ Hri ~ H* and so, by H =H*, H ~ Ho ~ H. 
This proves that a self-adjoint operator H is maximal symmetric. 

Corollary 1. Every maximal symmetric extension Ho of a given sym­
metric operator H is also an extension of H**. 

Proof. The relation H ~ Hoimplies the relation H~ ~ H* andH** ~ H~*. 
Since, by the preceding proposition, Ho = Hri*, Corollary 1 is true. 

Corollary 2. If H is a symmetric operator such that H* = H**, then 
the self-adjoint operator H* is the only maximal symmetric extension 
of H. 

Proof. Being self-adjoint, H** is maximal symmetric. Thus any maxi­
mal symmetric extension Ho of H, which is also a symmetric extension of 
H** by Corollary 1, is identical to H** = H*. 

We are thus in a position to state 
Definition 3. A symmetric operator H such that H* = H** is said to 

be essentially self-ailioint. A self-adjoint operator H is said to be hyper­
maximal. The latter terminology is due to J. VON NEUMANN. 
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Example 2. Let X=L2(-<Xl,<Xl), and define an operator H by 
fl x(t) = t . x (t) for x (t) E cg (- <Xl, <Xl). H is surely a symmetric operator 
in X. It is easy to see that H* is the coordinate operator defined in 
Example 2 in Chapter VII, 3 so that H is essentially self-adjoint. The 
operator H defined by H x(t) = i-I x' (t) for x(t) E q(-<Xl, <Xl) is also 
essentially self-adjoint in X = L2 (- <Xl, <Xl). For, in this case, H* is the 
momentum operator defined in Example 3 in Chapter VII, 3. 

Theorem 1. Let the defect indices (m, n) of a closed symmetric opera­
tor H satisfy 

m = m' + p, n = n' + p (P > 0). 

Then there exists a closed symmetric extension H' of H with the defect 
indices (m', n'). 

Proof. Let {IPv IP2' ... , IPp, IPP+1' ... , tpp+m'}' {tpv tp2, ... , tpp, tpP+l'··· 
... , tpp+n'} be complete orthonormal systems of Xii = D(UH )1., Xii = 
R(UHV, respectively. Define an isometric extension Vof UH by 

Vx= UHx for xED(UH), 

P P 
V . .I lXi IP. = .I IX. tp •. 

• =1 .=1 

We have R(1 - UH)" = X by Theorem 1 in Chapter VII, 4. Thus, by 
R (I - V) ~ R (I - U H) and Theorem 2 in Chapter VII, 4, there exists a 
uniquely determined closed symmetric extension H' of H such that 
V = (H' - i1) (H' + i1)-I. The defect indices of H' are (m', n') as may 
be seen from dim(D(V)1.) = m', dim (R (V) 1.) = n'. 

Corollary. A closed symmetric operator H with the defect indices 
(m, n) is maximal symmetric iff either m = 0 or n = o. 

Proof. The "only if" part is clear from Theorem 1. If, for instance, 
m = 0, then, by D (U H) = X, we must have U H. = U H for a closed 
symmetric extension Ho of H. This proves Ho = i (I + U H.) (I - U H.)-1 
= i (I + U H) (I - U H)-1 = H. Also, in the case n = 0, we see that there 
is no proper closed symmetric extension of H. 

Example 3. Suppose that {IPv IPz, ... , lPn' ... } is a complete ortho­
normal system of a (separable) Hilbert space X. Then, by 

we define a closed isometric operator U such that D (U) = X and 
dim (R (U) 1.) = 1. If R (I - U)" ¥= X, then there exists an x ¥= 0 such 
that x E R (I - U)1.. Consequently ((I - U) x, x) = 0 and so (U x, x) = 
IIxll2 = II Ux112. This implies that 

1/(1 - U) X 112 = IIx112- (Ux, x) - (x, Ux) + IIUxll2 

= IIxIl2-llxIl2-lIxIl2 + IIxl12 = 0, 
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that is, U x = x and so, by the above definition of U, x must be zero. This 
contradiction shows that R (1 - U)a = X. Hence, by Theorem 2 in 
Chapter VII, 4, U is the Cayley transform of a closed symmetric operator 
H. H is of the defect indices (0, 1) since D (U) = X and R (U) 1. is spanned 
by qJl. Thus H is maximal symmetric without being self-adjoint. 

Theorem 2 (M. A. NAIMARK [3J). Let a closed symmetric operator HI 
in a Hilbert space Xl be of the defect indices (m, n). Then we can con­
struct a Hilbert space X, containing Xl as a closed linear subspace, and 
a closed symmetric operator H in X with the defect indices (m + n, 
m + n) such that 

HI = P(XI) HP(XI), where P(XI) is the projection of X onto Xl. 

Proof. Consider a Hilbert space X 2 of the same dimensionality as Xl. 
We construct a closed symmetric operator H2 in X 2 with the defect 
indices (n, m). For instance, we may take H2 = - HI supposing that X 2 

coincides with Xl' Then we would have {XE X 2; H:x = ix} = {xE Xl; 
Hi x = - i x}, {x E X 2; H: x = - i x} = {x E Xl; Hi x = i x} and so the 
defect indices of H2 must be (n, m). 

We then consider an operator H defined by 

H {x, y} = {HIX, H2y} for {x, y} E X I XX2 with xED (HI), y ED (H2). 
It is easy to see that H is a closed symmetric operator in the product 
Hilbert space X = Xl X X 2• The condition 

H*{x, y} = i{x, y} (or the condition H*{x, y} = - i{x, y}) 
means that Hix = ix, H:y = iy (or Hix = - ix, H:y = - iy). Hence 
we see that the defect indices of Hare (m + n, m + n). 

Corollary. Let, by Theorem 1, iI be a self-adjoint extension of H, 

and let iI = f A dE (A) be the spectral resolution of iI. Since H and a 
fortiori iI are extensions of HI when HI is considered as an operator in 
X, we have the result: 

if XED(HI)~~l=P(XI)~' then x=PlX1)XED(ii) and1 

Hlx = P(XI) Hx= P(XI) H P(XI) x = f A dF(A} x, where (3) 
-00 

F(A) = P(XI) E(A) P(XI). 
The system {F (A) ; - ex:> < A < ex:>} surely satisfies the conditions: 

F (A) is a self-adjoint operator in Xl' 

Al < A2 implies that (F (AI) x, x) ~ (F (A2) x, x) for every xE Xl' 

F(A + 0) = F(A), (4) 

F(-ex:» x = s-lim F(A) x = 0, 
A~-oo 

F(ex:»x=s-limF(A)x=X for all xEX. 
Atoo 
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Remark 1. For the closed symmetric operator HI' we have 
00 

Hlx= J )"dF()")x for all xED(Hl), 
-00 

where {F()..);-<Xl<)..<<Xl} satisfies (4). In this sense, HI admits a 
generalized spectral resolution. 

Example 4. Let Xl = P (- <Xl, 0), and let Dl be the totality of 
absolutely continuous functions x(t) E P(-<Xl, 0) such that x(O) = 0 
and x'(t)EP(-<Xl,O). Then the operator HI defined by HlX(t) = 
i-I x' (t) on Dl = D (HI) is a maximal symmetric operator with the defect 
indices (0, 1). This we see as in the above Example 1. Let X z = P (0, <Xl), 
and let D z be the totality of absolutely continuous functions x (t) E P (0, <Xl) 
such that x (0) = 0 and x' (t) E P(O, <Xl). Then the operator Hz defined by 
Hzx(t) = i-lx'(t) on D z = D(Hz) is a maximal symmetric operator with 
the defect indices (1,0). In this case, X = XlXXZ = P(-<Xl,<Xl), and 
the operator H in Theorem 2 is given concretely by H x (t) = i-I x' (t) 
for those x(t) E P(- <Xl, <Xl) for which x(O) = 0 and x' (t) E P(- <Xl, <Xl). 

Remark 2. Since if = J).. dE()..) is an extension of HI> we have, for 
x E D(HlL 

00 00 

IIHlxllz= Ilifxllz= J )..2d IIE()..) x112= J )..2d(E(),,)x,x) 
-00 -00 

00 00 

= J )..2d(E(),,) P(Xl) x, P(X1) x) = J )..zd(F()")x,x). 
-00 -00 

00 

However, the condition J)..2 d (F ()..) x, x) < <Xl does not necessarily 
-00 

imply that xED (HI). Concerning this point we have 
Theorem 3. In the case of a maximal symmetric operator HI' we 

have, for the corresponding generalized spectral resolution J).. dF ()..) 
in Xl' 

00 

xED (HI) is equivalent to the condition J)..2 d (F ()..) x, x) < <Xl. (5) 
-00 00 

Proof. The reasoning in Remark 2 shows that J )..zd(F()")x,x) 
-00 

00 

< <Xl implies that J )..2 d II E ()..) x 112 < <Xl, i.e., xED Cll). The operator 
-00 

H' = P(Xl) if P(Xl) , 

when considered as an operator in Xl' is a symmetric extension of HI 
and D (H') = D (H) (\ Xl. Thus, by the maximality of HI' we must have 

H1=H'. Thus D(Hl)=D(H')=D(if)(\Xl and so, by H'= 
00 

P (Xl) if P(Xl), the condition J )..2 d liE ()..) x 112 < <Xl with x E Xl implies 
-00 

23 Yosida, Functional Analysis 
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00 J AS d(F{A) x, x) < 00; and conversely, the condition x E D(Hl ) implies 
-00 

00 00 

J ASd(F(A)x,x) = J ASdIlE{A)xlllI<oo. 
-00 -00 

Remark 3. Since, by Theorem 1, any closed symmetric operator can be 

extended to a maximal symmetric operator HI> we can apply our Theo­
rem 3 to the effect that (5) is valid. For a detailed exposition of the gene­
ralized spectral resolution, see N. I. ACHIESER-1. M. GLASMAN [1] or 
B. Sz. NAGY [3]. The spectral representation of a self-adjoint operator 
in a Hilbert space can be extended to a certain class of linear operators 
in a Banach space with an appropriate modification. This result is due to 
N. DUNFORD and may be considered as an "elementary divisor theory" in 
infinite dimensional spaces. N. DUNFORD-J. SCHWARTZ [6]. 

16. The Group-ring Ll and Wiener's Tauberian Theorem 

The Gelfand representation admits another important application in 
functional analysis, namely, an operator-theoretical treatment of the 
Tauberian theorem of N. WIENER. 

The linear space V (- 00,00) is a ring with respect to the function sum 
and the product X defined by 

00 

(fxg){t) = (f*g){t) = J f{t--s)g(s)ds. (1) 
-00 

For, by the Fubini-Tonelli theorem, 

_[ L[ f(t-s) g{s) ds I dt ~ _[ If{t - s) I dt _[ Ig(s) I ds 

00 00 

= J If(t) I dt J Ig{t) I dt. 
-00 -00 

We have thus proved 

Ilfxgli ~ 1\l11·llglI, where I! II is the norm in V(-oo, 00). (2) 

Therefore we have proved 
Proposition 1. We can introduce formally a multiplicative unit e in 

the ring V consisting of all elements z given formally by 
z=Ae+x,xEV{-oo,oo). (3) 

In fact V is a normed ring by the following rule: 

(~e + Xl) + (.lz e + x2) = (~ + Az) e + (Xl + xz) , 
IX(Ae + X) = IXAe + lXX, 

(Ale + Xl) X (.lze + xz) = ~Aze + ~X2 + Azxl + Xl XXII' 

IIAe + xii = 1,1.1 + Ilxll· 

(4) 
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This normed ring V is called the group-ring of the group Rl of real 
numbers written additively. We shall find all maximal ideals of this ring 
V. One is 10 = V(-ex:>,ex:» from which V is obtained by adjunction 
of the unit e. We shall find all maximal ideals I =F 10 • 

For any maximal ideal I of the normed ring V, we shall denote by 
(21, I) the complex number which corresponds to the element z by the ring 
homomorphic mapping V - VII. Thus (z,Io) = A for z = Ae + x, 
xElo· 

Let I be a maximal ideal of V different from 10 • Then there exists a 
function xE V(-ex:>,ex:» = 10 such that (x, 1) =1" o. We set 

X(IX) = (x .. , 1)/(x, I), where x .. (t) = x(t + IX). (5) 

Then X(O) = 1, and, by I (x .. , 1)1 < Ilx .. 1I = Ilxll, we see that Ix (IX) I < 
Ilxllll(x, I) I. Thus the function X (IX) is bounded in IX. Moreover, by 

Ix(1X + b)-X(IX) I < Ilx"H-x .. llIl(x,I)I, 

the function X (IX) is continuous in IX. For, by (2) in Chapter X, 1, we have 
co 

lim J Ix(1X + b + t) - X (IX + t) I dt = O. 
~-co 

On the other hand, we have, by (x .. +/lXx) (t) = (x .. xx/l) (t), 

(x .. +/I' I) (x, I) = (x .. , I) (x/l' I) 
so that 

X(IX + (J) = X (IX) X({J)· (6) 

From this we can prove that there exists a uniquely determined real 
number ~ = ~ (I) such that 

X (IX) = exp (i . ~ (I) • IX) • (7) 

In fact, by X (nIX) = X (IX)" and the boundedness of the function X, we 
obtain Ix (IX) i < 1. Consequently, by X (IX) X (-IX) = X(O) = 1, we must 
have Ix (IX) I = 1. Thus, as a continuous solution of (6) whose absolute 
value is one, the function X (IX) must be given in form (7). That the 
value ~ (I) is determined by I independently ofthe choice ofxE 1} (-ex:>,ex:» 
may be seen from X(IX)(y,I) = (y .. , I) which is implied by x .. xy = 
xxy ... 

Every continuous solution of (6) with the absolute value identically 
equal to one is called a continuous unitary character of the group Rl of real 
numbers written additively. 

We have thus constructed the (continuous unitary) character X (IX) 
of the group Rl with respect to the given maximal ideal I =F 10• 

We next show how to reconstruct the ideal I with respect to this 
character or, what amounts to the same thing, to reconstruct the value 
(i, I) from X. 
23* 
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For any y(t) E V (-00, 00), we have 
00 00 

(xxy) (t) = f x(t-s) y(s)ds= f x_.(t)y(s)ds. 
-00 -00 

Hence, by (5) and the continuity of the ring homomorphism V ~ VII, 
we obtain 

00 

(xxy, I) = (x, I) (y, I) = (x, I) f x (-s) y(s) ds. 
-00 

Thus, by (x, I) =1= 0, we obtain 
00 

(y, I) = f y(s) exp(-i. E(I) . s) ds. (8) 
-00 

Therefore, for any Z = Ae + x with xE V(- 00,00), 
00 

(z,I)=(Ae,I)+(x,I)=A+ f x(s)exp(-i·E(I).s)ds. (9) 
-00 

Conversely, any (continuous, unitary) character X (IX) = exp(i. E· IX) 
of the group RI defines a ring homomorphism 

00 

Z~A+ f x(s) exp(-i. E· s) ds (z=Ae+x,xEV(-oo,oo)) (10) 
-00 

of V onto the ring of complex numbers. For, we have, by the FUbini­
Tonelli theorem. 

00 

f (XIX XI) (t) exp(-i. E· t) dt 
-00 

00 00 

= f xl(t)exp(-i·E·t)dt f xll(t)exp(-i·E·t)dt. 
-00 -00 

We have thus proved 

Theorem 1 (GELFAND [4J and RAlKOV [1J). There exists a one-to-one 
correspondence between the Set of all maximal ideals I =1= V (- 00, 00) 
of the group ring V of the group RI and the set of all continuous, unitary 
characters X (IX) of this group RI. This correspondence is defined by for­
mula (9). 

We shall show that the normed ring V is semi-simple or, what amounts 
to the same thing (see Chapter XI, 2), that the following theorem is true. 

Theorem 2. The normed ring V has no generalized nilpotent ele­
ments other than O. 

Proof. Let xE V (-00, 00) and yE P(-oo,oo). Then, by Schwarz' 
inequality, 

L[ x(t - s) y(s) dS/ < C[ Ix(t - s) 1 ds _[ Ix(t- s) IIY(s) IlIdS)1/2, 
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and so, by the Fubini-Tonelli theorem, we see that the left hand side 
belongs to LZ(-<X.i, <Xl) and 

IlxxYllz < Ilxllllyllz, where 11112 is the norm in LZ'(-<Xl, <Xl). (11) 

Hence we can define a bounded linear operator T" on LZ(-<Xl, <Xl) into 
P(-<Xl, <Xl) by 

00 

(T"y)(t)= f x(t-s)y(s)ds whenever xEV(-<Xl,<Xl); (12) 
-00 

and, moreover, we have 

IIT,,1I2 < Ilxll, 

T: = T". where x* (t) = x (-t) . 

Thus, by applying the Fubini-Tonelli theorem again, we obtain 

(13) 

(14) 

T"T: = T"x,,' = T".x" = T: T", i.e., T" is a normal operator. (15) 

Hence, by Chapter XI, 3, we have II T" 112 = lim (II r; 112)1/ ... Therefore, 
IJ--+OO 

by 

.. factor 

we see that, if x is a generalized nilpotent element, then liT" 112 = o. 
From this fact we easily prove that x must be a zero vector of V (-<Xl,<Xl). 

Let now Z = Ae + x with x E V (-<Xl,<Xl) be a generalized nilpotent 
element of the normed ring V. Then, for any maximal ideal J of V, we 
must have (z,1) = A + (x, J) = O. Hence the Fourier transform 

00 

(2n)-1/2 f x(t) exp(-i. ~. t) dt 
-00 

must be identically equal to _(2n)-1/2 A. From this we prove that A 
must be O. For, we have (the Riemann-Lebesgue theorem) 

1_[ x(t) exp(-i. ~. t) dtl = 12- 1 _[ [x(t) -x(t + ;)]exp(-i . ~. t) dtl 

::0;: 2-1 _[ Ix(t) -x (t + ;) I dt --+ 0 as ~ --+ <Xl. 

Thus a generalized nilpotent element Z E L1 must be of the form Z = x 
with x E V (-<Xl, <Xl) and so, by what we have proved above, Z = x = O. 

We are now in a position to state and prove the Tauberian theorem 01 
N. Wiener [2]: 

Theorem 3. Let x(t) E V(-<Xl, <Xl) be such that its Fourier transform 
00 

(2n)-1/2 f x (t) exp (-i . ~ . t) dt 
-00 
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does not vanish for any real ~. Then, for any y (t) E V (- CX>, CX» and 
8 > 0, we can find the real numbers {3's, the complex numbers x's and a 
positive integer N in such a way that 

_I I y(t) - j~ Xjx(t-{3j) I dt < 8. 

Proof. It suffices to find Z E V in such a way that 

"y - x X z" < 8/2. 
We first show that 

00 

lim fly (t) - y(a:) (t) I dt = 0, where 
<>0-+00 -00 

(<X) (t) 1 foo (t ) 1 - cos IX S d y = n y - S IXS2 s. 
-00 

00 

For, by f (1- cos xs) (XS2)-1 ds = :n; (IX> 0), the left side is 
-00 

< (:n;)-l ~-l (l-s~OS s) ds {_I Iy(t) -y (t- ;)! dt} = o. 
Next we have 

(16) 

(17) 

(18) 

(2 )-1/2 foo(_~)1/21-COSIXU -i~d ={1-1~I/X (1~I<x), (19) 
:n; _oo:n: IXU! e u 0 (I~I > x). 

For, we have 

9 a: . 2 )1/2 '" ;) 
(2 :n;)-1/- f (1-1~ I/x) eie .. d~ = (-;; f (1--;; cos u~ . d~ 

-a: 0 

= (~)1/2 .!.. j (1-1.) d (sin u~) = (~)1/2 j sin u; d~ 
:n: u 0 IX :n: 0 UIX 

= (~)1/21- cos UIX 
:n: U21X' 

and so we have only to apply Plancherel's theorem in Chapter VI, 2. 
Hence, by the Parseval relation of the Fourier transform, 

00 

y(a:) (t) satisfies f y("') (t) exp (-i . ~ . t) dt = 0 if I ~ I > x. (20) 
-00 

Therefore, we may assume that y E V (- CX>, CX» in (17) satisfies the 
condition 

00 

f y(t) exp(-i . ~ . t) dt = 0 whenever I~ I >x. (21) 
-00 

Next we choose a positive number {3 and a sufficiently large positive 
number y such that [-{3 - y, -{3 + yJ and [{3 - y, {3 + yJ both contain 
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[-oX, IX]. Let Cl(~) and C2(~) be the defining functions of the intervals 
[-y,y] and [-P,P], respectively. Then 

= 0 for sufficiently large IH lu(~) = (2/J)-1_L Cl(~- rJ) C2 (rJ) drJ = 1 for ~E [-IX,IX], 

o < u (~) < 1 for all real ~ . (22) 

By the Parseval relation of the Fourier transform, we have 

~ 1 1/2 A ~ 
u(t) = 2P (2n) .. C1 (t) C2 (t). 

Thus, by Plancherel's theorem, we see that u (t) belongs to V (- 00,00) f\ 
L2 (- 00,00). Hence we may apply Theorem 1 so that 

j(t) = u(t) = (2n)-1/2 (u, I,) with a certain maximal ideal I, =I=- 10 • (23) 

Moreover, by Plancherel's theorem, the inverse Fourier transform of j(t) 
is equal to u (~), i.e., we have 

u (~) = (2 n)-1/2 (I, Le) . (24) 

We next set g = e - (2n)-1/2 j. Then, by what was proved above, 

o ::;;: (g, Ie) < 1; (g, Ie) = 0 whenever ~ E [-IX, IX]; 

(g, Ie) = 1 for all sufficiently large I~ I. (25) 

On the other hand, we have, for x* (t) = x(-t), the relation (x, Ie) = 
(x*, Ie). Thus, by hypothesis, we have (x* Xx, Ie) = I (x, Ie) 12 > 0 for all 
real~. Hence the element 

g + x*xxEV 

satisfies the condition that ('g + x* X x, 1) > 0 for all maximal ideals I 
of V. Consequently, the inverse (g + x*XX)-1 in V does exist. 

We define 
z = (g + XXX*)-lXX*xy. (26) 

Then, by (4), the element xxzbelongs to V (-00, 00). Moreover, we have 
for every real number ~, 

( - I) (I) (- I) (I) (x*, h) (y, Ie) 
xxz, e = x, e z, e = x, e (,g, Ie) + (x, Ie) (x*, Ie) . 

Hence, by (25) and the hypothesis that (y, Ie) = 0 whenever I~ I > IX, we 
obtain 

(xxz, Ie) = (y, Ie) for all real~. 

The normed ring Ll is semi-simple by Theorem 2. Hence we must have 
xxz = y. We have thus proved Theorem 3. 

Corollary. Let k1(t) belong to V(-oo,oo), and let its Fourier trans­
form vanish for no real argument. Let k" (t) belong to V (- 00,00). Let 
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I(t) be Baire measurable and bounded over (-00,00). Let, for a con­
stant C, 

00 00 

lim J k1 (t-s)/(s) ds = C J kl(t) dt. 
1-+00 -00 -00 

(27) 

Then 
00 00 

lim J k2(t-s)/(s)ds=C J k2(t)dt. 
1-+00 -00 -00 

(28) 

Proof. We may plainly suppose that C = o. And (28) holds for k2(t) 
of the form k2(t) = (,xXk1) (t) with x(t) E V(-oo, 00). It is easy to 
prove that (28) holds for k2(t) if k2(t) = s-lim k(n) (t) in Ll (-00, 00) with 

..--..00 

k(n) (t) ELI (- 00,00) for which (28) holds (n = 1, 2, ... ). Hence, by 
Theorem 3, we see that (28) holds for every k2(t) E V(- 00, 00). 

Remark. N. WIENER ([1], [2] and [3]) has applied the above Corollary 
to a unified treatment of classical results concerning the limit" relations 
in series and integrals which include a new proof of the prime number 
theorem. Cf. also H. R. PITT [1 J. The above proof of Theorem 3 is adapted 
from M. FUKAMIYA [1] and 1. E. SEGAL [1]. Cf. also M. A. NAIMARK [1J 
and C. E. RICKART [1J and the bibliographies cited in these books. For 
the sake of comprehension of the scope of the above Corollary, we shall 
reproduce Wiener's deduction of the special Tauberian theorem. The 
special Tauberian theorem, as formulated by J. E. LITTLEWOOD reads: 

00 

Theorem 4. Let .I a,.? converge to s (x) for I x I < 1, and let 
,,=0 

lim s (x) = C. (29) 
x-..l-0 

Let, moreover, 

Then 

[xl 

sup n I an i = K < oc . 
n~1 

Proof. Put I(x) = .I an" Then we see, by 
n=O 

II (x) -- s (e-1/X) I = .2' an (1- e-"/X) - .2' ane-n/x I I 
[xl 00 I 

,.=1 [x]+1 I 
[xl 00 00 

< .2' K -~ + .2' K e-n/x < 2K + K J e-ufxu-1 du 
- n=1 n x [xl+l n - [xl 

00 

< 2K + K J e-u u-1 du = constant, 
1 

that I (x) is bounded. 

(30) 

(31) 
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Hence, by partial integration, 

00 00 00 

s(e-%) = ~ a"e-n% = f e-U%dj(u) = f xe-U%j(u) duo 
,,=0 -0 0 

Thus we have 

This may be written as 

00 00 

lim f kl (t - s) j (eS) ds = C f kl (t) dt, where kl (t) = e-I e-e-t , (32) 
1-+00 -00 -00 

sInce 
00 00 00 

f kl (t) dt = f e- I e-e-t dt = f e-% dx = 1. 
-00 -00 0 

Furthermore, we have 

00 00 

f k1 (t,) e-iutdt = f xi"e-%dx = r(1 + iu) =1= O. 
-00 0 

Thus we can apply the Corollary and obtain, for 

k2 (t) = 0 (t < 0); k2 (t) = e- I (t > 0), 

the limit relation 
00 00 00 

C=C f e-tdt=C f k2(t)dt= lim f k2(t-s)j(eS )ds 
o -00 t-+OO_oo 

% 

= lim x-1 f j(y) dy. 
%-+00 0 

It follows that, if A. > 0, 

C =----= lim - f j(y) dy- f j(y)dy 
(1 + A) C - C 1 {(1+,\)% %} 

A %-+ooAX 0 0 

= lim .. f j(y) d" = lim j(x) + .. f [f(y) -j(x)] dy • 
1 (1+,\).. {1 (1+,\).. } 

z-+oo J\, Z % .%--+00 J\, X % 
(33) 

On the other hand, we have, by (30), 
(1+,\) .. 

/xJ .. 
1 (J1+,\) .. ~ K 

[f(y) -j(x)] dy < - ~ - dy 
- AX [ .. ]+1 n .. 

[(1+.\) .. ) K [h]K 
< L -[] < -[-]- < 2A.K 

[ .. )+1 X X 
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for sufficiently large value of x. Hence, by (33), 

lim I/(x)-CI<2}'K, 
%-+00 

and since}. is any positive number, we get 

lim I(x) = C. 
%-+00 

Thus we have proved (31). 

XII. Other Representation Theorems in Linear Spaces 

In this chapter, we shall prove three representation theorems in 
linear spaces. The first one, the Krein-Milman theorem says that a non-void 
convex compact subset K of a locally convex linear topological space is 
equal to the closure of the convex hull of the extremal points of K. The 
other two theorems concern the representations 01 a vector lattice as point 
functions and as set functions. 

1. Extremal Points. The Krein-Milman Theorem 

Definition. Let K be a subset of a real- or complex-linear space X. 
A non-void subset M ~ K is said to be an extremal subset of K, if a 
proper convex combination IXkl + (1- IX) k2' 0 < IX < 1, of two points 
kl and k2 of K lies in M only if both kl and k2 are in M. An extremal set 
of K consisting of just one point is called an extremal point of K. 

Example. In a three dimensional Euclidean space, the surface of a 
solid sphere is an extremal subset of the sphere, and every point of the 
surface is an extremal point of the surface. 

Theorem (KREIN-MILMAN). A non-void compact convex subset K of a 
locally convex linear topological space X has at least one extremal point. 

Proof. The set K is itself an extremal set of K. Let m be the totality 
of compact extremal subsets M of K. Order m by inclusion relation. It 
is easy to see that, if ml is a linearly ordered subfamily of m, the non­
void set n M is a compact extremal subset of K which is a lower bound 

ME\lll, 

for the subfamily mI' 
Thus, by Zorn's lemma, m contains a minimal element Mo' Suppose 

that Mo contains two distinct points Xo and Yo' Then there exists a con­
tinuous linear functional 1 on X such that 1 (xo) =F I(yo)' We may 
assume that Re 1 (xo) =F Re 1 (Yo)· Mo being compact, the set MI = 
{x E Mo; Re 1 (x) = inf Re I(y)} is a proper subset of Mo. On the other 

"EM. 
hand, if kl an,d k2 are points of K such that IXkl + (1- IX) k2 E MI for 
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some tX with 0 < tX < 1, then, by the extremal property of Mo' kl and k2 
both E Mo. It follows from the definition of Ml that kl and k2 both E MI. 
Hence M 1 is a closed extremal subset properly contained in Mo. Since Mo 
is a minimal element of 9.n, we have arrived at a contradiction. Therefore 
Mo must consist of only one point which is thus an extremal point of K. 

Corollary. Let K be a non-void compact convex subset of a locally 
convex real linear topological space X. Let E be the totality of the 
extremal points of K. Then K coincides with the smallest closed set 
containing every convex combination f tXt e. (tX. :?: 0, f tX. = 1) of 

points e.E E, i.e., K is equal to the closure of the convex hull Conv (E) of E. 
Proof. The inclusion E ~ K and the convexity of K imply that 

Conv(E)" is contained in the compact set K. Suppose that there exists 
a point ko contained in (K -Conv(E)"). We can then take a point 
cEConv(E)" so that (ko-c)E(Conv(E)"-c). The set (Conv(E)"-c) 
being compact convex ~d 3 0, there exists, by Theorem 3' in ChapterIV, 6, 
a continuous real linear functional I on X such that 

I(ko - c) > 1 and I(k - c) < 1 for (k - c) E (Conv(E)" -c). 

Let Kl = fx E K; I (x) = sup I (y) t Then, since ko E K, the set Kl (\ E 
l ,EK J 

must be void. Moreover, since K is compact, Kl is a closed extremal subset 
of K. On the other hand, any extremal subset of Kl is also an extremal 
subset of K and hence any extremal point of Kl> which surely exists 
by the preceding Theorem, is also an extremal point of K. Since Kl (\ E 
is void, we have arrived at a contradiction. 

Remark. The above Theorem and the Corollary were first proved 
by M. KREIN-D. MILMAN [1]. The proof given above is adapted from 
J. L. KELLEY [2]. It is to be noted that for the unit sphere S = {x EX; 
Ilxll ~ 1} in a Hilbert space X the extremal points of S are precisely 
those on the surface of S, i.e., those of norm 1. This we easily see from 
(1) in CUpter I, 5. For applications of the notion of the extremal points 
to concrete function spaces, see, e.g., K. HOFFMAN [1]. 

A simple example. Let C [0, 1] be the space of real-valued continuous 
functions x(t) defined on [0,1] normed by x = max Ix(t) I. The dual , 
space X = C [0, 1]' is the space of real Baire measures on [0, 1] of boun­
ded total variations. The unit sphere K of X is compact in the weak* 
topology of X (see Theorem 1 in the Appendix to Chapter IV). It is 
easy to see that extremal points of K are in one-to-one correspondence 
with the linear functionals I,. E X of the form <x, I,.> = x (to), to E [0, 1]. 
The above Corollary says that any linear functional I E X is given as 
the weak* limit of the functionals of the form 

ft ft 

. .I tX;x(t;), where tX; > 0, . .I tX; = 1 and t; E [0, 1]. 
1-1 1-1 
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Recently, G. CHOQUET [1] proved a more precise result: If X is a 
metric space, then E is a G~ set and, for every xE K, there exists 
a non-negative Baire measure p.,. (B) defined for Baire sets B of X 
such that p.,. (X -E) = 0, p.,. (E) = 1 and x = J y p.,. (dy). As for the 

E 

uniqueness of p." and further literature, see G. CHOQUET and 
P. A. MEYER [2]. * 

2. Vector Lattices 

The notion of "positivity" in concrete function spaces is very im­
portant,'in theory as well as in application. A systematic abstract treat­
ment of the "positivity" in linear spaces was introduced by F. RIESZ [6], 
and further developed by H. FREUDENTHAL [2], G. BIRKHOFF [1] 
and many other authors. These results are called the theory of vutOf' 
lattice. We shall begin with the definition of the vector lattice. 

Definition 1. A real linear space X is said to be a vector lattice if X 
is a lattice by a partial order relation x < y satisfying the conditions: 

x ~ '1 implies x + z ~ '1 + z, (1) 

x < '1 implies o(.x < 0(.'1 (or o(.x > 0(.'1) for every 0(. :2:: 0 (or 0(. < 0). (2) 

Proposition 1. If, in a vector lattice X, we define 

x+ = x V 0 and x- = x /\ 0, (3) 
then we have 

x V '1 = (x-'1)+ + '1, x /\ '1 = -«(-x) V (-'1». (4) 

Proof. The one-one mappings x -+ x + z and x -+ O(.x (0(. > 0) of X 
onto X both preserve the partial order in X. 

Example. The totality A (5,58) of real-valued, a-additive set functions 
x(BJ defined and finite on a a-additive family (5,58) of sets B ~ 5 is 
a vector lattice by 

(x + '1) (B) = x(B) + '1 (B), (O(.x) (B) = 0(. x (B) 

and the partial order x <'1 defined by x(B) < '1 (B) on 58. In fact, we 
have, in this case, 

x+ (B) = sup x (N) = the positive variation V (x; B) of x on B. (0) 
N,B 

Proof. We have to show that V(x; B) = (x V 0) (B). It is clear that 
V(x; B) > 0 and x(B) < V(x; B) on 58. If 0 ~ '1 (B) and x(B) ~'1(B) 
on 58, then, for any N ~ B, '1(B) = '1(N) + '1(B - N) > x(N) and so 
'1(B) > V(x; B) on 58. 

• See also Supplementary Notes, p. 467. 
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Proposition 2. In a vector lattice X, we have 

x X y + z = (x + z) X (y + z) , (6) 

/X (x X y) = (/Xx) X (/Xy) for lX> 0, (7) 

lX (x X y) = (lXX) 0 (lXy) for lX < 0, (8) 

x /\ y=-(-x) V (-y), r=-(- x)+, x+=- (-x)-. (9) 

Proof. Clear from (1) and (2). 
Corollary. 

x + y = x V y + x /\ y, in particular, x = x+ + r. (10) 

Proof. x V y -x-y = 0 V (y -x) -y = (-y) V (-x) = -(y /\ x). 
Proposition 3. We have 

x X y = y X x (commutativity), 

x V (y V z) = (x V y) V z = sup (x, y, z) } .. . 
"( " ) _ ( " )" _. f( ) (aSSOCIativIty), x 1\ y 1\ Z - X /\ Y 1\ Z - m x, y, Z 

(x /\ y) V Z = (x V z) /\ (y V Z)} . . .. 
(x V y) /\ Z = (x /\ z) V (y /\ z) (dlstnbutlVlty). 

(11) 

(12) 

(13) 

(14) 

(15) 

Proof. We have only to prove the distributivity. It is clear that 
(x /\ y) V z s x V z, y V z. Let w < x V z, y V z. Then w :s x V z = 
x + z - x /\ z and so x + z > w + x /\ z. Similarly we have y + z 2: 
w + y /\ z. Hence 

and so 

w+~/\~/\~/\~=~+x/\~/\~+y/\~ 
< (x + z) /\ (y + z) = x /\ y + z, 

w < (x /\ y) + z - (x /\ y) /\ z = (x /\ y) V z. 
We have thus proved (14). (15) is proved by substituting -x, -y, -z for 
x, y, z, respectively in (14). 

Remark 1. In a lattice, the distributive identity 

x /\ (y V z) = (x /\ y) V (x /\ z) (16) 
does not hold in general. The modular identity; 

x < z implies x V (y /\ z) = (x V y) /\ z (17) 
is weaker than the distributive identity (15). Let G be a group. Then the 
totality of invariant subgroups N of G constitutes a modular lattice, that 
is, a lattice satisfying the modular identity (17), if we define Nl V N2 
and Nl /\ N2 as the invariant subgroup generated by Nl and N2 and 
the invariant subgroup Nl (\ N 2 , respectively. 

Remark 2. A typical example of a distributive lattice is given by the 
Boolean algebra; a distributive lattice B is called a Boolean algebra if 
it satisfies the conditions; (i) there exist elements I and 0 such that 
o < x < I for every x E B, (ii) for any x E B, there exists a uniquely 
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determined complement x' E B which satisfies x V x' = I, x 1\ x' = o. 
The totality B of subsets of a fixed set is a Boolean algebra by defining 
the partial order in B by the inclusion relation. 

Proposition 4. We define, in a vector lattice X, the absolute value 

Ixl=xV (-x). (18) 
Then 

I x I > 0, and I x I = 0 iff x = 0, 

Ix + yl:::;; Ixl + Iyl, IlXXI = IlXllxl· 
Proof. We have 

(19) 

(20) 

xi" 1\ (-x-) = xi" 1\ (-x)+ = o. (21) 

For, by 0 = x-x = x V (-x) + x 1\ (-x) >- 2(x 1\ (-x) and the 
distributive identity (14), 0 = (x 1\ (-x)) V 0 = xi" 1\ (-x)+. Thus 

xi" - x- = xi" + (-x)+ = xi" V (-x)+. 
On the other hand, from x V (-x) > x 1\ (-x) >- - (-x) V x), we 
have x V (-x) > 0 and so by (21) 

x V (-x) = (x V (-x) V 0 = xi" V (-x)+ = xi" + (-x)+. 
We have thus proved 

xi" - x- = xi" + (-x)+ = xi" V (-x)+ = X V (-x). (22) 
We now prove (19) and (20). If x = xi" + x-:f= 0, then xi" or (-x-) 

is > 0 so that Ixl = xi" V (-x-) > o. IlXxl = (lXX) V (-lXX) = 
IlX I (x V (-x) = IlX Ilx I. From Ix I + Iy I >- x + y, -x - y, we obtain 
Ixl + Iyl >- (x + y) V (-x-y) = Ix + YI· 

Remark. The decomposition x = xi" + X-, xi" 1\ (-x-) = 0, is called 
the Jordan decomposition of x; xi", x- and I x I correspond to the positive 
variation, the negative variation and the total variation, of a function x(t) 
of bounded variation, respectively. 

Proposition 5. For any y E X, we have 

Ix-xII = Ix V y-xl V yl + Ix 1\ y-xl 1\ yl. (23) 
Proof. We have 

I a - b I = (a - b)+ - (a - b)- = a V b - b - (a 1\ b - b) 

=aVb-al\b. 

Hence the right side of (23) is, by (10), (14) and (15), 

=~V~V~-~V~I\~V~+~I\~V~I\~-~I\~I\~ 
= (x V Xl) V y - (x 1\ Xl) V y + (x V Xl) 1\ y - (x A Xl) 1\ y 
= x V Xl + y - (x 1\ Xl + y) = x V Xl - x 1\ Xl = I x - xII· 

Definition 2. A sequence {x .. } of a vector lattice X is said to O-converge 
to an element x E X, in symbol, O-lim x .. = x if there exists a sequence 

11-+00 

{w .. } such that I x - x .. I < w.. and w .. -t. O. Here w .. -t. 0 means that 
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WI > W 2 > ... and /\ w .. = o. The O-lim x"' if it exists, is uniquely 
,,~1 n-+OO 

determined. For, let O~lim x" = x and O-lim x" = y. Then Ix - x,,1 :s;; w", 
n-+ClO n-+OO 

W" t 0 and I y - x,,1 < U", u .. t o. Thus I x - y I :s;; I X - x .. I + I x" - y I :s;; 
W" + u" and (w" + u .. ) t 0 as may be seen from w .. + /\ U,,;;;::: 

,,;;;;1 
/\ (w .. + u .. ). This proves that x = y. 
"~1 

Proposition 6. With respect to the notion of O-lim, the operations 
x + y, x V y and x /\ yare continuous in x and y. 

Proof. Let O-limx .. = x, O-limy" = y. Then Ix + y-x" -y"l:S;; 
n-+OO n-+OO 

Ix - x,,1 + Iy-y,,! implies O-lim (x" + y,,) = x + y. By (23), we have 
n-+OO 

I x X y - x" X y" I < I x X y - x" X y I + I x" X y - x" X y,,! 
< Ix-x,,1 + Iy-y,,!, 

and so O-lim (x" X y,,) = (O~x,,) X (O~y,,). 
Remark. We have 

O-lim ex . x" = ex . O-lim x". 
ft-+OO "-+00 

But, in general, 

O~ex"x# (~ex .. )x. 

The former relation is clear from lexx-exx,,1 = lexllx-x,,!. The latter 
inequality is proved by the following counter example: We introduce in 
the two-dimensional vector space the lexicographic parlial order in which 
(~1' 'Ill) > (~2' 'YJ2) means. that either ~1 > ~2 or ~1 = ~2' 'YJl;;;::: 'YJ2· It is 
easy to see that we obtain a vector lattice. We have, in this lattice, 

n-1(1,0);;;::: (0,1) > 0 = (0,0) (n = 1, 2, ... ). 

Hence O-lim n-1 (1, 0) # O. A necessary and sufficient condition for the 
n-+OO 

validity of the equation 
O-lim ex" x = ex x ....... '" 

is the so-called Archimedean axiom 

O-lim n-1 x = 0 for every x;;;::: o. 
n-+OO 

This we see by the Jordan decomposition y = y+ + y-. 

(24) 

(25) 

Definition 3. A subset {x",} of a vector lattice X is said to be bounded 
if there exist y and z such that y :s;; x", :s;; z for all x",. X is said to be 
complete if, for any bounded set {x",} of X, sup x", and inf x", exist in 

'" '" X. Here sup x", is the least upper bound in the sense of the partial order 
'" in X, and inf XIX is the largest lower bound in the sense of the partial order 
'" in X. A vector lattice X is said to bp. a-complete, if, for any bounded 
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sequence {x,,} of X, supx" and inf Xn exist in X. We define, III a a-
"G1 nG1 

complete vector lattice X, 
O-lim x" = inf (sup x .. ) , O-lim x" = sup (inf x .. ). (26) 

n-->OO m "Gm n-->OO m "Gm 

Proposition 7. O-lim x" = x iff O-lim x" = O-lim x" = X. 
n-+oo n-+OO 11-+00 

Proof. Suppose I x -= x" I < W,,' w" ~ O. Then x - W" < x" < x + w" 
and so we obtain O-lim (x - w,,) = x <O-lim x" < O-lim (x + w,,) = x, 

n-->OO n-->OO n-->OO 

that is, O-lim x" = x. Similarly, we obtain O-lim x" = X. 
n-+OO n-->OO 

We next prove the sufficiency. Put u" = sup xm, V" = inf xm , 
mG" mG" 

u" - v" = W", Then, by hypothesis, w" ~ O. Also, by x" < u" = x + 
(u" - x) < x + (u" - v,,) = x + W" and x" > x - W" obtained similarly, 
we prove I x - x" I < W", Thus O-lim x" = X. 

n-->OO 

Proposition 8. In a a-complete vector lattice X, eXx is continuous in 
eX, x with respect to O-lim. 

Proof. We have leXx - eX"x" I < leXx - eX x" I + leXx" - eX"x" 1= 
leX Ilx - x" I + leX - eX" I Ix" I· Hence, if O-lim x" = x, lim eX" = eX, then 

n-->OO n-->OO 

the O-lim of the first term on the right is O. Therefore, by putting 
sup I x .. I = y, sup I eX - eXm ! = {3", we have to prove O-lim {3" Y = O. 
"G1 mG" n-->OO 

But, by Y > 0 and {3" ~ 0, we see that O-lim{3"y = z exists and 
n-->OO 

O-lim 2-1 {3"y = 2-1 Z. Since there exists, for any n, an no such that 
11->00 

{3n" < 2-1{3", we must have z = 2-1 z, that is, Z = O. 
Proposition 9. In a a-complete vector lattice X, O-lim x" exists iff 

n-+OO 

O-lim Ix .. - Xm 1= O. (27) 
".~ 

Proof. The necessity is clear from I x" - Xm I < I x" - x I + I x - Xm I. 
If we set I x" - Xm I = Y"m' then O-lim x" < xm + O-lim Y"m' O-lim x" > 

n~ fS-+OO n-+OO 

Xm - O-lim Y"m' Hence 
n->OO 

o ::::::: O-lim x" - O-lim x .. < O-lim (O-lim Ynm - O-lim Y"m) = O. 
n->OO n-->OO ~ n-->OO n-->OO 

Thus we have proved the sufficiency. 
Proposition 10. A vector lattice X is a-complete iff every monotone 

increasing, bounded sequence {x,,} ~ X has sup x" in X. 
,,:2:1 

Proof. We have only to prove the sufficiency. Let {z,,} be any bounded 
sequence in X, and set x" = sup Zm' Then, by hypothesis, sup x" = Z 

m~" ,,:2:} 

exists in X, and Z = sup Z". Similarly, we see that inf Z" = inf( inf zm) 
. "G1 "Gl "Gl m;:;;;n 

also exists in X. 
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3. B-Iattices and F -lattices 

Definition. A real B-space (F-space) X is said to be a B-lattice (F­
lattice) if it is a vector lattice such that 

Ixl < Iyl implies Ilxll < Ilyll· (1) 
Examples. C (5), LP (5) are B-Iattices by the natural partial order 

x < y which means x(s) ::;; y(s) on 5 (x(s) ::;; y(s) a.e. on 5 for the case 
LP(5». M(5, ~, m) with m(S) < 00 is an F-Iattice by the natural 
partial order as in the case of LP (5). A (5, ~) is a B-Iattice by 

II x II = I x I (5) = the total variation of x over 5. 

We have, by (1) and Ixl = 1(lxl)l, 

IIxll = 1I(lxl)lI. (2) 

In A (5, ~), we have, moreover, 

x>O,y~O imply IIx+YII=lIxll+IlYII. (3) 

S. Kakutani called a B-Iattice satisfying (3) an abstract V-space. From 
(3) we have 

Ixl < Iyl implies IIxll < lIyli· 

The norm in A (5, ~) is continuous in O-lim, that is 

O-lim x .. = x implies lim ~I x .. II = II x II. 
.......00 .......00 

(4) 

(0) 

For, inA (5, ~),O-lim x .. =X is equivalent to the existence ofy .. EA (5,~) 
.......00 

such that I x - x,,1 (5) < y" (5) with y" (5) t O. It is easy to see that 
M (5, ~, m) satisfies (4) and (0). 

Proposition 1. A a-complete F-Iattice X satisfying (4) and (0) is a 
complete lattice. In particular, A (5, ~) and LP(5) are complete lattices. 

Proof. Let {x",} ~ X be bounded. We may assume 0::;; x", < x for all 
lX, and we shall show that sup x", exists. Consider the totality {zp} of 

'" " zp obtained as the sup of a finite number of x",'s: zp = .v x"'l" Set 
.1-1 

y = sup IIzpll. Then there exists a sequence {ZPi} such that .lim Ilzpi II = y. 
P ~ 

If we put z" = sup ZPi' then O-lim z" = w exists, and, by (0) and the 
;~" .......00 

definition of y, we have II w II = y. We shall prove that w = sup x",. 
'" Suppose that x", V w> w for a certain x",. Then, by (4), IIx", V w II > 

IIw II = y. But, by x", V w = O-lim (x", V z,,), x", V z .. E {zp} and (0), we 
.......00 

have IIx", V w II = lim IIx", V z,,11 < y, which is a contradiction. Hence 
.......00 

we must have w ~ x", for all x",. Let x", < u for all x",. Suppose w 1\ u < w. 
24 Y08lda. Functlonl Analysis 
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Then, by (4), Ilw 1\ u II < r, contrary to the fact that w 1\ u ~ z(J for all 
::(J' Hence we must have w = sup x"'. 

IX 

Remark. In C (5), O-lim x" = x does not necessarily imply 
.......00 

s-lim x" = x. In M (5, 58, m), s-lim x" = x does not necessarily imply 
.......00 .......00 

O-lim x" = x. To see this, let Xl (s), x2 (s), ... be the defining functions of 
.......00 

the intervals of [0, 1]: 

[0, ~], [ ~ , ;], [0, !], [ ! ' !], [! ' ! J ' [: ' :], [0, !], [ ! ' !] , ... 
Then the sequence {x,,(s)} ~ M ([0, 1]) converges to 0 asymptotically but 
does not converge to 0 a.e., that is, we have s-lim x" = 0 but O-lim x" = 0 

.......00 .......00 

does not hold. 

Proposition 2. Let X be an F-lattice. Let a sequences {x,,} ~ X satisfy 
s-lim x" = x. Then {x,,} *-converges to x relative uniformly. This means 

.......00 

that, from any subsequence {Y .. } of {x,,}, we can choose a subsequence 
{y .. (k)} and a Z E X such that 

Iy .. (k) -xl < k-lz (k = 1,2, ... ). (6) 

Conversely, if {x .. } *-converges relative uniformly to x, then s-lim x" = X • 
.......00 

Proof. We may restrict ourselves to the case x = O. From lim Ily .. 11 = 0, 
.......00 

we see that there exists a sequence {n(k)} of positive integers such that 
00 

IlkY"(kdl < k-2• Then (6) holds by taking z = ~ Iky .. (k) I. Con­
k=l 

versely, let condition (6) with x = 0 be satisfied. Then we have 
II Y,,(k) II < II k-l z II from I Y .. (k) I < k-l z. Hence s··lim Y,,(k) = O. There-

10-+00 
fore, there cannot exist a subsequence {y,,} of {x .. } such that lim lIy .. lI> o. 

~ 

Remark. The above proposition is an abstraction of the fact, that 
an asymptotically convergent sequence of M(5, 58, m) with m(5) < 00 

contains a subsequence which converges m-a.e. 

4. A Convergence Theorem of Banach 

This theorem is concerned with the almost everywhere convergence 
of a sequence of linear operators whose ranges are measurable functions. 
See S. BANACH [2]. A lattice-theoretic formulation of the theorem reads 
as follows (K. YOSIDA [15]): 

Theorem. Let X be a real B-space with the norm 1111 and Y a (J­

complete F-Iattice w.ith the quasi-norm 11111 such that 

O-lim Y .. = Y implies lim II y .. 1 It = II Y Ill" 
.......00 .......00 

(1) 
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Let {T,,} be a sequence of bounded linear operators E L(X, Y). Suppose 
that 

O-lim IT "x I exists for those x· sEX which form a set 
It-+OO (2) 

G of the second category. 

Then, for any x EX, O-lim T".:\\ and O-Iim T"x both exist and the (not 
It-+OO It-+OO 

necessarily linear) operator T defined by 

Tx = (O~ T"x)-(O~ T"x) (3) 

is continuous as an operator defined on X into Y. 
Remark. The space M(S, ~,m) with m(S) < 00 satisfies (1) if we 

write Yl < Yz when and only when Yl (s) < Yz (s) m-a.e., the quasi-norm 
lIylIl being defined by lIylIl = J IY(s) 1(1 + IY(s) I)-lm(ds). Likewise 

s 
LP(S, ~, m) with m(S) < 00 also satisfies (1) by the same semi-order. 

Proof of the Theorem. Set T"x = y", y~ = sup IYm I, y' = sup ly"l, 
,,;;:;m ,,;;:;1 

and consider the operators V"X = y~ and Vx = y' defined at least on G 
into Y. By (23) of the preceding section 2, each V" is strongly conti­
nuous with Tk • Since limIlV"x-Vxlll=O by (1), we have 

It-+OO 

lim II k-l V"X II = II k-l V x II and further lim II k-l V X III = O. These are 
It-+OO ~ 

implied by the continuity in oc, Y of ocy in the F-space Y. Hence for any 
£ > 0, 00 

G ~ U G" where Gk = hEX; sup IIk-l V"xlll < £1. (4) 
k-l l ,,;;:;1 J 

By the strong continuity of V"' each Gk is a strongly closed set of X. 
Thus some Gko contains a sphere of X, in virtue of the hypothesis 
that G is of the second category. That is, there exist an Xo E X and a 
~ > 0 such that IIxo - x II < ~ implies sup IIkill V"X III < £. Hence, by 

,,;;:;1 
putting z = Xo - x, we see that 

sup IlkOlV .. zlh < sup II kill V"xo Ih + sup II kill V .. xlh < 2£ • 
.. ;;:;1 ,,;;:;1 .. ;;:;1 

that is, since V .. (kil1Z) = kil1V"z, we have 

sup IIV .. zlll < 2£ whenever IIzlJ < ~/ko. 
,,;;:;1 

This proves that s-lim V .. ' z = 0 uniformly in n. 
11611-+0 

G being dense in X. v· x is defined for all x E X and V . x is strongly 
continuous at x = 0 with V . 0 = O. Hence, by 

If. x I ~ 2 V • x and II f Xl - f xzlIl ~ II T (Xt - XS) 111' 

we see that f. x is strongly continuous at every x EX. 

24· 
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Corollary. Under condition (1), thesetG = {XE X; O-lim T,.x exists} 
8-+00 

either coincides with X or is a set of the first category. 

Proof. Suppose !he set G be of the second category. Then, by our Theo­
rem, the operator Tis a strongly continuous operator defined on X into Y. 

Thus G = {x EX; i y = O} is strongly closed in X. Moreover, G is a 
linear subspace of X. Hence G must coincide with X. Otherwise, G would 
be non dense in X. 

5. The Representation of a Vector Lattice as Point Functions 

Let a vector lattice X contain a "unit" I with the properties: 

I> 0, and, for any I E X, there exists an £x > 0 such 

that -£xI :::;: I < £xI. 
(1 ) 

For such a vector lattice X, we can give an analogous representation 
similar to the representation of a normed ring as point functions. 

An element IE X is called "nilpotent" if n III < I (n = 1, 2, ... ). 
The set R of all nilpotent elements I E X is called the "radical" of X. 
By (20) of Chapter XII, 2, R constitutes a linear subspace of X. More­
over, R is an "ideal" of X in the sense that 

IE Rand Igl < III imply gE R. (2) 

Lemma. Let Xl and X 2 be vector lattices. A linear operator T defined 
on Xl onto X 2 is called a lattice homomorphism if 

T(x X y) = (Tx) X (Ty). (3) 

Then (3) implies that N = {x E Xl; Tx = O} is an ideal of Xl' Conversely, 
if a linear subspace N of Xl is an ideal of Xl' then the mapping x-+ Tx 
= x = (the residue class mod N containing x) satisfies (3) by defining 
-y- th h -Y-x "y roug x "y. 

Proof. Let T be a lattice homomorphism. Let x E N and I y I < I x I. 
Then, by T(lxi) = T(x V -x) = (Tx) V (T(-x)) = 0, we obtain, 
o < Ty+ = T(y+ /\ Ixi) = Ty+ /\ T Ixl = 0 and so y+E N. Similarly 
we obtain y- EN and thus y = y+ + y- E N. 

Next let a linear subspace N = {xE Xl; Tx = O} be an ideal of Xl' 
If Y = Z, i.e., if y - zE N, then, by (23) in Chapter XII,2, we have 

IxXy-xXzl ~ ly-zlEN 

so that the residue class (x X 'Y) is determined independently of the choice 
of the representative elements x, y from the residue classes X, y, respect­
ively. Hence we can put x ~ y = x ~y by defining z;;:;; 0 through z yO = z. 



o. The Representation of a Vector Lattice as Point Functions 373 

Remark. The above Lemma may be phrased as follows. Let N be a 
linear snbspace of a vector lattice. Then the linear-congruence a = b 
(mod N) is also a lattice-congruence: 

a - b, a' = b' (mod N) implies a X b = a' X b' (mod N), 

iff N is an ideal of X. 
Now an ideal N is called "non-trivial" if N =1= {O}, X. A non-trivial 

ideal N is called "maximal" if it is contained in no other ideal =1= X. 
Denote by ilR the set of all maximal ideals N of X. The residual 
class XjN of X mod any ideal N E ilR is "simple", that is, XjN does not 
contain non-trivial ideals. It will be proved below that a simple vector 
lattice with a unit is linear-lattice isomorphic to the vector lattice 01 real 
numbers, the non-negative elements and the unit I being represented by 
non-negative numbers and the number 1. We denote by I (N) the real 
number which corresponds to I E X by the linear-lattice-homomorphism 
X --+ XjN, N E ilR. 

After these preliminaries we may state 
Theorem 1. The radical R coincides with the intersection ideal 

n N. 
NEIDl 

Proof. The lirst step. Let X be a simple vector lattice with a unit I. 
Then we must have X = {£xI; -00 < £x < oo}. 

Prool. X does not contain a nilpotent element I =1= 0, for otherwise X 
would contain a non-trivial idealN = {g; Ig I < 1J III with some 1J < oo}. 
Hence, by (1), X satisfies the Archimedean axiom: 

order-lim n-1 Ix 1= ° for all x EX. (4) 
n-+oo 

Suppose there exists an 10E X such that 10 =1= yI for any real number y. 
Let 

£x = inf £x', p = sup p'. 
I.:'f.o(] {J'I:;;;'I. 

Then, by (4),PI ~/o < £xI andp< £x. Hence (/0-01)+=1= 0, (/0-01)-=1= 0 
forp< <5< £x. Thus, by x+ 1\ (-x-) = 0, thesetNo={g; Igl < 1J(/o-M)+ 
with some 1J < oo} is a non-trivial ideal, contrary to the hypothesis. 

The second step. For any non-trivial ideal No, there exists a maximal 
ideal N 1 containing No. 

Prool. Let {No} be the totality of non-trivial ideals containing No. 
We order the ideals of {No} by inclusion relation, that is, we denote 
N"" < N"" if N"" is a subset of N"". Suppose that {N,,} is a linearly or­
dered subset of {No} and set Np = UN",. We shall then show that 

N",E{N,J 

Np is an upper bound of {N",}. For, if x, y E N p, there exist ideals N",. and 
N "" such that x EN"" and YEN"". Since {N ,,} is linearly ordered, N "" ~ N "" 
(or N "'. ~ N "',) and so x and y both belong to N "". This proves that 
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(yx + ~y) E N,.. ~ N{J and that Izl < Ixl implies zE NIX, ~ N{J. Since 
the unit I is contained in no NIX' I is not contained in N{J. Therefore N{J 
is a non-trivial ideal containing every NIX, i.e., N{J is an upper bound of 
{NIX}. Thus, by Zorn's Lemma, there exists at least one maximal ideal 
containing No. 

The third step. R r;:. n N. Let I> 0 and nl < I (n = 1, 2, ... ). 
- NEIDl -

Then~ for any N E Wl., we have nl(N) < I(N) = 1 (n = 1, 2, ... j, and 
hence 1 (N) = 0, that is, 1 EN. 

The fourth step. R d n N. Let 1 > 0 be not nilpotent. Then we have 
- NEIDl 

to show that there exists an ideal N E Wl. such that lEN. This may be 
proved as follows. 

Since I> 0 is not nilpotent, there exists an integer n such that n I ;$ I. 
We may assume that nl ~ I, since otherwise 1 E N for any N E Wl. and so 
we have nothing to prove. Thus suppose p = 1- (n . I) (\ I> o. Then, 
for any positive integer m, we do not have m . p 2 I. If otherwise, we 
would have m-1 I < I - (n I) (\ I and hence 

(n . I) 1\ I = (n . I) 1\ (1 - m-1) I. 

Thus, by (6) in Chapter XII, 2, 

(n·I-(1-m-1)I) I\m-1I=(n·I-(1-m-1)I) 1\ 0::::;:0, 

and so, by the distributivity of the vector lattice, 

0= {en. 1- (1-m-1) I) 1\ m-1I} V 0 = (n. 1- (1-m-1) 1)+ 1\ m-1I, 

that is, (n ·1- (1- m-1) 1)+ 1\ 1= O. Put b = en ·1- (1- m-1) 1)+ 
and assume that b> O. By hypothesis (1), we have b < IXI with some 
tx> 1. Then 0 < b = b 1\ txI and so 0 < (1X-1 b) 1\ I <b 1\ I, contrary 
to b 1\ 1= O. Therefore b = 0, i.e., n . I < (1- m-1) I. This contradicts 
the fact that n· I ~I~ I. Hence the set No = {g; Ig I < 'YJ Ip I for some 
'YJ < co} is a non-trivial ideal. No is contained in at least one maximal 
ideal N, by the second step. Then 0 = p (N) = 1- (n ·I(N) 1\ 1 which 
shows that I(N) > 0, that is, IE N. 

We have thus proved our Theorem 1. 
The vector lattice X = XjR is again a vector lattice with a unit l. 

By Theorem 1, the intersection ideal 0 N of all the maximal ideals N 
N 

of X is the zero ideal and X contains no nilpotent element of:. O. 
Hence X satisfies the Archimedean axiom 

order-limit n-:-1 I~ = 0 for all lEX. 
"too 

(5) 

Let N be any maximal ideal of X. Then the factor space XjN is a 
simple vector lattice, and so, by the first step in the proof of Theo­
rem 1, XjN is linear-lattice-isomorphic to the vector lattice of real 
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numbers; the non-negative elements and the unit being represented by 
non-negative numbers and 1. We denote by 7 (N) the real number which 
corresponds to 7 by this homomorphism x_ :KIN: We also denote by 
ilR the set of all maximal ideals of X. We have thus 

Theorem 2. By the correspondence 7- 7(N), X is linear-lattice-iso­
morphically mapped on the vector lattice F (ilR) of real-valued bounded 
functions on ilR such that (i) 171- I7(.N) I, (ii) J(N) = 1 on ilR and (iii) 
F (ilR) separates the points of ilR in the sense that 

for two different points N1, N2 of ilR, there exists at 

least one 7 E X such that 1 (N 1) =1= t (lv) . (6) 

Remark. We introduce a topology in ilR by calling the sets of the form 

{NEilR;I~(N)-~(No)I<E. (i=1,2, ... ,n), 

where -1 < 1 <1 for all i} 

neighbourhoods of No. Then iN is compact since it may be identified 
with a closed subset of a topological product (of the same potency as 
the cardinal number of the set of elements lEX which satisfy -1 < 7< 1) 
of the closed intervals [-1, 1J. The proof is entirely similar to the case 
of the set of all maximal ideals of a normed ring in Chapter XI, 2. 
Moreover, each function 7(N) E F (ilR) is continuous on the compact space 
ilR topologized in this way. Thus, by the Kakutani-Krein theorem in Chap­
ter 0,2, we see that F(ilR) is dense in the B-space C(ilR). The above two 
theorems are adapted from K. YOSIDA-M. FUKAMIYA [16J. Cf. also 
S. KAKUTANI [4J and M. KREIN-S. KREIN [2]. 

6. The Representation of a Vector Lattice as Set Functions 

Let X be a a-complete vector lattice. Choose any positive element 
x of X and call it a "unit" of X and write 1 for x; when not ambiguous 
we-also write ~ for ~ . 1. A non-negative element eE X is called a "quasi­
unit" if e 1\ (1 - e) = O. A finite linear combination ~ ~.e. of quasi-

• 
units e. is called a "step-element", and we call the element y E X "ab-
solutely continuous" (with respect to the unit 1) if y can be expressed as 
the O-lim of a sequence of step-elements. An element z E X is called 
"singular" (with respect to the unit 1) if I z I 1\ 1 = o. 

We shall give an abstract formulation of the Radon-Nikodym theorem 
in integration theory. 

Theorem. Any element of X is uniquely expressed as the sum of an 
absolutely continuous element and a singular element. 

Proof. The first step. If f> 0 and f 1\ 1 =1= 0, then there exist a 
positive number ~ and a quasi-unit eDt =1= 0 such that t > ~e",. We can, 
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in fact, take 

e .. = V {n(tX-1/-tX-11 /\ 1) /\ 1}. 
.. ;e:;1 

Prool. Put Y .. = tX-1/- tX-l / /\ 1. Then we obtain 

2ell /\ 1 = {V (2nYII /\ 2)} /\ 1 = e .. , 
.. ;e:;1 

and so e .. is a quasi-unit. We obtain I > tXe .. from 

ny" /\ 1 = ntX-1//\ [1 + n(tX-1//\ 1)] -n(tX-1//\ 1) 

(1) 

~ (n + 1) tX-1//\ (n + 1) - n(tX-1//\ 1) < tX-1//\ 1 <tX-1/. 

If we can show thatr .. /\ 1 > 0 for some tX > 0, then e .. > 0 for such tX. 
Suppose that such positive tX does not exist. Then, for every tX with 
o < tX < 1, we have 

tX-1 (tX-1/- tX-11 /\ 1) /\ tX-1 = O. 

Hence (f -I /\ tX) /\ 1 = 0 and, letting tX t 0, we obtain 1/\ 1 = 0, 
contrary to the hypothesis 1/\ 1 =1= O. 

The second step. Let I > 0, and I ~ tXe where tX> 0 and e is a 
quasi-unit. Then, for 0 < tX' < tX, e"" ~ e and I > tX' e .. , where e .. , is 
defined by (1). 

Prool. For the sake of simplicity, we assumethattX = 1. ForO< <5< 1 

1 f IJ + 1 e IJ /\ 1 = (1 f IJ + 1 e IJ) /\ (1 + 1 f IJ) 

~ (1 f IJ + 1 e IJ) /\ (1 + 1 e IJ) 

f e 
=1-1J/\ 1+1_1J' 

Since e is a quasi-unit, we have 2e /\ 1 = e, e /\ 1 = e. Hence me /\ 1 
= e when m ~ 1. Thus, by 1 < (1- <5)-1, we have (1- <5)-1 e /\ 1 = e. 
Therefore, we obtain, from the above inequality, 

IJ e e f f 
1 - IJ e = 1- IJ - 1 - IJ /\ 1 ~ 1 - IJ - 1- IJ /\ 1 = Yl-eJ, 

and so, by (1) .. e < el-eJ' 

The third step. The set of all quasi-units constitutes a Boolean 
algebra, that is, if e1 and eB are quasi-units, then e1 V ell and e1 /\ ez are 
also quasi-units and 0 < e. < 1. The quasi-unit (1 - e) is the comple­
ment of e, and 0,1 are the least and the greatest elements, respectively 
in the totality of the quasi-units. 
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Proof. The condition e A (1- e) = 0 is equivalent to 2e A 1 = e. 
Hence, if ev ea are quasi-units, then 

2(~ A .:a) A 1 = (2el A 1) A (2ea A 1) = el A ea, 

2(~ V eJ A 1 = (2~ A 1) V (2es A 1) = el V ea, 

so that el A ea and el V ea are also quasi-units. 
The fourth step. Let f> 0, and set 7 = sup pep where sup is taken 

for all positive rational numbers p. Because of the third step, the sup of 
a finite number of elements of the form Piep, is a step-element. Hence 1 
is absolutely continuous with respect to the unit element 1. We have to 
show that g = f -lis singular with respect to the unit element 1. Suppose 
that g is not singular. Then, by the first step, there exist a positive number 
IX and a quasi-unit e such that g :;;::: lXe. Hence f :;;::: txe, and so, by the second 
step, there exists, for 0 < IXl < IX, a quasi-unit ea,. > e such that f :;;::: IXl e",. 

We may assume that IXI is a rational number. Thus 1":2:. IXle"" and so 
I = 1 + g:;;::: 2IXI e"". Again, by the second step, there exists, for 0 < 
IX; < IXv a quasi-unit es,.. :;;::: e", such that f > 21X~es,.'. We may assume 

1 _ 1_ 

that 21X~ is a rational number so that f :;;::: 21X~ ea..;. Hence f = f + g > 3 IX; e. 
Repeating the process, we can prove that, for any rational number IX .. 

with 0 < IX .. < IX, 

I :;;::: (n + 1) lX .. e (n = 1, 2, ... ). 

If we take IX .. :;;::: 1X/2, we have (n + 1) lX .. e > 2-l nlXe. Hence f :;;::: nIXe 
(n = 1, 2, ... ) with IX > 0, e > O. This is a contradiction. For, by the (1-

completeness of X, the Archimedean axiom holds in X. 
The fifth step. Let f = f+ + j- be the Jordan decomposition of a 

general element lEX. Applying the fourth step to f+ and j- separately, 
we see that f is decomposed as the sum of an absolutely continuous ele­
ment and a singular element. The uniqueness of the decomposition is 
proved if we can show that an element hEX is = 0 if h is absolutely 
continuous as well as singular. But, since h is absolutely continuous, we 
have h = O-lim h .. where h .. are step-elements. h .. being a step-element, 

fI-+OO 

there exists a positive number IX.. such that I h .. 1 ::::;; IX ... 1. Since h is 
singular, we have Ihl A Ih .. 1 = O. Therefore Ihl = Ihl A Ihl = 
O-lim (\hl A Ih .. \) = o. 

IO-+CO 

Application to the Radon-Nikodym theorem. Consider the case X = 
A (5, ~). We know already (Proposition 1 in Chapter XII, 3) that 
it is a complete lattice, and that in A (5, ~), 

x+ (B) = sup x (B') = the positive variation V (x; B) of x on B. (2) 
B'~B 

We shall prepare a 
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Proposition. In A (5, ~), let x> 0, z;:;::: 0 in such a way that x /\ z 
= O. Then there exists a set BoE ~ such that x (Bo) = 0 and z (5 - Bo) = O. 

Proof. Since x /\ z = (x - z)- + z, we know, from (2), that 

(x /\ z) (B) = inf (x - z) (B') + z(B) = inf [x(B') + z(B - B')]. (3) 
B'~B B'r;,B 

Hence, by the hypothesis x /\ z = 0, we have 

inf [x(B) + z(5 - B)] = (x /\ z)(5) = O. 
BE18 

Hence, for any e> 0, there exists a BBE ~ such that X(BB) < e, 
z (5 - BB) < e. Put Bo = /\ (V B2-,,). Then, by the a-additivity of 

k!1;1 "!1;k 
x(B) and z(B), 

00 

o < x (Bo) = lim x ( V B2-,,) < lim ~ 2-" = 0, 
~ "!1;k ~,,=k 

o < z(5 - Bo) = lim z(5 - V B2-,,) < lim z(5 - B2-k) = o. 
~ n!1;k ~ 

Corollary. Let' e be a quasi-unit with respect to x> 0 in A (5, ~). 
Then there exists a set B1 E ~ such that 

e(B) = x(B n B1) for all B E ~. (4) 

Proof. Since (x - e) /\ e = 0, there exists a set Bo E ~ such that 
e(Bo) = 0, (x - e) (5 - Bo) = O. Hence e(5 - Bo) = x(5 - Bo) = e(5), 
and so e(B) = x(B - Bo) = x(B n B1) where B1 = 5 - Bo. 

We are now able to prove the Radon-Nikodym theorem in integration 
theory. In virtue of the above Corollary, a quasi-unit e with respect to 
x> 0 is, in A (5, ~), a contracted measure e(B) = x(B n Be). Hence a 
step-element in A (5, ~) is the integral of the form: 

~A. f x(ds), 
• BAm 

that is, indefinite integral of a step function (= finitely-valued function). 
Hence an absolutely coIr'"inuous element in A (5, ~) is an indefinite 
integral with respect to the measure x(B). The Proposition above says 
that a singular element g (with respect to the unit x) is associated with a 
set Bo E ~ such that x (Bo) = 0 and g (B) = g (B n Bo) for all B E ~. Such 
a measure g(B) is the so-called singular measure (with respect to x(B». 
Thus any element tEA (5, ~) is expressed as the sum of an indefinite 
integral (with respect to x (B)) and a measure g (B) which is singular (with 
respect to x(B». This decomposition is unique. The obtained result is 
exactly the Radon-Nikodym theorem. 

Remark. The above Theorem is adapted from K. Y OSIDA [2]. Cf. 
F. RIESZ [6], H. FREUDENTHAL [2] and S. KAKUTANI [5]. For further 
references, see G. BIRKHOFF [1]. 
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XUI. Ergodic Theory and Diffusion Theory 
These theories constitute fascinating fields of application of the 

analytical theory of semi-groups. Mathematically speaking, the ergodic , 
theory is concerned with the "time average" lim t;-1 f T. ds of a semi-

'too 0 

group T" and the diffusion theory is concerned with the investigation of a 
stochastic process in terms of the infinitesimal generator of the semi-group 
intrinsically associated with the stochastic process. 

1. The Markov Process with an Invariant Measure* 

In 1862, an English botanist R. BROWN observed under a microscope 
that small particles, pollen of some flower, suspended in a liquid move 
chaotically, changing position and direction incessantly. To describe 
such a phenomenon, we shall consider the transition probability P(t, x; s, E) 
that a particle starting from the position x at time t belongs to the set E 
at a later time s. The introduction of the transition probability P(t,x;s,E) 
is based upon the fundamental hypothesis that the chaotic mo!ion of the 
particle after the time moment t is entirely independent of its past 
history before the time mo~ent t. That is, the future history of the particle 
after the time moment t is entirely determined chaotically if we know 
the position x of the particle at time t. The hypothesis that the particle 
has no memory of the past implies that the transition probability P satis­
fies the equation 

P(t, x; s, E) = f P(t, x; u, dy) P(u, y; s, E) for t < u < s, (1) 

where the integration is performed over the entire space S of the chaotic 
movement of the particle. 

The process of evolution in time governed by a transition probability 
satisfying (1) is called a Markov process, and the equation (1) is called 
the Chapman-Kolmogorov equation. The Markov process is a natural gene­
ralization of the deterministic process for which P(t, x; s, E) = 10r = 0 
according as y E E or y E E; that is, the process in which the particle at 
the position x at the time moment t moves to a definite position y = 
y(x, t, s) with probability 1 at every fixed later time moment s. The 
Markov process P is said to be temporally homogeneous if P(t, x; s, E) 
is a function of (s - t) independently of t. In such a case, we shall be 
concerned with the transition probability P(t, x, E) that a particle at 
the position x is transferred into the set E after the lapse of t units of 
time. The equation (1) then becomes 

P(t + s, x, E) = f P(t, x, dy) P(s, y, E) for t, s > o. (2) 
s 

* See also Supplementary Notes, p. 467 and p. 468. 
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In a suitable function space X, P(t, x, E} gives rise to a linear transfor­
mation T,: (T,t}(x) = J P(t, x, dy} I(y}, IE X, (3) 

s 
such that, by (2), the semi-group property holds: 

T,+s = T,T. (t, s > O). (4) 

A fundamental mathematical question in statistical mechanics is 
concerned with the existence of the time average , 

lim t-1 J T.lds. (0) 
'too 0 

In fact, let S be the phase space of a mechanical system governed by the 
classical Hamiltonian equations whose Hamiltonian does not contain the 
time variable explicitly. Then a point x of S is moved to the point y,(x) 
of S after the lapse of t units of time in such a way that, by a classical 
theorem due to LIOUVILLE, the mapping x _ y, (x) of S onto S, for each 
fixed t, is an equi-measure translormation, that is, the mapping x _ y, (x) 
leaves the "phase volume" of S invariant. In such a detenninistic case, 
we have (T,f)(x) = I (y, (x» , (6) 
and hence the ergodic hypothesis of BOLTZMANN that 

the time average of any physical quantity = the space 
average of this physical quantity 

is expressed, assuming J dx < 00, by 
s , 

lim t-1 J I (Y. (x» ds = f I (x) dxjf dx for all I EX, 
'too 0 

dx denoting the phase volume element of S. (7) 

A natural generalization of the equi-measure transformation 
x _ y,(x) to the case of a Markov process P(t, x, E} is the condition of 
the existence of an invariant measure m (dx) : 

f m(dx} P(t, x, E) = m(E) for all t> 0 and all E. (8) 

We are thus lead to the 
Definition. Let ~ be a a-additive family of subsets B of a set S such 

that SitselfE ~. For every t > 0, xES and E E ~, let there be associated 
a function P(t, x, E} such that 

P(t, x, E) > 0, P(t, x, S) = 1, (9) 
for fixed t and x, P (t, x, E) is a-additive in E E ~, (10) 
for fixed t and E, P(t, x, E) is ~-measurable in x, (11) 
P(t + s, x, E} = f P(t, x, dy} P(s, y, E) 

(the Chapman-Kolmogorov equation). (12) 
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Such a system pet, x, E) is said to define a Markov process on the phase 
space (S, 58). If we further assume that (S, 58,11£) is a measure space in 
such a way that 

I 11£ (dx) pet, x, E) = 11£ (E) for all E E 58, (13) 

then pet, x, E) is said to be a Markov process with an invariant measure 
m(E). 

Theorem 1. Let pet, x, E) be a Markov process with an invariant 
measure 11£ such that m(S) < 00. Let the norm in Xp = LP(S, 58,11£) be 
denoted by III lip, p:;;::: 1. Then, by (3), a bounded linear operator 
T, E L (Xp, Xp) is defined such that T,+. = T, T. (t, s > 0) and 

T, is positive, i.e., (T,/) (x):;;::: 0 on S m-a.e. if I(x) :;;::: 0 on S m-a.e., (14) 

T,.l=l, (15) 

IIT'/lIp:::;;; II/lIp for IE Xp = LP(S, 58,11£) with p = 1, 2 and 00. (16) 

Proof. (14) and (15) are clear. Let IE LOO(S, 58,11£). Then, by (9), (10) 
and (11), we see that I,(x) = (T,/)(x) E LOO(S, 58,11£) is defined and 
11/,1100:::;;; 11/1100. Hence, by (9) and (13), we obtain, for IE LOO(S, 58,11£) 
with P = 1 or p = 2, 

III, lip = il 11£ (dx) il pet, x, dy) 1(Y)n1IP 

:::;;; ilm (dx) [I pet, x, dy) I/(y) IP • I pet, x, dy) 1P]yIP 

= il 11£ (dy) I/(y) IPf'P = III lip· 

We put, for a non-negative IE LP(S, 58,11£) with P = lor p = 2, 

..I(s) = min (I (s) , n), where n is a positive integer. 

Then, by the above, we obtain 0:::;;; (..I(s»,:::;;; ("+1/(s», and II (..I), lip :::;;; 
11..1 lip < III lip· Thus, if we put I,(s) = lim ("/(s»" then, by the Lebes-

fI-+OO 

gue-Fatou lemma, 1II,IIp < III lip, that is, I,E LP(S, 58,11£). Again by the 
Lebesgue-Fatou lemma, we obtain 

I,(x) = ~I pet, x, dy) (..I(y» > ! P(t,x,dy) (~(..I(Y») 

= f pet, x, dy) I(y). 
s 

Thus I(y) is integrable with respect to the measure pet, xo, dy) for those 
xo's for which I,(xo) =1= 00, that is, for m-a.e. Xo. Hence, by the Lebes­
gue-Fatou lemma, we finally obtain 

I pet, xo, dy) (~(..I(Y») =~! pet, xo, dy) (..I(y». 
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Therefore, It(xo) = J P(t, xo, dy) I(y) m-a.e. and lilt lip < 11/11p. For a 
s 

general IE LP(5,)B, m), we obtain the same result by applying the posi­
tive operator T t to 1+ and 1-, separately. 

Theorem 2 (K. YOSIDA). Let P(t, x, E) be a Markoff process with an 
invariant measure m such that m(5) < 00. Then, for any I E LP (5, )B, m) 
with P = 1 or p = 2, the mean ergodic theorem holds: 

n 
s-lim n-1 .I T"I = 1* exists in LP (5, )B, m) and T1/* = I 

n--->OO 10=1 

whenever IE LP (5, )B, m), (17) 

and we have 
J I(s) m(ds) = J I*(s) m(ds). (18) 
s s 

Proof. In the Hilbert space L2(5, )B, m), the mean ergodic theorem 
(17) holds by (16) and the general mean ergodic theorem in ChapterVIII,3. 

Sincem(5) <00, we see, by Schwarz' inequality, that anY/EL2(5, )B,m) 
belongs to L1(5,)B, m) and 11/111 < 11/112' m(5f/2. Hence the mean 

ergodic theorem lim J I f* (s) - n-1 i (Tk I) (s) I m (ds) = 0, together 
n--->OO s ,,= 1 

with Td* = 1*, hold for any IE L2(5,)B, m). Again, by m(5) < 00 and 

0= lim 11/-Jlh = lim J I/(s)-J(s) Im(ds) with J(s) =min(t(s),n), 
n--->OO n--->OO S 

we see that L2(5, )B, m) is V-dense in V(S, )B, m). That is, for any 
I E V (5, )B, m) and 8> 0, there exists an I. E L2 (5, )B, m) f\ V (5, )B, m) 
such that 11/-1.111 < 8. Hence, by (16), we obtain 

11:ln-1 i T"I-n-1 i Tkl.11 < 11/-1.111 < 8. 
o "=1 "=1 1 

The mean ergodic theorem (17) in V(5,)B, m) holds for I. and so, by 
the above inequality, we see that (17) in V (5, )B, m) must hold also 
for I. 

Since the strong convergence implies the weak convergence, (18) is a 
consequence of (17). 

Remark 1. The above The<;>rem 2 is due to K. YOSIDA [17J. Cf. S. KAKU-
n 

TANI [6J, where, moreover, the m-a.e. convergence lim n-1 .I (T" I) (x) 
n--->OO "=1 

is proved for every IE Loo (5,)B, m). We can prove, when the semi-group Tt 
n 

is strongly continuous in t, that we may replace s-lim n-1 .I T"I in (17) 
"=1 t 

by s-lim t-1 J Ts Ids. We shall not go into the details, since they are 
ttoo ° 

given in the books on ergodic theory due to E. HOPF [lJ and 
K. JACOBS [1]. We must mention a fine report by S. KAKUTANI [8J on 
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the development of ergodic theory between HOPF'S report in 1937 and 
the 1950 International Congress of Mathematicians held at Cambridge. 

In order to deal with the ergodic hypothesis (7), we must prove the 
individual ergodic theorem to the effect that 

.. 
lim n-l ~ (Tk f) (x) = f* (x) m-a.e . 

.......00 k=l 

In the next section, we shall be concerned with the m-a.e. convergence .. 
of the sequence n-l ~ (Tk f) (x). Our aim is to derive the m-a.e. conver­

k=l 

gence from the mean convergence using Banach's convergence theorem 
in Chapter XII, 4. 

2. An Individual Ergodic Theorem and Its Applications 

We first prove 

Theorem 1 (K. YOSIDA). Let Xl be a real, a-complete F-lattice provi­
ded with a quasi-norm II x 111 such that 

O-limx .. =x implies lim Ilx .. lh = Ilxlli. (1) 
..-.00 .......00 

Let a linear subspace X of Xl be a real B-space provided with a norm 
Ilx II such that 

s-lim x .. = x in X implies s-lim x .. = x in Xl' (2) 
..-.00 ..-.00 

Let {T .. } be a sequence of bounded linear operators defined on X into X 
such that 

O-lim I T .. x I exists for those x's which form a set S of 
..-.00 

the second category in X. (3) 

Suppose that, to a certain z E X, there corresponds a z E X such that 

lim IIT .. z-zll = 0, 
..-.00 

T .. z = z (n = 1, 2, ... ), 

O-lim (T .. z - T .. Tkz) = 0 for k = 1, 2, ... 
.......00 

Then 
O-lim T .. z = z. 

.......00 

(4) 

(5) 

(6) 

(7) 

Proof. Put z = z + (z - z). We define an operator Ton S into Xl by 

Tx =O-lim T .. x-O-lim T .. x. 
.......00 ,.::;;:;0 

(8) 

Then, by (f», - -o <Tz< T(z-z). 
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We have T(z- T"z) = 0 (k = 1, 2, ... ) by (6), and lim II (z-z)-(z-T"z) " 
11-+00 

= 0 by (4). Hence, by Banach's theorem in Chapter XII, 4, we have 

:f(z - z) = O. Hence 0 < Tz ~ 0, that is, O-lim T,.z = w exists. 
n-+OO 

We have to show thatw=z. We have, by(4)and(2), lim II T,.z-Z 111=0. 
,. ... 00 

Also we have, by (1) and O-lim T,.z = w, lim IIT,.z- wlh = O. Hence 
n-+OO ,....,.00 

w=z. 
Specializing Xl as the real space M(S,~, m) and X as the real space 

Ll(S, ~,m), respectively, we can prove the following individual ergodic 
theorem. 

Theorem 2 (K. YOSIDA). Let T be a bounded linear operator defined 
on Ll(S, ~,m) into Ll(S, ~,m) where m(S) < 00. Suppose that 

II r II < C < 00 (n = 1, 2, ... ), (9) 

lliii In-1 i (T"'x) (s) 1< 00 m-a.e. (10) 
n-+OO ... -1 

Suppose that, for a certain zE Ll(S, ~,m), 
lim n-l (T"z) (s) = 0 m-a.t!., (11) 

n-+OO 

and the sequence {n-l ... ! T"'z} contains a subsequence 

which converges weakly to an element z ELl (S, ~, m). (12) 
Then ,. 

s-limn-l .IT"'z=z, Tz=z, 
n-+OO ... -1 

(13) 

and ,. 
lim n-l .I (T"'z)(s) = z(s) m-a.e. 

n-+OO ... =1 
(14) 

Proof. Consider the space M(S, ~,m), and take the F-lattice Xl = 
M(S, ~;m) with IIxlll= J Ix(s) I (1 + Ix(s)l)-lm(ds), the B-lattice 

s ,. 
X = Ll(S,~, m) with IIxil = J Ix(s) I m(ds) and T,. = n-1 .I T"'. 

S ... -1 
Then the conditions of Theorem 1 are satisfied. We shall, for instance, 
verify that (6) is satisfied. We have 

T,.z- T,.T"z = n-1 (T + T2 + ... + T") z 

_ n-1 (T"+! + T1I+2 + ... + T1I+,.) z 

and so, by (11), lim (T,.z- T,.Tkz) (s) = 0 m-a.e. for k = 1, 2, ... 
n-+OO 

Hence, by taking the arithmetic mean with respect to k, we obtain 
lim (T,.z - T,.T"z) (s) = 0 m-a.e. for k = 1, 2, ... Conditions (4) and 

n-+OO 

(5), that is condition (13) is a consequence of the mean ergodic theorem 
in Chapter VIII, 3. 
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Remark. The above two theorems are adapted from K. YOSIDA [15J 
and [18J. In these papers there are given other ergodic theorems im­
plied by Theorem 1. 

As for condition (11) above, we have the following result due to 
E. HOPF [3J: 

Theorem 3. Let T be a positive linear operator on the real V(S, >8, m) 
into itself with the V-norm II T II < 1. If IEV(S, >8,m) and PEV(S, >8,m) 
be such that P (s) > 0 m-a.e., then 

~ (1"'1) (s)rg (yiP) (s) = 0 m-a.e. on the set where P(s) > o. 

If m(S) < <Xl and T· 1 = 1, then, by taking p (s) = 1, we obtain (11). 
Proof. It suffices to prove the Theorem for the case 1 > O. Choose 

e > 0 arbitrarily and consider the functions 
,,-1 

g" = 1"'1-e· ~ yip, go = I· 
J=O 

Let x,,(s) be the defining function of the set {sES;g,,(s) > O}. From 
x"g" = g;t = max(g, 0) and g"-I-l + ep = Tg", we obtain, by the posi­
tivity of the operator T and II T II < 1, 

I g;t+1 . m(ds) + e I Xn +1P . m(ds) = I X"+1 (g"+1 + ep) m(ds) 
s s s 

= I X,,+1 T g,,·m(ds) < I X"+1Tg;t ·m(ds) < ITg;t ·m(ds) <I g;t ·m(ds). 
s s s s 

Summing up these inequalities from n = 0 on, we obtain 

I g;t . m(ds) + e I p. i x,,· m(ds) < I gt . m(ds) , 
s s "=1 s 

and hence 

00 

Hence ~ x,,(s) converges m-a.e. on the set where P(s) > O. Thus, on the 
"=1 

set where p (s) > 0, we must have g" (s) < 0 m-a.e. for all large n. 
,,-I 

Therefore, we have proved that (1"'/) (s) < e ~ (T"P) (s) m-a.e. for 
"=0 

all large n on the set where p (s) > O. As e > 0 was arbitrary, we have 
proved our Theorem. 

As for condition (10), we have the following Theorem due to 
R. V. CHACON-D. S. ORNSTEIN [lJ: 

Theorem 4 (R. V. CHACON-D. S. ORNSTEIN). Let T be a positive 
linear operator on the real V (S, >8, m) into itself with the V-norm 

25 Yoslda, Functional Analysis 
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IITIII < 1. If I and p are functions in Ll(S, ~, m) and p (s) > 0, then 

~ {,.~ (T"/) (s) /".#0 (T"P) (s)} is finite m-a.e. 
00 

on the set where .I (T"P) (s) > o. 
,,=0 

If m(S) < 00 and T· 1 = 1, then, by taking p (s) = 1, we obtain (10). 
For the proof, we need a 

- " 
Lemma(CHACON-ORNSTEIN[l]). If/=j++t-,and if lim .I (T"f)(s) > 0 

fI-+CO "=0 
on a set B, then there exist sequences {d,,} and {I,,} of non-negative func-
tions such that, for every N, 

N J .I d".m(ds) +jIN·m(ds) < J j+·m(ds), (15) 
s "=0 s 

00 

.I d,,(s) = - t-(s) on B, 
"=0 

N 
TN 1+ = .I TN-"d" + IN. 

"=0 
Proof. Define inductively 

do = 0, 10 = j+, I-I = 0, 

(16) 

(17) 

IHI = (TI. + r + do + ... + d.)+, dHI == TI.-kf-I. (18) 

Note that 
+ t- + do + ... + d. < 0, 

and that the equality holds on the set where I. (s) > 0, for 

Ii = (TI'_I + t- + do + ... + d._ I )+ 

= (T 1.-1 - I. + t- + do + ... + d'-1 + 1.)+ 

= (d. + t- + do + ... + d'_1 + 1.)+ . 

It follows from (18) that 

" + i "_" PI =.I P d" + Ii. 
"=0 

(19) 

(20) 

By the definition, I. is non-negative, and so is d. by the last two equa­
tions of (18) and (19). From (20), we have 

(21) 

We then prove 
lin". " 
.I p r < .I di - .I P r + .I Ii· 

i=o i=O i~l i=O 
(22) 

To this purpose, we note that 

.I .I P-"d" = .I P .I d" " i" "" ("-i ) 
i=O"=O i=O "=0 
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and that, by (19) and the positivity of T, 

- P r > P (~j dk) for 1 < i :::: n. 
k=O 

Rewriting (22), we have 
n . n 

. .I T' (1+ + r) < . .I (dj + Ij) + r . 
1=0 1=0 

We will now prove that 
00 

. .I dj (s) + 1- (s) > 0 m-a.e. on B. 
1=0 

(23) 

(24) 

(25) 

It is clear from the remark after (19) that (25) holds with equality m-a.e. 
on the set C = {s E S; iJ (s) > 0 for some i > O}. It remains to show that 
(25) holds on the set B -G. This is proved by noting that (24) implies 
that on B, and on B - C in particular, we have the inequality 

00 

. .I (dj + Ij ) (s) + r(s) > o. 
1=0 

Now we note that (17) is exactly (20) and that (16) is implied from 
(19) and (25). To see that (15) holds, note that we have, by the assump­
tions on T and (18), 

1(1 dk + !i)m(ds) > 1 (1 dk + T'!i)m(dS) = 1(1:1 dk + !i+1)m(dS). 
s k=O s k=O S k=O 

Hence we obtain (15) by induction on i, since do + !o = j+. 
Proof of Theorem 4. It is sufficient to prove the Theorem under the 

hypothesis that ! (s) ~ 0 or. S, and only to prove the finiteness of the 
indicated supremum when p (s) > O. The first remark is obvious, and 
the second is proved as follows. By the hypothesis that the indicated 
supremum is finite at point s where p (s) > 0, we have 

lim {.1: (PH!) (S)/.1: (pHp) (s)} is finite m-a.e . 
..-.00 1=0 1=0 

on the set where (Tkp) (s) > 0, (26) 

and this implies that lim {.1: (PI) (S)/.1: (PP) (s)} is finite m-a.e. on 
..-.00 1=0 1=0 

the set where (Tkp) (s) > O. 
Now assume the contrary to the hypothesis. Then 

~ Lli (P!) (s) li~ (Tip) (S)} 

is infinite m-a.e. on a set E of positive m-measure, and p (s) > f3 > 0 on 
E for some positive constant f3. We have therefore, that for any positive 
constant IX, 

25* 
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m-a.e. on E. Applying the Lemma with I replaced by (f - IXP), we obtain 
from (15) and (16) that 

00 

f(/-IXp)+m(ds) ~f ~dkm(ds»- f(/-IXp)-m(ds). 
s s k=O E 

However, the extreme right term tends to 00 as IX too, and the extreme 
left term is bounded as IX too. This is a contradiction, and so we have 
proved the Theorem. 

We have thus proved 
Theorem 5. Let T be a positive linear operator on V(5, ~,m) into 

itself with the V-norm IITl11 ~ 1. If m(5) < 00 and T·1 = 1, then, for 

any IE V (5, ~, m), the mean convergence of the sequence {n-\~ yi I} 
implies its m-a.e. convergence. 

As a corollary we obtain 
Theorem 6. Let pet, x, E) be a Markov process with an invariant 

measure m on a measure space (5, ~,m) such that m(5) < 00. Then, 
for the linear operator T, defined by (T,f) (x) = f pet, x, dy) I(y)' we 

s 
have i) the mean ergodic theorem: .. 

for any IE LP(5, ~,m), s-limn-1 ~ T"I=/* 
.......00 k-1 

exists in LP (5, ~,m) and T1/* = 1* (p = 1, 2), (27) 

and ii) the individual ergodic theorem: 

for any IE LP(5, ~,m) with p = 1 or p = 2, 
.. 

finite lim n-1 ~ (T" I) (s) exists m-a.e. and is = 1* (s) m-a.e., 
.......00 "-1 

and moreover, f I (s) m (ds) = f 1* (s) m (ds) . (28) 
s s 

Proof. By Theorem 2 in the preceding section, the mean ergodic theo­
rem (27) holds and so we may apply Theorem 5. 

Remark. If T, is given by an equi-measure transformation x -+ y, (x) 
of 5 onto 5, the result (27) is precisely the mean ergodic theorem of 
J. VON NEUMANN [3] and the result (28) is precisely the individual 
ergodic theorem of G. D. BIRKHOFF [1] and A. KHINTCHINE [1]. 

A Historical Sketch. The first operator-theoretical generalization of 
the individual ergodic theorem of the Birkhoff-Khintchine type was given .. 
by J. L. DOOB [1]. He proved that n-1 ~ (Tk/) (x) converges m-a.e. 

k=l 
when T, is defined by a Markov process pet, x, E) with an invariant 
measure m on a measure space (5, ~,m) such that m(5) = 1 and I is the 
defining function of a set E ~. It was remarked by S. KAKUTANI [6] that 
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Doob's method is applicable and gives the same result for I merely a 
bounded ~-measurable function. E. HOPF [2] then proved the theorem 
assuming merely that I is m-integrable. N. DUNFORD-J. SCHWARTZ [4] 
extended Hopf's result by proving (28) for a linear operator T, which 
increases neither the Ll_ nor Loo-norm, without assuming that T, is posi­
tive but assuming that T" = 11 and Tl ·1 = 1. It is noted that Hopf's and 
the Dunford-Schwartz arguments use the idea of our Theorem 1. R. V. CHA­
CON-D. S. ORNSTEIN [1] proved (28) for a positive linear operator T, of 
Ll-norm :::;;; 1, without assuming that T, does not increase the Loo-norm, 
and, moreover, without appealing to our Theorem 1. Here, of course, it is 
assumed that T" = T~ and T1 • 1 = 1. We will not go into details, since, 
for the exposition of this Chapter which deals with Markov processes, 
it sufficies to base the ergodic theory upon Theorem 6 which is a con­
sequence of our Theorem 1. 

3. The Ergodic Hypothesis and the H-theorem 
Let P(t, x, E) be a Markov process with an invariant measure m on a 

measure space (5, ~, m) such that m(5) = 1. We shall define the ergodi­
city of the process P(t, x, E) by the condition: 

" the time average 1* (x) = lim n-1 I (T" I) (x) 
Il-+OO "=1 

= lim n-1 i J P(k, x, dy) I(y) 
.....00 "=15 

= the space average J I (x) m(dx) m-a.e. (1) 
5 

for every IE LP (5, ~, m) (p = 1, 2). 
Since f 1* (x) m(dx) = f I (x) m(dx), (1) may be rewritten as 

I*(x) = a constant m-a.e. for every IE LP(5,~, m) (p = 1, 2). (1') 
We shall give three different interpretations of the ergodic hypothesis 

(1) and (1'). 
1. Let lB(X) be the defining function of the set B E ~. Then, for 

any two sets BlI Bs E ~, the time average 01 the probability that the points 
01 Bl will be translerred into the set Bs after k units 01 time is equal to the 
product m(Bl ) m(Bs)' That is, we have 

(x;.' lB,) = m (Bl ) m (Bs) . (2) 
" Proof. If I, gE L2(5,~,m), then the strong convergence n-l I T"I-+I* "-1 

in LS(5, ~, m) implies, by (1'), 

lim n-l i (T"I, g) = (/*, g) = 1* (x) f g(x) m(dx) 
Il-+OO "-1 

= j I (x) m (dx) . f g (x) m (dx) for m-a.e. x. 

By taking I(x) = lB. (x), g(x) = lB,(X), we obtain (2). 
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Remark. Since linear combinations of the defining functions XB (x) 
are dense in the space LP(S, '8, m) for p = 1 and p = 2, we easily see 
that (2) is equivalent to the ergodic hypothesis (1'). (2) says that every 
part of S will be transferred uniformly into every part of S in the sense 
of the time average. 

2. The mean ergodic theorem in Chapter VIII, 3 says that the mapp­
ing 1-,; T* I = 1* gives the eigenspace of TI belonging to the eigenvalue 
1 of T I; this eigenspace is given by the range R (T*). Hence the ergodic 
hypothesis (1)' means precisely the hypothesis that R (T*) is 01 one­
dimension. Thus the ergodic hypothesis of P(t, x, E) is interpreted in 
terms of the spectrum of the operator TI . 

3. The Markov process P(t, x, E) is said to be metrically transitive 
or indecomposable if the following conditions are satisfied: 

S cannot be decomposed into the sum of disjoint sets 

B I, B2 E '8 such that m(BI) > 0, m(B2) > 0 

and P(I, x, E) = 0 for every x E B., E ~ Bj with i =1= f. (3) 

Proof. Suppose P(t, x, E) is ergodic and that S is decomposed as in 
(3). The defining function XB, (x) satisfies TIXB, = XB, by the condition 

J P(I, x, dy) XB, (y) = P(I, x, B l ) = 1 = XB, (x), for x EBb 
S 

= 0 = XB, (x), for x E Bl . 

But, by m(BI) m(B2) > 0, the function XB, (x) = X~, (x) cannot be equal 
to a constant m-a.e. 

Next suppose that the processP(t,x, E) is indecomposable. Let TIl = I 
and we shall show that 1* (x) = I (x) equals a constant m-a.e. Since 
TI maps real-valued functions into real-vaiued functions, we may assume 
that the function I (x) is real-valued. If I (x) is not equal to a constant 
m-a.e., then there exists a constant a such that both the sets 

BI={sES;/(s»a} and B 2 ={sES; I(s) <a} 
are of m-measure > o. Since TI (I-a) = I-a, the argument under The Angle 
Variable of p. 391 implies that TI (I-a)+ = (I-a)+, TI (I-a)- = (I-a)-. 

Hence we would obtain P(I, x, E) = 0 if x E B., E ~ B j (i =1= f). 
Remark. The notion of the metric transitivity was introduced by 

G. D. BIRKHOFF-P. A. SMITH [2J for the case of an equi-measure trans­
formation x -'; YI (x) of S onto S. 

An Example of the Ergodic Equi-measure Transformation. Let S be a 
torus. That is, S is the set of all pairs s = {x, y} of real numbers x,y such 
that s = {x, y} and S' = {x', y'} are identified iff x - x' (mod 1) and 
y - y' (mod 1); S is topologized by the real number topology of its 
coordinates x, y. We consider a mapping 

s = {x, y}-,; TIS = Sl = {x + ta, y + tp} 
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of S onto S which leaves invariant the measure dx dy on S. Here we 
assume that the real numbers lX, {J are integrally linearly independent 
mod 1 in the following sense: if integers n, k satisfy nlX + k{J = 0 
(mod 1), then n = k = O. Then the mapping S -+ itS is ergodic. 

Proof. Let I(s) E L2(S) be invariant by TI, that is, let I(s) = l(sI) 
dx dy-a.e. on S. We have to show that I (s) = 1* (s) = a constant dx dy­
a.e. on S. Let us consider the Fourier coefficients of I(s) and l(sI) = 
I(TIs), respectively. 

1 1 

f f I(s) exp (-2.ni(kix + k2y) dxdy, 
o 0 

1 1 

f f I(T1s) exp(-2.ni(klx + k2y) dxdy. 
o 0 

By TI S = {x + lX, y + {J} and the invariance of the measure dx dy by the 
mapping s -+ Tl s, the latter integral is equal to 

1 1 

f f I(s) exp(-2.ni(klx + k2y) exp(2.ni(k1 lX + k2{J)) dxdy. 
o 0 

Hence, by the uniqueness of the corresponding Fourier coefficients of 
I(s) and I(TI s), we must have 

exp(2.ni(kIlX + k2{J) = 1 whenever 
1 1 

f f I(s) exp (-2.ni (kIX -i- k2y) dx dy =I=- o. 
o 0 

Hence, by the hypothesis concerning lX, (J, we must have 
1 1 

f f l(s)exp(-2.ni(klX + k2y)dxdy = 0 unless kl=k2=O. 
o 0 

Therefore I(s) = 1* (s) must reduce to a constant dx dy-a.e. 
The Angle Variable. Let T t be defined by the Markov process 

P (t, x, E) with an invariant measure m on (S, )8, m) such that m (S) = 1. 
Let I(s) E L2(S, )8, m) be the eigenvector of TI pertaining to the eigen­
value A of absolute value 1 of T I : 

TIl = At, 1).1 = 1. 

Then we have TI II I = II I· For, we have, by the positivity of the operator 
TI, (TI IIi) (x) > I (TIl) (x) I = I/(x) I, that is, fp(l,x,dy)l/(y)l> 

s 
I/(x) I. In this inequality, we must have the equality for m-a.e. x, as may 
be seen by integrating both sides with respect to m (dx) and remembering 
the invariance of the measure m. Hence, if P(t, x, E) is ergodic, then 
I/(x) I must reduce to a constant m-a.e. Therefore, if we put 

I(x) = I/(x) I exp (ie(x), 0 <e(x) < 2.n, 
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we must have 

T1 exp(i8(x)) = A exp(i8(x)). 
In case A #- 1, such 8 (x) is called an angle variable of the ergodic Markov 
process P(t, x, E). 

The Mixing Hypothesis. Let T, be defined by a Markov process 
P(t, x, E) with an invariant measure m on (5, ~, m) such that m(5) = 1. 
A stronger condition than the ergodic hypothesis of P(t, x, E) is given by 

lim (T" f,g) = (1*, g) =jf(x) m(dx) . f g(x) m(dx) 
,,~ s 

for every pair {f, g} of vectors E L2 (5, ~, m). (4) 

This condition is called the mixing hypothesis of the Markov process 
P(t, x, E). As in the case of the ergodic hypothesis, it may be interpreted 
as follows: every part of 5 wiU be transferred into every part of 5 uniformly 
in the long run. As for the examples of the mixing equi-measure transfor­
mation x ~ y, (x), we refer the reader to the above cited book by E. HOPF. 

H-theorem. Let P (t, x, E) be a Markov process with an invariant 
measure m on (5, ~,m) such that m(5) = 1. Let us consider the function 

H(z) = - zlog z, z~ O. (5) 
We can prove 

Theorem (K. YOSIDA [17]). Let a non-negative function f(x) E 
Ll(5, ~, m) belong to the Zygmund class, that is, let us assume that 
f f(x) log+ f(x) m(dx) < 00, where log+ /z/ = log /z/ or = 0 according 
s 
as /zl ~ lor Izl < 1. Then we have 

1 H(f(x)) m(dx) S 1 H«(T,f) (x)) m(dx). (6) 

Proof. Since H (z) = - z log z satisfies H" (z) = - l/z < 0 for z > 0, 
H (z) is a concave function. Hence we obtain 

the weighted mean of H (f(x)) S H (the weighted mean of f(x)) , 
and so 1 P(t, x, dy) H(f(y)) S H(j P(t, x, dy) f(y)). 

Integrating with respect to m(dx) and remembering the invariance of the 
measure m(E), we obtain (6). 

Remark. By virtue of the semi-group property Tl+s = T,Ts and 
(6), we easily obtain 

j H«(T,J) (x)) m (dx)< I H«(T,,t) (x)) m(dx) whenever t1 <~. (6') 

This may be considered as an analogue of the classical H-theorem in 
statistical mechanics. 
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4. The Ergodic Decomposition of a Markov Process 
with a Locally Compact Phase Space 

Let S be a separable metric space whose bounded closed sets are 
compact. Let 58 be the set of all Baire subsets of S, and consider a Markov 
process P(t, x, E) on (S, 58). We assume that 

I (x) E cg(S) implies I,(x) = f P(t, x, dy) I(y) E cg(S). (1) 
S 

The purpose of this section is to give the decomposition of S into ergodic 
paris and dissipative pari as an extension of the Krylov-Bogolioubov case 
of the deterministic, reversible transition process in a compact metric 
space S (see N. KRYLOV-N. BOGOLIOUBOV [1]). The possibility of such 
an extension, to the case where S is a compact metric space and with 
condition (1), was observed by K. YOSIDA [17] and carried out by 
N. BEBOUTOV [1], independently of YOSIDA. The extension to the case 
of a locally compact space S was given in K. YOSIDA [19]. We shall 
follow the last cited paper. 

Lemma 1. Let a linear functional L (I) on the normed linear space 
cg(S), normed by the maximal norm 11/1/ = sup I/(x) I, be non-negative, 

sES 
viz., L(I) > 0 when I (x) > 0 on S. Then L(I) is represented by a uniquely 
determined regular measure fP (E), which is O'-additive and ~ 0 for Baire 
subsets E of S, as follows: 

L (I) = f I (x) fP (dx) for all IE cg (S) • (2) 
S 

Here the regularity of the measure fP means that 

fP(E) = inf fP(G) when G ranges over all open sets ~ E. (3) 

Proof. We refer the reader to P. R. HALMOS [1]. 

We shall call a non-negative, O'-additive regular measure fP (E) defined 
on 58 such that fP (S) :::;; 1 an invariant measure for the Markov process if 

fP(E) = ffP(dx) P(t, x, E) for all t> 0 and EE58. (4) 
S 

We have then 

Lemma 2. For any IE cg(S) and for any invariant measure fP(E), 

lim n-1 i 11c(X) = 1* (x) (11c(X) = f P(k, x, dy) I (y») exists (5) 
n-+oc. 1=1 S 

fP-a.e. and 

! 1* (x) fP (dx) = ! I (x) fP (dx). (6) 



394 XIII. Ergodic Theory and Diffusion Theory 

This is exactly a corollary of Theorem 6 in the preceding section. 

Now, let 11, 21, sf, . . . be dense in the normed linear space cg (5). The 
existence of such a sequence is guaranteed by the hypothesis concer­
ning the space 5. Applying Lemma 2 to 11, ii, ai, ... and summing up the 
exceptional sets of IP-measure zero, we see that there exists a set N of IP­
measure zero with the property: 

.. 
for any x ~ N and for any IE cg (5), lim n-1 ,I Ik (x) = 1* (x) exists .(7) 

n--XlO k=1 

A Baire set 5' ~ 5 is said to be of maximal probability if IP (5 - 5') = 0 
for every invariant measure lPo Thus the set 5' of all x for which 1* (x) = .. 
lim n-1 ,I Ik (x) exists for every IE cg (5) is of maximal probability. 

n--XlO k=1 

Hence if there exists an invariant measure with IP (5) > 0, then there 
exist agE cg (5) and a point Xo such that 

n 

g** (xo) = lim n-1 ,I gk (xo) > o. 
n--XlO k=1 

(8) 

For, if otherwise, we would have 1* (x) = 0 on 5 for all IE cg (5) and 
hence, by (6), J I (x) IP (dx) = o. 

s 
Let, conversely, (8) be satisfied for a certain g E cg (5) and fOI a cer-

tain xo. Let a subsequence {n'} of natural numbers be chosen in such a 
n' 

way that lim (n')-1 ,I gk(XO) = g**(xo). By a diagonal method, we 
n'-+oo k=1 

n" 
may choose a subsequence {n"} of {n'} such that n~ (n")-1 k~ V/h (xo) 

exists for i = 1,2, .. 0 By the denseness of U} in Cg(5), we easily see 
that 

n" 
lim (n")-l ,I Ik (xo) = 1*** (xo) exists for every IE cg (5) 0 

n"-+oo k=1 

If we put 1*** (xo) = L", (I), then 

L", (I) = L", (11) 0 

For, by condition (1), we have 11 E cg (5) and so 

By Lemma 1, there exists a regular measure IP", (E) such that 

L", (I) = 1*** (xol = I I (x) IP", (dx) 0 

s 
Surely we have 

(9) 

(10) 

(11) 
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and, by (9), 

I I (x) fP%o (dx) == I ( I P (1, x, dy) I (y)) fP%o (dx) . 
s s s . 

By letting I(x) tend to the defining function of the Baire set E, we see 
that fP'" (E) is an invariant measure. We have fP%o (5) > 0, since, by (8) 
and (10), we have L",(g) = g***(xo) = I g(x) fP%o(dx) > O. We have 

s 
thus proved 

Theorem 1. A necessary and sufficient condition for the non-exist­
ence of non-trivial invariant measures is 

.. 
lim n-1 .I I", (x) = 1* (x) = 0 on 5 for any IE cg (5). (12) 

fI.-+OO "'=1 

Definition. We will call the process P(t, x, E) on (5, ~) dissipative 
if condition (12) is satisfied. 

Example. Let 5 be the half line (0, (0) and ~ the set of all Baire 
sets of (0, (0). Then the Markov process P(t, x, E) defined by 

P(t, x, E) = 1 if (x + t) E E and = 0 if (x + t) E E 
is dissipative. 

We shall assume thatP(t, x, E) is not dissipative. Let D denote the set 

{ X E 5; 1* (x) = lim n-1 i I",(x) = 0 for all IE Cg(5)} . 
11-+00 "'=1 

Since it is equal to 

{xE5; (;1)* (x) =0 for i=1,2, ... }, 
D is a Baire set. We shall call D the dissipative part of 5. We can prove 
below that fP (D) = 0 for any invariant measure fP, and so, since the 
process P(t, x, E) is assumed to be not dissipative, 50 = 5 - D is not 
void. We already know that there exists a Baire set 51 ~ 50 with the 
property: 

to any x E 51' there corresponds a non-trivial invariant measure .. 
fP,,(E) such that 1* (x) = lim n-l 1: I,. (x) = f I(z) fP,,(dz) 

...-00 "'=1 S 

and fP(50 - 51) = 0 for any invariant measure fP. 

For any invariant measure fP, we have (6) and hence, by (13), 

I I (y) fP (dy) = I (I I (z) fPy (dz)) fP (dy). 
5 5, 5 

Thus we obtain 
fP (E) = I fPy (E) fP (dy) , 

5, 
and so we have proved 

(13) 

(14) 
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Theorem 2. Any invariant measure rp may be obtained as a convex 
combination of the invariant measure rp" (E) with y as a parameter. 

We see, from (11) and (14), that the set 

52 = {xE 5; xE 51, rp .. (51) = 1} 

is of maximal probability. Hence 50 is of maximal probability. 
For any IE Cg(5) and for any invariant measure rp, we have 

J rp (dx) (J (1* (y) - 1* (X))2 rp .. (dy)) = 0, 
s, s, 

(15) 

since the left hand side is equal to 

J rp (dx) (J 1* (y)2 rp .. (dY)) - 2 J 1* (x) rp (dx) (J 1* (y) rp", (dy)) 
s, s, s, s, 

+ J 1* (X)2 rp (dx) . J rp", (dy) 
s, s, 

= J 1* (y)2 rp (dy) - 2 J 1* (X)2 rp (dx) + J 1* (X)2 rp (dx) , 
~ ~ ~ 

by (13), (14), (6) and the definition of 52' By applying (15) to 1/, J, ai, ... , 
we see that the set 

53 = {x E 52; f. (1* (y) -1* (X))2 rp .. (dy) = 0 for all IE cg (5)} 

is of maximal probability. 
We shall give the ergodic decomposition of 5. For any x E 53' put 

E", = {yE 5s ; I*(y) = 1* (x) for all IE Cg(5)}. (16) 

We can then show that each E .. contains a set E", with the property: 

rp",(E",)=rp",(E",) and P(l,y,E .. )=l forany YEE",. (17) 

Proof. By the definition of 53' we see that 1* (y) = 1* (x) if the measure 
rp",(E) has variation at the point y. Hence rp",(E",) = rp",(5s) = 1. Thus, by 
the invariance of the measure rp"" we obtain 

1 = rp",(E .. ) = J P(l, z, E",) rp",(dz) = J P(l, z, E",) rp",(dz). 
S, E z 

Since 0 < P(l, z, E",) < 1, there exists a Baire set £1 ~ E", such that 

rp",(£1) = rp .. (E",) and zE £1 implies P(l, z, E",) = 1. 

Put 

£2 = {zE £1, P(l, z, £1) = 1}. 

Since 

J P (1, z, £1) rp", (dz) = rp .. (£1) = rp", (Ex) = J P (1, z, Ex) rp" (dz), 
w w 



4. The Ergodic Decomposition of a Markov Process 397 

we must have 
J (P(l, z, Es) - P(l, z, El» q>s(dz) = o. 

E' 

As zE E2 implies P(l, z, El) = 1 by the definition of P, we obtain 

q>s (El - E2) = o. 
Next put 

E3 = {ZE E2; P(l, Z, E2) = I}. 

Then, as above, q>s(E3) = q>s(Es). In this way, we obtain a sequence {E"} 
such that 

Es ~ El ~ E2 ~ .•• , q>s(E") = q>s(Es) and 

P(l, z, E") = 1 if zE E"+k (n;;::: 0, k > 1, EO = Es). 
A 00 

We have thus obtained the set Es = n E" with the demanded property. 
,,=1 

Therefore, we have 

Theorem 3. P(t, y, E) defines a Markov process in each Es which is 
ergodic, in the sense that 

Es is not decomposable in two parts A and B such I 
that q>(A) . 11' (B) > 0 for a certain invariant (18) 

measure 11' and P(l, a, B) = 0 when a E A and 

P(l,b, A) = 0 when bE B. 

Proof. Let 11' be any invariant measure in Es with 11' (Es) = 1. Then, 

by (14), q>(E) = J 11' (dz) q;. (E) whenever E ~ is. Since q>.(E) = q>s(E) 
is 

for every z E is by the definition of Es we have 

11' (E) = q>s (E) J 11' (dz) = q>s (E) . 
is 

Thus there is essentially only one invariant measure q>s(E) in Es. 
This proves the ergodicity. For, let Es be decomposed as in (18). Then, 
by the invariance of 11', 

q>(C) = J P(l, z, C) 11' (dz) whenever C ~ Es. 
Es 

Thus the measure 1p defined by 

1p(C) = 11' (C)jq> (A) if C ~ A 

= 0 if C ~ B 

is invariant in E" and differs from the unique invariant measure 11'. 
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5. The Brownian Motion on a Homogeneous Riemannian Space 

There is an interesting interplay between Markov processes and 
differential equations. Already in the early thirties, A. KOLMOGOROV 
proved, under a certain regularity hypothesis concerning the transition 
probability P(t, x, E), that 

u(t, x) = f P(t, x, dy) f(y) 
s 

satisfies the equation of the diffusion type: 

OU = bij (x) ~~ + a' (x) OU = Au, t > 0, 
at OX;OXj OX; 

(1) 

where the differential operator A is elliptic in the local coordinates 
(xv X2, ... , xn ) of the point x of the phase space S. Following Einstein's 
convention of the tensor notation, it is understood that, e.g., ai (x) a/ax; 

n . 
means . .I a' (x) a/ax,. For the derivation of equation (1), see A. KOLMO-

.=1 
GOROV [1]. The leit-motif in his research was the investigation of locaL 
characteristics of Markov processes. 

Following work done by E. HILLE at Scandinavian Congress in 1949 
(Cf. E. HILLE [9]) and K. YOSIDA [29] in 1948, W. FELLER [2] began in 
1952 a systematic research of this new field in probability theory using 
the analytical theory of semi-groups. His investigations were further deve­
loped by E. B. DYNKIN [lJ, [2J, K. ITo-H. McKEAN [lJ, D. RAY, [lJ 
G. A. HUNT [lJ, A. A. YUSHKEVITCH [lJ, G. MARUYAMA [lJ and many 
younger scholars, especially in Japan, USSR and USA. These investiga­
tions are called the theory of diffusion. A comprehensive treatise on the 
diffusion theory by K. ITO-H. McKEAN [lJ is in the course of printing!. 
We shall sketch some of the salient analytical features of the theory. 

Let S be a locally compact space such that m is the totality of the 
Baire sets in S. To define the spatial homogeneity of a Markov process 
P(t, x, E) on the space S, we suppose that S is an n-dimensional, orien­
table connected Coo Riemannian space such that the full group & of the 
isometries of S, which is a Lie group, is transitive on S. That is, for each 
pair {x, y} of points E S, there exists an isometry ME & such that 
M . x = y. Then the process P(t, x, E) is spatially homogeneous if 

P(t, x, E) = P(t, M· x, M· E) for each xE S, EE m and ME &. (2) 

A temporally and spatially homogeneous Markov process on S is 
called a Brownian motion on S, if the following condition, known as the 
continuity condition of Lindeberg's type, is satisfied: 

lim t-1 f P(t, x, dy) = 0 for every B> 0 and xES. (3} 
t -I 0 dis(x,y) >e 

1 BerlinjGottingen/Heidelberg: Springer. 
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Proposition. Let C (S) be the B-space of all bounded unifonnly 
continuous real-valued functions I (x) on S nonned by /1//1 = sup II (x) I. 
Define 

(Ttl) (x) = J P(t, x, dy) I(y), if t> 0, 
s 

= I (x), if t = o. 
(4) 

Then {Tt} constitutes a contraction semi-group of class (Co) in C (S). 
Proof. By P(t, x, E) :2": 0 and P(t, x, S) = 1, we obtain 

I (Tt I) (x) I < sup II (y) I 
)' 

and the positivity of the operator T ,. The semi-group property T Hs = T, T. 
is a consequence from the Chapman-Kolmogorov equation. If we define a 

linear operator M' by (M'/) (x) = I(M . x), ME Q$, we obtain 

T,M' = M'Tt, t > o. (5) 
For, 

(M' T,l) (x) = (Ttl) (M . x) = J P(t, M· x, dy) l(y) 
s 

= J pet, M· x, d(M. y)) I(M. y) 
s 

= J P(t, x, dy) I(M. y) = (T,M'/) (x). 
s 

If ME Q$ be such that M· x = x', we have 

(T,l) (x) - (T,l) (x') = (T,l) (x) - (M'T, I) (x) = T, (f - M'/) (x) . 

Hence by the unifonn continuity of I (x), we see that (Ttl) (x) is unifonnly 
continuous and bounded. 

To prove the strong continuity in t of T" it suffices by the 
Theorem in Chapter IX, 1, to verify weak right continuity of T, at t = O. 
Therefore, it is surely enough to show that lim (T, I) (x) = I (x) unifonnly 

'to 
in x. Now 

I (T,/)(x) -/(x) I = If P(t, x, dy) [f(y) -/(x)] 1 
<I J P(t,x,dy) [f(y)-/(x)] I +1 J P(t,x,dy) [f(y)-/(x)]1 

d(.,,)'):;o. ,d(l',),) >. 

<I J P(t, x, dy) [f(Y)-/(x)]\+2 11/11 J P(t,x,dy). 
d(.,.)'):;o, d(l'.)') >. 

The first tenn on the right tends to zero uniformly in x as e t 0 and, for fixed 
e> 0, the second tenn on the right tends to zero unifonnly in x as t to. 
The latter fact is implied by (3) and the spatial homogeneity. Thus 
lim (Ttl )(x) = I (x) unifonnly in x. 
/.1-0 
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Theorem. Let Xo be a fixed point of S. Let us assume that the group 01 
isotropy <Mo = {M E G; M . Xo = xo} is compact. Being a closed subgroup 
of a Lie group <M, <Mo is a Lie group by a theorem due to E. CARTAN. Let A 
be the infinitesimal generator of the semi-group T,. Then we have the 
following results. 

[1]. If 1 ED (A) n C3(S), then, for a coordinate system (xA, x5, ... , xO) 
at xo, 

(6) 

where 

a" (xo) = lim t-l J (x' - x~) P (t, xo, dx) , (7) '.0 4(",.st!:;;_ 

bfi (xo) = lim t-l J (x' - x~)(xi - x6) P (t, xo' dx) , (8) '.0 4(",.s):;;_ 

the limits existing independently of sufficiently small 8 > O. 

[2]. The set D (A) n ca (S) is "big" in the sense that, for any COO (S) 
function h(x) with compact support there exists an 1 (x) E D(A) n C2(S) 
such that I(xo), al/ax~, aal/ax~ ax6 are arbitrarily near to h(xo), ah/ax~, 
aah/ax~ ax6, respectively. 

Proof. The lirst step. Let h (x) be a COO function with compact support. 
If lED (A), then the "convolution" 

(/®h)(x) = JI(My.x)h(My.xo)dy (9) 
III 

(My denotes a generic element of <M and dy a fixed right invariant Haar 
measure on <M such that dy = d (y . M) for every M E <M) is COO and 
belongs to D (A). The above integral exists since the isotropy group <Mo is 
compact and h has a compact support. By the uniform continuity of land 
the compactness of the support of h we can approximate the integral by 

" Riemann sums.~ I (My, . x) C. uniformly in x: 
0=1 

Since T,M' = M'T" M' commutes with A, i.e., if IE D(A), then 
M'I E D (A) and A M'I = M' A I. Putting g (x) = (A I) (x), we obtain 
gE C(S) and 

A ( . .II(M'Yi· x) C.) = .1 (AM~i ,/) (x) c. = .1 (M~iA/) (x) C. 
0-1 0=1 0=1 

" = .~ g(MYi . x) C., 
0=1 
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and the right hand side tends to (g ® h) (x) = (AI ® h) (x). Since the 
infinitesimal generator A is closed, it follows that I ® hE D (A) and 
A (I ® h) = A I ® h. Since S is a homogeneous space of the Lie group &, 
i.e., S = &/&0' we can find a coordinate neighbourhood U of Xo such 
that for each x E U there exists an element M = M (x) E & satisfying the 
conditions: 

i) M (x) . x = xO' 

ii) M (x) Xo depends analytically on the coordinates (Xl, X2, .•. , x") 
of the point xES. 

This is so, since the set {My E &; My . x = xo} forms an analytic sub­
manifold of & ; it is one of the cosets of & with respect to the Lie subgroup 
&0' Hence, by the right invariance of dy, we have 

(f ® h) (x) = J ICMyM(x) x) h(MyM(x) xo)dy 
G 

= J I(My.xo)h(MyM(x) . xo) dy. 
G 

The right side is infinitely differentiable in the vicinity of xo, and 

D~ (f ® h) (x) = J I (My . xo) D~h (MyM (x) . xo) dy. (10) 
G 

The second step. Remembering that D (A) is dense in C (S) and choosing 
I and h appropriately, we obtain: 

there exist Coo functions Fl (x), F2 (x), .. " F" (x) E D (A) such 
(11) 

h h J b · 8(Fl(x), .. . ,p" (x)) 0 
t at t e aco Ian 8(x1, ... , X") > at xo, 

and, moreover 
there exists a Coo function Fo (x) E D (A) such that 

. . . . 82F. n. . 
(X' - x') (x1 - x1) __ 0 > ,I (x' - X')2. 

o 0 8x~8x6 - .=1 0 

(12) 

We can use F1 (x), F2 (x), .. " F" (x) as coordinate functions in a neigh­
bourhood {x; dis (xo' x) < B} of the point xO' We denote these new local 
coordinates by (Xl, x2, ... , x"). Since F (x) E D (A), we have 

lim t-1 J P(t, xo, dx) (F (x) - F (xo» = (A F) (xo) 
I.j.O S 

= limt- l J P(t, xo, dx)(F(x) -F(xo» 
It 0 dis( ..... ,l ;;;;. 

independently of sufficiently small B> 0, by virtue of Lindeberg's 
condition (3). Hence there exists, for the coordinate function xl, x2 , ••• , x" 
(x j = F), a finite 

lim t-l J (x j - x6) P (t, Xo, dx) = aj (xo) (13) 
ItO dis( ..... ,l;;;;. 

26 Yosida. Functional Analysis 
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which is independent of sufficiently small e> O. Since FoE D(A), we 
have, again using Lindeberg's condition (3), 

(A Fo) (x) = lim e-l J P (t, xO' dx) (Fo (x) - Fo (xo)) 
1",,0 S 

= lim e-l J pet, xo, dx) (Fo(x) ----'- Fo(xo)) 
t "" 0 dis(Zo,s):;;;. 

= ~m [e-l J (x' - x~) ~:: P (t, xo, dx) 
t:j. 0 dis(Zo,s):;;;. 0 

+e-l J (x'-x~)(xi-x6)(<>a::o/) P(t,xo,dX)] , 
dis(SO,s):;;' c)x c)x s=s.+6(s-s.) 

where 0 < 0 < 1. The first term on the right has a limit a' (xo) ~F:. 
c)XO 

Hence, by the positivity of pet, x, E) and (12), we see that 

lim e-l J ,1 (x' - x~)a P (t, XO' dx) < 00. (14) 
1",,0 dis(s.,s)< •• =l 

The third step. Let IE D(A) n C2. Then, by expanding I(x) -/(xo)' 
we obtain 

= t-l J (I (x) -/{xo)) pet, xo, dx) 
dis(s,s.) >. 

J ' ,af + e-l (x' - xo) axt: P (t, xO' dx) 
dis(s,Zo):;;;' 0 

J ' , , ,asf + e-l (x' - xo) (x' - x6) aTt£t P (t, xo, dx) 
dis(s,s.):;;;. Xo Xo 

+ t-l J (x' - x~) (xi - x6) Cij (e) P (t, XO' dx) 
dis(s,Zo) :;;;. 

= Cl(t, e) + Ca(t, e) + Ca(t, e) + C,(t, e), say, 

where Cij(e)-+O as e+O. We know, by (3), that lim Cl(t, e) =0 for 
I.j.O 

fixed e > 0, and that lim CIII (t, e) = a' (xo) !f, , independently of suffi-
1",,0 uXo 

ciently small e> O. By (14) and Schwarz' inequality, we see that 
lim C, (t, e) = 0, boundedly in t > O. The left side also has a finite limit 
_",,0 

(A I) (xo) as t + o. So the difference 

lim Ca (t, e) -lim Ca (t, e) 
,",,0 ITO 

can be made arbitrarily small by taking e> 0 sufficiently small. But, 
by (14), Schwarz' inequality and (3), the difference is independent of 
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snfficiently small e > O. Thus a fillite limit lim C3 (t, e) exists independent-
,~o 

ly of sufficiently small e > O. Since we may choose FED (A) n COO (5) in 
such a way that 82F/8x~ 8x~ (i, i = 1, 2, ... , n) is arbitrarily near (Xij' 
where (Xij are arbitrarily given constants, it follows, by an argument 
similar to the above, that 

a finite lim t-I J (Xi - x~) (xi - xt) P (t, xo, dx) = bii (xo) exists (15) 
q 0 dis(x,....):;O. 

and 
.. f)8t 

lim Cs (t, e) = b" (xo) f)--Y--f) 1 • 
,~o Xo Xo 

This completes the proof of our Theorem. 
Remark. The above Theorem and proof are adapted from K. YOSIDA 

[20]. It is to be noted that bij (x) = bii (x) and 

bi; (xo) e.ej ;;:::: 0 for every real vector (ev e2, ... , en), (16) 

because (Xi - x~) (xi - x~) eiej = (,1 (Xi - x~) ei)2. 
1=1 

The Brownian Motion on the Surface of the 3-sphere. In the special 
case when 5 is the surface of the 3-sphere 53 and & is the group of rota­
tions of 53, the infinitesimal generator A of the semi-group induced by a 
Brownian motion on 5 is proved to be of the form 

A = C A ,where C is a positive constant and A is the Laplacian 
(17) 

1 f).()f)+ 1 f)8 th rf f5s 
= sin 6 f)9 sm f)6 sina 6 f)tp2 on e su ace 0 • 

Thus there exists essentially one Brownian motion on the surface of 53. 
For the detail, see K. YOSIDA [27]. 

6. The Generalized Laplacian of W. Feller 

Let 5 be an open interval (rI' r2), finite or infinite, on the real line, 
and 58 be the set of all Baire sets in (rI' r2). Consider a Markov process 
P(t, x, E) on (5,58) satisfying Lindeberg's condition 

lim t-I J P(t, x, dy) = 0 for every x E (rv r2) and e> O. (1) 
qo Ix-,.I>. 

Let C [rI' r2 ] be the B-space of real-valued, bounded uniformly continuous 
functions t (x) defined in (r l' r 2) and normed by II t 1/ = sup I t (x) I. Then 

" '. 
(T,/)(x) = J P(t, x, dy) I(y) (t> 0); = t(x) (t = 0) (2) 

'1 
defines a positive contraction semi-group on C [rt • r2]. We prove by {I) the 
weak right continuity of T, at t = 0 so that T, is of class (Co) by the 
Theorem in Chapter IX, 1. 
26· 
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Concerning the infinitesimal generator A of the semi-group T" we 
have the following two theorems due to W. FELLER. 

Theorem 1. 

A ·1=0; (3) 

A is of local character, in the sense that, if lED (A) 

vanishes in a neighbourhood of a point Xo then (4) 

(AI) (xo) = 0; 

If IE D(A) has a local maximum at xo, then 

(A I) (xo) < O. 

Proof. (3) is clear from T,. 1 = 1. We have, by (I), 

(A I) (xo) = lim t-1 f P (t, xo' dy) (I (y) -I (xo)) 
,. 0 1%0-)11:;;. 

(5) 

independently of sufficiently small e > O. Hence, by P(t, x, E) > 0, we 
easily obtain (4) and (5). 

Theorem 2. Let a linear operator A, defined on a linear subspace 
D(A) of C [r1> r2] into C [r1> raJ, satisfy conditions (3), (4) and (5). Let 
us assume that A does not degenerate in the sense that the following 
two conditions are satisfied: 

there exists at least one 10 E D (A) such that (A 10) (x) 

> 0 for all x E (r1' r2), 

there exists a solution v of A . v = 0 which is linearly 

independent of the function 1 in every subinterval 

(Xl' x2) of the interval (r1> r2). 

(6) 

(7) 

Then there exists a strictly increasing continuous solution s = s (x) of 
A . s = 0 in (r1' ra) such that, if we define a strictly increasing function 
m = m(x), not necessarily continuous nor bounded in (r1> r2), by 

% 

m (x) = J (A to~ (t) d (D: 10 (t)) , (8) 

we obtain the representation: 

(A I) (x) = D:' D: I (x) in (rv r2) for any lED (A) . (9) 

Here the right derivative Dt with respect to a strictly increasing function 
p = p (x) is defined by 

D + () li g(y+O)-g(x-O) h . f .. f 
p g x = mp( + 0) -P(x- 0) at t e pomt 0 continUlty 0 p, 

)I.j.% y (10) 
g (x + 0) - g (x - 0) t th . t f di .. f 

= P (x + 0) _ p (x _ 0) a e pom 0 scontmUlty 0 p. 
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Proof. The lirst step. Let uE D(A) satisfy A . u = 0 and U(xl) = u(x2), 

where '11 < Xl < x2 < '12' Then u(x) must reduce to a constant in (xv XI)' 

If otherwise, U (x) would, for example, assume a maximum at an 
interior point Xo of (Xl' X2) in such a way that u (xo) - e > U (Xl) = U (x2) 
with some e> O. Let 10 be the function ED (A) given by condition (6). 
Then, for a sufficiently large <5 > 0, the function F (x) = 10 (x) + <5u (x) 
satisfies F(xo) > F(x.) (i = 1, 2). Hence the maximum of F(x) in 
[xv x2] is attained at an interior point x~ although (A F) (x~) = (A 10) (x~) > o. 
This is a contradiction to condition (5). 

The second step. By (7) and the first step, we see that there exists a 
strictly increasing continuous solution s (x) of A . s = O. We reparametrize 
the interval by s so that we may assume that 

the functions 1 and x are both solutions of A . I = O. (11) 

We can then prove that 

if (A h) (x) > 0 for all x in a subinterval (Xl' x2) of the 

interval ('11' '12), then h(x) is convex downwards in (12) 

(Xl' x2)· 

For, the function u (x) = h (x) -IXX - p, which satisfies (A u) (x) = 
(A h) (x) > 0 for all x in (Xl' x2), can have no local maximum at an interior 
point of (Xl' x2)· 

The third step. Let IE D(A). Then, by (12) and (6), we see that, for 
sufficiently large <5 > 0, the two functions Il(X) = I(x) + <5/o(x) and 
I'l.W = <5/0 (x) are both convex downwards. Being the difference of two 
convex functions, I (x) = 11 (X) - 1'1. (X) has a right derivative at every 
point X of ('11' '12), Let us put 

A . I = g;, A . 10 = g;o, nt 10 (x) = ,u(x). (13) 

For g/=I-tlo, we have A ·g,=AI-tA ·/o=g;-tg;o. Hence, by 
(12), 

t < min g; (x) jg;o (x) implies that g/ (t) is convex downwards 1 
%1<%<'*'. 

in (Xl> X2) and so Dt g/ (x) is increasing in (Xl> X2) . 

Applying the same argument for t > max g;(x)/g;o(x), we obtain: 
%1<Z<S. 

for any sub-interval (Xl' x2) of ('11' '12), we have I 
min /p((X)) X (Dt/O(X2) - Dtlo(Xl)) < Dtl(X2) -Dtl(Xl) 

s, <s<s, tpo X 

< max tp ((X)) X (Dt 10 (X2) - Dt 10 (Xl»' 
s,<s<s, tpo x 
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The continuity of the function ffJ (x)/ffJo (x) implies, by the above inequality, 
that 

s, 

D:I(X2) - D:I(Xl) = f ~(~) d(D:/o(x» , 
SI 

which is precisely the integrated version of A . 1 = D;!; D: I. 

Remark 1. We may consider the operator D;!; D: as a generalized 
Laplacian in the sense that D: and D;!; correspond to the generalized 
gradiant and the generalized divergence in one dimension, respectively. 
Feller called s = s (x) the canonical scale and m = m (x) the canonical 
measure of the Markov process in question. We easily see, from the first 
step above, that the function 1 and s constitute a lundamental system 01 
linearly independent solutions of A . v = 0 to the effect that any solution 
of A . v = 0 can be expressed uniquely as a linear combination of 1 and 
s(x). Thus the canonical scale of P(t, x, E) is determined up to a linear 
transformation, i.e., another canonical scale SI must be of the form 
SI = IXS + {3 with IX> 0; hence the canonical measure ml which corre­
sponds to SI must be of the form ml = IX-1m. 

Remark 2. Theorem 2 gives the representation of the infinitesimal 
generator A at the interior point x of (1'1' 1'2). To determine the operator 
A as the infinitesimal generator of a positive contraction semi-group T, 
of class (Co) on C [1'1' 1'2] into C [r}> 1'2]' we must consider the lateral 
condition, that is, the boundary condition of the operator A at both 
boundary points 1'1 and 1'2 in order to describe the domain D(A) of A 
concretely and completely. According to FELLER [2] and [6J (cf. E. HILLE 
[6]), the boundary points 1'1 (or 1'2) are classified into the regular-boundary, 
the exit-boundary, the entrance-boundary and the natural-boundary. To 
this purpose, we introduce four quantities: 

al = J J dm (x) ds (y), #1 = J J ds (x) dm (y). 
'l<y<s<r~ "1<'<%<'; 

a2 = J J dm(x) ds(y), #2 = J J ds(x)dm(y). 
~>y>s>~ ~>,>s>~ 

The boundary point r. (i = I, 2) is called 

regular in case a. < 00, #. < 00 I 
exit in case a. < 00, I-'i = 00 ~the conditions are 

. mdependent of the 
entrance In case a. = 00, #. < 00 h· f' d ') c Olce 0 1'1 an 1'2 . 
natural in case a. = 00, #. = 00 

We shall illustrate by simple examples. 
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Example 1. D:' D; = d2jdx2, 5 = (-00,00). We can take s = x, 
m = x. Hence 

00 

(J2 = II dxdy= I (y-1'~) dy =00, 
oo>y>z>,~ 'i 

and so 00 is a natural boundary. Similarly -00 is also a natural bound­
ary. 

Example 2. D:'D;=d2jdx2, 5=(-00,0). We can take s=x, 
m = x. In this case, - 00 is a natural boundary and ° is a regular boun­
dary. 

Example 3. D:' D; = x2 d~2 - d~' 5 = (0,00). A strictly increasing 
~ 

continuous solution s = s (x) of D:' D; s = ° is given by s (x) = Ie-lIt dt 
so that 

D - el/~ !:.. D+ D+ - x2 e-l/~ !:.. el/:r !:.. 
s- dx'ms- dx dx' 

Therefore ds = e-l/~ dx, dm = x-2 e* dx. Hence 
1 

(Jl = II x-2 el/~ dx e-1/"dy = I [_el/~]~ e-l/" dy < oc, 
~<,,<~<l 0 

1 

#1 = I I e-l/:r dx y-2 ell" dy = I rl/~ [-e1/,,]o dx = 00. 
0<,,<:«1 0 

Thus ° is an exit boundary. Similarly we see 
00 

(J2 = I I el/~ x-2 dx e-l/" dy = I [- el/:r]r . e-1/" dy = 00, 
oo>,,>:r>l 1 

00 

#2 = I I e-l/~ dx ell" y-2 dy = I e-l/~ [-ell,,]::, dx = 00. 
oo>,,>~>l 1 

That 00 is a natural boundary. 
+ 2 d2 d Example 4. D:' D. = x dx2 + dx' 5 = (0, 2). As above, we see that 

ds = el/~ dx, dm = x-2 e-l/:r dx, and so we can verify that ° is an entrance 
boundary and 2 is a regular boundary. 

Feller's probabilistic interpretation of the above classification is as 
follows: 

The probability that a particle, located at first in the interior of the 
open interval (1'1,1'2)' will, after a finite lapse of time, reach a regular 
boundary or an exit boundary, is positive; while, the particle can, after a 
finite lapse of time, neither reach an entrance boundary nor a natural 
boundary. 
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7. An Extension of the Diffusion Operator 

Let the possible state of a (not necessarily temporally homogeneous) 
Markov process be represented by the point x of an n-dimensional e'" 
Riemannian space R. We denote by P(s, x, t, E), s < t, the transition 
probability that a state x at a time moment s is transferred into a Baire 
set E ~ R at a later time moment t. 

We shall be concerned with the possible form of the operator As 
defined by 

(As/) (x) . lim t-1 J P(s,x,s + t, dy) (t(y)-/(x», IE Cg(R) , (1) 
qo R 

without assuming the Lindeberg type condition: 

lim t-1 J P(s, x, s + t, dy) = 0 for all positive constants £ 
t f 0 d( ... ,y);;;;. 

Cd (x, y) = the geodesic distance between two points x and y). (2) 

We can prove 

Theorem. Let there exist an increasing sequence {k} of positive 
integers such that, for a fixed pair {s, x}, 

lim k· J P(s, x, s + k-1, dy) = 0 uniformly in k, (3) 
atoo d( .... y);;;;a 

k f 1 :~(:)~)2P(S' x, s + k-l , dy) is uniformly bounded in k. (4) 
R 

Suppose that, for a function I (x) E C5 (R), 

a finite ~ k 1/ P(s, x, s + k-1 , dy) I(y) -/(x)I exists. (5) 

We have then, in any fixed local coordinates (Xl' X2, •• " x .. ) of the point 
xER, 

()/ (}2/ 
(As/) (x) = aj (s, x) (}x; + bij (s, x) (}Xi (}x; 

+lim J ~/(Y)-/(x)-1;~(:)y)2(Yj-Xj)()~} 
e+ 0 d( ... ,y);;;;. t ' ; 

(6) 

1 + d(x, y)2 
X d(X,y)2 G(s, x, dy), 



where 

7. An Extension of the Diffusion Operator 

G (s, x, E) is non-negative and a-additive for Baire sets 

E ~ Rand G(s, x,H) < 00, 

e(x, y) is continuous in x, y such that e(x, y) = 1 or 

o according as d (x, y) < tJj2 or > tJ (tJ is a fixed 

constant > 0), 

the quadratic form bij(s, x) ;';j is > O. 
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(7) 

(8) 

(9) 

Remark. Formula (6) is given in K. YOSIDA [26J. It is an extension 
of the diffusion operator of the form of the second order elliptic differen­
tial operator discussed in the preceding sections. The third term on the 
right of (6) is the sum of infinitely many difference operators. The 
appearence of such a term is due to the fact that we do not assume the 
condition (2) of Lindeberg's type. Formula (6) is an operator-theo­
retical counterpart of the P. Levy-A. Khin tchine-K. Ito infinitely divisible 
law in probability theory. About this point, see E. HILLE-PHILLIPS [IJ, 
p.652. 

Proof of Theorem. Consider a sequence of non-negative, a-additive 
measures given by 

Gk(s, x, E) = k J 1 ~(~(~~2y)2 P(s, x, s + k-1, dy). (10) 
E 

We have, by (3) and (4), 

Gk(s, x, E) is uniformly bounded in E and k, 

lim f Gk(s, x, dy) = 0 uniformly in k. 
"too d(x,y);':;" 

Hence, for fixed {s, x} ,the linear functional Lk given by 

Lk(g) = fGk(S,x,dy)g(y), gECg(R), 
R 

(11) 

(12) 

is non-negative and continuous on the normed linear space cg (R) with 
the norm II gil = sup I g (x) I; and the norm Lk is uniformly bounded in k. 

x 

Therefore, by the separability of the normed linear space cg (R), we 
can choose a subsequence {k'} of {k} such that lim Lk, (g) = L (g) exists 

k-+oo 

as a non-negative linear functional on Cg(R). By virtue of a lemma in 
measure theory (P. R. HALMOS [IJ) there exists anon-negative, a-additive 
measure G(s, x, E) such that G(s, x, R) < 00 and 

lim f Gk(s, x, dy) g(y) = f G(s, x, dy) g(y) for all gE·cg(R). (13) 
k=k'-->oo R R 
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We have 
k [1 P(s, x, s + k-l , dy) t(y) - t(X)] 

J{[ e(y, x) at] 1 + d(y, X)2} = t(y) - t(x) -1 + d(y, X)2 (Yj -Xj) ax; d(y, X)2 G,.(s, x, dy) 
R 

J e(y, x) at + d(y, x)i (Yj - Xj) ax; Gk (s, x, dy). (14) 
R 

The term { } in the first integral on the right is, for sufficiently small 
d(y, x), 

at ( a2t )1+d(y,X)2 
= (Yj-Xj) ax; + (Yi- X.) (Yj-Xj) ax; ax; d(y,X)2 , 

where Xj = Xj + ()(Yj - Xj), 0 < () < 1. 

Thus { } is bounded and continuous in y. Hence, by (12) and (13), the first 
term on the right of (14) tends, as k = k' ---+ 00, to J {} G(s, x, dy). 
Therefore, by (5), R 

f " l' J e (y, x) ( ) at G ( d ) () at almte 1m d-( )2Yj-Xj-a kS,X,y=ajS,X-a k=k'-->oo y, X x; x; 
R 

exists. Hence, by (3), we obtain (6) by taking 

b.j(s, x) = lim li!Il k J (Y. - Xi) (Yj - Xj) P(s, x, s + k-l , dy) . 
• .j.O k=k-->oo d(y,.<);:;;. 

8. Markov Processes and Potentials 

Let {Tt} be an equi-continuous semi-group of class (Co) on afunction 
space X defined by (Tel) (x) = J P(t, x, dy) t(y) where P(t, x, E) is a 

s 
Markov process on a measure space (5, ~). Let A be the infinitesimal 
generator of Tt• Suggested by the special case where A is the Laplacian, 
an element t E X is called harmonic if A . t = O. Then t is harmonic 
iff A (AI - A )-1 t = t for every A > O. An element t E X is called a 
potential if t = lim (U - A)-lgwith some g. Because, for such an element 

,qo 
f, there holds by the closedness of A the Poisson equation 

A . t = limA (AI - A)-lg = lim{-g + A (AI _A)-lg} = -g. 
A.j.O A.j.O 

Suppose that X is a vector lattice which is also a locally convex linear 
topological space such that every monotone increasing bounded se­
quence of elements E X converges weakly to an element of X which is 
greater than the elements of the sequence. We also assume that the 
resolvent fA = (AI -A)-lis positive in thesensethatt~ Oimpliesh t > O. 
The situation is suggested by the special case where A is the Laplacian 
considered in a suitable function space. 
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We may thus call subharmonic those elements I E X for which the 
inequality A . I 2: 0 holds. By virtue of the positivity of h, a sub­
harmonic element I satisfies AlAI;;:;; I for all A> O. We shall prove an 
analogue of a well-known theorem of F. RIESZ concerning ordinary sub­
harmonic functions (see T. RADO [IJ): 

Theorem. Any subharmonic element x is decomposed as the sum of a 
harmonic element XII and a potential xp, where the harmonic part XII of 
X is given by XII = lim AJ;.X and XII is the least harmonic maforant of X in 

;.~o 

the sense that any harmonic element XH 2: X satisfies XH ~ X". 
Proof (K. YOSIDA [4J). By the resolvent equation 

J;.-J", = (p,-A) Jd"" (1) 
we obtain 

(1 -AJ;.) = (1 + (p,-A) J;.) (1 -I'J",). 

Since X is subharmonic, we see, by the positivity of J;., that 

A> I' implies AJ;.X > I'J",x > x. 

(2) 

Hence the weak-lim AJ;.X = XII exists by virtue of the hypothesis con­
;.~o 

cerning bounded monotone sequences in X. Therefore, by the ergodic 
theorem in Chapter VIII, 4, we see that XII = lim AJ;.X exists and XII is 

.qo 
harmonic, i.e., AlAXII = XII for all A> O. We also have xp = (x - x,,) = 
lim (1 - AJ;.) X = lim (-A) (J...! - A)-l X = lim (J...! - A)-l (-A x) 
;'.0 ;.~o ;.~o 

which shows that xp is a potential. 
Let a harmonic element XH satisfy XH > x. Then, by the positivity of 

AJ;. and the harmonic property of XH, we have 

XH = AJ;,XH > AJ;.X and hence XH > limAJ;.x = Xii' 
;.~o 

9. Abstract Potential Operators and Semi-groups 

Let {T t ; t ~ O} be an equi-continuous semi-group of class (Co) of 
bounded linear operators on a Banach space X into X, and let A be its 
infinitesimal generator. Thus D (A)a = X and the resolvent (A I - A)-l 
of A exists for A > 0 as a bounded linear operator on X into X satisfying 
the condition 

sup IIA(A I - A)-III < 00 (1) 
.'1>0 

so that, by applying abelian ergodic thoerems in Chapter VIII, 4, we 
obtain 

R(A)a = R(A (I' 1- A)-l)a = {x EX; s - lim A(). 1- A)-l X = O} 
.'1+0 

for all fl > 0 (2) 
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and 

D(A)a = R«(p, 1- A)-l)a = {x EX; s - lim A(A 1- A)-l X = x} = X 
Atoo 

for all p, > 0 . (3) 

We shall be concerned with the situation in which 

the inverse A-I exists with its domain D(A-l) = R(A) strongly 
~~~~ ~ 

and in case (4) we shall call V = _A-l as the "abstract potential 
operator" associated with the semi-group T t so that the "abstract 
potential V x" satisfies the "abstract Poisson equation" 

AVx=-x (5) 

with respect to the "abstract Laplacian operator" A. 

Proposition 1 (K. YOSIDA [34]). (4) is equivalent to the condition 

s - lim A(A 1- A)-l X = 0 for every x EX. (6) 
A.j.O 

Proof. The condition A x = 0 is equivalent to A(A 1- A)-l X = x 
and so (6) implies the existence of A-I. Moreover, by (2), the denseness 
of R(A) is equivalent to (6) so that (4) must be equivalent to (6). 

Corollary. In case (6), the abstract potential operator V = - A -1 is 
defined also by 

V x = s - lim (A 1- A)-1 x. 
At O 

Proof. For x E D(A-l), we have 

_A-IX - (AI - A)-IX = _A-IX - A(AI - A)-lA-1x 

= A(AI - A)-lA-1x 

(7) 

so that, by (6), we obtain s - lim (A 1- A)-l X = -A -1 x. On the other 
At O 

hand, let s - lim (A I - A) -1 X = Y exists. Then A (A 1- A)-l x 
AtO 

= - x + A(A 1- A)-l x implies, by the closure property of the infinitesi-
mal generator A, the equality A y = - x, that is, y = -A -1 X and so we 
have proved (7). 

From now on we shall be concerned with the case 

D(A)a = X and sup IIA(A I - A)-III ;;;;; (8) 
A>O 

which characterises the infinitesimal generator A of a contraction semi­
group {T t ; t ~ O} of class (Co). We can prove 

Theorem 1. The abstract potential operator V and its dual operator 
V* must satisfy the following inequalities, respectively: 
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IIAVx+xll~IIAVxll forall xED(V) and A>O, (9) 

IIA V* 1* + 1*11 ~ IIA V* 1*11 for all 1* ED(V*) and A> O. (10) 

Proof. We put h = (A I - A)-I. Then h satisfies the resolvent 
equation 

JA - JIl = ('" - A) h JIl . (11) 

Letting", to in (11), we obtain 

hx- VX= -Ah Vx forall xED(V) and all A>O. (12) 

Hence h(A V x + x) = V x and so, by IIA hll ~ 1, we obtain (9). 
Since D(A) and R(A) are both strongly dense in X, we have 

(A*)-1 = (A-l)* or equivalently V* = (-A-l)* = (-A*)-1 (13) 

by R. S. Phillips' theorem in Chapter VIII, 6. Therefore, we have, when 
1* ED(V*), 

V* 1* - (Al* - A*)-I/* = (-A*)-I/* - (Al* - A*)-I/* 

= (_A*)-Ij* - A*(Al* - A*)-1 (A*)-I/* = A(Al* - A*)-1 (A*)-I/*. 

Hence we obtain 
V* 1* = w* - limJ* 1* 

A.j.O A 
(14) 

since w* - lim A It g* = 0 for all g* E X* by (6). Thus, as in the case 
A.j.O 

of V, we prove (10) by 

It - J: = ('" - A) It J: and supllAItl1 ~ 1. (11)' 
A>O 

Corollary. The inverse (A V + 1)-1 and the inverse (A v* + 1*)-1 
both exist as bounded linear operators. 

Proof. The existence of (A V + I)-I and of (A V* + 1*)-1 are clear 
from (9) and (10), respectively. We shall prove 

R(AV+l)=X forall A>O. (15) 

The existence of the inverse (A v* + 1*)-1 implies, by the Hahn-Banach 
theorem, that 

R(AV+l) (15)' 
is strongly dense in X. 

Hence, for any y E X, there exists a sequence {x,,} ~ D (V) such that 
s - lim (A V x" + x,,) = y. Thus, by (9), we have IIA V (x" - xm ) ,,_00 
+ (x" - xm) II ~ II A V (x" - xm) II and so s - lim V x" = z exists, proving that "_00 
s - lim x" = x exists. Since an abstract potential operator is closed by 

"_00 
definition, the operator V must be closed. Hence we must have V x = z, 
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that is,y = A V x + x. This proves (15), and thus (A V + I)-lisa bounded 
linear operator by the closed graph theorem. Hence, by the closed range 
theorem in Chapter VIII,S, we have 

R(A V* + 1*) = X* for all A> 0 , (16) 

and so, again by the closed range theorem and (15), (A V* + 1*)-1 is a 
bounded linear operator on the dual space X* into X*. 

We can now give a characterization 0/ abstract potential operators: 

Theorem 2 (K. YOSIDA [35J). Let a closed linear operator V with 
domain D (V) and range R (V) both strongly dense in X be such that V 
and its dual operator V* satisfy (9) and (10), respectively. Then V is an 
abstract potential operator, i.e., - V is the inverse of an operator A which 
is the infinitesimal generator of a contraction semi-group of class (Co) in X. 

Proof. We first remark that the Corollary above holds good for V 
and for V*, and hence (A V + 1)-1 is a bounded linear operator on X 
into X. Moreover, the linear operator J" defined through 

J),(A Vx+x) = Vx [for all x ED(V) andallA>OJ (17) 

is a bounded linear operator on X into X such that 

J,,=V(AV+I)-1 and supIIAJ"II::;;;; 1. (18) 
">0 

We can prove, by (17), that fA is a pseudo-resolvent. In fact, we have 

J" (A V x + x) - Jp (A V x + x) = V x - J p (~ (I-' V x + x) + (1 - ~) x) 

= V x - ~ V x - (1 - ~) J p x = (1 - ~) (V x - J p x) 
and 

(I-' - A) Jp J" (A V x + x) = (I-' - A) Jp V x 

= (I-'-A)Jp(VX+ ~x- :x) 

= (I-' - A) : V x - (I-' - A) ~ Jp x = (1 - ~) (V x - J p x) . 

Because of (18), we can apply abelian ergodic theorems: 

R(Jp)a={xEX;s-limAJ"x=x} forall 1-'>0, (19) 
"too 

R (1 - I-' Jp)a = {x EX; s - lim A J" x = O} for all I-' > O. (20) 
"+0 

Since R(V)a = X, we see R(Jp)a = X by (17). On the other hand, the 
null space of J" is independent of A (see Proposition in Chapter VIII, 4). 
Hence, by (19) and R(Jp)a = X, the null space of J" consists of zero 
vector only. Therefore JA is the resolvent of a linear operator A : 

J" = (A 1 - A)-I, where A = AI - J;l . (21) 
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Hence we obtain 

D(A)G=R(JI')G={xEX;s-limAJAx=x} forall ,,>0 (19)' 
At oo 

R(A)G=R(I-"JI')G={xEX;s-limAJAx=O} forall ,,>0. 
A~O 

(20)' 

By (19), andR(Jp)G = X, we see that D(A)G = X. We can also prove that 
R(A)G = X. In fact, we have, by (17) and (21), 

(A I - A) JA(A V x + x) = A V x + x = (A I - A) V x = A V x - A V x, 

that is, 

-A V x = x whenever x E D(V) . (22) 

Hence R(A) ;?D(V) is strongly dense in X, that is, R(A)G = X and so, 
by (20)', s -limAJAx = 0 for all x EX. Therefore, by Proposition 1, 

AtO 

-A -1 is an abstract potential operator. 
That V = -A -1 may be proved as follows. Firstly, the inverse V-1 

exists since, by (22), V x = 0 implies x = O. Thus, by (18) and (21), we 
obtain 

A I - A = J;:1 = (A V + I) V-1 = A I + V-1 

which proves that _A-1 = V. 

Remark. The above proof shows that (10) is used only to prove (15)' 
and hence (15). 

As in Chapter IX, 8, we introduce a semi-scalar product [x, y] in X 
satisfying conditions: 

[x + y, z] = [x, z] + [y, z], [A x, y] = A [x, y] , (28) 

[x, x] = IIxll2 and l[x,y]1 ~ IIxll ·llyll· 

Then a linear operator V, with domain D(V) and range R(V) both in X, 
is called accretive (with respect to [x, y]) if 

Re [x, V x] ~ 0 whenever x E D(V) . (24) 

We shall prepare three propositions. 

Proposition 2. An abstract potential operator V must be accretive. 

Proof. Let {T t ; t ~ O} be the contraction semi-group of class (Co) 
whose infinitesimal generator A is given by A = - V-1. We have, by 
IITtll ~ 1, 

Re[Tt x - x, x] = Re[T x, x] -lIx112 ~ IIT t xll'lIx/l- /lxlpl ~ O. 

Hence, for x E D(A), we obtain 

Re [A x, x] = lim [t- 1 (T t x - x), x] ~ 0 
t~O 
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so that, for Xo E D (V) = D (A -1), 

Re [A V xo, V xoJ = Re [ - xo, V xoJ ;£ 0 , that is , Re [xo, V xoJ ;;;; 0 . 

Proposition 3. V satisfies (9) if V is accretive. 

Proof. We have, by (23) and (24), 

IIA V xiiI = [A V x, A V xJ ;£ Re{[A V x, A V xJ} 
= Re [A V x + x, A V xJ ~ IIA V x + xii 'IIA V xii, 

that is, we have proved (9). 

Proposition 4. Let V be an abstract potential operator associated 
with a contraction semi-group {T t ; t ;;;; O} of class (Co) with the infinitesi­
mal generator A so that V = -A -( Then the dual operator V* must 
satisfy, for any semi-scalar product [/*, g*J in the dual space X* of X, 
the inequality 

U*, V+ I*J ;;;; 0 (25) 
where 
V + is the largest restriction of V* with domain and range both in 

R(V*)". (26) 

Proof. Let {T,+; t ;;;; O} be the dual semi-group (see Chapter IX, 13) of 
{T t ; t ~ O}, so that, {T,+; t;;;; O} be a contraction semi-group of class 
(Co) in X+ = D(A*)" = R(V*)". Thus the infinitesimal generator A+ of 
the semi-group T,+ is the largest restriction of A * with domain and range 
both in X+ = D(A*)". Then V+ = (-A+)-l, and so (25) is proved as in 
the case of Proposition 2. 

We are now able to prove 

Theorem 3. Let V be a closed linear operator with domain and range 
both strongly dense in X. Then V is an abstract potential operator iff V is 
accretive and V+ is accretive. 

Proof. The "only if part" is proved by Proposition 2 and Proposi­
tion 4. We shall prove the "if part". Firstly, V satisfies (9) by Pro­
position 3. Next let AV* 1* + 1* = O. Then 1* E R(V*) and so V* 1* 
= - A-I 1* E R(V*). Thus 1* ED (V+) and A V+ 1* = - 1*. Therefore, 
by the accretive property of V+, we obtain 

[A 1*, A V+ I*J = A U*, - I*J = - AII/*II' ~ 0, that is, 1* = 0 . 

Hence the inverse (A v* + 1*)-1 exists and so, by the Hahn-Banach 
theorem, (15)' and consequently (15) both hold good. This proves that V 
is an abstract potential operator. 

Comparison with G. A. Hunt's theory 01 potentials. Consider a special 
case in which X js the completion Cco(S), with respect to the maximum 
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norm, of the space Co(S} of real- or complex-valued continuous functions 
x(s} with compact support in a locally compact, non-compact separable 
Hausdorff space S. In this case, the semi-scalar product may be defined 
through 
[x, y] = x (so) . y (so), where So is any fixed point of 5 such that 

(27) 
ly(so}1 = suply(s}l· 

ses 
Therefore the accretive property of the linear operator V is given by 

Re(x(so}' (V x) (so)) ~ 0 whenever I(v x} (so) I = supl(v x) (s}l. (28) 
ses 

This may be compared with the principle 0/ positive maximum for V in 
Hunt's theory of potentials (G. A. HUNT [1], d. P. A. MEYER [1] and 
K. YOSIDA [32] and the bibliography referred to in these). Assuming 
that the space Coo (S) consists of real-valued functions only, HUNT 
introduced the notion of the potential operator U as a positive linear 
operator on the domain D(U) ~ Coo (5) into Coo(S) satisfying three 
conditions: i} D(U} ~ Co(S}, ii} U· Co(S} is strongly dense in Coo (5) and 
iii} the principle of positive maximum given by 

for each x(s} E Co(S), the value x(so} ~ 0 whenever (U x) (s) 
(29) 

attains its positive supremum at s = so' 

(In the above, the positivity fo U means that U maps non-negative 
functions into non-negative functions.) HUNT then proved that there 
exists a uniquely determined semi-group {T,; t ~ O} of class (Co) of 
positive contraction operators T, on Coo (S) into Coo (5) satisfying the 
following two conditions: 

A U x = -x for every x(s} E Co(S), where A is the infinitesimal 

generator of T t, 
00 

(U x) (s) = J (T, x) (s) dt for every x (s) E Co (S), the integral being 
o 

taken in the strong topology of the B-space Coo(S}. 

(30) 

(31) 

It is to be noted that our abstract potential operator V is defined 
without assuming the positivity of the operator V. Moreover, in our 
formulation, (30) can be replaced by the true Poisson equation 

V = _A-I. (30)' 

In this connection, it is to be noted that the smallest closed extension V 
of the operator U restricted to Co(S) satisfies (30)'. See K. YOSIDA, 
T. WATANABE, H. TANAKA [36] and K. YOSIDA [37]. Furthermore, in 
our formulation of the abstract potential operator V, (31) is replaced by a 
27 Y OIlda. Functional Analyala 
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more general (Vx) (s) = s-lim ((U - A)-Ix) (s) which is based upon (7). 
n-+ 00 

This formulation has the advantage that it can be applied to essentially 
more general class of semi-groups than (31). See, e.g., K. YOSIDA [37J, 
[38J, A. YAMADA [IJ, and K. SATO [IJ, [2]. It is to be noted here that 
F. HIRSCH [1J, [2J has also developped an abstract potential theory 
directed by essentially the same idea as the present author. 

XIV. The Integration of the Equation of Evolution * 
The ordinary exponential function solves the initial value problem 

dy/dx=IXY, y(O) = 1. 

We consider the diffusion equation 
m 

au/at = Llu, where Ll = ,.I f}2/0XJ is the Laplacian in Rm. 
,=1 

We wish to find a solution u = u(x, t), t > 0, of this equation satisfying 
the initial condition u (x, 0) = I (x), where I (x) = I (Xl' ... , x"') is a 
given function of x. We shall also study the wave equation 

02U / ot2 = Llu, -(X) < t < (X) , 

with the initial data 

u(x, 0) = I(x) and (ou/ot)t=o = g(x), 

I and g being given functions. This may be written in vector form as 
follows: 

:e (:) = (~ ~) (:), v = ~~ 
with the initial condition 

(U(X, 0)\ = (/(X)). 
v(x,O)j g(x) 

So in a suitable function space, the wave equation is of the same form 
as the diffusion (or heat) equation-differentiation with respect to the 
time parameter on the left and another operator on the right-or again 
similar to the equation dy/dt = lXy. Since the solution in the last case is 
the exponential function, it is suggested that the heat equation and the 
wave equation may be solved by properly defining the exponential func­
tions of the operators 

Ll and (~ ~) 
in suitable function spaces. This is the motivation for the application 
of the semi-group theory to Cauchy's problem. It is to be noted that the 

• See also Supplementary Notes, p. 468. 
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Schrodinger equation 

i-I au/at = H u = (L1 + U (x)) u, where U (x) is a given function, 

gives another example of the equation 01 evolution of the form 

au/at = Au, t > 0, (1) 
where A is a not necessarily continuous, linear operator in a function 
space. 

The equation of the form (1) may be called a temporally homogeneous 
equation 01 evolution. We may integrate such an equation by the semi­
group theory. In the following three sections, we shall give typical 
examples of such an integration. We shall then expound the integration 
theory of the temporally inhomogeneous equation 01 evolution 

au/at = A (t) u, a < t < b. (2) 

1. Integration of Diffusion Equations in L2 (Rm) 

Consider a diffusion equation 

au/at = Au, t> 0, (1) 

where the differential operator 
.. • . a .. .. 

A = a'J (x) -a a + b' (x) -a + c (x) (a'J (x) = aJ' (x») (2) x, XI Xi 

is strictly elliptic in an m-dimensional euclidean space Rm. We assume that 
the real-valued coefficients a, band c are Coo (Rm) functions and that 

m~x (s~p laii (x) I, s~p W (x) I, s~p Ic (x) I, s~p lat1c(x) I, 

sup Ib~1c(x) I, sup laK:r. (x) I) = 'Yj < 00. 
:r :r 

(3) 

The strictly elliptic hypothesis concerning A means that positive con­
stants Ao and J.lo exist such that 

m m 

J.lo .~ ~; > aij (x) ~i~j ~ Ao .~~: on Rm for any real 
J=1 .=1 (4) 

vector ~ = (~1' ~2' ... , ~m) . 
Let iI~ be the space of all real-valued C~ (R"') functions I (x) normed 

by (m )112 11/111 = Jr· dx + .~ J I;;dx , 
Rm J-l R m 

(5) 

and let H~ be the completion of iI~ with respect to the norm III! 11' Let 
similarly Hg be the completion of ii3 with respect to the norm 

(6) 

27* 
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We have thus introduced two real Hilbert spaces HA and H8, and HA 
and iIA are lillo-dense in H8. We know, from the Proposition in Chap­
ter I, 10, that HA coincides with the real Sobolev space WI (Rm); we know 
also that H8 coincides with the real Hilbert space L 2 (Rm). We shall denote 
the scalar product in the Hilbert space HA (or in the Hilbert space H8) 
by (j, g)l (or by (j, g)o). 

To integrate equation (1) in the complex Hilbert space L2 (Rm) under 
condition (3) and (4), we shall prepare some lemmas. These lemmas will 
also play important roles in the following sections. 

Lemma 1 (concerning partial integration). Let I, g E iIA. We have then 

(AI, g)o = - f a#lz/gz;dx- f atlx;gdx 

+ f bilz;gdx + f clgdx, 
(7) 

that is, we may partially integrate, in (AI, g)o ,the terms containing the 
second order derivatives as if the integrated terms are zero. 

Proof. By (3) and the fact that I and g both belong to llA, we see 
that a# Iz/zig is integrable over Rm. Hence, by the fact that I and g are 
both of compact support, 

f a#lz;zlgdx =- f a#lz/gzldx - f a11Iz;gdx. 
Rm Rm Rm 

Remark. The formal adjoint A * of A is defined by 

(A * I) (x) = ax:;x; (a'j (x) I(x)) - a~/ W (x) I (x)) + c (x) I (x) . (8) 

Then, as above, we have the result: If I, g E iIA then we may partially 
integrate, in (A * I, g)o, the terms containing the first and the second 
order derivatives as if the integrated terms are zero. That is, we have 

(A*I, g)o = - f a#lz;gz;dx- f a%;lgz;dx 
Rm Rm 

(7') 

Corollary. There exist positive constants", ')' and ~ such that, for all 
sufficiently small positive constants IX, 

~l 

when IE Ho, 

IX~ III Iii < (j - IXA * 1,1)0 < (1 + IX')') III Iii when IE iiA, 
~l 

j(j-IXAI,g)ol«l+IX')')ll/lllllglh when l,gEHo, 

j(j-IXA*I, g)ol < (1 + IX')') 11/111 Ilglll when I, gE iIA, 

I(AI, g)o- (I, Ag)ol s" 1I/IiI Ilglio when l,gEiiA. 

(9} 

(10) 

(11) 
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Proof. (9) and (10) may be proved by (3), (4), (7) and (7') remem­
bering the inequality 

2(¥ labl ~ (¥(lIlaIZ +,,-1 IbIZ) (12) 
which is valid whenever (¥ and 11 are> O. In fact, we can use an estimate 
such as 

We also obtain (11) from 

(AI, g)o - (I, Ag)o = - f (2a~,I.lg + at"llg - 2b'I.,g - b~"g) d%. 
R'" 

Lemma 2 (concerning the existence of solutions of u - (¥A u = I). 
Let a positive number £¥o be so chosen that the above Corollary is valid for 
0< (¥ ~ £¥O. Then, for any function 1(%) E H~, the equation 

u - (¥A u = I (0 < (¥ ~ £¥o) (13) 

admits a uniquely determined solution u E HA f\ COO (R"'). 

Proof. Let us define a bilinear functional B (u, v) = (u - (¥A *u, v)o 
defined for functions u, v E H~. From the above Corollary, we have 

IB(u, v) I~ (1 + (¥r) Il ulll llvll1, (¥«'.lIull~ ~ B(u, u). (14) 
Hence we may extend B(u, v), by continuity, to a bilinear functional 
B (u, v) defined for u, v E H~ and satisfying 

IB(u, v) I~ (1 + (¥r) lI ullll1vlll' (¥l5llull~ ~ B(u, u). (14') 

The linear functional F (u) = (u, 1)0 defined on HA, is a bounded linear 
functional by l(u,l)ol ~llullo 11/11o~ lIullll1/l1o. Hence, by F. Riesz' 
representation theorem in the Hilbert space HA, there exists a uniquely 
determined v = v(f) E HA such that (u,l)o = (u, V (f)1' Thus, by the 
Milgram-Lax theorem applied to the Hilbert space HA, we have 

(u,l)o = (u, V (f)1 = B (u, SV(f) for all u E HA, where 
(15) 

S is a bounded linear operator on HA onto HA. 
Let u run over ego (R"'), and let v .. E iiA be such that lim II v .. - S v (I) 111 

ff-+OO 

= O. Then 
B (u, SV(f) = lim B(u, v .. ) = lim B(u, v .. ) 

ff-+OO ff-+OO 

= lim (u-(¥A*u, V .. )o = (u-(¥A*u, Sv(f)o, 
ff-+OO 

because the norm 111/1 is larger than the norm 11110' Hence 
(u, 1)0 = (u - (¥A *u, SV(l»o, (15') 

that is, Sv(l) E HA is a distribution solution of the equation (13). Hence, 
by the strict ellipticity of (l-(¥A) and by the fact IE ego (R"'), we see, 
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from the Corollary of Friedrichs' theorem in Chapter VI, 9, that we may 
consider u = Sv(j) E Hij to be a coo{Rm) solution of (13). Hence u = 
Sv (j) E H6 f\ Coo (Rm). 

The uniqueness of such a solution u of (13) may be proved as follows. 
Let a function u E HJ f\ Coo (Rm) satisfy u - IX Au = o. Thus A tt E 
Hij f\ Coo (Rm) ~ Hg and so the expression (u - IXA u, u)o is defined and 

= O. Let u" E iiij be such that lim II u - U" 111 = O. We obtain, by partial 
n-+OO 

integration as in (9), 

0= {u - IXA u, u)o = lim {u - IXA u, u,,)o > IX<5 Ilu IIi, that is, u = o. 
n-+OO 

Corollary 1. Positive constants tXo and 1'/0 exist such that, for any 

IE Hij, the equation 

IXU - A U = I (0 < &0 + Ao + 1'/0 < IX) (16) 

admits a uniquely determined solution U = Ut E Hij f\ Coo (Rm) , and we 
have the estimate 

(17) 

Proof. By Schwarz' inequality we have 

II (IX I -A) U 110· lIu 110 ~ I( (IX I - A) u, u)o I for U E Hij. (18) 

By partial integration, we have 

({IX I - A) u, u)o = IX lIull~ + f a,jus/ux,dx + f at,ux,udx 
Rm Rm 

- fb'ux/udx- f cuudx. 
Rm Rm 

Hence, we have, by (3), (4) and (12), 

((IX I - A) u, u)o > IX Ilu II~ + Ao (Ilu Iii -Ilu II~) 
- m2 1'/ [v(llu Iii -Ilu II~) + V-I lIu II~ + m-2 lIu II~} 

= (IX-Ao-m21'/ (v-l-v + m-2)) lIull~ + (Ao-m21'/v) lIulli. 
Thus by (18) we have, for 1'/0 = m2 1'/ (v-l - V + m-2) , 

II(IXI-A)ullo~ (IX-Ao-1'/O) lIulio whenever uEHij, (17') 

by taking v > 0 so small that (Ao - m2 1'/ v) and 1'/0 are> O. We then take 
(Xo so large that for IX > &0 + Ao + 1'/0 we can apply Lemma 2 
in solving (16). 

Since the solution u = UtE Hijf\ COO (Rm) of (16) is approximated by 

lillI-norm by a sequence of functions E Hij, we obtain the estimate (17) 
from (18) and (17'). 

Corollary 2. Consider A as an operator on D(A) = (IX I - A)-l Hij ~ H8 
into H8. Then the smallest closed extension A in H8 of A admits, for 
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IX > ~ + Ao + rJo, the resolvent (IXI - ..4)-1 defined on Hg into Hg 
such that 

(19) 

Proof. Clear from Corollary 1 remembering the fact that D(A) and 
H~ both are lillo-dense in Hg. 

Thus, by Corollary 2 in Chapter IX, 7, A is the infinitesimal generator 
of a semi-group T, of class (Co) in the B-space Hg such that // T, //0 < e(.!,,+'1ol' 

for t ~ O. 
Actually we can prove 
Theorem 1. Let Complex-H~ be the space of all complex-valued 

functions tEC:(R"') with II till = (f/t/2dX+.i fl/z;12dx)1/2<oo. 
Rm 1-1 R m 

Let ii~ and iig be the completions of Complex-HA with respect to the 

norm III/II and 11/110' respectively. We know that iiA = (complex) Sobo­
lev space WI (R"') (see Chapter I, 10). It is also clear that iig = (complex) 
Hilbert space L 2 (R"'). We consider A as an operator defined on D(A) = 

(aI - A)-lilA ~ L2(R"') into L2(R"'). Then the smallest closed 
extension 1 in L 2 (Rm) of A is the infinitesimal generator of a holomorphic 
semi-group T, of class (Co) in L 2 (Rm) such that 1/ T'/Io < e(.!,,+'1ol' for 
t > O. 

Proof. By the preceding Corollary 2 and the reality of the coefficients 
in the differential operator A, we see that the range R(IXI -A) = 
(IXI - A). D (A) is II I/o-dense in L2(R"') for IX > ~ + Ao + rJo' More­
over, we have, for (u + iv) E L2(Rm) such that (u + iv) E D(A), 

II (IX I -A) (u + iv) II~ = II (IX I -A) ull~ + I/(IXI -A) vll~ 

~ (IX - Ao -rJO)2 (liu II~ + I/v I/~). 
Hence the inverse (IX I _1)-1 is a bounded· linear operator on L2(Rm) 
into L2 (Rm) such that II (IXI - A )-1110 < (IX - Ao -rJO)-l for IX > tXo + 
Ao + rJo' 

Therefore, by the Theorem in Chapter IX, 10, we have only to show that 

(20) 

We have, for wE D(A), 

I/«(IX + iT) I -A) wl/o Ilwl/o ~ I«((IX + iT) I -A) w, w)ol. (21) 

By partial integration, we obtain, as in the proof of (17), 

I Real part (((IX + iT) I - A) w, w)o I 

= I !IX IlIw II~ + Real part C£ aijwziwzldx + a~iwZlwdx 
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- J b'w,,;7iJdx - J CWWdX) I 
Rm R'" 

~ (IX-Ao- TJO) IlwlI~ + (Ao-m2TJP) Ilwll~· 
Similarly we have 

I Imaginary part «(IX + iT) I - A) w, w)o I 

~ ITlllw 11~_m2 TJ(lIw II~ + m-2 11 w Ii~) I ~ (iT 1- TJ) Ilw 11~-m2TJ Ilw II~· 
Suppose there exists a woE D(A), Ilwollo* 0, such that 

I Imaginary part (((IX I + iT) I -A) wo, wo)ol < 2-1 (ITI- TJ) Ilwoll~ 

for sufficiently large T (or for sufficiently large -T). Then, for such large 
T (or -T), we must have 

m2 TJ Ilwo II~ > 2-1 (iT 1- TJ) Ilwo II~ 

and so 

IReal part (((IX + iT) I-A) wo, wo)o I ~ (Ao _m2 TJP) (1;~t1J 1J) Ilwo II~. 
Hence we have proved Theorem 1 by (21). 

Theorem 2. For any IE L 2 (R"'), u(t, x) = (Td) (x) is infinitely diffe­
rentiable in t> 0 and in xE R"', and u (t, x) satisfies the diffusion equation 
(1) as well as the initial condition lim II u (t, x) -I (x) 110 = o. 

t.j.O 
Proof. We denote by Tlk) the k-th strong derivative in L2 (R"') of 

T, with respect to t. T t being a holomorphic semi-group of class (Co) in 
L2 (R"'), we have Tl")1 = i.kTdE L2(R"') if t> 0 (k = 0, 1, ... ). Since 
A is the smallest closed extension in L 2 (R"') of A, we see that A" TdE L 2 (R"') 
for fixed t > 0 (k = 0, 1, 2, ... ) if we apply the differential operator A k 

in the distributional sense. Thus, by the Corollary of Friedrichs' theorem 
in Chapter VI, 9, u (t, x) is, for fixed t> 0, equal to a COO (R"') function 
after a correction on a set of measure zero. 

Because of the estimate IIT,llo ~ eCAo +'1.)I, we easily see that, if we 
apply, in the distributional sense, the elliptic differential operator 

U;z+A) 
any number of times to u(t, x), then the result is locally square integrable 
in the product space {t; 0 < t < oo}XR"'. Thus again, by the Corollary 
of Friedrichs' theorem in Chapter VI, 9, we see that u(t, x) is equal to a 
function which is COO in (t, x), t> 0 and x E R"', after a correction on a 
set of measure zero of the product space. Thus we may consider that 
u(t, x) is a genuine solution of. (1) satisfying the initial condition 
lim Ilu(t, x) -/(x) 110 = o. 
'.j.O 

Remark. The above obtained solution u (t, x) satisfies the "forward 
and backward unique continuation property": 
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if, for a fixed to > 0, u (to' x) = 0 on an open set G ~ R .... ; 

then u (t, x) = 0 for every t > 0 and every x E G. 

425 

(22) 

Proof. Since T, is a holomorphic semi-group of class (Co). we have 

lim IIT,.+l&t- i (kl)-lh"A"T,.tll = 0 
..-.co "-0 0 

for a sufficiently small h. Hence, as in the proof of the completeness of 
the space L2 (R"') , there exists a sequence {n/} of natural numbers such 
that ,.' 

u(to + h, x) = lim .I (kl)-lh" A"u(to, x) for a.e. xE R"'. 
"'--+00 "-0 

By hypothesis given in (22), we have A"u(to, x) = 0 in G and so we must 
have u(to + h, x) = 0 in G for sufficiently small h. Repeating the process 
we see that conclusion (22) is true. 
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the "forward and backward unique continuation property" (22), we have 
the more precise result that u (t, x) = 0 for every t > 0 and every x E R"'. 
For, S. MIZOHATA [3] has proved a "space-like unique continuation pro­
perty" of solutions u(t, x) of a diffusion equation to the effect that 
u(t, x) = 0 for all t > 0 and all xE R'" if u(I, x) = 0 for all t > 0 and all 
x E G. Concerning the holomorphic character of the semi-group T, ob­
tained above, see also R. S. PHILLIPS [6]. It is to be noted here that the 
unique continuation property of the solutions of a heat equation au/at =Llu 
was first proposed and solved by H. YAMABE-S. IT6 [1]. 

There is a fairly complete discussion of parabolic equations from the 
view point of. the theory of dissipative operators. See R. S. PHILLIPS [7]. 

2. Integration of Diffusion Equations 
in a Compact Riemannian Space 

Let R be a connected, orientable m-dimensional COO Riemannian 
space with the metric 

2 _ , i ds - gii(x) dx dx . (1) 

Let A be a second order linear partial differential operator in R with 
real-valued COO coefficients: 

.. 82 . 8 
A = a'I (x) -( -I + b'(x) ,. (2) 

8~ 8~ 8~ 

We assume that aii is a symmetric contravariant tensor and that b' (x) 
satisfies the transformation rule 
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-- - " oxl ". 02X' (3) b'=b -+a~--
0:/' OXk oxi 

by the coordinate change (xl, x2 , "', x"') --+ (xl, .x2 , ••• , xm) so that the 
value (A I) (x) is detennined independently of the choice of the local coor­
dinates. We further assume that A is strictly elliptic in the sense that there 
exist positive constants Ao and 1-'0 such that 

m m 
flo . .I ~j :::: aij (x) ~i~j ~ -to _.I ~J for every real vector 

1-1 1~1 

(~l> .. " ~m) and every x E R"'. (4) 

We consider the Cauchy problem in the large on R for the diffusion 
equation: to find solution u (t, x) such that 

8u/8t=Au, t> 0, u(O,x) =/(x) where I(x) is a given 

function on R. (5) 
We shall prove 

Theorem. If R is compact so that R is without boundary, then the 
equation (5) admits, for any initial function I E Coo (R), a uniquely deter­
mined solution u (t, x) which is Coo in (t, x), t> 0 and x E R. This solution 
can be represented in the fonn 

u(t, x) = J P(t, x, dy) I(y) (6) 
R 

where P(t, x, E) is the transition probability of a Markov process on R. 
Proof. Let us denote by C (R) the ~space of real-valued continuous 

functions I (x) on R nonned by 11/11 = sup I/(x) I. We first prove 
" 

for any I E COO (R) and any n > 0, we have 

max h (x) ~ I (x) > min h (x) where h (x) = I (x) - n-1 (A I) (x). (7) 
" " 

Suppose that I(x) attains its maximum at x = xo' We choose a local 
coordinate system at Xo such that aii (xo) = bij (= 1 or 0 according as 
i = j or i -=I=- J)' Such a choice is possible owing to condition (4). Then 

h (xo) = I (xo) - n-1 (A I) (xo) 

=/(xo)-n-1bi (xo) !11- n- 1 .i ,,0(2~)2> I(xo), 
uXo '~1 u Xo 

since we have, at the maximum point xo' 

01 0 d 021 <: 0 
ox~ = an 0(X~)2 = . 

Thus max h(x) ~ I(x). Similarly we have I(x) 2: min h(x). 
" x 

We shall consider A as an operator on D(A) = Coo(R) ~ C(R) into 
C(R). Then, by (7), we see that the inverse (I - n-1A)-1 exists for n > 0 
and II(I - n-1A)-1 gil <: IIg II for g in the range R(1 - n-1A) = 
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(I -n-1A). D(A). This range is, for sufficiently large n, strongly dense 
in C(R). For, as in the preceding section, we have the result: For any 
g E COO (R) and for sufficiently large n > 0, the equation u - n-1 Au = g 
admits a uniquely determined solution u E Coo (R). Because, by the com­
pactness of the Riemann space R, Lemma 1 concerning the. partial inte­
gration in the prec;."!ding section may be adapted to our Riemannian 
space R without boundary. Moreover, COO(R) is strongly dense in C(R) 
as may be seen by the regularization of functions in C (R) (see Pro­
position 8 in Chapter I, 1). 

Hence the smallest closed extension .if in C (R) of the operator A 
satisfies the conditions: 

for sufficiently large n > 0, the resolvent (I - n-lA)-l ) 
exists as a bounded linear operator on C (R) into C (R) 
such that 11(1 -n-1 A)-111 ~ 1, 
«I -n-1 A)-lh) (x) > OonRwheneverh(x) > OonR, 
(I - n-1 A)-I. 1 = 1. 

(8) 

(9) 
(10) 

The positivity of the operator (I - n-1 A)-l given in (9) is clear from (7). 
The equation (10) follows from A . 1 = O. 

Therefore A is the infinitesimal generator of a contraction semi­
group T, in C (R) of class (Co). As in the preceding section, we see, by the 
strict ellipticity of A, that, for any IE COO (R), the function u(t, x) = 
(T,I) (x) is a COO function in (t, x) for t > 0 and x E R so that u (t, x) is a 
genuine solution of (5). 

Since the dual space of the space C (R) is the space of Baire measures 
in R, we easily prove the latter part of the Theorem remembering (9) 
and (10). 

3. Integration of Wave Equations in a Euclidean Space Rm 

Consider a wave equation 

82u/8t2 = Au, -00 < t < 00, 

where the differential operator 

(1) 

.. 82 . 8 
A = a" (x) 8x, 8xI + b' (x) 8x' + c (x) (aii (x) = aii (x)) (2) 

is strictly elliptic in an m-dimensional Euclidean space Rm. We assume 
that the real-valued Coo coefficients a, b, and c satisfy conditions (3) 
and (4) in Chapter XIV, 1. As done there, we shall denote by il~ the 
space of all real-valued cgo(Rm) functions I (x) normed by 

1I/Ih = C!/2 dx + j.g R! I;; dXY'2 
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and let HA (and H8) be the completion of fIA with respect to the norm 
IIflll (and with respect to the norm IIfllo = (R!f1 dxy/2). 

Lemma. For any pair {t, g} of elements E HA'the equation 

(3) 

admits, if the integer n be such that In-II is sufficiently small, a uniquely 
determined solution {u, v}, u and v E HA (\ COO (R"') , satisfying the esti­
mate 

«u -lXoA u, u)o + lXo (v, V)0)1/2 

< (1 - {J In 1-1)-1 ((f -lXoA f, 1)0 + lXo(g, g)0)1/2, (4) 

with positive constants lXo and {J which are independent of n and {f, g}. 
Proof. Let U1 E HA (\ COO (R"') and VI E HA (\ COO (R"') be respectively the 

solutions of 

(5) 

The existence of such solutions for sufficiently small In-II was proved in 
Lemma 2 of Chapter XIV, 1. Then 

u ="t + n-1v1, v = n-1Au1 + VI (6) 

satisfies (3), i.e., we have u - n-1v = I, v - n-1Au = g. 
We next prove (4). We remark that 

Au = n (v - g) E HA (\ COO (R"') ~ H8 and hence, by I, g E ego (R"'). 

A v = n(Au - AI) E HA (\ COO (R"') ~ Hg. 
We have thus, by (3), 

(f -lXoAI, 1)0 = (u -n-1v -lXoA (u- n-1v) , u - n-1v)0 

= (u -lXoA u, u)o - 2n-1 (u, v)o + lXon-1 (A u, v)o + lXon-1 (A v, u)o 

and + n-2(v -lXoA v, v)o 

lXo(g, g)o = lXo(v - n-1Au, v - n-1Au)0 

= lXo(v, v)o -lXon-1(v, A u)o -lXon-1(A u, v)o + lXon-I(A u. A u)o. 

By a limiting process, we can prove that (9), (10) and (11) in Chapter XIV,1 
are valid for f = u and g = v. Thus, by (12) in Chapter XIV, 1, there 
exists a positive constant {J satisfying 

«(f-lXoAI, l)o + lXo(g, g)0)1/2 ~ «u-lXoAu, 14)0 + lXo(v, v)o 

-lXo In-III (A 14, v)o - (A v, u)ol- 2 In-II I (14, v)o 1)1/2 

~ (1- (J In-II) «u -lXoAu, 14)0 + lXo(v, v)0)1/2 
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for sufficiently large In I. 
The above estimate for the solutions {u, v} belonging to Ht f\ COO (R"') 

shows that such solutions are uniquely detennmed by {I, g}. 
Corollary. The product space Ht f\ H8 of vectors 

(:) = {u, v}" where uE H~ and vE Hg, (7) 

is a B-space by the nonn 

11(: )11= lI{u, v}' II = (B(u, 14) + lXo(v, v)0)1/2, (8) 

where B (j, g) is the extension by continuity with respect to the nonn 
11111 of the bilinear functional 

B(j,g) = (j-rxoAI, g)o defined for l,gERt. 

We know that B(u, 14)1/2 is equivalent to the nonn 1114111 (see Chap­
ter XIV, 1): 

!Xo() lIull~:s.:: B(u, u} < (1 + rxoy) lIull~. (9) 

Let the domain D (~) of the operator 

~= (~ ~) (10) 

be the vectors {u, v}' E H~ X Hg such that 14, v E H8 are given by (6). Then 
the Lemma shows that the range of the operator 

9 - n-l~, where 9 = (~ ~), 
contains all the vectors {I, g}' such that I, g E lit. Thus the smallest 
closed extension ~ in H~ X Hg of the operator ~ is such that the operator 
(9-n-1 i) with integral parameter n admits, for sufficiently large Inl, 
an everywhere in H~ X Hg defined inverse (9 - n-1 i}-I satisfying 

11(9 - n-1i)-111 ~ (1-Pin-II )-1. (ll) 

We are now prep3l'ed to prove 
Theorem. For any pair {I (x),g (x)) of COO (R"') functions, the equation 

(1) admits a Coo solution u(t, x) satisfying the initial condition 

14(0, x) = I (x), 14,(0, x} = g(x) (12) 
and the estimate 

(B (14, 14) + IXo (14,,14,)0)1/2 ~ exp (P I t I) (B (I, I) + IXo (g, g)0)1/2 . (13) 

Remark. Fonnula (9) shows that B (14,14) is comparable to the poten­
tial energy of the wave (= the solution of (1» u(t, x), and (14" 14,)0 is 
comparable to the kinetic energy of the wave u(t, x). Thus (13) means 
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that the total energy of the wave u (t, x) does not increase more rapidly 
than exp (P I t I) when the time t tends to ± 00. This is a kind of energy 
inequality which governs wave equations in general. 

Proof of Theorem. Estimate (11) shows that ~ is the infinitesimal gene­
rator of a group T, of class (Co) in H~XH8 such that 

IIT,II < exp(p Itl), -00 < t < 00. (14) 

By hypothesis we have, for k = 0, 1, 2, ... , 

~,,(:) = 2l" (:) E Cgo(R"') x Cgo (R"') ~ H~ xH8. 

Hence, if we put 

( u (t, X)) = T (I (X)) , 
v (t, x) , g(x) 

then, by the commutativity of ~ with T" we have 

!!:.. (U(t, X)) _ a"T, (/(X)) _ 9l" (U(t, X)) E HIXHo 
at" v(t, x) - at" g(x) - v(t, x) 0 ° 

for k = 0, 1, 2, ... Here we denote by a"T,/8t" the k th strong derivative 
in H~ X H8. Therefore, by H~ ~ H8 = L 2 (R"') and the strict ellipticity 
of the operator A, we see, as in the proof of Theorem 2 in Chapter XIV, 1, 
that u (t, x) is Coo in (t, x) for - 00 < t < 00, x E R"', and satisfies equa­
tion (1) with (12) and estimate (13). 

Remark. The result of the present section is adapted from K. YOSIDA 

[22]. Cf. ]. L. LIONS [1]. P. D. LAX has kindly communicated to the 
present author that the method of integration given in this section is 
very similar to that announced by him in Abstract 180, Bull. Amer. Math. 
Soc. 58,192 (1952). It is to be noted here that our method can be modified 
to the integration of wave equations in an open domain of a Riemannian 
space. There is another approach to the integration of wave equations 
based upon the theory of dissipative semi-groups. See R. S. PHILLIPS [8] 
and [9]. The method is ~losely connected with the theory of symmetric 
positive systems by K. FRIEDRICHS [2]. Cf. also P. LAX-R. S. PHILLIPS 

[3]. 

4. Integration of Temporally Inhomogeneous Equations of 
Evolution in a B-space 

We shall be concerned with the integration of the equation 

dx(t)/dt = A (t) x (t), a <t< b. (1) 

Here the unknown x(t) is an element of a B-space X, depending on a 
real parameter t, while A (t) is a given, in general unbounded, linear 
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operator with domain D (A (t) and range R(A (t) , both in X, depending 
also on t. 

T. KATO [3J, [4J was the first to make a successful attack on the 
problem of integration of (1). He assumed the following four conditions: 

(i) The domain D(A (t)) is independent of t and is strongly dense in 
X such that, for 1X > 0, the resolvent (1 -1XA (t»-1 exists as a bounded 
linear operator E L (X, X) with the norm < 1. 

(ii) The operator B (t, s) = (1 - A (t) (1 - A (S)-1 is uniformly boun­
ded in norm for t ~ s. 

(iii) B (t, s) is, at least for some s, of bounded variation in t in norm, 
that is, for every partition s = to < t1 < ... < tn = t of [a, bJ, 

10-1 

,I liB (tj+l' s) - B(tj' s) II ~ N(a, b) < 00. 
J=O 

(iv) B (t, s) is, at least for some s, weakly differentiable in t and 
8B (t, s)/8t is strongly continuous in t. 

Under these conditions, KATO proved that the limit 

exists for every Xo E X and gives the unique solution of (1) with the initial 
condition x (s) = Xo at least when Xo E D (A (s). 

Kato's method is thus an abstraction of the classical polygon method 
of Cauchy for ordinary differential equation dx (t)ldt = a (t) x (t). Although 
his method is very simple and natural in its idea, the proof is somewhat 
lengthy because it is concerned with a general partition of the interval 
[s, t]. KATO [3J has shown that the proof can be simplified when the space 
X is reflexive. For the reflexive B-space case, see also K. YOSIDA [28J. 

In this section, we shall be concerned with an equi-partition of a fixed 
interval, say, [0, IJ, independently of sand t, to the effect that KATO'S 
original method be modified so as to yield a fairly simplified presentation. 

We shall assume the following four conditions which are essentially 
the same as KATO'S conditions (i) through (iv) above: 

D(A (t) is independent of t and it is dense in X. (2) 

For every ). ~ 0 and t, 0 ~ t ~ 1, the resolvent (U - A (t»_1) 
exists as an operator E L(X, X) such that II(U - A (t)-lll ~ (3) 
~ ).-1 for ). > 0 . 

A (t) A (S)-l E L (X, X) for 0 ~ s, t ~ 1 . (4) 

For every x EX, 
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(t - S)-1 C (t, S) x = (t - S)-1 (A (t) A (S)-1 - I) x is bounded I 
and uniformly strongly continuous in t and s, t =!= s, and 

s-lim k . C (t, t - -.!..) x = C (t) x exists uniformly in t so that (5) 
k-¥,,, k 

C (t) E L (X, X) is strongly continuous in t. 

Remark. Condition (4) is stated for the sake of convenience. It is 
implied by (2) and the closed graph theorem, since A (s) is a closed linear 
operator by (3). Moreover, conditions (2) and (3) imply that A (s) is the 
infinitesimal generator of a contraction semi-group {exp(tA (s); t ;;;; O} 
of class (Co). Hence we have (see Chapter IX): 

exp(tA (s)x = s-limexp(tA (s) (I - n-1 A (s)-I)xuniformlyint, 0;;;; t;;;; 1; 
~ 

(6) 

exp(tl A (s) . exp(t2A (s) = exp«(tl + t2) A (s); (7) 

d exp~: (5) Y = A (s) exp(tA (s) y = exp(tA (s) . A (s) y, 1 
y E D(A (s), where djdt means differentiation in the strong (8) 
topology of X; 

s-lim exp(tA (s) x = exp(toA (s) x . (9) 
t--+t, 

We are now able to state our result. 

Theorem 1. For any positive integer k and 0 ;;;; s ;;;; t ;;;; 1, define 
the operator U" (t, s) E L (X, X) through 

U,,(t, s) = exp ((t - s) A C k 1)) 

UII(t, r) = UII(t, s) UII(s, r) 

for 
i-I i 
-k-;;;; s;;;; t;;;; k 

(1 ;;;; i ;;;; k), 

for 0;;;; r ;;;; s ;;;; t ;;;; 1 . 

Then, for every x EX and 0;;;; s;;;; t;;;; 1, 

1(10) 

s-lim UII(t, s) x = U(t, s) x exists uniformly in t and s. (ll) 
/1--+00 

Moreover, if y E D(A (0» then the Cauchy problem 

d~~t) = A (t) x(t), x (0) = y and x(t) E D(A (t), 0 ;;;; t;;;; 1 (1)' 

is solved by x(t) = U(t, O)y which satisfies the estimate Ilx(t)11 ;;;; IIyll. 
Proof. By (3), (6) and (10), we obtain 

IIUII (t, s) xII ;;;; IIxil (k = 1,2, ... ,; 0;;;; s;;;; t;;;; 1; x EX). (12) 

We also need, for the operator 

WII(t, s) = A (t) UII(t, s) A (S)-1 , (13) 
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the following estimate which is the key for the whole proof: 

IIW,,(t, s) xii ~ (1 + k-1N)2. exp(N(t - s)) '11xll , 
N = sup II(t - S)-IC(t, s)11 . 

0:05,1:;01,59=1 I (14) 

To prove this, we shall rewrite W,,(t, s), remembering (10) and the com­
mutativity A (S)-1 exp«t - s) A (s)) = exp«t - s) A (s)) A (S)-I: 

W,,(t, s) 
= A (t) A ([~t]tl U" (t, [~t]) A ([~t]) A ([kt] k 1 tl U" ([~t], [ktlk I) ... 

. . . A ([kSi + 2)A ([kSi + It1u ,,([kS~ +2, [kS~ + I)A ([kS~ + I)A ([~S]tl X 

X U" ([kSi+ I, s) A ([~S]) A (S)-I. 

Expanding the right side and again remembering (10), we obtain 

W,,(t,s) = (1 +C(t, [~])) {u,,(t,S) + J:1 U,,(t,u) C (u, u -B U,,(u,s) + 
",.",,[ks1 +1 

+ 1;1 U,,(t,V) C(v,v -}) 171 U,,(V,u) C(u,u -~) U,,(tt,s) + ... } X 
"0= [ks]+ 1 " .. =[ks]+ 1 

that is, 

W,,(t, s) = (1 + C (I, [~])) {U ,,(t, s) + W~I)(I, s) + W~2)(I, s) + ... } X 

X (1 + C ([~S] , s)) , 
[~1 (I) 

W~I)(I,s)= E U,,(t,u)C u,u-Ii U,,(u,s}; 
""=[ks)+1 

(15) 

W~"Hl)(t,S)= I/ U,,(t,u)C(u,u-~)Wi"')(u,s), 
" .. =[ks]+1 

(m = I, 2, ... , [kl] - 1) . 

We have Ilc (u, u -~) xii ~ ~ N Ilxll by (14). Hence from (12) we 

conclude that 
II W~I) (I, s) xii ~ (I - s) N Ilxll , 

IIW~"')(I, s) xii ~ (t m;)"' Nm Ilxll . 

Combined with the definition of N, we have proved (14) by (12). 
28 Yoslda, Functional Analysis 

(16) 
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Incidentally, we have proved that 

UII(t, S) Y E D(A (t» when Y E D(A (s») . (17) 
Hence 

U 11 (t, s) y = exp ((t - [~t]) A ([~t])) U 11 ([~] , s) y 

is differentiable at t '*} (i = 0, 1, ... , k) and 

dU·f/)Y =A ([~t]) UII(t,s)Y,YED(A(O). (18) 

Similarly, UII(t, s) y is differentiable at s '* ~ (i = 0,1, ... , k) and 

These derivatives are bounded and are strongly continuous in t and s 

except at t = ! and s = ! . For the proof, rewrite the right side of (18) 

as = e ([~tJ , t) W 11 (t, s) A (s) A (0)-1 X, Y = A (0)-1 x, and make use of 

(5), (9), (12), (14) and (15); similarly for (19). 

Since U,.(t, s) UII(s, 0) A (0)-1 X is strongly continuous in s by (9), 
we have, remembering the fact UII(s, 0) A (0)-1 X E D(A (s)) together 
with (18) and (19), 

(UII(t,O) - U,.(t, 0) A (0)-1 X = [U,.(t, s) UII(s, 0) A (0)-1 x]!:~ 
t 

= J ~ {U,.(t, s) UII(s, 0) A (0)-1 x} ds 
o 

t 

= J U,.(t,s) {A ([k;J) -A ([:;J)} A ([~5Jtl A ([~5J) UII(s,O) A (O)-l x ds 
o 

t 

= J - U,.(t, s) e ([:5], [k;l') A ek;]) A (S)-l WII(s, 0) x ds. 
o 

Hence, (12) and (14) yield 

II UII(t, 0) A (0)-1 X - U,.(t, 0) A (0)-1 xII 
t 

~ J lie ([:5], [k;J) (I + e ([k;J , s)) WII(s, 0) xii ds 
o 

t 

~ N J I [k;J - [:;] 1·11(1 + e ([k;J, s))WII(s, 0) xllds 
o 
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I 

~ Nfl [k;] - [:;]1· (1 + N Is - [k;] I) (1 + iN) exp(Ns) ·llxll ds. 
o 

This proves that 

s-lim U 11 (t, 0) A (0)-1 X exists uniformly in t, 0 ~ t ~ I, 
~ 

and so, by (2) and (12), we prove that, for every x EX, 

s-lim U 11 (t, 0) X = U (t, 0) x exists uniformly in t, 0 ~ t ~ 1 . 
~ 

Similar argument shows that, for every x EX, 

s-lim U 11 (t, s) X = U (t, s) x exists uniformly in t and s, 0 ~ s ~ t ~ 1 . 
~ 

(20) 

Therefore, by (9), we see that U(t, s) x is uniformly strongly continuous 
in t and s. 

We also prove easily, remembering (15), (16) and (20), that as k-+oo 
WII(t, 0) x strongly converges boundedly in t such that 

s-lim WII(t,O) x = W(t, 0) x = U(t, 0) x+ W(l) (t,O) x+ W(II) (t,O) x···, \ 
400 

I 

where W(l) (t, 0) x = f U (t, s) C (s) U (s, 0) x ds, 

o I (21) 

W("'+1) ~;,~) x = i U (t, s) C (s) W("'> (s, 0) x ds (m = 1,2, ... ) . 

Therefore, if y E D(A (0)) then the limits 

s~ UII(t, 0) Y = U(t, 0) y and s~ A (t) UII(t, 0) Y = W(t, 0) A (O).'Y 

both exist boundedly and uniformly in t and W (t, 0) A (0) Y is uniformly 
strongly continuous in t. A (t) being a closed linear operator by (3), we 
have proved that, for every y E D(A (0)) , 

U (t, 0) y E D(A (t)) and I 
A (t) U (t, 0) Y = st~ A (t) A ([~t]) -1 A ([~t]) U 11 (t, 0) y 22 

= W (t, 0) A (0) y, ( ) 

where the s-lim exists boundedly and uniformly in t, 0 ~ t ~ 1 . 

Hence, by letting k -+ 00 in 
I I 

UII(t, 0) Y - Y = f (~ UII(s,O)Y) ds = f A ([k;]) UII(s, 0) y ds 

We obtain 
o 0 

I 

U (t, 0) Y - Y = J A (s) U (s, 0) Y ds . 
o 
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As proved in (22), the integrand is strongly continuous in s so that we 
have proved that x (t) = U (t, 0) Y solves Cauchy problem (1)'. 

Remark. Theorem 1 and its proof are adapted from K. YOSIDA [30J. 
It is to be noted here that an inequality similar to our (14) was obtained 
in T. RATO [3J by solving a Volterra type integral equation. The appro­
priateness of the equi-partition of the interval [O,IJ as revealed in (10) 
is suggested by a paper by J. RISYNSKI [1 J. 

The approximation Xk (t) = Uk (t, 0) Y to the true solution x (t) 
= U (t, 0) Y of (1)' is a kind of difference approximation to the differen­
tial equation given in (1)'. However, the true difference approximation 
would be to use the scheme 

x (I;) - x (Ii-I) = A (t.) (t.) 
Ii - 1'-1 1 X 1 , 

(23) 

choosing the backward difference. This scheme gives 

x (tj) = (I - (tj - tj- I ) A (tj)-l x (t j -I ) . 

Therefore, suggested by (10), we are lead to the approximation 

V,,(t, s) = (I - (t - [k;l) A e~l) tl (1 - iA ([kt\ 1) t1 ... j 
... (1 -iA ([kSl/ 1) tl(I _ ([kS lk + 1 _ s)A ([k;l) t\ (10)' 

(0 ~ s ~ t ~ 1) . 

From the point of view of the numerical analysis, this approximation 
V" (t, s) would be much more practical than the approximation Uk (t, s), 
since in the construction of the approximation Uk (t, s) we have to appeal 
to the construction of exp(tA (s). 

We shall prove (Cf. the last section in T. RATO [10]). 
Theorem 2. Under the same conditions (2) through (5), the Cauchy 

problem given in (1)' is, for every initial data y E D(A (0), solved by 

x(t) = s-lim V,,(t, 0) y. 
"-->00 

Proof. From (3) it follows that 

11V,,(t, s) xii ~ Ilxll (k = 1,2, ... ; 0 ~ s ~ t ~ 1; x EX). (12)' 

We next see, from 
V,,(t, s) = V" (t, [kSlk + 1) (1 _ ([kS lk + 1 _ s) A ([kkSl))-l, 

that V" (t, s) y is differentiable at s =!= ~ (i = 0, 1, ... , k) and 

dVkd:,S)Y = _ Vk(t, s) (1 _ ([kS lk + 1 _ s) A ([kkSl))-IA ([kkSl)y. (19)' 

We see, by y E D(A (0) = D(A (s), (3) and (12)', that this derivative 

is bounded and strongly continuous in s except at s = ~. Since 
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V k (t, S) U" (S, 0) A (0)-1 X is strongly continuous in s, we obtain, remem­
bering the fact U" (s, 0) A (0)-1 X E D(A (0)), 

(U" (t, 0) - V" (t, 0)) A (0)-1 X = [V" (t, s) U ,,(s, 0) A (0)-1 x ]!:~ 
t 

= f d~ (V,,(t, s) U,,(s, 0) A (0)-1 x) ds 
o 

t 

= f VII(t, s) (A ek;J)-A ([k;J)(1 _ (EkSJ/ 1 _ s) A ([~J ))-1) X 

o 
X UII(s, 0) A (0)-1 X ds 

t 

= f VII(t, s) (I - (I - ([kSJk + 1 - s) A ([k;J)tl)(1 + C ([~J, s)) X 

o 
X WII(s,O)xds. 

Thus we have 

(24) 
t 

~ f 11(1 - (I - ekSJk + 1 - s) A ([k;J) tl)(1 + c ([k;J , s)) WII(s, O) xllds. 
o 

From (5) and (21), it follows that 

s-lim (I + C ([k;J , s)) W 11 (s, 0) X = W (s, 0) x uniformly in s, 0 ~ s ~ 1 . 
hoo (25) 

On the other hand, we have, for z E D(A (s) , 

_ (I - (I - ([k;J _ s) A ([~J))-l) Z 

= ([k;] _ s) (I _ ([k;J _ s) A ([k;J)) -1 A ([k;J) A (S)-l A (s) z . 

By (3) and (5), we see that this tends strongly to 0 as k --+ 00. The integrand 
in (24) is bounded in k and s. Thus, since D(A (s)) = D(A (0)) is dense 
in X, we see from (25) that 

s-lim (U,. (t, 0) -. VII (t, 0) A (0)-1 X = 0 . 
hoo 

Therefore, by virtue of Theorem 1, we have proved Theorem 2. 
Remark. The above proof is communicated from H. FUJITA who is 

suggested by the last section of T. KATO [10]. 
Other approaches. K. YOSIDA [23] and [28] devised the idea of 

approximating Cauchy problem (1)' by 

dx~(t) (1 )-1 ---;u=A(t) 1-k"A(t). xII(t),xII(O)=YED(A(O)),O~t~l. (I)" 

Applying the Cauchy polygon method to equation (I)", J. KYSINSKI [1] 
proved the strong convergence of {x,,(t)} to the solution of (1)'. Another 
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method of integration of (1) has been devised by J. J2.. LIONS [2]. He 
assumes the operator A (t) to be an elliptic differential operator with 
smooth coefficients depending on t, and seaks distributional solutions 
by transforming equation (1) into an integrated form in concrete func­
tion spaces such as the Sobolev space W"'/> (.0) and its variants. We also 
refer the reader to a paper by O. A. LADYZHENSKAYA-I. M. VISIK [1] 
which is motivated by a similar idea as Lions'. * 

5. The Method of Tanabe and Sobolevski 

Let X be a complex B-space, and consider the equation of evolution 
in X with a given inhomogeneous term 1 (t) : 

dx(t)/dt = Ax(t) + I(t), a::;;; t::;;; b. (1) 

Then the solution x (t) E X with the initial condition x (a) = Xo E X is 
given formally by the so-called Duhamel Principle from the solution 
exp ((t - a) A) x of the homogeneous equation dx/dt = A x: 

I 

x(t) = exp«(t - a) A) Xo + J exp «(t- s) A) '/(s) as. (2) 
a 

This suggests that a temporally inhomogeneous equation in x: 
dx(t)/dt= A(t) x (t), a::;;;t::;;;b, (3) 

may be solved formally as follows. We rewrite equation (3) in the form 

dx (t)/dt = A (a) x (t) + (A (t) - A (u)) x(t). (4) 

By virtue of the formalism (2), the solution x(t) of (4) with the initial 
condition x(a) = Xo will be given as the solution of an abstract integral 
equation 

x(t) = exp «(t - a) A (a)) Xo 
I (5) 

+ J exp «(t - s) A (s)) (A (s) - A (a)) x(s) ds. 
a 

Solving (5) formally by successive approximation, we obtain approximate 
solutions: 

Xl (t) = exp «(t - a) A (a)) xo, 

X,,+l (t) = exp «(t - a) A (a)) Xo 
I 

+ J exp «(t - s) A (s)) (A (s) - A (a)) x" (s) d.s. 
a 

Hence the solution x (t) of (5) would be given formally by 

• See also Supplementary Notes, p. 468. 
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I 

X (t) = exp «(t - a) A (a» Xo + f exp «t - s) A (s» R (s, a) Xo ds, (6) 

where 
II 

00 

R (t, s) = .I Rm (t,s) , 
m-l 

Rl (t, s) = (A (t) - A (s» exp «(t - s) .&l (s», s < t, 
=0, s~t, 

I 

Rm (t, s) = f Rl (t, a) Rm- 1 (a, s) da (m = 2,3, •.. ) . 
• 

(7) 

Justification for the above formal procedure of integration has been 
given by H. TANABE [2] using the theory of holomorphic semi-groups 
as given in Chapter IX, 10. We shall follow Tanabe's approach, and 
assume the following conditions: 

For each t E [a, b], A (t) is a closed linear operator 
with domain dense in X and range X such that 
the resolvent set (! (A (t») of A (t) contains a 
fixed angular domain e of the complex I.-plane 
consisting of the origin 0 plus the set {I.; -() < 
arg I. < () with () > :rc/2}. The resolvent (U - A (t»-1 
is strongly continuous in t uniformly in I. on any com-
pact set ~ e. 
There exists positive constants M and N such that, 
for I. E e and t E [a, b], we have II(U - A (t»-111 < N 
(11.1- M)-1 whenever I AI > M with N = 1 for real t .. 
The domain D(A (t») of A (t) is independent of t so 
that, by the closed graph theorem in Chapter II, 6, the 
operator A (t) A (S)-1 is in L (X, X). It is assumed 
that there exists a positive constant K such that 
IIA (t) A (S)-I- A (r) A (s)-111 < Kit - r I for s, t and 
rE [a, b]. 

Under these conditions, we can prove 
Theorem. For any xoE X and s with a < s < b, the equation 

dx(t)/dt= A (t) x(t), x(s) = xo, s < t < b 

(8) 

(9) 

(10) 

(3') 
admits a uniquely determined solution x (t) E X. This solution is given by 

x (t) = U (t, s) x (s) = U (t, s) xo, where (11) 

U (t, s) = exp «(t - s) A (s»+ W (t, s). 
I 

W (t, s) = f exp «(t - a) A (a» R (a, s) do with R (t, s) given (12) 

by (7). 
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For the proof, we prepare three lemmas. 
Lemma 1. R(t, s) satisfies, with a constant C, 

IIR(t, s) II < KC· exp (KC(t -s», 
and R (t, s) is strongly continuous in a :s;; s < t :s;; b. 

(13) 

Proof. By (8) and (9), we see that each A (s) generates a holomorphic 
semi-group which is given by (see Chapter IX, 10) 

exp (tA (s» = (2ni)-1 J e'" (AI - A (S»-1 dA, where C' is 
C' (14) 

a smooth contour running from 00 e-,e to 00 e,e in e. 
Hence, by A (s) (AI -A (s» = A (AI - A (S»-1 - I, we have, for (b - a) > 
t> 0, 

II exp (tA (s» II :s;; C and II A (s) exp (tA (s» II :s;; C e--1, 

where the positive constant C is independent of t > 0 (15) 

and sE [a, b]. 

We have, by (7), 

Rl (t, s) = (A (t) - A (s» A (S)-1 A (s) exp «(t - s) A (s», t > s, 

and so, by (10) and (15), 

(16) 

It is also clear, from (8) and (14), that Rdt, s) is strongly continuous in 
a :s;; s < t < b. Next, by induction, we obtain 

I 

IIR",(t. s)" < J IIRdt , a)" . IIR",-da, s) II da , 
I 

:s;; J (KC)'" (a- s)"'-2Qm - 2)-lda . ---

= (KC)'" (t - S}"'-l Om - 1)-1, 

and hence (13) is obtained. In the same way, we see that R (t, s) is strongly 
continuous in a :s;; s < t < b. 

Lemma 2. For s < T < t, we have 

IIR(t, s) - R(-r, s) II < C1 G _; + (t -T) log: :), 

where C1 is a positive constant which is independent of s, T and t. 
Proof. We have, by (7), 

Rl (t, s) - Rl (T, s) = (A (t) - A (T» exp «(t - s) A (s» 

+ (A (T) - A (s» [exp «(t - s) A (s» - exp «(T - s) A (s»]. 

(17) 
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By (10) and (15), the nonn of the first tenn on the right is dominated by 
K C (t - 1') (t - S)-I. =The second tenn on the right is 

1-$ d 
= (A (1') - A (s» f da exp (aA (s» = (A (1') - A (s)) A (S)-1 

"-$ 
1-$ 

X f A (S)2 exp (a A (s» da, 

and we have, by (15), 

11
7' A (S)2 exp (a A (s» da Ii < f' II (A (s) exp (2-1a A (s» )211 da T_ I ~s 

1-, 1 I-s 

< f (2CJa)2 da= 4C2 [a] = 4C2(t-T) (t-S)-1 (r-s)-I. 
T-S ~-s 

Therefore 
t--,; 

IIR1(t,s)-R1(T,s)11 <KC(1 + 4C)t_s' (18) 
On the other hand, by (7), 

_ t 

.I R",(t, s) - .I R",(T, s) = f R1(t, a) R(a, s) da 
",=2 ",=2 s 

.. t 

- f R1(T,a) R(a,s) da = f R1(t, a) R(a, s) da . .. 
T 

+ f (Rl (t, a) - Rl (1', a» R (a, s) da.. 
s 

The nonn of the first term on the right is dominated by 
t 

f IIRI (t, a) 1IIIR(a, s) II da ~ KlC2 exp (KC(b -a)) (t-T). 
T 

The nonn of the second tenn on the right is, by (13) and (18), dominated 
by 

T 

f IIRI (t, a) - Rl (1', a) IIIIR(a, s) II da 
• 

T 

< KlC2(1 + 4C) exp (KC (b - a)) f (t - 1') (t - a)-1 da 

t-s 
= K1(t-T) logt-' 

-1: 

Therefore we obtain (17). 

Lemma 3. For s < t, we have 

$ 

IIA (t) {exp «(t - s) A (t» - exp «(t - s) A (s))} II ~ C2, where 

C2 is a positive constant independent of s and t. 
(19) 
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Proof. We obtain, from (14), 

A (t) {exp «(t - s) A (t)) - exp «(t - s) A (s»} 

= (2ni)-1 ! e-'(I-.) A (t) (U - A (t))-l (A (t) - A (s)) (U - A (s))-ld,t. 

On the other hand, we have A (t) (U -A (t))-l = ,t(U --A (t))-l_ I, 
and so, by (9), 

IIA (t)(U - A (t))-ll/ ~ IA IA 1M + lfor ,t E 8 and t E [a, b]. (20) 

Hence we obtain (19) by (10) and 

II (A (t) - A (s)) (U - A (s))-lll 

~ II (A (t) - A (s)) A (s)-lll ilA (s) (U - A (s))-ll1. 

Proof of the Theorem. We rewrite W(t, s) given in (12) asfollows: 
I 

W(t,s) = f exp«(t-T) A(t)) R(t,s) dT 
• 

I 

+ f {exp«(t -1') A (1')) - exp«(t-T) A (t»} R(T, s) dT 
• 

I 

+ f exp «(t - 1') A (t)) (R(T, s) - R(t, s)) dT. 
• 

By approximating the integrals by Riemann sums and making use of the 
closure property of the operator A (t), we see that we can apply A (t) to 
each term of the right side of the above equality. For, by (19), we can 
apply A (t) to the second term of the right side; and also to the third term 
of the right side by (15) and (17); we also have, by A (t) exp«(t - 1') A (t)) 
= - d exp «(t - 1') A (t))/dT, 

I 

A (t) f exp «(t - 1') A (t)) R(t, s) dT = {exp «(t - s) A (t») - I} R (t, s). 
s 

Hence we obtain 

A (t) U (t, s) = A (t) exp «(t - s) A (s)) + {exp «(t - s) A (t») - I} R (t, s) 
I 

+ f A (t){exp«(t-T) A(T»)-exp«(t-T) A(t»)}R(T,S)dT (21) 
• 

I 

+ f A (t) exp «(t - 1') A (t»)(R(T, s) - R(t, s)) dT . 
• 

The above proof shows that A (t) U (t, s) is strongly continuous in 
a ~ s < t ~ band 

IIA (t) W(t, s) II ~ Ca and IIA (t) U(t, s) II ~ Ca(t - s)-1, 

where Ca is a positive constant independent of s and t. 
(22) 
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We next define, for s < (toe- h) < t, 
I-h 

443 

UII (t, s) = exp «(t - s) A (s» + f exp «(t -1') A (f» R (f, s) d.. (23) 
• 

Since a holomorphic semi-group exp (tA (u» is differentiable in t > O. 
we have 

a at UII (t, s) = A (s) exp «(t - s) A (s» + exp (hA (t - h» R (t - h, s) 

1-11 

+ f A (1') exp «(t -1') A (1'» R(., s) d •. 
• 

Hence we have, by (7), 

a at UII (t, s) - A (t) UII (t, s) = exp (hA (t - h» R (t - h, s) - Rl (t, s) 

1-11 

- f Rdt,.) R (1', s) d •. 
$ 

(24) 

By (8), (13) and (14), exp (hA (t - h» R (t - h, s) tends 'strongly to 
R (t, s) as h t O. Thus we have 

s-¥m (:t UII (t, s) - A (t) UII (t, s») Xo 

= (R (t, s) - Rl (t, s) -/ Rl (t, a) R (a, s) do') xo, Xo EX. 

(25) 

The right side must be 0 as may easily be proved by (7). Since we have 

s-lim A (t) UII (t, s) Xo = A (t) U (t, s) Xo 
h.j.O 

by the reasoning used in proving (21), we obtain from (25) 

s-lim aat U/I (t, s) Xo = A (t) U (t, s) Xo for t> sand Xo EX. (26) 
1I.j.0 

The right side of (26) being strongly continuous in t> s, we see, by 
integrating (26) and remembering s-lim U" (t, s) Xo = U (t, s) xo ' that 

1I.j.0 

a at U (t,s) Xo = A (t) U (t, s) Xo for t> sand Xo EX. (27) 

Therefore, x(t) = U(t, s) Xo is the desired solution of (3'). The uni­
queness of the solution may be proved as in the preceding section. 

Comments and References 

The above Theorem and proof are adapted from H. TANABE [2J. To 
illustrate his idea we have made Tanabe's conditions somewhat 
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stronger. Thus, e.g., the condition (9) may be replaced by a weaker 
one: 

IIA (t) A (S)-I- A (r) A (s)-111 < KIlt - riG with 0 < e < 1. 

For the details, see the above cited paper by H. TANABE which is a refine­
ment of H. TANABE [3] and [4]. It is to be noted that the Russian school 
independently has developed a similar method. See, e.g., P. E. SOBOLEVSKI 
[1] and the reference cited in this paper. Cf. E. T. POULSEN [1]. 

Komatsu's work. H. KOMATSU [1] made an important remark re­
garding Tanabe's result given above. Let .1 be a convex complex neigh­
bourhood of the real segment [a, b] considered as embedded in the com­
plex plane. Suppose that A (t) is defined for tELl and satisfies (8) and (9) 
in which the phrase "t E [a, b]" is replaced by "t ELI". Assume, more­
over, that there exists a bounded linear operator Ao which maps X onto 
D, the domain of A (t) which is assumed to be independent of tELl, in a 
one-to-one manner and such that B (t) = A (t) Ao is strongly holomorphic 
in tELl. Under these assumptions, KOMATSU proved that the operator 
U (t, s) constructed as above is strongly holomorphic in tELl if 

I arg (t - s) I < ()o with a certain ()o satisfying 0 < ()o < 1l/2. 

The result may be applied to the "forward and backward unique con­
tinuation" of solutions of temporally inhomogeneous diffusion equations 
as in Chapter XIV, 1. In this connection, we refer to H. KOMATSU [2], 
[3] and T. KOTAKE-M. NARASIMHAN [1]. 

Kato's work. To get rid of the assumption that the domain D (A (t)) 
is independent of t, T. KATO [6] proved that, in the above Theorem, we 
may replace condition (10) by the following: 

For a certain positive integer k, the domain D «(--A (t»l/i) 
is independent of t. (Here (-A (t))!/k is the fractional 
power as defined in Chapter IX, 11.) Further, there 
exist constants KB > 0 and r with 1 - k-1 < r < 1 
such that, for s, t E [a, b],11 (-A (t»l/k (-A (S))I/11 -11\ 
~ KBlt-sl"· 

(10)' 
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Tanabe's and the Kato-Tanabe recent work. With the same motivation 
as KATO,H. TANABE [1] devised a method to replace condition (10) by 

A (t)-l is once strongly differentiable in a < t :s b 
and such that. for positive constants Ka and iX, 

IldAj:)-l - dAj:)-lll ~ KaJt-sJ". 

Further, there exist positive constants Nand {! with 
o < {! ~ 1 such that 

II !t (AI - A (t))-111 < N IA Jv-1, Q < 1. 

(10)" 

For details, see KATO-TANABE [8]. Their point is to start with the first 
approximation exp «(t-a) A (t)) Xo instead of exp «(t-a) A (a))xo· 

Nelson's work on Feynman integrals. The semi-group method of 
integration of Schrodinger equations gives an interpretation of 
Feynman integrals. See E. NELSON [2]. 

The Agmon-Nirenberg work. Agmon-Nirenberg [1] discussed the 

behaviour as t t 00 of solutions of the equation ! ~~ -- Au = 0 in 

some B-spaces. 

6. Non-linear Evolution Equations 1 (The Komura-Kato Approach) 

Let X be a real or complex Banach space, endowed with a semi-scalar 
product [x,y] such that (see Chapter IX,S) 

[a1x1 + a2x2,y] = a1 [x1,y] + a2 [X2'Y]' l[x,Y]I~ Iixll'IIyII and 

[x, x] = IIxW, (1) 

and consider a family {Tt ; t;;;; O} of non-linear mappings of X into X 
satisfying conditions: 

{ Tt Ts = Tt+ s. To = the identity mapping I (semi-group property), 

II T t X - TtY II ~ "x - Y" (contraction property) , 
and strong continuity in t of T t. As in the case of linear mappings, we 
define the infinitesimal generator A of {T t; t;;;; O} by 

A . x = s-lim h-1 (Ttx - x) . 
ht O 

Then A must be dissipative in the following sense: 

Re [A x - Ay, x - y] ~ 0 . (2) 

The proof is easy. since we have 

Re [h-1 (T"x - x) - h-1 (T"y - y), x - y] = h-1 Re [T"x - T"y, x - y] 
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- h-l [x - y, x - yJ ~ h-l II T"x - T"yll' IIx - yll - h-Illx _ ylll 

~ h-Illx - ylll - h-Illx - ylll = O. 

A celebrated example due to Y. K5MURA [IJ is this: Let X = RI with 
[x, yJ = x . y and IIxli = lxi, and 

{max (x - t, 0) for x > 0 , {- 1 for x > 0 , 
Ttx = Ax = 

x for x ~ 0 , 0 for x ~ 0 . 

By virtue of (2) we can prove that, for all A > 0, the mapping (I - AA) of 
D(A) into X has an inverse fA = (I - AA)-l, because 

Xl - AAxl = Z = XI - AAxI 
implies 

0= [(Xl - AA Xl) - (XI - AA X 2), Xl - x2J 
= [Xl - XI' Xl - x2J - A [A Xl - Ax2, Xl - x2J so that 

0= IIXI - x2 11 1 - A Re [A Xl - A x 2, Xl - x2J ~ II Xl - x211 2,i.e., Xl = Xz' 

Therefore, the theory of linear contraction semi-groups (Chapter IX, 8) 
suggests us to approximate the non-linear evolution equation 

d~?) = Au(t) for t~ 0 with u(O) = xoED(A)by equations (A> 0) 

du(A) (t) . 
dt =AAU(A)(t) for t~ 0 wIth U(A) (0) = xo' where AA=A-I (h-l), 

under the assumption that D(h) = R(I - AA) = X, expecting that we 
shall have u (t) = s-lim U(A) (t). 

,qo 
In the abov~ example of K5MURA, we have D (fA) = (- 00, OJ U (A, 00) 

which does not coincide with X = RI. To obtain D (f)J = X = RI, it will 
be necessary to extend A to a multi-valued mapping A by 

1 
-1 for x> 0, 

A X = - [00' 1] for X = 0, 
for x< 0, 

for which the dissipative property is preserved in the following sense: 

Re (YI - Y2' Xl - Xz) ~ 0 for any {Xi' Yi} with Yi E A Xi (i = 1,2). (2)' 

In this way, we are led to the following setup for our further discus­
sions. Let X be a Banach space whose dual space is denoted by X'. An 
element of X x X will be written in the form {x, y} where X and yare 
both EX. For a subset A of X x X, the following notations will con­
veniently be used: 

1) D(A) = {x; {x,y} EA for somey}, 

2) R(A) = {y; {x,y} EA for some x}, 
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3) A-I = {{y, x}; {x,y} EA}, 

4) AA = {{x, AY} ; {x, y} EA and for real A}, 

5) A + B = {{x,y + z}; {x,y} EA and {x, z} EB}, 

6) Ax = {y; {x,y} E A for a fixed x E D(A)}, 

7) IIAxll=inf{llyll;yEAx}, 

8) fJ. = (J - AA)-l = {{x - AY, x}; {x,y} EA} for real A and 
J = {{x, x} ; x EX}, 

9) AJ. = {{x - AY, y}; {x, y} EA} ; 

we have 
AAJ. = ];. - J . 
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(3) 

If Ax consists of a single element for all xED (A), then A is the graph 
of a uniquely determined function (= single-valued mapping) from D (A) 
with values in X; in this case, we may identify the set A and the above 
function. 

To state the notion of dissipative sets in X x X, we give 

Definition 1. By the duality map of X into X' we mean the multi­
valued mapping F from X into X' defined by 

F (x) = {I EX'; (x, I) = IIxll2= II/I1Z}. (4) 

That F(x) is not void is clear from the HAHN-BANACH theorem. If X is a 
Hilbert space, then F. RIEsz' representation theorem asserts that F (x) 
consists of x alone and (y, F (x) = (y, x), the scalar product of y and x. 

Definition 2. A set A in X X X is called a dissipative set if, for arbitrary 
two points {Xl' Yl} and {Xi' Yi} of A, there exists an I E F (Xl - Xi) such 
that Re (Yl - Y2' I) ~ O. 

Remark. A is a dissipative set iff - A is a monotonic set in the sense of 
G. MINTY [1]. 

We also give 

Definition 3. Let D be a subset of X, and T be a function from D 
into X. T is called a Lipschitzian mapping (function) with Lipschitz 
constant k > 0 if II T Xl - T XzlI ~ k IIxl - XiII for all Xl' Xz ED. If we can 
take k = 1, then T is called a contraction mapping (function). We have 

Lemma 1 (T. KATO [l1J). Let x, y EX. Then IIx - Ayll;;;; IIxll for 
all A > 0 iff there exists an I E F (x) such that Re (y, I) ~ O. 

Proof. The assertion is trivial if x = o. So we shall assume x =1= 0 in 
the following. If Re (y, I)~ 0 for some I EF(x), then IIxliz = (x, I) 
= Re (x, I) ~ Re (x - AY, I) ~ IIx - Ayll '11/11· Since IIxil = Iltll, we 
obtain IIxll ~ II x - AY II· 
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Suppose, conversely, that Ilxl/~ Ilx - Ayll for all A> 0. For each 
A>O, let t).EF(x-Ay) and put g).=/"/llt).11 so that Ilg).ll= 1. Then 
Ilxll~ Ilx - Ayll = (x - AY, g).> = Re (x,g).> - A Re (y, g).> ~ Ilxll- A Re 
(y, g;> by Ilg;.11 = 1. Hence 

lim inf Re (x, g;.> = Ilxll and - A Re (y, g).> ~ 0. qo 

Since the closed unit sphere of the dual space X' is weakly* compact (see 
Theorem 1 in the Appendix to Chapter V, 1) the sequence {gl/n} has a 
weak* accumulation point g E X' with Ilgll ~ 1. Thus we see that g must 
satisfyRe (x, g > ~ Ilxll and Re (y, g> ~ 0, that is, we must have Ilgll = 1 
and (x, g> = Ilxll. Therefore t = Ilxll' gsatisfies t EF(x) and Re (y, t>~ 0. 

Corollary. A is a dissipative set iff 

II(XI - AYI) - (X2 - AY2) II~ Ilxl - x211 whenever A> ° 
and {Xi,Yi} EA (i = 1,2) . 

We have the following 

(5) 

Proposition 1. If A is a dissipative set and A> 0, then]). and A). are 
both single-valued mappings, and 

IlhxI - hX211~ Ilxl - x211 for Xl' x2 ED(h) , (6) 
2 

IIA).XI - A;hll ~ T Ilxl - x211 for Xl' x2 ED(A).) = D(h)· (7) 

moreover, A). is dissipative and 

A]).x=A(f).x)::JA).x for xED(h), 

IIA).xll~ IIAxl/ for all X ED(A) (\ D(h) . 

(8) 

(9) 

Proof. That ]A and A). are both single-valued is clear from (5). We 
also have (6) by (5), and thus (7) is proved by (3) and (6). Next let 
t EF(XI - x2)· Then we obtain, by (3), (4), and (6), 

Re (A).XI - A).X2' t> = A-I Re «(f).XI - Xl) - (f).X2 - x2), t> 

= A-I Re <l)'XI - ])'X2' t> - A-I (Xl - x2, t> ~ A-I I I]). Xl - ]).x211·lltll 

- A-I (Xl - X2, t>~ A-IIIXI - x211 2 - A-IIIXI - x211 2= 0. 

This proves that A). is dissipative. (8) is clear. (9) is proved as follows. 
By (3) and (6), we obtain, for any yEA X, 

AIIA).xll = Ilhx - xii = I 11). X - ]).(x - AY) II ~ Ilx - (x - ;'y)11 = AI/yll· 

Lemma 2 (Y. KOMURA [IJ). Let A be a dissipative set S;;Xx X, and 
assume that D(f).) = X for a A> 0. Then D(fl') = X for every I' > 0 
with ° ~ I (I' - A)/p.l < 1. 



6. Non-linear Evolution Equations 1 449 

Proof. Take any point x E X, and consider a single-valued mapping T 
defined by 

Xj z-+ Tz=f;.(; X+ 1-';). z). 

Since};. is a contraction mapping by (6), we obtain 

IITz- Twll~ll(; x+ 1-';). z)-(;x+ 1-';).w)II=II-';).I·llz-wll. 
that is, T is a Lipschitzian mapping with Lipschitz constant 

oc= I(fl-A)/fll< 1. 

Thus, for n > m and for any point z E X, we have 

IITnz - Tmzll~ ocmllTn-mz - zll~ ocm(IITz - zll+ lIT2z - Tzil + ... ) 
~ ocm (1 + oc + oc2 + ... ) . IITz - zll~ ocm (1- oc)-IIITz - zll. 

Hence, by the completeness of the space X, s-lim Tn Z = Y esists in X. 
,.....0 

T being continuous as a Lipschitzian mapping, we obtain T . Y = y by 
y = s-lim Tn+lz = s-lim T(Tnz). Hence 

n~O n---+-O 

y = f;. (~ X + 1-';). y) = f;. (Y - A G Y - ~ x)) , 
that is, G Y - ~ x) E Ay, 

and so y - flz = x with z E Ay. This proves that f,..x = y. Since x was 
arbitrary, we must have D U,..) = X. 

Corollary. Repeating the above argument, we can prove that 
DU,..) = X for all fl> O. 

Weare now able to give 

Definition 4. A dissipative set A ~ X x X is called a hyperdissipative 
set if D U;.) = X for some A. > 0 and hence for all A > O. 

Proposition 2. A hyperdissipative set A ~ X x X must be maximally 
dissipative in the sense that there does not exist a dissipative setB ~ X x X 
which contains A as a proper subset. 

Proof. Let us assume that a dissipative set B ~ X x X contains A as 
a subset. Let y E B x. Then, since A is a hyperdissipative set, there exists 
a point {Xl' YI} E A such that x - y = Xl - YI' Since A ~ B, we must 
have {Xl> YI} E B and hence we obtain X = Xl and Y = YI by (5) applied to 
the dissipative set B. 

We have thus prepared tools for the exposition of KOMURA'S ap­
proach to the integration in Hilbert space of non-linear evolution 
equations. Let H be a real or complex Hilbert space with the scalar 

29 Yosida, Functional Analysis 
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product (x, z), and A ~ H x H be a hyperdissipative set. We shall be 
concerned with strong solutions 01 the initial value problem: 

1 d~. !t) E A u(t) for almost every t on the interval [0, (0), 
(10) 

u (0) = Xo E D (A) , 

where u(t) defined on [0, (0) with values in H is called a strong solution 
of (10) if u(t) is strongly absolutely continuous in t, u(t) is strongly dif­
ferentiable almost everywhere on [0, (0) such that the strong differential 
quotient au (t)/at is Bochner integrable on any compact interval of t and u 
satisfies (10). We shall approximate this problem (10) by 

1 du(A){t) 
dt - AAU(A) (t) = 0 for all t on [0, (0) (A> 0), 

U(A) (0) = XA = Xo - AYo with a fixed Yo E A xo. 

(10)' 

Since AA with A> 0 is a Lipschitzian mapping, we see that equation (10)' 
admits a uniquely determined solution u(.\) (t) which can be obtained by 
E. PICARD'S successive approximation: 

, 
u~~ I (t) = XA + f AAU~A)(s) as (n = 0, 1 ... ; U&A)(t) = X,\) . (10)" 

o 

Lemma 3 (Y. KOMURA [I]). For the solution u(.\) (t) of (10)', we have 
the following estimates: 

II :t U(A) (t) II ~ II d~ U(A) (s) II for 0 ~ s < t, (11) 
and 

Ilu(A) (t) - u(l') (tllI2~ ((A - p,)2 + 4t (A + p,»IIYoI12. (12) 

Proof. Putting u(.\) (t + h) = V(A) (t) with h > 0, we obtain 

d~ Ilv(A) (t) - U(A) (t) 112 = 2 Re ( :t V(A) (t) - :t U(A) (t) , V(A) (t) - U(A) (t») 

= 2Re (AAV(A) (t) - AAU(A) (t), V(A) (t) - U(A) (t» ~ 0 

by the dissipative property of AA. Thus Ilu(A) (t + h) - u(A) (tlll is monoton 
decreasing in t and so we obtain (11). Therefore we have 

II :t U(A) (t) II = IIAAU(A) (t)ll~ IIA,\u(A) (O}II = IIAA(XO - AYO) I I = IIYoll· (13) 

By a similar argument as above, we obtain, by AAA = fA - I, 
IIU(A) (t) - u(l') (tllI2-lIu(A) (0) - u{/') (0)112= Ilu(A) (t) - u{/') (t)112_II(A- p,) Yol12 

, 
= f :5 Ilu(A) (s) - u(l') (s)1I2 as 

o 



6. Non-linear Evolution Equations 1 

t 
= 2 J Re (A AU(A) (s) - Apu(P) (s), utA) (s) - u(p) (s)) ds 

o 
t 

= 2 J Re (AAU(A) (s) - Apu(P) (s), jAU(A) (s) - jpu(P) (s)) ds 
o 

t 
- 2 JRe (AAU(A) (s) - Apf.4(P) (s), AAAU(A) (s) - pApu(P) (s)) ds. 

o 

451 

The first term on the extreme right is non-negative, because A is a 
dissipativesetinH x H andAAu(A) (s) EAjAU(A) (s) by (8). The second term 
on the extreme right is, by (13) smaller than 4t (A + p)I/Yo112 so that 

Ilu(A) (t) - u(P) (t) II' - (p - A)III/YoII'~ 4t (A + p) I/Yol/-. 

This proves (12). 

Corollary. 

s-lim utA) (t) = u(t) exists uniformly on every compact set of t. (14) 
A.j.O 

s-limjAu(A'(t) = u(t) uniformly on every compact set of t. (15) 
A.j.O 

Proof. (14) is clear from (12). We also have (15) from (14), since we have 

IIl.aU(A) (t) - U(A) (t)1/ = AIIAAu(A) (t)II~ AI/Yoll by (13). 

Lemma4 (Y. KOMURA [1]). u(t) ED(A) for all t~ O. 

Proof. By (8) we have, for fixed t > 0, 

{l.aU(A) (t), AAU(A) (t)} E A for every A> 0 . (16) 

Thus, setting AAU(A) (t) = W(A) (t), we obtain Ilw(A) (t)ll~ I/Yoli by (13). Hence, 
by the local weak compactness of the Hilbert space H, there exists, for 
fixed t > 0, a sequence {An} of positive numbers satisfying An to and such 
that 

w-lim w(An) (t) = w (t) H with IIw (t) II ~ IIYoII . (17) 

Since A is a dissipative set, we have, for every point {x, y} E A, the 
inequality Re (y - w(A,,) (t), x - j A" u(A,,) (t)) ~ O. Hence, by letting n too, 
we obtain Re(y - w(t), x - u(t)) ~ 0 by (15). This proves that 

{u(t), w(t)} E A , (18) 

because A is a maximally dissipative set ~ H x H as proved in Pro­
position 2. 

Lemma 5 (Y. KOMURA [1]). u(t) is strongly absolutely continuous in 
t, and it is strongly differentiable at almost every t ~ O. 

29· 
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Proof. By (13), we obtain, for 0 ~ tl < t2 < ... with .E (tHl - ti ) < 00, 

• " .. 
IluA(tHl) - utA) (tt)ll ~ J II :5 utA) (S)II ds ~ (tHl - tt) ·IIYoll· 

" Therefore, by letting A. to, we obtain 

.E Ilu(ti+I) -u(ti)II~.E (ti+I - ti ) ·IIYoli. (19) 
• i 

This proves the strong absolute continuity in t of u (t) . 
Next let 0 < to < 00. Then, by (19), the set {u (t); 0 ~ t ~ to} is com­

pact in H, hence it is separable. Therefore, without losing the generality, 
we may assume that H is separable. Thus let {x,,} be a strongly dense 
countable sequence of H. Each numerical function v,,(t) = (u(t), x,,) is 
absolutely continuous by (19), and so there exists a set N" of measure 
zero such that v,,(t) is differentiable on [0, to]-N". In view of (19), we see 

00 

that u (t) is weakly differentiable on [0, to] - UN", and the weak 
"=1 

derivative u' (t) satisfies Ilu' (t)ll~ IIYoll. H being assumed separable, the 
weakly measurable function u' (t) is strongly measurable by PETTIS' 

theorem (Chapter V,4) and so, by the boundedness condition 
Ilu'(t)ll~ IIYolI, u'(t) is Bochner integrable. Therefore, by BOCHNER'S 

theorem (Chapter V,5), , 
u(t) - u(O) = J u'(s) ds (20) 

o 

is strongly differentiable for almost every t E [0, to] with u' (t) as the 
strong derivative. 

We are now able to prove Y. KOMURA'S 

Theorem. u(t) is a strong solution of the initial value problem (10). 

Proof. For a fixed positive number to' we define the space £2 ([0, to]' H) 
of H-valued strongly measurable function x = x(t) such that 

4 4 J Ilx(s)l12 ds< 00, and normed by IIxl1 2 = J Ilx(s)l12 ds. It is easy to 
o 0 

show that L2([O, to]' H) is a Hilbert space with the scalar product 

" (x,y) = J (x(s),y(s)) ds, (21) 
o 

where (x(s),y(s)) is the scalar product in H of x(s) andy(s). 
Thus our u = u(t) can be considered as an element of £2([0, to]' H), 

because u (t) is a strongly consinuous H -valued function. Moreover, the 
hyperdissipative set A can naturally be extended to a hyperdissipative 
set A£; L2([O, to]' H) x £2(0, to]' H) by defining 



6. Non-linear Evolution Equations 1 453 

A x = {,Y E L2 ([0, to], H); Y (t) E A x (t) for almost every t E [0, to]}. (22) 

We have, by (16) and (13), 

{J,,;'(A) , ~;(A)} E A for every A> 0 . (16)' 

Again by (13), {Z;(A); A > O} is a norm bounded subset of the Hilbert 

space L2([0, to]' H). Hence there exists a sequence {An} of positive 
numbers satisfying An to and such that 

w-limA.I,.;!.I,.) = iii EL2([O, to], H). (17)' 

Moreover, we have, by (15), 

s-lim J.I,.'J.I,.) = u E L2([0, to]' H) . 
,. ..... 00 

(15)' 

A is a hyperdissipative set by the fact that A is a hyperdissipative set. 
Thus, by Proposition 2, A is a maximally dissipative set. Therefore, we 
have, as in the proof of Lemma 4, 

w (t) E A u (t) for almost every t E [0, to] . (18)' 

On the other hand, we have 
t 

U(A,,) (t) - u(.I,.) (0) = J :s u(.I,.) (s) ds 
o 

and so, for every x E H, , 
(u(.I,.) (t), x) -{x.l,.' x) = J (:s u(.I,.) (s), x) ds (for O~ t~ to) 

o 

by Collollary 2 in Chapter V,S. Hence, we obtain, by (14) and (17)', 
, t 

(u(t), x) - (xo' x) = J (w(s), x) ds = (J w(s) ds, x) . (23) 
o 0 

Since x E H and to > 0 were arbitrary, we obtain, by (23), (18)' and (20), 

that d~it) = u'(t) = w(t) EAu(t) for almost every t~ O. 

Remark. T. KATO [11] extended the above Theorem to the case 
where X is a Banach space whose dual space is uniformly convex. An 
almost complete version of the Hille-Y osida theorem for non-linear con­
traction semi-groups was devised and proved in Hilbert space by Y. 
KOMURA [2]. Cf. M. G. CRANDALL-A. PAZY [1], T. KATO [12] and J. R. 
DORROH [1] cited in § 5 of Y. KOMURA [2]. In this paper of KOMURA, the 
most crucial point is the proof that the infinitesimal generator is densely 
defined, and this proof was later fairly simplified by T. KATO [12]. 
Recently, H. BREZIS has published a comprehensive treatise on non-
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linear semi-groups in Hilbert space. This book (H. BREZIS [I]) contains 
an extensive bibliography which is not necessarily restricted to the 
Hilbert space. 

7. Non-linear Evolution Equations 2 (The Approach through the Crandall­
Liggett Convergence Theorem) 

Let X be a real or complex Banach space, and A the infinitesimal 
generator of an equi-continuous semi-group {T t; t ~ O} of linear operators 
E L (X, X) of class (Co). Then the Lemma in Chapter IX, 12 gives the 
proof of E. Hille's approximation of T t : 

lFor every Xo EX, Ttxo = s- lim (1 - n-1tA)-n . xo, and the 
,,-+00 (I) 

convergence is uniform on every compact interval of t. 

The titled convergence theorem is suggested by (1). It reads as follows. 

Theorem 1 (M. CRANDALL- T. LIGGETT [2J). Let A be a hyperdis-
sipative set ~ X x X. Then, for all Xo ED (A), 

I s- lim (] tIn) n • Xo exists uniformly on every compact interval of t, 
,,-+00 

where];. = (1 - AA)-l as in the preceding Section 6. 

The following proof is adapted from S. RASMUSSEN [IJ which seems 
to give a good modification of the original proof by CRANDALL-LIGGETT: 

Proof. The first step. We shall prepare the following (2)-(4): 

IIA.<xll~IIAxll forall xED(A), andforallA>O, (2) 

Illi~ lA, X - xII = lI];.n 1 An-, ... ];., x - xII ~ C~ Ai) IIA xII 

forallxED(A)andforall Ai>O (i=I,2, ... ,n). 

(3) 

l",(i x+ A AI-' lAx) =];.x forallxEXandforallA,p,>O. (4) 

(2) was proved in the preceding Section 6. The proof of (3) is obtained by 
the contraction property of lA, (2) and AA" = ];. - 1 as follows. 

~.~ 1I];',x - xII ~.~ IIAiA", xII ~ (~ Ai) IIA xII· 

We next prove (4). Since A is a hyperdissipative set, there exists, for any 
x E X and A > 0, a point {Xl' YI} E A such that x = Xl - AYI' Thus 
];.x = Xl and so 
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proving that l,,(xi - "'YI) = Xl = lAX. 
The second step. Let xED (A) and A> O. Let furthermore {"' .. ; n ~ I} 

be a sequence such that 0 < "' .. ~ A for all n. We then define 

A .. 'm = 11.41 PIX - J!xll for n, m = 0,1,2, ... 
11=1 

(We set .il 1 PI = I = l~ for convenience.) 
1=1 

(5) 

Moreover, let .. 
t .. = E"'i(n=O, 1,2, ... ;to =0) (6) 

i=1 

and 
a .. = ", .. /A and fJ .. = 1 -a .. = (A - ", .. )/A for n = 1,2, . .. (7) 

Then we have 

A .. , m ~ {[(mA - t .. )2 + mA2]1/2+ [(mA - t .. )2+ At .. ]l/!} /lA x/l. (8) 

For the proof, we first show 

A .. 'm~ oc .. A .. -I,m-1 + fJ .. A"-l'm for n, m = 1,2, . . . . (9) 

In fact we have, by (4) and the contraction property of 1 I'n' 

A .. 'm = Ill~l"jX - J!xll 

= Ill~l PIX - 1"" ('; J!-l x+ ,t ~ Il~ lA x)11 

~ Ili~J"jX -('; lA-1 x+ ,t ~Il. lAx)1/ 

~ oc., lIi~J ",X - lA-1 xII + fJ .. lli~J PIX - J!xll 

We shall prove (8) by (9) and induction. We start with the proof that 
Ao'm satisfies (8) for all m = 0, 1, ... In fact, we have 

Ao'm = /Ix - J!x/l~ mAIIAx/i (by (3) and (5)) 

~ {[mA - to)2+ mA2]1/2+ [(mA-to)2+Ato]1/2}/iAx/i (sinceto=O) 

Let now nand m be arbitrary and assume that A .. 'm and A .. 'm-l both 
satisfy (8). We shall then show that A"+l'm satisfies (8). In fact, we have 
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A"+I,m ~ OCn+i A",m-l + t+l An'm (by (9)) 
~ OCn+1 {[((m - I)), - t,,)2+ (m - 1)).2]1/2+ [((m - I)), - tn)2+ ).tn]I/2}IIAxil 
+ P"+i {[(m). - tn)2+ m).2]1/2+ [(m). - t,,)2+ ).tn]I/2}IIAxll 

~ {OC"+i [((m - I)), - tn)2+ (m - 1)).2]1/2+ Pn+i [(m). - t,,)2+ m).2]1/2}IIAxil 
+ {ocn+d((m - I)), - tn )2+ ).tn]I/2+ Pn+i [(m). - tn)2+ At,,]1/2} IIA xII 

~ (OCn+i + Pn+i)l/2{OCn+1[((m - I)), - tn)2 + (m - 1)).2] + 

+ P"+i [(m). - tn)2 + m).2W/2 IIA xII 
+ (OCn+i + Pn+i)l/2 {OCn+i [((m - I)), - tn)2+ )'t,,) 
+ Pn+l [(m). - tn)2+ AtnJF/2 IIA xII (by SCHWARZ' inequality) 

= {m2).2 -OCn+i2m).2 + OCn+i).2- 2m).tn + OCn+i 2).t" + t~ 

+ m).2 - OCn+i).2}!/2 IIAXII 

+ {m2).2_ OCn+i2m).2+ OCn+i).2 - 2mAtn + OC"+i2At" + t~ + ).tn}!/2 IIA xII 

(by Pn-l = 1 - ocn_1) 

= {m2).2_ ,un+i2m).+ ,un+i).-2m).tn+2,un+itn+ t~ + m).2- ,un+i).}!/211A xii 
+ {m2).2 - ,un+l2m). + ,un+i). - 2mAtn + 2,un+itn + t~ + ).tn}!/2 IIA xII 

= {(m). - (,u"+i + tn))2 - ,u;+ 1+ m).2}!/2I1Axll 
+ {(m). - (,u,,+1 + t,,))2 - ,u~+ 1+ ).(tn + ,un+i)}1/2IIAXII 
~ {[(m). - tn+i)2 + m).2]1/2 + [(m). - tn+i)2 + Atn+i]1/2} IIA xII ' 

and we have thus proved that An+l>m satisfies (8). We can also prove that 
A".o satisfies (8) for all n = 1,2, ... In fact, we obtain by (3) 

An.o= II ,!JJUjx - x /I ~,~,u •. IIAxll = tnllAxil 

~ {[(O . ). - tn)2 + 0 . ).2]1/2 + [(0 . ). - tn)2 + At,,]1/2} IIA xii. 

Therefore, we have completed the induction and hence (8) is proved. 
The third step. Let t be a positive number, and consider a partition LI 

of the closed interval [0, t]. 

LI : 0 = to < tl < ... < t'_1 < t. < ti+l < ... < t" = t . 
For this partition, we define 

LI, = (t. - t._I ) (i = 1,2 •... ,n) and ILII = m~x (t. - t'_I)' 
I :;;;.:0; .. 

Take another partition 

LI' : 0 = t~ < t; < ... < t; _ I < t; < t; + I < ... < t~ = t 
and define 

LI; = (tj - tj -I) (j = 1, 2, ... ,k) and ILI'I = max (t; - t; -I) 
I~i:ii " 
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Then, for Xo ED (A), we obtain, by taking 

A = max (ILl I, ILl'I) and m = the largest integer~ tlA, 
the following inequality implied from (8): 
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111
.n J LljXO -.n J Lllxo II ~ II.n J <1j XO - J';xo II + II J'J.xo - .n J <1/xo II 
0=1 1=1 0=1 1=1 

~ 2 {[(mA - t)2 + m),2]1/2 + [(m), - t)2 + At]1/2} IIA xoll (10) 
~ 2 {[A2 + t),]1/2 + [),2 + ),t]1/2} IIA xii. 
Therefore, by taking LI; = tin (i = 1,2, ... ,n) and Llj = tlk (j = 1,2, 

... ,k) in (10), we obtain (1)'. 

Remark. We have incidentally proved that 

/

TtXo = s-lim (I - n-1tA)-nxo = s-lim(I - n-1A)-[ntl xo uniformly 
....... 00 

on every compact interval of t, where [nt] = the largest integer ~ nt. 
(I)" 

The scope of this Theorem will be seen from Theorem 2, Theorem 3 
and Theorem 4 given below. 

Theorem 2. Let A be a hyperdissipative closed set of X X X. Then, 
for every Xo ED (A), the following two conditions are mutually equivalent. 

i) : u (t) is a strong solution of the initial value problem 
du (t) 
-d-t - E A u(t) for almost every t ~ 0 and u(O) = Xo, (11) 

as formulated in the preceding Section 6. 

ii) : 

{
U(t) = s-lim (I - n-1A)-[ntl Xo and u(t) is strongly 

....... 00 (12) 
differentiable at almost every t ~ O. 

We first give the BREZIS-PAZY [2] proof of the assertion i) -+ ii), and the 
proof of the assertion ii) -+ i) due to CRANDALL-LIGGETT [2] will be given 
later; after the proof of Theorem 3. We shall begin with a key Lemma due 
to T. KATO [11]. 

Lemma. Let S be the set of those s ~ 0 at which the strong solution 
u(s) of (11) is strongly differentiable. Then, we have, at almost every 
s ES, 

2-1 :s lIu(s)11 2 = lIu(s)11 d ";~s)" Re(d~~S), '?whenever I EF(u(s)). (13) 

Proof. u(s) being a strong solution of (11), the strong derivative 
du(s)lds is Bochner integrable on every compact interval of s so that 

s 

u(s) - u(O) = f d~~s) ds 
o 
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by BOCHNER'S theorem in Chapter V,S. Hence Ilu (s) II is of bounded varia­
tion on every compact interval of s. Therefore, /lu (s)/I is differentiable at 
almost every s ~ O. 

Since Re (u(t), I);£; /lu(t)/I . /lu(s)/I and Re (u(s), I) = /lU(S)/l2 by 
1 EF(u(s)), we obtain 

Re (u(t) - u(s), I);£; /lu(s)/I ( /lu(t)/I - /lu(s)/I) . 

Dividing the both side by (t - s) and letting t ~ s from above and from 
below, we obtain at almost every s E S, 

Re(d~y) ,~;£; /lu(s)/I dll~~s)11 andRe<d~~S) ,~~ /lu(s)/I dll~~s)11 . 

We have thus proved (13). 

Corollary (H. BREZIS-A. PAZY [1]). For the strong solution u(t) of 
(11), we have 

Ild~~t) II;£; /lAxo/l = .~~~.'Iz/l at almost every t~ O. (14) 

Proof.Weputdu(t)jdt=y(t) so that, by (l1),y(t) EAu(t) at almost 
every t ~ O. For such t and for every z E A xo, there exists, by the dis­
sipative property of A, an 10 EF(u(t) -xo) such that Re(y(t) -z, lo);£; O. 
Hence, by the same argument which enabled us to prove (13), we obtain 

2-1 :t /lu(t)-xo/l2=/lU(t)-xo/l :t /lu(t)-xo/l=Re(d~~t) -O,/~ 
= Re (y (t) - z, 10) + Re (z, lo);£; Re (z, 10) at almost every t ~ O. 
Thus, at almost every t ~ 0, we have 

/lu(t) -xo/l :t /lu(t) -xo/l;£; I (z, 10) I;£; /lz/l . /lu(t) -xo/l 

and so, since z E A Xo was arbitrary, 

/lu(t) -xo/l;£; t/lAxo/l at every t~ O. (15) 

Next, let h> 0 and put u(t + h) = v(t). Then 
dv (t) ------rit EAv(t) for almost every t~ 0 and v (0) = u(h). (11)' 

Thus, similarly as above, we obtain, for a certain 1 EF(v(t) -u(t)), 
d Idv (t) du (t) A 

2-1 de Ilv (t) - u (t) 112= Re \------rit -~ , I; ;£; 0 at almost every t ~ O. 

Therefore, we have 

/lu(t + h) -u(t)/I;£; /lu(s + h) -u(s)/I whenever t~ s~ 0, 

and so, combined with (15), we finally obtain 

/lu(t + h) -u(t)/I ;£; /lu(h) -u(O)/I ;£; h/lAxo/l . (15)' 

This proves (14). 
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Proof of the assertion i) -+ ii) in Theorem 2. The existence of the right 
hand limit of (12) is guaranteed by Theorem 1. Let T be an arbitrary 
positive constant. Besides step functions u" (t) = (I - n-l A)-[" tl xo, we 
define on [0, T] another sequence of functions v" (t) by 

v" (t) = u" (jjn) + (t - jjn) . n . [u" ((j + l)jn) - u" (jJn)] 

(for jfn~t~(j+1)jn;j=0,1, ... ,[nT]-1) (16) 

= u,,(t) (for n-l[nT]~ t~ T). 

Clearly, v" (t) is strongly differentiable on [0, T] except for finite number 
of points of the form t = jjn, and for jjn < t < (j + l)fn we have 

1 
dV;t(t) = n [U,,((j~ l)jn) -u,,(j/n)] = n [(I - n-IA)-IU" (j/n) -u,,(j/n)] 

= All" u,,(Jln) (by AA = )..-l(h - I)) (17) 

= All" u,,(t) = All" v,,(j/n) . 

By (7), (8) and (9) of the preceding Section and by 

A u,,(j/n) = AlII" u" ((j - l/n) :7 All" u" ((j - l)/n), we obtain 

IIAI/" u,,(jfn) II~ II A u,,(jJn)ll~ II All" u,,((j - l)jn)ll~ II Au" ((j - l)jn)ll. (18) 

Thus, by (17), we have 

II dV;t(t) II = IIAI/"u,,(jJn)II~IIAu,,(O)II=IIAxoll for a.e. t;;;;. O. (19) 

We have incidentally proved from the proof of (17)-(19) that, whenever 
jjn~ t~ (j + l)fn, 

IIv,,(t) - u,,(t)11 = (t - jfn)· n 'lIu,,((j + l)fn) - u,,(jJn)1I 

~ n-ll IAI/"u" (jjn)11 ~ n-IIIAxoll, 
and hence 

Ilv,,(t) - u,,(t)11 ~ n-IIiAxoll for all t;;;;. O. (20) 

We put du(t)jdt = y(t) and n[u,,(t) - u,,(t-1jn)] = y,,(t). Then, by 
(11), we have y(t) EAu(t) for almost every t~ O. We have also 
y,,(t) E Au,,(t) when t ~ jfn (j = 0,1, ... ), because 

y,,(t) = AI/"U,,(t - 1jn) E A (I - n-IA)-lu,,(t - 1jn) = Au,,(t) 

by (8) of the preceding Section 6. A being a dissipative set, we obtain, 
by (5) of the preceding Section 6, that for almost every t ~ 0 the in­
equality 

II[n· u,,(t) - y,,(t)] - [n· u(t)-y(t)]l1~ lin· u,,(t) - n' u(t)ll. 

Therefore we have, for almost every t ~ 0, 
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II d~y) - n [u(t) - u(t - lin)] II = lin [un(t) - un(t - lin)] 

- n [u(t) -u(t - lin)] + y(t) - Yn(t)II 

~ II [n· u,;(t) -Yn(t)] - [n· u(t)- y(t)] II - lin' un(t - lin) (21) 

- n . u (t - lin) ~ n' II (un (t) -u (t) II - n' IIun (t - lin) - u (t - lin) II . 
We here extend un(t) and u(t) for negative value of t by 

{
u .. (t) = Xo - n-1 zo, where Zo is any fixed point A xo, 

(22) 
u(t) = xo' 

Then, integrating the resulting inequality (21) on [0,0] where n-l~ 0 ~ T, 
we obtain 

o 6 

- f nllu .. (t) -u(t) II dt + J nllun(t) -u(t) II dt 
-1/.. 6 -1/ .. 

6 

~ f II d~~tt - n [u(t) -u(t - lin)] II dt, 
o 

that is, 
6 6 

n f IIu .. (t) -u(t)II dt~ f II d;?) -n [u(t) -u(t - Ifn)] II 
(j-I/.. 0 

o 
dt+n fllu .. (t)-xolldt 

-II" 
(j 

~fll d~¥L-n[u(t)-u(t-lfn)]lIdt+n-llizoli. (by (22)). 
o 

Adding these inequalities for 0 = lin, 2fn, ... , Nln with N = [n T] yields 
NI" T 

n f Ilu .. (t) - u(t) IIdt ~ N f II d~~t) -n [u(t) -u (t - lin)] II 
o 0 

and therefore 
NI" T 

f IIu .. (t) - u(t)IIdt~ T f II d~~t) - n [u(t) - u(t - I/n)]11 
o 0 (23) 

dt + n-1 T . IIzoli. 
Since, by the assumption, s-lim n [u(t) - u(t - Ifn)] = du(t)fdt for 

.. -+oc. 
T 

almost every t on [0, T], we obtain lim J IIu .. (t) - u(t)IIdt = ° by (23) 
"-+00 0 
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and by 

II d~~t) - n [u(t) - u(t - lin)] II~ 2 'lIzoll, 
, 

which is implied by (14) and n [u(t) - u (t - lin)] = J d~~s) ds. 

Therefore, combined with (20), we obtain 
T 

lim J IIV,. (t) - u (t) II dt = 0 . 
"'-+00 0 . 

1-1/,. 

(24) 

On the other hand, we have, by (14), (19) and by the same argument 
which enabled us to prove (13), 

2-1 :t IIV,. (t) - u (t) I pa ~ IIV,. (t) - u (t) II ·11 dr;t(t) _ d~y) II 
~ I IV,. (t) - u (t) II . 2 . Ilzoll for almost every t E [0, T]. 

Therefore, by v,. (0) = u (0) = xo, we obtain 
, 

IIV,.(t) - u(t)IP.\~ 4 J IIV,.(s) - u(s)lIds 'lIzoll for O~ t ~ T. 
o 

Hence, by (24), we obtains- lim V,.(t) = u(t) uniformly on [0, TJ. Thus, ,. ___ 00 

by (20), we have proved that s-lim U,.(t) = u(t) uniformly on [0, T]. 
,,-+00 

Theorem 3. Let A be a hyperdissipative set ~ X x X, and let Xo E D (A) 
and A > O. As in the preceding Section 6, the initial value problem 

duCA) (t) 
dt = AAU(A) (t) for t ~ 0 and U(A) (0) = Xo (25) 

has a uniquely determined solution U(A) (t), because AA is a Lipschitzian 
mapping. We have then 

I s- lim U(A) (t) exists uniformly on every compact interval of t and 
A .(.0 

s-lim U(A) (t) = s- lim (I - n-1tA)-nxo' (26) 
A .(.0 .. -+ 00 

Remark. If the strong solution u (t) of (11) exists, then, as in the linear 
case,u (t) can begivenbyHille'stypeapproximations-lim (I -n-1tA)-n·xo 

,,-+00 

as well as by Y osida' s type approximation s-lim U(A) (t) . 
A.(. 00 

Proof of Theorem 3. Since Al = (J1 - I) is dissipative, we obtain, as 
in the case of (15)" 

lIu(1) (t) - U(l) (0) II ~ t . IIA1 u(1) (0) II = t . IIA1 xoll = t . 1111 Xo - xoli. (27) 

On the other hand, it is easy to verify that the solution u(1) (t) of (25) 
with A-I is given by 
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Hence 

t 
U(l) (t) = e-txo + J e,-t Ilu(l) (s) ds . 

o 

t 
U(l) (t) - J'jXO = e-t (XO - Iixo) + ! e,-t UlU(l) (s) - IixoJ ds 

and so, by the fact that II is a contraction mapping, we obtain 
t 

(28) 

Ilu(l) (t) - Iixoll ~ne-tll (fl - I) xoll + J e,-tllu(1) (s) - Ii-I xolds. (29) 
o 

From this we shall derive 

lIu(1) (n) - Iixoll ~ lin II (fl - l)xoll· (30) 

We may assume that (fl - 1) Xo = AIXO =F O. For, if otherwise, the 
solution U(l) (t) of (25) with A = 1 is given by U(l) (t) == Xo and hence (30) 
would be trivial. The assumption (fl - I) Xo =F 0, combined with (29), 
gives 

t 
rpn (t) ~ ne-t + J e,-t rpOl-l (s) ds, where 

o 

rpOl(t) = Ilu(1)(t) - Iixoll'II(fI- I) xoll-1. 

We shall prove, by induction with respect to n, that 

rpOl(t) ~ {(n - t)2 + tp/S. 

(31) 

(32) 

This gives (30) by putting t = n. Inequality (32) is clear for n = O. If (32) 
t 

is true for (n - I), then rp" (t) ~ne-t + Je·- t{(n-l-s}2+s}1/S ds. Denoting 
o 

the right hand side by tpol (t) e- t , we have to show that 

tp,,(t) ~ et {(n - t)S + tp/2. 

Since tp" (0) = n, it is sufficient to prove that 

tp~ (t) = et {(n - 1 - t)2 + tp/2 ~ :t et {(n - t)2 + tp/2. 

The last inequality is easily checked and so we have proved (30). 
We are now prepared to prove (26). Put v(,l,) (t) = u(,l,) (At). Then, by 

A,l, = A-I (fA - I), we have 
dv(A) (t) 

dt = (f,l, - I) v(,l,) for all t ~ 0 with v(,l,) (0) = xo' (25)' 

TakingfA for II and V(A) for u(,l,) in (30) and making use of (9) of the preceding 
Section 6, we obtain 

Ilv(,l,) (n) - I:\xoll = Ilu(,l,) (nA) - I:\xoll ~ Vnli (fA - I) xoll 

~ VnAIIA,l,xoll ~ VnAIIAxoll· (33) 
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Let All to and let nil = [tjAII] so that nllAllt t. Hence, by (1)' and (10), we 
obtain s- lim J;k Xo = s- lim (I - n-1 tA )-" xo' Therefore, combined with 

k-.-.oo.t fI~OO 

(33), we have 

Ilu(Ak) (nkAk) - n!xo II ~ V nllAIIIIAxoll;:;;; nk"1I2 tiiA xolI· 

Since {All} was arbitrary, we have thus proved (26). 

Remark. The above proof is adapted from H. BREZIS-A. PAZY [2]. It 
is to be noted here that inequality (30) is due to I. MIYADERA-S. OHARu[I]. 

Proof of the assertion ii) -+ i) in Theorem 2. Let u (t) = s-lim 
"_00 

(I - n-1tA)-"xo be strongly differentiable at to > 0 with strong 
derivative Y = du(t)Jdtlt=to so that 

u (to + h) = u (to) + hy + 0 (h), where s-lim o(h)Jh = 0 . (34) 
HO 

Since (19) and (20) implies that t -+ u(t) is a Lipschitzian mapping with 
Lipschitz constant IIA xoll ' we obtain i) if we can prove 

{u(to),Y} EA. (35) 

The proof of (35) reads as follows. Let 0 < A < to' Then, by the strong 
differentiability of u (t) at t = to and by the hyperdissipative property of 
A, there exists a uniquely determined point {XA' YA} E A such that 

XA - AYA = u (to - A) = u(to) - AY + o (A) . (36) 

We obtain (35) if we can show 

s-limxA = u(to) and s-limYA = Y , 
,qo A+O 

(37) 

because A is a closed set in X x X by the assumption. For the proof of 
(37), we put 

XA = X - A.9, where {x,.9} is a point of A to be determined later. (38) 

Then, by (13) and (25), we obtain a certain I EF(u(A) (t) - x,\) such that 

2-1 :t Ilu(A) (t) - XAII2 = Re (AAU(l) (t), I) = Re (AAU(l) (t) - A,\x,\./) + 

+ Re (A,\x'\./) ~ Re (.9./) , 

because AAX,\ =.9 and, moreover. A,\ is dissipative by Proposition 1 in 
the preceding Section 6. Thus 

" Ilu(A) (to + h) - x,\112 -llu(l) (to) - xAI12 ~ 2 J (.9, U(l) (to + 1') - X'\)8' d1', (39) 
o 

where 
(w. z), = sup Re (w, k). (40) 

IIEF(_) 
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It will be proved later that 

j (w, z). is upper semi-continuous, i.e., s- lim w .. = Woo and ,,-+ 00 

s-lim z .. = Zoo implies that lim sup (w .. , z .. ). ~ (woo, zoo).' 
11-+00 ft.-+ 00 

(41) 

Hence, bys-lim U(A)(t) = u(t) = s-lim (1 -n-1tA)-"xoprovedin (26) and 
" t 00 n-+ 00 

by s- lim i" = i, we obtain ,,-+ 00 

" Ilu (to + h) - ilpl- Ilu (to) - i1l2~ 2 J (~, u (to + T) - i)., dT. (42) 
o 

For every I EF (u(to) - iL we have 

Re (u (to + h) - u(to), I) - Re (i - u(to), I) = Re (u (to + h) - i, I) 

~ Ilu(to + h) - ill' Iii - u(to) II ~ 2-1 {Ilu (to + h) - i1l2+ Ili- u(to)112}. 

Therefore, by Re (i - u(to), I) = - Iii - u(to)112 and (42), we obtain 

2· Re (U(to+hl- u(to) ,I) ~ 21 (~, u (to + hT) - i)., dT. 

Hence, by the strong differentiability of u(t) at t = to and (41), we have 
Re (y, I) ~ (~, u(to) - i),. (42)' 

We may replace the supremum on the right hand side of (42)' by the 
maximum, because the set F(u(to) - i) contained in the strongly closed 
sphere of X' is w*-compact in X' (see Thorem 1 in Appendix to Chap­
ter V, 1). Thus there exists an I EF (u(to) - i) such that 

Re (y, 11)~ Re (~, I) for all 11 EF (u(to) - i) . 

By taking i = x", ~ = y" and 11 = I, we obtain 

Re (y, I) ~ Re (y", I), that is, Re (y" - y, I) ~ 0 . (43) 

On the other hand, we have, from (36), 

u (to)).- x" + 0 i).) = y - y", (44) 

and hence, by (43), we obtain 

Ilu(to) - xl l1 2 = Re (u(to) - Xl, i) ~ Re (0 ().), i)~ 0 (A) '1Iu(to) - xlii· 

Hence Ilu(to) - xlii ~ O(A) and so we obtain (37) by (44). 

Finally, the proof of (41) is given as follows. Since the set 
{I E X' ; II1II ~ Ilzmlll is w*-compact (Theorem 1 in Appendix to Chap­
ter V, 1), we can find 1m E X' such that 

(wm, zm), = Re (wm, 1m) and Il/mll ~ IIzmll· 

We may assume, without loss of generality, that lim (wm' zm). exists. 
_00 
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Let 100 E X' be anyone of the w*-accumulation points of {I",}. Then we 
have 

lim (w"" z"'). = lim Re (w"" I",) = Re (woo, 100)' Il/ooll~lIzooll, 
". ...... 00 ".-+00 

because s-lim w'" = Woo and w*- lim I ... · = 100 for a suitable subsequence 
m-+ 00 tn' -+ 00 

{m'l of the sequence {m}. Therefore we must have (41). 

Remark. It is an unfortunate and a fortiori an interesting situation 
that, although s- lim (1 - n-1tA)-n Xo and s-lim U(A) (t) both exist and 

n~co A.j,O 

coincide each other under a general condition, this limit need not be 
strongly differentiable in t anywhere. Such an example is given in 
M. CRANDALL-T. LIGGETT [2]. Recently, P. BENILAN [1] devised the 
following remedy for the above situation. Let u (t) be a strong solution of 
initial value problem (11). Let, further, {z, w} be any fixed point of the 
hyperdissipative subset A of X x X. Then, as in the case of (42), we obtain 

IIIU(t) - zlP' ~ lIu(s) - zll2 + 2 .1 (w, u('t") - z)&' iT for all 0 ~ s ~ t 
and with a fixed initial condition u (0) = Xo E D (A) . 

P. BE NILAN [1] called a strongly continuous X-valued function u(t) as' 
an integral solution 01 initial value problem (11), if u(t) satisfies the above 
condition for all {z, w} E A simultaneously, and he proved 

Theorem 4. Let A be a hyperdissipative set ~ X x X. Then 
u(t) = s-lim U(A) (t) = s- lim (1 - n-1tA)-n. Xo is the uniquely determined 

A.j,O n~oo 

integral solution of (11). 
For the proof of this theorem and further interesting extensions as 

well as comments, we refer the reader to P. BENILAN [2). 

Remark. The scope of applications of Theorems in the present and 
the preceding Sections may well be seen, e.g., by reading S. AIZAWA [1], 
M. G. CRANDALL [3], Y. KONISHI [1] and [2], and B. K. QUINN [1]. 



Supplementary Notes 

Chapter I and Chapter VI 

1. For the distributions or the generalized functions due to S. L. SOBO­
LEV, L. SCHWARTZ and I. M. GELFAND, see the new and enlarged edition 
L. SCHWARTZ [6] and the English edition I. M. GELFAND [6]-[10]. 

2. For the recent development of the hyperfunctions due to M. SATO, 
see M. SATO [2]- [3] and P. SCHAPIRA [1]. 

Chapter VI 

1. (Section 7) Sobolev Spaces. The theorem (Sololev's Lemma) given 
on p. 174 is a very special case of the so-called "Sobolev Imbedding 
Theorems" in S. L. SOBOLEV [1]- [2]. A comprehensive description of the 
development of this imbedding theorems is given in R. A. ADAMS [1]. See 
also E. M. STEIN [2]. 

Chapter X 

1. (Section 1) The trace operator or the generalized boundary values. 
We can prove 

Theorem. Let D be a bounded open domain in R'TI such that its 
boundary hypersurface aD is C2. Then, for any f(x) E WI·2(D) and for 
almost all ~ E aD, the limiting value tp(~) = lim f(x) exists if we let x 

><-->-C 
tend to ¢ along the normal at the point ¢ E aD. Moreover, this boundary 
value tp(~) of f(x) belongs to L2(aD) and satisfies the inequality: 

'TI 

IltpmIlLI(a.Q)~ C {lIf(x)IIL'(u) + E Ilaf/ax;IILI(O)}' 
;=1 

where the positive constant C is independent of the individual choice of 
f and the notation of/ox; means differentiation in the sense of the 
"distribution" . 

The linear map f ~ tp is called the trace operator. For the proof as well 
as generalizations of the above theorem, see, e.g., S. MIZOHATA [6], 
R. A. ADAMS [1] and F. TREVES [2]. 

2. (Appendix to Chapter X) For extensions with a unified treatment 
of the result of R. A. MINLOS [1], see L. SCHWARTZ [7] and the biblio­
graphy cited there. 



Supplementary Notes 467 

Chapter XI 

i. For recent development of the theory of contraction operators in 
Hilbert spaces, see B. Sz. NAGY-C. FOIAS [4]. 

Chapter XII 

1. (Section 1) For Choquet's refinement of the Krein-Milman Thorem, 
see R. R. PHELPS [1]. 

Chapterxm 

1. (Section 1) We can prove (K. YOSIDA [17]) 

Theorem I'. Let P(t, x, E) be a Markov process on the phase space 
(5,~) with an invariant measure m such that m(5) = 1. Then, for any 
lED (5,~, m) and t > 0, there corresponds an I-t E D(5,~, m) with 
III-till;:;;; l1li11 in such a way that 

I m(dx) I (x) P(t, x E) = II-t(x) m(dx) for all E E ~. (19) 
8 B 

Proof. Since P(t, x, E) is a bounded function, I m(dx) I(x) P(t, x, E) 
8 

does exist for any lED (5, ~, m) and we have 

sup II m (dx) I (x) P(t, x, E)I;:;;; sup I m(dx)I/(~)I P(t, x, E);:;;; 11/111' (20) 
B 8 B 8 

If lED (5, ~, m) is E L 00 (5, ~, m), then, by (8), the O'-additive function 
I m{dx)/(x) P(t, x, E) of E E ~ is m-absolutely continuous such that 
8 
I I m(dx)/{x) P(t, x, E) I ;:;;; 11111 L 00 • m(E) , where II III L 00 = essential sup 
8 z 
I/(x) I· Next, let IE D(5,~, m) be real-valued non-negative and put 
I(n)(x) = min (I(x), n). Since 

Im(dx)/(x)P(t, x, E) = lim I m (dx) I(n) (x) P(t, x, E) for every E E ~ 
8 11-+00 8 

the left hand side above is m-absolutely continuous by the Vitali-Hahn­
Saks theorem on p.70. Thus, in this special case for I, we can define 
I-t E D(5,~, m) by (19), and we have III-till;:;;; 11/111 by (20). This proves 
our Thorem I'. 

Remark .Consider the deterministic case given by P (t, x, E) =C B (y t (x», 
defined through a one-parameter family {Yt{x); - 00 < t < co} of one­
one transformation x --+- Yt(x) of 5 onto 5 such that m(E) = m(Yt' E). 
Then we see that the mapping I --+-1, in Theorem 1 (po 381) and the map­
ping I --+-I-t in Theorem I' are respevtively given by I,{x) = I(Yt{x» 
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and f_t(x) = f(y_t(x)). In this sense, a Markov process with an invariant 
measure m is "time reversible". 

2. (Section 1) As a corollary of Theorem I' above, we obtain, as in 
the case of Thorem 2 (p. 382), the following 

Theorem 2' (K. YOSIDA [17J). Under the assumption as in Theorem I', 
the following mean ergodic theorem holds good: 

n 
s-lim n-1 E f-k = f-* exists in V(S,~, m) , (21) 
n-+oo k=l 

Jf(s)m(ds) = JI-*(s)m(ds) . (22) 
s s 

Chapter XIV 

1. (Section 4) We can prove 

Theorem I'. Under the assumption x (0) = y E D(A(O)) and (3) (p. 431), 
the solution of (I)' (p. 432), if it exists, is uniquely determined. 

Proof. We follow an argument given in T. KATO [3J. Thus we have, 
for ~ > 0, 

x (t + ~) = x(t) + ~A (t) x(t) + o(~) 
= (1 + ~A(t)) (1 - ~A(t)) (1 - ~A(t))-lX(t) + o(~) 
= (1 - ~A (t))-lX(t) - ~2A (t) (1 - ~A (t))-lA (t) x(t) + o(~) 
= (1 - ~A (t))-lX(t) -~ ((1 - ~A (t))-l- I) A (t) x(t) + o(~) • 

Because of (3), we have s-lim (1 - ~A (t)P z = z for any z E X [see (2) 
d-+O 

in Chapter IX,7]. Hence, again by (3), we have 

Ilx (t + ~)II~ II x(t)11 + 0 (~) 

and so d+ IIx(t)llIdt~ 0 which implies that Ilx(t)11 ~ Ilx(O)II. 
Therefore, the difference between two solutions of (1)' each with the 

same initial condition E D (A (0)) must be O. 

Chapter IX and Chapter XIV 

1. For Linear evolution equations, see S. KREIN [2J, P. LAX-R. S. 
PHILLIPS [4J, J. L. LIONS [5J and F. TREVES [2]. 

2. For Linear as well as nonlinear evolution equations, see: V. BARBU 
[IJ, F. BROWDER [2J, J. L. LIONS [5J, R. H. MARTIN [IJ, K. MASUDA [IJ, 
r. MIYADERA [4J and H. TANABE [6]. For the last cited book of Tanabe, 
an English translation is in preparation. 

3. Currently, convex analysis is playing an important role in non­
linear evolution equations. For this analysis, see, e.g., R. S. ROCKAFELLER 
[IJ and r. EKELAND-R. TEMAM [IJ. 
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essentially self-adjoint - 315, 

350 
exponential of a bounded - 244 
extension of an - 2, 21 
fractional powers of a closed -

259 
Hilbert-Schmidt integral - 197, 

277 
hypermaximal (= self-adjoint) 

- 350 
idempotent - 83 
identity - 44 
integral - 197, 277 
inverse - 21, 77 
isometric - 202, 203 
linear - 21, 43 
maximal symmetric - 350 



Index 495 

operator 
momentum - 198, 315, 349, 353 
norm of a bounded - 43 
normal - 202 

spectral resolution of a 
306 

nuclear - 279, 289 
positive - 317 
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quasi-normed linear - 31 
reflexive - 91.113. 126. 139. 140 
regular - 7 
semi-reflexive - 139 
sequentially complete - 105 
Sobolew - 55 
topological - 3 
uniformly convex - 126 

space-like unique continuation pro­
perty 419 

spatially homogeneous Markov pro­
cess 398 

spectral 
mapping theorem 227 
radius 211 
resolution for a 

closed symmetric operator 353 
normal operator 306 
self-adjoint operator 313 
unitary operator 306 

theory 209 
spectrum 209. 299 

continuous - 209. 323 
multiplicity of the - 321 
point - 209 
residual - 209 
of a self-adjoint operator 319 
simple - 322. 347 

sphere. open - 4 
a-ring 15 
STEINHAUS. H. 73 
STONE. M. H. 9. 231. 253. 323. 325 

345.482 
theorem 253. 345 
-Weierstrass theorem 9 

strictly elliptic differential operator 
413 

strong convergence 30. 32 
of operators 69 

strong dual space III 
strong topology of operators 111 
strongly elliptic differential operator 

176.286 
strongly measurable mapping 130 
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subadditive 23 
subharmonic 411 
subspace 21 
support (= carrier) of a 

distribution 62 
function 26 

supremum (= least upper bound) 2 
symmetric 

difference 19 
operator 197, 349, 353 
ring 300 

SZEGO, G. 90, 482 

TANABE, H. 432, 437, 438,482 
TANNAKA, T. 336,483 

duality theorem 336 
Tauberian theorem 

special - 360 
Wiener's - 357 

TAYLOR, A. 231, 483 
Taylor's expansion 129 
Tchebyschev polynomials 89 
tempered distribution 149 
temporally homogeneous 

equation of evolution 419 
Markov process 379 

temporally inhomogeneous equation 
of evolution 419, 430 

tensor product of distributions 67 
testing function 47 
6-formula 149 
theorem 

Ascoli-Arzela - 85 
Baire - 12 
Baire-Hausdorff - II 
Banach - on 

a.e. convergence of linear 
operators 370 

generalized limits 104 
Bochner - 133, 134 

on positive definite functions 
346 

Cauchy's integral - 128 
theorem 

Chacon-Ornstein- 385 
closed graph - 79 
closed range - 205 
Crandall-Liggett - 454, 457,470 
Dunford - 128 
Eberlein-Shmulyan - 141 
Egorov - 16 
ergodic - of Hille type 215 

Feller - 404 
Fourier's inversion - 147 
Frechet-Kolmogorov - 275 
Friedrichs - on 

semi-bounded operators 317 
strongly elliptic differential 

equations 177 
Fubini-Tonelli - 18 
Gelfand-Mazur - 129 
Gelfand-Raikov - 356 
general expansion - 323 
H- - 392 
Hahn-Banach - 102 105 
Hilbert-Schmidt expa'nsion - 326 
Hille-Y osida - 248 
Hormander - 80, 191 
individual ergodic - 384, 388 

Kolmogorov's extension - of 
measures 293 

Komura - 452 
Krein-Milman - 362 
Krylov-Weinstein - 321 
Lax-Milgram - 92 
Lebesgue-Fatou - 17 
Lebesgue-Nikodym - 93 
Lerch - 167 
Liouville - 129, 380 
Malgrange-Ehrenpreis - 184 
Mazur - on 

existence of continuous linear 
functionals 108, 109 

weak limits 120 
mean ergodic - 213, 215, 382, 

388 
Milman - 127 
Naimark - 352 
von Neumann - on 

Cayley transform 202 
real operators 316 
spectral representation 315 

NetYmann-Riesz-Mimura - 340 
open mapping - 75 
Paley-Wiener - 161, 162, 163 
Peter-Weyl-Neumann - 330 
Pettis - 131 

theorem 
Phillips - 224, 225, 273 
Phillips-Lumer - 250 
Plancherel - 153 
Radon-Nikodym - 375, 378 
Rellich-GArding - 281 
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theorem 
representation - for equicontin­

uous groups of class (Co) 251 
semi-groups of class (Co) 246 

resonance - 69 
Riemann-Lebesgue - 357 
Riesz-Markov-Kakutani - 119 
Riesz' representation - 90 
Schauder - 282 
Schwartz - 100, 158, 178 (Weyl-

Schwartz -) 
special Tauberian - 360 
spectral-mapping - 227 
Stone - 253, 345 
Stone-Weierstrass - 9 
Tannaka's duality - 337 
Tauberian - of Wiener 357 
Titchmarsh - 166 
Trotter-Kato - 269 
Tychonov - 6 
uniform bounded ness - 68 
Urysohn - 7 
Vitali-Hahn-Saks - 70 
Weierstrass - on 

the existence of nowhere differ­
entiable functions 72 

polynomial approximation 8, 
249 

trigonometric approximation 
II 

Weyl-Schwartz - 178 
Wiener - 301 
Wiener's Tauberian - 357 

TITCHMARSH, E. C. 166, 325, 483 
theorem 166 

topology 3 
bounded convergence - 110 
relative - 3 
simple convergence - 110 
strong - III 
uniform - of operators II I 
weak - III 
weak· - III 

total 
ordering 2 
variation 35, 36, 38, 70, 118, 366 

totally bounded 13 
trace class, operators of the - 281 
transition probability 379 
translation operator 158, 243 
transposed matrix 194 
TREVES, F. 193, 483 

triangle inequality 30 
trigonometric approximation theo­

rem (Weierstrass) 11 
TROTTER, H. 'F. 272, 483 

-Kato theorem 269 
TYCHONOV, A. theorem 6 

uniform 
boundedness theorem 68 
strength 188 
topology of operators III 

uniformly 
continuous function 332 
convex B-space 126 

unimodular group 219 
unit 294, 372 
unit sphere (or disk) 43 
unitary 

character 355 
equivalence 323 
invariant 323 
matrix representation 330 
operator 202, 253, 345 

spectral resolution of a 
306 

unity, partition of - 60 
upper bound 2 
URYSOHN, P. theorem 7 

variation 
negative 35, 36, 37, 366 
positive 35, 36, 366 
total 35, 36, 37, 38, 70, 71, 118. 

119,366 
vector lattice 364 

with unit 372 
VILENKIN, N. Y. 281,293, 483 
VISIK, I. M. 431,483 
VITALI, G. 70,483 

-Hahn-Saks theorem 70 

WATANABE.]. 266,483 
WATANABE, T. 417 
wave equation 421 
weak 

convergence 120 
in L' (5, m, m) 121 

topology II 2 
weak· 

convergence 125 
dual space III 
topology III 



500 Index 

weakly measurable mapping 130 
VVECKEN, F. J. 323,483 
VVEBB, G. 483 
VVEIERSTRASS, C. 8, 9, 72, 249 

Stone- - theorem 9 
theorem on 

the existence of nowhere diffe­
rentiable functions 72 

polynomial approximation 8, 
249 

trigonometric approximation 
11 

WElL, A. 219, 483 
VVEINSTEIN, A. 321 
VVEYL, H. 80, 178, 325, 330, 484 

lemma 80 
VVIDDER, D. V. 261 

Post- - inversion formula 261 
WIENER, N. 23, 161, 162, 163, 165, 

295,301,357,484 

Tauberian theorem 357 
theorem 301 

YAMABE, H. 425,484 
YAMADA, A. 418, 484 
YOSIDA, K. 90,95. 169,178,215,231, 

249, 259. 260, 266, 268, 272, 286, 
295, 305, 321, 323, 325, 338, 370. 
375,378,383,384,392,393,398, 
403, 411. 425, 430. 431, 436, 437, 
461,484 
Hille- - theorem 249 
individual ergodic theorem 384, 

388 
mean ergodic theorem 213, 382 

YUSHKEVITCH, A. A. 398, 485 

ZORN, M. lemma 3 
ZYGMUND, A. -class 392 



Notation of Spaces 

A2(G) 41, 53, 96 
A (5, m) 35,369 
(c) 35, 115 
(co) 34, 114 
G(5) 9, 32, 294, 300, 369 
G" (Q) 26, 40 
G~(Q) 26,41,57 
~K(Q) 28, 138,291 
~ (Q) 28, 46, 293 
(f" (Q) 27, 38 
(f (Q) = (foo (Q) 27, 52, 62, 293 
exp(tA) 269 
H-L2 41,55 
H" (Q) 41. 57 
H~ (Q) 41, 57 
H"(Q) 57 

H~(Q) 57, 98, 279, 281 
Ho"(Q) 99 
(lP) 35, 117 
V 355 
L (X, Y) 110, 294 
U(5), U(5, m, m) 32,53,115,275, 

369 
Loo (5), Loo (5, m, m) 34, 53, 118 
(m) 35 

M(5, m, m) 38, 45, 54,117,369 
OM(.Rn) 150 
(s) 54 
€i(.Rn) 146,293 
(5, m, m) 15, 70 
W",P(Q) 55 

W" (Q) 55, 58, 155 
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