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Preface to the First Edition

The present book is based on lectures given by the author at the
University of Tokyo during the past ten years. It is intended as a
textbook to be studied by students on their own or to be used in a course
on Functional Analysis, i.e., the general theory of linear operators in
function spaces together with salient features of its application to
diverse fields of modern and classical analysis.

Necessary prerequisites for the reading of this book are summarized,
with or without proof, in Chapter 0 under titles: Set Theory, Topo-
logical Spaces, Measure Spaces and Linear Spaces. Then, starting with
the chapter on Semi-norms, a general theory of Banach and Hilbert
spaces is presented in connection with the theory of generalized functions
of S. L. SoBoLEV and L. ScuwARTz. While the book is primarily addressed
to graduate students, it is hoped it might prove useful to research mathe-
maticians, both pure and applied. The reader may pass, e.g., from
Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII
(Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration
of the Equation of Evolution). Such materials as “Weak Topologies
and Duality in Locally Convex Spaces’” and ‘“Nuclear Spaces’ are
presented in the form of the appendices to Chapter V and Chapter X,
respectively. These might be skipped for the first reading by those who
are interested rather in the application of linear operators.

In the preparation of the present book, the author has received
valuable advice and criticism from many friends. Especially, Mrs.
K. HILLE has kindly read through the manuscript as well as the galley
and page proofs. Without her painstaking help, this book could not
have been printed in the present style in the language which was
not spoken to the author in the cradle. The author owes very much
to his old friends, Professor E. HILLE and Professor S. KAKUTANI of
Yale University and Professor R. S. PHILLIPS of Stanford University for
the chance to stay in their universities in 1962, which enabled him to
polish the greater part of the manuscript of this book, availing himself
of their valuable advice. Professor S. ITo and Dr. H. KOMATSU of the
University of Tokyo kindly assisted the author in reading various parts



VI Preface

of the galley proof, correcting errors and improving the presentation.
To all of them, the author expresses his warmest gratitude.

Thanks are also due to Professor F. K. ScumIDT of Heidelberg Uni-
versity and to Professor T. KATO of the University of California at
Berkeley who constantly encouraged the author to write up the present
book. Finally, the author wishes to express his appreciation to Springer-
Verlag for their most efficient handling of the publication of this book.

Tokyo, September 1964
Kdsaku Yosipa

Preface to the Second Edition

In the preparation of this edition, the author is indebted to
Mr. FLoRET of Heidelberg who kindly did the task of enlarging the Index
to make the book more useful. The errors in the second printing are cor-
rected thanks to the remarks of many friends. In order to make the book
more up-to-date, Section 4 of Chapter XIV has been rewritten entirely
for this new edition.

Tokyo, September 1967

Kosaku Yosipa

Preface to the Third Edition
A new Section (9. Abstract Potential Operators and Semi-groups)
pertaining to G. HUNT’s theory of potentials is inserted in Chapter XIII
of this edition. The errors in the second edition are corrected thanks to
kind remarks of many friends, especially of Mr. KLAUS-DIETER BIER-
STEDT.

Kyoto, April 1971
KO6sAKU YoOSIDA

Preface to the Fourth Edition

Two new Sections “6. Non-linear Evolution Equations 1 (The
Komura-Kato Approach)” and ““7. Non-linear Evolution Equations 2
(The Approach Through The Crandall-Liggett Convergence Theorem)”
are added to the last Chapter XIV of this edition. The author is grateful
to Professor Y. KOmura for his careful reading of the manuscript.

Tokyo, April 1974
KoOsakU Yosipa



Preface to the Fifth Edition

Taking advantage of this opportunity, supplementary notes are added
at the end of this new edition and additional references to books have
been entered in the bibliography. The notes are divided into two cate-
gories. The first category comprises two topics: the one is concerned with
the time reversibility of Markov processes with invariant measures, and
the other is concerned with the uniqueness of the solution of time depen-
dent linear evolution equations. The second category comprises those
lists of recently published books dealing respectively with Sobolev Spaces,
Trace Operators or Generalized Boundary Values, Distributions and
Hyperfunctions, Contraction Operators in Hilbert Spaces, Choquet’s
Refinement of the Krein-Milman Theorem and Linear as well as Non-
linear Evolution Equations.

A number of minor errors and a serious one on page 459 in the fourth
edition have been corrected. The author wishes to thank many friends
who kindly brought these errors to his attention.

Kamakura, August 1977 Koésaku Yosipa

Preface to the Sixth Edition

Two major changes are made to this edition. The first is the re-
writing of the Chapter VI, 6 to give a simplified presentation of Miku-
sinski’s Operational Calculus in such a way that this presentation does
not appeal to Titchmarsh’s theorem. The second is the rewriting of the
Lemma together with its Proof in the Chapter XII,5 concerning the
Representation of Vector Lattices. This rewriting is motivated by a
letter of Professor E. Coimbra of Universidad Nova de Lisboa kindly
suggesting the author’s careless phrasing in the above Lemma of the
preceding edition.

A number of misprints in the fifth edition have been corrected thanks
to kind remarks of many friends.

Kamakura, June 1980 Ko6saku Yosipa
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0. Preliminaries

It is the purpose of this chapter to explain certain notions and theo-
rems used throughout the present book. These are related to Set Theory,
Topological Spaces, Measure Spaces and Linear Spaces.

1. Set Theory

Sets. x € X means that x is a member or element of the set X; x€ X
means that x is not a member of the set X. We denote the set con-
sisting of all x possessing the property P by {x; P}. Thus {y; y = x} is
the set {x} consisting of a single element x. The void set is the set with
no members, and will be denoted by @. If every element of a set X is also
an element of a set Y, then X is said to be a subset of Y and this fact
will be denoted by X C Y, or Y 2 X. If X is a set whose elements are
sets X, then the set of all x such that x € X for some X € X is called the
union of sets X in X; this union will be denoted by xler X. The inter-

section of the sets X in X is the set of all x which are elements of every
X € %; this intersection will be denoted by xgx X. Two sets are dis-

joint if their intersection is void. A family of sets is disjoint if every
pair of distinct sets in the family is disjoint. If a sequence {X,},_,
(=]

225eee

of sets is a disjoint family, then the union U1 X, may be written in
n=

o0
the form of a sum Z,‘IX,,.
n=

Mappings. The term mapping, function and fransformation will be
used synonymously. The symbol f: X — Y will mean that f is a single-
valued function whose domain is X and whose range is contained in Y;
for every x € X, the function f assigns a uniquely determined element
f®x) =y€Y. For two mappings f: X— Y and g: Y > Z, we can
define their composite mapping gf: X — Z by (gf) (x) = g(f(x)). The
symbol f(M) denotes the set {f(x); x € M} and f(M) is called the image
of M under the mapping f. The symbol /-1 (N) denotes the set {x; f (x)€ N}
and f1(N) is called the snverse image of N under the mapping f. It is
clear that

Y, = f(F1(Yy)) for all ¥; € f(X), and X, S /2(f(Xy) for all X, C X.
1 Yosida, Functional Analysis
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If f: X - Y, and for each y € f(X) there is only one x € X with f(x) =y,
then f is said to have an ¢nverse (mapping) or to be one-to-one. The inverse
mapping then has the domain f(X) and range X; it is defined by the
equation x = f71(y) = /1 ({y}).

The domain and the range of a mapping f will be denoted by D (f) and
R (f), respectively. Thus, if f has an inverse then

f2(f(x)) = x for all x € D(f), and f(f2(y)) = vy for all y € R(f).

The function fis said tomap X onto Y if {(X) = Y and into Yif f(X)CY.
The function fis said to be an extension of the function g and g a restriction
of f if D (f) contains D (g), and f(x) = g(«) for all x in D (g).

Zorn’s Lemma

Definition. Let P be a set of elements 4, b, . .. Suppose there is a
binary relation defined between certain pairs (a, b) of elements of P,
expressed by a < b, with the properties:

a<a,
ifa<band b < a, thena = b,
if a < b and b < ¢, then a < ¢ (transitivity).

Then P is said to be partially ordered (or semi-ordered) by the relation <(.

Examples. If P is the set of all subsets of a given set X, then the set
inclusion relation (4 C B) gives a partial ordering of P. The set of all
complex numbers z = x + 1y, w = % + 4v, ... is partially ordered by
defining 2 < w to mean ¥ < # and y < v.

Definition. Let P be a partially ordered set with elements 4, b, . . .
If a < c and b < ¢, we call ¢ an upper bound for a and b. If furthermore
¢ < d whenever 4 is an upper bound for @ and b, we call ¢ the least upper
bound or the supremum of a and b, and write ¢ = sup(a, b) ora \/ b.
This element of P is unique if it exists. In a similar way we define the
greatest lower bound or the infimum of a and b, and denote it by inf (a, b)
ora Ab If a\/ banda A b exist for every pair (a, b) in a partially
ordered set P, P is called a lattice.

Example. The totality of subsets M of a fixed set B is a lattice by
the partial ordering M; < M, defined by the set inclusion relation
M, C M,.

Definition. A partially ordered set P is said to be linearly ordered (or
totally ordered) if for every pair (a, d) in P, either a < b or b < a holds.
A subset of a partially ordered set is itself partially ordered by the rela-
tion which partially orders P; the subset might turn out to be linearly
ordered by this relation. If P is partially ordered and S is a subset of P,
an m € P is called an upper bound of S if s < m for every s€ S. An
m € P is said to be maximal if p € P and m < p together imply m = p.
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Zorn’s Lemma. Let P be a non-empty partially ordered set with the
property that every linearly ordered subset of P has an upper bound
in P. Then P contains at least one maximal element.

It is known that Zorn’s lemma is equivalent to Zermelo’s axiom of
choice in set theory.

2. Topological Spaces

Open Sets and Closed Sets

Definition. A system 7 of subsets of a set X defines a fopology in X
if 7 contains the void set, the set X itself, the union of every one of its
subsystems, and the intersection of every one of its finite subsystems.
The sets in 7 are called the open sets of the topological space (X, t); we
shall often omit 7 and refer to X as a topological space. Unless otherwise
stated, we shall assume that a topological space X satisfies Hausdorff's
axiom of separation:

For every pair (x;, #,) of distinct points x,, x, of X, there exist disjoint

open sets G;, G, such that x; € G;, %, € G,.

A netghbourhood of the point x of X is a set containing an open set which
contains x. A neighbourhood of the subset M of X is a set which is a
neighbourhood of every point of M. A point x of X is an accumulation
point or limit point of a subset M of X if every neighbourhood of x con-
tains at least one point m € M different from x.

Definition. Any subset M of a topological space X becomes a topolo-
gical space by calling “open’ the subsets of M which are of the form
M N G where G’s are open sets of X. The induced topology of M is called
the relative topology of M as a subset of the topological space X.

Definition. A set M of a topological space X is closed if it contains
all its accumulation points. It is easy to see that M is closed iff! its
complement M€ = X — M is open. Here A — B denotes the totality of
points x € 4 not contained in B. If M C X, the intersection of all closed
subsets of X which contain M is called the closure of M and will be denoted
by M* (the superscript “a” stands for the first letter of the German:
abgeschlossene Hiille).

Clearly M* is closed and M C M?; it is easy to see that M = M? iff
M is closed.

Metric Spaces

Definition. If X, Y are sets, we denote by X X Y the set of all ordered
pairs (x,y) where x€ X and y€ Y; X XY will be called the Cartesian
product of X and Y. X is called a metric space if there is defined a func-

1 iff is the abbreviation for ‘‘if and only if”.
1*
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tion 4 with domain X X X and range in the real number field R! such
that

d(xy, %) = 0 and d(xy, x,) = 0 iff x;, = x,,

d(%y, %) = d (x4, %),

d(%y, %3) = d(x, x5) + d(%,, x5) (the triangle inequality).
d is called the metric or the distance function of X. With each point x,
in a metric space X and each positive number 7, we associate the set
S(xg;7) = {x€ X; d(x, %) < 7} and call it the open sphere with centre x,
and radius 7. Let us call “open’’ the set M of a metric space X iff, for
every point %, € M, M contains a sphere with centre x,. Then the totality
of such “open”’ sets satisfies the axiom of open sets in the definition of the
topological space.

Hence a metric space X is a topological space. It is easy to see that a
point %, of X is an accumulation point of M iff, to every ¢ > 0, there exists
at least one point m # x, of M such that d (m, x,) < . The n-dimensional
Euclidean space R” is a metric space by

” 1/2
d(x,y) =<’=21 (xi _yi)a> ’ where x= (xlt e ey xn) and y = (yl: ) yn)'

Continuous Mappings

Definition. Let f: X — Y be a mapping defined on a topological
space X into a topological space Y. { is called cantinuous at a point xo€ X
if to every neighbourhood U of f(x,) there corresponds a neighbourhood
V of x4 such that /(V) € U. The mapping f is said to be continuous if it is
continuous at every point of its domain D (f) = X.

Theorem. Let X, Y be topological spaces and f a mapping defined
on X into Y. Then fis continuous iff the inverse image under f of every
open set of Y is an open set of X.

Proof. If f is continuous and U an open set of Y, then V = f1(U)
is a neighbourhood of every point x,€ X such that f(x,) € U, that is,
V is a neighbourhood of every point x, of V. Thus V is an open set of X.
Let, conversely, for every open set U 3 f(x,) of Y, the set V = f1(U)
be an open set of X. Then, by the definition, /is continuous at x,€ X.

Compactness

Definition. A system of sets G,, « € 4, is called a covering of the set
X if X is contained as a subset of the union U,¢4 G,. A subset M of a
topological space X is called compact if every system of open sets of X
which covers M contains a finite subsystem also covering M.

In view of the preceding theorem, a continuous image of a compact set
is also compact.

Proposition 1. Compact subsets of a topological space are necessarily
closed.



2. Topological Spaces 5

Proof. Let there be an accumulation point x, of a compact set M of a
topological space X such that x,€ M. By Hausdorff’s axiom of separa-
tion, there exist, for any point m € M, disjoint open sets G, ,, and G,, ,,
of X such that m¢€ G,,,,, %€ G, The system {G,,, ; m € M} surely
covers M. By the compactness of M, there exists a finite subsystem

”
{Gms; ©=1,2,...,n} which covers M. Then .nl G, m; does not
P
intersect M. But, since %, is an accumulation point of M, the open set
”
.nl G, m D%, must contain a point m € M distinct from x,. This is a
im

contradiction, and M must be closed.

Proposition 2. A closed subset M, of a compact set M of a topological
space X is compact.

Proof. Let {G,} be any system of open sets of X which covers M.
M, being closed, MY = X — M, is an open set of X. Since M,CM,
the system of open sets {G,} plus M covers M, and since M is compact, a
properly chosen finite subsystem {G,,; ¢ = 1,2, ..., n} plus M{ surely
covers M. Thus {G,,; 1 =1, 2, ..., n} covers M;.

Definition. A subset of a topological space is called relatively compact
if its closure is compact. A topological space is said to be locally compact if
each point of the space has a compact neighbourhood.

Theorem. Any locally compact space X can be embedded in another
compact space Y, having just one more point than X, in such a way that
the relative topology of X as a subset of Y is just the original topology
of X. This Y is called a one point compactification of X.

Proof. Let y be any element distinct from the points of X. Let {U} be
the class of all open sets in X such that U® = X — U is compact. We
remark that X itself € {U}. Let Y be the set consisting of the points of X
and the point y. A set in Y will be called open if either (i) it does not
contain y and is open as a subset of X, or (ii) it does contain y and its
intersection with X is a member of {U}. It is easy to see that Y thus
obtained is a topological space, and that the relative topology of X
coincides with its original topology.

Suppose {V'} be a family of open sets which covers Y. Then there must
be some member of {V} of the form U,V {y}, where U,€ {U}. By the
definition of {U}, U is compact as a subset of X. It is covered by the
system of sets V/\ X with V€ {V}. Thus some finite subsystem:
ViNX,Vy,NX,...,V,N X covers US. Consequently, V,,V,, ..., V,
and U, V {y} cover Y, proving that Y is compact.

Tychonov’s Theorem

Definition. Corresponding to each « of anindex set 4, let there be given
a topological space X,. The Cartesian product g X, is, by defini-
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tion, the set of all functions f with domain A4 such that f(x) € X, for
every o« € A. We shall write f = lg; f(x) and call f(x) the x-th coordi-

nate of /. When A consists of integers (1,2, ..., #n), kﬁ1 X, is usually

denoted by X;XX,X- - XX,. We introduce a (weak) topology in the
product space g X, by calling “open” the sets of the form g G,,

where the open set G, of X, coincides with X, for all but a finite set of .
Tychonov’s Theorem. The Cartesian product X = g X, of a

system of compact topological spaces X, is also compact.

Remark. As is well known, a closed bounded set on the real line R! is
compact with respect to the topology defined by the distance d(x, y) =
| —y| (the Bolzano-Weierstrass theorem). By the way, a subset M
of a metric space is said to be bounded, if M is contained in some sphere
S (%o, 7) of the space. Tychonov’s theorem implies, in particular, that a
parallelopiped:

—oo<a;§x,-£b,~<o'o (i=l,2,...,n)

of the n-dimensional Euclidean space R is compact. From this we see
that R” is locally compact.

Proof of Tychonov’s Theorem. A system of sets has the finite inter-
section property if its every finite subsystem has a non-void intersection.
It is easy to see, by taking the complement of the open sets of a covering,
that a topological space X is compact iff, for every system {M,; « € 4}
of its closed subsets with finite intersection property, the intersection
afe'L M is non-void.

Let now a system {S} of subsets S of X = Ig X, have the finite

intersection property. Let {N} be a system of subsets N of X with the
following properties:

(i) {S}is a subsystem of {N},
(i) {N} has the finite intersection property,
(iii) {N} is maximal in the sense that it is not a proper subsystem of
other systems having the finite intersection property and containing
{S} as its subsystem.
The existence of such a maximal system {N} can be proved by Zorn’s
lemma or transfinite induction.

For any set N of {N} we define the set N, = {f(x); f€ N} C X,.
We denote then by {N,} the system {N,; N ¢ {N}}. Like {N}, {N,}
enjoys the finite intersection property. Thus, by the compactness of X,,,
there exists at least one point p, € X, such that p, € NQN} Ni. We have

i = t N*&.
to show that the point p ag D« belongs to the se NQN}
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But since p,, belongs to the intersection NQN} N;,, any open set G,,

of X,; which contains p,, intersects every N, € {N,}. Therefore the open
set
G™ = {x;x = ]J %, With x, € G, }

of X must intersect every N of {N}. By the maximality condition (iii)
of {N}, G must belong to {N}. Thus the intersection of a finite number
of sets of the form G with x, € 4 must also belong to {N} and so such a
set intersect every set N € {N}. Any open set of X containing p being
defined as a set containing such an intersection, we see that p = “IJ Du

must belong to the intersection N N%
NE(N}

Urysohn’s Theorem

Proposition. A compact space X is normal in the sense that, for any
disjoint closed sets F, and F, of X, there exist disjoint open sets G, and
G, such that F; C G,, F, C G,.

Proof. For any pair (x, y) of points such that x€ F,, y € F,, there
exist disjoint open sets G(x,y) and G(y,x) such that x€ G(x,y),
y € G(y, x). F, being compact as a closed subset of the compact space X,
we can, for fixed x, cover F, by a finite number of open sets G(y,, x)
G (¥, %), « « o, G(Yupm» %) Set

n(zx) n(z)

G, = .UIG(y]-, %) and G(x) = ﬂl G(x, ;).
j= j=

’

Then the disjoint open sets G, and G (x) are such that F, C G,, x € G(x)-
F, being compact as a closed subset of the compact space X, we can cover
F, by a finite number of open sets G (x,), G(x,), . . ., G(*,). Then

k k
G, =UG(x) and G,= N G,
j=1 i=1

satisfy the condition of the proposition.

Corollary. A compact space X is regular in the sense that, for any
non-void open set G; of X, there exists a non-void open set G, such that
(AR

Proof. Take F; = (G;)€ and F, = {x} where ¥ € G;. We can then take
for G, the open set G, obtained in the preceding proposition.

Urysohn’s Theorem. Let 4, B be disjoint closed sets in a normal space
X. Then there exists a real-valued continuous function /() on X such
that

0=f¢)=1lonX,and f(!) =0on 4, f(!) = 1 on B.

Proof. We assign to each rational number » =%/2" (¢ =0, 1, .. ., 2%,
an open set G () such that (i) 4 C G(0), B = G (1), and (ii) G(r)* C G(r")
whenever 7 < 7. The proof is obtained by induction with respect to .
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For n = 0, there exist, by the normality of the space X, disjoint open sets
Gy and G, with 4 C Gy, B C G,. We have only to set G, = G (0). Suppose
that G(r)’s have been constructed for  of the form %/2*~1 in such a
way that condition (ii) is satisfied. Next let 2 be an odd integer > 0.
Then, since (k¥ —1)/2" and (k + 1)/2" are of the form %'/2*~1 with
0<% < 2", we have G((k— 1)/2")* C G((k + 1)/2"). Hence, by the
normality of the space X, there exists an open set G which satisfies
G((k—1)/2")* C G,G* C G((k + 1)/2"). If we set G (k/2") = G, the induc-
tion is completed.

Define f(¢) by

f(¢) = 0 on G(0), and /(f) = sup » whenever ¢ € G (0)°.
1EG(r)

Then, by (i), /() = 0 on 4 and f(!) = 1 on B. We have to prove the
continuity of /. For any f{,€ X and positive integer #, we take » with
) <7<flt) +2" 1 Set G=GP)NG{r—2"C (we set, for
convention, G(s) = @ if s < 0 and G(s) = X if s > 1). The open set G
contains #,. For, f(f) < implies # € G(r), and (r — 27" 1) < f(¢,)
implies 4, € G(r—27" 1) L G(r—27". Now tc G implies t€ G(r)
and so f(f) < r; similarly ¢ € G implies € G(r — 27")*C C G(r — 27"  s0
that » — 27" < f(¢). Therefore we have proved that |f(t) —f (%) | < 1/2"
whenever ¢€ G.

The Stone-Weierstrass Theorem

Weierstrass’ Polynomial Approximation Theorem. Let f(x) be a real-
valued (or complex-valued) continuous function on the closed interval
[0, 1]. Then there exists a sequence of polynomials P,, (x) which converges,
as # — o0, to f(x) uniformly on [0, 1]. According to S. BERNSTEIN, we

may take
"

Py(x) = 2 4Cp [ (p]n) x* (1 — 2)" 7. 1)

$=0
Proof. Differentiating (x + y)" =92:) +Cp 2 y*~? with respect to
% and multiplying by x, we obtain nx(x + y)*~! =Pé“b P uCp 2P y* 2.
Similarly, by differentiating the first expression twice with respect to x and
”
multiplying by %, we obtain # (n — 1) 22 (x + y)* 2 = p% p(p—1) Cpa?
y"~?. Thus, if we set

75(x) = Cp 2? (1 —2)*77, (2)
we have

é"or,,(x) =1, Péoprp(x) —nx, Péop(p—— 1) 7,(8) = n(n— 1) 22. (3)
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Hence
S (h ) 2 3 _ » o 52
p§0 (p—nx)r,(x) =n"x Pé;rp(x) 2nxp:0pr,,(x) +p§0p 7, (x)
=n’x>—2nx-nx + (nx + n(n—1) 1%
=nx(l—zx). (4)

We may assume that |f(¥)| = M < oo on [0, 1]. By the uniform
continuity of f(x), there exists, for any ¢ > 0, a é > 0 such that

|f(x) — f(x) | < & whenever |x— x| < 4. (%)
We have, by (3),

1) — 2 1pim) 7(3)| =
= ’lp—m sdnl + ‘lt—éﬂn

For the first term on the right, we have, by 7,(x) = 0 and (3),

- T<on| = pgo (¥
For the second term on the right, we have, by (4) and |/(*)| = M,

2 06— 1fm) 7,()

2M g2
')p—n%>6n‘ s=°eM IP—%I; oW S & b —n0)"7y (x)
MO >0 (as n>o0).

The Stone-Weierstrass Theorem. Let X be a compact space and C (X)
the totality of real-valued continuous functions on X. Let a subset B of
C (X) satisfy the three conditions: (i) if f, g€ B, then the function pro-
duct /- g and linear combinations «f + fg, with real coefficients «, g,
belong to B, (ii) the constant function 1 belongs to B, and (iii) the uniform
limit f,, of any sequence {f,} of functions € B also belongs to B. Then
B = C(X) iff B separates the points of X, i.e. iff, for every pair (s,, s,) of
distinct points of X, there exists a function x in B which satisfies
% (sy) 7 %(sg)-

Proof. The necessity is clear, since a compact space is normal and so,
by Urysohn’s theorem, there exists a real-valued continuous function x
such that x (s;) 7 %(sp)-

To prove the sufficiency, we introduce the lattice notations:

(f V g) (s) =max (f(s), g(s)), (f A g) (s) = min (f(s), (), |f] (s) = |£(s) |-
By the preceding theorem, there is a sequence { P,,} of polynomials such that
It —Pat)| < 1ln for —n<t<n.
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Hence ||/ (s)| — Pu(f(s))| < 1/n if —n < f(s) < n. This proves, by (i),
that |f| € Bif { € B, because any function f(s) € B C C(X) is bounded on
the compact space X. Thus, by

fve=LE8 IS8l ang ppg=TFE_lIzel
we see that B is closed under the lattice operations \/ and A.

Let A€ C(X) and s,, s, € X be arbitrarily given such that s, 7 s,.
Then we can find an f,, € B with £, (s;) = k(s,) and f,, (ss) = A (s,).
To see this, let g € B be such that g(s,) 7 g(s,), and take real numbers &
and B so that f,, = xg + B satisfies the conditions: f, (s;) = A(s;)
and f, (sp) = A(sy).

Given £ > 0 and a point ¢ € X. Then, for each s € X, there is a neigh-
bourhood U (s) of s such that f,(«) > & (4) — & whenever u € U (s). Let
U(sy), U(sy), - - ., Ufs,) cover the compact space X and define

/l =fs,t \/ e V fsnl-
Then f, € B and f,(u) > h(u) — ¢ for allu € X. We have, by f,,(£) = A(f),
f:(¢) = A (¢). Hence there is a neighbourhood V (¢) of ¢ such that f,(4) <
h(u) + ¢ whenever u€ V (£). Let V(#,), V(t,), . .., V() cover the com-
pact space X, and define

f:ftl/\ tte /\ftk'
Then f€ B and f(u) > h(u) —e Jor all u€ X, because f, (u) > h(u) —e

for u € X. Moreover, we have, for an arbitrary point » € X, say u € V (t;),
F00) < f () < hw) + .

Therefore we have proved that |f(«) — A(«)| < & on X.

We have incidentally proved the following two corollaries.

Corollary 1 (KAKUTANI-KREIN). Let X be a compact space and C (X)
the totality of real-valued continuous functions on X. Let a subset B
of C(X) satisfy the conditions: (i) if f, g€ B, then f \/ g, f A g and the
linear combinations «f + fg, with real coefficients «, B, belong to B,
(ii) the constant function 1 belongs to B, and (iii) the uniform limit f,,
of any sequence {f,} of functions € B also belongs to B. Then B = C (X)
iff B separates the points of X.

Corollary 2. Let X be a compact space and C (X) be the totality of
complex-valued continuous functions on X. Let a subset B of C(X)
satisfy the conditions: (i) if f, g € B, then the function product f - g and
the linear combinations «f + fg, with complex coefficients «, 8, belong
to B, (ii) the constant function 1 belongs to B, and (iii) the uniform
limit f, of any sequence {f,} of functions € B also belongs to B. Then
B = C(X) iff B satisfies the conditions: (iv) B separates points of X
and (v) if f(s) € B, then its complex conjugate function /(s) also belongs
to B.
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Weierstrass’ Trigonometric Approximation Theorem. Let X be the
circumference of the unit circle of R2. It is a compact space by the usual
topology, and a complex-valued continuous function on X is represented
by a continuous function f(x), —oo < x < oo, of period 2x. If we take,
in the above Corollary 2, for B the set of all functions representable by
linear combinations, with complex coefficients of the trigonometric
functions

Emn=0,4+1,+2,...)

and by those functions obtainable as the uniform limit of such linear
combinations, we obtain Weierstrass’ trigonometric approximation theo-
rem: Any complex-valued continuous function f(x) with period 2z can
be approximated uniformly by a sequence of trigonometric polynomials
of the form %‘ c, €.

Completeness

A sequence {x,} of elements in a metric space X converges to a limit
point x € X iff lim d(x,, ¥) = 0. By the triangle inequality d(x,, x,,) <
7—>00

d(x,, x) + d(x, x,,), we see that a convergent sequence {x,} in X satisfies
Cauchy’s convergence condition

lim d(x,, x,,) = 0. (1)
7%,m—>00

Definition. Any sequence {x,} in a metric space X satisfying the above
condition (1) is called a Cauchy sequence. A metric space X is said to be
complete if every Cauchy sequence in it converges to a limit point € X.

It is easy to see, by the triangle inequality, that the limit point of
{x,}, if it exists, is uniquely determined.

Definition. A subset M of a topological space X is said to be non-
dense in X if the closure M* does not contain a non-void open set of X.
M is called dense in X if M* = X. M is said to be of the first category if M
is expressible as the union of a countable number of sets each of which is
non-dense in X ; otherwise M is said to be of the second category.

Baire’s Category Argument

The Baire-Hausdorff Theorem. A non-void complete metric space is of
the second category.

Proof. Let {M,,} be a sequence of closed sets whose union is a complete
metric space X. Assuming that no M, contains a non-void open set, we
shall derive a contradiction. Thus MY is open and M{* = X, hence MY
contains a closed sphere S, = {x; d(x,, ¥) < 7,} whose centre x, may be
taken arbitrarily near to any point of X. We may assume that 0 <7, <<1/2.
By the same argument, the open set M§ contains a closed sphere
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Sy = {#; d(%,, x) < 7;} contained in S; and such that 0 <7, < 1/22.
By repeating the same argument, we obtain a sequence {S,} of closed
spheres S,, = {x; d(x,, ¥) =< r,} with the properties:

0<7,<1/2" Sps1CSm SaNM, =0 (n=1,2,..).

The sequence {x,} of the centres forms a Cauchy sequence, since, for any
n < m, %y € S, so that d(x,, x,,) < 7, < 1/2". Let x5, € X be the limit
point of this sequence {x,}. The completeness of X guarantees the exist-
ence of such a limit point xy. By @ (%, Xeo) = @ (%X, %) + @ (%, %oo) =
7y + 8 (%, Xoo) = 7 (as m — 00), we see that x, € S, for every n. Hence

oo
%o 1S in none of the sets M,,, and hence #, is not in the union U M, = X,
n=1

contrary to x, € X.
Baire’s Theorem 1. Let M be a set of the first category in a compact
topological space X. Then the complement M¢ = X — M is dense in X.
Proof. We have to show that, for any non-void open set G, M€ inter-

00
sects G. Let M = l_j1 M, where each M, is a non-dense closed set. Since
st

M, = M? is non-dense, the open set MY intersects G. Since X is regular
as a compact space, there exists a non-void open set G, such that
G% € G N M. Similarly, we can choose a non-void open set G, such that
Gs C G, N\ MS. Repeating the process, we obtain a sequence of non-void
open sets {G,} such that
G:+1gG”/\MS+1 (n=1, 2,...).

The sequence of closed sets {G}} enjoys, by the monotony in #, the finite
intersection property. Since X is compact, there is an x € X such that

o0
%€ N G,. x€Gj implies x€G, and from x€Gi,, CG,NMS,,

(o]
(n=0,1,2,...; Go=G), we obtain x¢ n MS = MF. Therefore we

have proved that G N\ M¢ is non-void. ‘
Baire’s Theorem 2. Let {x,, (f)} be a sequence of real-valued continuous
functions defined on a topological space X. Suppose that a finite limit:

Tim 1, () = (1)

exists at every point £ of X. Then the set of points at which the function
x is discontinuous constitutes a set of the first category.

Proof. We denote, for any set M of X, by M* the union of all the
open sets contained in M ; M* will be called the snterior of M.

Put P,(e) = {t€X; |2(t) — xm(t)| S, 6> 0}, G(e)=”§1Pf,,(e).

[>2]
Then we can prove that C = an(l/n) coincides with the set of all

points at which x(#) is continuous. Suppose x (¢) is continuous at ¢ = ¢,.
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(=]
We shall show that #,¢€ ﬂl G(1/n). Since lim x,(f) = x(f), there
n= 7—>00
exists an m such that |x(f,) — %, (f) | < ¢/3. By the continuity of % (f) and
%m(?) at ¢ = £, there exists an open set U, 3¢, such that |x (f) —x(f,) | <¢/3
| % (£) — %m () | =< €/3 whenever ¢ € U,. Thus ¢ € U, implies
[2) — xm ()| = [£() — 2 () | + [% () — %m (o) | + |2%m(te) —2m(B) | <ee,
which proves that #,€ P}, (¢) and so 4 € G (). Since & > 0 was arbitrary,

oo
we must have £, € nl G(1/n).
n=

(o]
Let, conversely, £,¢€ n1 G (1/n). Then, for any & > 0, ¢, € G (¢/3) and

so there exists an m such that #, € Pj,(¢/3). Thus there is an open set
U, >t such that ¢c U, implies |x(f) — ,(f)| < ¢/3. Hence, by the
continuity of x,,(#) and the arbitrariness of ¢ > 0, x (£) must be continuous
at ¢t =1,

After these preparations, we put

F(e) ={EX; |#m) —tma®)| <& (R=1,2,..)}.

Thisis a closed set by the continuity of the «,, (#)’s. Wehave X = 81 F,(e)
by ”lﬂx,,(t) = x(¢). Again by ,,lf,lo %, (¢) = x(t), wehave F,, (¢) C P,,(e).

Thus Fi,(e) < Pi(e) and so 81 Fi,(e) < G(e). On the other hand, for
any closed set F, (F — F?) is a non-dense closed set. Thus X — ﬁl Fi ()
m=

o0 .
= U1 (Fm(e) — Fy(e)) is a set of the first category. Thus its subset
”m=

G(e)° = X —G(g) is also a set of the first category. Therefore the set
of all the points of discontinuity of the function x (¢), which is expressible

(o] (o]
as X — ﬂl G(1/n) = llll G(1/n)€, is a set of the first category.

Theorem. A subset M of a complete metric space X is relatively com-
pact iff it is tofally bounded in the sense that, for every ¢ > 0, there exists
a finite system of points m,,m,, . .., m, of M such that every point m of
M has a distance << ¢ from at least one of m,, m,, . . ., m,. In other words,
M is totally bounded if, for every ¢ > 0, M can be covered by a finite
system of spheres of radii < ¢ and centres € M.

Proof. Suppose M is not totally bounded. Then there exist a positive
number ¢ and an infinite sequence {m,} of points € M such that d (m;, m;)
= ¢ for 7 5~ 4. Then, if we cover the compact set M* by a system of open
spheres of radii < ¢, no finite subsystem of this system can cover M*.
For, this subsystem cannot cover the infinite subset {m,} C M C M°.
Thus a relatively compact subset of X must be totally bounded.



14 0. Preliminaries

Suppose, conversely, that M is totally bounded as a subset of a com-
plete metric space X. Then the closure M* is complete and is totally
bounded with M. We have to show that M* is compact. To this purpose,
we shall first show that any infinite sequence {p,} of M* contains a sub-
sequence {p,} which converges to a point of M*. Because of the total
boundedness of M, there exist, for any ¢ > 0, a point ¢, € M* and a sub-
sequence {p,} of {$,} such that d(p,, q.) < ¢/2forn =1,2,...; conse-
quently, d(py, pw) = APy, go) + 8(qe, P) < eformn,m=1,2,... We
set € = 1 and obtain the sequence {¢;}, and then apply the same rea-
soning as above with ¢ = 27! to this sequence {p;}. We thus obtain a
subsequence {p,~} of {p,/} such that

d(pn’: pm’) < 1' d(pn"» ﬁm”) < 1/2 (n'm = 1' 2' .. )

By repeating the process, we obtain a subsequence {,&+} of the sequence
{pnm} such that

A (Ppksr), Ppiern) < 1/28  (n,m=1,2,...).

Then the subsequence {p,} of the original sequence {p,}, defined by the
diagonal method:

?("). = p”(n),

surely satisfies lim d(p(.y, p(my) = 0. Hence, by the completeness of
7,m—>00
M?*, there must exist a point p € M* such that im d(p,y, p) = 0.
7—>»00

We next show that the set M* is compact. We remark that there
exists a countable family {F} of open sets F of X such that, if U is any
open set of X and x € U N\ M*, thereis a set F € {F} for whichx€ F C U.
This may be proved as follows. M” being totally bounded, M* can be
covered, for any £ > 0, by a finite system of open spheres of radii ¢
and centres € M®. Letting ¢ = 1, 1/2, 1/3, ... and collecting the coun-
table family of the corresponding finite systems of open spheres, we
obtain the desired family {F} of open sets.

Let now {U} be any open covering of M*. Let {F*} be the subfamily
of the family {F} defined as follows: F C {F*} iff F C {F} and there is
some U € {U} with F C U. By the property of {F} and the fact that
{U} covers M*, we see that this countable family {F*} of open sets covers
M?*. Now let {U*} be a subfamily of {U} obtained by selecting just one
U € {U} such that F C U, for each F € {F*}. Then {U*} is a countable
family of open sets which covers M*®. We have to show that some finite
subfamily of {U*} covers M*. Let the sets in {U*} be indexed as U,,

U,, ... Suppose that, for each #, the finite union .Ul U; fails to cover
=

n
M?*. Then there is some point %, € <M —kl:Jl U k). By what was proved
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above, the sequence {x,} contains a subsequence {x,y} which converges
to a point, say %, in M® Then x,, € Uy for some index N, and so
%, € Uy for infinitely many values of #, in particular for an # > N. This

”
contradicts the fact that x, was chosen so that x,¢€ (M —hUl U,,).

Hence we have proved that M* is compact.

3. Measure Spaces

Measures

Definition. Let S be a set. A pair (S, ¥B) is called a o-7ing or a o-
additive family of sets C S if B is a family of subsets of S such that

Se®, (1)
B¢ B implies B¢ = (S—B)¢ 8, (2)

B;€®B (1=1,2,...) implies that .Ul B; € B (0-additivity).  (3)
]—

Let (S, B) be a o-ring of sets C S. Then a triple (S, B, m) is called a
measure space if m is a non-negative, o-additive measure defined on B:

m(B) = 0 for every B€ B, (4)

8

(e
m (’2; BJ->= 21 m(B;) for any disjoint sequence {B;} of sets € B
= i=
(countable- or o-additivity of m), (5)

S is expressible as a countable union of sets B; € % such that m (B;)
<oo(f=1,2,...) (o-finiteness of the measure space (S, B, m)). (6)
This value m (B) is called the m-measure of the set B.

Measurable Functions

Definition. A real- (or complex-) valued function x(s) defined on S is
said to be B-measurable or, in short, measurable if the following condition
is satisfied:

For any open set G of the real line R! (or complex (7)
plane C?), the set {s; x(s) € G} belongs to B.
It is permitted that x(s) takes the value co.

Definition. A property P pertaining to points s of S is said to hold m-
almost everywhere or, in short m-a. e., if it holds except for those s which
form a set € B of m-measure zero.

A real- (or complex-) valued function x(s) defined m-a.e. on S and
satisfying condition (7) shall be called a B-measurable function defined
m-a.e. on S or, in short, a B-measurable function.
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Egorov’s Theorem. If B is a 8-measurable set with m(B) < oo and if
{f(s)} is a sequence of B-measurable functions, finite m-a. e. on B, that
converges m-a.e. on B to a finite B-measurable function f(s), then
there exists, for each ¢ > 0, a subset E of B such that m(B—E) < ¢
and on E the convergence of f,(s) to f(s) is uniform.

Proof. By removing from B, if necessary, a set of m-measure zero,
we may suppose that on B, the functions /, (s) are everywhere finite, and
converge to f(s) on B.

(o]
The set B, = k_ﬂ‘(h1 {s€ B; |f(s) — x(s)| < &} is B-measurable and

B, CB, if n<k Since lim f,(s) = /(s) on B, we have B = El B,.
Thus, by the c-additivity of the measure m, we have
m(B) =m{B, + (B, — B,) + (B3 —By) + - - -}
=m(By) + m(By— B;) + m(By—By) + - - -
= m(B,) + (m(By) —m(By)) + (m(By) —m(By)) + - - -
= ”limo° m(B,).
Hence "lir’g m(B — B,) = 0, and therefore, from a sufficiently large %,

on, m(B — B;) < n where 7 is any given positive number.
Thus there exist, for any positive integer %, a set C; C B such that
m(Cy) < ¢/2* and an index N, such that

|7(s) — fa(s)| < 1/2* for » > N, and for s€ B — C,.
(o)
Let usset E =B — kUI Cy. Then we find
o0
m(B—E) < kfrlm(c,,) <SP =e,

and the sequence f,(s) converges uniformly on E.

Integrals

Definition. A real- (or complex-) valued function x(s) defined on S
is said to be fimstely-valued if it is a finite non-zero constant on each of
a finite number, say #, of disjoint B-measurable sets B; and equal to zero

onS — 0 B;. Let the value of x(s) on B; be denoted by ux;.
j=1
”
Then x(s) is m-integrable or, in short, integrable over S if Ll‘ |%;| m (Bj) < oo,
]-

and the value 2"1? %;m(B;) is defined as the integral of x(s) over S with
j=

respect to the measure m; the integral will be denoted by g{ x(s) m(ds)
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or, in short, by f x(s) or simply by f x(s) when no confusion can be
3§

expected. A real- (or complex-) valued function x (s) defined m-a. e. on Sis
said to be m-integrable or, in short, integrable over S if there exists a
sequence {x,(s)} of finitely-valued integrable functions converging to
%(s) m-a. e. and such that

,,1;,1_12,0! | % (5) — %4 (s)| m (ds) = 0.

It is then proved that a finite lim f %, (s) m (ds) exists and the value
7n—>00 §

of this limit is independent of the choice of the approximating sequence
{#,(s)}. The value of the integral f m (ds) over S with respect to the

measure m is, by definition, given by hm f %, (s) m(ds). We shall
n—00 §

sometimes abbreviate the notation f m (ds) to f x(s) m(ds) or to

Jx0).

Properties of the Integral

i) If x(s) and y(s) are integrable, then «x(s) + By(s) is integrable
and f(ocx (s) + By (s)) m(ds) = fx m(ds) +,3fy )m (ds).
ii) x(s) is integrable iff |x(s)] is mtegrable
iii) If x(s) is integrable and x(s) = 0 a.e., then [ x(s) m(ds) = 0,
S
and the equality sign holds iff x(s) = 0 a. e.

iv) If x(s) is integrable, then the function X (B) = f x(s) m(ds) is
B

o-additive, that is, X (J;: Bj) = jé,‘: X (B;) for any disjoint

sequence {B;} of sets € B. Here f x(s) m(ds) = f Cp(s) x(s) m(ds),

where Cg(s) is the defining /u:ctz'on of the setSB, that is,
Cp(s)=1 for s€e¢ B and Cpg(s) =0forsc S—B.

v) X (B) in iv) is absolutely continuous with respect to m in the sense
that m (B) = 0 implies X (B) = 0. This condition is equivalent to
the condition that m(].};l)'llo X (B) = 0 uniformly in B € 8.

The Lebesgue-Fatou Lemma. Let {x,(s)} be a sequence of real-valued
integrable functions. If there exists a real-valued integrable function
%(s) such that x(s) = x,(s) a.e. forn =1,2,... (or x(s) < x,(s) a.e.
forn=1,2,...), then

[ (ﬂlﬁ x,,(s))m(ds) hm f %, (s) m (ds)

5
(orSf(ETrzlox,,(s))m(ds) gnli%sfx,,(s m(ds)) ,

2 Yosida, Functional Analysis
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under the convention that if lim z, (s) (or lim x, (s)) is not integrable,
n—00 %00

we understand that lim f %y (s) m(ds) = —oo [or lim f %y () m (ds) = oo)
#0 § n>00$

Definition. Let (S, 8B, m) and (S, B’, m') be two measure spaces. We
denote by B x B’ the smallest g-ring of subsets of S S’ which contains
all the sets of the form B X B’, where B€ 8, B’ € 8’. It is proved that
there exists a uniquely determined o-finite, -additive and non-negative
measure m X m’ defined on 8 X B’ such that

(mxm') (BXB') = m(B) m' (B’).

mXxm' is called the product measure of m and m’. We may define the
B x B’-measurable functions x(s, s’) defined on SX S’, and the mXxm/'-
integrable functions % (s, s). The value of the integral over Sx S’ of an
m X m'-integrable function x (s, s) will be denoted by

ffx(s, s') (mxm') (dsds’) or ffx(s, s') m(ds) m’ (ds).
Sx¥ sxs

The Fubini-Tonelli Theorem. A B X B’-measurable function x (s, s') is
m X-m'-integrable over SX S’ iff at least one of the iterated integrals

f[f|x(s s’) m(ds}m’(ds’) and f{flx s, §) ds)} (ds)
is fmlte, and in such a case we have

[[ (s, s') m(ds) m’ (ds') = [ { [ x(s, s m(ds)}m’ (ds’)
SxS S’
= f{fx(s s’) '(ds’)}m(ds).

Topological Measures

Definition. Let S be a locally compact space, e.g., an n-dimensional
Euclidean space R” or a closed subset of R*. The Batre subsets of S are
the members of the smallest o-ring of subsets of S which contains every
compact Gs-set, i.e., every compact set of S which is the intersection of
a countable number of open sets of S. The Borel subsets of S are the
members of the smallest o-ring of subsets of S which contains every
compact set of S.

If S is a closed subset of a Euclidean space R”, the Baire and the Borel
subsets of S coincide, because in R"* every compact (closed bounded)
set is a Gs-set. If, in particular, S is a real line R! or a closed interval on
RY, the Baire (= Borel) subsets of S may also be defined as the members
of the smallset o-ring of subsets of S which contains half open intervals
(a, b].

Definition. Let S be a locally compact space. Then a non-negative Baire
(Borel) measure on S is a ¢g-additive measure defined for every Baire
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(Borel) subset of S such that the measure of every compact set is finite.
The Borel measure # is called regular if for each Borel set B we have

m(B) = l}rglgm(U)

where the infimum is taken over all open sets U containing B. We may
also define the regularity for Baire measures in a similar way, but it
turns out that a Baire measure is always regular. It is also proved that
each Baire measure has a uniquely determined extension to a regular
Borel measure. Thus we shall discuss only Baire measures.

Definition. A complex-valued function f(s) defined on a locally
compact space S is a Batre function on S if /~1(B) is a Baire set of S for
every Baire set B in the complex plane Cl. Every continuous function
is a Baire function if S is a countable union of compact sets. A Baire
function is measurable with respect to the g-ring of all Baire sets of S.

The Lebesgue Measure

Definition. Suppose S is the real line R! or a closed interval of R1.
Let F (x) be a monotone non-decreasing function on S which is continuous
from the right: F(x) = ing (y). Define a function m on half closed

<y

intervals (a, b] by m ((a, b]) = F (b) — F (a). This m has a uniquely deter-
mined extension to a non-negative Baire measure on S. The extended
measure # is finite, i.e., m(S) << oo iff F is bounded. If m is the Baire
measure induced by the function F (s) = s, then m is called the Lebesgue
measure. The Lebesgue measure in R" is obtained from the n-tuple of the
one-dimensional Lebesgue measures through the process of forming the
product measure.

Concerning the Lebesgue measure and the corresponding Lebesgue
integral, we have the following two important theorems:

Theorem 1. Let M be a Baire set in R” whose Lebesgue measure | M |
is finite. Then, if we denote by B © C the symmetric difference of the
set Band C: B C =B\ C—BNC, we have

l,l'|i£>n‘)|(M+h) © M| =0, where M + h = {x€ R*; x =m + h,m€ M}.

Here m +h=(my + hy,...,m, + h,) for m= (my,...,m,), h=
” 1/2
(s, . . ., hy) and |h| =(i§h,) .
Theorem 2. Let G be an open set of R*. For any Lebesgue integrable

function f(x) in G and & > 0, there exists a continuous function C,(x) in
G such that {x€ G; C,(x) # 0}* is a compact subset of G and

df |f (%) — C.(%)| dx < .
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Remark. Let m be a Baire measure on a locally compact space S.
A subset Z of S is called a set of m-measure zero if, for each e > 0, there
is a Baire set B containing Z with m(B) < e. One can extend m to the
class of m-measurable sets, such a set being one which differs from a
Baire set by a set of m-measure zero. Any property pertaining to a
set of m-measure zero is said to hold m-almost everywhere (m-a. e.).
One can also extend integrability to a function which coincides m-a. e.
with a Baire function.

4. Linear Spaces

Linear Spaces
Definition. A set X is called a linear space over a field K if the
following conditions are satisfied:

X is an abelian group (written additively), (1)
A scalar multiplication is defined: to every element)
x € X and each & € K there is associated an element of
X, denoted by «x, such that we have

x(x+y) =ax+ay (xeK;x,y€X), @)
x+Bx=ax+px (x,€K; x€X),
f) x = (Bx) (x, BEK;xEX),

1. x = x (1 is the unit element of the field K).

In the sequel we consider linear spaces only over the real number
field R? or the complex number field C*. A linear space will be said to be
real or complex according as the field K of coefficients is the real number
field R! or the complex number field C1. Thus, in what follows, we mean
by a linear space a real or complex linear space. We shall denote by
Greek letters the elements of the field of coefficients and by Roman
letters the elements of X. The zero of X (= the unit element of the
additively written abelian group X) and the number zero will be denoted
by the same letter 0, since it does not cause inconvenience as 0 - x =
(x — &) x = & x — o x = 0. The snverse element of the additively written
abelian group X will be denoted by —x; it is easy to see that — x = (—1)x.

Definition. The elements of a linear space X are called vectors (of X).
The vectors xy, #,, . . ., x,, of X are said to be linearly independent if the

”

equation Zi‘ o; % = 0 implies &y =g = --- = 0. They are linearly
j=

dependent if such an equation holds where at least one coefficient is
different from 0. If X contains # linearly independent vectors, but every
system of (n + 1) vectors is linearly dependent, then X is said to be of
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n-dimenston. If the number of linearly independent vectors is not finite,
then X is said to be of infinite dimension. Any set of # linearly indepen-
dent vectors in an #-dimensional linear space constitutes a basis for X

”
and each vector x of X has a unique representation of the formx = 21 o; V;
J=

in terms of the basis y;, ¥5, . . ., ¥,. A subset M of a linear space X is
called a linear subspace or, in short, a subspace, if whenever x,y€ M,
the linear combinations xx + By also belong to M. M is thus a linear
space over the same coefficient field as X.

Linear Operators and Linear Functionals

Definition. Let X, Y be linear spaces over the same coefficient field
K. A mapping T: x— y = T (x) = T x defined on a linear subspace D
of X and taking values in Y is said to be linear, if

T (%, + Bxy) = & (Tx;) + B(T ).
The definition implies, in particular,

T-0=0, T(—x)=—(Tx).
We denote

D =D(T),{y¢ Y;yz Tx,2€D(T)} = R(T),{x€ D(T); Tx =0} = N(T)

and call them the domain, the range and the null space of T, respectively.
T is called a linear operator or linear transformation on D(T) C X into
Y, or somewhat vaguely, a linear operator from X into Y. If the range
R(T) is contained in the scalar field K, then T is called a linear functional
on D(T). If a linear operator T gives a one-to-one map of D (T) onto
R(T), then the inverse map T! gives a linear operator on R(T) onto
D(T):
T 'Tx=xforx€e D(T) and T T-ly=yforye R(T).

T-1 is the tnverse operator or, in short, the inverse of T. By virtue of
T (%, — %) = T %, — T x,, we have the following.

Proposition. A linear operator T admits the inverse 71 iff Tx = 0
implies x = 0.

Definition. Let T, and T, be linear operators with domains D (T,)
and D (T,) both contained in a linear space X, and ranges R(T;) and
R(T,) both contained in a linear space Y. Then T, =T, iff D(T;) =
D(T,) and Tyx = T,x for all x € D(T,) = D(T,). If D(T;) C D(T,) and
T,x = Tyx for all x € D(T,), then T, is called an extension of T,, and T,
a restriction of T,; we shall then write T, C T,.

Convention. The value T (x) of a linear functional T at a point
x€ D (T) will sometimes be denoted by <{x, T, i.e.

T(x)=<x,T).



22 0. Preliminaries

Factor Spaces

Proposition. Let M be a linear subspace in a linear space X. We say
that two vectors x,, %, € X are equivalent modulo M if (x, — x,) € M and
write this fact symbolically by x, = x, (mod M). Then we have:

(i) x= x (mod M),
(i) if x; = x, (mod M), then x, = x, (mod M),
(i) if x; = x5 (mod M) and x, = %3 (mod M), then x;, = x; (mod M).

Proof. (i) is clear since x —x = 0¢€ M. (ii) If (x; —x,) € M, then
(g —2) = — (%, —xp) € M. (iii) If (v, — %) €M and (%, — x,) €M,
then (¥, — x5) = (% — xp) + (% — %) € M.

We shall denote the set of all vectors € X equivalent modulo M to a
fixed vector x by &,. Then, in virtue of properties (ii) and (iii), all vectors in
&, are mutually equivalent modulo M. £, is called a class of equivalent
(modulo M) vectors, and each vector in &, is called a representative of the
class &,. Thus a class is completely determined by any one of its repre-
sentatives, that is, y € £, implies that £, = &,. Hence, two classes &,, &,
are either disjoint (when y € £,) or coincide (when y € £,). Thus the entire
space X decomposes into classes &, of mutually equivalent (modulo M)
vectors.

Theorem. We can consider the above introduced classes (modulo M)
as vectors in a new linear space where the operation of addition of classes
and the multiplication of a class by a scalar will be defined through

&+ éy = Ex+y» D‘Ex = o

Proof. The above definitions do not depend upon the choice of repre-
sentatives x, y of the classes &,, &, respectively. In fact, if (x; —x) € M,
(,— ) € M, then

Bty —E+y)=0@—%+ 00 —yeEM,
(2% —ax) =a(x;,—x)€M.
We have thus proved &, ., =&,,,and &,, = &,,, and the above defini-
tions of the class addition and the scalar multiplication of the classes are
justified.
Definition. The linear space obtained in this way is called the factor
space of X modulo M and is denoted by X/M.
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I. Semi-norms

The semi-norm of a vector in a linear space gives a kind of length for
the vector. To introduce a topology in a linear space of infinite dimension
suitable for applications to classical and modern analysis, it is sometimes
necessary to make use of a system of an infinite number of semi-norms.
It is one of the merits of the Bourbaki group that they stressed the
importance, in functional analysis, of locally comvex spaces which are
defined through a system of semi-norms satisfying the axiom of separa-
tion. If the system reduces to a single semi-norm, the correspond-
ing linear space is called a normed linear space. If, furthermore, the
space is complete with respect to the topology defined by this semi-
norm, it is called a Banach space. The notion of complete normed linear
spaces was introduced around 1922 by S. BANACH and N. WIENER inde-
pendently of each other. A modification of the norm, the quasi-norm in
the present book, was introduced by M. FRECHET. A particular kind of
limit, the inductive limit, of locally convex spaces is suitable for discussing
the generalized functions or the distributions introduced by L. SCHWARTZ,
as a systematic development of S.L.SOBOLEV’s generalization of the
notion of functions.

1. Semi-norms and Locally Convex Linear Topological Spaces

As was stated in the above introduction, the notion of semi-norm is of
fundamental importance in discussing linear topological spaces. We shall
begin with the definition of the semi-norm.

Definition 1. A real-valued function  (x) defined on a linear space X
is called a semi-norm on X, if the following conditions are satisfied:

px+y) = px) + p(y) (subadditivity), (1)
plax) = |o|p(x). (2)
Example 1. The n-dimensional Euclidean space R" of points x =

(%1, . . ., %,) with coordinates x;, #,, . . ., x,, is an n-dimensional linear
space by the operations:

4y = (%4 Yy, % + Y2, .- -, Zn + V),

ax = (%, KX, ..., X%y,).
In this case $(x) = max |x;| is a semi-norm. As will be proved later,
1sjsn

p(x) = <’§”1 ]xj|‘1)llq with ¢ = 1 is also a semi-norm on R".
Proposition 1. A semi-norm $ (x) satisfies
$(0) =0, (3)
bl — 1) Z |pxr) — p(xs) | in particular, p(x) Z 0. (4)
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Proof. p (0) = $(0 - x) = 0- p(x) = 0. We have, by the subadditivity,
P (%, — %) + P (xy) = p (%) and hence p(x; — %) = p(x;) — p (%,). Thus
p(ty—x9) = |—1|- plxy— %) = p () — p(x,) and s0 we obtain (4).

Proposition 2. Let p(x) be a semi-norm on X, and ¢ any positive
number. Then the set M = {x € X; p(x) < c} enjoys the properties:

M>0, (5)

M is convex: x,y € M and 0 < &« < 1 implies

ox + (1—a)yeM, (6)

M 1is balanced (équilibré in Bourbaki’s terminology):

x€M and |x| < 1imply xx€ M, (7

M is absorbing: for any x € X, there exists o« > 0

such that a~1x € M, (8)

p(x) = inf «c (inf = infimum = the greatest lower
a>0,0-1x€M

bound). (9)

Proof. (5) is clear from (3). (7) and (8) are proved by (2). (6) is proved
by the subadditivity (1) and (2). (9) is proved by observing the equi-
valence of the three propositions below :

e M2 [plotx) < ] 2 [p() < acl.

Definition 2. The functional

pu = inf @)

a>0,0"1x€M
is called the Minkowski functional of the convex, balanced and absorbing
set M of X.

Proposition 3. Let a family {p, (x); ¥ € I'} of semi-norms of a linear
space X satisfy the axiom of separation:

For any %, 7 0, there exists p,, (x) in the family such
that p, (%) 7 0.
Take any finite system of semi-norms of the family, say p,, (%), p,, (%),-..,
« ., Py, (%) and any system of # positive numbers &, &, . . ., &,, and set

U={x€X;p,,(x) =¢ G=12,...,n)}. (11)

U is a convex, balanced and absorbing set. Consider such a set U as a
neighbourhood of the vector 0 of X, and define a neighbourhood of any
vector x, by the set of the form

(10)

%+ U={yeX;y=1xy+u,ucU}. (12)
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Consider a subset G of X which contains a neighbourhood of each of its
point. Then the totality {G} of such subsets G satisfies the axiom of open
sets, given in Chapter 0, Preliminaries, 2.

Proof. We first show that the set G, of the form Gy = {x€ X ; p, (x) < ¢}
is open. For, let x5 € Gy and p,(xg) = f < c. Then the neighbourhood
of %y, %9+ U where U={x€X;p,(x) <271 (c—p)}, iscontained in G,,
because # € U implies p, (xg + %) = p, (%) + 7, (#) < B + (c— p) =c.

Hence, for any point %, € X, there is an open set x, + G, which con-
tains x,. It is clear, by the above definition of open sets, that the union
of open sets and the intersection of a finite number of open sets are also
open.

Therefore we have only to prove Hausdorff’s axiom of separation:

If x, # x,, then there exist disjoint open sets G, and G, such that

%, € Gy, %, € G,. (13)

In view of definition (12) of the neighbourhood of a general point x,,
it will be sufficient to prove (13) for the case x; = 0, x, 7= 0. We choose,
by (10), p,,(¥) such that p,, (%) =& > 0. Then G; = {x€ X ; p,, (¥) < &/2}
is open, as proved above. Surely G, 50 = x,. We have to show that G,
and G, = %, + G, have no point in common. Assume the contrary and
let there exist a y € G; N G,. y € G, implies y = x, + g = x, — (—g) with
some g € Gy and 50, by (4), $,,(9) = p,,(x) — p(—g) = a— 2 o = /2,
because —g belongs to G, with g. This contradicts the inequality
Py (¥) < «/2 implied by y € G;.

Proposition 4. By the above definition of open sets, X is a linear
topological space, that is, X is a linear space and at the same time a
topological space such that the two mappings X X X — X : (x,y) >x + ¥
and KX X — X : (x, x) = «x are both continuous. Moreover, each semi-
norm p, (x) is a continuous function on X.

Proof. For any neighbourhood U of 0, there exists a neighbourhood
V of 0 such that

V+V={weX;w=uv, + v, where v;,v,€ V} C U,
since the semi-norm is subadditive. Hence, by writing
(® + ) — (% + yo) = (x — %) + (¥ — ),
we see that the mapping (¥, y) — x + y is continuous at x = x, y = y,.
For any neighbourhood U of 0 and any scalar « 7% 0, the set aU =
{x€ X; x = au,uc U} is also a neighbourhood of 0. Thus, by writing
ax — g%y = o (¥ — %) + (& — oxg) %,
we see by (2) that («, x) - xx is continuous at & = &y, x = .

The continuity of the semi-norm p, (x) at the point x = x, is proved
by |#, (%) — £y (%0) | < £, (¥ — %)
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Definition 3. A linear topological space X is called a locally convex,
linear topological space, or, in short, a locally convex space, if any of its
open sets 5 0 contains a convex, balanced and absorbing open set.

Proposition 5. The Minkowski functional pum (%) of the convex, ba-
lanced and absorbing subset M of a linear space X is a semi-norm on X.

Proof. By the convexity of M, the inclusions

x/(pu(x) + &) €M, y/(pu(y) + &) € M for any &> 0
imply
pu(x) + ¢ . i + Pu(y) + ¢ . y eM
Pux) + pu(y) + 26 Pu(x) + & pul®) +Pu(y) + 2¢ pu(y) + ¢
and so Py (x + ¥) = pu(*) + pm(¥) + 2¢. Since € > 0 was arbitrary,
we obtain the subadditivity of p, (). Similarly we obtain py (xx) =
loc| par (x) since M is balanced.

We have thus proved

Theorem. A linear space X, topologized as above by a family of semi-
norms p, (x) satisfying the axiom of separation (10), is a locally convex
space in which each semi-norm p,(x) is continuous. Conversely, any
locally convex space is nothing but the linear topological space, topolo-
gized as above through the family of semi-norms obtained as the Min-
kowski functionals of convex balanced and absorbing open sets of X.

Definition 4. Let f(x) be a complex-valued function defined in an open
set 22 of R". By the support (or carrier) of {, denoted by supp (f), we mean
the smallest closed set (of the topological space £2) containing the set
{x €82; f(x) # 0}. It may equivalently be defined as the smallest closed
set of 2 outside which f vanishes identically.

Definition 5. By C*(Q), 0 < k& < oo, we denote the set of all complex-
valued functions defined in £ which have continuous partial derivatives
of order up to and including % (of order < oo if k£ = o0). By Ck(Q), we
denote the set of all functions € C*(Q) with compact support, i.e., those
functions € C*(£2) whose supports are compact subsets of £2. A classical
example of a function € C3°(R") is given by

f(x) = exp((|# 2 — 1)) for |x| = | (%1, - - -, %) | =(j=2”1x]2>”2< 1, (14)
=0 for |x|=1.

The Space €*(Q2)
C*(Q) is a linear space by
(h+ 1) 0) =h(®) + /(). (&) (%) =«f(x).
For any compact subset K of £2 and any non-negative integer m < k
(m << oo when & = o0), we define the semi-norm
brm(f) =P |D°f(x) ], € CHQ),

s| Sm,x€
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where sup = supremum = the least upper bound and
dntat ot

D f(x) =m/(% Xy, - - - %)
sl = Iz 52,52l = Z.

Then C*(Q2) is a locally convex space by the family of these semi-norms.
We denote this locally convex space by &*(€). The convergence
hlim /=1 in this space G*() is exactly the uniform convergence
—>00

hllglo D°fy(x) = D°f(x) on every compact subset K of Q, for each s
with [s| < & (|s| < oo if £ = o0). We often write €(£2) for €= (Q).
Proposition 6. G*(Q) is a metric space.
Proof. Let K; C Ko C---C K, C -+ be a monotone increasing
sequence of compact subsets of £ such that Q ="l:j1 K,. Define, for

each positive integer %, the distance

a,(f, ) = 2 " pram(f —8) - (1 + prpm(f —8)) 7"
Then the convergence lim f;, = f in G,(£2) is defined by the distance
$—00

i) = E 2t a(fe) - (1 + &l ).

We have to show that d,(f, g) and d(f, g) satisfy the triangle inequality.
The triangle inequality for 4,(f, g) is proved as follows: by the sub-
. additivity of the semi-norm pg, ., (f), we easily see that d,(f, g) =
satisfies the triangle inequality d,(f, g) < 4, (f, k) + d,(%, g), if we can
prove the inequality

lo—Bl- A+ e =B = |la—y| (L + |a—y )7

+ly =Bl + |y =B
for complex numbers &, # and y; the last inequality is clear from the in-
equality valid for any system of non-negative numbers «, 8 and y:

e+ l4+a+prt=a(l +a)1+ 81+

The triangle inequality for d(f, g) may be proved similarly.

Definition 6. Let X be a linear space. Let a family {X,} of linear
subspaces X, of X be such that X is the union of X,’s. Suppose that each
X, is a locally convex linear topological space such that, if X, C X,
then the topology of X, is identical with the relative topology of X,
as a subset of X,. We shall call “open” every convex balanced and
absorbing set U of X iff the intersection U N X, is an open set of X,
containing the zero vector 0 of X, for all X,. If X is a locally convex
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linear topological space whose topology is defined in the stated way,
then X is called the (strict) inductive limit of X ,’s.

Remark. Take, from each X,, a convex balanced neighbourhood U,
of 0 of X,. Then the convex closure U of the union V = U U,, i.e.,

U -——{ueX;u: ,E,;ﬂjvj,vje V,ﬂng(j=1,2,...,n),2i‘ﬂj= 1
= =
with arbitrary finite n}

surely satisfies the condition that it is convex balanced and absorbing in
such a way that U N\ X, is a convex balanced neighbourhood of 0 of X,
for all X,. The set of all such U’s corresponding to an arbitrary choice of
U.'s is a fundamental system of neighbourhoods of 0 of the (strict) inductive
limit X of X s, i.e., every neighbourhood of 0 of the (strict) inductive
limit X of X, s contains one of the U’s obtained above. This fact justifies
the above definition of the (strict) inductive limit.

The Space D (R2)

C°(£) is a linear space by

(h+ 1) @) =h{ + L&), @) &) =x/f).
For any compact subset K of 2, let Dy (2) be the set of all functions
1€ CP(2) such that supp(f) C K. Define a family of semi-norms on
Dk (2) by

prm(f) = sup |D°f(x)|, where m < oco.
|s|sm,2€K

Dk (2) is a locally convex linear topological space, and, if K, C K,,
then it follows that the topology of Dk, (£2) is identical with the relative
topology of D, (£2) as a subset of D, (). Then the (strict) inductive
limit of D (£2)’s, where K ranges over all compact subsets of 2, is a
locally convex, linear topological space. Topologized in this way, Cg° (£2)
will be denoted by D (). It is to be remarked that,

#(f) = sup |f(x)|
€92

is one of the semi-norms which defines the topology of ® (£2). For, if we
set U ={f€ C3(Q); p(f) =< 1}, then the intersection U N\ D (2) is given
by Uk = {f€ Dk (2); #x(f) =5‘€1£ If(x)] < 1}.

Proposition 7. The convergence hlim /=0 in D (2) means that the
—-00

following two conditions are satisfied: (i) there exists a compact subset
K of Q such that supp(f;) S K (=1, 2, ...), and (ii) for any differential
operator D*, the sequence {D*f,(x)} converges to 0 uniformly on K.
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Proef. We have only to prove (i). Assume the contrary, and let there
exist a sequence {x*} of points €2 having no accumulation points in

£ and a subsequence {f;,(x)} of {fs(¥)} such that f, (x) 5= 0. Then the
semi-norm

p(f) = E 2 sup |f(%)/fs(*™)], where the mono-
k=1  seKy—Ki.,

tone increasing sequence of compact subsets K; of

[

[+ ]

Q satisfies U K;i=2 and x®MeK,— K,
j=

k=1,2,..), Ky=0

defines a neighbourhood U = {f€ C3°(); (/) = 1} of 0 of D(Q).
However, none of the f,,’s is contained in U.

Corollary. The convergence hl_i’rgf,, =7 in (L) means that the

following two conditions are satisfied: (i) there exists a compact subset
K of 2 such that supp(f) C K (A =1, 2, .. .), and (ii) for any differential
operator D*, the sequence D*f, (x) converges to D*f(x) uniformly on K.

Proposition 8 (A theorem of approximation). Any continuous function
/€ C3(R") can be approximated by functions of C{° (R”) uniformly on R*.

Proof. Let 0, (x) be the function introduced in (14) and put

6,(x) = k;! 6, (x/a), where a > 0 and %, > 0 are such that
f 0, (x) dx = 1. (15)

‘We then define the regularization f, of f:

= ff(x—y) y) dy = ff 6,(x — y) dy, where
o (16)
X—y = (% — Y1, % — Y2, - - -» ¥n— V)

The integral is convergent since f and 6, have compact support. Moreover,
since

fa(x)= f f(y) ea(x_y) dy!

supp(f)

the support of f, may be taken to be contained in any neighbourhood of
the supp (f) if we take a > 0 sufficiently small. Next, by differentiating
under the integral sign, we have

D?fo(x) = Di fa(x ff ) D3 6a(x — y) dy (17)
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and so f, is in C§° (R"). Finally we have by f 0,(x—y)dy =1,
Rﬂ
fat)) —f@) | = [110) —1(0)] Oa(x — ) dy
Rﬂ

s [ |t0)—F@)| 8. (x—y) dy
1) —f(x)| se

|H(y) — 1 (%)] Oa(x — y) dy.
| f)—f(x)| >e
The first term on the right is < ¢; and the second term on the right
equals 0 for sufficiently small @ > 0, because, by the uniform continuity
of the function f with compact support, there exists an a > 0 such that
|f(y) — f(x)| > € implies |y — x| > a. We have thus proved our Pro-
position.

2. Norms and Quasi-norms

Definition 1. A locally convex space is called a normed linear space,
if its topology is defined by just one semi-norm.

Thus a linear space X is called a normed linear space, if for every
x € X, there is associated a real number ||x||, the norm of the vector x,
such that

||%]| = 0 and ||x|| = 0 iff x =0, (1)
1= + 1l = ||#]| + |ly|| (triangle inequality), (2)
ox || = fo] - ||]]- (3)

The topology of a normed linear space X is thus defined by the distance
dx,y) =|lx—yl|. (4)
In fact, d(x, y) satisfies the axiom of distance:
d(x,y)=0and d(x,y) =0iff x =y,
d(x,y) = d(x, 2) + d(z,y) (triangle inequality),
d(x,y) =d(y,%).

For,d(x,y) = ||[x—y||=||ly—«||=d(y,x) and d(x,y) = ||x — y|| =
lx—z+z2—y|| < ||x—2z|| + ||z—y|| =d(x,2) + d(z, %) by (1), (2),
(3) and (4).
The convergence lim 4 (x,, x) = 0 in a normed linear space X will be
7n—>00
denoted by s-lim x,, = x or simply by x, — x, and we say that the se-
7—>00

quence {x,} converges strongly to x. The adjective “‘strong’’ is introduced
to distinguish it from the ‘“weak’ convergence to be introduced later.
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Proposition 1. In a normed linear space X, we have

Tim 5,]] = ||| if slim 7, = , )
s-lim &, x, = xx if lim «, = « and s-lim %, = x, (6)
7—>00 7—>00 n—00

s-lim (x, + y,) = x + y if s-lim x, = x and s-lim y,=1y. (7)
n—»00 7—>00 7—>00 .

Proof. (5), (6) and (7) are already proved, since X is a locally convex

space topologized by just one semi-norm () = || x||. However, we shall
give a direct proof as follows. As a semi-norm, we have
Iz =yl = =]l —lIxlll (8)

and hence (5) is clear. (7) is proved by |[|(x + y) — (%, + ¥4) || =
16— 2) + & —9) || = 2 — 2a[| + [y — |- From [[ocx — ay, || <
llox — x| + [lonr —opy || = o — oty | - [|%]| + [ota] - [|x— 24]| and
the boundedness of the sequence {x,} we obtain (6).

Definition 2. A linear space X is called a gquasi-normed linear space,
if, for every x € X, there is associated a real number ||x||, the guasi-norm
of the vector x, which satisfies (1), (2) and

=1l = lI#ll. i lazl| =0 and  lim [lxsyl|=0. (@)

I
Proposition 2. In a quasi-normed linear space X, we have (5), (6)
and (7).
Proof. We need only prove (6). The proof in the preceding Propo-
sition shows that we have to prove

lim ||, || = 0 implies that lim ||« x,|| = 0 uniformly
in « on any bounded set of «.

The following proof of (9) is due to S. KAKUTANI (unpublished). Consider

the functional p,(x) = ||xx,|| defined on the linear space R! of real

numbers normed by the absolute value. By the triangle inequality of

P () and (3'), p,(x) is continuous on R!. Hence, from "_h_)xgo Pulx) =0

implied by (3’) and Egorov’s theorem (Chapter 0, Preliminaries, 3. Mea-
sure Spaces), we see that there exists a Baire measurable set 4 on the
real line R! with the property:
the Lebesgue measure |4 | of 4 is > 0 and lim p,(x) = 0
: me (10)
uniformly on 4.
Since the Lebesgue measure on the real line is continuous with respect to
translations, we have, denoting by B © C the symmetric difference
BUC—-BNC,
[(4 +0)©A4]|>0 as ¢—0.



32 1. Semi-norms

Thus there exists a positive number g, such that
|| < oo implies |(4 + 0) © 4| <|4]/2,in particular, [(4 +0) N\ 4]> 0.
Hence, for any real number ¢ with |o| = 0,, there is a representation
oc=oa—a" witha€d, a’'cA.
Therefore, by p,(0) = p,(x — &') < p,(x) + p»(x’), we see that
”limoo ?n(0) = 0 uniformly in ¢ when |o| < g.
Let M be any positive number. Then, taking a positive integer ¥ = M/a,
and remembering p, (ko) < kp,(0), we see that (9) is true for |a| < M.

Remark. The above proof may naturally be modified so as to apply
to complex quasi-normed linear spaces X as well.
Asin the case of normed linear spaces, the convergence lim ||x—x,|| =0
7—>00

in a quasi-normed linear space will be denoted by s-lim %, = x, or
7n—00

simply by x, — x; we shall then say that the sequence {x,} converges
strongly to x.

Example. Let the topology of a locally convex space X be defined by a
countable number of semi-norms p,(x) (# =1,2,...). Then X is a
quasi-normed linear space by the quasi-norm

00
7]l = 27 ) (1 + pa(x) .
For, the convergence E&ﬁn (%) =0 (n=1,2,...) is equivalent to

s-hlim %, = 0 with respect to the quasi-norm ||x|| above.
—>00

3. Examples of Normed Linear Spaces

Example 1. C(S). Let S be a topological space. Consider the set C(S)
of all real-valued (or complex-valued), bounded continuous functions
x(s) defined on S. C(S) is a normed linear space by

(x +9) () = x(s) +5(s), (x#) () = axx(s), ||=]] =S:€15P|x(5)\ :

In C(S), s-lim x, = x means the uniform convergence of the functions x, (s)
7—00
to x(s).
Example 2. L?(S, B, m), or, in short, L?(S) (1 < p < 00). Let L?(S)
be the set of all real-valued (or complex-valued) B-measurable functions

%(s) defined m-a. e. on S such that |x(s) |? is m-integrable over S. L?(S) is
a linear space by

( +9) (5) = x(s) + ¥(s), (&%) (s) = xx(s).
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For, (x(s) + y(s)) belongs to L?(S) if x(s) and y(s) both belong to L?(S),
as may be seen from the inequality |x(s) + y{s)[? < 22 (|x(s)|? + |y (s)[?).
We define the norm in L?(S) by

Hx!l=(sf lx(s)l’m(ds))“'. (1)
The subadditivity
(f |%(s) + ¥ (s)[? m(ds))‘”’ < ( [ |z(s)? m(ds))""
S S

+ (sf [y @)1 m (@)™,

called Minkowski’s inequality, is clear for the case p = 1. To prove the
general case 1 < p < oo, we need

Lemma 1. Let 1 < p < oo and let the conjugate exponent p' of p be

(2)

defined by 1 1
Then, for any pair of non-negative numbers a and &, we have
a? ¥

where the equality is satisfied iff 4 = b~1/(-D .

»
Proof. The minimum of the function f(c) = % + l, —c for ¢ =0

is attained only at ¢ = 1, and the minimum value is 0. By taking
¢ = ab~1/(#-1 we see that the Lemma is true.
The proof of (2). We first prove Holder's inequality

[1x@) vyl = ([ =& P) - ([ ly)F)* (5)
(for convenience, we write [ z(s) for [ z(s) m(ds)).
$
To this end, we assume that A4 = ([ |x(s)|?)”” and B = ([ |y(s)?)"*

are both £ 0, since otherwise x(s) y(s) = 0 a.e. and so (5) would be true.
Now, by taking @ = |x(s)|/4 and b = |y(s)|/Bin (4) and integrating, we

obtain 1.9y _ 147, 1 B
4B =p 4" p p?
Next, by (5), we have
12 + v = [ [2(5) + y(s) P~ - |2(5)]
+ [126) + y©) 71 |y(9)]
f |x(s) + ¥ (s) [’“"l) 1/" f |2 ( s)[’ 1/’
+ ([ (|x(6) + y P2 ([ (v (s)2)"),

which proves (2) by ¢’ (p — 1) = ».
3 Yosida, Functional Analysis

=1 which implies (5).
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Remark 1. The equality sign in (2) holds iff there exists a non-negative
constant ¢ such that x(s) = cy(s) m-a.e. (or ¥(s) = cx(s) m-a.e.). This is
implied from the fact that, by Lemma 1, the equality sign in Holder’s
inequality (5) holds iff |x(s)| = c- |y (s)|¥®~D (or |y(s)| = c- |x(s)[/?-Y)
are satisfied m-a.e.

Remark 2. The condition ||#|| = ([ |#(s)[#)# = 0 is equivalent to the
condition that x(s) = 0 m-a.e. We shall thus consider two functions of
L?(S) as equivalent if they are equal m-a.e. By this convention, L?(S)
becomes a normed linear space. The limit relation s-»l_i*r};lo %, = x in L?(S)

is sometimes called the mean convergence of p-th order of the sequence of
functions x,,(s) to the function x(s).

Example 3. L*(S). A B-measurable function x(s) defined on S is
said to be essentially bounded if there exists a constant « such that
|%(s)| = « m-a.e. The infimum of such constants « is denoted by

. ot .
vraimax |%(s)| or essens€1§11 sup |%(s)|

L>(S, B, m) or, in short, L>(S) is the set of all B-measurable, essentially
bounded functions defined m-a.e. on S. It is a normed linear space by

(2 + 9 () = #(s) + (), () (5) = wx(s), || ]| = vraimax [(s)],
under the convention that we consider two functions of L*(S) as equi-
valent if they are equal m-a.e.

Theorem 1. Let the total measure m(S) of S be finite. Then we have

Jim ([ 126 m(@s))¥ = vraimax |x(s)] for x()€L™(S). ()

Proof. It is clear that ( [ =) m(ds))l/P < m(S)"? vrai max |x(s)]
$

s€S
so that‘hm (sj |z(s)| ) < vraimax |(s)|- By the definition of the

vrai max, there exists, for any ¢ > 0, a set B of m-measure > 0 at each
point of which |x(s)| = Vraiegnax |%(s)| —e. Hence (f | % (s)|? m(ds))llp
s S
= m(B)Y# (vrai max |x(s)| — ). Therefore lim ([ |%(s)|?)"# = vrai max
S€ES o s€S
|x(s)| — &, and so () is true.

Example 4. Let, in particular, S be a discrete topological space con-
sisting of countable points denoted by 1, 2,...; the term discrete
means that each point of S = {1, 2, .. .} isitself open in S. Then as linear
subspaces of C ({1, 2, . . .}), we define (cy), (c) and (), 1 < p < oo.

(co): Consider a bounded sequence of real or complex numbers {&,}.

Such a sequence {£,} defines a function x (#) = £, defined and continuous
on the discrete space S ={1, 2,...}; we shall call x = {£,} a vector
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with components &,. The set of all vectors x = {§,} such that
lim &, = 0 constitutes a normed linear space (cy) by the norm
7n—>00

||#]| = sup|x(n) | = sup |£4].
” ”
(¢): The set of all vectors x = {£,} such that finite lim &, exist,
7—>00

constitutes a normed linear space (c) by the norm ||x|| = sup |x(n)|
”

=sup |&,]|.

”

(), 1=p<<oo: The set of all vectors x={§,} such that

oo
2‘1 |£4|f < oo constitutes a normed linear space (/) by the norm
”=

1/p
[|#]] = < 22 |&n [P> . As an abstract linear space, it is a linear subspace
of C({1,2,...}). It is also a special case of L?(S, 8, m) in which
m({1) = m(@) == 1.

(!°) = (m): As in the case of L*°(S), we shall denote by (/*°) the
linear space C({1,2,...}), normed by ||x|| =sup |x(n)| = sup |&,].

(¢*°) is also denoted by (m).

The Space of Measures. Let B be a o-ring of subsets of S. Consider
the set 4 (S, B) of all real- (or complex-) valued functions ¢ (B) defined
on B such that

|@ (B)| # oo for every B€ 8B, (7

oo 00
@ }_,; B,-) = 'EI(P(Bj) for any disjoint sequence {B;} of sets € B. (8)
< =

A (S, B) will be called the space of signed (or complex) measures defined
on (S, B).
Lemma 2. Let ¢ € 4 (S, B) be real-valued. Then the total variation of
@ on S defined by
Vig:S)=Vig:S) + [V(e; )| 9)
is finite; here the positive variation and the negative variation of ¢ over
B € B are given respectively by

PigiB) =supg(By) and VpiB)=jnfg(B). (10

Proof. Since ¢ (@) =0, we have V(p; B) = 0= V(p; B). Suppose
that ¥ (p; S) = oco. Then there exists a decreasing sequence {B,} of sets
€ B such that

Vi(p; B,) =0, |p(B,)| = n— 1.

The proof is obtained by induction. Let us choose B; = S and assume
that the sets By, Bg, . . ., B, have been defined so as to satisfy the above
conditions. By the first condition with #» = £, there exists a set B€ 8

3*
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such that B C B,, |¢(B)| = |@(Bs)| + k. We have only to set B,,, == B
in the case V (p; B) = oo and B, ., = B; — B in the case V (p; B) < oco.
For, in the latter case, we must have V(p;B,—B)=o0c and
|¢(Br— B)| = |@(B)| — | (By)| = % which completes the induction.

By the decreasing property of the sequence {B,}, we have

o0 00
S— N B,= 3 (S—B,)
=(S—B;) + (Bi—B3) + (By—Bs) + -+ + (B,—Byy1) + - -

so that, by the countable additivity of ¢,
oo
#(S— B B) = p(S—B) + p(By— B + p(By—By) + -

= [@(S) —@(B1)] + [p(B1) —¢(Be)]
+ [p(B) —@(Bs)] + - - -
= ¢(S) — lim ¢(B,) = oo or —oo,

which is a contradiction of (7).

Theorem 2 (Jordan’s decomposition). Let ¢ € 4 (S, B) be real-valued.
Then the positive variation V(p; B), the negative variation V (p; B)
and the total variation V (p; B) are countably additive on B. Moreover,
we have the Jordan decomposition

®(B) = V(p; B) + V(p; B) for any B€ 8. (11)

Proof. Let {B,} be a sequence of disjoint sets € 8. For any set B¢ B

) 00 o __

such that B C Z‘IB,,, we have ¢ (B) = Zlcp(B NB,) = 2{ Vp; B,)
n= "= ; n—
0 o __ !

and hence I—/((p; %B,,)é 2:1 V(p; B,). On the other hand, if C,€ 8

n= n=

o0 o0

isa subset of B, (#n =1, 2, . ..), then we have V(tp; %;B”>;(p<%:1 C,,)

(e} o0 (]
= ”é'l ®(C,) and so V(q); "‘_‘,‘1 B,,) = "gl V (p; B,). Hence we have pro-
ved the countable additivity of V (p; B) and those of V(p; B) and of
V (p; B) may be proved similarly.

To establish (11), we observe that, for every C € 8 with C C B, we
have ¢(C) =¢(B) —¢(B—C) < ¢(B) — V(p; B) and so V(p; B) =
@(B) — V (p; B). Similarly we obtain V (p; B) = ¢(B) — V (p; B). These
inequalities together give (11).

Theorem 3 (Hahn’s decomposition). Let ¢ € A(S, B) be a signed
measure. Then there exists a set P € 8 such that

@(B) = 0 for every B€ B with B P,
@ (B) < 0 for every B€ 8 with B L P° =S — P.
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The decomposition S = P + (S — P) is called the Hakn decomposition
of S pertaining to ¢.

Proof. For each positive integer # we choose a set B, € B such that
@(B,) =V (p; S) — 27" Hence by (11), we have

V(@;B)=—2" and V(p;S—B,) <2 (12)

The latter inequality is obtained from V (p; S—B,) =V (p; S) — V (@; B,)
and V (p; B,) = ¢(B,). We then put

c8
038

P = lim B, = B,.
7n—>00

k k

1n

8

Then S—P= hm(S B,,)-—n U(S B,)C U (S—B,) for

n==Fk

every %, and therefore by the a-add1t1v1ty of V(p; B),
Vip;S—P) = %7@3: S—B,) = 271,

which gives ¥ (p; S — P) = 0. On the other hand, the negative variation
¥V (p; B) is a non-positive measure and so, by (12) and similarly as above,

|V (@; P)] = Lm [V (p; BJ)| =0,

which gives V (p; P) = 0. The proof is thus completed.
Corollary. The total variation ¥ (p; S) of a signed measure g is defined
by

V(p;S)= sup 'f x(s)<p(ds>[ (13)
sup|x(s)| 1 |S

where x (s) ranges through 8-measurable functions defined on S such that
sup |%(s)| =< 1.
s

Proof. If we take x(s) = 1 or = — 1 accordingass€ Pors€ S — P,
then the right hand side of (13) gives V' (p; S). On the other hand, it is
easy to see that

|f ds’Ssup[x —st((p;ds)=sup]x(s)[-V( ;' S)

and hence (13) is proved.

Example 5. 4 (S, B). The space 4 (S, B) of signed measures ¢ on B
is a real linear space by

(01 @1 + xa @p) (B) = 0, 91 (B) + x5 (B), BEB.

It is a normed linear space by the norm

llell=Vi(p;S =sup|§g}?51|§f (s) @ ( dS[ (14)
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Example 6. The space 4 (S, B) of complex measures ¢ is a complex
linear space by
(¢ @1 + &3 @5) (B) = &3 @3 (B) + &5 ¢3(B), B € B with complex &, o,.
It is a normed linear space by the norm
llpll=_ sp_ | #(5)@(ds)]. (15)
supjx(s)| <1 |S

where complex-valued B-measurable functions x(s) defined on S are
taken into account. We shall call the right hand value of (15) the fofal
variation of p on S and denote it by V (¢; S).

4. Examples of Quasi-normed Linear Spaces

Example 1. &* (). The linear space &* (2), introduced in Chapter I, 1,
is a quasi-normed linear space by the quasi-norm ||x|| = d(x, 0), where
the distance d (x, ) is as defined there.

Example 2. M (S, B, m). Let m(S) << oo and let M (S, B, m) be the
set of all complex-valued B-measurable functions x(s) defined on S and
such that |x(s)| << oo m-a.e. Then M (S, B, m) is a quasi-normed linear
space by the algebraic operations

(x + ) (s) = %(s) + y(s), (x%)(s) = xx(s)
and (under the convention that x = y iff x(s) = y(s) m-a.e.)
”x”:sf[x(s)l 1 + |x(s))~2 m(ds). (1)
The triangle inequality for the quasi-norm ||x|| is clear from

o + B] la| + 18] o 18]
T+ e FA =TF e[+ BI=1+a] T THIA]"

The mapping {«, x} — &« x is continuous by the following

Proposition. The convergence s-lim x, = x in M (S, B, m) is equi-
71—00

valent to the asymptotic convergence (or the convergence in measure) in S
of the sequence of functions {x,(s)} to x(s):

For any ¢ >0, lim m {s€ S; |x(s) — x,(s)| = ¢} = 0. (2)
7n—00
Proof. Clear from the inequality

To5m(B) < ||5]| < m(Bi) + 1 m(S—Bo), Be={s€S; |1(5)| 26}

Remark. It is easy to see that the topology of M (S, B, m) may also
be defined by the quasi-norm

[|=]| =ir>1£tem—l e+ m{s€S;|x(s) = &}]. 1
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Example 3. D (€2). Thelinear space Dy (£2), introduced in Chapter1, 1,
is a quasi-normed linear space by the quasi-norm || x|| = d(x, 0), where
the distance d(x, y) is defined in Chapter I, 1.

5. Pre-Hilbert Spaces

Definition 1. A real or complex normed linear space X is called a
pre-Hilbert space if its norm satisfies the condition

2+ y[[F + llx—yIP=2(|=|P + [Iy[). (1)

Theorem 1 (M. FRECHET-]. vON NEUMANN-P. JorDAN). We define, in
a real pre-Hilbert space X,

() =4 ([x + y[P—|lx—yI})- @)
Then we have the properties:
(xx,y) =a(x,y) (x€RY, ®)
(x+y2 =2+ 02, 4)
%y) =y, %), ()
(x, 2) = [|=][®. (6)
Proof. (5) and (6) are clear. We have, from (1) and (2),
(5,2) + (. 2) = 435 + 2l — [z — 2] + [|y + 2| — [y — 2]
=2 1(!Ax—¥+ z“ -—llf—j_—y—z‘ (7
= 2(’1—%——2,2).

If we take y = 0, we obtain (x, 2) =2 (% , z) , because (0, z) = 0 by (2).
Hence, by (7), we obtain (4). Thus we see that (3) holds for rational
numbers « of the form & = m/2". In a normed linear space, ||ax + y||
and ||xx — y || are continuous in «. Hence, by (2), (xx, y) is continuous in
«. Therefore (3) is proved for every real number «.

Corollary (J. voN NEUMANN-P. JorDAN). We define, in a complex
normed linear space X satisfying (1),

(x9) = ()1 + i(x )
where i =—1, (5, 9); =4 (lx +y|P—[lx—y[»). ®
Then, we have (4), (6) and
(ax,y) =alxy) (xel), (3)
(%, 9) = (v, ) (complex-conjugate number). (5")
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Proof. X is also a real pre-Hilbert space and so (4) and (3’) with real
hold good. We have, by (8), (v, ¥); = (%, ¥),, (%, y); = (x, y), and hence
(y,i%); = (—iiy, ix); = — (¢y, ¥); = — (%, ¢¥),. Therefore

0, %) = (v, 2 + 1y, 32), = (¥, ¥), — ¢ (%, 09); = (%, 9).
Similarly, we have
(ix,9) = (%, 9 +20%,1y), = — (%, 59); +i(x,9);, = i(x, ),
and therefore we have proved (3’). Finally we have (6), because
(x, %), = ||x||? and (%, i), = 41(|]1 + {2 — |1 —2]?) ||2|? = 0.

Theorem 2. A (real or) complex linear space X is a (real or) complex

pre-Hilbert space, if to every pair of elements x, y € X there is associated
a (real or) complex number (x, y) satisfying (3’), (4), (5') and

(*,%) =0, and (x, x) = 0iff x = 0. 9
Proof. For any real number «, we have, by (3’), (4) and (5')
(*+ o)y, x+alxy)y) =||2]?+ 2« |(x y)[?
a2 | M Iy = 0, where [l2]] = (x, 22

so that we have |(x, y)|*— ||%|[?|(x, %) ||¥|]? < 0. Hence we obtain
Schwarz’ inequality

[l = (=]l [yl (10)
where the equality is satisfied iff x and y are linearly dependent.
The latter part of (10) is clear from the latter part of (9).
We have, by (10), the triangle inequality for ||x]|:
I+ y|P=(+y2x+9) =2+ x) + 0.2+ [P
< (=l + Ilyl)e.
Finally, the equality (1) is verified easily.
Definition 2. The number (x, y) introduced above is called the scalar

product (or inner product) of two vectors x and y of the pre-Hilbert space
X

Example 1. L2(S, B, m) is a pre-Hilbert space in which the scalar
product is given by (x,y) = f x(s) v (s) m(ds).
$

Example 2. The normed linear space (/2) is a pre-Hilbert space in
which the scalar product is given by ({£,}, {n,}) = 5_21 & Y-

Example 3. Let 2 be an open domain of R” and 0 < k& < oco. Then the
totality of functions f € C*(2) for which

fll=1(.. Dif(x)[? dx\"* < oo, where dx = dx,dx, - - - dx,
1lh = (B, J 1D a) i ds,
is the Lebesgue measure in R"*,
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constitutes a pre-Hilbert space H*(Q2) by the scalar product
— 3 . DI o (x)
Yo = ,,-ék,,fD f(x) - D7 g(x) dx. (12)

Example 4. Let £ be an open domain of R* and 0 < & < co. Then
Ck(9) is a pre-Hilbert space by the scalar product (12) and the norm (11).
We shall denote this pre-Hilbert space by A% ().

Example 5. Let G be a bounded open domain of the complex z-plane.
Let A%2(G) be the set of all holomorphic functions f(z) defined in G and
such that

171l = ([ 11@F dxdy)™ <oo, G=x+i5). (19
Then A2(G) is a pre-Hilbert space by the norm (13), the scalar product
=fof(z)gdedy (14)

and the algebraic operations

f+ 8 () =1(2) + g(2), (%) (2) =/ (2).
Example 6. Hardy-Lebesgue class H-L2. Let H-L? be the set of
all functions f(z) which are holomorphic in the unit disk {z; |z| < 1}
of the complex z-plane and such that

sup (}u |f(re®) 2 de) < oo. (15)

0<r<1
o0
Then, if f(2) = .‘_‘ 2" is the Taylor expansion of f,

”

2n
Fir) =5 f frenkds =~ 3 f Cn Gy 77 =m0 4

271,,,,._

oo
2 |cal? 727

is monotone increasing in 7, 0 << r << 1, and bounded from above. Thus
it is easy to see that

1 27 ; 1/2 P 12
71l :‘osgg1 [ﬂ({! |F(re'®) |2d0)} =(n‘=‘:0|c”|2) (16)

is a norm which satisfies condition (1) since (/) is a pre-Hilbert space.
Remark. Let a sequence {c,} € (/%) be given, and consider

F(2) = f(re®) =”§0 c 2" = ”go 7 €™, |z] << 1.

By Schwarz’ inequality, we have
/2 o0 1/2
Seels (S 1) (S
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(o]
and so }_,:) ¢, 2" is uniformly convergent in any disk |z| < p with 0 <p < 1.

Thus /(z) is a holomorphic function in the unit disk |z| < 1 such that
(15) holds good, that is, f(z) belongs to the class H-L2.
Therefore we have proved

Theorem 3. The Hardy-Lebesgue class H-L? isin one-to-one corre-
spondence with the pre-Hilbert space (/2) as follows:

H-I?3/(2) = g 62" < {0} € (B)

in such a way that
fz) = ”é a2 o {c,}, 8(2) = ”é; 4y 2" < {d,} imply
10) + 8@) = en + &}, o1(e) < s} and (]| = leal)

Hence, as a pre-Hilbert space, H-L? is isomorphic with (2).

1/2

6. Continuity of Linear Operators

Proposition 1. Let X and Y be linear topological spaces over the
same scalar field K. Then a linear operator 7 on D(T) C X into Y is
continuous everywhere on D (T) iff it is continuous at the zero vector
x=0.

Proof. Clear from the linearity of the operator T and T - 0 = 0.

Theorem 1. Let X, Y be locally convex spaces, and {p}, {g} be the
systems of semi-norms respectively defining the topologies of X and Y.
Then a linear operator T on D (T) € X into Y is continuous iff, for every
semi-norm ¢ € {g}, there exist a semi-norm p € {p} and a positive number
B such that

g(Tx) = Bp(x) forall xe D(T). 1)

Proof. The condition is sufficient. For, by T - 0 = 0, the condition
implies that T is continuous at the point x = 0€ D(T) and so T is con-
tinuous everywhere on D (T).

The condition is necessary. The continuity of T at x = 0 implies that,
for every semi-norm ¢ € {g} and every positive number &, there exist a
semi-norm p € {$} and a positive number 4 such that

x€D(T) and p(x) < d imply ¢(Tx) < e.
Let x be an arbitrary point of D (T), and let us take a positive number 4
such that Ap(x) < 6. Then we have p(Ax) = J, Ax€ D(T) and so
¢(T (Ax)) < e. Thus ¢(Tx) < ¢/A. Hence, if p(x) = 0, we can take A
arbitrarily large and so ¢(7 x) = 0; and if p (x) = 0, we can take A = d/p (%)
and so, in any case, we have ¢(Tx) < fp(x) with f = ¢/d.
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Corollary 1. Let X be a locally convex space, and f a linear functional
on D(f) € X. Then fis continuous iff there exist a semi-norm p from the
system {p} of semi-norms defining the topology of X and a positive
number f such that

|/(2)] < Bp () for all x€ D(p). @)
Proof. For, the absolute value || itself constitutes a system of semi-
norms defining the topology of the real or complex number field.

Corollary 2. Let X, Y be normed linear spaces. Then a linear operator

T on D(T) € X into Y is continuous iff there exists a positive constant
B such that

||Tx|| < B||x|| for all x€ D(T). (3)

Corollary 3. Let X, Y be normed linear spaces. Then a linear operator
Ton D(T) C X into Y admits a continuous inverse 71 iff there exists a
positive constant y such that

||Tx|| = y||x|| for every x € D(T). (4)

Proof. By (4), Tx = 0 implies x = 0 and so the inverse 7! exists.
The continuity of 7! is proved by (4) and the preceding Corollary 2.

Definition 1. Let T be a continuous linear operator on a normed linear
space X into a normed linear space Y. We define

[T =§?£ﬂ’ where B = {f; ||Tx|| < B||x|| for all x€ X}.  (B)

By virtue of the preceding Corollary 2 and the linearity of T, it is easy
to see that

I7]| = sup ||Tx||= sup ||Tx]|. (6)

ll#lls1 [l=l[=1

||T|| is called the norm of T. A continuous linear operator on a normed
linear space X into Y is called a bounded linear operator on X into Y,
since, for such an operator T, the norm || T x| is bounded when x ranges
over the unit disk or the unit sphere {x € X; ||x|| < 1} of X.

Definition 2. Let T and S be linear operators such that
D(T)and D(S) C X,and R(T) and R(S) C Y.

Then the sum T + S and the scalar multiple « T are defined respectively
by
T+ S)(x)=Tx+ Sx for x€ D(T)N\D(S), («T) (x) = x(Tx).

Let T be a linear operator on D(T) C X into Y, and S a linear operator
on D(S) C Y into Z. Then the product ST is defined by

(ST)x=S(Tx) for xc{x;xc D(T) and T=x€ D(S)}.
T + S, «T and ST are linear operators.
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Remark. ST and T'S do not necessarily coincide even if X = Y = Z.
An example is given by Tx = ¢x(¢), Sx(t) =}/ (—1) ‘% x (#) considered as
linear operators from L2(RY) into L2(R?). In this example, we have the
commutation relation (ST —TS) x(t) =}/ —1x(¢).

Proposition 2. If T and S are bounded linear operators on a normed
linear space X into a normed linear space Y, then

IT + S =TI+ [ISIl Nl«T || = || I T]]- O

If T is a bounded linear operator on a normed linear space X into a
normed linear space Y, and S a bounded linear operator on Y into a
normed linear space Z, then

STl =Sl 1Tl (®)
Proof. We prove the last inequality; (7) may be proved similarly.
IST=|| < ST =]l = |ISIIT|| ||*]l and so [|ST|| < |[S|| || Tl-
Corollary. If T is a bounded linear operator on a normed linear space
X into X, then
N = T[], ©)
where T is defined inductively by 7" =T7T" 1 (n=1,2,...; T%=1

which maps every x onto x itself, i.e., Ix = x, and I is called the identity
operator).

7. Bounded Sets and Bornologic Spaces

Definition 1. A subset B in a linear topological space X is said to be
bounded if it is absorbed by any neighbourhood U of 0, i.e., if there exists
a positive constant & such that x2B C U. Herea !B = {x € X; x=0a"1b,
b€ B}.

Proposition. Let X, Y be linear topological spaces. Then a continuous
linear operator on X into Y maps every bounded set of X onto a bounded
setof Y.

Proof. Let B be a bounded set of X, and V a neighbourhood of 0 of Y.
By the continuity of T, there exists a neighbourhood U of 0 of X such
that T- U ={Tu;uc U} C V. Let « > 0 be such that B C «U. Then
T.-BLT(U)=«(T- -U) CaV. This proves that T - B is a bounded
setof Y.

Definition 2. A locally convex space X is called bornologic if it satisfies
the condition:

If a balanced convex set M of X absorbs every bounded
set of X, then M is a neighbourhood of 0 of X. (1)

Theorem 1. A locally convex space X is bornologic iff every semi-
norm on X, which is bounded on every bounded set, is continuous.
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Proof. We first remark that a semi-norm $(x) on X is continuous iff
it is continuous at x = 0. This we see from the subadditivity of the semi-

norm: p(x —y) = |p (x) — ()| (Chapter I, 1, (4)).
Necessity. Let a semi-norm () on X be bounded on every bounded

set of X. The set M = {x€ X; p(x) =< 1} is convex and balanced. If B

is a bounded set of X, then sup p (b) = &« << oo and therefore B C a« M.
b€B

Since, by the assumption, X is bornologic, M must be a neighbourhood
of 0. Thus we see that p is continuous at x = 0.

Sufficiency. Let M be a convex, balanced set of X which absorbs
every bounded set of X. Let p be the Minkowski functional of M. Then p
is bounded on every bounded set, since M absorbs, by the assumption,
every bounded set. Hence, by the hypothesis, #(x) is continuous. Thus
M, = {x€ X; p(x) < 1/2} is an open set 5 0 contained in M. This proves
that M is a neighbourhood of 0.

Example 1. Normed linear spaces are bornologic.

Proof. Let X be a normed linear space. Then the unit disk S =
{x€ X; ||#|| = 1} of X is a bounded set of X. Let a semi-norm  (x) on X

be bounded on S, i.e., sup p(x) = & < co. Then, for any y 7% 0,
x2€S

o) =2 (1l 12) = Iy 18 () = = Iy ]

Thus p is continuous at ¥ = 0 and so continuous at every point of X.

Remark. As will be seen later, the quasi-normed linear space M (S, B)
is not locally convex. Thus a quasi-normed linear space is not necessarily
bornologic. However we can prove

Theorem 2. A linear operator T on one quasi-normed linear space into
another such space is continuous iff 7 maps bounded sets into bounded
sets. '

Proof. As was proved in Chapter I, 2, Proposition 2, a quasi-normed
linear space is a linear topological space. Hence the “only if”’ part is al-
ready proved above in the Proposition. We shall prove the “if”’ part.

Let T map bounded sets into bounded sets. Suppose that s;l_ig %, = 0.

Then lim |[#:]] =0 and so there exists a sequence of integers {n,}
such that lim n, =o0o while lim n, ||%|| = 0.
k—00 k—00

We may take, for instance, #; as follows:

ny, = the largest integer < ||, ||~

=k if x=0.

if x,,?i' 0,
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Now we have ||m x|l =[x + 2 + - + %] < 3 ||%]| so that
s;lim n, %, = 0. But, in a quasi-normed linear space, the sequence
-—00

{m %}, which converges to 0, is bounded. Thus, by the hypothesis,
{T (my %)} = {ms T %} is a bounded sequence. Therefore

s-im Tx, = s-lim ni ' (T (my %)) = O,
k—>00 k—>00

and so T is continuous at x = 0 and hence is continuous everywhere.

Theorem 3. Let X be bornologic. If a linear operator T on X into a
locally convex linear topological space Y maps every bounded set into a
bounded set, then T is continuous.

Proof. Let V be a convex balanced neighbourhood of 0 of Y. Let p be
the Minkowski functional of V. Consider ¢(x) = $ (T «). ¢ is a semi-norm
on X which is bounded on every bounded set of X, because every bounded
set of Y is absorbed by the neighbourhood V of 0. Since X is bornologic,
¢ is continuous. Thus theset {x€ X; Txc V4 ={x€c X;q(x) < 1} isa
neighbourhood of 0 of X. This proves that T is continuous.

8. Generalized Functions and Generalized Derivatives

A continuous linear functional defined on the locally convex linear
topological space ® (£2), introduced in Chapter I, 1, is the ‘‘distribution”’
or the ‘‘generalized function’ of L. ScawARTz. To discuss the generalized
functions, we shall begin with the proof of

Theorem 1. Let B be a bounded set of D (£2). Then there exists a
compact subset K of £ such that

supp (p) € K for every p € B, (1)
sup [Dj @ (x)| < oo for every differential operator D’. (2)
2€K,g€EB

Proof. Suppose that there exist a sequence of functions {¢;} C B and
a sequence of points {p,} such that (i): {p;} has no accumulation point
in, and (ii): @;(p;) # 0 (¢ =1, 2,...). Then

plo) = 3 i lp/lgs(p)]

is a continuous semi-norm on every ®g({2), defined in ChapterlI, 1.
Hence, for any £ > 0, the set {p € Ok (2); p (p) =< ¢} is a neighbourhood
of 0 of Dy (£2). Since D (£2) is the inductive limit of Dk (2)’s, we see that
{pED(R); p(p) =< ¢} is also a neighbourhood of 0 of D (). Thus p is
continuous at 0 of D (L2) and so is continuous on P (2). Hence p must be
bounded on the bounded set B of D (2). However, p(p;) = (: =1,2,...).
This proves that we must have (1).
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We next assume that (1) is satisfied, and suppose (2) is not satisfied.
Then there exist a differential operator D’ and a sequence of functions
{g:} C B such that sup |Dg;(x)| >¢ (1 =1,2,...). Thus, if we set

2€K

P(p) =sup |D*@(x)] for @€ Dk(Q),

p(p) is a continuous semi-norm on Dk (£2) and p(p;) >7 (1=1,2,...).
Hence {p;} C B cannot be bounded in Dy (£2), and a fortiori in D (L2).
This contradiction proves that (2) must be true.

Theorem 2. The space D (£2) is bornologic.

Proof. Let ¢(p) be a semi-norm on P (£2) which is bounded on every
bounded set of D (£2). In view of Theorem 1 in Chapter I, 7, we have only
to show that ¢ is continuous on ® (£2). To this purpose, we show that g is
continuous on the space Dk (2) where K is any compact subset of Q.
Since ® (L2) is the inductive limit of Dk (£2)’s, we then see that g is con-
tinuous on D (L2).

But ¢ is continuous on every Dg (2). For, by hypothesis, ¢ is bounded
on every bounded set of the quasi-normed linear space Dy (2), and so, by
Theorem 2 of the preceding section, ¢ is continuous on Dy (£2). Hence ¢
must be continuous on D (£).

We are now ready to define the generalized functions.

Definition 1. A linear functional T defined and continuous on ® (£2)
is called a generalized function, or an ideal function or a distribution in Q;
and the value T (p) is called the value of the generalized function T at
the testing function ¢ € D (Q).

By virtue of Theorem 1 in Chapter I, 7 and the preceding Theorem 2,
we have

Proposition 1. A linear functional T defined on D (Q2) is a generalized
function in Q iff it is bounded on every bounded set of ® (), that is,
iff T is bounded on every set B € D (2) satisfying the two conditions (1)
and (2).

Proof. Clear from the fact that T (¢) is continuous iff the semi-norm
|T (@) | is continuous.

Corollary. A linear functional T defined on C3°(£2) is a generalized
function in Q iff it satisfies the condition:

To every compact subset K of £2, there correspond a
positive constant C and a positive integer k such that

IT@)| < C sup |Dip(r)| whenever g€ D(9). (3)
lilsSkx€K

Proof. By the continuity of T on the inductive limit D () of the
Pk (£2)’s, we see that T must be continuous on every Dy (). Hence
the necessity of condition (3) is clear. The sufficiency of the condition
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(8) is also clear, since it implies that T is bounded on every bounded set
of D(K).

Remark. The above Corollary is very convenient for all applications,
since it serves as a useful definition of the generalized functions.

Example 1. Let a complex-valued function f(x) defined a.e. in Q
be locally integrable in 2 with respect to the Lebesgue measure
dx = dx, dx, - * - dx, in R*, in the sense that, for any compact subset K
of 2, [ |f(¥)| dx < co. Then

b4

Ty(e) =éff(x) ¢(x) dx, p€ D(Q), (4)

defines a generalized function T, in Q.
Example 2. Let m(B) be a o-finite, o-additive and complex-valued
measure defined on Baire subsets B of an open set 2 of R*. Then

T (@) =9f¢(x) m(dx), p€ D(Q), (5)

defines a generalized function T, in 2.
Example 3. As a special case of Example 2,

T,,(p) = @ (p), where p is a fixed point of 2, p€ D (), (6)
defines a generalized function T, in 2. It is called the Dirac distribution
concentrated at the point p € £2. In the particular case p = 0, the origin
of R", we shall write T’y or d for T,

Definition 2. The set of all generalized functions in Q will be

denoted by D(£)’. It is a linear space by

T+3@ =T+ S@), «T)(p) =aT(p), (7
and we call D (Q)’ the space of the generalized functions in Q or the dual
space of D (9).

Remark. Two distributions T; and Ty are equal as functionals
(Ty,(p) = Ty,(p) for every p € D(Q)) iff f,(x) = fy(x) a.e. If this fact is
proved, then the set of all locally integrable functions in £ is, by f <> T,
in a one-one correspondence with a subset of D ()’ in such a way that
(f, and f, being considered equivalent iff f, (x) = f,(x) a.e.)

T+ T, =Ty 0Ty =Ty ()

In this sense, the notion of the generalized function is, in fact, a genera-
lization of the notion of the locally integrable function. To prove the
above assertion, we have only to prove that a locally integrable

function f is = 0 a.e. in an open set 22 of R" if f (%) p(x) dx = 0 for
B
all g€ CP (). By introducing the Baire measure u(B) = f f(x) dx,
B
the latter condition implies that f @ (x) u(dx) =0 for all ¢ € CP(2),
2
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which further implies that f @ (%) pu(dx) = 0 for all p € CJ(Q), by virtue

of Proposition 8 in Chapter I,1. Let B be a compact Gsset in Q:

B = Fi G,,where G, is an open relatively compact setin £. By applying
ne

Urysohn’s theorem in Chapter 0, 2, there exists a continuous function
/s (x) such that

0=/, (x) =1 for x€ L, f,(x) =1 for x€ G}, and f,(x) =0
for x€ G, — G, (n=1,2,...),

assuming that {G,} is a monotone decreasing sequence of open relatively
compact sets of £2 such that G;,, C G,,;. Setting ¢ = f, and letting
n — 0o, we see that u(B) = 0 for all compact G,-sets B of Q. The Baire
sets of 2 are the members of the smallest o-ring containing compact G,-
sets of 2, we see, by the g-additivity of the Baire measure u, that u
vanishes for every Baire set of £2. Hence the density f of this measure u
must vanish a.e. in Q.

We can define the notion of differentiation of generalized functions
through

Proposition 2. If T is a generalized function in £2, then

S =—T(52). 9€2@, ®

defines another generalized function S in Q.

Proof. S is a linear functional on D (£2) which is bounded on every
bounded set of D (2).

Definition 3. The generalized functional S defined by (8) is called the
generalized derivative or the distributional derivative of T (with respect to
x,). and we write

S=g-T, (9)
so that we have
d . op
7 T@ =—T(52)- (10)
Remark. The above notion is an extension of the usual notion of the

derivative. For, if the function f is continuously differentiable with
respect to x,, then we have

Tl =—Ty(52)=— - [ 1) gy -

zf. .. faf(x) <@ (%) dxy - - - dx,y = Topp,, (@),
g

as may be seen by partial integration observing that ¢ (x) vanishes iden-
tically outside some compact subset of Q.

4 Yosida, Functional Analysis
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Corollary. A generalized function T in £ is infinitely differentiable
in the sense of distributions defined above and

j 1)ldl i O — N 8!
(DIT) (p) = D T (D7), where |j| = Fiw D = Eps (1)

Example 1. The Heaviside function H (x) is defined by
H(x) = 1 or = 0 according as x = 0 or x < 0. (12)
Then we have
gd;, Ty =T,, (12"
where T, is the Dirac distribution concentrated at the origin 0 of R!.

In fact, we have, for any ¢ € D (R?),

d (=] (o]
(£T0) @) =— [ H@o @ ds=— [ ¢'(0)dx —— )T = 9(0).
—00
Example 2. Let /(%) have a bounded and continuous derivative in the

open set R'— U x;of B'. Let s;= f(x; + 0) — f(x; — 0) be the saltus

or the jump of f( ) at x = x;. Since

(1)) @) =— f 1) 9’ () dx = Z () 5+ f £ () o) dx
we have
ZTr=Tp+ X8 (12")
where 4, is defined by (6).

Example 3. Let f(x) = f(xy, %3, . . ., %,) be a continuously differen-
tiable function on a closed bounded domain £ C R" having a smooth
boundary S. Define f to be 0 outside £2. By partial integration, we have

(1) @) =— ff(x) - 9 (2) dx

_ff ) cos (v, % ,)dS—+—fax (%) dx,

where v is the inner normal to S, (v, ;) = (x;, v) is the angle between »
and the positive x;-axis and &S is the surface element. We have thus

3 144
w = Tayas; + Ts, where Ts(p) = sf f(x) cos (v, x;) @(x) dS.  (12')

Corollary. If f(x) = f(%;, %2, ..., %,) is C% on 2 and is 0 outside,

e a a . ,
then, from (12"”) and o = 7‘.‘ ax, 8 (x;, ) we obtain Green'’s
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integral theorem

AT) () =Ty + [mowas— [1wZEas, @z
S S

”
where 4 is the Laplacian X &[0
i=
Proposition 3. If T is a generalized function in 2 and f € C*®(Q), then
Slp) =T(l9), € D), (13)

defines another generalized function S in Q.
Proof. S is a linear functional on D (£2) which is bounded on every
bounded set of D (2). This we see by applying Leibniz’ formula to /.

Definition 4. The generalized function S defined by (13) is called
the product of the function f and the generalized function 7.

Leibniz’ Formula. We have, denoting Sin (13) by /T,

(f )— T+fa,, (14)
because we have

0 9, 0
—7(f ;,xij)= T(559)—T (5 (%)
by Leibniz’ formula for 8 (fg)/dx;. This formula is generalized as follows.
Let P(£) be a polynomial in &, &,,...,&,, and consider a linear
partial differential operator P (D) with constant coefficients, obtained
by replacing &; by 7! 8/0x;. The introduction of the imaginary coefficient
17! is suitable for the symbolism in the Fourier transform theory in

Chapter VI.

Theorem 3 (Generalized Leibniz’ Formula of L. HORMANDER). We
have

P(D) (T) =Z (Ds f) [ POD) T, (15)
where, for s = (s;, S, - . ., Sp),
au+u+...+l,‘ s
PO(E) = Smgg—agm L (€) = De P(4), 16)
1 9\s2/1 @ 1 0
o= (Fam) (7o) (Fa) ™
and
sl =s,1s,1...5,!. (17

Proof. Repeated application of (14) gives an identity of the form

P(D) (fT) =SZ’ (Df) Qe(D) T, (18)
4#
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where Q,(£)’s are polynomials. Since (18) is an identity, we may substitute
”
f(x) = €<» and T = &¢»"), where (x, &) = J ;¢
=1

in (18). Thus, by the symbolism
P(D) &8 = P(§) 58, 19)
we obtain

P& +n) =3 £Q,(n), where & = &p&r- - &n.
On the other hand, we have, by Taylor’s formula,
P +n) =X &PO(x).

Thus we obtain
1
Qs(n) =57 PO (n).

9. B-spaces and F-spaces
In a quasi-normed linear space X, lim [|x, — x|| = 0 implies, by the
7n—>00

triangle inequality ||z, — % || = ||%s — #|| + ||* — % ]|, that {x,} is a
Cauchy sequence, i.e., {x,} satisfies Cauchy’s convergence condition
",lirn [| % — %m || = 0. (1)
Definition 1. A quasi-normed (or normed) linear space X is called an
F-space (or a B-space) if it is complete, i.e., if every Cauchy sequence {x,}
of X converges strongly to a point x,, of X:

Jim |2, — oo = 0. @

Such a limit %, if it exists, is uniquely determined because of the triangle
inequality ||x — || = ||* — %,|| + ||#» — %"||. A complete pre-Hilbert
space is called a Hilbert space.

Remark. The names F-space and B-space are abbreviations of Fré-
chet space and Banach space, respectively. It is to be noted that Bour-
BAKI uses the term Fréchet spaces for locally convex spaces which are
quasi-normed and complete.

Proposition 1. Let £2 be an open set of R”, and denote by () =
C*() the locally convex space, quasi-normed as in Proposition 6 in
Chapter I, 1. This €({2) is an F-space.

Proof. The condition lim ||/, — /.|| = 0 in €(f2) means that, for

7,m—-00
any compact subset K of £ and for any differential operator D*, the

sequence {D*f,(x)} of functions converges, as # — oco, uniformly bn
K. Hence there exists a function f(x) € C* () such that lim D%f,(x) =
700
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D*f(x) uniformly on X. D* and K being arbitrary, this means that
,,;hﬁ ||f»—f|| = 0 in €(R).

Proposition 2. L?(S) = L?(S, B, m) is a B-space. In particular, L%(S)
and (/2) are Hilbert spaces.
Proof. Let lim || %4 — %m|| = 0 in L?(S). Then we can, choose a

subsequence {x,,,‘} such that 2 || %, — % || < 00. Applying the tri-

angle inequality and the Lebesgue -Fatou Lemma to the sequence of
functions

t
9e(5) = [ ()] + 2 g 5) — 5y (5)| € L2(S),
we see that
p
S (timy () m(d9) < im [l < (15} + 2 [t — 5] -
Thus a finite lim y, (s) exists a.e. Hencea finite lim x,,,, (s) = %o (s) exists
t—00 t—00
ae. and x(s) € L?(S), since [x,, (s)| = ‘l_ig y:(s) € L (S). Applying
again the Lebesgue-Fatou Lemma, we obtain
1500 — oI = f (Jim |30 (5) = 2005 ) m(05) < (£ [ — 5l -
Therefore klim ||¥oo— %, || = 0, and hence, by the triangle inequality and
—»00

Cauchy’s convergence condition lLm [|x, — %,,|| = 0, we obtain
7,m—>00
T [[ o0 — 50| S Jim (70— 2oy | 4[| 50, — 2| = 0.

Incidentally we have proved the following important

Corollary. A sequence {x,} € L?(S) which satisfies Cauchy’s conver-
gence condition (1) contains a subsequence {x,,} such that

a finite kl_i.xr:c %, (8) = %o (5) eXists a.e., x4, (s) € L?(S) and
s—lim x,, = %o, . (3)
7—>00

Remark. In the above Proposition and the Corollary, we have assumed
in the proof that 1 < p < co. However the results are also valid for the
case p =oo, and the proof is somewhat simpler than for the case
1 = p < oo. The reader should carry out the proof.

Proposition 3. The space 4%(G) is a Hilbert space.

Proof. Let {f,(2)} be a Cauchy sequence of 4%(G). Since 42(G) is a
linear subspace of the Hilbert space L%(G), there exists a subsequence
{f (2)} such that

a finite hl_lgzo e (2) = foo (2) exists a.e., foo € L2(G) and

lim [ |fo(2) —fu(2) 2 dx dy = 0.
MG
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We have to show that £, (2) is holomorphic in G. To do this, let the sphere
|z—zy| =< ¢ be contained in G. The Taylor expansion f,(z) — f,(2) =
o )
2‘,‘) ¢; (2 — zp)’ implies
’-
” /n"‘fm”zg f lfﬂ(z)_fm(z) lzdxdy

2—20| <

f(f S ""Zcr"e—”“’d())rdr_zznflc 2%+ gy

I|

=2x ,2‘)02j+2 leiP 27+ 2 = | ? @ 4
i

= 71 0% |fn(20) — Fm (%) [*-
Thus the sequence {f, (2)} itself converges uniformly on any closed sphere
containedin G. f, (2)’s being holomorphicin G, we see that f, (z) = ”122, I (2)
must be holomorphic in G.
Proposition 4. M (S, B, m) with m(S) < oo is an F-space.
Proof. Let {x,} be a Cauchy sequence in M (S, B, m). Since the con-

vergence in M (S, B, m) is the asymptotic convergence, we can choose a
sub-sequence {,, (s)} of {,(s)} such that

m(B;) < 2% for B, = {se S 27 < [ Hgy (8) — % (5) [}
The sequence x,,(s) = x,,(s) + j:ﬂ (Fnjn (5) — Zmy(s)) (R=1,2,..))
oo
is s-convergent to a function € M (S, ®B,m), because, if s€ .U‘ B;,
oo (o2 . ];
we have X |x,,,(s) — %, = 327 < 21~ and m (,'U: Bj)
J= = =

0 2o .
= 2; m(Bj) = Zt: 277 < 217*;  consequently we see, by letting
= i~

t — oo, that the sequence {x,(s)} converges m-a.e. to a func-
tion x(s)€ M (S, B, m). Hence lim [|%n, — %o|| =0 and so, by

lim ||x, — %,|| = 0, we obtain hm Hx,,—xooI]_O
7%,M-—>00

The Space (s). The set (s) of all sequences {£,} of numbers quasi-nor-
med by

a3l = & 2" 1&1/(L + [&))

constitutes an F-space by {£,} + {77,,} ={&, + 7}, a{€n} ={x&,}. The
proof of the completeness of (s) may be obtained as in the case of
M (S, B, m). The quasi-norm

[1{&a} 1| = inf tan™1 {e + the number of &,’s which satisfy |&,| > &}
&>

also gives an equivalent topology of (s).
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Remark. It is clear that C (), (c,) and (c) are B-spaces. The complete-
ness of the space () is a consequence of that of . L? (S). Hence, by Theo-
rem 3 in Chapter I, 5, the space H-L? is a Hilbert space with (/2).

Soboley Spaces W*? (£2). Let £ be an open set of R”, and k a positive
integer. For 1 < p < oo, we denote by W*?(Q) the set of all complex-
valued functions f(x) = f(xy, %, . . ., %,) defined in £ such that f and

its distributional derivatives D*f of order |s| = 2”1' [s;] =< & all belong
J=
to L? (). W*? () is a normed linear space by
(h + 1) (#) = h(%) + fo(#), (/) (¥) = &f(x) and
— S £ () [P 1/p —
[1Flxp = ([sék,;f |D°f (%) | dx) , dx = dx, dx, . . . dx,
under the convention that we consider two functions f; and f, as the same

vector of W*?(Q) if f,(x) = f,(x) a.e. in Q. It is easy to see that W*2(Q)
is a pre-Hilbert space by the scalar product

(e = ( &, J D' @) D'g (&) dx) .

Proposition 5. The space W*? () is a B-space. In particular, W*(Q) =
W*%(Q) is a Hilbert space by the norm ||f|; = ||/||s2 and the scalar
product (7, )y = (/, &)nz-

Proof. Let {f;} be a Cauchy sequence in W*? (). Then, for any diffe-
rential operator D° with |s| < &, the sequence {D*f,} is a Cauchy sequence
in L?(Q) and so, by the completeness of L? (), there exist functions
fPe?@) (|s|< k) such that Lim [ 1D f(x) — 19 (%) dx = 0. By

Q

virtue of Hoélder’s inequality in Chapter I, 3, applied to compact sets
of 2, we easily see that f, is locally integrable in £2. Hence, for any func-
tion ¢ € C3° (L),

Tonle) = Qf D*fy(x) - 9 (x) dx = (— 1) gf fi(x) D’ (x) dx,
and so, again applying Holder’s inequality, we obtain, by
lim [ |fy(x) — (%) [P dx =0,
h—00 o
Tim Tpsy, () = (—1)* Ty (D) = D* Ty (g).

Similarly we have, by lim [ 1Dt (x) — {9 (x)|P dx = 0,
—00 )

Lim Ty, (g) = Tyo ).

Hence we must have D*Tjo = Ty, that is, the distributional deri-
vative D°f¥ equals f*. This proves that lim ||, —f®||;, =0 and

W*?(Q) is complete.
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10. The Completion

The completeness of an F-space (and a B-space) will play an important
role in functional analysis in the sense that we can apply to such spaces
Baire’s category arguments given in Chapter 0, Preliminaries. The follow-
ing theorem of completion will be of frequent use in this book.

Theorem (of completion). Let X be a quasi-normed linear space which
is not complete. Then X is isomorphic and isometric to a dense linear
subspace of an F-space X, i.e., there exists a one-to-one correspondence
x <> x of X onto a dense linear subspace of X such that

(e +79) =745, =5 7] = 1l Q
The space Xis uniquely determined up to isometric isomorphism. If X
is itself a normed linear space, then X is a B-space.
Proof. The proof proceeds as in Cantor’s construction of real numbers
from rational numbers.

The set of all Cauchy sequences {x,} of X can be classified according
to the equivalence {x,} ~ {y,} which means that lim ||z, —,|| = 0.
7—>00

We denote by {x,}’ the class containing {x,,} Then the set X of all such
classes ¥ = {x,}’ is a linear space by

{2} + (v} = {20 + 90}, a{2a} = {ax}.
We have |||%,|| — ||#m||| = ||%s — % || and hence ’}_13.10 [|%a]| exists.
We put
el | = Jim ||l
It is easy to see that these definitions of the vector sum {x,}’ + {y,}’,
the scalar multiplication x{x,}’ and the norm ||{x,}'|| do not depend
on the particular representations for the classes {x,}’, {y,}’, respectively.
For example, if {x,} ~ {x,}, then
lim ||x,|| < lim ||x,|| 4+ lim ||z, —%,|| < lim ||x,]|
#—>00 n—>00 #—>-00 7n—00
and similarly lim ||%,|| < lim [|x,||, so that we have ||{x,}|| =
7n—00 7—>00

({2} I

To prove that ||{x,} || is a quasi-norm, we have to show that

tim 4G [ =0 and  lim [lafsy || = .
The former is equivalent to lim lim [|xx,||=0 and the latter is
a—0 100
equivalent to lim ||xx,||=0. And these are true because ||« x|| is con-

7n—>00

tinuous in both variables « and x.
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To prove the completeness of X, let {%} = {{x®}} be a Cauchy
sequence of X. For each %, we can choose #; such that
[|[ 2% — 2D || < k1 i m> . 2)

Then we can show that the sequence {¥;} converges to the class containing
the Cauchy sequence of X:

{2, 22, xR (3)
To this purpose, we denote by . the class containin
purp! g
Then. by @ PP RN R (4)
en, by (2),
e B011 = lim (1) — 20| = & ®)
and hence
(|2 — || = 112 — 2 || < |28 — %l + [| % —Zm || + [|Zm — 2 ||

< |l — Tl + K7+ 7

Thus (3) is a Cauchy sequence of X. Let x be the class containing (3).
Then, by (5),

17 =%l < |2 =20 || + |7 — %] < ||Z — 25 || + &7
Since, as shown above,

[ — | < Jim |42 — 22| < lim |5, —Ral| + 47

we prove that lim [|%— %X || = 0, and so JLim |z — %]|| = 0.
The above proof shows that the correspondence
X3xoxi={xux...,%..}=%x
is surely isomorphic and isgmetric, and the image of X in X by this
correspondence is dense in X. The last part of the Theorem is clear.

Example of completion. Let £2 be an open set of R” and k < co. The
completion of the space C¢(£2) normed by

Il =(, 5, J 1260 )™

will be denoted by H§(£); thus H§(Q2) is the completion of the pre-
Hilbert space H} (2) defined in Chapter I, 5, Example 4. Therefore H: (Q) isa
Hilbert space. The completion of the pre-Hilbert space H* () in Chap-
ter I, 5, Example 3 will similarly be denoted by H* ().

The elements of H§(f2) are obtained concretely as follows: Let {f,} bea
Cauchy sequence of Cg(£2) with regard to the norm ||f||;- Then, by the
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completeness of the space L%(f2), we see that there exist functions
”
79 () € L*(Q) with |s| = & 5 < k such that
j=
lim [ |/ (%) —D'fy(x)Pdx =0 (dx = dx, dx, .. .dx,).
h—o0 o

Since the scalar product is continuous in the norm of L2(£2), we see, for
any test function ¢ (x) € C3° (£2), that

Ty(g) = lim <D*4, ¢y = lim (—1)* T, (D)
= (—1) tim ¢4, D') = (—1)F (9, D*p) = (D*T,0) (g).

h—00
Therefore we see that £ € L%(Q) is, when considered as a generalized
function, the distributional derivative of f© : f) = D* f©,
We have thus proved that the Hilbert space Hg(£2) is a linear subspace
of the Hilbert space W*(£), the Sobolev space. In general H%(Q) is a
proper subspace of W*(Q2). However, we can prove

Proposition. Hj (R") = W*(R").
Proof. We know that the space W*(R") is the space of all functions
f(x) € L*(R") such that the distributional derivatives D*f(x) with |s| =

2”1‘ s; < k all belong to L?(R"), and the norm in W*(R") is given by
i<
e =( X |D*f(x) 2 ax\V2.
1l = (2, 1210 P
Let f€ W*(R") and define fy by
In(x) = oy (2) (%),
where the function ay(x) € CP(R™) (N =1,2,...) is such that

ay (%) =1 for |x|< Nand sup | D* ap(%)| < o0.
xeRY|s|SkN=1.2,...

Then by Leibniz’ formula, we have
Dff(x) — D*fy(x) =0 for |x| <N,
= a linear combination of terms
Doy (%) - D*f(x) with |u| 4 [t|< & for |x|> N.
Hence, by D*f € L?(R") for |s| < &, we see that 132?0 [|D°fw — D*f|lo =0
and so lim [|fx —fllx = 0.

Therefore, it will be sufficient to show that, for any € W*(R") with
compact support, there exists a sequence {f,(x)} C C§(R") such that
lim ||/, — /|| = 0. To this purpose, consider the regularization of f
a—>00

(see (16) in Chapter I, 1):
fal%) = R{f(y) 0a(x —y) dy, a> 0.
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By differentiation, we have
Dfy(x ff ) D30a(x — ) dy = (—1)¥ R{ 1) D304 (x — ) dy
= (D°Ty) (0,,) (where 6,,(y) = 0,(x —¥))
=R£D’f(y) O, (x—y)dy (for |s| < k).

Hence, by Schwarz’ inequality,
[ |D*fa(#) — D*f (%) [ dx
Rﬂ

g( J 0a(x—) dy) f[ [ 1D3f(y) — Dy f(x) [ 6a(x — %) dy] dx
[f |Dyf(y) — D5ty + ) [? dy:l 0, () de, where
la'sa

yt+e=O01+e,v2+ e, Y0t &)
We know that the inner integral on the extreme right tends to 0 as e — 0
(see Theorem 1 in Chapter 0, 3), and hence ii_r,% R{ |D*f,(x) — D*f (%) [Pdx
= 0. Thus an(} [|fs—7]|s = 0. Therefore, the completion H§ (R") of C§(R")
with regard to the norm || ||, is identical with the space W*(R").
Corollary. H{(R") = H*(R") = W*(R").

11. Factor Spaces of a B-space

Suppose that X is a normed linear space and that M is a closed linear
subspace 1n X. We consider the factor space X/M, i. e., the space whose
elements are classes modulo M. In virtue of the fact that M is closed,
all these classes & are closed in X.

Proposition. If we define
lgl] = i |, o
then all the axioms concerning the norm are satisfied by ||£||.

Proof. If £ = 0, then & coincides with M and contains the zero vector
of X ; consequently, it follows from (1) that ||&|| = 0. Suppose, conversely,

that ||&|| = 0. It follows then from (1) that the class contains a sequence
{%4} for which we have lim ||,|| = 0, and hence the zero vector of X
7—00

belongs to the closed set & of X. This proves that & = M and hence is
the zero vector in X/M.

Next suppose &, n € X/M. By definition (1), there exists for any & > 0,
vectors x € &, y € 5 such that

Izl = (1€l + & [yl = lInll +&.
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Hence ||x + y|| < ||#|] + ||¥]| = ||£]| + || ]| + 2&. On the other hand,
(* +¥) € (& + n), and therefore [|&+ nl| < ||x + y]|| by (1). Con-
sequently, we have ||& + || < ||£]| + ||7]| + 2¢ and sowe obtam the
triangle inequality ||& + 5l| = HEH + |inll-

Finally it is clear that the axiom ||x&|| = |« | ||£][| holds good.

Definition. The space X/M, normed by (1), is called a normed factor
space.

Theorem. If X is a B-space and M a closed linear subspace in X, then
the normed factor space X/M is also a B-space.

Proof. Suppose {£,} is a Cauchy sequence in X/M. Then {&,} contains
asubsequence {£,,} such that ||£,,,, —&,,|| < 27*~%. Further, by definition
(1) of the norm in X/M, one can choose in every class (£,,,, — &)
a vector v, such that

Hyk” < ”5’”«.‘"5’%“ + 27h2 < 2,

Let x, € &,,.. Theseriesx, + y; 4+ ¥, + - - converges in norm and conse-

quently, in virtue of the completeness of X, it converges to an element x

of X. Let & be the class containing x. We shall prove that £ = s-lim §&,.
7—>00

Denote by s, the partial sum %, 4 y; + y2 + - - - + ¥, of the above
series. Then lim ||# — sx|| = 0. On the other hand, it follows from the
—00

relations x, € &, , v, € (Enw — E,,p) that s, € £,,,,, and so, by (1),
E—&nl| =< ||x—si|]| >0 as k—oo.

Therefore, from the inequality ||§ — &, || < ||£ — &, || + ||£n — &x]| and
the fact that {£,} is a Cauchy sequence, we conclude that lim ||§ —§&,
7—00

= 0.
12. The Partition of Unity

To discuss the support of a generalized function, in the next section,
we shall prepare the notion and existence of the partition of unity.
Proposition. Let G be an open set of R*. Let a family {U} of open
subsets U of G constitute an open base of G: any open subset of G is
representable as the union of open sets belonging to the family {U}.
Then there exists a countable system of open sets of the family {U} with
the properties:
the union of open sets of this system equals G, (1)
any compact subset of G meets (has a non-void inter-
section with) only a finite number of open sets of this
system. (2)
Definition 1. The above system of open sets is said to constitute a
scattered open covering of G subordinate to {U}.
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Proof of the Proposition. G is representable as the union of a countable
number of compact subsets. For example, we may take the system of all
closed spheres contained in G such that the centres are of rational coor-
dinates and the radii of rational numbers.

Hence we see that there exists a sequence of compact subsets K,
such that (i) K, C K,,; (r=1,2,...), (ii) G is the union of K,’s and
(iii) each K, is contained in the interior of K, ;. Set
U, = (theinteriorof K, ;) — K,_, and V, = K, — (theinterior of X,_;),
where for convention we set K= K_; = the void set. Then U, isopen and

oo
V, is compact such that G = U1 V,. For any point x € V,, take an open
set U(x; 7) € {U} such that x€ U(x;7) C U,. Since V,is compact, there
hy .
exists a finite system of points x™, x®, . .., x®? such that V, C uvu (x9; 7).

Then, since any compact set of G meets only a finite number of U, ’s, it is
easy to see that the system of opensets U (x*;7) (r =1,2,.. ;1 <1 < h,)
is a scattered open covering of G subordinate to {U}.

Theorem (the partition of unity) Let G be an open set of R", and let
a family of open sets {G;; i€ I} cover G, ie., G = U G;. Then there

exists a system of functions {;(x); 7 € J} of C3°(R") such that

for each j € J, supp («;) is contained in some G, , (3)
foreveryj€J, 0= aj(x) =1, (4)
%L;aj(x)sl for x€G. (5)

]

Proof. Let ' ¢ G and take a G; which contains x?. Let the closed
sphere S(¥%;7) of centre x® and radius » be contained in G;. We
construct, as in (14), Chapter I, 1, a function ¢ (o)( € C (R") such that

0 (x) >0 for |x—20) <7, B (x) =0 for [x—x9|Z=7.

%(0)
We put U9 = {x; %, (%) # 0}. Then U¥) CG;and U U =G,
* ! OG>0
and, moreover, supp (8))) is compact.

There exists, by the Proposition, a scattered open covering {U;;7€ J}
subordinate to the open base {U%), ; x %€ G, 7> 0} of G. Let () be

any function of the family {#) (x)} which is associated with U;.

Then, since {U;; j € J} is a scattered open covering, only a finite number
of B;(x)’s do not vanish at a fixed point x of G. Thus the sum s(x) =
% B;(x) is convergent and is > 0 at every point x of G. Hence the func-
]

tions
%) = Bi(x)[s(x) G€J)

satisfy the condition of our theorem.
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Definition 2. The system {'oc,- (%); 1€ J} is called a partition of unity
subordinate to the covering {G;; i € I}.

13. Generalized Functions with Compact Support

Definition 1. We say that a distribution T € ® ()’ vanishes in an
open set U of 2 if T (p) = 0 for every ¢ € D (£2) with support contained
in U. The support of T, denoted by supp(T), is defined as the smallest
closed set F of 2 such that T vanishes in Q — F.

To justify the above definition, we have to prove the existence of the
largest open set of 2 in which T vanishes. This is done by the following

Theorem 1. If a distribution T € D (£2)’ vanishes in each U; of a family
{U;; 1€ I} of open sets of 2, then T vanishes in U =’_g U..

Proof. Let ¢ € D (2) be a function with supp (p) C U. We construct

a partition of unity {w;(x); §€ J} subordinate to the covering of £

consisting of {U;; €I} and 2 — supp(p). Thenp = g oj@ is a finite
J!

sum and so T (p) = 5 T (x;g). If the supp(«,) is contained in some Uj,
J

T (xj9) =0 by the hypothesis; if the supp («;) is contained inf2 — supp (p),
then a;¢ = 0 and so T (x;p) = 0. Therefore we have T (p) = 0.

Proposition 1. A subset B of the space §({2) is bounded iff, for any
differential operator D’ and for any compact subset K of £, the set of
functions {D?f(x); f € B} is uniformly bounded on K.

Proof. Clear from the definition of the semi-norms defining the topo-
logy of €(£2).

Proposition 2. A linear functional T on §(£2) is continuous iff T is
bounded on every bounded set of € (£).

Proof. Since €(£2) is a quasi-normed linear space, the Proposition is
a consequence of Theorem 2 of Chapter I, 7.

Proposition 3. A distribution T € D ()’ with compact support can
be extended in one and only one way to a continuous linear functional T,
on () such that T,(f) = 0 if f€ E(£2) vanishes in a neighbourhood
of supp (7).

Proof. Let us put supp(T) = K where K is a compact subset of .
For any point x°¢€ K and ¢ > 0, we take a sphere S(x? &) of centre
%% and radius ¢. For any ¢ > 0 sufficiently small, the compact set K is
covered by a finite number of spheres S (x°, &) with 2°¢ K. Let {x;(x);j€ J}
be the partition of the unity subordinate to this finite system of spheres.

Then the function y(x) = P «;(x¥), where K' is a compact
supp(«;) N K’ #=void
neighbourhood of K contained in the interior of the finite system of

spheres above, satisfies:
p(x) €CP(R2) and w(x) = 1in a neighbourhood of K.
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We define T (f) for f€ C*(2) by To(f) = T (pf). This definition is in-
dependent of the choice of y. For, if p, € C§° (2) equals 1 in a neighbourhood
of K, then, for any f€ C*(%2), the function (y — y,) /€ D (L) vanishes
in a neighbourhood of K so that T (yf) — T (y,/) =T ((y —v,) /) = 0.

It is easy to see, by applying Leibniz’ formula of differentiation to
y/, that {yf} ranges over a bounded set of D (2) when {f} ranges over
a bounded set of €(£2). Thus, since a distribution 7 € D ()’ is bounded
on bounded sets of D (£2), the functional T, is bounded on bounded sets
of €(£2). Hence, by the Theorem 2 of Chapter I, 7 mentioned above, T, is
a continuous linear functional on §(2). Let f € € (£2) vanish in a neighbour-
hood U(K) of K. Then, by choosing a y € CJ°(2) that vanishes in
(2 — U(K)), we see that Ty(f) = T (yf) = 0.

Proposition 4. Let K’ be the support of y in the above definition of T,.
Then for some constants C and %
| Te()| =C sup |Dif(x)| forall fe C®(Q).

|ilsk2€K’
Proof. Since T is a continuous linear functional on D (), there exist,
for any compact set K’ of 2, constants C’ and %’ such that

[T(@)|<C sup |Dip(x)| forall g€ D ()
il sk zek’

(the Corollary of Proposition 1 in Chapter I, 8). But, for any g€ C*(£),
we have ¢ = yg € Dy (2). Consequently, we see, by Leibniz’ formula of
differentiation, that
sup |Di(yg) (x)| =C" sup |Dig(n)]
|jl <K x€K’ lil <k, 2€K’
with a constant C"’ which is independent of g. Setting g = fand & = %/,
we obtain the Proposition.

Proposition 5. Let S, be a linear functional on C*® () such that, for
some constant C and a positive integer 2 and compact subset K of 2,

[So()| = C sup |D'f(x)| forall feC®(Q).
il sk 2€K

Then the restriction of Sy to C3°(£2) is a distribution T with support con-
tained in K.

Proof. We observe that Sy (f) = 0 if f vanishes identically in a neigh~
bourhood of K. Thus, if y € C3°(£2) equals 1in aneighbourhood of K, then

Solf) = So(pf) forall feC™(Q).
It is easy to see that if {f} ranges over a bounded set of D (£2), then, in

virtue of Leibniz’ formula, {yf} ranges over a set which is contained in
a set of the form

{6€C®(@Q); sup |Dig(x)| = C4 < oo}.
lilskzekx
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Thus Sy(yf) = T (f) is bounded on bounded sets of D (£2) so that T is
a continuous linear functional on ® ().
We have thus proved the following

Theorem 2. The set of all distributions in £ with compact support is
identical with the space E(£2)’ of all continuous linear functionals on
G (9), the dual space of &(£2). A linear functional T on C* () belongs to
€ (£2)’ iff, for some constants C and % and a compact subset K of £,

[T(H)|<C sup |Dif(x)| forall feC®(Q).
|j| skxeK

We next prove a theorem which gives the general expression of distri-
butions whose supports reduce to a single point.

Theorem 3. Let an open set 2 of R” contain the origin 0. Then the
only distributions T € D (£2)’ with supports reduced to the origin 0 are
those which are expressible as finite linear combinations of Dirac’s
distribution and its derivatives at 0.

Proof. For such a distribution T, there exist, by the preceding Theo-
rem 2, some constants C and % and a compact subset K of 2 which con-
tains the origin 0 in such a way that

IT(H|<C sup |Dif(x)| forall feC®(Q).

5| Skx€K
We shall prove that the condition
Dif(0) =0 forall ; with |[j|<k

implies T (f) = 0. To this purpose, we take a function y € C* () which is
equal to 1 in a neighbourhood of 0 and put

fe(®) = }(x) y(xfe).

We have T (f) = T (f,) since f = f, in a neighbourhood of the origin 0.
By Leibniz’ formula, the derivative of f, of order < % is a linear com-
bination of terms of the form |¢|™ D'y - D*f with || + || < k. Since,
by the assumption, D*f(0) = 0 for |i| < k, we see, by Taylor’s formula,
that a derivative of order |s| of £, is 0(¢#*'7Fl) in the support of
w(x/e). Thus, when ¢ | 0, the derivatives of f, of order =< % converge to 0

uniformly in a neighbourhood of 0. Hence T (f) = lifgl T(f,) = 0.

Now, for a general f, we denote by f, the Taylor’s expansion of f up
to the order % at the origin. Then, by what we have proved above,

TH=THW+TG—HW=TFH +0=T(#).

This shows that T is a linear combination of linear functionals in
the derivatives of f at the origin of order = k.
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14. The Direct Product of Generalized Functions

We first prove a theorem of approximation.

Theorem 1. Let x = (%9, %5, ..., %,) €ER", ¥y = (1, Y2, - - -, Y) € R”
and z=2xXYy = (%, %2, - - +, ¥n, Y1, Yo, « - -, Ym) € R**™. Then, for any
function ¢ (2) = @(x,y) € C3° (R"*™), we can choose functions u;; (x) € C3° (R")
and functions v;;(y) € C§° (R™) such that the sequence of functions

i(2) = @i(x, y) = 2%( %) v (¥) (1)

tends, as 7 — oo, to ¢ (2) = @(x, ¥) in the topology of ® (R**™),
Proof. We shall prove Theorem 1 for the case # = m = 1. Consider

Py, = 2Vat)" [ [ o) exp(—(x—? + y—n)?)/4t) déan,

t>0; D(x,9,0)=9(x7). (2)
We have, by the change of variables &, = (£ — %)/2 )/t, 7, = (n—9)/2 /¢,

D(x,y,1) =(V;)_2 f f <p(x + 251V;:y + 2n VZ)e—ﬂ"'li & dn; .

—00 —00
oo 00
Hence, by [ [ e -"dfdy, ==,
—00 —0

— o 0 © -
9. y.0—g@N|<(V2)" [ [ ol + 281ty +2n)t)—p(y)
—00 —00
X e~&- dédn
s I+ I
B2 T g
Since the function ¢ is bounded and ¢=~"" is integrable in R?, we see
that the first term on the right tends to zero as T 4 oo. The second term

on the right tends, for fixed T > 0, to zero as ¢ 0. Hence we have
proved that ltig D(x,y,t) = @(x,y) uniformly in (x, y).

Next, since supp (¢) is compact we see, by partial integration,
oy, Vi) 28" (6 W) et s -y
dédn, t>0,
axmay ff asma k 5 N >

" e(r, )
ax™ oyt

, t=0.

Thus we see as above that

i TRy, ) " (ry)

wo  a"at amat
It is easy to see that @(x, y, ¢) for £ > 0 given by (2) may be extended
as a holomorphic function of the complex variables x and y for |x| < oo,

uniformly in (x, y). (3)

5 Yosida, Functional Analysis
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|¥| < co. Hence, for any given y > 0, the function ®(x, y, #) for fixed
¢ > 0 may be expanded into Tavlor’s series

[e o] m
D(x,y,t) = s @) #°y™F

which is absolutely and uniformly convergent for |x| <y, |[y| =<y and
may be differentiated term by term:

am+k¢ (x’ v, t) © m am+kxsyml—s
Tk = 2 &G
ox" oy my=0s=0 ox" 8y

Let {#;} be a sequence of positive numbers such that ¢; | 0. By the above
we can choose, for each f;, a polynomial section P;(x,y) of the series

o0 "
2; 2(,; ¢; () #°y™* such that
”m = S=
lim P;(x, y) = @ (x, ) in the topology of € (R?),
1—>00

that is, for any compact subset K of R?, lim D*P;(x,y) = D°p(x,y)
+—>00

uniformly on K for every differential operator D®. Let us takeg (x)€ C3° (R?)
and o (y) € C (RY) such that g(x) o(y) = 1 on the supp (¢ (%, y)). Then
we easily see that @;(x, y) = o (*) o () P;(, y) satisfies the condition of
Theorem 1.

Remark. We shall denote by D (R") X D (R™) the totality of functions
€ ® (R"*™) which are expressible as

J.é;? @i () wi(y) with g;(x) € D(R"), w;(y) € D(R™).

The above Theorem 1 says that D (R") X D (R™) is dense in D (R"+™)
in the topology of ®(R"*™). The linear subspace D (R") XD (R™) of
D (R"*™) equipped with the relative topology is called the direct product
of D (R") and D (R™).

We are now able to define the direct product of distributions. To indi-
cate explicitly the independent variables x = (x,, %, . . ., %,) of the
function ¢(x) € D (R"), we shall write (D,) for D (R"). We also write
(D,) for D(R™) consisting of the functions y(y), ¥ = (y1, ¥2, - - ., VYm)-
Likewise we shall write (D,y,) for D (R"T™) consisting of the functions
% (%, ). We shall accordingly write T, for the distribution T € D (R")" =
(D,)’ in order to show that T is to be applied to functions ¢ (x) of x.

Theorem 2. Let T, € (D,)’, Sy € (D). Then we can define in one
and only one way a distribution W = W, ) € (D,«,)’ such that

W) v(y) =T () Sp (@) for ue (D), ve(D,), (4)

W (@ (%,9)) = St (Tt (@ (%, 9))) = T(s) (S (¢ (%,9))) for @€ (Duxy) (5)
(Fubini’s theorem).
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Remark. The distribution W is called the direct product or the tensor
product of T,y and S,), and we shall write
W =T5XSy = SpXT(y- (6)
Proof of Theorem 2. Let B = {p(x, y)} be a bounded set of the space
(Dyxy)- For fixed ¥, the set {g(x, ¥¥);p€ B} is a bounded set of
(D,). We shall show that
{p); 90 =T (9 ¥"), € B} (7)
is a bounded set of (D y(o)). The proof is given as follows.

Since B is a bounded set of (D, y,), there exist a compact set K, C R»
and a compact set K, C R™ such that

supp(p) S {(x,v) € R**"; x€ K,, y€ K,} whenever ¢c 8.

Hence y'9 € K,, implies ¢ (x, y'¥) = 0 and y(y®) = T, (¢ (x, ¥'?)) = 0.
Thus
supp (y) € K, whenever @€ 8. (8)
We have to show that, for any differential operator D, in R™,
sup | Dy (y)| < oo where p(¥) =T, (p(x, %)), € B. 9)
kA4

To prove this, we take, e.g., D, = 9/dy,. Then, by the linearity of T,

YL+ 2 Y Ym) — PV Ve - - s Ym)
2

— T( ){'P(x» %+ h'ym T ym)—w(x' Y1 Y20 oo o ym)}
= 1y .

h
When ¢ ranges over B, the functions € { } of x, with parameters y € R™
and & such that || < 1, constitute a bounded set of (D,). This we see
from the fact that B is a bounded set of (D, ,). Hence we see, by letting
h — 0 and remembering Proposition 1 in Chapter I, 8, that (9) is true.
Therefore, by the same Proposition 1, we see that the set of values

{So) (T (@ (x,9))); 9 € B} (10)
is bounded. Consequently, the same Proposition 1 shows that we have
defined a distribution W ¢ (®,,,)’ through

WO (@) = Sp) (Tes (9 (5, 9))- (11)
Similarly we define a distribution W® ¢ (9,,,)’ through
WE(g) = Tty (St ( (% 9)))- (12)
Clearly we have, for « € (®,) and v € (D,),
WD (u(x) v(y)) = WP (u(x) v(y)) = Tt (#(%)) - Spy (0 () (13)

Therefore, by the preceding Theorem 1 and the continuity of the
distributions W® and W®, we obtain W = W®, This proves our
Theorem 2 by setting W = W) = w@,

h*



68 II. Applications of the Baire-Hausdorff Theorem

References for Chapter I

For locally convex linear topological spaces and Banach spaces, see
N. Boursaki [2], A. GROTHENDIECK [1], G. KOTHE [1], S. Banach [1],
N. DunrorD-]J. ScawarTz [1] and E. HirLre-R. S. PaiLries [1]. For
generalized functions, see L. SCHWARTZ [1], I. M. GELFAND-G. E. SiLov
[1], L. HORMANDER [6] and A. FRIEDMAN [1].*

II. Applications of the Baire-Hausdorff Theorem

The completeness of a B-space (or an F-space) enables us to apply
the Baire-Hausdorff theorem in Chapter 0, and we obtain such basic
principles in functional analysis as the uniform boundedness theorem, the
resonance theorem, the open mapping theorem and the closed graph theorem.
These theorems are essentially due to S. BANACH [1]. The termwise
differentiability of gemeralized functions is a consequence of the uniform
boundedness theorem.

1. The Uniform Boundedness Theorem and the Resonance
Theorem

Theorem 1 (the uniform boundedness theorem). Let X be a linear
topological space which is not expressible as a countable union of closed
non-dense subsets. Let a family {T,; a € A} of continuous mappings be
defined on X into a quasi-normed linear space Y. We assume that, for
anyac A and x,y€ X,

ITae + )| | Tuxl| + | oy || and [|Talon) || = [l Tos]| fora0.
If the set {T,x;a€ A} is bounded at each x€ X, then s-lim T,x = 0
=0

uniformly in a € 4.
Proof. For a given ¢ > 0 and for each positive integer #, consider
X, = {xe X;sup{||n 1T, x|| + |[n 21 T,(— %)} e}. Each set X, is
a€Ad

closed by the continuity of T,. By the assumption of the boundedness of
{[|Tax
X, some X, must contain a neighbourhood U = %, + V of some point

%y € X, where V is a neighbourhood of 0 of X such that V=—V.
Thus x € V impliessup ||ng 1T, (%, + %) || = &. Therefore we have
a€A

(o]
|; a€ A}, we have X = U X,. Hence, by the hypothesis on

| Ta(ng ) || = || Talng (% + % — %)) || = ||m6 Ta (%o + %) ||
+ ||#0 1 To(—2x0) || = 2¢ for x€V, a€ 4.

Thus the Theorem is proved, because the scalar multiplication «x in a
linear topological space is continuous in both variables « and x.

* See also Supplementary Notes, p. 466.
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Corollary 1 (the resonance theorem). Let {T,; a€ A} be a family of
bounded linear operators defined on a B-space X into a normed linear
space Y. Then the boundedness of {|!T,x||; a € 4} at each x € X implies
the boundedness of {||T,||; a€ 4}.

Proof. By the uniform boundedness theorem, there exists, for any
€>0, a 6> 0 such that ||x||< 6 implies supHT x|| = e. Thus
sup I|T,|| < ¢/é.

Corollary 2. Let {T',} be a sequence of bounded linear operators defined
on a B-space X into a normed linear space Y. Suppose that s-lim T,x = Tx
7—>00

exists for each x € X. Then T is also a bounded linear operator on X into
Y and we have
7] = lim [|7,]]. (1)
7n—>00

Proof. The boundedness of the sequence {||T, ||} for each x€ X is
implied by the continuity of the norm. Hence, by the preceding Corol-
lary, sup ||T,|| < oo, and so ||T,x|| < sup ||T,|| - || #]| (r=1,2,...).

n=1 n=1

Therefore, again by the continuity of the norm, we obtain

1Tl = lim || Tux|| < lim || T[| - ][],

which is precisely the inequality (1). Finally it is clear that T is linear,
Definition. The operator T obtained above is called the strong limit
of the sequence {T,} and we shall write T = s-lim T,,.
7#—>00
We next prove an existence theorem for the bounded inverse of a
bounded linear operator.

Theorem 2 (C. NEUMANN). Let T be a bounded linear operator on a
B-space X into X. Suppose that ||[I — T|| < 1, where I is the identity
operator: I -x = x. Then T has a unique bounded linear inverse 71
which is given by C. Neumann's series

Tlx=slm I+ ({I—T)+I—T12+ ---+I—-T)")=x, x€X. (2
7—>00
Proof. For any x € X, we have

,.éo(I‘T)"" = :o I —T)=]] é,éo =) ||=]]

(2]
= S Ir—T1i [l
The right hand side is convergent by ||I — T'|| < 1. Hence, by the com-
k
pleteness of X, the bounded linear operator sm 20 (I — T)* is defined.
n=
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It is the inverse of T as may be seen from
k k
T slim 3 (I—7T)"x=s-lim (I—(I—T))(Z (I—T)”x)
k00 n=( k—00 n=0

=x—slim (I —T)**'x =,
k—00

k
and the similar equation s-lim ( > I — T)") Tx=x.
k—>00 \n=0

2. The Vitali-Hahn-Saks Theorem

This theorem is concerned with a convergent sequence of measures,
and makes use of the following

Proposition. Let (S, B, m) be a measure space. Let B, be the set
of all B € B such that m(B) < co. Then by the distance

d(B,, B,) = m(B, © B,), where B, © B,=B,\UB,—B, N\ B, (1)

B, gives rise to a metric space (B,) by identifying two sets B, and B,
of B, when m (B, © B,) = 0. Thus a point B of (B,) is the class of sets
B, € B, such that m(B © B,;) = 0. Under the above metric (1), (%B,)
is a complete metric space.

Proof. If we denote by Cp(s) the defining function of the set B:

Cp(s) =1 or 0 accordingas s€ B or s€B,
we have

d(By, Be) =sf |C5,(s) — Cs,(s) | m(ds). (2)

Thus the metric space (8,) may be identified with a subset of the B-space
L1(S, B, m). Let a sequence {Cp, (s)} with B, € B, satisfy the condition

Jim_d (B, By) =n’lki_IP°°§[[CB"(s)—CBk(s)|m(ds) = 0.

Then, as in the proof of the completeness of the space L1(S, B, m), we can
choose a subsequence {Cg,,(s)} such that lim Cg,(s) = C(s) exists
7 —00

m-ae. and lim [ [C(s) — Cp,,(s)| m(ds) = 0. Clearly C(s) is the
7' —00 3
defining function of a set By, € By, and hence lim d(By, B,) = 0.
71—00

This proves that (8B,) is a complete metric space.

Theorem (VITALI-HAHN-SAKS). Let (S, B, m) be a measure space with
m(S) < oo, and {A,(B)} a sequence of complex measures such that the
total variations |A,|(S) are finite for » =1, 2, ... Suppose that each
An(B) is m-absolutely continuous and that a finite lim 4,(B) = A(B)

n—> 00

exists for every B¢ B. Then the m-absolute continuity of A, (B) is uniform
in #, that is, lim #(B) = 0 implies lim 4,(B) = 0 uniformly in ». And
A(B) is g-additive on B.
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Proof. Each A, defines a one-valued function 4,(B) on (%8, by
A,(B) = 2,(B), since the value 4,(B) is, by the m-absolute continuity
of 4,(B), independent of the choice of the set B from the class B. The
continuity of 4, (B) is implied by and implies the m-absolute continuity of

2 (B).
Hence, for any ¢ > 0, the set

Fi(e) = {E; sup |44 (B) — 2440 (B)| < e}

is closed in (B,) and, by the hypothesis lim A,(B) = A(B), we have
7—00

o0
(B, = pU1 Fy(e). The complete metric space (B,) being of the second
category, at least one F, (¢) must contain a non-void open set of (B,).
This means that there exist a By€ (B,) and an # > 0 such that

d(B,By) < n implies sup |4 (B) — 44,14 (B)| < e.
n=>1

On the other hand, any B¢ B, with m(B) =< 7 can be represented as
B = B, — B, with d(B, By) < 7, d(B,, By) = n. We may, for example,
take B, = B\ B, B, = B;—B N\ B,. Thus, if m(B) < n and k = k,,
we have
|24 (B) | = |4, (B) | + |4,(B) — 4 (B) |
=S A B) | + |4, (B) — 44(By) | + |4, (Be) — 4 (By) |
< |4, (B)| + 2e.

Therefore, by the m-absolute continuity of 4, and the arbitrariness
of ¢ > 0, we see that m (B) — 0 implies 4,,(B) — 0 uniformly in #. Hence,
in particular, m (B) — 0 implies 1(B) — 0. On the other hand, it is clear
that A is finitely additive, ie., A ( 2”; Bj> = 2”; A(Bj). Thus, by

i= =
lim A(B) =0 proved above, we easily see that A is g-additive since
m(B)->0
m(S) < oo.

Corollary 1. Let {4, (B)} be a sequence of complex measures on S such
that the total variation |4, (S) is finite for every ». If a finite .}En@ Ay (B)

exists for every B € B, then the g-additivity of {4,(B)} is uniform in =,
in the sense that, blun A4 (By) = 0 uniformly in » for any decreasing
00
oo
sequence {B;} of sets € B such that n By =0.

Proof. Let us consider

m(B) = 27 1(B) where pu;(B) = 1] (B)IA] (S) -

i=1
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The o-additivity of m is a consequence of that of the 4;’s, and we have

0 < m(B) = 1. Each u; and hence each 4, is m-absolutely continuous.

Thus, by the above Theorem, we have klim 24 (B:) = 0 uniformly in %,
—>00

because lim m(B;) = 0.
k—>00

Corollary 2. A(B) in the Theorem is g-additive and m-absolutely
continuous even if m(S) = oo.

3. The Termwise Differentiability of a Sequence
of Generalized Functions

The discussion of the convergence of a sequence of generalized func-
tions is very simple. We can in fact prove

Theorem. Let {T,} be a sequence of generalized functions € D (2)’.
Leta finite lim T, (p) = T (¢) exist for every ¢ € D (£2). Then T is also a
n—>00

generalized function € D (£2)’. We say then that T is the limit in D (2)’
of the sequence {T',} and write T = lim T, (D (2)").
7—>00

Proof. The linearity of the functional T is clear. Let K be any compact
subset of 2. Then each T, defines a linear functional on the F-space
Dk (£2). Moreover, these functionals are continuous. For, they are bounded
on every bounded set of Dk (2) as may be proved by Proposition 1 in
Chapter I, 8. Thus, by the uniform boundedness theorem, T must be a
linear functional on Dg (2) which is bounded on every bounded set of
Dx (). Hence T is a continuous linear functional on every D (). Since
D (L) is the inductive limit of Dk (2)’s, T must be a continuous linear
functional on D (£2).

Corollary (termwise differentiability theorem). Let 7"=lim T, (D(£2)").
7—>00
Then, for any differential operator D7, we have D’T = lim D' T, (D(Q)").
7—>00
Proof. lim T, = T(D(L2)') implies that lim T, ((—1)V'Dig) =
) n—»oo 7—>00
T((—1)1!Dig) for every ¢ € D (£2). Thus we have
(D'T) () = lim (D'T,) (p) forevery @€ D(RQ).
7—>00

4. The Principle of the Condensation of Singularities

The Baire-Hausdorff theorem may be applied to prove the existence of
a function with various singularities. For instance, we shall prove the
existence of a continuous function without a finite derivative.

Weierstrass’ Theorem. There exists a real-valued continuous function
% (f) defined on the interval [0, 1] such that it admits a finite differential
quotient x’(¢,) at no point #, of the interval [0, 1/2].



4. The Principle of the Condensation of Singularities 73

Proof. A function x(¢) admits finite upper- and lower-derivatives on
the right at ¢ = {; iff there exists a positive integer » such that

sup A7 |x(ty + ) —x(t) | = n.
271>h>0
Let us denote by M, the set of all functions x(¢) € C [0, 1] such that
x(¢) satisfies the above inequality at a certain point £, of [0, 1/2]; here
the point 4, may vary with the function x (). We have only to show that

oo
each M, is a non-dense subset of C [0, 1]. For, then, the set C [0,1]—= ‘UIM "
e

is non-void since, by the Baire-Hausdorff theorem, the complete metric
space C [0, 1] is not of the first category.

Now it is easy to see, by the compactness of the closed interval [0, 1/2]
and the norm of the space C [0, 1], that M, is closed in C [0, 1]. Next,
for any polynomial z(#) and ¢ >0, we can find a function y () € C[0,1] — M
such that sup |z() —y(f)|=|]z—y||=e We may take, for ex-

0sts1

ample, a continuous function y(#) represented graphically by a zig-zag
line so that the above conditions are satisfied. Hence, by Weierstrass’ poly-
nomial approximation theorem, M, is non-dense in C [0, 1].

S. BanacH [1] and H. STEINHAUS have proved a principle of conden-
sation of singularities given below which is based upon the following

Theorem (S. BaNacH). Given a sequence of bounded linear operators
{T,} defined on a B-space X into a normed linear space Y,. Then the set

={x€X; Iim || T, < oo}

either coincides with X or is a set of the first category of X.
Proof. We shall show that B = X under the hypothesis that B is of

the second category. By the definition of B, we have lim sup ||k 1T, x|
k—00 n=1

= 0 whenever x € B. Thus, for any ¢ > 0,

BC U B, where B,={x€X;sup || T,x| < &
k=1 l n=1

Each By, is a closed set by the continuity of the T,’s. Hence, if B is of the

second category, then a certain B, contains a sphere of positive radius.

That is, there exist an x,€ X and a 4 > 0 such that ||[x —x,|| < &

implies sup |4 T,x|| < &. Hence, by putting x — x, =y, we obtain,

for ”y” < 0, ||k Tuy|| < ||k  Tpx|| + ||ko  Tuo|| < 2. We have
thus

sup [|Tpz|| < 2,
n21,||s|| Sk5's

and so B = X.
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Corollary (the principle of the condensation of singularities). Let
{Tpe (g =1,2,...) be a sequence of bounded linear operators defined
on a B-space X into a normed linear space Y, (p =1, 2,...). Let, for

each p, there exist an %, € X such that Iim || T, ,%,|| = co. Then the set
g—00
B={x€X; Iim [|Tp5]| =co forall p=1,2,.. }

is of the second category.

Proof. For each p, the set B, = {xEX; lim [|Tpex|| < oo} is,

g—>00
by the preceding Theorem and the hypothesis, of the first category.
(o]

Thus B=X —"L_J1 B, must be of the second category.

The above Corollary gives a general method of finding functions with
many singularities.

Example. There exists a real-valued continuous function x(f) of
period 27 such that the partial sum of its Fourier expansion:

g . 1 7
fo(%;8) = 3 (ay cos kt + bysin k) = ;*{ x(s) K, (s, #) ds,
1
where K, (s, f) = sin((g + 27)(s — ¢))/2 sin 21 (s — ¢), @
satisfies the condition that

Iim |f;(x;8)| =oc0 onaset P C[0,2x] which is of the
o (@)

power of the continuum.

Moreover, the set P may be taken so as to contain any countable sequence
{t;} € [0, 27].

Proof. The totality of real-valued continuous functions x () of period
2x constitutes a real B-space Cp, by the norm ||x|| = sup |x(f)].
0<t<2n

As may be seen from (1), f,(x; ¢) is, for a given ¢, € [0, 2], a bounded
linear functional on C,,. Moreover, the norm of this functional £, (x; ¢)
is given by

1 [ |K,(s, )| ds = the total variation of the function
e~
T (3)
— [ K,(s, %) ds.
—T
It is also easy to see that, for fixed £, (3) tends, as g — oo, to co.

Therefore, if we take a countable dense sequence {#;} C [0, 2], ther,
by the preceding Corollary, the set

B={x€C2,,; Exglf,,(x;t)[ —=oco for t=t,t,.. }
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is of the second category. Hence, by the completeness of the space C,,,
the set B is non-void. We shall show that, for any x € B, the set

P= {te [0, 2n]; qlian lf(x;8) | = oo}
is of the power of the continuum. To this purpose, set
oo
Fp,={t€[0,2n]; |[f(x;t)| =m}, F,= qu Fpy

By the continuity of x(f) and the trigonometric functions, we see
that the set F,,, and hence the set F,, are closed sets of [0, 2xz]. If we
oo

can show that U1 F,, is a set of the first category of [0, 2x], then the
m—

oo
set P = ([0, 2n] — U1 F,,,) 5{t;} would be of the second category.

Being a set of the second category of [0, 2], P cannot be countable and
so, by the continuum hypothesis, P must have the power of the conti-
nuum.

Finally we will prove that each F,, is a set of the first category of
[0, 27]. Suppose some F,, be of the second category. Then the closed
set F,, of [0, 27] must contain a closed interval [«, 8] of [0, 2x]. This
implies that sup |f,(x; )| = m, for all ¢ € [, B], contradicting the fact

g=1

that the set P contains a dense subset {#;} of [0, 2x].

Remark. We can prove that the set P has the power of the con-
tinuum without appealing to the continuum hypothesis. See, for
example, F. HAUSDORFF [1].

5. The Open Mapping Theorem

Theorem (the open mapping theorem of S. BANACH). Let T be a con-
tinuous linear operator on an F-space X onto an F-space Y. Then T maps
every open set of X onto an open set of Y.

For the proof, we prepare

Proposition. Let X, Y be linear topological spaces. Let T be a con-
tinuous linear operator on X into Y, and suppose that the range R(T)
of T is a set of the second category in Y. Then, to each neighbourhood
U of 0 of X, there corresponds some neighbourhood ¥V of 0 of Y such that
VS (TU)"

Proof. Let W be a neighbourhood of 0 of X such that W=—W,
W + W C U. For every x€ X, x/n—> 0 as n—> oo, and so x € n W for

0 o
large n. Hence X = L—J1 (nW), and therefore R(T) = 91 T (nW). Since

R(T) is of the second category in Y, there is some positive integer 7, such
that (T (1, W))* contains a non-void open set. Since (T (n W))* = n(T (W))*
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and since n(T (W))* and (T (W))* are homeomorphic! to each other,
(T (W))* also contains a non-void open set. Let y, = Tx,, x,€ W, be
a point of this open set. Then, since the mapping x > — %, + x is a
homeomorphic mapping, we see that there exists a neighbourhood V
of 0 of Y such that V' C —y, + (T (W))*. The elements of —y, + T (W)
are expressible as —y, + Tw = T (w — x,) with w€ W. But w — x,€
W 4+ W U, since W is a neighbourhood of 0 of X such that
W=—Wand W+ W CU.

Therefore, —y, + T (W) C T (U) and hence, by taking the closure,
—yp+ (T (W))* < (T(U))* and so V S —yq + (T (W))* < (T (V))* = (T U)*.

Proof of the Theorem. Since Y is a complete metric space, it is of the
second category. Thus, by the preceding Proposition, the closure of the
image by T of a neighbourhood of 0 of X contains a neighbourhood of 0
of Y.

Let X,, Y, denote the spheres in X, Y respectively, with centres
at the origins and radii ¢ > 0. Let us set & =¢/2° (1 =0,1,2,...).
Then by what we have stated above, there exists a sequence of positive
numbers {#;} such that

lim7 =0 and Y, C(TX,)* (=012..). 1)
—00

Let y€ Y, be any point. We shall show that there is an x € X,, such
that Tx = y. From (1) with ¢ = 0, we see that there is an x,€ X, such
that ||y — Tx,|| < #,. Since (y —Tx)€Y,, we see again from (1)
with ¢ = 1 that there is an x,€ X, with ||y —Txy— Tx, || < 7,
Repeating the process, we find a sequence {x;} with x;€ X,, such that

y——T(EZOx,-) < Npt1 (n=0,1,2,..)).

”

7 ”
< < < —k
=, 2 %] = k=§+1 G= (k=%?+1 2 ) &, and

We have I
k =m+1

”
>
=m+

Xk
1
n
so the sequence kz;) %( is a Cauchy sequence. Hence, by the complete-

sk

ness of X, we see that s-lim x, = x € X exists. Moreover, we have

n—00 k=
n oo
< lim & |nl| = (2 5) e =200

We must have y = T x since T is continuous. Thus we have proved that
any sphere X,, is mapped by T onto a set which contains a sphere Y, .

After these preliminaries, let G be a non-void open set in X and
x € G. Let U be a neighbourhood of 0 of X such that x + U C G. Let V'

(=]

”
I = Jim | &5

1 A one-to-one mapping M of a topological space S, onto a topological
space S, is called a homeomorphic mapping if M and M- both map open
sets onto open sets. )
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be a neighbourhood of 0 of Y such that TU 2 V. ThenTG 2T (x + U) =
Tx+ TU 2Tx + V. Hence TG contains a neighbourhood of each one
of its point. This proves that T maps open set of X onto open sets of Y,

Corollary of the Theorem. If a continuous linear operator T on an
F-space onto an F-space gives a one-to-one map, then the inverse operator
T-1is also a linear continuous operator.

6. The Closed Graph Theorem

Definition 1. Let X and Y be linear topological spaces on the same
scalar field. Then the product space X X Y is a linear space by

{x1 v} + {% v2} = {1 + %5, 91 + v2}, o{x, ¥} = {ax, &y}
It is also a linear topological space if we call open the sets of the form

Gy X G,y ={{x, v} x€ Gy, vE Gg},

where G,, G, are open sets of X, Y respectively. If, in particular, X and
Y are quasi-normed linear spaces, then X XY is also a quasi-normed
linear space by the quasi-norm

[1{%, 1 = (l=IF + [l [P (1)
Proposition 1. If X and Y are B-spaces (F-spaces), then X X Y is also
a B-space (F-space).
Proof. Clear since s-lim {x,, y,} = {¥, ¥} is equivalent to s-’gg Xy =%
s-lim y, = y.
7—>00
Definition 2. The graph G (T) of a linear operator 7 on D(T) C X into
Y is the set {{x, Tx};x€D (T)} in the product space X X Y. Let X, Y be
linear topological spaces. Then T is called a closed linear operator when
its graph G (T') constitutes a closed linear subspace of X X Y. If X and Y

are quasi-normed linear spaces, then a linear operator 7 on D(T) C X
into Y is closed iff the following condition is satisfied:

{#:} CD(T), s-limx,=x and s-lim Tx, =1y imply that
7#—>00 7n—>00
x€D(T) and Tx=y. (2)

Thus the notion of a closed linear operator is an extension of the notion
of a bounded linear operator. A linear operator 7 on D(7T) C X into Y is
said to be closable or pre-closed if the closure in X X Y of the graph G(T)
is the graph of a linear operator, say S, on D (S) C X into Y.

Proposition 2. If X, Y are quasi-normed linear spaces, then T is
closable iff the following condition is satisfied:

{#s} € D(T), s-lim x, = 0 and s-lim Tx, =y imply that y = 0. (3)
7n—00 71—>00
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Proof. The “only if” prt is clear since the closure in X XY of G(T)
is a graph G (S) of a linear operator Sandsoy = S - 0 = 0. The ““if’”’ part
is proved as follows. Let us define a linear operator S by the following
condition and call S the smallest closed extension of T:

x € D(S) iff there exists a sequence {x,} C D(T) such that

s-lim x, = x and s-lim T x, = y exist; and we define (4)
7—>00 7—>00
Sx=y.

That the value y is defined uniquely by x follows from condition (3).
We have only to prove that S is closed. Let w,, € D(S), s-lim w, = w and
7—00

s-lim Sw, = . Then there exists a sequence {x,} C D(T) such that
#—>00

|y —2s]| = Y, ||Sw,—Tx,]|<n?! (n=1,2,...). Therefore
s-lim x, = s-lim w, = w, s-lim T x, = s-lim Sw, =%, and so w &€ D(S),
7—>00 N—>00 7n—00 7—00

S-w=u.

An example of a discontinuous but closed operator. Let X =Y =
C [0, 1]. Let D be the set of all x(¢) € X such that the derivative x' (f) € X ;
and let T be the linear operator on D (T) = D defined by Tx = x’. This
T is not continuous, since, for x,, () = #*,

N4s]| =1, ||T%s|| = sup |2, (&)|= sup |nt" | =n (n=12...).
ost<1 0st=1

But T is closed. In fact, let {x,} C D(T), s-lim x,, = x and s-lim T x,, = ¥.
7n—>00 7—00

Then x, (f) converges uniformly to y(f), and x,(f) converges uniformly
to x(f). Hence x(¢) must be differentiable with continuous derivative
y(¢). This proves that x€ D(7T) and Tx = .

Examples of closable operators. Let D, be a linear differential operator

D, = 5 () D o)

with coefficients c; (x) € C*(R), where 2 is an open domain of R". Consider

the totality D of functions f(x)€ L% (2) N C* () such that D,f (x) € L*(£2).

We define a linear operator T on D(T) = D C L2(£2) into L2(Q) by

(Tf) (x) = D,f(x). Then T is closable. For, let {f;} C D be such that

s-limf, = 0, s-lim D, f, = g. Then, for any ¢ (x) € C§(£2), we have, by
h—00 h—00
partial integration,

QfDxf(x) “@ (%) dx =gff(x) - D,p(x) dx, (6)
where D, is the differential operator formally adjoint to D,:

) = X (- DI DI(c;(x) ¢ (2)). ()
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The formula (6) is obtained, since the integrated term in the partial
integration vanishes by ¢ (x) € C5(£2). Hence, by the continuity of the
scalar product in L2%(£2), we obtain, by taking f = f; and letting A — oo
in (6),

Qfg(x)-(p(x)dx=§f0-D;<p(x)dx=0. (8)

Since @ (x) € C§ () was arbitrary, we must have g(x) = 0 a.e., that is,
g = 0in L2(Q).

Proposition 3. The inverse T—! of a closed linear operator on D (T)
C X into Y, if it exists, is a closed linear operator.

Proof. The graph of T is the set {{Tx, x}; x€D (T)} in the product
space Y X X. Thus the Proposition is proved remembering the fact that
the mapping {#, y} — {y, x} of X X Y onto Y X X is a homeomorphic one.

We next prove Banach's closed graph theorem:

Theorem 1. A closed linear operator defined on an F-space X into an
F-space Y is continuous.

Proof. The graph G(T) of T is a closed linear subspace of the F-space
X XY. Hence, by the completeness of X XY, G(T) is an F-space. The
linear mapping U defined by U{x, Tx} = x is a one-to-one, continuous
linear transformation on the F-space G(T) onto the F-space X. Hence,
by virtue of the open mapping theorem, the inverse U! of U is continuous.
The linear operator V defined by V{x, Tx} = T« is clearly continuous
on G(T)onto R(T) C Y. Therefore, T = V U~1is continuous on X into Y.

The following theorem of comparison of two linear operators is due to
L. HORMANDER:

Theorem 2. Let X; (5 = 0, 1, 2; X, = X) be B-spacesand T; (i = 1, 2)
be linear operators defined on D(T;) € X into X;. Then, if T; is closed

and T, closable in such a way that D(T;) C D(T,), there exists a con-
stant C such that

[|Tox|| < C(||Tyx]]® + ||x]|®)Y? for all x€ D(T,). (9)

Proof. The graph G(T,) of T is a closed subspace of X X X;. Hence
the mapping

G(Ty) 3{x, Tyx} —> Tox€ X, (10)

is a linear operator on the B-space G (T;) into the B-space X,. We shall

prove that this mapping is closed. Suppose that {x,, T;x,} s-converges

in G(T;) and that T,x, s-converges in X,. Since T is closed, there is an
element x € D (T;) such that x = s-lim x, and T;x = s-lim 7 x,. By the
7—>00 #—00

hypothesis, we have x € D(T,), and, since T, is closable, the existing
s-lim T,x, can only be T,x. Hence the mapping (10) is closed, and so,
7—>00

by the closed graph theorem, it must be continuous. This proves (9).
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7. An Application of the Closed Graph Theorem
(Hormander’s Theorem)

Any distribution solution # € L2 of the Laplace equation

Au = fe L2
is defined by a function which is equal to a C* function after correction
on a set of measure zero in the domain where f is C*. This result is known
as Weyl’s Lemma and plays a fundamental role in the modern treatment
of the theory of potentials. See H. WEYL [1]. There is an abundant
literature on the extensions of Weyl’'s Lemma. Of these, the research
due to L. HORMANDER [1] seems to be the most far reaching. We shall
begin with his definition of hypoellipticity.

Definition 1. Let£2 be an open domain of R*. A function #(x), x € 2,

is said to belong to L%, () if f |# (%) |? dx < oo for any open subdomain
&

£2" with compact closure in 2. A linear partial differential operator P (D)
with constant coefficients:

1 9 1 9 1 9
P(D):P(T-az,'zfa—g,...,"{a_%), where (1)
P =P, &, ...,¢&,) isapolynomial in &, &, ...,¢&,,

is said to be hypoelliptic, if every distribution solution u € Lf,(2) of
P (D) u = f is C*™ after correction on a set of measure zero in the sub-
domain where fis C*°,

Theorem (HORMANDER). If P (D) is hypoelliptic, then there exists, for
any large positive constant C;, a positive constant C, such that, for any
solution { = & + ¢# of the algebraic equation P ({) = 0, we have

” 0 \}2 . " 2 \1/2
t=(Zlr) s it mi=(Znk) =6 ©
Proof. Let U be the totality of distribution solutions # € L2(2’) of
P (D) u = 0, that is, the totality of # € L2(£’') such that
[u-P'(D)pdx=0 foral ¢@cCP), (3)
P

where the adjoint differential operator P’ (D) of P (D) is defined by
P'(§) = P(—&, —&s. ..., —&,). (4)
We can prove that U is a closed linear subspace of L2(£2’'). The linearity
of U is obvious from the linearity of the differential operator P (D). Let
a sequence {u,} of U be such that s-hlim w, = u in L2(Q’). Then, by the
—-00
continuity of the scalar product in L2(£2'), we have
0=1lim [u,-P'(D)p dx= [u-P' (D)pdx =0, ie., ucU.
h—00 Q Q
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Thus U is a closed linear subspace of L%(£2'), and as such a B-space.

Since P (D) is hypoelliptic, we may suppose that every # € U is C*®
in 2. Let 2] be any open subdomain with compact closure in £’. Then,
for any # € U, the function du[dx,is C* in ' (k= 1,2, ..., n). By the
argument used in the preceding section, the mapping

ou ’
Usu—>g-€L¥Q) (k=12...,7)

is a closed linear operator. Hence, by the closed graph theorem, there
exists a positive constant C such that

1

ou |2
pefax<c [|upds, forall weU.
Xy S

If we apply this inequality to the function u(x) = ¢'**), where ¢ =
Et+in=E+im, & +in, ..., & + tn,) is a solution of P({) =0

and <x,{> = 2’: <%, £;>, we obtain
j=
2” [Cel? fe_z("”)dx <C fe—2(x,n>dx.
k=1 o = g

Therefore, when |#| is bounded, it follows that |[{| must be bounded.

Remark. Later on, we shall prove that condition (2) implies the
hypoellipticity of P (D). This resalt is also due to HORMANDER. Thus, in
particular, we see that Weyl’s Lemma is a trivial consequence of Hor-

”
mander’s result. In fact, the root of the algebraic equation — 2] c,? =0
]=

satisfies (2).

References for Chapter II

S. BanacH (1], N. Boursakr [2], N. DUNFORD-]. ScawARrTZz [1],
E. HirLe-R. S. PHILLIPS [1] and L. HORMANDER [ 6].

III. The Orthogonal Projection and F. Riesz’ Representation
Theorem

1. The Orthogonal Projection

In a pre-Hilbert space, we can introduce the notion of orthogonality
of two vectors. Thanks to this fact, a Hilbert space may be identified
with its dual space, i.e., the space of bounded linear functionals. This
result is the representation theorem of F. Riesz [1], and the whole theory
of Hilbert spaces is founded on this theorem.

6 Yosida, Functional Analysis
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Definition 1. Let x, y be vectors of a pre-Hilbert space X. We say that
x is orthogonal to y and write x | yif (x,y) =0;ifx | ytheny | «,
and x | x iff x = 0. Let M be a subset of a pre-Hilbert space X. We
denote by ML the totality of vectors € X orthogonal to every vector m
of M.

Theorem 1. Let M be a closed linear subspace of a Hilbert space X.
Then M- is also a closed linear subspace of X, and M~ is called the
orthogonal complement of M. Any vector x€ X can be decomposed
uniquely in the form

x=m + n, where m€ M and ne€ ML. (1)

The element m in (1) is called the orthogonal projection of x upon M and
will be denoted by Py x; Py is called the projection operator or the
projector upon M. We have thus, remembering that M C (M1)L,
x = Pyx + Pyi1x, that is, I = Py + Pp1L. (1)

Proof. The linearity of M+ is a cunsequence of the linearity in x of
the scalar product (¥, y). ML is closed by virtue of the continuity of the
scalar product. The uniqueness of the decomposition (1) is clear since a
vector orthogonal to itself is the zero vector.

To prove the possibility of the decomposition (1), we may assume
that M = X and x € M, for, if x € M, we have the trivial decomposition
with m = x and #» = 0. Thus, since M is closed and x € M, we have

d=inf ||[x —m|| > 0.
meM

Let {m,} C M be a minimizing sequence, i.e., lim ||x —m,|| = d. Then
7—>00
{my}isa Cauchy sequence. For, by ||a + b|*+ ||a—b|[2=2(||2|]>+]||5|[*)
valid in any pre-Hilbert space (see (1) in Chapter I, 5), we obtain
[y — 2 =[] — ) — (5 — ) [ = 2[5 — [ + |2 — g |
— [|2x— [
=2z — mallt 4+ [lx—ma ) — 4 [l — (mo + me)j2]
< 2(]|x — m [ + ||z — [t — 4%
(since (m,, + m;)[2 € M)
— 2(@2 + d?) — 44 =0 as k, n—>oco.
By the completeness of the Hilbert space X, there exists an element m € X
such that s-lim m, = m. We have m € M since M is closed. Also, by the
700

continuity of the norm, we have ||x —m|| = d.
Write x = m + (x — m). Putting n = x — m, we have to show that
n € M1 For any m' € M and any real number «, we have (m + am’) € M
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and so
B | x—m—am' |P=n—am', n—oam)
= ||n|[— o (m, m') — o (', ) + o2 ||’ | 2.
This gives, since ||#|| =d, 0 < — 2aRe(n, m') + o2 ||m’ | for every

real x. Hence Re(n,m’) = 0 for every m’ € M. Replacing m' by im’,
we obtain Im(n, m’) = 0 and so (n, m’) = 0 for every m"c M.
Corollary. For a closed linear subspace M of a Hilbert space X, we
have M = M14 = (M1)L.
Theorem 2. The projector P = P, is a bounded linear operator such
that
P = P2 (idempotent property of P), (2)
(Px,9) = (x, Py) (symmetric property of P). (3)
Conversely, a bounded linear operator P on a Hilbert space X into X
satisfying (2) and (3) is a projector upon M = R(P).
Proof. (2) is clear from the definition of the orthogonal projection.
We have, by (1') and Pyx | PyLy,
(Pux,y) = (Pux, Pyly + Pyy) = (Pyx, Pyy)
= (Pu% + Py1x, Pyy) = (%, Pyy).
Nextlet yv=2x+ 2z, x€M,ze M+ and w=u + v, u€ M, v€ ML, then
y+w=(x+u)+ (z+v) with (x + u) €M, (z+ v)€ M+ and so,
by the uniqueness of the decomposition (1), Py (y + w) = Pyy + Pyw;
similarly we obtain Py (xy) = Py y. The boundedness of the operator
Py, is proved by
[|#][2 = ||Pux + PyuLx|? = (Pyx + Py1%, Pyx + Py1x)
= ||Pux|P + |[[Pur | 2 || Pyx|P.
Thus, in particular, we have
|Pucl| = 1. (4)
The converse part of the Theorem is proved as follows. The set
M = R(P) is a linear subspace, since P is a linear operator. The condition
x € M is equivalent to the existence of a certainy € X such thatx =P - y,
and this in turn is equivalent, by (2), to x = Py = P?y = Px. Therefore
x€ M is equivalent to x = Px. M is a closed subspace; for, x,€ M,
s-lim x,, = y imply, by the continuity of P and x, = Px,, s-lim x, =
00 7—>00
s-lim Px, = Py so that y = Py.
7—00
We have to show that P = Py,. If x€¢ M, we have Px = x = Py, - x;
andif v € ML, wehave Py y = 0. Moreover, in the latter case, (Py, Py)=
6*
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(v, P2y) = (y, Py) = 0 and so Py = 0. Therefore we obtain, for any
yeX,
Py=P(Pyy + Pyry) = PPyy + PPy.y
= Pyy + 0, ie., Py = Pyy.
Another characterization of the projection operator is given by

Theorem 3. A bounded linear operator P on a Hilbert space X into X
is a projector iff P satisfies P = P? and ||P|| < 1.

Proof. We have only to prove the “if”’ part. Set M = R(P) and
N = N(P) = {y; Py=0}. As in the proof of the preceding Theorem 2,
M is a closed linear subspace and x € M is equivalent to x = Px. N is
also a closed linear subspace in virtue of the continuity of P. In the
decomposition x = Px + (I — P)x, we have Px€ M and (I — P)x€ N.
The latter assertion is clear from P(] — P) = P — P? = (.

We thus have to prove that N = ML, Forevery x€¢ X,y =Px—xEN
by P? = P. Hence, if, in particular, x € N+, then Px = x + y with
(¥, ¥) = 0. It follows then that [|x|* = ||Px|? = ||x|2 + ||¥|[]? so that
y = 0. Thus we have proved that x€ N1 implies x = Px, that is,
N1 C M = R(P). Let, conversely, z€ M = R(P), so that 2 = Pz. Then
we have the orthogonal decomposition 2=y + x, y€ N, x€ N+, and
so 2=Pz= Py + Px = Px = x, the last equality being already
proved. This shows that M = R(P) C N1. We have thus obtained
M = N1, andso,by N = (N1)+, N = ML,

2. “Nearly Orthogonal”’ Elements

In general, we cannot define the notion of orthogonality in a normed
linear space. However, we can prove the

Theorem (F. Riesz [2]). Let X be a normed linear space, and M be
a closed linear subspace. Suppose M s X. Then there exists, for any
¢ > 0 with 0 < e< 1, an x,€ X such that

4 == 1 — 1 - > .
||#]|=1 and dis(x,, M) mlélfu”x, m||=1—e. (1)

The element x, is thus “nearly orthogonal” to M.

Proof. Let y€ X — M. Since M is closed, dis(y, M) = iggl [ly—m||=
m

a> 0. Thus there exists an m,€ M such that ||y—m,|| < « (1 +73 i 8).
The vector x, = (y — m,)[||y — m, || satisfies ||%,]|| = 1 and

llze—m|| = {ly = me[|7 [ly —me —||ly —m.[| - m|| = [|ly —m, || &

1 \-1
g(l_e) =1—c¢.
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Corollary 1. Let there exist a sequence of closed linear subspaces M,
of a normed linear space X such that M, CM,., and M, # M, ,
(n =1, 2,...). Then there exists a sequence {y,} such that

V€M, ||yal]]=1 and dis(ui1, M,)=1/2 (n=1,2,...). (2

Corollary 2. The unit sphere S = {x€ X; ||x|| =< 1} of a B-space X
is compact iff X is of finite dimension.
Proof. If x;, x,, . . ., x,, be a base for X, then the map (o, «,, . . ., &) >

— ' a;x; of R* onto X is surely continuous and so it is open by the
i=1

open mapping theorem. This proves the “if” part. The “only if” part

is proved as follows. Suppose X is not of finite dimension. Then there

exists, by the preceding Corollary 1, a sequence {y,} satisfying the condi-

tions: ||¥,|| = 1and ||y, — ¥, || = 1/2 for m > n. This is a contradiction

to the hypothesis that the unit sphere of X is compact.

3. The Ascoli-Arzeld Theorem

To give an example of a relatively compact infinite subset of a
B-space of infinite dimension, we shall prove the
Theorem (AscoLl-ARZELA). Let S be a compact metric space, and
C (S) the B-space of (real- or) complex-valued continuous functions x(s)
normed by ||x|| = sup |x(s) |- Then a sequence {x,(s)} C C (S) isrelatively
sES

compact in C(S) if the following two conditions are satisfied:

%, () is equi-bounded (in ), i.e., sup sup |x,(s) | < oo, (1)
n21 s€S

X, (s) is equi-comttnuous (in =), i.e., (2)

lim sup  |%,(s") — %4 (s”)| = 0.

010 y>1.dis(s’,s”) <6
Proof. A bounded sequence of complex numbers contains a convergent
subsequence (the Bolzano-Weierstrass theorem). Hence, for fixed s, the
sequence {x,,(s)} contains a convergent subsequence. On the other hand,
since the metric space S is compact, there exists a countable dense subset
{sa} € S such that, for every £ > 0, there exists a finite subset
{ss; 1 = n < k(e)} of {s,} satisfying the condition
s516113 lggxéfk(s) dis(s, s;) < e. (3)
The proof of this fact is obtained as follows. Since S is compact, it is
totally bounded (see Chapter 0, 2). Thus there exists, for any d > 0, a
finite system of points € S such that any point of S has a distance < ¢
from some point of the system. Letting é = 1, 2-1, 31, . . . and collecting
the corresponding finite systems of points, we obtain a sequence {s,}
with the stated properties.
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We then apply the diagonal process of choice to the sequence {x,(s)},
so that we obtain a subsequence {x, (s)} of {x,(s)} which converges for

§ =38y, 83, ..., S, ... simultaneously. By the equi-continuity of {x,(s)},
there exists, for every ¢ > 0, a § = d(¢) > 0 such that dis(s’,s"") < ¢
implies |x,(s") — %,(s”")| = & for n =1, 2,... Hence, for every s€ S,

there exists a § with § < %(¢) such that
|xn' (S) — X' (S) l é Ixn' (s) — Xy (SJ') l + lxn' (sj) — X’ (sj) l
+ | (55) — Zwe (5) | = 28 + [ % (85) — %o (55) |-

Thus lim max |x, (s) — X (s)| = 2¢ and so lim ||x, — %, || = 0.
7,mM—>00 s 7,m—>00

4. The Orthogonal Base, Bessel’s Inequality and
Parseval’s Relation

Definition 1. A set S of vectors in a pre-Hilbert space X is called
an orthogonal set, if x | y for each pair of distinct vectors «, ¥ of S. If,
in addition, ||x|| = 1 for each x€ S, then the set S is called an ortho-
normal set. An orthonormal set S of a Hilbert space X is called a complete
orthonormal system or an orthogonal base of X, if no orthonormal set of X
contains S as a proper subset.

Theorem 1. A Hilbert space X (having a non-zero vector) has at
least one complete orthonormal system. Moreover, if S is any ortho-
normal set in X, there is a complete orthonormal system containing S as
a subset.

Proof (by Zorn’s Lemma). Let S be an orthonormalset in X. Such a set
surely exists; for instance, if x 7 0, the set consisting only of x/||x|| is
orthonormal. We consider the totality {S} of orthonormal sets which
contain S as a subset. {S} is partially ordered by writing S; < S, for
the inclusion relation S; C S,. Let {S'} be a linearly ordered subsystem
of {S}, then s'eUs' S’ is an orthonormal set and an upper bound of

{S}. Thus, by Zorn’s Lemma, there exists a maximal element S, of {S}.
This orthonormal set S, contains S and, by the maximality, it must be
a complete orthonormal system.

Theorem 2. Let S = {x,; « € A} be a complete orthonormal system
of a Hilbert space X. For any f€ X, we define its Fourier coefficients
(with respect to S)

fa= (/’ xa)' (1)
Then we have Parseval’s relation
111 = Z, % (@)

Proof. We shall first prove Bessel's inequality
A @)
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Let &, &y, . . ., &, be any finite system of «’s. For any finite system
of complex numbers ¢,, ¢,,, - . ., ¢.,, We have, by the orthonormality of
{xa},

” 2 ” ”
H)‘—jél‘ Cay xaj[ = (f -—jé; Caj %y f_,é'; Cay xaq)

= Hfllz _—j=2]. caiﬂ‘] —j‘_z‘izaj fa,' +J=21 lc.x; |2
=[P — Zfay P+ 3 1oy — ey

Hence the minimum of

2
'/ Zc,,, x,,H , for fixed oy, oy, ..., 0%, is
attained when c,‘, =f,0=12 , n). We have thus

1= Z o

By the arbitrariness of «;, «,, . . ., &,, we see that Bessel’s inequality (2')
is true, and f,# 0 for at most a countable number of «’s, say

”
&y, ®g, + « +, Oy, . . . We then prove that f=s-km X'/, %, First, the
7—00 §=1

= [If]P —j:‘-; |74;[2, and hence ,-=21 I EZFR. @

”
sequence { 2; faj %a ,} is a Cauchy sequence, since, by the orthonormality
=
of {x,},

| Z e = (B e By ) = Z 1

which tends, by (4) proved above, to 0as £—oo. We set s-lim 2” fag%a; =1,
7#—>00 j=1

and shall prove that (f — f’) is orthogonal to every vector of S. By the
continuity of the scalar product, we have

(f_f'»xaj) = »-.-bhmoo<f_k=2”1f“k KXogs xa;>= faj—/aj =0,
and, whenax # o; =1,2,...),
(=1 %) = B (= 2 foy Yoy 5) = 0— 0 = 0.

Thus, by the completeness of the orthonormal system S = {x,}, we
must have (f — f’) = 0. Hence, by (4) and the continuity of the norm,
we have

” 2 "
0 =”1im°°Hf —jg-l‘fa, Xej|| = Hf[[2_._ »h—{noo,é; lfa; 2 ”sz_aé |falz-
Corollary 1. We have the Fourier expansion
= Zboner =i R o
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Corollary 2. Let /2(A4) be the space L2(4, B, m) where m ({«}) = 1 for
every point « of 4. Then the Hilbert space X is ¢sometrically isomorphic
to the Hilbert space /2(4) by the correspondence

X3fo{fy€®(4) (6)
in the sense that

(+ ) o {fa &b, f1 o {BLe} and IfIF =[P = F 1P ()

ein=0,4+14+2,.. } is a complete orthonormal

Example. {V2—n

system in the Hilbert space L2(0, 2z7).
Proof. We have only to prove the completeness of this system. We
have, by (3),

2 n

1 i,
= '/f P ‘ﬁ/ﬂ”‘

1=—n

n

2 1
= | |2 —.:g 32 12

- e
where f; = (f, ¢%).

If f€ L%(0, 2n) is continuous and with period 2, then the left hand

side of the inequality above may be taken arbitrarily small by virtue of

Weierstrass’ trigonometric approximation theorem (see Chapter 0, 2).

‘Thus the set of all the linear combinations .;5_‘ ¢ ¢" is dense, in the sense

of the norm, in the subspace of L%(0, 2n) consisting of all continuous
functions with period 2z. Such a subspace is also dense, in the sense of
the norm, in the space L2(0, 2x). Therefore, any function f € L%(0, 2x),

R
orthogonal to all the functions of {m e""} must be a zero vector of

1 .
L2(0, 27x). This proves that our system of functions e is a complete
P Y Von P.

orthonormal system of L2(0, 2z7).

5. E. Schmidt’s Orthogonalization

Theorem (E. Schmidt’s orthogonalization). Given a finite or countably
infinite sequence {x;} of linearly independent vectors of a pre-Hilbert
space X. Then we can construct an orthonormal set having the same
cardinal number as the set {*;} and spanning the same linear subspace

as {x;}.
Proof. Certainly x, 7% 0. We define y;, ¥,, . . . and #;, #,, . . . recurrent-
ly as follows:
Y1 =%, “1=3’1/H3’1H:
Vo == %y — (%3, %;) %y, “2=y2/”y2“'
Vg1 = Xpy1 — 2 (%ne1, %) U;, Upry = 3’n+1/“yn+1 H.
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This process terminates if {x;} is a finite set. Otherwise it continues
indefinitely. Observe that y, 7 0, because x,, x,, ..., x, are linearly
independent. Thus «, is well defined. It is clear, by induction, that each
u, is a linear combination of x,, x,, . . ., %, and that each x,, is a linear
combination of u,, #,, . . ., #,. Thus the closed linear subspace spanned
by the #’s is the same as that spanned by the x’s.

We see, by ||%,|| =1, that y, | #; and hence u, | u,. Thus, by
||#y|| =1, 3 1 u, and hence u; | u,. Repeating the argument, we see
that u, is orthogonal to u,, %, . . ., t,, . . . Thus, by ||u,|| = 1, we have
ys | u, and so u; | u, Repeating the argument, we finally see that
u, | u,, whenever & > m. Therefore {u,} constitutes an orthonormal set.

Corollary. Let a Hilbert space X be separable, i.e., let X have a dense
subset which is at most countable. Then X has a complete orthonormal
system consisting of an at most countable number of elements.

Proof. Suppose that an at most countable sequence {a;} of vectors
€ X be dense in X. Let x; be the first non-zero element in the sequence
{a;}, %, the first a; which is not in the closed subspace spanned by x,,
and x, the first a; which is not in the closed subspace spanned by
X4, Xg, . + ., %4—1. It is clear that the a’s and the x’s span the same closed
linear subspace. In fact, this closed linear subspace is the whole space X,
because the set {a;} is dense in X. Applying Schmidt’s orthogonalization
to {x;}, we obtain an orthonormal system {«;} which is countable and spans
the whole space X.

This system {w;} is complete, since otherwise there would exist a
non-zero vector orthogonal to every u; and hence orthogonal to the
space X spanned by «,’s.

Example of Orthogonalization. Let S be the interval (a, b), and con-
sider the real Hilbert space L2(S, B, m), where % is the set of all Baire
subsets in (a, b). If we orthogonalize the set of monomials

1,s,s2,s3 ...,s% ...,
we get the so-called Tchebyschev system of polynomials
P, (s) = constant, P, (s), Py(s), Ps(s), - - ., Py(s), - .
which satisfies

b
f P;(s) P;(s) m(ds) = 6;; (= 0 or 1 according as ¢ 5% 7 or ¢ = j).

In the particular case when ¢ = — 1, b = 1 and m(ds) = ds, we obtain
the Legendre polynomials; when a = — oo, b = oo and m (ds) = e~ ds,
we obtain the Hermite polynomials and finally when a = 0, b = oo and
m(ds) = e * ds, we obtain the Laguerre polynomials.
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It is easy to see that, when — oo < @ < b < oo, the orthonormal
system {P;(s)} is complete. For, we may follow the proof of the complete-
ness of the trigonometric system (see the Example in the preceding
section 4); we shall appeal to Weierstrass’ polynomial approximation
theorem, in place of Weierstrass’ trigonometric approximation theorem.
As to the completeness proof of the Hermite or Laguerre polynomials,
we refer the reader to G. SzeGco6 [1] or to K. Yosipa [1].

6. F. Riesz’ Representation Theorem

Theorem (F. Riesz’ representation theorem). Let X be a Hilbert space
and f a bounded linear functional on X. Then there exists a uniquely
determined vector ¥, of X such that

f(#) = (x,) forall x€ X, and [|f[[ = [|3]|- (1)

Conversely, any vector y € X defines a bounded linear functional £, on
X by

fy(®) = (x,y) forall x€ X, and ||/,|| = ||¥]|. (2)

Proof. The uniqueness of y; is clear, since (x,z) =0 for all x€ X
" implies z = 0. To prove its existence, consider the null space N = N (f)=
{x€ X; f(x) = 0} of {. Since f is continuous and linear, N is a closed
linear subspace. The Theorem is trivial in the case when N = X; we
take in this case, yy = 0. Suppose N # X. Then there exists a y,5 0
which belongs to N1 (see Theorem 1 in Chapter III, 1). Define

5= (F0o)||%0][®) %o (3)

We will show that this y; meets the condition of the Theorem. First,
if x€ N, then f(x) = (x, y) since both sides vanish. Next, if x is of
the form ¥ = «y,, then we have

(599 = @30, 3) = (330, 12% 30) = w1 0) = (a3 = £00).

Since f(x) and (x, y7) are both linear in x, the equality f(x) = (, y,),

x € X, is proved if we have proved that X is spanned by N and y,. To
show the last assertion, we write, remembering that f(y;) # 0,

(1) fx)
v = (v =15 1) + s r
The first term on the right is an element of N, since
1o — 1) = 1w — FoX to) = .

We have thus proved the representation f(x) = (x, ¥;).
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Therefore, we have

Ifll= sup |f#)|= sup |G y)]= sup [|x]- 5]l = lloyll.
lllls1 ll#ll=1 |I*Il§1, y
andalsol[f]| = sup 1/ Z 114/lsDl = (5 30) = ol
Hence we have proved the equality ||f|| = ||¥/]|-
Finally, the converse part of the Theorem is clear from |f,(x)| =
[, 9 = [[#]] - [Iy]]

Corollary 1. Let X be a Hilbert space. Then the totality X’ of bounded
linear functionals on X constitutes also a Hilbert space, and there is a
norm-preserving, one-to-one correspondence f <> y; between X’ and X.
By this correspondence, X’ may be identified with X as an abstract set;
but it is not allowed to identify, by this correspondence, X’ with X as
linear spaces, since the correspondence f <> y; is conjugate linear:

(o1fr + oxgfa) < (X197, + X37), (4)
where «;, &, are complex numbers.
Proof. It is easily verified that X' is made into a Hilbert space by

defining its scalar product through (f,, f) = (¥;,, 37,), so that the state-
ment of Corollary 1 is clear.

Corollary 2. Any continuous linear functional T on the Hilbert space
X' is thus identified with a uniquely determined element ¢ of X as
follows:

T(f)=1@ forall feX'. (5)

Proof. Clear from the fact that the product of two conjugate linear
transformations is a linear transformation.

Definition. The space X’ is called the dual space of X. We can thus
identify a Hilbert space X with its second dual X'’ = (X’)’ in the above
sense. This fact will be referred to as the reflexivity of Hilbert spaces.

Corollary 3. Let X be a Hilbert space, and X’ its dual Hilbert space.
Then, for any subset F of X’ which is dense in the Hilbert space X', we
have

I%]l=_ sup [f(x)], %€ X. (6)
feF|ifll=1

Proof. We may assume that x, = 0, otherwise the formula (6) is tri-
vial. We have (xo, %o/||%|[) = ||%o ||, and so there exists a bounded linear
functional f, on X such that ||, || = 1, f, (%) = || %] Since /(%) = (%o, %)
is continuous in ¥y, and since the correspondence f <> y;is norm-preserving
we see that (6) is true by virtue of the denseness of F in X’.

Remark. Hilbert’s original definition of the ‘“Hilbert space’ is the
space (/%). See his paper [1]. It was J. voN NEUMANN [1] who gave an
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axiomatic definition (see Chapter I, 9) of the Hilbert space assuming
that the space is separable. F. RiEsz [1] proved the above representation
theorem without assuming the separability of the Hilbert space. In this
paper, he stressed that the whole theory of the Hilbert space may be
founded upon this representation theorem.

7. The Lax-Milgram Theorem

Of recent years, it has been proved that a variant of F. Riesz’ repre-
sentation theorem, formulated by P. Lax and A. N. MiLGRAM [1], is a
useful tool for the discussion of the existence of solutions of linear partial
differential equations of elliptic type.

Theorem (LAX-MILGRAM). Let X be a Hilbert space. Let B(x, y) be a
complex-valued functional defined on the product Hilbert space X X X
which satisfies the conditions:

Sesqui-linearity, i.e.,
B(oy %) + op %3, 9) = ;B (%1, ¥) + 23 B(%,, %) and (1)
B(x, Biyy + By ) = BB (%, 1) + BB (%, %y),

Boundedness, i.e., there exists a positive constant 9 such that

[B(x, 9) | =y ||| - Iy, (2)
Positivity, i.e., there exists a positive constant ¢ such that
B(x,x) 2 6 ||]P. 3)

Then there exists a uniquely determined bounded linear operator S with
a bounded linear inverse S—1 such that
(¥,9) = B(x,Sy) wheneverrandy € X,and ||S|| = 671, ||SL||=<y. (4)
Proof. Let D be the totality of elements y € X for which there exists
an element y* such that (x, y) = B(x, y*) for all x€ X. D is not void,
because 0 € D with 0* = 0 - y* is uniquely determined by y. For, if w
be such that B(x, w) = Oforall x, thenw = O0by 0 = B(w, w) = ¢ ||w|]2.
By the sesqui-linearity of (x, y) and B (x, y), we obtain a linear operator
S with domain D(S) =D: Sy =y*. S is continuous and [|Sy|| <
51 ||y||, ¥y € D(S), because

0||Sy|[< B(Sy,Sy) = (Sy,y) = ||Sy||- lI¥]l-

Moreover, D = D(S) is a closed linear subspace of X. Proof: if y, € D (S)
and s-lim y, = 9y, then, by the continuity of S proved above, {Sy,}
7n—>CC

is a Cauchy sequence and so has a limit z = s-lim Sy,. By the continuity
of the scalar product, we have lim (x, y,) = (¥, ¥o0). We have also, by
7n—>00
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(2), lim B(x,Svy,) = B(x, 2). Thus, by (x,v,) = B(x, S y,), we must
7n—00

have (x, yo) = B (x, 2) which proves that y, € D and Sy, = 2.

Therefore the first part of the Theorem, that is, the existence of
the operator S is proved if we can show that D(S) = X. Suppose
D (S) # X. Then there exists a w, € X such that w, % 0 and w,€ D(S)L.
Consider the linear functional F(z () B(z, w,) defined on X. F(2) is
continuous, since | F (2) | = | B(z, w,) | < ¥ Hz” ||, ]|- Thus, by F. Riesz’
representation theorem, there exists a wg€ X such that B(z, u,) =
F (2) = (2, wg) for all z€ X. This proves that wy € D(S) and Swy = w,,
But, by 6 ||w,|[* = B (w,, o) = (w,, ®o) = 0, we obtain w, = 0 which
is a contradiction.

The inverse S—1 exists. For, Sy = 0 implies (x,y) = B(x,Sy) =0
for all x € X and so y = 0. As above, we show that, for every y € X there
exists a 9" such that (z,y') = B(z, y) for all z€ X. Hence y = S9’ and so
S-1is an everywhere defined operator, and, by |(z, S71y) | = |B(z, 9) | <
7 llz]l - [[y]l, we see that || S]] < 7.

Concrete applications of the Lax-Milgram theorem will be given in
later chapters. In the following four sections, we shall give some examples
of the direct application of F. Riesz’ representation theorem.

8. A Proof of the Lebesgue-Nikodym Theorem
This theorem reads as follows.

Theorem (LEBESGUE-NIKODYM). Let (S, %8, m) be a measure space,
and » (B) be a o-finite, -additive and non-negative measure defined on 8.
If v is m-absolutely continuous, then there exists a non-negative, m-
measurable function # (s) such that

»(B) =ij:(s)m(ds) forall Be B with »(B) < oo. (1)

Moreover, the ““‘density’ p(s) of »(B) (with respect to #(B)) is uniquely
determined in the sense that any two of them are equal m-a.e.

Proof (due to J. voN NEUMANN [2]). It is easy to see that g(B) =
m(B) + v(B) is a o-finite, g-additive and non-negative measure defined

oo
on B. Let {B,} be a sequence of sets € B such that S = U1 B,,B,C B,

and p(B,) < oo forn =1, 2,...If we can prove the theorem for every
B ¢ B, (for fixed #) and obtain the density $,(s), then the Theorem is
true. For, we have only to take p(s) as follows:

p(s) = p1(s) for s€ B, and p(s) =pn41(s) for s€ Byy1 —B,
r=12...).
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Therefore we may assume that g(S) < co without losing the gene-
rality. Consider the Hilbert space L2(S, 8B, g). Then

() =5f x%(s) »(ds), x€ L2(S, B, o),

gives a bounded linear functional on L%(S, B, g), because

[fx)] < J |%(s) | »(ds) < ( [|x(s [“W(ds))llz (sf 1 -v(ds))”z
S el v |
where ||x||, = ( [1%(s) )1/2 Thus, by F. Riesz’ representation

theorem, there exists a unlquely determined y € L%(S, B, o) such that
sf"(s)f’(ds) =sfx(s) ¥(s) e (ds) = sfx(s)y_@m(ds) + sf %(s) ¥ (s) ¥ (ds)

holds for all x € L%(S, B, p). Taking x as non-negative functions and con-
sidering the real part of both sides, we may assume that y(s) is a
real-valued function. Hence

Sfx(S)(l—y(S))V(dS) =Sfx(8) y(s) m(ds) if x(s)€ L*(S, B, o) (2)

is non-negative.

We can prove 0 < y(s) < 1 g-a.e. To this purpose, set E; = {s; y (s) < 0}
and E, = {s; y(s) = 1}. If we take the defining function Cg,(s) of E;
for x(s) in (2), then the left hand side is = 0 and hence t[ y(s) m(ds) = 0.

Thus we must have m(E,) = 0, and so, by the m-absolute continuity
of v, v(E;) =0, o(E;) = 0. We may also prove p(E,) = 0, by taking
the defining function Cg (s) for x(s) in (2). Therefore 0 < y(s) < 1
g-a.e. on S.

Let x(s) be B-measurable and = 0 g-a.e. Then, by g(S) < oo, the
“truncated functions” x,(s) = min(x(s), #) belong to L2%(S, B, o)
(n=1,2,...), and hence

sf % (s) (L —y(s)) v(ds) = Sfx,,(s) y(s)ymds) n=1,2,...). (3)
Since the integrals increase monotonely as # increases, we have
lim [ #,(s) (1 — y(s)) »(ds) = lim fx,, s) y(s) m(ds) = L < oo. (4)
7n—00 §

Since the integrands are = 0 g-a.e., we have, by the Lebesgue-Fatou
Lemma,

L>fhm (5 9) (L —9(5)) 2(ds) = [2() (1 —y(5)) »(ds),
° (5
L= J lim (x,(s) y(s)) m(ds) = f x(s) y m(ds),

S
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under the convention that if x(s) (1 — ¥ (s)) is not »-integrable, the right
hand side is equal to co; and the same convention for x (s) y(s). If x(s)y (s)
is m-integrable, then, by the Lebesgue-Fatou Lemma,

L= Sf Em: (%4 (s) ¥ (5)) m (ds) = sf %(s) y(s) m (ds). (6)

This formula is true even if x(s) y(s) is not m-integrable, under the con-
vention that then L = oo. Under a similar convention, we have

L< Sf %(s) (1 —y(s)) »(ds). ~(7)
Therefore, we have ‘

f 2(s) A —y(s) v(ds) = f %(s) y(s) m(ds) for every x(s) which
s s ®)
is B-measurable and = 0 p-a.e.,
under the convention that, if either side of the equality is = oo then the
other side is also = oo.

Now we put

x(s) (L—y(s)) = z(s), () A —y(s) = 2(s).
Then, under the same convention as in (8), we have
f 2(s) v(ds) = f 2(s) p(s) m(ds) if z(s) is B-measurable
S ° )

and = 0 g-a.e.
If we take the defining function Cg(s) of B€ B for z(s), we obtain
v(B)= [ p(s) m(ds) for all B€ B.
B
The last part of the Theorem is clear in view of definition (1).
Reference. For a straightforward proof of the Lebesgue-Nikodym theo-
rem based upon Hahn’s decomposition (Theorem 3 in Chapter I, 3) see

K. Yosipa [2]. This proof is reproduced in HaLMos [1], p. 128. See also
Saks [1] and DUNFORD-SCHWARTZ [1].

9. The Aronszajn-Bergman Reproducing Kernel

Let A4 be an abstract set, and let a system X of complex-valued func-
tions defined on A4 constitute a Hilbert space by the scalar product

(. 8) = (f(a), g (@))a- (1)
A complex-valued function K (a, b) defined on 4 X 4 is called a reproduc-
ing kernel of X if it satisfies the condition:

For any fixed b, K (4, b) € X as a function of «, (2)
f(6) = (f(a), K (a, b))s andhence f(b) = (K(a,8), /(@) (3)
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As for the existence of reproducing kernels, we have

Theorem 1 (N. ARONSzAJN [1], S. BERGMAN [1]). X has a reproducing
kernel K iff there exists, for any y, € 4, a positive constant C, , depending
upon ¥y,, such that

100 [ = Gy If]] forall feX. (4)
Proof. The “‘only if” part is proved by applying Schwarz’ inequality

to f(vo) = (f(x), K (%, yo))s:
| F(yo) | = [IF]] - (K(%, y0), K (%, yo) i = || || K (yg, y0)>. (5)

The “if”” part is proved by applying F. Riesz’ representation theorem to
the linear functional F,, (f) = f(y,) of f € X. Thus, there exists a uniquely
determined vector g, (x) of X such that, for every f€ X,

F0o) = Fy, () = ((%), &, (#))s.

and so g, (¥) = K (x, ¥,) is a reproducing kernel of X. The proof shows
that the reproducing kernel is uniquely determined.
Corollary. We have
sup |f(yo) | = K (¥o, ¥0)'", (6)
=1
the supremum being attained by

fo(®) = K (x, yo)[K (%, %)%, 0] = 1. (7
Proof. The equality in the Schwarz’ inequality (5) holds iff f(x) and

K (x, y,) are linearly dependent. From the two conditions f(¥) = x K (x, ¥,)
and [|f|| = 1, we obtain

1== |0‘|(K (x,yo),K(x,yo)),l/2=|oc!K(yo,yo)”z, thatis, |x| = K (y,, Vo) V2.

Hence the equality sign in (5) is attained by f, (x).

Example. Consider the Hilbert space 42%(G). For any f€ A2%(G) and

2 € G, we have (see (4) in Chapter I, 9)

faP< @™ [ 1fQFdxdy @ =x+iy).
Thus A2(G) has the reproducing kernel which will be denoted by K (z, 2°).
This K (2, 2') is called Bergman's kernel of the domain G of the complex
plane. The following theorem of Bergman illustrates the meaning of
K¢(2, 2) in the theory of conformal mapping.

Theorem 2. Let G be a simply connected bounded open domain of the
complex plane, and z, be any point of G. By Riemann’s theorem, there
exists a uniquely determined regular function w = f(z; z,) of z which
gives a one-to-one conformal map of the domain G onto the sphere
lw| < gg of the complex w-plane in such a way that

fo(z5 2) = 0, (@fy(2; 2)[@2)gms, = 1.



9. The Aronszajn-Bergman Reproducing Kernel 97

Bergman’s kernel K¢ (z; %) is connected with f, (z; z,) by

fo(2; 20) = Kqg (793 29) ! f Ke(t; z) dt, (8)
where the integral is taken along any rectifiable curve lying in G and
connecting z, with z.

Proof. We set
A3(G) ={f(2);(2)is holomorphicin G, ' (z) € 4%(G), f (z))=0and f (z) =1},
and consider, for any f € 42%(G), the number

Hf’”2=6f |F' (2) [2dx dy, 2= x + iy. (9)
If we denote by z = ¢ (») the inverse function of w = f,(z; z,), then, for
any f€ 43(G),

s =l ‘Lf 17 (@ @) [?|¢' (@) 2 dudv, w = u+ iv.

Qe

For, by the Cauchy-Riemann partial differential equations

Xy = Yy» Xy = — Yy,
we have

a(x,
dxdy = ag’;’ 3’}; dudv = (%, Y, — Yy %) A dv = (x2 + y2) du dv

= |¢’ () [> du dv.
Let f€ A2(G), and let F (w) = f(p (w)) be expanded into power series:

Fw) = f(pw) =w + ".g; ¢, @ for |w| < gg.
Then F' (w) = f (p (@) ¢’ (@) =1 + ”é‘: 7 c, w1 and so

2
du dv

oo
1| = Y[f |1 + X nc, vt
|w[<ee n=2
(7] 2 00 . 0o
=f dr{f (r + 2 7 el 72”‘1>d9 =ngs+ X nnlef e
0 0 n= "=
Therefore mirelj%t)lm [I#|| =V7 s, and this minimum is attained iff
F () = f(p(®)) = w, that is, iff f(z) = f, (2; 2).

We set, for any f € 43(G), g(2) = /(2)/||/'||- Then ||¢’ || = 1. If we put
A2 (G) = {g(2); g(2) is holomorphic in G, g(z)) =0, g’'(2) > 0
and [l¢'|| = 1},

7 Yosida, Functional Analysis
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then the above remark shows that

maximum g’ (z) = 1/||/o]| = (V= 06)%,
gEAXG)

and this maximum is attained iff g(2) is equal to
£(2) = fo(z; 2)/|Ifo|l = fol2; 20) | V7 g6
Hence, by (7), we obtain
dfy(2; 2, o
e () = (Vm oo Heli20) _ 3 Ko (2 20) Ko (z0; 20, 2] = 1.
Hence, by putting z = zo, we have
(A V_ 7o) = Kg (2 20) Ko (%03 20)"% = Kg (29 20)"2,

and so we have proved the formula

do B 0.
ff;zZ) = K (2; 29)[K¢ (29 2o) -

10. The Negative Norm of P. Lax
Let H§(£2) be the completion of the pre-Hilbert space C3° (£2) endowed
with the scalar product (@, ), and the norm | ¢|,:
@ v = £ [Do@ Dy ds lloll = @ o). (1)

Any element b€ H)(2) = L2(2) defines a continuous linear functional
f» on H; (Q2) by
fr(@) = (w, b)y, w€ H(Q). (2)

For, by Schwarz’ inequality, we have
[, 8| = | lo - l|2]lo = [[]ls - 115 ]-
Therefore, if we define the negative norm of b€ HY(2) = L2(2) by

Ioll-s= sup  |f(w)|= sup | (@, b, (3)
w€HY(9),]|w]]s<1 wEHY(Q),]|w]|,<1
then we have
| (4)
and so, by |[b[|-s = | (/||w|]s, b)o |,
[, B)o| < [[]]s - [[2]]-- (5)

Hence we may write
Noll-s = llsll-e = “Sﬁpﬁl(w, b)o| for any b€ HY(Q). (3

We shall prove

Theorem 1 (P. Lax [2]). The dual space Hj(£2)' of the space Hj (f2)
may be identified with the completion of the space H) () = L2(f2) with
respect to the negative norm.
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For the proof we prepare

Proposition. The totality F of the continuous linear functionals on
Hj () of the form f, is dense in the Hilbert space Hg (£2)’, which is the dual
space of H§(0).

Proof. F is fotal on H{(f2) in the sense that, for a fixed w € H}(Q),
the simultaneous vanishing f,(w) = 0, b€ HJ(2), takes place only if
w = 0. This is clear since any element w € Hj(£2) is also an element of
HY}(Q).

Now if F is not dense in the Hilbert space Hj(£2)’, then there exists
an element 7 # 0 of the second dual space H§(Q2)"” = (H}(2)")’ such
that T(f,) = 0 for all f,€ F. By the reflexivity of the Hilbert space
H} (), there exists an element ¢€ H§(f2) such that T (f) = /() for all
1€ Hy(Q)'. Thus T (f,) = /,(t) = 0 for all b€ HY(R). This implies, by the
totality of F proved above, that ¢ = 0, contrary to T # 0.

Corollary. We have, dually to (3'),

||w]|s= sup |(w, b)y| for any w € H(Q). (6)
bEHYR),][5]|_s=1

Proof. Clear from Corollary 8 in Chapter III, 6, because F =
{f»; b€ HY(Q)} is dense in H(R)'.

Proof of Theorem 1. Clear from the facts that i) F is dense in the
dual space Hy(f2)' and ii) F is in one-to-one correspondence to the set
HY(Q) = L2() preserving the negative norm, i.e.,

F3fy < be HY(Q) and ||fy]|—s = ||b]]-s-

We shall denote by Hy*(£2) the completion of HJ(£) with respect to

the negative norm ||||_,. Thus
Hy(Q) = Hy*(©). 7

For any continuous linear functional f on Hj(£2), we shall denote by
{w, f> the value of fat w € H} (). Thus, for any b € H (), we may write

(@) = (@, b)g = <w, fy> = <w, b), we Hy(Q), (8)
and have the generalized Schwarz’ inequality
|[<w. 0| = ||w]]s [[8]]-, 9)

which is precisely (5).
Now we can prove

Theorem 2 (P. LaX [2]). Any continuous linear functional g () on
Hy* (L) can be represented, by a fixed element w € H(Q), as

g(b) = gu(d) = (w, b). (10)
We have, in particular,
Hy(Q) = Hy*(Q2), Ho*(2)' = H3(Q). (11)
7‘
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Proof. If b¢ HY(R), then <(w,bd) = f,(w)= (w,b), Since F =
{fp; b€ HY(2)} is dense in the Hilbert space H(2), we know, by (9),
that <(w, b) = (b, w), with a fixed w € Hg(£2), defines a linear functional g,
continuous on a dense subset F of Hy(£2)'. The norm of this functional
g» on F will be denoted by ||g, ||s- Then, by (6),

llgulls = sup [, w)o| = sup [(w,B)o|=|w]]. (12)
|lBll-s=1 LIEVESS ]
We may thus extend, by continuity, the functional g, on F to a con-
tinuous linear functional on the completion of F (with respect to the
negative norm), that is, g, can be extended to a continuous linear func-
tional on Hy(R2)" = Hy*®(£2); we denote this extension by the same letter
£, We have thus
gull = sup |8 (®)] = [[©]}- (13)
l1ol|-s=1
Hence, in view of the completeness of the space Hg(£2), the totality G of
the continuous linear functionals g, on Hg*(£2) may be considered as
a closed linear subspace of Hy * (£2)’ by the correspondence g, <> w. If this
closed subspace G were not dense in Hy * (€2)’, then there exists a continuous
linear functional 5~ 0 on Hy* ()’ such that f(g,) = 0 for all g, ¢ G. But,
since the Hilbert space Hg*(f2) is reflexive, such a functional f is given
by f(gw) = &w(fo), fo€ Ho*(£2), and so by (13) f, must be equal to 0, con-
trary to the fact f = 0. Therefore we have proved Hg*®(22)' = Hy(£).

Remark. The notion of the negative norm was introduced by P. Lax
with the view of applying it to the genuine differentiability of distribution
solutions of linear partial differential equations. We shall discuss such
differentiability problems in later chapters. It is to be noted that the
notion of the negative norm is also introduced naturally through the
Fourier transform. This was done by J. LERAY [1] earlier than Lax.
We shall explain the point in a later chapter on the Fourier transform.

11. Local Structures of Generalized Functions

A generalized function is locally the distributional derivative of a
function. More precisely, we can prove

Theorem (L.ScHWARTZ [1]). Let T be a generalized function in
£ C R*. Then, for any compact subset K of 2, there exist a positive
integer my, = m,(T, K) and a function f(x) =f(x; T, K, m,) € L?(K)
such that

Tip) = [ 1) 2 2b)

m, m, m,
e axloaxzo..-axn'

dx whenever ¢ € Dk (2). (1)
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Proof. By the Corollary in Chapter I, 8, there exist a positive con-
stant C and a positive integer s such that

|T(p)| = C sup |Dip(x)| whenever ¢ € Dg (). (2
lilsmx€K

Thus there exists a positive number § such that

tm(@) = sup |Dip(x)| <9, p€ Dk (Q), implies [T(p)| < 1. (3)
|5l <m,x€K

We introduce the notation
a& aon
_3;1—‘_{;{8:‘;---8::;’ @)
and prove that there exists a positive constant ¢ such that, for m, =
m+ 1,

Qf |o™p (x)/ox™ 2 dx < &, p € D (R), implies p, (@) < 6. (5)

This is proved by repeated application of the following inequality
lp()| = f |09 (xy, - - -, Xim1, ¥) Figrs - - -5 %) [0Y] Ay
Kn(—00,%¢)

= (KA f dy)llz( [ 10wy, ooy %, Figrs - - -0 %) DY |2dy)‘/2

(—00,%¢) Kn(—00,%)
= t1/2< f [OW(%y, . - o) %, ¥y Xig1, - - oy %) OV 2 dy)1/2,
Kn\(—00,%;)

where ¢ is the diameter of K, i.e., the maximum distance between two
points of the compact set K.

Consider the mapping ¢ (x) — p(x) = 0™ (x)/0x™ defined on D (Q)
into Dk (£2). As may be seen by integration, ¢ (x¥) = 0 implies ¢ (x) = 0.
Hence the above mapping is one-to-one. Thus T (p), ¢ € Dk (2), defines
a linear functional S(yp), y(x) = é™¢(x)/0x™, by S(y) = T (¢). By (3)
and (), S is a continuous linear functional on the pre-Hilbert space X
consisting of such¢’s and topologized by the norm ||y ||= ( [y dx)l’z.

K

Thus there exists, by F. Riesz’ representation theorem, a uniquely deter-
mined function f(x) from the completion of X such that

T =Sk = Kf (™ (%)[0x™) - }(x) dx for all g € Dk (D).

Actually, the completion of X is contained in L%(K) as a closed linear
subspace, and so the Theorem is proved.

References for Chapter III

For general account of Hilbert spaces, see N. I. ACHIESER-
I. M. GLasMAN (1], N. DUNFORD-J. ScHWARTZ [2], B. Sz. Nacy [1],
F. Riesz-B. Sz. Nagy [3] and M. H. StoNnE [1].
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IV. The Hahn-Banach Theorems

In a Hilbert space, we can introduce the notion of orthogonal coor-
dinates through an orthogonal base, and these coordinates are the values
of bounded linear functionals defined by the vectors of the base. This
suggests that we consider continuous linear functionals, in a linear topolo-
gical space, as generalized coordinates of the space. To ensure the exist-
ence of non-trivial continuous linear functionals in a general locally
convex linear topological space, we must rely upon the Hahn-Banach
extension theorems.

1. The Hahn-Banach Extension Theorem in Real Linear Spaces

Theorem (Haun [2], BaANacH [1]). Let X be areal linear space and
let # (x) be a real-valued function defined on X satisfying the conditions:
plx+9) =p() +p(y) (subadditivity), 1)
plex) =ap(x) for «=0. (2)
Let M be a real linear subspace of X and f, a real-valued linear functional
defined on M:
folex + By) = ofy(x) + Bfo(y) for x,y€ M andreal «,f. (3)
Let f, satisfy f,(x) =< p(x) on M. Then there exists a real-valued linear
functional F defined on X such that i) F is an extension of f,, i.e.,
F (x) = f,(x) for all x€ M, and ii) F(x) = p(x) on X.
Proof. Suppose first that X is spanned by M and an element x, € M,
that is, suppose that
X={x=m+ axy; me M, «x real}.
Since x, € M, the above representation of x € X in the form x = m + ax,
is unique. It follows that, if, for any real number ¢, we set
F(x) = F(m + axxy) = fy(m) + «c,
then F is a real linear functional on X which is an extension of f,. We
have to choose ¢ such that F (x) < p (x), thatis, f, (m) + xc = p (m + xx).
This condition is equivalent to the following two conditions:
folm/x) + ¢ = p(xy + mjx) for o> 0,
fo(m[(—a)) —¢ = p(—% + m/(—a)) for &« <O0.
To satisfy these conditions; we shall choose ¢ such that
folm') —p(m' —xp) S c < p(m” + %) — fo(m"’) forall m', m”" € M.
Such a choice of ¢ is possible since
folm') + fo(m") =fo(m' + m") < p(m’ + m") =p(m' —xy + m" + %)
Splm —x) + plm” 4 x,):
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we have only to choose ¢ between the two numbers
sup [fo(m') —p(m —x)] and inf [p(m" + x5) —fo(m")].
mweM m'eM

Consider now the family of all real linear extensions g of f, for which
the inequality g(x) = p () holds for all x in the domain of g. We make
this family into a partially ordered family by defining # >> g tomean that &
is an extension of g. Then Zorn’s Lemma ensures the existence of a
maximal linear extension g of f, for which the inequality g(x) < p (x)
holds for all x in the domain of g. We have to prove that the domain
D (g) of g coincides with X itself. If it does not, we obtain, taking D (g) as
M and g as f, a proper extension F of g which satisfies F (x) < p (x) for
all x in the domain of F, contrary to the maximality of the linear exten-
sion g.

Corollary. Given a functional p(x) defined on a real linear space X
such that (1) and (2) are satisfied. Then there exists a linear functional f
defined on X such that

—p(—2) < (1) < p (). (4)

Proof. Take any point x,€ X and define M = {x; x = «xx,, « real}.
Set fo(xxo) = xp (). Then f, is a real linear functional defined on M.
We have f,(x) = p(x) on M. In fact, ap(x,)) = p(xx,) if « > 0, and
ifo < 0, wehave s (1) < — ap () = plwrg) by 0 = $(0) = p () +
P (—%,). Thus there exists a linear functional f defined on X such that
f(x) = fo(x) on M and f(x) =< (%) on X. Since —f(x) = f(—=x) < p(—%),
we obtain —p (—x) < f(x) < p ().

2. The Generalized Limit

The notion of a sequence {x,} of a countable number of elements x,,
is generalized to the notion of a directed set of elements depending on a
parameter which runs through an uncountable set. The notion of the
limit of a sequence of elements may be extended to the notion of the
generalized limit of a directed set of elements.

Definition. A partially ordered set A of elements «, 8, . . . is called a
directed set if it satisfies the condition:

For any pair «, # of elements of 4, there exists a y € 4
such that & <y, <. (1)

Let, to each point « of a directed set 4, there be associated a certain set
of real numbers f(x). Thus f(x) is a, not necessarily one-valued, real
function defined on the directed set A. We write

li?} f(®) =a (a is a real number)
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if, for any &> 0, there exists an «,€ 4 such that &, < o« implies
|f() — a| =< & for all possible values of f at «. We say, in such a case, that
the value a is the generalized limit or Moore-Smith limit of f(x) through
the directed set 4.
Example. Consider a partition A of the real interval [0, 1]:
D=t <ty < - <t,=1.

The totality P of the partition of [0, 1] is a directed set 4 by defining
the partial order 4 < 4’ as follows: If the partition 4’ is given by
0=t <t;<---<t,=1, then 4 < A’ means that » < m and that
every Z; is equal to some . Let x(¢) be a real-valued continuous function
defined on [0, 1], and let f(4) be the totality of real numbers of the form

n—1

j=20 (tj+1 — 1) x(t}), where ¢ is any point of [#;, ;,,].
Thus f(4) is the totality of the Riemann sum of the function x(f) per-
1
taining to the partition 4. The value of the Riemann integral f x(t) dt
0

is nothing but the generalized limit of f(4) through P.

As to the existence of a generalized limit, we have the

Theorem (S. BANACH). Let x(«) be a real-valued bounded function
defined on a directed set A. The totality of such functions constitutes a
real linear space X by

(x + ) () = x(x) + y(), (B%) (o) = Bx(x).
We can then define a linear functional, defined on X and which we shall
denote by LH/I % (o), satisfying the condition
li < LIMx(x) < lim
%x(zx) =L 2() = ;612"(“)'

where

lim % (x) = sup inf x(8), lim x (8) = inf .
ae_Ax(a) sup inf x(8), lim x(f) = in ilg;x(ﬂ)

Therefore LE{\I x(x) = lig‘; x (o) if the latter generalized limit exists.
Proof. We put (x) =1i§ x (). It is easy to see that this p(x)

satisfies the condition of the Hahn-Banach extension theorem. Hence,

there exists a linear functional f defined on X such that —p(—x) <

f(x) = p(x) on X. We can easily prove thatlim x(x) = —p(—=x) so
«€d

that we obtain the Theorem, by putting L£I4VI %(x) = f(x).

3. Locally Convex, Complete Linear Topological Spaces

Definition. As in numerical case, we may define a directed set {x,} in
a linear topological space X. {x,} is said to converge to an element x of
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X, if, for every neighbourhood U () of x, there exists an index o, such
that x, € U(x) for all indices & > &, A directed set {x,} of X issaid to
be fundamental, if every neighbourhood U (0) of the zero vector 0 of X
is assigned an index «, such that (x,—x)€ U (0) for all indices «, f > «,.
A linear topological space X is said to be complete if every directed
fundamental set of X converges to some element x € X in the sense
above.

Remark. We can weaken the condition of the completeness, and
require only that every sequence of X which is fundamental as a directed
set converges to an element x € X ; a space X satisfying this condition is
said to be sequentially complete. For normed linear spaces, the two defini-
tions of completeness are equivalent. However, in the general case, not
every sequentially complete space is complete.

Example of a locally convex, sequentially complete linear topological
space. Let a sequence {f,(x)} of D(L) satisfy the condition
h}eim (fs—7) = 0 in D(Q). That is, by the Corollary of Proposition 7

—>00

i;1 Chapter I, 1, we assume that there exists a compact subset K of 2 for
which supp(fy)) CK (A =1,2,...) and h}tim Dfy(x) — D°fr(x)) = O
,R—»00

uniformly on K for any differential operator D°. Then it is easy to see,
by applying the Ascoli-Arzela theorem, that there exists a function f€ D (2)
for which E’rg D*f,(x) = D*f(x) uniformly on K for any differential

operator D°. Hence hl_l*rg fh=11in D(Q) and so D () is sequentially

complete. Similarly, we can prove that € () is also sequentially complete.
As in the case of a normed linear space, we can prove the

Theorem. Every locally convex linear topological space X can be
embedded in a locally convex, complete linear topological space, in
which X forms a dense subset.

We omit the proof. The reader is referred to the literature listed in
J. A. DieuponNE [1]. Cf. also G. KOTHE [1].

4. The Hahn-Banach Extension Theorem in Complex Linear Spaces

Theorem (BOHNENBLUST-SOBCZYK). Let X be a complex linear space
and p a semi-norm defined on X. Let M be a complex linear subspace of
X and f a complex linear functional defined on M such that |f(x) | < (x)
on M. Then there exists a complex linear functional F defined on X
such that i) F is an extension of /, and ii) |F (x) | =< p(x) on X.

Proof. We observe that a complex linear space is also a real linear
space if the scalar multiplication is restricted to real numbers. If f(x) =
g(x) + 1h(x), where g(x) and A (x) are the real and imaginary parts of °
f(x) respectively, then g and 4 are real linear functionals defined on M.
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Thus
g | = [f(#)| = p(x) and |h(x)| < [f(x)| < p(x) on M.

Since, for each x€ M,

g0x) + ih(ix) = f(ix) = if(x) = 1 (g () + 1A (x)) = — h(x) + ig(x),
we have
h(x) =—g(ix) forall xe M.

By the Theorem in Chapter IV, 1, we can extend g to a real linear func-
tional G defined on X with the property that G(x) < $(x) on X. Hence
—G (%) = G(—x) = p(—x) = p(x), and so |G (¥) | =< p(x). We define

F(x) = G (%) —iG (i).

Then, by F (ix) = G (1x) —1G (—=x) = G (1x) + 1G(x) = i F (x), we easily
see that F is a complex linear functional defined on X. F is an extension

of f. For, x € M implies that

F(x) =G(x) —iG(ix) = g(x) —1g(ix) = g(x) + ih(x) = f(x).
To prove |F(x)| < p(x), we write F(x) =7e* so that |F(¥)|=
¢°F (x) = F (¢°x) is real positive; consequently |F(x)| = |G ()| <
p(e®x) = [e°] p(x) = p (x).

5. The Hahn-Banach Extension Theorem in Normed Linear Spaces

Theorem 1. Let X be a normed linear space, M a linear subspace of X
and f; a continuous linear functional defined on M. Then there exists a
continuous linear functional f defined on X such that i) f is an extension

of f;, and ii) [|f, ]| = [|£]]

Proof. Set p(x) = ||/,]| - ||#||- Then p is a continuous semi-norm
defined on X such that |f, (x) | = p (¥) on M. There exists, by the Theorem
in the preceding section 4, a linear extension f of f; defined on the whole
space X and such that [f(x)| < p(x). Thus [|f||= lsup p(x) = ||/l

11#ll =1

On the other hand, since  is an extension of f,, we must have EAAl
and so we obtain ||, || = ||/]].

An Application to Moment Problems

Theorem 2. Let X be a normed linear space. Given a sequence of
elements {x,} C X, a sequence of complex numbers {x,} and a positive
number y. Then a necessary and sufficient condition for the existence of
a continuous linear functional f on X such that f(x;) = ; ¢ =1,2,...)
and ||f|| = y is that the inequalities

” ” !
S| =] S o
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hold for any choice of positive numbers # and complex numbers
B B2 - - B

Proof. The necessity of this condition is clear from the definition of
|| f]]- We shall prove the sufficiency. Consider the set

X, = {z; 2= 2:1 pix; where n and B are arbitrary} .
=

n L
For two representations z = 21 Bix; = 21 Bixy of the same element
1= =
2 € X, we have, by the condition of the Theorem,

” m fz m
S hioi— SBoas| <y }). Bixi— 3 Bors
=1 =1 4=1 1=1

-
|= 0.
Thus a continuous linear functional f, is defined on X, by f; (21 Bi x;) =

”
21 fix;. We have only to extend, by the preceding Theorem 1, f, to a
F
continuous linear functional f on X with ||f|| = ||/]]-

Remark. As will be shown in section 9 of this chapter, any continuous
linear functional f on C [0, 1] is representable as

f(x) = f % (¢) m (d)

with a uniquely determined Baire measure m on the interval [0, 1]. Thus,
if we take x;(t) = 71 (j=1,2,...), Theorem 2 gives the solvability
condition of the moment problem:

ft’ Im@d) =o; 1=1,2,...).

6. The Existence of Non-trivial Continuous Linear Functionals

Theorem 1. Let X be a real or complex linear topological space, %, a
point of X and p(x) a continuous semi-norm on X. Then there exists a
continuous linear functional F on X such that F(x,) = p(x,) and
|F(x)| < p(x) on X.

Proof. Let M be the set of all elements «x,, and define f on M by
Foe%y) = ap (o). Then fis linear on M and |f(xxp) | = |xp (%) | = p (%)
there. Thus there exists, by the Theorem in Chapter IV, 4, an extension
F of f such that |F(x)| < p(x) on X. Hence F () is continuous at x = 0
with #(x), and so, by the linearity of F, F (x) is continuous at every
point of X.

Corollary 1. Let X be a locally convex space and %, %= 0 be an element
of X. Then there exists a continuous semi-norm p on X such that
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P (%) # 0. Thus, by Theorem 1, there exists a continuous linear func-
tional f, on X such that

fol%o) =p (%) # 0 and |fo(x)| = p(x) on X.

Corollary 2. Let X be a normed linear space and x,7 0 be any ele-
ment of X. Then there exists a continuous linear functional f, on X such
that

fo#) = [|%|| and [|f|| =1.

Proof. We take ||x|| for (%) in Corollary 1. Thus ||f,|] < 1 from
l/o(®)| = ||#]|]. But, by fy(%) = ||%||, we must have the equality
|| = 1.
Remark. As above, we prove the following theorem by the Theorem
in Chapter IV, 1.
Theorem 1’. Let X be a real linear topological space, x, a point of X
and p (x) a real continuous functional on X such that

plx+y) =p*) +40) and plax) =ap(x) for «=0.

Then there exists a continuous real linear functional F on X such that
F (%) = p (%) and —p(—2) = F(x) = #(x) on X.

Theorem 2. Let X be a locally convex linear topological space. Let M
be a linear subspace of X, and f a continuous linear functional on M.
Then there exists a continuous linear functional ¥ on X which is an
extension of f.

Proof. Since f is continuous on M and X is locally convex, there exists
an open, convex, balanced neighbourhood of 0, say U, of X such that
x€ M N U implies |f(x) | = 1. Let p be the Minkowski functional of U.
Then # is a continuous semi-norm on X and U = {x; p(x) < 1}. For
any x € M choose & > 0 so that « > p(x). Then p(x/x) < 1 and so
|f(x/x)| = 1, that is |f(x)| =< x. We thus see, by letting « | p (x), that
|f(x)| < p (x) on M. Hence, by the Theorem in Chapter IV, 4, we obtain
a continuous linear functional F on X such that F is an extension of f and
|F(x)| < p(x) on X.

Theorem 3 (S. MAzUR). Let X be areal or complex, locally convex linear
topological space, and M a closed convex balanced subset of X. Then,
for any xoé M, there exists a continuous linear functional f on X such
that fy () > 1 and |fy(¥)| =< 1 on M.

Proof. Since M is closed, there exists a convex, balanced neighbourhood
V of 0 such that M N (xy+ V) =@. Since V is balanced and convex,

we have (M + g) N <xo + g) =@. The set (xo + %’) being a neighbour-

hood of x,, the closure U of (M + ?V) does not contain x,. Since M 5(,
the closed convex balanced set U is a neighbourhood of 0, because U
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contains %’ as a subset. Let p be the Minkowski functional of U. Since U

is closed, we have, for any %€ U, p(x,) > 1and p(x) = 1, if x€ U.

Thus there exists, by Corollary 1 of Theorem 1, a continuous linear
functional f, on X such that f,(%,) = # (%) > 1 and |f,(x)| < p(x) on X.
Hence, in particular, |f,(¥)| < 1 on M.

Corollary. Let M be a closed linear subspace of a locally convex
linear topological space X. Then, for any x,€ X — M, there exists a
continuous linear functional f; on X such that f,(x,) > 1 and f,(x) =0
on M. Moreover, if X is a normed linear space and if dis (x,, M) >d,
then we may take || f,|| = 1/d.

Proof. The first part is clear from the linearity of M. The second
part is proved by taking U={x; dis(x, M)<d} in the proof of
Theorem 3.

Remark. As above, we prove the following theorem by virtue of
Theorem 1.

Theorem 3’ (S. MazUR). Let X be a locally convex real linear topolo-
gical space, and M a closed convex subset of X such that M > 0. Then,
for any xoé M, there exists a continuous real linear functional f, on X
such that fy(x,) > 1 and f,(x) = 1 on M.

Theorem 4 (S. MazuR). Let X be a locally convex linear topological
space, and M a convex balanced neighbourhood of 0 of X. Then, for
any x,€ M, there exists a continuous linear functional f, on X such that

fo(%o) = sup |fo (%) |-
x€M

Proof. Let $ be the Minkowski functional of M. Then p(x,) = 1 and
#(x¥) = 1 on M. p is continuous since M is a neighbourhood of 0 of X.
Thus there exists, by Corollary 1 of Theorem 1, a continuous linear func-
tional f, on X such that

folh) =p (%) =1 and [fo(x)|=¢(x) =1 on M.

Theorem 5 (E. HELLY). Let X be a B-space, and f;, f5,...,f, be a
finite system of bounded linear functionals on X. Given » numbers
&4, &g, - . ., O&y. Then a necessary and sufficient condition that there exists,
for each ¢ > 0, an element x, € X such that

ig) =0 (=1,2,...,m) and |[x]||=y+e¢
is that the inequality

Lé Bioil =y ”’é; Biti

holds for any choice of #» numbers fy, s, . . ., B,-
Proof. The necessity is clear from the definition of the norm of a
continuous linear functional. We shall prove the sufficiency. We may
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assume, without losing the generality, that f’s are linearly independent;
otherwise, we can work with a linearly independent subsystem of {f;}
which spans the same subspace as the original system {f;}.

We consider the mapping x — @ (x) = (f; (%), o (%), . . ., [o (%)) of X
onto the Hilbert space /2(n) consisting of all vectors x = (£, &, . . ., &,)

” 1/2
normed by ||x||= <,§ |& |2> . By the open mapping theorem in

Chapter II, 5, the image ¢ (S,) of the sphere S, = {x€ X; ||x|| <y + &}
contains the vector 0 of /2(n) as an interior point for every ¢ > 0. Let
us suppose that (x, &, ..., x,) does not belong to ¢(S,). Then, by
Mazur’s theorem given above, there exists a continuous linear functional
F on 2(n) such that

F((oxq, g, . . ., 0n)) = sup |F(p(x)]-
lIsllsy+e

Since /2(n) is a Hilbert space, the functional F is given by an element
(B1, Bay - - -, Bu) € (n) in such a way that F ((&;, xs, . .., &) = %ajﬂj.
=
Thus
b =

=) B
But the supremum of the right hand side for ||x|| = y + eis = (y + &) X

5
“f‘:l 15#;

for ||z]|=y +e.

, and this contradicts the hypothesis of the Theorem.

7. Topologies of Linear Maps

Let X, Y be locally convex linear topological spaces on the same scalar
field (real or complex number field). We denote by L(X, Y) the totality
of continuous linear operators on X into Y. L (X, Y) is a linear space by

(xT +B8S)x=u0Tx+ fSx, where T,S€L(X,Y) and x€X.
We shall introduce various topologies for this linear space L (X, Y).

i) Simple Convergence Topology. This is the topology of convergence
at each point of X and thus it is defined by the family of semi-norms
of the form

p(T) =p(T; %1, %, .. ., %43 9) = sup ¢(Tx),
lsjsn

where x;, %o, . . ., %, are an arbitrary finite system of elements of X and ¢
an arbitrary continuous semi-norm on Y. L(X, Y) endowed with this
topology will be denoted by L (X, Y). It is clearly a locally convex
linear topological space.

ii) Bounded Convergence Topology. This is the topology of uniform
convergence on bounded sets of X. Thus it is defined by the family of
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semi-norms of the form
p(T)=¢p(T;B;q) = sglr;q(Tﬂ

where B is an arbitrary bounded set of X and ¢ an arbitrary continuous
semi-norm on Y. L (X, Y) endowed with this topology will be denoted by
L, (X, 7). It is clearly a locally convex linear topological space.

Since any finite set of X is bounded, the simple convergence topology
is weaker than the bounded convergence topology, i.e., open sets of
L (X, Y) are also open sets of Ly (X, Y), but not conversely.

Definition 1. If X, Y are normed linear spaces, then the topology of
L (X, Y) is usually called the strong topology (of operators); the one of
L, (X, 7Y) is called the uniform topology (of operators).

Dual Spaces. Weak and Weak* Topologies

Definition 1'. In the special case when Y is the real or complex number
field topologized in the usual way, L (X, Y) is called the dual space of X
and will be denoted by X’. Thus X’ is the set of all continuous linear
functionals on X. The simple convergence topology is then called the
weak* topology of X'; provided with this topology, X’ will sometimes be
denoted by X, and we call it the weak* dual of X. The bounded con-
vergence topology for X' is called the strong topology of X'; provided
with this topology, X’ is sometimes denoted by X; and we call it the
strong dual of X.

Definition 2. For any x € X and %’ € X’, we shall denote by <{x, x>
or x'(x) the value of the functional %’ at the point x. Thus the weak*
topology of X', i.e., the topology of X_. is defined by the family of semi-
norms of the form

px) =p(; 21, %2, . . ., %) = sup |<x, %],
1sjsn
where x,, x5, . . ., %,, are an arbitrary finite system of elements of X.

The strong topology of X', i.e., the topology of X_ is defined by the family
of semi-norms of the form

p(&') = p(x'; B) = sup |{x, x> |
x€B

where B is an arbitrary bounded set of X.
Theorem 1. If X is a normed linear space, then the strong dual space
X is a B-space with the norm
Il = sup |f(x)]-
lsl1=1
Proof. Let B be any bounded set of X. Thensup ||b|| = < oo,
beB

and hence ||f|| =<« implies p(f; B) =sup |f(b)| =< sup |/(¥)| = «B.
: b€B Hisll<p



112 IV. The Hahn-Banach Theorems

On the other hand, the unit sphere S = {x; ||%|| = 1} of X is a bounded
set, and so ||f|| = #(f; S). This proves that the topology of Xj is equi-
valent to the topology defined by the norm [|/]].

The completeness of X; is proved as follows. Let a sequence {f,}
of X satlsfy lun ||fs— fm|| = 0. Then, forany x € X, |f, () — fm (*) | =

[11s—Iml| - ||x“—> 0 (as », m — o), and hence a finite lim f, (x) = (%)

exists. The linearity of f is clear. The continuity of f is proved by ob-
serving that lim f, (¥) = f(x) uniformly on the unit sphere S. Incident-
71—>00

ally we have proved that lim ||, — /|| = 0.
7n—>00

Similarly we can prove
Theorem 2. If X, Y are normed linear spaces, then the uniform topo-
logy (of operators) Ly (X, Y) is defined by the operator norm
IT!| = sup ||Tx]|.
IETES
Definition 3. We define the weak topology of a locally convex linear
topological space X by the family of semi-norms of the form

p(x) =p(x;xi, xé, .o .,x;,) = sup ]<x, x;>,,
1<jsn

where %1, %3, . . ., %, are an arbitrary finite system of elements of X’.
Endowed with this topology, X is sometimes denoted by X,,.

8. The Embedding of X in its Bidual Space X

We first prove
Theorem 1 (S. BANACH). Let X be a locally convex linear topological
space, and X' its dual space. A linear functional f(x') on X" is of the form
F&') = {xo, 27D
with a certain x,€ X iff f(x) is continuous in the weak* topology of X'.

Proof. The “only if” part is clear since |(x,, 2> | is one of the semi-
norms defining the weak* topology of X’. The “if”’ part will be proved
as follows. The continuity of f(x’) in the weak* topology of X’ implies
that there exists a finite system of points xy, %o, ..., %, such that
[f(x)] = sup [<xj, 2")| Thus

1sjsn

Li(x") =%, 2> =0 (1 =1,2,...,n) implies f(x') =
Consider the linear map L: X' — [2(n), defined by
L) = (&), k&), ..., ().

L (x}) = L (x3) implies L (x—x5) = O so that f; (x; —x5) =0(: =1,2,...,7)
and hence f (x; — x5) = 0. Hence we may define a continuous linear map F
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defined on the linear subspace L (X’) of i2(n) by
F(L(x) =F(h&), ..., [=(x)) = ).

This map can be extended to a continuous linear funttional defined on
the whole space /2(n); the extension is possible since /2(n) is of finite
dimension (easier than using the Hahn-Banach extension theorem in
infinite dimensional linear spaces). We denote this extension by the same
letter F. Writing

”
(Y1, Vas +  «r Vi) = .}_,;yjej, where ¢;=(0,0,...,0,1,0,0,...,0)
Ju
with 1 at the j-th coordinate,

we easily see that

”
F(yp Yoy« oo }’») =j§1yj .‘xjr & = F(ej)'
Therefore

&) = j=21 oif;(¥) = j§1 o; {xj, %) = <,é‘1 & %, x'> .

Corollary. Each x,€ X defines a continuous linear functional f,(x’)
on X; by f,(x") = (%4, x"». The mapping

Zo—>fo=J %y

of X into (X), satisfies the conditions

J (@ + %) = J 2y + J %, J(x%) =] (x).

Theorem 2. If X is a normed linear space, then the mapping [ is
isometric, i.e., ||Jx|| = |x]|.

Proof. We have |f,(*')| = [<{%, "D | = |[%]] - [|#'|| so that ||f]| =
[|#o]]- On the other hand, if x, 7 0, then there exists, by Corollary 2 of
Theorem 1 in Chapter IV, 6, an element %€ X’ such that (%, x> =
[|%0 || and ||xg || = 1. Hence fo (x0) = <%, %o = ||#%o || s0 that ||fo || = ||%o]|-
We have thus proved || J%|| = ||=]|.

Remark. As the strong dual space of X;, the space (X;); is a B-space.
Hence a normed linear space X may be considered as a linear subspace
of the B-space (X;); by the embedding x — Jx. Therefore the strong
closure of J X in the B-space (Xj); gives a concrete construction of the
completion of X.

Definition 4. A normed linear space X is said to be reflexive if X may
be identified with its second dual or the bidual (X;); by the correspon-
dence x <> J x above. We know already (see Chapter III, 6) that a Hilbert
space is reflexive. As remarked above, (X); is a B-space and so any re-
flexive normed linear space must be a B-space.

8 Yosida, Functional Analysis
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Theorem 3. Let X be a B-space and x; any bounded linear func-
tional on X;. Then, for any ¢ > 0 and any finite system of elements
fi fo - - -, I Of X, there exists an x,€ X such that

%]l < llxll + & and filx) =25 () G=1,2...,9).
Proof. We apply Helly’s theorem 5 in Chapter IV, 6. For any system

of numbers By, s, . . ., Bs, We have
” ” ”
Zn|=| Zosw]=|5(E01)

, wehre y = ||x5 ||, o = %0 (f;),

=y ”jélﬂjfj

and hence, again by Helly’s theorem, we obtain an x,€ X with the
estimate |[%|| <y +e=||x5|| + & and % (f;) = G =1,2,..., 7).

Corollary. The unit sphere S = {x € X; ||#|| < 1} of a B-space X is
dense in the unit sphere of (X;); in the weak* topology of (X;)'.

9. Examples of Dual Spaces

Example 1. (c,)’ = (Y).
To any f€ (c)’, there corresponds a uniquely determined y; =
{na} € () such that, for all x = {&,} € (c,),

= & &ana and ||f1] = I3l M

And conversely, any y = {#,} € (*) defines an f, € (¢,)’ such that, for
any x = {£,} € (c),

Gty = S, and [[h]] = [y ()

Proof. Let us define the unit vector ¢, by
k-1
6=1(,0,...,0,1,0,0,..)) (A=1,2,...).

k
For any x = {£,} € (¢;) and f € (c,)’, we have, by s-lim X' &,¢, = x.
i R k—00 n=1
— h — ki » —
> =tim 2 bt ] = lim Z by, 1= 1e0).

Let 7, = ¢, |n.| for 7,7 0, and &, =oco for 7, = 0. Take x™ =
{&.} € (c,) in such a way that £, = ¢, ! for n < my, and &, = 0 for n > n,.

Then [[x]] < 1 and so lf] = sup [¢5 12| 2 <2, 1] = £, [l

Thus, by letting ny— oo, we see that y; = {5,}€ () and ||y|l =
[

Flml= 0111
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o]
If, conversely, y = {n,} € (), then «‘_‘_',;5,,17,,‘ = ||#|] - |l¥]| for all

x = {&,} € (), and so y defines an f, € (¢o)’ and ||/, || =< ||y ]l
Example 2. (c)' = (#).
For any x = {£,} € (c), we have the representation

k
x = &yey + s-k;hglo ”El (&5 — &) €, Where &) = ”limo‘> Eneo=10(1,1,1,..)).
Thus, for any f€ (c)’, we have

k o0
Gy = o > + im B Gt end Y =bmi + 3 utiny
B 2

where 7, = <e,, /> and 7, =<e,, ) (n =1, 2,...). As above, we may
take x™ = {£,} € (c) C (c) which satisfies

|5%]] < 1, &= lim £,=0 and (2™, f> = 3% |9, |
= " 50 " ’ == Ny |-
Hence, by [<x™), 5| < ||#™ || ||f]|, we see that {n,}®c (). We set
00
Mo — 21 7, = 7o Then, by (2), we have
n=

G P> = Egmo + ,.fi &7, Where ¥ = {£,}€ (0) and & = lim £, (2)

Let 7, = &, || for 7,7 0, and ¢, =00 for , =0 (n =0,1,2,...).
Take x = {£,} € (c) such that

£, =&t if n < m,, and &, = &5 if 1> n,.

Py
Then ||#]| <1, &= lim &, =&57, and <x,f)=|no| + 3 |ma| +

. [e o]
&' X 7, Hence, we must have || + n§1 || < I£]!-

n=n,+1
oo
If, conversely, y = {#,}¢° is such that ||y|| = |#,| + ";‘1 [ 7| < 00,
then

[+ ]
. _ =)
o - lim &,+ ”gl &, my, Where x = {£,}3° € (¢),

o0
defines an f, € (¢)’ such that ||£,|| =< |7,| + ”gl | 70 ]-

Therefore, we have proved that ()’ = (I*) as explained above.
Example 3. L?(S, B, m) =L!(S,B,m) (1=p<<oo and p!+
¢! =1). To any f€ L?(S)’, there corresponds a y,€ L?(S) such that

{x, B =$fx(s) ¥z (s) m(ds) for all x € L?(S) and ||f|| = ”y/”, (3)
and conversely, any y € LY(S) defines an £, € L?(S)’ such that
xhy = [ %(s) y(s) m(ds) for all x€ L#(S) and ||f,|| = ||¥]]- (3

S
8*
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Proof. Let S = U B; with 0 < m(B;) < co and set B™ — U B;.

For a fixed #, the deﬁnmg function Cp(s) of the set B C B™ is € L‘o (S).
Thus the set function y(B) = (Cg, > is o-additive and m-absolutely
continuous in B C B™. By the differentiation theorem of Lebesgue-
Nikodym (see Chapter III, 8), there exists a ¥,(s) € L*(B™, 8™, m)
such that
9(B) = [ 9,(s) m(ds) whenever B C B™,
B

the family 8" of sets being defined by B™={B N B"; B¢ B}.
Therefore, by setting y(s) = ¥, (s) for s € B™, we have
Cob=[y(e)m@ds) for BEB™ (n=1,2,..)).

Hence, for any finitely-valued function x with support in some B®,
x = sf %(s) y (s) m(ds). 4)
Let x € L?(S) and put
%, (s) = x(s) if [2(s)| = n and s€ B™,

= 0 otherwise.

of the complex plane into a finite

number of disjoint Baire sets M,,, (¢=1,2,...,d,,) of diameters

= 1/k. Set, for the x,(s) € L® (S, B, m),

%, (s) = a constant z, such that z€ (the closure My ;) and |z| = inf |w]|
wEMn,k,t

whenever x,,(s)EM,, ;.
Then |%,4(s) | = |%4(s)| and lim %px(S) = %,(s) and so, by the Lebe-
sgue-Fatou Lemma, s- hm x,,k_x,, (m=1,2,...). Thus, again by

the Lebesgue-Fatou Lemma
G f = Jim Cop, f = T [ 20 (5) y16) m(ds) (6)
=sfklim°°x,.,k(8) - y(s) m(ds) =Sfxn(8) Y (s) m(ds).

Since s-lim x, = x, we see that (x, f) = lim %y, [>. We put, for any
700

complex number z, a(z) = % if z = r¢* "and a(0) = 0. Then ||x|| =
[ (|#a] - @(3))]] and so

A 2]l = <] % a(0), > =Sf |%a(5)| - |(s) | m(ds).

=l = [1x@]ly @] m@s)
and so the function x(s) y(s) belongs to € L!(S). Therefore, letting

Thus, by the Lebesgue-
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n — oo in (5), we obtain
<x,fy = [ x(s) y(s) m(ds) whenever x¢€ L*#(S).
3

We shall show that y € L?(S). To this purpose, set
Yu(s) = y(s) if |y(s)] =n and s€ B™,
=0 othermse.

Then y, € L(S) and, as proved above,
A1 DIl 2 <] - a0 £ = [ 1x(6)] 1y ()] m(ds)

= sf [%(5)|| ya ()| m (ds).
If we take x(s) = |y,(s)|”” and apply Hélder’s equality, we obtain
J 1O 920 m@s) = ([ 156 m@) [ 199 mias.
Hence ||f]| = ||¥a]| =<Sf |92 (5) m(ds))”“, with the understanding
that, when p = 1 we have ||f|| = ||¥.|| = essential sup |y, (s)|.
Therefore, by letting #— oo and applying the Lebe;egfae-Fatou Lemma,

we see that y € L?(S) and ||f|| = ||y||. On the other hand, any y € L?(S)
defines an f€ L?(S)’ by (x, > = f x(s) ¥(s) m(ds) as may be seen by
5

Holder’s inequality, and this inequality shows that ||/|| < ||¥||.

Remark. We have incidentally proved that

() = () (1= p<ooand g1 + ¢ = 1).

Example 4. Let the measure space (S, 8B, m) with m (S) << oo have the
property that, for any B € 8 with 0 <<m(B) = § < oo and positive inte-
ger n, there exists a subset B,, of B such that § (» + 1)~ < m(B,) < dn L.

Then no other continuous linear functionals € M (S, %8, m)’ than the zero
functional can exist.

Proof. Any x € L1(S, B, m) belongs to M (S, B, m) and the topology
of L1(S, B, m) is stronger than that of M (S, ¥, m). Thusany f€ M (S, B,
m)’, when restricted to the functions of L!(S, B, m), defines a continuous
linear functional f,€ L1(S, B, m)’. Thus there exists a y € L*®(S, B, m)
such that

%, f) = <%, fop = [ %(s) y(s) m(ds) whenever xc L1(S,B,m).
s
Since L1(S, B, m) is dense in M (S, B, m) in the topology of M (S, B, m),

the condition fs 0 implies that f,# 0. Thus there exists an ¢ > 0
such that B = {s; |y(s) | = ¢} has its measure m (B) = 6 > 0.Let B, C B
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be as in the hypothesis, and let y(s) =7¢*® for s€ B. Set x,(s) =e~*°

for s € B,, and #,(s) = 0 otherwise. Then z,(s) = nx,(s) converges to 0
asymptotically, that is, s-lim 2, = 0in M (S, B, m). But

lim Gy, £ = lim G fp = Hm [ 2(9) y(5) m(ds) = de > 0,

contrary to the continuity of the functional f.

Example 5. L= (S, B, m)".
Let an f€ L*(S, B, m) be given and set, for any B€ B, f(Cp)
= y(B) where Cp(s) is the defining function of the set B. We have then:

By N\ By =@ implies y(By + By) = ¢ (B,) + ¢ (By), (6)
that is yp is finitely additive,
the real part g, (B) and the imaginary part y,(B) of

y(B) are of bounded total variation, that is, sup |y;(B)| (7
B

<oo (1=1,2),

y is m-absolutely continuous, that is m (B) = 0 implies

y(B) = 0.
The condition (6) is a consequence of the linearity of f, and (7) and (8)
are clear from |y (B)| = ||f]| - ||Cgs]|-

For any x¢€ L*(S, %8, m), we consider a partition of the sphere

{z; |z] = ||x]|} of the complex plane into a finite system of disjoint Baire

sets Ay, 4y, ..., A, of diameters < e. If we set B; = {s€ S; x(s) € 4,},
then, no matter what point «; we choose from 4; (: =1, 2, ..., n), we

have . !
x— 21 x;Cpll =€
= i

(8)

and so

10— Zay(B)| = 1]
Thus, if we let # — oo in such a way that ¢ | 0, we obtain
n
1) = tim 3 o (By), (9

independently of the manner of partition {z; |z| < ||x||} = 2”1 A; and
e

choice of points «’s. The limit on the right of (9) is called Radon’s integral
of x(s) with respect to the finitely additive measure y. Thus

fx) = f %(s) 9 (ds) (Radon’s integral) whenever x € L*(S, B, m), (10)
5

and so

i1l = suo _ |J*0)v@s). (1)

ess.sup|z(s)|{ <1 |S
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Conversely, it is easy to see that any y satisfying (6), (7) and (8) defines
an f€ L®(S, B, m)’ through (10) and that (11) is true.

Therefore, we have proved that L% (S, %8, m)’ is the space of all set
functions y satisfying (6), (7) and (8) and normed by the right hand side
of (11), the so-called fotal variation of .

Remark. We have so far proved that L?(S, 8, m) is reflexive when
1 < p < co. However, the space L1 (S, B, m) is, in general, not reflexive.

Example 6. C (S)'.

Let S be a compact topological space. Then the dual space C (S)’ of the
space C(S) of complex-valued continuous functions on S is given as
follows. To any f€ C(S)’, there corresponds a uniquely determined
complex Baire measure g on S such that

f(#) = [ x(s) u(ds) whenever x¢ C(S), (12)
S
and hence

fll= sup %(s) u(ds) | = the total variation of w on S. (13)
1] /‘ #
st;p]x(s)[gl

Conversely, any Baire measure g on S such that the right side of (13)
is finite, defines a continuous linear functional f€ C(S)’ through (12)
and we have (13). Moreover, if we are concerned with a real functional f
on areal B-space C(S), then the corresponding measure g is real-valued;
if, moreover f is positive, in the sense that f(x) = 0 for non-negative
functions x (s), then the corresponding measure y is positive,i.e., u (B) = 0
for every B € B.

Remark. The result stated above is known as the F. Riesz-A. Markov-
S. Kakutani theorem, and is one of the fundamental theorems in topo-
logical measures. For the proof, the reader is referred to standard text
books on measure theory, e.g., P. R. HaALmos [1] and N. DUNFORD-
J. Scawarrz [1].

References for Chapter IV

For the Hahn-Banach theorems and related topics, see BANACH [1],
Boursaki [2] and KO6THE [1]. It was MazUR [2] who noticed the impor-
tance of convex sets in normed linear spaces. The proof of Helly’s theorem
given in this book is due to Y. MIMURA (unpublished).

V. Strong Convergence and Weak Convergence

In this chapter, we shall be concerned with certain basic facts per-
taining to strong-, weak- and weak* convergences, including the com-
parison of the strong notion with the weak notion, e.g., strong- and weak
measurability, and strong- and weak analyticity. We also discuss the
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integration of B-space-valued functions, that is, the theory of Bochner’s
integrals. The general theory of weak topologies and duality in locally
convex linear topological spaces will be given in the Appendix.

1. The Weak Convergence and The Weak* Convergence
Weak Convergence

Definition 1. A sequence {x,} in a normed linear space X is said to
be weakly convergent if a finite lim f(x,) exists for each f€ X;; {x,} is
7—>00

said to converge weakly to an element x,,€ X if lim f(x,) = f(x.) for
7—00

all f¢ X;. In the latter case, %, is uniquely determined, in virtue of

the Hahn-Banach theorem (Corollary 2 of Theorem 1 in Chapter IV, 6); we

shall write w-lim x, = x, or, in short, %, — x,, weakly. X is said to be
7%—>00

sequentially weakly complete if every weakly convergent sequence of X
converges weakly to an element of X.

Example. Let {x, (s)} be a sequence of equi-bounded continuous func-
tions of C [0, 1] which is convergent to a discontinuous function z(s) on
[0, 1]. Then, since C[0, 11’ is the space of Baire measures on [0, 1] of
bounded total variation, we see easily that {x,(s)} gives an example of
aweakly convergent sequence of C [0, 1] which does not converge weakly
to an element of C [0, 1].

Theorem 1. i) s-lim x, = x,, implies w-lim x, = %, but not conver-

7—>00 7—>00
sely. ii) A weakly convergent sequence {x,} is strongly bounded, and, in
part1cular, if w-lim x, = %o, then {||x,||} is bounded and [|x, || =

Im [z 7

Proof i) The first part is clear from |f (%,) — / (%e0) | = [|/]] - || %5 — %oo ||-
The second part is proved by considering the sequence {x,} in the Hilbert
space (/2):

x, = {€%} where &# = §,,, (= 1 or 0 according as # = m or not).
For, the value of a continuous linear functional € (2)’ at x = {£,} is given
by E &, 7 with some {#,} € (?); consequently, w-lim x, = 0 but {x,}

n=1 7—00

does not converge strongly to 0 because ||x,]|=1 (n=1,2,...).
ii) Consider the sequence of continuous linear functionals X,, defined on
the B-space X, by X, (f) = {%,, />, and apply the resonance theorem in
Chapter II, 1.

Theorem 2 (MAZUR). Let w- hm %, = %o in a normed linear space X.

Then there exists, for any ¢ > 0, a convex combination Za]x_,

o; =0, 3 x;=1] of x;’s such that — Za‘x-
§ =% j = %%

‘ée.
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”
Proof. Consider the totality M, of elements of the form 217 0%
i=

with «; = 0, 1—21 a; = 1. We may assume that 0¢€ M, by replacing x,
and ; by (¥e—x,) and (x;— ,), respectively. Suppose that || %o —u|| > ¢
for every u € M;. The set M = {v€ X; ||v — u|| < &/2 for some u € M,}
is a convex neighbourhood of 0 of X and ||xe —v || > /2 for all v€ M.
Let p(y) be the Minkowski functional of M. Since %o, = B~ 4, with
p(uy) =1 and 0 < < 1, we must have p(x,) = =1 > 1. Consider a
real linear subspace X; ={x€ X;x =y #y, —00o <y < oo} and put
f(x) =y for x = y 4, € X,. This real linear functional f; on X, satisfies
f(x) = (x) on X;. Thus, by the Hahn-Banach extension theorem in Chap-
ter IV, 1, there exists a real linear extension f of f, defined on the real
linear space X and such that f(x) =< p(x) on X. M being a neighbourhood
of 0, the Minkowski functional # (x) is continuous in x. Hence f is a con-
tinuous real linear functional defined on the real linear normed space X.
We have, moreover,
sup f(x) = S“P/( x) S supp(x) = 1< 7 = (B ug) = f(%c0) -
€M, €M
Therefore, it is easy to see that x,, cannot be a weak accumulatien point
of M,, contrary to x,, = w-lim x,,.
7n—>00

Theorem 3. A sequence {x,} of a normed linear space X converges
weakly to an element x,, € X iff the following two conditions are satis-
fied: i) sup [|#,|| < oo, and ii) ”Iirgo f(xs) = f(xs) for every f from any

nz1

strongly dense subset D’ of X_.

Proof. We have only to prove the sufficiency. For any g€ X and
€ > 0, there exists an f€ D’ such that ||g — /|| < &. Thus

|8 (%) — £ (%o0) | = |8(%a) — F(a) | + |7 (%) — F (%o0) | + |F(¥eo) — & (%e0) |
= e||all + [F () — F(%o0) | + & [|%co]],
and hence lim |g(%,) —g(%*eo)| = 2¢ sup |[|x,||. This proves that
co2n21
Lim g (x,) = g (%c0)-
Theorem 4. A sequence {x,} in L1(S, B, m) converges weakly to an ele-

ment x€ L1(S, B, m) iff {||x, ||} is bounded and a finite lim [ x,(s) 7 (ds)
n—>0 p

exists for every B € B.

Proof. The “only if” part is clear since the defining functlon Cg(s)
of B € B belongs to L*(S, B, m) = L1(S, B, m)".
The proof of the ““if”’ part. The set function ¢ (B) = lim f %, (s) m(d,s)
7n—>00 g

Be€ 9B, is g-additive and'm—absolutely continuous by the Vitali-Hahn-Saks
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theorem. Hence, by the differentiation theorem of LEBESGUE-NIKODYM,
there exists an %y, € Ll(S B, m) such that

lim fx,,(s) fx(,c> ) for all B€ B.
n—>00 p
Thus, for any decomposition S = .2 B; with B; € B, we have
. f k
lim [ #,(s)y %oo (s m(ds), y(s) = 3 a;Cp,(s)-
n—00 § j=1

Since such functions as y(s) constitute a strongly dense subset of the
space L* (S, B, m) = L1(S, B, m)’, we see that the “if”’ part is true by
Theorem 3.

Theorem 5. Let {x,} converge weakly to x, in L(S, 8B, m). Then
{#,} converges strongly to x, iff {x, (s)} converges to x, (s) in m-measure
on every B-measurable set B such that m(B) << oco.

Remark. {x,(s)} is said to converge to % (s) in m-ineasure on B, if,
for any & > 0, the m-measure of the set {s€ B; |x,(s) — % (s) | = &}
tends to zero as # — oo (see the Proposition in Chapter I, 4). The space
() is an example of L1(S, B, m) for which S = {1, 2, .. .}andm ({n}) = 1
forn =1, 2, ... In this case, we have (/1) = (I*°) so that the weak con-
vergence of {x,.}, %, = (&, EM, ..., EM . ..), t0 200 = (EL, E8), .. &™), L)
implies that lim EM =§> (k=1,2,...), as may be seen by taking
f€ (&) in such a way that f(x) = (%, f{) = & for x = {§;} € (7). Thus,
in the present case, {x,} converges to %, in m-measure on every 8-
measurable set B of finite m-measure. In this way we obtain the

Corollary (I. ScuURr). In the space (#1), if a sequence {x,} converges
" weakly to an % € (#1), then s;lig Xy = Koo

Proof of Theorem 5. Since the strong convergence in L1(S, B, m)
implies the convergence in m-measure, the ‘“‘only if”’ part is clear. We shall
prove the “if”” part. The sequence {x,, — %} converges weakly to 0, and so

}irnoo f (% (S) — Xoo (5)) m(ds) = O for every B€ B. 1)

Consider the sequence of non-negative measures

Y (B) = f[x,, () — %o (s) | m(ds), B€ B.

Then we have
k]im ¥, (Br) = 0 uniformly in #, for any decreasing
—>00

(o]
sequence {B,} of sets € B such that kﬂl B, =¢. )

If otherwise, there exists an € > 0 such that for each %k there exists some
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n, for which klim ny, = oo and y,, (B;) > &. Consequently, we must have
f[Re(x,,k — %o (5)) | (ds) > e[}/ 2 or f [T (%, (s) — %o (5)) | 7 (ds)
> s/[/ 2, and so there must exist some B, Q B, such that
t f(x,,k $) — Xoo (5)) m ds)l> e2)2 (k=1,2...),

contrary to the fact that, in v1rtue of (1), the m-absolute continuity of
the sequence of measures ¢, (B f (%4 () — %o (s)) m(ds) is uniform

in n (see the proof of the Vitali- Hahn Saks Theorem in Chapter II, 2).
Next let B, be any set of B such that m (B,) << co. We shall show that

Tim y,(By) = 0. (3)

Suppose there exist an ¢ > 0 and a subsequence {y,} of {y,} such that
yw(B)>e (n=1,2,..). (4)

By the hypothesis that {(x, (s) — %, (s))} converges to 0 in m-measure on
B,, there exist a subsequence {(x, (s) — % (s))} of {(x” (s) — %00 (5))} and
some sets B, € Bysuch that m (B,,) =< 27"and |, (s) — % (5) | < &/m(B,)

[ee]
on (B,— B;)). We put B, = L_Jk B, . Then {B,} is a decreasing sequence
such that
oo
(ﬂ Bk)< 2 m(B,)) < 27%1 (k=1,2,...) and so m (kﬂlBk)= 0.
Hence, by (1) and the Corollary of the Vitali-Hahn-Saks Theorem referred

to above, lergO ¥, (By) = 0 uniformly in #. Therefore
¥ (Bo) = ¥ (BJ) + e m(B) - m(By— B) > (S ¢) as n— oo,
contrary to (4). This proves (3).
Now we take a sequence {B;} of sets € B such that m(B;) < oo
(k=1,2,..)andS =k8 B,. Then
Sflx,,(s)—x°c> )| m(ds) = f + !
v

05 s-Um
k=1 % k

By (8) the first term on the right tends to zero as # — oo for fixed ¢, and
the second term on the right tends, by (2), to zero as £ — co uniformly

in n. Therefore we have proved that s-lim x, = x4 in L1(S, B, m).
7n—>00

A similar situation in the case of the space D (£2)’ is given by

Theorem 6. Let {T,} be a sequence of generalized functions € D (2
If lim T, = T in the weak* topology of ® (L)', then lim T, =T
7—00 7n—00

the strong topology of ® (2)’.

)"
in
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Proof. The strong topology of the space D (£2)’ is defined (see Defini-
tion 1 in Chapter IV, 7) through the family of semi-norms

p8(T) = sup |T(p) |, where B is any bounded set of D(Q).
¥€B

The weak* topology of the space D ()’ is defined through the family of
semi-norms

pr(T) = sup | T () |, where  is any finite set of D ().
PEF

Thus lim T,=T in the weak* topology of D (L)’ is precisely
7n—>00

lim T, = T(D(£2)’) defined in Chapter II, 3.

n—>00

Let B be any bounded set of D (£2). Then there exists a compact

subset K in £ such that supp(¢) C K for any ¢ € B and sup |Dig(x)|
. 2€K,p€B
< oofor any differential operator D’ (Theorem 1 in Chapter I, 8). Thus, by

the Ascoli-Arzela Theorem, D is relatively compact in ®g (2). We apply
the uniform boundedness theorem to the sequence {T,, — T} to the effect
that, for any ¢ > 0, there exists a neighbourhood U of 0 of ® g (£2) such that

sup [(T,—T) ()] <e.
n; €U

The compact subset B of Dy () is covered by a finite system of sets of
the form ¢; + U, where ;€ 8 (: =1, 2, .. ., k). Hence
(To—T) (@i + 0) | = [(Ta—T) @) | + [(Ta—T) ()]
S |(To—T) ()| + ¢ forany ue U.
Since lim (T,—T) (p;) =0fors=1,2,..., k, we have
7—>00
lim (T, —T) (p) = 0 uniformly in p € B.
7—>00

This proves our Theorem.
Theorem 7. A reflexive B-space X is sequentially weakly complete.

Proof. Let a sequence {x,} of X be weakly convergent. Each x,, defines
a continuous linear functional X, on X; by X, (*') = {«,, ). Since
X is a B-space (Theorem 1in Chapter IV, 8), we may apply the resonance
theorem. Thus a continuous linear functional on X; is defined by a finite
”limw X, (") which exists by hypothesis. Since X is reflexive, there exists

an %o € X such that {(x, x> = ”lir(r’lo X, (x") = ,,]13.10 {%,, %>, that is,

X0 = w-lim x,,.
7n—>00

Theorem 8. Let X be a Hilbert space. If a sequence {x,} of X converges
weakly to %o, € X, then s-lim x, = % iff lim ||x,|| = ||%c]|-
7—>00 7—>00
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Proof. The ““only if”’ part is clear from the continuity of the norm. The
““if”’ part is clear from the equality

[| %0 — %oo ||2 = (¥ — %oos Xp — %oo)

= ”x””2_ (xm xoo) - (xoo: xn) + ”xoonz'

In fact, the limit, as # — oo, of the right hand side is || %o [[2 — || %co |[2 —
(140 [ + [|%ool[* = O.

Weak* Convergence

Definition 2. A sequence {f,} in the dual space X, of a normed
linear space X is said to be weakly* convergentif a finite lim f,(x) exists
for every x € X; {f,} is said to converge weakly* to an z;;:lent fo€ X,
if ,.llﬂ fa (%) = f« () forall x€ X. In thelatter case, we write w*;l_i)mm fh=fs
or, in short, f, — f, weakly*.

Theorem 9. i) s-»limoo fs = o implies zv"‘;"l_i)meo f» = f, but not con-

versely. ii) If X is a B-space, then a weakly* convergent sequence
{fa} € X, converges weakly* to an element f,,€ X, and ||/, || < lim||£,]|-
. 7—>00

Proof. (i) The first partis clear from |f, (x) — foo (%) | = || /s — o || - || %]|-
The second part is proved by the counter example given in the proof of
Theorem 1. (ii) By the resonance theorem, we see that £ (x) = ”ligo fn ()

is a continuous linear functional on X and ||/, || < lim ||/,]].
7—>00

Theorem 10. If X is a B-space, then a sequence {f,} < X, converges
weakly* to an element f., € X iff (i) {||/,||} is bounded, and ii) ”linolo ful(x) =

f (%) on a strongly dense subset of X.

Proof. The proof is similar to that of Theorem 3.

Strong and Weak Closure

Theorem 11. Let X be a locally convex linear topological space, and M
a closed linear subspace of X. Then M is closed in the weak topology of X.

Proof. If otherwise, there exists a point x,€ X — M such that %, is
an accumulation point of the set M in the weak topology of X. Then,
by the Corollary of Theorem 3 in Chapter IV, 6, there exists a con-
tinuous linear functional £, on X such that f,(x,) = 1 and f,(x) = 0 on M.
Hence x, cannot be an accumulation point of the set M in the weak
topology of X.
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2. The Local Sequential Weak Compactness of Reflexive B-spaces.
The Uniform Convexity

Theorem 1. Let X be a reflexive B-space, and let {x,} be any sequence
which is norm bounded. Then we can choose a subsequence {x,.} which
converges weakly to an element of X.

We will prove this Theorem under the assumption that X is separable,
since concrete function spaces appearing in applications of this Theorem
are mostly separable. The general case of a non-separable space will be
treated in the Appendix.

Lemma. If the strong dual X; of a normed linear space X is separable,
then so is X.

Proof. Let {x,,} be a countable sequence which is strongly dense on the
surface of the unit sphere {x'€ Xg; ||’ || = 1} of X;. Choose x, € X so
that ||x, || = 1and |<x,, x,> | = 1/2. Let M be the closed linear subspace
of X spanned by the sequence {x,}. Suppose M 7= X and x,¢ X — M.
By Corollary of Mazur’s Theorem 3 in Chapter IV, 6, there exists an
%o € X; such that ||xp]| =1, {xp, %) 7 0 and <x, xp) = 0 whenever
x€M. Thus {x,, %) =0 (n=1,2,...), and so 1/2 < [<x,, x> | =
| s ) — X, %0p| + |{¥n, %oy | which implies that 1/2 < |||l || % — x|
= ||, — xp||- This is a contradiction to the fact that {x,} is strongly
dense on the surface of the unit sphere of X;. Thus M = X, and so linear
combinations with rational coefficients of {x,} are dense in X. This proves
our Lemma.

Proof of Theorem 1. As we have remarked above, we assume that X
is separable and so (X;); = X is separable also. By the preceding Lemma,
X, is separable. Let {x,,} be a countable sequence which is strongly dense
in X;. Since {x,} is norm bounded, the sequence {(x,, x>} is bounded.
Thus there exists a subsequence {x, } for which the sequence {(x,,, 7>}
is convergent. Since the sequence {<x, , 5>} is bounded, there exists a
subsequence {x,,} of {x, } such that {(x,, x5} is convergent. Proceeding
in this way, we can choose a subsequence {x,,, .} of the sequence {x,}
such that the sequence of numbers {(x,,,, x;>} converges for j =
1,2,...,7+4 1. Hence the diagonal subsequence {x, } of the original
sequence {x,} satisfies the condition that the sequence {<x,,, #;>} con-
verges for 1 =1, 2,... Thus, by Theorem 3 in the preceding section,

lim (x,,, 2") exists and is finite for every x'€ X'. Hence, by Theo-
7n—00

rem 7 of the preceding section, we see that w-lim x,, exists.
7—00

Milman’s Theorem

We owe to D. P. MiLMAN a theorem that a B-space is reflexive when
it is wumiformly convex in the sense that, for any ¢ > 0, there exists a
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0 =0(e) > 0 such that |[x]| <1, ||y|| =1 and ||x—y]|| = ¢ implies
[]* + || = 2(1 — 6). A pre-Hilbert space is uniformly convex as may be
seen from the formula

2+ 2[F+ [lx—y|F = 2(|= [ + [|y])
valid in such a space. It is known that, for 1 < $ << oo, the spaces L? and
(?%) are uniformly convex (see J. A. CLARKSON [1]).

Theorem 2 (MiLMAN [1]). A uniformly convex B-space X is reflexive.

’

Proof (due to S. KAKUTANI). Given an xg € (X;); with ||xg || = 1.
Then there exists a sequence {f,} C X; with ||/,|| =1, 25 (fs) = 1 —n7!
(m=1,2,...). By Theorem 5 in Chapter IV, 6, there exists, for
every #, an %, € X such that
fixa) =25 (f) G=1,2,...,m) and |[|x,]|= %] +21=1+2r"L

Since

L=t < g (fa) = fa (%) S [|all [|2a]] = |5l = 1 + 272,
we must have lim ||x,|| = 1.
7—>00
If the sequence {x,} does not converge strongly, there existsane > 0
and n; <y < Mg << mmg << --- <M << mp<<--- such that =<
[|%n, — %me || (B =1,2,...). Thus, by }Lrglo ||#,]] = 1 and the uniform

convexity of X, we obtain kl?g [| %, + Zm|] = 2(1 — 8(e)) < 2. But,
since ny < My, fuy (%) = foy. (%) = %0 (f,) and so

2(1— ") = 240 (f) = Fo (e + %) = [ || - || % + %]
Hence, by ||/, || = 1, we obtain a contradiction Erg || %ne + % || = 2.

We have thus proved the existence of s-lim x,, = x,, and x, satisfies
7—>00

%l =1, filxo)) =% (£) G=1,2,...). (1)
We show that the solution of the above equations in (1) is unique. Other-
wise, there exists an %, 7% x, which satisfies the same equations. By the
uniform convexity, ||%y + #5|| < 2. We also have f; (% + o) = 2%5 (/)
(¢=1,2,...). Thus
2(1—17Y) < 245 (f;) = fi(%0 + %0) = [|s]] || %0 + %o|| = ||%0 + %[,
and so ||%y + xo|| = ’1_1>m°° 2(1 —4~1) = 2 which is a contradiction.

Finally let f, be any point of X;. If we show that f,(xo) = x¢ (fo),
then (X¢); € X and the reflexivity of X is proved. To prove that f,(x,) =
%4 (fo), we take fo, f1, -« ) fnr - - - in place of f1, fo, - - -, fn, - - . abOVe, and
hence we obtain ¥, € X such that

%l =1 filx) =2 () ¢=0,1,...,n,...);
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we must have X, = x, by virtue of the uniqueness just proved above,
and so the proof of Theorem 2 is completed.

3. Dunford’s Theorem and The Gelfand-Mazur Theorem

Definition 1. Let Z be an open domain of the complex plane. A map-
ping x({) defined in Z with values in a B-space X is called weakly holo-
morphic in { in the domain Z if, for each f€ X’, the numerical function

F(x(@Q)) = <= (),

of { is holomorphic in Z.

Theorem 1 (N. DunrorD [2]). If x({) is weakly holomorphic in Z,
then there exists a mapping «’ ({) defined in Z with values in X such that,
for each {, € Z, we have

s-lim A (2 (0o + B) — 2(C0)) = #' o).

In other words, the weak holomorphic property implies the sérong holo-
morphic property.

Proof. Let C be a rectifiable Jordan curve such that the closed bounded
domain C enclosed by C lies entirely in Z and {,€ C — C. Let Z, be any
open complex domain 3¢, such that its closure lies in the interior of C.
Then, by Cauchy’s integral representation, we have

1) =557 [FDa.
C

Hence, if both {, + % and {, + g belong to Z,,,

0 h)) — 0. 0 _ 0.
(h_g)_l{/‘(x(c + )})L Fx&) (= +g); /(x(C))}

1 1
=§acff("(5)){<c—co—h) (Y <c—c.,>}d¢'

By the assumption, the distance between Z, and C is positive. Hence, for
fixed f € X', the absolute value of the right hand side is uniformly boun-
ded when {;,{, + # and {, + g range over Z,. Thus, by the resonance
theorem, we have

N R B R R R

ttathiorecz, 1Pl IIL h £
Therefore, by the completeness of the space X, x({) is strongly differenti-
able at every {,€ Z.

Corollary 1 (Cauchy’s integral theorem). The strong differentiability
of x({) implies its strong continuity in . Thus we can define the curvi-
linear integral f %(C) d¢ with values in X. Actually we can prove that

¢

<oo.

f x(¢) d = 0, the zero vector of X.
¢
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Proof. We have, by the continuity and the linearity of f& X',
HJx©d)= [txo.
¢ ¢

But the right hand side is zero, because of the ordinary Cauchy integral
theorem. Since f€ X’ was arbitrary, we must have f x(8) d¢ = 0 by
Corollary 2 of Theorem 1 in Chapter IV, 6. ¢

From the above Corollary, we can derive other Corollaries, as in the
ordinary theory of functions of a complex variable.

Corollary 2 (Cauchy’s integral representation).

of C.

2:ru Z;

Corollary 3 (Taylor s expansion). For any point {, which is in the
interior of the closed domain C, the Taylor expansion of x({) at { = ¢,
converges strongly in the interior of the circle with centre at £, if this
circle does not extend outside of C:

x(() = ’;-:22 (n)™Y (& — o) 4™ (C,), where

(n) "_! _ #()
A (o) = f o

Corollary 4 (Liouville’s theorem). If x({) is (strongly) holomorphic in
the whole finite plane: || < oo, and sup |%(l)| < oo, then x({) must
reduce to a constant vector x(0).

Proof. If we take |{| = 7 for the curve C, then, as 7 — oo,

n! a
10 = g7 swp 1501 [0 (=12,

Hence the Taylor expansion of x({) at { = 0 reduces to the constant
term x(0) only.

We shall now apply Corollary 4 to the proof of the Gelfand-Mazur theo-
rem. We first give

Definition 2. A commutative field X over the field of complex numbers
is called a normed field, if it is also a B-space such that the following
conditions are satisfied:

i|e|| = 1, where e is the unit of the multiplication in X, L

[lxy|| = ||#|| ||y ||, where y is the multiplication in X. @)

Theorem 2 (GELFAND [2]-MAzUR [1]). A normed field X is isometri-

cally isomorphic to the complex number field. In other words, every ele-
ment x of X is of the form x = &e where £ is a complex number.

9  Yosida, Functional Analysis
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Proof. Assume the contrary, and let there exist an x € X such that
(x — &e) 7= 0 for any complex number £. Since X is a field, the non-zero
element (x — &e¢) has the inverse (x — £e)~1 € X.

We shall prove that (x —Ae)~! is (strongly) holomorphic in A for
|A] < oo. We have, in fact,

I — (h+ Bey ™ — (r— A9
= (x— @A+ Rre)yH{e—(x—@A+ he) (x—Ae)™Y}
=k x—@A+he) {e—e+ hix—Ae)™}
=(@x— @A+ he) ™t (x—1e) .

o0
On the other hand, for sufficiently small | 4|, the series y <e + 2‘1 (hy'l)”),

where y = (x — Ae), converges by (1), and it represents the inverse
(y —he)™t = y~1(e — hy~1)~1, as may be seen by multiplying the series
by (y — ke). Hence, by the strong continuity in % of the series, we can
prove that (x —Ae)~! is (strongly) holomorphic in A with the strong
derivative (x — Ae)~2.

Now, if |2] = 2 ||#||, then, as above, (¥ —Ae)™ = — A~1(e — A~1x)!

=—2"1 <e -+ S; (l_lx)”> and so

G — 27| < |r1|(1 + 2 (1/2)">-> 0 as |A]—>oo.

Moreover, the function (x — A¢)~1, being continuous in 4, is bounded on
the compact domain of A: [A| =< 2 ||x||. Hence, by Liouville’s theorem,
(x — Ae)~! must reduce to the constant vector x~! = (x — O¢)~l. But,
since Sl_11|l—l»noo (x — Ae)™ = 0 as proved above, we have arrived at a contra-

diction 21 =0,e =x1x = 0.

4. The Weak and Strong Measurability. Pettis’ Theorem

Definition 1. Let (S, B, m) be a measure space, and x(s) a mapping
defined on S with values in a B-space X. x(s) is called weakly B-mea-
surable if, for any f€ X', the numerical function f(x(s)) = {x(s), /) of s
is B-measurable. x(s) is said to be finitely-valued if it is constant = 0 on
each of a finite number of disjoint $B-measurable sets B; with m (B;) < oo
and x(s) = 0 on S —U B;. x(s) is said to be strongly B-measurable if

j
there exists a sequence of finitely-valued functions strongly convergent
to x(s) m-a.e. on S.
Definition 2. x (s) is said to be separably-valued if its range {x(s); s € S}

is separable. It is m-almost separably-valued if there exists a B-measurable
set B, of m-measure zero such that {x(s); s € S — B} is separable.



4. The Weak and Strong Measurability. Pettis’ Theorem 131

Theorem (B. J. PETTIS [1]). x(s) is strongly B-measurable iff it is
weakly B-measurable and m-almost separably-valued.

Proof. The “‘only if”’ part is proved as follows. The strong 8-measu-
rability implies the weak B-measurability, because a finitely-valued func-
tion is weakly B-measurable, and, by the strong B-measurability of
x(s), there exists a sequence of finitely-valued functions x,,(s) such that
s;l_i)xor; %, (s) = x(s) except on a set By€ B of m-measure zero. Thus the

union of the ranges of x,(s) (r =1, 2, ...) is a countable set, and the
closure of this set is separable and contains the range {x(s); s€ S — Bg}.

The proof of the “if”” part. Without losing the generality, we may
assume that the range {x(s); s € S} is itself separable. So we may assume
that the space X is itself separable; otherwise, we replace X by the
smallest closed linear subspace containing the range of x(s). We first
prove that |[x(s) || is itself B-measurable. To this purpose, we shall make
use of a lemma, to be proved later, which states that the dual space X’
of a separable B-space satisfies the condition

there exists a sequence {f,} < X’ with ||f,|| =< 1 such

that, for any f,€ X’ with ||/,|| =< 1, we may choose a

subsequence {f,} of {f,} for which we have lim f,. (x) (1)
7n—-00

= fo(x) at every x € X.
Now, for any real number 4, put
A={s;||x(s)]| = a} and A= {s; |f(x(s))| = a}, where feX'.

If we can show that 4 = ﬂ Ay,, then, by the weak B-measurability of
i=1

x(s), the function ||x(s) || is B-measurable. It is clear that 4 leflll Ay.

But, by Corollary 2 of Theorem 1 in Chapter IV, 6, there exists, for

fixed s, an fy€ X’ with ||f,]| = 1 and f,(x(s)) = [|x(s)||- Hence the re-
verse inclusion A4 2||f|’?§1 A4; is true and so we have 4 =I1flfl-]sl 4;. By

oo o]

the Lemma, we obtain”ﬂr!"lSl Af= ‘ﬂl Ay, and so 4 = ‘ﬂl Ay,
s j= j=

Since the range {x(s); s € S} is separable, this range may, for any

positive integer #, be covered by a countable number of open spheres

Sin G=1,2,...) of radius § l/n. Let the centre of the sphere S;, be

I
%j. As proved above, ||%(s) — x;,|| is B-measurable in s. Hence the

set B, = {s€ S; x(s) € S;,} is B-measurable and S = U B;,. We set

—1

%,(8) = %;,, if s€Bj,=B;,— 'U1 B;,.
o

X

V8

Then, by S = _B,,,, we have |x(s) — x,(s)| < 1/n for every s€S.

9%
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Since Bj, is B-measurable, it is easy to see that each x,s) is strongly 8-
measurable. Therefore x(s), which is the strong limit of the sequence
{x4(s)}, is also strongly B-measurable.

Proof of the Lemma. Let a sequence {x,} be strongly dense in X.
Consider a mapping f— @,(f) = {f(x1), f(x2), . . ., f(%4)} of the unit
sphere S’ = {f€ X’; ||/|| =< 1} of X’ into an #-dimensional Hilbert space

” 1/2
1%(n) of vectors (&y,£s, . ..,£,) normed by | (€1, &2, -, &) || :<j‘—z;!§f’2)/ .
The space /2(n) being separable, there exists, for fixed #, a sequence
{fary (B=1,2,...) of S’ such that {p,(f,4); k=1, 2, ...} is dense in the
image @, (S’) of S’.
We thus have proved that, for any f, € S’, we can choose a subsequence
{famat (n =1,2,.. )suchthat |f,, (%) —fo(x)|<1ln(GE=12,...,n).
Hence "1’1_210 fama (%) =Ffo (%) (=1, 2,...), and so, by Theorem 10 in Chap-

ter V, 1, we obtain that lim f, ,, (¥) = f, (x) for every x € X.

6. Bochner’s Integral

Let %(s) be a finitely-valued function defined on a measure space
(S, B, m) with values in a B-space X; let x(s) be equal to x; % 0 on
B;€%B (+=1,2,...,n) where B;’s are disjoint and m(B;) < oo for

+=1,2,...,n, and moreover, x(s) = 0 on <S — 21 Bi>. Then we can

define the m-integral f x(s) m(ds) of x(s) over S by Z”xim(B,-). By
S =1

virtue of a limiting procedure, we can define the m-integral of more
general functions. More precisely, we have the

Definition. A function x (s) defined on a measure space (S, 8, m) with
values in a B-space X is said to be Bochner m-integrable, if there exists
a sequence of finitely-valued functions {x,(s)} which s-converges to x(s)
m-a.e. in such a way that

lim [ ||%(s) — %,(s) || m(ds) = 0. (1)
7—>00 S
For any set B € B, the Bochner m-integral of x(s) over B is defined by
[ x(s) m(ds) = s-im [ Cp(s) %,(s) m(ds), where Cg is the
7n—>00 §

B (2)
defining function of the set B.

To justify the above definition, we have to verify that the s-limit on
the right of (2) exists and that the value of this s-limit is independent of
the approximating sequence of functions {x,(s)}.

Justification of the Definition. First, x(s) is strongly B-measurable
and consequently the condition (1) has a sense, since [|x(s) -- %,(s) || is
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B-measurable as shown in the proof of Petti’s Theorem. From the in-
equality

H Bf % (s) m (ds) — Bf %4(s) m(ds)H = H :f (% (5) — 4 (5)) m(ds>H
gafnxus)—xk(s)ltm(ds) gsf || % (s) — (s)|| 7 (ds)
+sf||x(s)—~xk(s)”m(ds)

and the completeness of the space X, we see that s-lim f %y (8) m(ds)
7n—00 p

exists. It is clear also that this s-lim is independent of the approximating
sequence, since any two such sequences can be combined into a single
approximating sequence.

Theorem 1 (S. BoCHNER [1]). A strongly 8-measurable function x (s) is
Bochner m-integrable iff ||x(s) || is m-integrable.

Proof. The “only if”’ part. We have ||z (s)|| = ||z, (s) || + || % (s) — %u (s)][-
By the m-integrability of ||x,(s) || and the condition (1), it is clear that
|x(s) || is m-integrable and

Bf||x(s)|]m(ds)gé[‘Hxn(s)Hm((is) +§f||x(s)~x”(s)||m(ds).
Moreover, since

J 2@ 1= 116 [ md5) < [ l15a(6) = 2a(5) || (a5,

B

we see from (1) that lim [ ||x,(s)|| m(ds) exists so that we have
N0 3 .
Bf”x(s)“ m (ds) __S_"Ii:ToJ || % (5) || 7 (ds) .

The “if”” part. Let {x,(s)} be a sequence of finitely-valued functions
strongly convergent to x(s) m-a.e. Put

alS) = 5ale) i (a1 [I2() (1 + 279,
=0 i ()] %) (1 + 2.

Then the sequence of finitely-valued functions {y,, (s)} satisfies ||y, (s) || =
[|(s)|] - (1 + 27%) and lim |[x(s) — yu(s)|| =0 m-a.e. Thus, by the
7—00

m-integrability of ||x(s) ||, we may apply the Lebesgue-Fatou Lemma to
the functions ||x(s) — y,(s) || = [|#(s)]| (2 + 2!) and obtain

Jim [ 1% =3 (5) || m@s) =0,

that is, x(s) is Bochner m-integrable.
Corollary 1. The above proof shows that

[ 11x(s) || m(ds) = H [ x(s) m(ds)
B B
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and hence f x(s) m(ds) is m-absolutely continuous in the sense that

S-hﬂl xX\S) m dS — 0.
(B)—0 f ( ) ( )

The finite additivity f x(s) m(ds) = X | x(s) m(ds) is clear and

i=1pg;

L"l Bj
3=1
so, by virtue of the ¢-additivity of [ ||x(s)|jm(ds), we see that
B

[ x(s) m(ds) is o-additive, i.e.,
B

B = 2 B; with m (B;) < oo implies f x(s) m(ds)
oo
Z Bj

i=1

=s-lim 3 [ x(s) m(ds).

Corollary 2. Let T be a bounded linear operator on a B-space X into a
B-space Y. If x(s) is an X-valued Bochner m-integrable function, then
T x(s) is a Y-valued Bochner m-integrable function, and

[ Tx(s)m(ds) =T [ x(s) m(ds)
B B
Proof. Let a sequence of finitely-valued functions {y, (s)} satisfy
1) | S %@ (1 + 27 and silimy,(s) = 2(s) m-ace.
Then, by the linearity and the continuity of T', we have f Ty,(s) m(ds)=
B

T f V() m(ds). We have, moreover, by the continuity of T,
B

ITya@ I =TI lva@ =TIl [Ix6)] - (1 + 77 and
s;]_igxo Ty,(s) = Tx(s) m-a.e.

Hence T x(s) is also Bochner m-integrable and

f Tx(s) m(ds) = s-lim f Ty,(s) m(ds) =s-im T [ y,(s) m(ds)
n—>00 B

=fosm
B

Theorem 2 (S. BocHNER [1]). Let S be an #-dimensional euclidean
space, B the family of Baire sets of S, and m (B) the Lebesgue measure
of B. If x(s) is Bochner m-integrable, and it P (sy; «) is the parallelopiped
with centre at s, € S and side length 2, then we have the differentiation
theorem

s-lim (2)7" [ x(s) m(ds) = x(sy) for m-ae. s,.
* Psy;0)
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Proof. Put
@x)™ [ x(s) m(ds) = D(x; sy, ).
P(so;)
If {x s)} is a sequence of finitely-valued functions such that ||x,(s) || <
[|x(s)]| - (1 + »~1) and s- hm %, (s) = x(s) m-a.e., then

D(x; s, ) — x(so) = D (¥ — %; So, &) + D (x4; Sp, &) — x(so) ,
and so

h{r& [|D(%; so, &) —% (so) H<hmD [l — 25|15 so, )

+£1f% [|D (%5 S0, 0x) — 25 (50) || + || % (50) — % (s0) |-

The first term on the right is, by Lebesgue’s theorem of differentiation of
numerical functions, equal to [|x(so) — %4(so)|| 7-a.e. The second term
on the right is = 0 m-a.e., since x,(s) is finitely-valued. Hence

lim || D (x; so, o) — % (s0) || < 2 [| % (s0) — % (s0) || for m-a.e. so.

a0
Therefore, by letting £ — oo, we obtain Theorem 2.

Remark. Contrary to the caseof numerical functions, a B-space-
valued, og-additive, m-absolutely continuous function need not necessarily
be represented as a Bochner m-integral. This may be shown by a counter
example.

A Counter Example. Let S = [0, 1] and B the family of Baire sets
on [0, 1], and m (B) the Lebesgue measure of B € 8. Consider the totality
m[1/3, 2/3] of real-valued bounded functions & = £(6) defined on the
closed interval [1/3, 2/3] and normed by [|&|| = sup |£(6) |. We define

0

an m[1/3, 2/3]-valued function x (s) = &(0; s) defined on [0, 1] as follows:

the graph in s-y plane of the real-valued function y = y,(s),
which is the 0-coordinate &(8; s) of x(s), is the polygonal line
connecting the three points (0, 0), (6, 1) and (1, 0) in this order.

Then, if s 7= s’, we have Lipschitz’ condition:
[[(s =) (x(s) —2(s")|| = Sl;p [(s—s)2(E(0;s) —&(0; )| < 3.

Thus, starting with the interval function (x(s) — x(s)) taking values in
m[1/3, 2/3], we can define a ¢-additive, m-absolutely continuous set
function x(B) defined for Baire set B of [0, 1].

If this function x(B) is represented as a Bochner m-integral, then,
by the preceding Theorem 2, the function x (s) must be strongly differen-
tiable with respect to s m-a.e. Let the corresponding strong derivative
%' (s) be denoted by #(0; s) which takes values in 7 [1/3, 2/3]. Then, for
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every 0¢€ [1/3, 2/3] and m-a.e. s,
0= }xi_r»nlo‘l(x(s +h)—x(s))— 2 (s)]| = ’1’1_13 |AL(E(0; s + B) —E&(0;s))

—n(6;)].
This proves that £(0;s) must be differentiable in s m-a.e. for all 0 €
[1/8, 2/3). This is contradictory to the construction of £(6; s).

References for Chapter V

S. BaNacH [1], N. DUNFORD-]. ScHwARTz [1] and E. HiLLE-R. S.
PHirLrps [1].

Appendix to Chapter V. Weak Topologies and Duality
in Locally Convex Linear Topological Spaces

The present book is so designed that the reader may skip this appen-
dix in the first reading and proceed directly to the following chapters.

1. Polar Sets

Definition. Let X be a locally convex linear topological space. For
any set M C X, we define its (right) polar set M° by

M= {x"€ X'; sup |<x, 2'>| < 1}. (1)
€M

Similarly, for any set M’ C X', we define its (left) polar set °M' by
M ={xc X;sup [<x,2")| = 1} =X N (M")°, (@)
ZEM’

where we consider X to be embedded in its bidual (X})’.

A fundamental system of neighbourhoods of 0 in the weak topology
of X is given by the system of sets of the form °M" where M’ ranges over
arbitrary finite sets of X’. A fundamental system of neighbourhoods of
0 in the weak* topology of X’ is given by the system of sets of the form
M?° where M ranges over arbitrary finite sets of X. A fundamental
system of neighbourhoods of 0 in the strong topology of X’ is given by
the system of sets of the form M? where M ranges over arbitrary bounded
sets of X.

Proposition. M?is a convex, balanced set closed in the weak* topology
of X'.

Proof. For any fixed x € X, the linear functional f(x') = {x, x) is
continuous in the weak* topology of X’'. Thus M° = QM {m}° is closed

in the weak* topology of X’. The balanced convexity of M? is clear.
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An Application of Tychonov’s Theorem

Theorem 1. Let X be a locally convex linear topological space, and A
a convex, balanced neighbourhood of 0 of X. Then A?is compact in the
weak* topology of X'.

Proof. Let p (x) be the Minkowski functional of 4. Consider, for each
x€ X, a sphere S, ={2€C; |z| < p(x)} and the topological product
S = g S,. S is compact by Tychonov’s theorem. Any element x' € X’

is determined by the set of values x'(x) = <x, 2"y, x€ X. Since x €
(p(x) +€)A for any £> 0, we see that x'€ X' implies (x,x’) =
{(p(x) + ¢&)a, 2y with a certain a€ 4. Thus x € A° implies that
|x' (x)| = p(x) + &, that is, 2’ (x) € S,. Hence we may consider 4° as a
subset of S. Moreover, it is easy to verify that the topology induced on
A° by the weak* topology of X’ is the same as the topology induced on
A% in the Cartesian product topology of S = xg{ S;.

Hence it is sufficient to prove that 4%is a closed subset of S. Suppose
y = g{ y (%) is an element of the weak* closure of 4%in S. Consider any
x

€> 0 and any x;, x, € X. The set of all » = g{ u(x) € S such that

4

|“(x1) —y (%) l<8» % (%) — ¥ (%) I <eand l“("l + %) —y (% + xz)l< 3
is a neighbourhood of y in S. This neighbourhood contains some point
x" € A% and, since x’ is a continuous linear functional on X, we have

[y (o + %) —y (%) —y () | = |y (3 + %) — (3 + %, x|
+ [y 27> =y (1) | + [<ng, 27> — 1y (3,) | < 3e.
This proves that y(x; + x,) = y(%;) + ¥(#,). Similarly, we prove that
y(Bx) = By(x), and so y defines a linear functional on X. By the fact
that y = xg’ y(x) € S, we know that |y(x)| =< p(x). Since p(x) is con-

tinuous, y(x) is a continuous linear functional, i.e., ¥ € X’. On the other
hand, since y is a weak* accumulation point of 49, there exists, for any
€>0 and a€ 4, an x'€ 4° such that |y(a) —<a, )| < e Hence
|y(@)| < |<a, x> + e <1+ ¢ andso |y(a)| < 1, that is, y € A°
Corollary. The unit sphere S* = {x' € X’; ||x" || = 1} of the dual space
X, of a normed linear space X is compact in the weak* topology of X.

An Application of Mazur’s Theorem

Theorem 2. Let M be a convex, balanced closed set of a locally convex
linear topological space X. Then M = °(M?9).

Proof. It is clear that M C 9(M?9). If there exists an x,€ °(M°) — M,
then, by Mazur’s theorem 3 in Chapter IV, 6, there exists an x(') eX’
such that {x,, x> > 1and |[<x, xy> | = 1forall x € M. The last inequality
shows that x; € M and'so x, cannot belong to °(M9).
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2. Barrel Spaces

Definition. In a locally convex linear topological space X, any convex,
balanced and absorbing closed set is called a barrel (fonneau in Bourbaki’s
terminology). X is called a barrel space if each of its barrels is a neighbour-
hood of 0.

Theorem 1. A locally convex linear topological space X is a barrel
space if X is not of the first category.

Proof. Let T be a barrel in X. Since T is absorbing, X is the union of
closed sets nT = {nt; ¢t € T}, where » runs over positive integers. Since
Xis not of thefirst category, at least one of the (#T)’ s contains an interior
point. Hence T itself contains an interior point x,. If xy = 0, T is a neigh-
bourhood of 0. If x, # 0, then —x,€ T by the fact that T is balanced.
Thus —x, is an interior point of T with %, This proves that the convex
set T contains 0 = (x, — #,)/2 as an interior point.

Corollary 1. All locally convex F-spaces and, in particular, all B-
spaces and € (R") are barrel spaces.

Corollary 2. The metric linear space Dk (R”) is a barrel space.
Proof. Let {p;} be a Cauchy sequence with respect to the distance

dis(p, y) = 3 27 EmPoV s where p,(p) = sup [ Dip(3)].

m=0 lil<m,x€K

For any differential operator D7, the sequence {Dg, (%)} is equi-contin-
uous and equi-bounded, that is,
lim sup |Dig,(x!) — Digy(22)| = 0 and sup |Dig,(x)| << oo.
[#=21]40 k21 2K pZ1
This we see from the fact that, for any coordinate «x,,
sup
2€K k=1
exists a subsequence of {D’g, (¥)} which converges uniformly on K.
By the diagonal method, we may choose a subsequence {g;- (¥)} of {g; (x)}
such that, for any differential operator D7, the sequence {D’g;. (%)}
converges uniformly on K. Thus

%D"% (x)l <C co. Hence, by the Ascoli-Arzela theorem, there

im DI gy (x) = D’ =i "
Jm D7y (x) = D'g(x) where ¢ (x) = lim gp-(x),

and these limit relations hold uniformly on K. Hence the metric space
Dk (R") is complete and so it is not of the first category.

Remark. (i) The above proof shows that a bounded set of D (R") is
relatively compact in the topology of ® (R"). For, a bounded set B of
D (R") is contained in some Dk (R") where K is a compact set of R”, and,
moreover, the boundedness condition of B implies the equi-boundedness
and equi-continuity of {D’g; ¢ € B} for every D’. (ii) Similarly, we see
that any bounded set of €(R") is a relatively compact set of €(R").
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Corollary 3. D (R") is a barrel space.

Proof. D (R") being an inductive limit of {Dg (R")} when K ranges
over compact subsets of R”, the present corollary is a consequence of
the following

Proposition. Let a locally convex linear topological space X be an
inductive limit of its barrel subspaces X, « € 4. Then X itself is a barrel
space.

Proof. Let V be a barrel of X. By the continuity of the identical
mapping 7T, : x — x of X, into X, the inverse image T, (V) = VN X,
is closed with V. Thus V' N\ X, is a barrel of X,. X, being a barrel space,
V N X, is a neighbourhood of 0 of X,. X being an inductive limit of X,’s,
V must be a neighbourhood of 0 of X.

Theorem 2. Let X be a barrel space. Then the mapping x — Jx of X
into (X,);, defined in Chapter IV, 8, is a topological mapping of X onto
J X, where the topology of JX is provided with the relative topology
of JX as a subset of (X})..

Proof. Let B’ be a bounded set of X,. Then the polar set (B’)° =
{x" € (X))’"; sup |[<#,x"">| =< 1} of B’ is a neighbourhood of 0 of (X).,

ER

and it is a convex, balanced and absorbing set closed in*(X)).. Thus
(BN X =9%B’) is a convex, balanced and absorbing set of X. Asa
(left) polar set, %B’) is closed in the weak topology of X, and hence
9(B’) is closed in the original topology of X. Thus B’) = (B")°N\ X is
a barrel of X, and so it is a neighbourhood of 0 of X. Therefore, the
mapping ¥ — Jx of X into (X}), is continuous, because the topology of
(X)): is defined by a fundamental system of neighbourhoods of 0 of the
form (B’)?, where B’ ranges over bounded sets of X'.

Let, conversely, U be a convex, balanced and closed neighbourhood of
0 of X. Then, by the preceding section, U =%U?). Thus J U = J X N\ (U9)°.
On the other hand, U®is a bounded set of X, since, for any bounded set
B of X, there exists an &« > 0 such that « B C U and so (xB)° 2 U°.
Hence (U%0 is a neighbourhood of 0 of (X!).. Thus the image J U of the
neighbourhood U of 0 of X is a neighbourhood of 0 of J X provided with
the relative topology of J X as a subset of (X,)..

3. Semi-reflexivity and Reflexivity

Definition 1. A locally convex linear topological space X is called
semi-reflexive if every continuous linear functional on X_ is given by

{(x, x>, with a certain x € X. (1)

Thus X is semi-reflexive iff
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Definition 2. A locally convex linear topological space X is called
reflexive if

X = (X);. (3)
By Theorem 2 in the preceding section, we have

Proposition 1. A semi-reflexive space X isreflexive if X isa barrel space.

It is also clear, from Definition 2, that we have

Proposition 2. The strong dual of a reflexive space is reflexive.

Theorem 1. A locally convex linear topological space X is semi-
reflexive iff every closed, convex, balanced and bounded set of X is
compact in the weak topology of X.

Proof. Let X be semi-reflexive, and T a closed, convex, balanced and
bounded set of X. Then, by Theorem 2 in Section 1 of this Appendix,
T =9T?). T being a bounded set of X, T° is a neighbourhood of 0 of X&.
Thus, by Theorem 1 in Section 1 of this Appendix, (79)° is compact in the
weak* topology of (X;)’. Hence, by the semi-reflexivity of X, T = %(T?)
is compact in the weak topology of X.

We next prove the sufficiency part of Theorem 1. Take any x”’ € (X})'.
The strong continuity of x” on X| implies that there exists a bounded
set B of X such that

[<x', x> | = 1 whenever x’ € B°, that is, x” € (B%°.

We may assume that B is a convex, balanced and closed set of X. Thus,
by the hypothesis of Theorem 1, B is a compact set in the weak topology
of X. Hence B = B"” where B** denotes the closure of B in the weak
topology of X. Since X,, is embedded in (X}),. as a linear topological
subspace, we must have (B%? 2 B** = B. Therefore we have to show
that x” is an accumulation point of B in (X;),s. Consider the mapping
x> @ (x) = {(x, 1), . .., (%, %,)} of X into I2(n), where x3; . ..., x,€ X".
The image ¢ (B) is convex, balanced and compact, since B is convex,
balanced and weakly compact. If {(x3, "), . . ., {x,, x'")} does not belong
to @(B), then, by Mazur’s theorem, there would exists a point
{e1, . . ., cp} € I¥(m) such that sup ]Z ¢;{b, x,’)i < 1land (2 ¢ {x;, x")) >1,
beB |4 i
proving that } ¢;x; € B® and x” cannot belong to B%.
1

Theorem 2. A locally convex linear topological space X is reflexive
iff it is a barrel space and every closed, convex, balanced and bounded set
of X is compact in the weak topology of X. In particular, ® (R") and
€ (R") are reflexive.

Proof. The sufficiency part is proved already. We shall prove that
the first condition of Theorem 2 is necessary.
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Let T be a barrel of X. We shall prove that T absorbs any bounded
set B of X so that B® 2 & 7% & > 0. B° being a neighbourhood of 0 of
X;, we see that T%is a bounded set of X. By the Proposition and Theo-
rem 2in Section 1 of this Appendix, we have T' = 9(T?). By the hypothesis
that X is reflexive, we have {(T9) = (T9%%and so T = (79)°. Therefore we
have proved that the barrel T is a neighbourhood of 0 of X = (X))..
Hence X is a barrel space.

By hypothesis, the closed, convex and balanced set K=Conv (l U « B)“
x| <1

is compact in the weak topology of X. Here we denote by Conv (V)¢ the

closure in X of the convex closure (see p.28) Conv (N) of N. Set Y = U nK

and let p (x) be the Minkowski functional of K. Then since K is w-compact in
Y, p(x) defines a norm of Y. That is, the system {a K} with a > 0 defines a
fundamental system of neighbourhoods of the normed linear space Y, and
Y is a B-space since K is w-compact. Hence Y is a barrel space. On the
other hand, since K is a bounded set of X, the topology of Y defined by the
norm p (x) is stronger than the relative topology of Y as a subset of X.
As a barrel of X, T is closedin X. Hence TN\ Y is closed in Y with respect
to the topology defined by the norm # (x). Therefore T/ Y is a barrel
of the B-space Y, and so T/\ Y is a neighbourhood of 0 of the B-space
Y. We have thus proved that 7\ Y and, a fortiori, 7 both absorb
K 2 B.

4. The Eberlein-Shmulyan Theorem

This theorem is very important in view of its applications.

Theorem (EBERLEIN-SHMULYAN). A B-space X is reflexive iff it is
locally sequentially weakly compact; that is, X is reflexive iff every
strongly bounded sequence of X contains a subsequence which converges
weakly to an element of X.

For the proof we need two Lemmas:

Lemma 1. If the strong dual X_ of a B-space X is separable, then X
itself is separable.

Lemma 2 (S. BANACH). A linear subspace M’ of the dual space X’ of a
B-space X is weakly* closed iff M’ is boundedly weakly* closed; that is,
M’ is weakly* closed iff M’ contains all weak* accumulation points of
every strongly bounded subset of M’.

Lemma 1is already proved as a Lemma in Chapter V, 2. For Lemma 2,
we have only to prove its “if”’ part. It reads as follows.

Proof. (E. HiLLE-R. S. PHILLIPS [1]). We remark that M’ is strongly
closed by the hypothesis. Let x5 € M’. Then we can prove that, for each



142 Appendix to Chapter V. Weak Topologies and Duality

constant C satisfying the condition 0 << C < inf ||’ —x]], there exists
M
an %, € X with ||x,|| =< 1/C such that
(Zgy %y = 1 and (x5, 2> =0 forall x' € M. (1)

Thus the strongly closed set M’ must contain all of its weak* accumula-
tion points.

To prove the existence of x,, we choose an increasing sequence of
numbers {C,} such that C; = C and lim C, == co. Then there exists a

n—>00
finite subset o, of the unit sphere S = {x € X; ||x|| < 1} such that
[]#" —xp|| = Cy and sup |<x, ") — (x, %> | < C; implies 2’ € M'.
x€oy

If not, there would exists, corresponding to each finite subset ¢ of S, an
x, € M such that

[|#, — %]| = C, and 51€1p [<x, 2> — <z, %> | < Cy.

We order the sets o by inclusion relation and denote the weak* closure of
the set {x,; 0’ = o} by N.. Itis clear that N, enjoys the finite intersection
property. On the other hand, since M’ is boundedly weakly* closed,
the Corollary of Theorem 1 in this Appendix, 1, implies that the set

M — (e X = )
is weakly* compact. Hence N, C M, for C'= C, + ||xp||, and so there
exists an x; € N N, C M'. Hence we have sup |<x, %> —<{x, x> | < C;
° %€S

and so ||x; —x,|| = C,, contrary to the hypothesis that 0 < C, <
inf |[x" — = ]]-
vem

By a similar argument, we successively prove the existence of a se-

quence of finite subsets gy, gy, . . . of S such that
[|*" —x5|] = Cp and sup [<x, 2" — (x, x> | < C,
2€0¢
t=12...,k—1)
do not imply ' € M’.

Thus, since lim C; = oo, we see that ' € M’ if
1—00

[<x, "y —(x,%y| = C for all x¢€ (C/C))o; G=1,2,...).

Let {x,} be a sequence which successively exhausts the sets (C/C;)o;

(7=1,2,...). Then lim x, = 0 and so L (x') = {<x,, ">} is a bounded
7n—>00

linear transformation of X; into the B-space (c,). We know that the

point {<x,, xg»} € (c,) lies at a distance > C from the linear subspace
L(M'"). Thus, by Corollary of Theorem 3 in Capter IV, 6, there exists a
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continuous linear functional {x,} € (¢,)’ = (/) such that
[e ] [e ]
[|{oa} || 2”4:.‘1 len| = 1/C, néa,,(x,,, xe» =1 and
[e 0]
.S.‘lzx,,<x,,, %>=0 for all x'€¢ M.

oo
The element x, = El &y %, clearly satisfies condition (1).
e

Corollary. Let {¥',xy> = F(x') be a linear functional defined on
the dual space X’ of a B-space X. If N(F) =N (x;) = {x' € X'; F (¥') = 0}
is weakly* closed, then there exists an element x, such that

F(x') = (&', %y = (x5, &’y for all x'€X'. (2)

Proof. We may assume that N (F)# X’. Otherwise we can take
%= 0. Let xy€ X’ be such that F(xy) = 1. By (1) of the preceding
Lemma 2, there exists an x, € X such that

gy %y =1 and {xy, #'>) =0 for all x € N(F). (3)
Hence, for any x’ € X’, the functional
¥ —F(x)xyg=y€X'
satisfies F (y') = 0, i.e. ' € N (F). Therefore, by (3), we obtain (2).

Proof of the Theorem. “Only if” part. Let {x,} be a sequence of X
such that ||x,|| = 1. The strong closure X, of the subspace spanned by
{x,} is a separable B-space. Being a B-space, X, is a barrel space. We
shall show that X, is reflexive. Any strongly closed, bounded set B, of
X, is also a strongly closed, bounded set of X and hence B, is compact
in the weak topology of X by the reflexivity of X. But, as a strongly
closed linear subspace of X, X is closed in the weak topology of X (see
Theorem 3 in Chapter IV, 6). Hence B is compact in the weak topology
of X,. Thus X, is reflexive by Theorem 2 in the preceding section. We
have thus X, = ((X,).).- By Lemma 1 above, (X,) is thus separable. Let
{x,} be strongly dense in (X,).. Then the weak topology of X, is defined
by an enumerable sequence of semi-norms p,,(x) = |[{(x, x,,>| (m=
1,2, ...). Hence it is easy to see that the sequence {x,}, which is compact
in the weak topology of X, is sequentially weakly compact in X, and
in X as well. We have only to choose a subsequence {x,,.} of {x,} such
that finite 1ir£) (ry %y €Xists for m =1, 2, ...

“If” part. Let M be a bounded set of X, and assume that every in-
finite sequence of M contains a subsequence which converges weakly to
an element of X. We have to show that the closure M of M in X in the

weak topology of X is weakly compact in X. For, then the barrel space
X is reflexive by Theorem 2 in the preceding section.
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Since X, C (X!),., we have M = M N X,,, where M is the closure

of M in the weak* topology of (X7)'. Let S, be the sphere of X’ of radius
7 > 0 and centre 0. By the correspondence

ﬁam K&, my; ||x'|]| = 1} € 'IJS’I,_,, where

I, ={z;|z]| =< sup K¥', mD|},
3

M may be identified with a closed subset of the topological product
'IeIs ,I». By Tychonov’s theorem, Ie—Is 1 is compact and hence M is
conl1pact in the weak* topology of (XZ)'. Hence we have only to show
MCX,.

Let %y € (X;)’ be an accumulation point of the set M in the weak*
topology of (X;)'. To prove that xy € X,, we have only to show that the
set N (xg) = {x' € X'; (¥, xy» = 0} is weakly* closed. For, then, by the
above Corollary, there exists an x,€ X such that {x’, x5 = (%, x> for
all #" € X’. We shall first show that

for every finite set x}, %}, ..., x, of X', there exists a z€ M
such that (%, %> =<z, %) (1=1,2,...,7). (4)

The proof is as follows. Since ¥, is in the weak* closure of M, there is an
element z,, € M such that

[y %5y — x5, 200 | S 1m (7=1,2,...,n).

By hypothesis there exists a subsequence of {z,,} which converges weakly
to an element z € X and so z € M, since the sequential weak closure of M
is contained in M. We have thus (4).

Now, by Lemma 2, N (x;) is weakly* closed if, for every » > 0, the
set N(xg) NS, is weakly* closed. Let y; be in the weak* closure of
N (x5) N S;. We have to show that yy € N (xy) N S;. To this purpose, we
choose an arbitrary ¢ > 0 and construct three sequences {z,} C M,
{%} S M and {y,} CN(x5) \S; as follows: By (4) we can choose
a, % € M such that <{z;, yo> = {¥g, % »- %; being in the weak closure
of M, there exists an x, € M such that |<{x;, yo» — <2y, ¥o> | < €[4. y, being
in the weak* closure of N (xg) N\ Si, there exists a ¥; € N (x5) N S such
that |[{x,, y1> — (%3, ¥op | < £/4. Repeating the argument and remember-
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ing (4), we obtain {z,} < M, {x,} C M and {y,} C N(xy) N\ S such that
<21! y(')> = <y(,)r xg> ’
Ly Yo = {Yr %o » = 0 (m=1,2,...,n—1),
|y Yoy — s Yy | S €[4 (m=0,1,...,0—1),
|y Yy — <H Yoo | = /4 (=1,2,..., 7).
Thus we have
|V, 20> — Hi Yoy | S efd +efd=¢/2 (=1, 2,...,m). (6)
Since {x,} € M, there exists a subsequence of {,} which converges weakly

to an element x € M. Without losing the generality, we may assume that

the sequence {x,} itself converges weakly to x€ M. Hence, from (5),
[<%,Vm»| = &/4. Fromw-lim x, = xand Mazur’s theorem 2in ChapterV, 1,
7n—>00

()

n ”
there exists a convex combination u = 3 «;x; (ocj =20, X o= 1)
j=1 i=1

such that ||x — u || = &/4. Therefore, by (6),

[<yo, %07 — <, Y [ = 2o [0, %0)> — <%, Y0 | = &2,
and hence

[0, %D | = [{Yo» %0 — <t, Yu> | + [<8, yu> — <, vd | + (<%, y) |
< /2 + [lu— x| l3all + e/t < e.

As ¢ was arbitrary, we see that (yg, x5> = 0and so yg € N (xg). Combined
with the fact that S7is weakly* closed, we finally obtain yg€ N (xg) N\ Si.

Remark. As for the weak topologies and duality in B-spaces, there
is an extensive literature. See, e.g., the references in N. DUNFORD-
J. Scuwartz [1]. Sections 1, 2 and 3 of this Appendix are adapted
and modified from N. BourBaKI [1] and A. GROTHENDIECK [1]. It is
remarkable that necessary tools for proving this far reaching theorem of
EBERLEIN [1]-SHMULYAN [1] are found, in one form or other, in the book
of S. BANACH [1].

VI. Fourier Transform and Differential Equations

The Fourier transform is one of the most powerful tools in classical
and modern analysis. Its scope has recently been strikingly extended
thanks to the introduction of the notion of generalized functions of
S. L. SoBoLEV [1] and L. Scawartz [1]. The extension has been applied
successfully to the theory of linear partial differential equations by
L. EHRENPREIS, B. MALGRANGE and especially by L. HORMANDER [6].

10 Yosida, Functional Analysis



146 VI. Fourier Transform and Differential Equations

1. The Fourier Transform of Rapidly Decreasing Functions

Definition 1. We denote by & (R") the totality of functions f € C*(R")
such that

sup [ D%/ (3) | < oo (x” —1I x”) (1)
#€R" i=1
for every o« = (0¢y, g, . - ., &) and § = (B, Be, - - -, B,) With non-negative

integers «; and ;. Such functions are called rapidly decreasing (at oo).

Example. exp(—|x[?) and functions f€ C3°(R") are rapidly decreas-
ing.

Proposition 1. S(R") is a locally convex linear topological space by
the algebraic operation of function sum and multiplication of functions
by complex numbers, and by the topology defined by the system of
semi-norms of the form

p(f) = sup | P (x) D*f(x)|, where P (x) denotes a polynomial.  (2)
ZER™

Proposition 2. & (R") is closed with respect to the application of
linear partial differential operators with polynomial coefficients.

Proposition 3. With respect to the topology of &(R"), Cg°(R") is a
dense subset of & (R").

Proof. Let f€ &(R") and take g € C3°(R") such that ¢ (x) = 1 when
|%| =< 1. Then, for any & > 0, f,(x) = f(x) y(ex) € C§° (R"). By applying
Leibniz’ rule of differentiation of the product of functions, we see that

D*(fo(x) — /(%)) = D*{f (%) (w(ex) — 1)}

is a finite linear combination of terms of the form
Df(x) - ()" {D"p(9)}yer, Where |B| + || = |x| with |y|>0,

and the term D*f(x) - (y (ex) — 1). Thus it is easy to see that f, (x) tends
to f(x) in the topology of & (R") when ¢ | 0.
Definition 2. For any f€ &(R"), define its Fourier transform f by

F&) = @)™ [ ¢ f(x) dx, (3)

&n
where &= (£, &, ..., &), %= (%, %, - . ., %), <& %> =,-;‘:; g% and
dx = dx, dx, . . . dx,. We also define the inverse Fourier transform g of
g€ G(R") by

E(x) = (22)7" [ £@0 g () aE. (4)

Proposition 4. The Fourier transform: f— f maps G (R") linearly
and continuously into & (R"). The inverse Fourier transform: g — g also
maps & (R") linearly and continuously into & (R").
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Proof. Differentiating formally under the integral sign, we have
D] (§) = (2a) ™2 [ ¢ %) (i)l 2} (x) dx. (5)
The formal differentiation is permitted since the right hand side is, by

(1), uniformly convergent in & Thus f€ C*®(R"). Similarly, we have, by
integration by parts,

@) EPF(E) = (2m) ™2 [ e7*¢*) DPf(x)dx. (6)

Thus we have
(5) 8141l g8 D= F (£) = (27) "2 [ ¢=+@*) DB(x=f(x))dx, (7
and (7) proves that the mapping f — f is continuous in the topology of

&(R").
Theorem 1 (Fourier’s integral theorem). Fourier’s inversion theorem
holds:

Fo) = @n)"2 [ [(&) & = (), ie., wehave  (8)
fz = f, and similarly ? =f. 8"

Therefore it is easy to see that the Fourier transform maps & (R") onto
@& (R") linearly and continuously in both directions, and the inverse Fourier
transform gives the inverse mapping of the Fourier transform.

Proof. We have

Je@ 7 ¢ as = [§0) f(x + y) dy (fand g€ B(RY).  (9)
In fact, the left hand side is equal to
fg {(2n) —nlzfg—t(éy)f dy} e tEge
— @) [{[ g6) =0 dg} 1 (y) d
=[e0—010)dy=[g0) f(x + ) dy.
If we take g(e&) for g(£), € > 0, then
(2m)="% [0 g (c8)df = (2) ™2 67" [ g(x) e~ 01 dz = 7" § (y)e).
Hence, by (9),
Je€d) 1) é¥ as = [giy) f(x + ey) dy.
We shall take, following F. RiEsz, g (x) =¢ "2 and let ¢ |, 0. Then
0) [ &0 at =1 [¢0)
This proves (8), since g(0) = 1 and f g(y)dy = (27z)"/2 by the well-
known facts:
(2m) "2 [ eI g=i0) gy — 12 (10)
@) [ e R dy = 1. (10"
10*
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Remark. For the sake of completeness, we will give the proof of (10).
We have
1

2
(2n)-—ll2 f 6—!’/2 e-—-iut dat — e—u’/2(2n)—ll2 f e—(H»iu)’lZ dt.
—a —A
Let » > 0, and integrate the function ¢ *2 which is holomorphic in z ==
¢t 4+ tu, along the curve consisting of the oriented segments

—A A MA+tu, A4+ 1u,—A 4+ tu and — A + 1u, — A
in this order. By Cauchy’s integral theorem, the integral vanishes. Thus

i A
(27t)—”2 f e—(t+iu)’/2 it = (27’!)_1/2 f e—t'/2 dt
—A —a

0
+ (2m)712 f e~ CAMNZ iy,

u
u
+ @)V [ G gy,
0

The second and third terms on the right tend to 0 as A — oo, and so, by
(10,
(2n)——1/2 foo e—t’/2 g—itu dt — e—u‘/2 (2n)——1/2 ‘7.06—”/2 dt — e—“.lz_
—00 —00
We have thus proved (10) for the case » = 1, and it is easy to prove the

case of a general » by reducing it to the case n = 1.
Corollary (Parseval’s relation). We have

[F®eE d/:':ffx g(x) dx, (11)
[1&) ) d& = [F(x) g (x) dx, (12)
(F%g) = (2m)"f - & and <2n)"’2 e =ixe, (13)

where the convolution f % g is defined through
(%)) =[fx—y) e dy = [g(x—n) fdy.  (14)
Proof. (11) is obtained from (9) by putting x = 0. (12) is obtained

from (11) by observing that the Fourier transform of g is equal tog . We
next show that

) n/2f f*g —i(f,x) dx
— (©2n) n/2f (v) —z(EJ’){f/ (x —y) €€ qx} dy (15)
= (27)"2 F (&) 2(&).

Since the product f-g of functions f and g € &(R") is again a function
of &(R"), we know that the right hand side of (15) belongs to & (R").
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It is easy to see that, the convolution f % g of two functions of & (R") belongs
also to G (R"). Thus we have proved the first formula of (13). The second
formula may be proved similarly to (9) by (15).

Theorem 2 (Poisson’s Summation Formula). Let ¢ € &(R!) and
@ € &(RY) its Fourier transform. Then we have

S g@an= 3 j@). (16)

7=—00 7%=—00

oo
Proof. Set f(x) = X @(x + 2zn). This series is absolutely conver-
7n=—00

gent, € C* and f (x 4 2x) = f(x), as may be proved by the fact that ¢ (x)
is rapidly decreasing at co. In particular, both sides of (16) are convergent.
We have to prove the equality.

The Fourier coefficients ¢, of f(x) with respect to the complete ortho-
normal system {(27) Y2 e=**; k = 0, +-1, 4 2, ...} of L%(0, 2) are given
by

27 ) 00 27 )
cy = (27)~ 12 Oj fx) e dx =2 (2n)—1/2oj @(x + 27tm) e dx
2n(n+1) .

= 3 @ [ g Mdr=¢k).
27en

n=—00

Thus, by f€ L2(0, 2x), we have

1) =, & gl + 2am) =Lim. X G(k)

- x - :
However, since ¢ (x) € &(R"), the seriesk > ¢(k) ¢* converges absolu-
=—00

tely. Hence
> > - ik
> (x+2nn)zk£w¢ (R) ™%,

n=—00

and so we obtain (16) by setting x = 0.
Example. We have, by (10),
(o)

. oo _
(2n)—ll2 f e—tx’ e—‘.'xy dx = (27!)_112 f e—x‘/2 e—-ixy/}/2t (zt)—-l/z dx

—00 —0o0
= (2¢)7 V2P > 0.

Hence, by (16), we obtain the so-called §-formula:

asd 2402 x 3 )
3 = 3 (2R > 0., (17)

7n=—00 7n=-—00

2. The Fourier Transform of Tempered Distributions

Definition 1. A linear functional T defined and continuous on & (R")
is called a fempered distribution (in R"). The totality of tempered distri-
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butions is denoted by &(R")’. As a dual space of G(R"), G(R") is a
locally convex linear topological space by the strong dual topology.

Proposition 1. Since C§° (R”) is contained in & (R") as an abstract set,
and since the topology in D (R") is stronger than the topology in & (R"),
the restriction of a tempered distribution to C§°(R") is a distribution in
R*. Two different tempered distributions define, when restricted to
C3° (R™), two different distributions in R”, because Cg°(R") is dense in
& (R”™) with respect to the topology of & (R"), and hence a distribution
€ & (R")’ which vanishes on C (R”) must vanish on & (R"). Therefore

(R < D(RY)". 1)

Example 1. A distribution in R” with a compact support surely be-
longs to & (R")’. Therefore

E(R") < G(RY)'. (2)

Example 2. A o-finite, non-negative measure u (dx) which is o-additive

on Baire sets of R” is called a slowly increasing measure, if, for some non-

negative &,
[+ (2B ) < oo (3
Rﬂ

Such a measure u defines a tempered distribution by
T.(p) = [o() p(dr), pc S(R"). (4)
Rﬁ

For, by the condition ¢ € &(R"), we have @(x) = 0((L + |x[)7*) for
large |%|.
Example 3. As a special case of Example 2, any function /€ L?(R"),
p = 1, defines a tempered distribution
Ti(@) = [@(*) f(x) dx, p€ B(R"). 4)
Rﬂ
That an f€ L?(R") gives rise to a slowly increasing measure u(dx) =
|#(x) | dx may be proved by applying Holder’s inequality to
[+ 27" |f )| dx.
Rﬂ
Definition 2. A function f¢€ C°° (R™ is called slowly increasing (at
o0), if, for any differentiation D’, there exists a non-negative integer N
such that ‘
lim [x[~V | D/ f(x)| = 0. (5)
|#]—00
The totality of slowly increasing functions will be denoted by Dy (R”).

It is a locally convex linear topological space by the algebraic operations
of function sum and multiplication of functions by complex numbers,
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and by the topology defined by the system of semi-norms of the form

p () = a1 (f) = sup |h(x) D’ f ()], (R"), (6)
2€R"

where 4 (x) is an arbitrary function € & (R") and D’ an arbitrary differen-

tiation. As may be seen by applying Leibniz’ formula of differentiation

of the product of functions, 4 (x) D’f(x) € &(R") and so p, 5, (f) is finite

for every f € Dy (R"). Moreover, if p, ,,;(f) = 0 for all A€ G(R") and D3,

then f(x) = 0 as may be seen by taking D = I and 4 € D (R").

Proposition 2. C§° (R") is dense in £,, (R") with respect to the topology
of Oy (R").

Proof. Let /€ O, (R"), and take y € C§°(R") such that ¢ (x) = 1 for
|x] = 1. Then f,(x) = f(x) p(ex) € C§°(R") for any &> 0. As in Pro-
position 3 in Chapter VI, 1, we easily prove that £, (x) tends to f(x) in the
topology of £,s(R") when ¢ 0.

Proposition 3. Any function /€ £, (R") defines a tempered distribu-
tion

= [16) o) dr g€ SR, ()

Definition 3. As in the case of a distribution in R", we can define the
generalized derivative of a tempered distribution T by
DT (¢) = (—1)HT (D'g), pc S(R"), (8)
since the mapping ¢ (x) - D (x) of &(R") into &(R") is linear and
continuous in the topology of & (R"). We can also define a multiplication
by a function f € Oy (R") to a distribution T € & (R")’ through
(T) (@) =T (fp), p€ G(R)", (9)

since the mapping ¢ () — f(x) ¢ (x) of G(R") into &(R") is linear and
continuous in the topology of & (R").

The Fourier Transform of Tempered Distributions
Definition 4. Since the mapping ¢ (x) = ¢ (x) of &(R") onto &(R"
is linear and continuous in the topology of & (R"), we can define the
Fourier transform T of a tempered distribution T as the tempered
distribution T defined through

T@) =T(g), g€ S(R". (10)
Example 1. If € L' (R"), then
T; = Ty, where f(x) = (2a) ™2 [ ¢7*®#) f(¢) d&, (11)
Rﬂ

as may be seen by changing the order of integration in f",((p) =

[ 1) -9 (%) dx = 272 [ f(x) {fe_“”E)(p(E) dg} dx.

R™ R™
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Remark. In the above sense, the Fourier transform of a tempered
distribution is a generalization of the ordinary Fourier transform of
functions.

Proposition 4. If we define

-

fx) =f(—2), (12)
then Fourier’s integral theorem in the preceding Section 1 is expressed by
f=1. je6([R"). (13)

Corollary 1 (Fourier’s integral theorem). Fourier’s integral theorem
is generalized to tempered distributions as follows:
* hd hd v
T =T, where T(p) =T (p). (14)
In particular, the Fourier transform T — T maps & (R")’ linearly onto
@ ( R")'.
Proof. We have, by definition,
T@p) =T(p)=T@) =T(p) for all p€ S(R").

Corollary 2. The Fourier transform T" — T and its inverse are linear
and continuous on & (R*)’ onto & (R™)’ with respect to the weak* topology

of G(R™)":
lim T, (p) = T (p) for all p € G(R") implies that
lim T (p) = T (p) for all p€ S(R"). (15)
Here the inverse of the mapping T — T is defined by the inverse Fourier
transform T — T given by
T(p)=T() 9 S(R"). (10
Example 2.

-

Ty = (2n) "2 Ty, Ty = (27)"2T,. (16)

Proof. T4(p) = T5() = $(0) = (22)™* [ 1-9(y) dy =

Rﬂ
@n)"2 T, (¢),and Ty = Ty = T = (27) "2 T.
Example 3.
N o
P -
(%, T) = — (0T [ox;). (18)
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Proof. We have, by (5) in Chapter VI, 1,
B . . P
(0T [ox;) (9) = (0T |ox;) (p) = — T (0p[0x;) = — T (—ix; p (x))

P Lo
= T (i%jp) = (1%T) (p).
We also have, by (6) in Chapter VI, 1,

P

(57T) () = (xT) (3) = T (ix¢) = T (Bp|ox) = T (op/ox;)
=—(9T/a%)) (@)-

Plancherel’s Theorem. If /€ L2(R"), then the Fourier transform f}
of T} is defined by a function f€ L%(R"), i..,

T, = T; with fe L*(R"), (19)
and
0o 7 2 1/2 — 2 1/2: .
HfH—(Rf" @) dx) <R{ |1(x)| dx> Il (20)

Proof. We have, by Schwarz’ inequality,
1 T5@) = [T4()| = x de < ||l lell = i1l llel]- (

The equality above ||p|| = H(p |l is proved in (12) of the preceding section
1. Hence, by F. Riesz’ representation theorem in the Hilbert space L?(R"),
there exists a uniquely determined f¢ L?(R") such that

Ty (g f(p (x) f(x) dx = T} (g), that is,
2
f}‘x %) dx = ff x) dx for all p € &(R"). (22)
Rn

Moreover, we have, from (21), ||f|| = ||f || since & (R") is dense in L2 (R")

in the topology of L?(R"). We have thus ]|? Il < |IF Il < ||f]l- On the other
hand, we have, by (13) and (22),

[F(%) p(x) dx = ff (%) dx = f/ (—%) @) dx for all p€ S(RY),
Rn
that is,

f(x) = f(—x) = [ (x) ae. (23)
Thus ||f || = ||f]| and so, combined with ||f|| < ||f]| < ||#||, we obtain

Definition 5. The above obtained f(x) € L?(R") is called the Fourier
transform of the function f(x) € L?(R").
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Corollary 1. We have, for any f€ L%(R"),
f(x) =Lim. (2n) =2 [ 7% f(y) dy. (24)
htoo )

Proof. Put
fs(®) = f(x) or = 0 according as |x| < A or [x]| > .
'}‘hen »l—lfg ][fh—/|| =0 and so, by (20), hl_l)rg [I/s—f|| = 0, that is,
f(x) = lhl_gg f»(x) a.e. But, by (22),

[ h(x) px) dx = f/;.(x)&)(x) dx

Rn

[ 1 x){ @m)™" [ g (y) dy}dx
Rn

lesh

which is, by changing the order of integration, equal to

[ (27) "/2{ [ e 1) dx} 9 () dy,

R'l
since f;(x) is integrable over |x| < & as may be seen by Schwarz’ ine-
quality. Thus f, (x) = (22)™"2 [ ¢***) f(y) dy a.e., and so we obtain
(24). l#|=h

Corollary 2. The Fourier transform f— f maps L?(R") onto L2(R")

in a one-one-manner such that

(f.8) = (£, 8) for all f, g€ L*(R"). (25)
Proof. Like the Fourier transform f— f, the inverse Fourier trans-

form f— f defined by
flx %) = Lim. (27) i f & f(y) dy (26)
Iyl=

maps L?(R") into L?(R") in such a way that ||f|| = ||/||- Hence we see
that the Fourier transform f— f maps L?(R") onto L% (R") in a one-one
way such that ||f|| = ||f||. Hence, by the linearity of the Fourier trans-
form and
xy) =42 (lx +y[F=[lx—yIP) + 472 i(|[x + iy [P =[x —iy[]),
we obtain (25).
Parseval’s Theorem for the Fourier Transform. Let f,(x) and f,(x)

both belong to L2(R"), and let their Fourier transforms be f, (%) and f; (%),
respectively. Then

[h@faw) du = [ #(x) fo(—2) dx, (27)
Rn R®
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and so
f Fo(w) fo(w) € au = [ (9) fo(x — ) dy. (28)
Rn

Thus, if ; (4) f5(u) as well as both its factors belong to L*(R"), it is the
Fourier transform of

(27) 2 f h®) fa(x —y) ay. (29)

This will also be true if f; (x), f2(x) and (29) all belong to L% (R").
Proof. It is easy to see that
(2) "2 ffz —2) e ) dx = o),

and so, by (25), we obtain (27) Next, since the Fourier transform of the
function of y, f,(x — %), is fp(u) e~*¢*® containing a parameter x, we

obtain (28) by (25). The rest of the Theorem is clear from (28) and f = /.
The Negative Norm. The Sobolev space W*%() was defined in
Chapter I, 9. Let f(x) € W»%(R"). Since f(x) € L*(R"), f gives rise to a
slowly increasing measure |f(x) | dx in R". Thus we can define the Fourier
transform Tf of the tempered distribution 7;. We have, by (17),

N L -
D*T; = () JIEARD

By the definition of the space W”(R”) D* T;€ LE(R") for |a| < k.
Thus, by Plancherel’s theorem for L*(R"),

HD"‘T,HO = ||D*Ty||o, where ||||o is the L*(R")-norm.

Hence we see that (1 + |x[*)*2 T, € L?(R"), and so it is easy to show that
the norm |[/]x =< f‘: f |D* T, dx)”2 is equivalent to the norm
x| <k R

1@+ (=B Iy llo = [I/[ls. (80)
in the sense that there exist two positive constants ¢, and ¢, for which we
have

¢; < ||HI8/||f|] = ¢, whenever fe W*2(R").

We may thus renorm the space W*%(R") byllf|[;; W*%(R") may thus
be defined as the totality of /€ L*(R") such that ||/|| is finite. One ad-
vantage of the new formulation of W*2% (R") is that we may also consider the
case of a negative exponent k. Then, as in the case of L?(R") pertaining
to the ordinary Lebesgue measure dx, we see that the dual space of the
renormed space W*?(R") is the space W™*%(R") normed by ||f||_s.
This observation due to L. SCHWARTZ [5] is of an earlier date than the
introduction of the negative norm by P. Lax [2].
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3. Convolutions

We define the convolution (Faltung) of two functions f, g of C(R"), one
of which has a compact support, by (cf. the case in which f, g€ G(R")
in Chapter VI, 1)

(f*g) (x ffx— y) dy = ff(y —y)dy = (g%f) (x). (1)

Suggested by this formula, we define the convolution of a T € D (R")' and
a@p€EDR") (oraT e E(R") and a p € E(R™) by
(T *¢) () = Tpyy (p(x — ), (2)

where T',; indicates that we apply the distribution T on test functions
of y.

Proposition 1. (T * @) (x) € C*°(R") and supp (T % ¢) C supp(7T) +
supp (p), that is,
supp(T * @) S {w€ R"; w = x 4y, x € supp(T), y € supp (p)}.
Moreover, we have
DT % ¢) = T % (D* ¢) = (D*T) % g. (3)
Proof. Let ¢ € D(R") (or € E(R™Y). If %irr& x* = x, then, as func-
tions of y, %ing (¥ —y) =¢(x—1y) in D(R") (or in E(R"). Hence

Ty (@(x —y)) = (T *¢) (x) is continuous in x. The inclusion relation
of the supports is proved by the fact that T,; (¢ (¥ — v)) = 0 unless the
support of T and that of ¢ (x — ) as a function of y meet. Next let ¢; be
the unit vector of R* along the xj-axis and consider the expression

Ty (lp(x + hej—y) —@(x—y)/h).
When % — 0, the function enclosed by the outer parenthesis converges,
as a function of y, to (g—j) (x —9) in D(R™) (or in €(R")). Thus we have
proved
4
2T x) () = (T % 22) ().

Moreover, we have

(1% 52) () = Ty (- 252) = T o — ) = () ().

Proposition 2. If ¢ and y are in D (R") and T € D (R")’ (or p € E(R"),
Y€ D(R") and T € E(R")’), then

(Txg)*xyp=Tx(p*y). (4)
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Proof. We approximate the function (¢ % ) (x) by the Riemann sum
hx) = W Zox—kh)p(kh),

where 2> 0 and % ranges over points of R" with integral coordinates.
Then, for every differentiation D* and for every compact set of x,

D*fy(x) = h" X D%p(x — kh) y(kh)
converges, as & |, 0, to ((D*®) %* p) (x) = (D*(p %* y)) (¥) uniformly in x.
Hence we see that }1'i¢ng Hh =@ *ypin D(R") (or in E(R")). Therefore, by
the linearity and the continuity of 7', we have
(Txp*v) () =Hm (% ) () =lim #" X (T % g) (x — kh) p (k)

= ((T * ) * y) (x).

Definition. Let ¢ € ® (R”") be non-negative, f @ dx = 1 and such that
supp (p) € {x € R*; |x| = 1}. We may, for instI:l;ce, take
@ (x) = exp (1/(|x[2—1))/ ML exp (1/(|#[F—1))dx if | x| <1,
=0if|x| =1

n

We write ¢, (x) for e " @(x/e), € > 0, and call T % @, the regularization
of T € D(R") (or € E(R")") through ¢, (x)’s (Cf. Chapter I, 1).

Theorem 1. Let T € D(R")" (or € €(R")'). Then hr(r)l (T*¢,)=Tin
the weak* topology of D (R")" (or of €(R")’). In this sense, ¢, is called
an approximate identity.

For the proof we prepare a

Lemma. For any € D (R") (or € €(R")), we have li% PRP =y
in D (R*) (or in E(R™)).
Proof. We first observe that supp(y * ¢,) C supp(y) + supp(p,) =

supp () + . We have, by (3), D*(yp % ¢,) = (D*yp) * ¢,. Hence we
have to show that li?g (v %* @) (¥) = p(x) uniformly on any compact set

of x. But, byfq),(y) dy =1,
(pxg) () — vl = [{wr—y —p@}e.0) dy.
Rﬂ
Therefore, by ¢,(x) = 0, f @.(y) dy = 1 and the uniform continuity of
R'l
% (x) on any compact interval of x, we obtain the Lemma.
Proof of Theorem 1. We have, by 9 (x) = y(—=x),

T(y) = (T * %) (0). (5)
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Hence we have to prove that lﬁrg (T * @) % ) (0 (T %* ) (0). But,

as proved in 4, (T *(pe)*tp =T x—(%*zp) and so, by (5),
(T* cp,*y))) = T((p.*9)"). Hence weobtamhm( T x @) * ¢) (0

v )=T(y by the Lemma.
We next prove a theorem which concerns with a characterization of
the operation of convolution.

Theorem 2 (L. ScHWARTZ). Let L be a continuous linear mapping on
D (R") into E(R") such that

Lr,p = 1,Lp for any A€ R" and ¢ € D (R"), (6)
where the translation operator 7, is defined by
up(*) =@ —h). (M

Then there exists a uniquely determined T € ®(R")" such that Lo ==
T % ¢. Conversely, any T € D(R")" defines a continuous linear map L
on ®(R") into E(R"™) by Lo = T x ¢ such that L satisfies (6).

Proof. Since ¢ — @ is a continuous linear map of D (R*) onto D (R*),
the linear map T : ¢ — (L) (0) defines a distribution T € D (R")’. Hence,
by (5), (L) (0) = T (p) = (T * ¢) (0). If we replace p by 7, and make
use of condition (6), then we obtain (Lg) (k) = (T * ¢) (k). The
converse part of Theorem 2 is easily proved by (2), Proposition 1 and (5).

Corollary. Let T,€ ®(R")’ and T,€ €(R")'. Then the convolution
T,% T, may be defined, through the continuous linear map L on
D (R") into E(R") as follows:

(Ty*Ty) *p=L(p) =T, % (T, % ¢), p€ D(R"). (@)

Proof. The mapgp — T, % ¢ is continuous linear on ®(R") into

D (R"), since supp(T,) is compact. Hence the map ¢ — T % (T, % ¢)

is continuous linear on ® (R”) into E(R"). It is easily verified that condi-
tion (6) is satisfied for the present L. .

Remark. We see, by (4), that the above definition of the convolution

T, % T, agrees with the previous one in the case where T, is defined by

a function € ® (R"). It is to be noted that we may also define T, % T, by

(T1 % Ty) (p) = (Tan X Ta) (p(x + 9)), o € DR, (8)’
where T, X Ty, is the tensor product of T, and T,. See L. SCHWARTZ
(1].

Theorem 3. Let T, € D(R")" and T,€ E€(R")’. Then we can define
another “convolution” T, B T, through the continuous linear map L:
@ —> Ty % (T, %¢) on D(R") into E(R")
as follows. (T80 T,) (¥*¢) = L(gp), p € D(R"). Then we can prove T,H
T,=T,%T, so that the convolution is commutative if it is defined
eitheras T, x Tyoras T, @ T,.
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Proof. The map ¢ — T, % ¢ is linear continuous on P(R") into
E(R"). Hence the map ¢ — T,% (T; % ¢) is linear continuous on
D (R") into €(R"). Thus Ty(4 T, is well-defined. Next, we have for any
P19z € D(R),

(Ty % Ty) * (y % @g) = Ty % (Ty % (py % @p)) = Ty % (T, % ) * @)
=Ty % (pp % (Ty % 1)) = (T % o) * (T, % y)

by the commutativity of the convolution of functions and Proposition 2,
observing that supp (T, ¢;) is compact because of T,¢€ EG(R") .
Similarly we obtain

(Tl Ty) * (py % @g) = T % (T % (py % @g)) = T % ((T; % @p) % ®1)
= Ty % (y % (Ty % @p)) = (T % @) % (T % @,).
Thus (T % T,) * (@, % @p) = (T8 T;) * (p; * @p), and so, by (b)

and the Lemma above, we obtain (T % T,) (p) = (T,61,) (¢) for all
@€ D(RY), that is, (T, % T,) = (T, Ty).

Corollary
Ty% (Ty% Ty) = (Ty % Ty) % Ty

ifall T; except one have compact support,
D*(Ty % Ty) = (D*Ty) % T, =T, % (D*T,). (10)
Proof. We have, by (5) and the definition of T % T,
(Ty % (Ty % Ty)) (9) = ((Ty % (T % Ty)) * @) (0)
= (Ty* (T, % Ty) % §)) (0)
= (Tl * (T % (Ty % é))) (0)
and similarly
(Ty* Ty) * Ty) (p) = (T1 * (Ty % (T3 * @))) (0),

so that (9) holds.
The proof of (10) is as follows. We observe that, by (3),

(D°Ty) % ¢ = Ty % (D) = D*(Ts % ¢) = Do, (11)
which implies
(D*T)*@=T% (D*¢) =T % ((D*T,) % ¢) = (T % D*Ty) * ¢,
that is, by (5),
D*T = (D*T4) * T. (12)
Hence, by the commutativity (Theorem 3) and the associativity (9),
D*(Ty % Ty) = (D*Ty) % (Ty ¥ Tg) =((D°T) % I1) % Ty = (D*Ty) * T,
= (D*Ty) % (Ty%T;) =((D*Tg) % Tp)% Ty=(D*Ty)*T;.
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The Fourier Transform of the Convolution. We first prove a theorem
which will be sharpened to the Paley-Wiener theorem in the next sec-
tion.

Theorem 4. The Fourier transform of a distribution 7 € E(R")’ is
given by the function
T(§) = @a)™ Ty (7). (13)
Proof. When ¢ | 0, the regularization T, = T % ¢, tends to T in the
weak* topology of €(R™’ and a fortiori in the weak* topology of & (R")".
This we see from (T % @) () = (T * (@ * 9)) (0) = Tp((ge * ¥) (—))
and the Lemma. Thus, by the continuity of the Fourier transform in the
~ .
weak* topology of & (R")’, liﬂ)) (T * @) =T in the weak* topology of
&(R™'. Now formula (13) is clear for the distribution defined by the
function (T % ¢,) (x). Hence

(2m)"? (T/*\ @e) (&) = (T % @) (€58,

which is, by (5), = (Tpn* (pe%* ¢ %)) (0) = Ty (@ % e7*49)).
The last expression tends, as ¢ | 0, to T’ (e’("’f)) uniformly in & on any
bounded set of & of the complex #n-space. This proves Theorem 4.

Theorem 5. If we define the convolution of a distribution T € & (R")’
and a function @€ &(R") by (T * ¢) (x) = Tp,;(p(x —9)), then the
linear map L on &(R") into €(R"): ¢ — T % ¢ is characterized by the
continuity and the translation invariance 7,L = L1,.

Proof. Similar to the proof of Theorem 2.
Theorem 6. If T ¢ S(R")" and ¢ € & (R"), then

P w2~ A
(T*g) = (2n)" T (14)
If T, € G(R" and T,€ G(R"’, then
N ” .
(T, * Ty) = (2n)"* T, - I, (15)

which has a sense since, as proved above in Theorem 4, T, is given by
a function.

Proof. Let y € G(R"). Then the Fourier transform of ¢ - y is, by (13)
of Chapter VI, 1, equal to (27)""2 ¢ % 9 = (27) ™% @ % 9. Thus
P
(T%9) (v) = (T %) ) =(T*9)%$) (0) = (T * (p%p)) (0)
=T(p*9) ) =TE*P =T(22)" G y)")
= @) T (py) = 22)"* ¢ T (v),
which proves (14).
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Let o, be the regularization T, % ¢,. Then the Fourier transform of
Ty % yp, = Ty % (Ty % @) = (T1 % T) * ¢, is, by (14), equal to
A . o o A A P .
(27)" Ty - s = (220)"* Ty - (220)" Ty - 9y = (22)"2 (Ty % T) - .
Hence we obtain (15), by letting ¢ | 0 and using liinol @o(x) = 1.
&

4. The Paley-Wiener Theorems. The One-sided Laplace Transform

The Fourier transform of a function€ C§°(R") is characterized by the
Paley-Wiener Theorem for Functions. An entire holomorphic function
F()=F(, 82 ---,8s) of n complex variables {;=2§& +in; (j=
1,2, ..., n)is the Fourier-Laplace transform

F@) = @n)y™ [e*¢"f(x)dx (1)
Rn

of a function f€ C3°(R") with supp(f) contained in the sphere |x| < B
of R" iff there exists for every integer N a positive constant Cy such that
|FQ)| = Cy (1 + [y~ 2™ (2)
Proof. The necessity is clear from
IT (4P FQ) = @)™ [ &7 DPf(x) dx
Jj=1 |*|<B
which is obtained by partial integration.
The sufficiency. Let us define

f(x) = (@n)™"2 [ &8 F (&) dE. )
Rn

Then, as for the case of functions € & (R"), we can prove that the Fourier
transform f(£) is equal to F (&) and f€ C*(R"). The last assertion is
proved by differentiation:

DPf(@) = @)™ [ &8 IT (&) F () de, 4
Rn =
by making use of condition (2). The same condition (2) and Cauchy’s

integral theorem enable us to shift the real domain of integration in (3)
into the complex domain so that we obtain

f(x) = @m)™"2 [ #E4T F (& 4 in) dE (3)
Rn
for arbitrary real 7 of the form % =« x/|x| with « > 0. We thus obtain,
by taking N =n + 1,
|f(x)[ < Cy eBlinl— @) (2:11)_"’2 f a+ |£I)—N dk.
Rn®

If |[x| > B, we obtain f(x) = 0 by letting &« 4 + co. Hence supp(f) <
{x€R"; |x| < B}.
11 Yosida, Functional Analysis
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The above theorem may be generalized to distributions with compact
support. Thus we have

The Paley-Wiener Theorem for Distributions € € (R")" (L. SCHWARTZ).
An entire holomorphic function F({) = F({y,...,{,) ot n complex vari-
ables {; =& + 1 (7=1,2,...,n) is the Fourier-Laplace transform
of a distribution T € € (R")’ iff for some positive constants B, N and C

[FQ)| = C + [C])N B, (5)

Proof. The necessity is clear from the fact (Theorem 2 in Chapter I, 13)
that, if 7€ E(R")’, there exist positive constants C, N and B such that

IT(p)| = Clﬂé‘N Iflug% |DPp(x)| whenever @ E(R").

For, we have only to take ¢ (x) = ¢ ***)and apply (13) of the preceding
section.

The sufficiency. F (£) is in ©(R")’ and so it is the Fourier transform

of a distribution T € & (R")’. The Fourier transform of the regularization

. =T % g, is (2n)"2 T - §, by (14) of the preceding section. Since the

supp (g.) is in the sphere | x| < & of R", we have, by the preceding theorem,

[P (&) < C - eltmil,

Moreover, since T is defined by the function F (£), we see that (27)"2 T ?.
is defiend by a function (27)"% F (&) - ¢, (£) which, when extended to the
complex n-space analytically, satisfies the estimate of type (5) with
B replaced by B + ¢. Thus, by the preceding theorem, T, =T % ¢,
has its support in the sphere |x| < B + ¢ of R". Thus, letting ¢ | 0 and
making use of the Lemma in the preceding section, we see that the supp (7)
is in the sphere |x| < B of R".

Remark. The formulation and the proofs of the Paley-Wiener theorems
given above are adapted from L. HORMANDER [2].

The Fourier Transform and the One-sided Laplace Transform. Let
g(t) € L%(0, o). Then, for x > 0,

g(t) e e L*(0,00) N L*(0, o0)

as may be seen by Schwarz’ inequality. Hence, by Plancherel’s theorem,

we have, for the Fourier transform
o0

f +1y) = @m)72 [ gt) e e at
0 03
oo - (6)
=) [ gt) At (x> 0),
0
the inequality

oo

J ety = [ leOFe™ s [ g0 ()



4. The Paley-Wiener Theorems. The One-sided Laplace Transform 163

The function f(x + ¢y) is holomorphic in z = x + ¢y in the right half-
plane Re(z) = x > 0, as may be seen by differentiating (6) under the
integral sign observing that g (¢) te~**as a function of # belongs to L' (0, 00)
and to L%(0,00) when Re(z) = x > 0. We have thus proved

Theorem 1. Let g () € L2(0, 0o). Then the one-sided Laplace transform
[e 2]
fe) = @n)™Y2 [ g(t) e ¥ dt (Re(z) > 0) (6")
0

belongs to the so-called Hardy-Lebesgue class H?(0), that is, (i) f(z) is
holomorphic in the right half-plane Re(z) > 0, (ii) for each fixed x > 0,
f(x + ¢v) as a function of y belongs to L2(— oo, 00) in such a way that

sup ( INCER L dy) < oo. (7)

x>0 [ee]

This theorem admits a converse, that is, we have

Theorem 2 (PALEY-WIENER). Let f(z) € H2(0). Then the boundary
function f(iy) € L2(— oo, 00) of f(x + ¢y) exists in the sense that

lim [ [fiy) —flx + iy) [Fdy = 0 8)

in such a way that the inverse Fourier transform

N
gt) = @) Lim. [ f(iy) e dy (9)
N—oo _N

vanishes for ¢ << 0 and f(z) may be obtained as the one-sided Laplace
transform of g (¢).

Proof. By the local weak compactness of L2(— oo, o0), we see, that
there exists a sequence {x,} and an f(zy) € L2(— oo, oo) such that

%, {0 and weak;gloréf(x,, + 1y) = f(2y).
For any 6 > 0, there exists a sequence {N,} such that
8
lim N, — . . 2 7y
Jim N, = oo and kl—l’rgo-fy [f(x + iNy) |2 dx ,
as may be seen from

N[ § S ( oo
f{(){ |f(x+iy)]2dx}dy§0{ {_f !f(x+iy)]2dy}dx<oo

-N
(for all N > 0).
Thus, by Schwarz’ inequality,

é
Jim [ |#e £ iNY| dx =0, (10)

11*
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From this we obtain
o]
@ =en [ T80 ot (Re(z) > 0). (11)
-0

The proof may be obtained as follows. By Cauchy’s integral representa-
tion, we obtain

1) = @iy [£Lar (Retn > ), (12)
C

where the path C of integration is composed of the segments

xo'—i:Nk, xl_"i‘Nk' xl‘—iNk, Xy + ‘iNk,

X -+ ‘iNk,xo + 'iNk, X0 -+ 'I:Nk, xo'—'iNk

(o < Re(2) < 21, —Np < Im(z) < INy)
so that the closed contour C encloses the point z. Hence, by letting £ — oo
and observing (10), we obtain

o]

.t 0 .
10 =@ayt [ Lo gy g [ LB g

—00 —00

We see that the second term on the right tends to 0 as x;, — oo, because
of (7') and Schwarz’ inequality. We set, in the first term on the right,
%o = %, and letting # — oo we obtain (11). Similarly, we obtain

0= [ a (R <o), (13)

Let us put, for Re(z) > 0,
h(x) =0 (for x<<0); h(x)=¢* (for x> 0).
We then have
[e ] . o] .
[ hix)edx= [ &* " dx = (z—it)™?,
—00 0

and so, by Plancherel’s theorem,

¢ et 0 (f 0
e dt:{ (for x < 0)

. -1
Lim. (27) _7[ z—it e (for x > 0)

if Re(z) > 0. (14)

Similarly we have

N
—{tz — e (fi 0
° dt:{ e orx <0 e <0, (14)

. —1
Lim. (27) f 7—it 0 (for x> 0)

-~
Therefore, by applying the Parseval theorem (27) of Chapter VI, 2
to (11), we obtain the result that f(2) is the one-sided Laplace transform
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of g(#) given by (9). By applying the Parseval theorem to (13), we see also
that g(f) = 0 for £ < 0.

We finally shall prove that (8) is true. By adding (11) and (13), we
see that f(2) admits Poisson’s integral representation

(oo
1(2) = f(x + 1v) =% f %dt whenever x> 0. (15)
By virtue of

oo

X

?l_ft—y)’+x2 L, (16)
—00

we have

ot i —pen =5 [ AT as where 1) =169,

and so

oo o) oo 2
f IF(x + i9) —Fiy) [P dy < (%) f [ I+ (s —;32_:21‘+(3’)lds} dy

s (s +9)— 2
é% f(fsz+x2)< | 82+x2 )] ds)dy

—00 \—00

~2 f%{f}#(sﬂ)—ﬁ(y)tzdy]

r (f+5s)
x u ;S
=-;l— f ds,

s? J 2

—00

where 0 < pu(ft;s) < 4 ||/H|[> and p(ft;s) is continuous in s and has
value 0 at s = 0.

To prove that the right side tends to zero as x | 0, we take, for any
£§>0,a 6 =20(e) > 0 such that u(ft;s) = e whenever |s| < 6. We
decompose the integral

00 -8 8
x ulftss) 0 =
e fm‘“—z{ J+ f+f}—’ Tt
—00 —00 —é

We have |I,| < e by (16), and |[;| < 4= ||FH|[2 - cot2(8/x) (1 = 1, 2).
Hence the left integral must tend to zero as x | 0. This proves the Theo-
rem.

Remark 1. For the original Paley-Wiener theorem, see Paley-

Wiener [1]. For the one-sided Laplace transform of tempered distribu-
tions, see L. SCHWARTZ [2].
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Remark 2. M. SaT0 [1] has introduced a happy idea of defining a
“‘generalized function” as the ‘““boundary value of an analytic function”’.
His idea may be explained as follows. Let 8B be the totality of functions
@ (2) which are defined and regular in the upper-half and the lower-half
planes of the complex z-plane, and let  be the totality of functions
which are regular in the whole complex z-plane. Then B is a ring with
respect to the function sum and function multiplication, and R is a sub-
ring of . Sato calls the residue class (mod R) containing ¢(z) as the
“generalized function” ¢ (x) on the real axis R! defined through ¢ (2).
The “generalized derivative d@ (x)/dx of the generalized function ¢ (x)”
is naturally defined as the residue class (mod R) containing de (z)/dz.
Thus the “delta function d(x)” is the residue class (mod R) containing
—(2m1)~1271. Sato’s theory of “‘generalized function of many variables”
admits the following very interesting topological interpretation. Let M be
an #n-dimensional real analytic manifold and let X be a complexification
of M. Then the n-th relative cohomology group H"(X mod (X — M))
with the germ of regular functions in X as coefficients gives rise to a
notion of the “‘generalized function on M. That is, the relative cohomo-
logy class is a natural definition of the ‘“‘generalized function”’.

Remark 3. For more detailed treatment of the Fourier transform of
generalized functions, see L. ScawarTz [1] and GELFAND-SiLov [1].
In the latter book, many interesting classes of basic functions other than
D (R™), S(R") and Dy (R") are introduced to define generalized functions;
the Fourier transform of the corresponding generalized functions
are also discussed in GELFAND-SiLov [1]. Cf. also A. FRIEDMAN [1]
and L. HORMANDER [6].

5. Titchmarsh’s Theorem

Theorem (E. C. TiTcHMARSH). Let f(x) and g(x) be real- or complex-
valued continuous functions, 0 < x << oo, such that

(f*g) (x ffx~ dyzofg(x—-y>f<y) dy=(g*f)(x) (1)

vanishes 1dentlcally. Then either one of /(x) or g (x) must vanish identically.

There is a variety of proofs of this important theorem, such as by
TrrcuMarsH [1] himself and also by CRuM and DuFresnNoy. The follow-
ing proof is elementary in the sense that it does not appeal to the theory
of functions of a complex variable. It is due to RyLL-NARDZEWSKI [1] and
given in the book by J. MIKUSINSKI [1].

Lemma 1 (PHRAGMEN). If g(u) is continuous for 0 < » < T, and
0<t<T, then

lim
2—>00 k

(_k); f =9 g (4 )du:of g(u) du. (2)

Ms

I
il
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[e.%
Proof. We have kz; (—1)F 1 (RN ) = 1 — exp (—e™™), and,

for fixed x and ¢, the series on the left converges uniformly in # for
0 =< u =< 7. Thus the summation in (2) may be carried out under the

integral sign and we obtain (2) by the Lebesgue-Fatou Lemma.
T

[ et dt} <M
0

for » = 1;2, ..., where M is a positive constant which is independent
of n, then f(f) must be =0for 0 < ¢t < T.
Proof. We have

o0 T<_ k-1

Lemma 2. If /(¢) is continuous for 0 =< ¢ < T and

T
") (T — ) du| < [ T {(T —u) du
0

< Z kn(l— T)

< M (exp(e” T")) —1).
If £ < T, the last expression tends to zero as # — co. Hence, by Lemma 1,
t
with g(u) = f(T —- u), we see that f/(T —u)du =0 for 0 <t < T
0

Since f is continuous, it follows that f(f) == 0 for 0 < ¢ < 7.

Corollary 1. If g(x) is continuous for 1 < ¥ < X and if there exists
X

f x"g(x) dx

1

a positive number N such that =N n=12..)),

then g(x) = 0 for 1 < x < X.

Proof. Putting x = ¢/, X = ¢’ and xg(x) = f(f), we obtain, by
Lemma 2, that f(f) = 0for 0 =¢<=T. Thus xg(x) =0 for 1 < » < X,
andsog(x) =0forl = x» < X.

Corollary 2 (Lerch’s theorem). If f(£) is continuous for 0 < ¢ < T and

T

[tftydt=0mn=1,2,..) thenf(t) =0for 0 <¢t=<T.
o

Proof. Let #, be any number from the open interval (0, T), and put
t=tyx, T =1t,X, f(f) = g(x). We then obtain

x
ot [ 'g(x)dx =0 (n=1,2...),
6

X |1 1
and so ‘f x"g(x) dx’ = ] f g (x)dx| < f lg(x)|dx =N (n=1,2,...).
i 0 0

Hence, by Corollary 1,J we obtain g(x) =0 for 1< x < X, and so
f(¢) =0 for ¢, < ¢t =< T. Since f, was an arbitrary point of (0, T), we
must have f(f) =0for 0 =S¢t < T.

The proof of Titchmarsh’s theorem. We shall first prove the Theorem
for the special case when f = g, that is, if f(¢) is continuous and (f * f) (¢)

t

:ff(t—u)f(u)du=0f0r0§t§ 2T, then f(f) =0for 0 =t < T.
0
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We have

2T t

f NT-')( [ ) it —u) du> dt =0,
0

0

and, by the change of variables # = T —v, ¢t = 2T — v — w, we obtain

[ [t HT —v) {(T —w) dvdw =0
a4

where 4 is the triangle v +w = 0, v = T, w =< T in the v — w plane.
Let A’ be the triangle v + w < 0, v=—T, w = — T. Then the join
A4 + A’ is the square —T < v, w < T. The above equality shows that
the integral of e"*+*) {(T' — v) f(T — w) over A4 + A’ is equal to the inte-
gral over A’. The integral over 4 + A’ is the product of two single inte-
grals, and in the integral over A’ we have ¢"*+*) < 1. Thus

f-f I “LM ) (T — ) /(T — 0) do dio

< [[1HT —v) HT —w)| dvdw < 272 . 42,
)

where A is the maximum of [f(f)| for 0 < ¢ < 2T, and 272 is the area
of A’. We thus have
uw| < )2T- A4,

< T A. Therefore

T

f enuf(
-T

fe"“/ —u) du

and, moreover,

T

fTe"“f(T—u) aun| = f
0

and so, by Lemma 2, f(f) =0for0 =t < T.
We are now ready to prove Titchmarsh’s theorem for the general case.

g +)2)T4 n=1,2..),

¢
Let ff(t—u)g(u)du:O for 0 =¢<Coo. Then we have, for 0 <t <<oo,
0

1

[ t—u)f(t—u) g (u) du—}—off(t—u)ug(u)du:tof/(t—u)g(u)du:O.

0
This may be written as
(fh*e) @) + (F*eg) 1) =0 (0=¢<o0),
where /,() = t(t), & () =1g (9)-
Thus
Fx{g* (fixg+/%g)} ()
and so

[(f %) * (fA*g)] (@) + [(F* &) * (f*g)] () =0.
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Thus, by (f*g) (f) =0, we have [(f%g) * (/% g)] (/) = 0, and so,
by the special case proved above, (f % g) (f) = 0, that is,
3

JHt—w) ugw)du=0 (0 <t<oo).
0
From this we obtain, similarly to above,

f‘f(t—u)uzg(u) du=0 (0=<t<o0).
0

Repeating the argument, we find that
t
[it—w) wgu)du =0 (0<t<oo; n=1,2,...).
0

Hence, by Lerch’s theorem proved above, we obtain
fE—u)gu) =0 for 0=u=1t<oo.

If a u, exists for which g(u,) % 0, then f(t —uy) = 0 for all ¢ = u,,
that is, f(v) = 0 for all ¥ = 0. Therefore, we have either f(v) = 0 for
allv = 0or g(v) =0forallv = 0.

6. Mikusinski’s Operational Calculus

In his “Electromagnetic Theory”’, London (1899), the physicist
O. HEAVISIDE inaugurated an operational calculus which he successfully
applied to ordinary linear differential equations connected with electro-
technical problems. In his calculus occured certain operators whose
meaning is not at all obvious. The interpretation of such operators as
given by HEAVISIDE himself is difficult to justify. The interpretation
given by his successors is unclear with regard to its range of validity,
since it is based upon the theory of Laplace transforms. The theory of
convolution quotients due to J. MiKUSINSKI provides a clear and simple
basis for an operational calculus applicable to ordinary differential equa-
tions with constant coefficients, as well as to certain partial differen-
tial equations with constant coefficients, difference equations and integral
equations.

We shall give, adapted from K. Yosipa-S. OkamoTo [40], a simpli-
fied presentation of Mikusinski’s theory by introducing the notion of the
ring €y in place of his operators (= the convolution quotients). By virtue
of this ring we can derive the operational calculus without appealing
to Titchmarsh’s theorem given in Chapter VI, 5.
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The ring % ,. We denote by % the totality of complex-valued con-
tinuous functions defined on [0, o0). In this section, we shall denote
such a function by {/(f)} or simply by f, while f(¢) means the value at
¢ of this function /. Forf, g€ € and «, § € C! (the complex number field),
we define

f+e={/()+g(} and fg={ff(t—u)g(u)du}. (1)

Then, as proved in Chapter VI, 3, we have
fe=gf f(gh)=(fe)h and f(g+h) =/fg+fh.

Hence % is a commutative ring with respect to the above addition and
multiplication over the coefficients field C!.

We shall denote by % (! in J. MikuUsINsKI [1]) the constant function
{1} € € so that we have

hﬂ:{(nt—"—_;)T} n=12..) 2)
and
hi = {f/(u) du} for f€%, 3)

i.e., & behaves as an operation of integration. Thus we have the fairly
trivial

Proposition 1. For k¢ H={k;k=h"(n=1,2,...)} and f€ ¥, the
equation &f = 0 implies f = 0, where 0 denotes {0} € %.

Therefore, as in the algebra, we can construct the commutative ring
% 4 consisting of fractions of the form f/&, i.e.,

u= {5 =itk €% and ke, (4)
where the equality of two fractions is defined by
f /, : ’ ’
s =7 it jF=[fk, (5)

and the addition and multiplication of two fractions are defined through

A L il rr_ 1
A A iy T (©)
By identifying /€ € with kf/k€ €y, the ring € can isomorphically

be embedded as a subring of €.

We next introduce, after MIKUSINSKI, the important notion of the
operation of scalar multiplication. We define, for every a € C,

(o] =2~ ()i @, 7)
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Then we have, for «, f€ C!, f€ € and k€ H,
+ [Bl=[o+ Bl [«] [B] =
)= oef = {of ()}, [o] & =
Proof. [x] + [B] = [+ B] is clear. We have

h
=L AB (280 _haB =B

¢
oy SO} _ () _ {f =t w0 au)

k hk hk
Hence [«] can be identified with the complex number «, not with {o},
and we see that the effect of the multiplication by [«] is exactly the
scalar multiplication by «. [1] may be identified with the muitiplicative
unit I of the ring €, i.e.,

p
«f
R

_ /)
O}

I—""

n=12..). )

We next define
S= €y (n=0,1,2,...;=1I)sothat sh—hs—1. (10)
Proposition 2. If both f and its derivative f' belong to ¥, then
f'=sf—£0), where f(0)=[f(0)], (11)

i.e., s behaves as an operation of differentiation.
Proof. Clear from (10) and Newton'’s formula

W — {ff' () du}= GO —f Oy =1~ [ O

Corollary. For n-times continuously differentiable function /€%,

fO =snf —sn140) — s*2f(0) — ... — f»-D) (0), (12)
where f0) (0) = [/ (0)] .

Proposition 3. For any a ¢ C* and for any positive integer ,

h—[a]h2\" (b — [a] k%)
(5 —ar= (s - fa)r= (A= f12) = L= [

admits a uniquely determined multiplicative inverse in € 4 given by
I o
=y 13)
Proof. We have, by (11),
(s—a){et}=afe*}+ [1]—afer} =1, ie, I/(s—a)={}.

€€y

t
Hence, we have I/(s' — «)? = { [e*¢t-% e du} = {t e**} and so on.
0
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Application to the integration of the Cauchy’s problem for linear ordinary
differential equations with constant coefficients € C1:

Y™+ YOV Lt oy = fE€F (0, +0) (14)
¥(0) =0, ¥'(0) = y1,---, y*(0) = Y5y -
By (12), we rewrite (14) into
(0™ + atpy "+ o 0g) Y =+ BuaS" T Buas™ R+ L+ By, (14)
By=o4p Vot tayrt o Yy v=0,1,2,...,n—1).

The polynomial ring of polynomials in s with coefficients € C is free
from zero factors, because of the fact that

(08" 4 0py8™ 14 ) (MuS™ + NruegS™ L+ L) =G S™HP + L
Hence we can define rational functions in s:

I . Bais™ 14+ ...+ B
% S"F .+ and  F,= L T

and obtain their partial fraction expressions:

)
s I ,
FIZZZ T2 and FZ_ZZ . 1)

i k=1 i k=1

F, = (15)

where both ¢;;, and d;; belong to C! and 7,’s are distinct roots of the
algebraic equation a, 2" + o,y 2" 1+ ... + g =0 so that Xm;=n.
i

By virtue of (13), both F; and F, given in (15)’ belong to €<%y so
that we obtain the solution of (14)’ and hence of (14) as well:

}—ZZ . =T ¢} (0) (16)

i k=1

0 i‘i =

i k=1

Example 1. Solve the equation
x'(8) — x'()) — 6x()) =2, x(0)=1, x'(0)=0.

Solution. We rewrite the equation
{="(t) — — 6x(t)} =2/s
by (12), obtaining
s?x — sx(0) — 2'(0) — sx + x(0) — 6x =2/s
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and so, by substituting the initial condition, we get
(s2—s—6)x=s—1+2/s.
Hence, by (13),

__st=s+2 11
=S —=3) (542 35 T15s

1 8 4
={—§+—1—5—63t+3‘6 2t}‘
Example 2. Solve the system of equations
X(t) —axt) = By(t) = Bet, y'(t) + Bx(t) —ay(t) =0,

under the initial condition x(0) = 0, y(0) = 1. We here assume that « and
f are real numbers. :

8 1 4 1
—3T55x2

Solution. Rewrite the equations by (11) and (13), obtaining

sx—ax— Py=f/(s—a),sy—1+Bx—ay=0.
Hence
_ 28 _ (s —a)?— pg*
Te—arr e T e—alc—ar T A
from which we get
1 1 1 1 _ «
e My ) = e e i gy,
 2(5—a) 1 1 1 1
y= (s—a)?+ 2~ (s—a) s—a—if + s—at+if  s—a
= {e@+iB)t 4 p(x=iB)t _ gt} — {o=t(2 cos Bt — 1)} .
Remark. Suggested by (2), we can define the fractional power inte-
gration through

h=h{t* Y (}hEF(0<a<]l). (17)
Accordingly, we can define the fractional power differentiation through
s=h{t=|I'1-a)}/RcF,0<a<]l), (18)

because we obtain
h*s*=1 (19)
by the Gamma function formula B(1 — «, «) = I'(1 — o) I'(x).

For further applications of the operational calculus, we refer the
reader to J. MiKUsINSKI [1] and also to A. ErRDELYI [1].

7. Sobolev’s Lemma

A generalized function is infinitely differentiable in the sense of
the distribution (see Chapter I, 8). So the differentiability in the gene-
ralized sense has no bearing on the ordinary differentiability. However,
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we have the following result which is of fundamental importance in
modern treatment of partial differential equations.

Theorem (Sobolev’s Lemma). Let G be a bounded open domain of
R". Let a function % (x) belong to W*(G) for 2> 27! n + ¢, where o is an
integer = 0. We thus assume that the distributional derivatives of
u(x) of order up to and including % all belong to L?(G). Then, for any open
subset G, of G such that the closure Gi is a compact subset of G, there
exists a function u, (¥) € C°(G,) such that u(x) = u,(x) a.e. in G,.

Proof. Let «(x) be a function € C§°(R") such that

G, Csupp(x) CG, 0=ax(x) =1 and «(x) =1 on G,.
We define a function v(x) defined on R" by
v(x) = a(x) u(x) for x€ G; v(x) = 0 for x€ R* —G.
Then v(x) = u(x) whenever x € G,. Since v (x) is locally integrable over
R", it defines a distribution € D (R")’. By the assumption that u € W* (G),
the distributional derivatives D°v(x) € L* (R") when |s| < %. For example,
the distributional derivative
5‘%(1}) :a%j(ocu) ::70:~u—f— oca%u

belongs to L?(R") by the fact that u, du/dx; both belong to L2(G) and
that the infinitely differentiable function « (x) has its support contained
in a compact subset of the open domain G. By the Fourier transformation
v(x) — v(y), we obtain

D) ) = ()" y2 s . ..y 5(9).

Since, by Plancherel’s theorem, the L2-norm is preserved by the Fourier
N

transformation, we have (Dv) (y) € L?(R") for |s| < %. Thus
D) ¥ vy . v € LA(RY) for [s| < k. 1
In particular we have
i(y) € L*(R"). (1)
Let ¢ = (41, g2, - - -, 9,) be a system of non-negative integers. Then

by (1), we can prove that
v(y) yf ¥% . . . yi» is integrable over R” whenever |g| + % <k. (2

For the proof, take any positive number C. We have, by Schwarz’ ine-
quality,

fcl?)(y) yEyE . .. yin| dy

Irl=
=( L rok. Py [ [B0)Fdy) <o,
bisc lvl=c
[ 136) o8 .. yin| ay
Iv|>¢C

é( T 1@+ |y 2y yPdy- [ o) (1+ |yHYP dy)‘”-
ly ly|>C

|>C
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The second factor on the right of the last inequality is << oo by (1). The
first factor is finite by
dy == dy, dy, . . .dy, = r""1dr dQ,, |
where d2, is the hypersurface element of the surface (3)

of the unit sphere of R” with the origin 0 asits centre,
provided
2)g|-—2k +n—1<—1, thatis, if k>3 +|q].
Now, by Plancherel’s theorem, we have
v (%) = Lim. (27)""? f v (y) exp (¢ <y, x)) dy
h—00 lyléh

and so, as in the proof of the completeness of L%(R"), we can choose a
subsequence {4’} of positive integers 4 such that

v (%) :hlim @) [ % () exp(i <y, x>) dy for a.e. x€ R".

o0 Iyl =k
But, since v(y) is integrable over R" as proved above, the right side is
equal to )
v (®) = (@a)"" [ () exp(i<x, ) dy,
Rﬂ

that is, v (x) is equal to v, (x) for a.e. x € R". By (2), the differentiation of
v; (x) under the integral sign is justified up to the order o; and the result
of the differentiation is continuous in x. By taking u,(x) = v, (x) for
% € G, we have proved the Theorem.

Remark. For the original proof, see S.L.SoBoLEV [1], [2] and
L. KaNTOROVITCH-G. AKILOV [1].*

8. Garding’s Inequality
Consider a quadratic integral form defined for C* function u(x) =

% (%q, %3, - . ., X,) With compact support in a bounded domain G of R"*:
Blu,u] = (cyD*u, D'u)q, (1)

[l le] =m
where the complex-valued coefficients ¢y, are continuous on the closure
G* of G, and (u, v), denotes the scalar product in L?(G).
Then we have
Theorem (L. GARDING [1]). A sufficient condition for the existence of
positive constants ¢, C so that the inequality

|[#|5 < cRe Blu, u] + C||u|f§ (2)
holds for all # € C3°(G), is that, for some positive constant c,,
Re Isl,!ﬁ‘:=m ey &8 =co|Ef™ for all x€G and all real vectors
E=(6,8,....&).

* See also Supplementary Notes, p. 466.

(3)
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Remark. The inequality (2) is called Garding's inequality. If condi-
tion (3) is satisfied, then the differential operator

L= X (—1)¥D,D’ (4)

Is|=l|t|<m

is said to be strongly elliptic in G, assuming that ¢y is C™ on G*.
Proof. We first prove that, for every ¢ > 0, there is a constant C (¢)>0
such that for every C°(G) function #,

[l lfr < ellw|lm + Ce) [[2]f5- (5)

To this purpose, we consider # to belong to C3° (R"), defining its value as
0 outside G. By the Fourier transformation we have

1D ulf = [[(Dw) 5= [
R"

n N 2
,-IJI y_f-‘u(y), dy,

in virtue of Plancherel’s theorem. Thus (5) is a consequence from the fact
that

(ISI;}:—qu yf")/(C +|r|gm1 21,)(' l :;‘L

tends to zero uniformly with respect to y = (y;, ¥, - . ., ¥,,) as C 4 co.

Suppose that the coefficients ¢, are constant and vanish unless
|s| = |¢| = m. By the Fourier transformation «(x) — %(£) and Plan-
cherel’s theorem, we have, by (3),

Re B[u, u] = Refs);cs,é"f‘ |4 (8) 2 d&
= [oo |6 [a(E)[* d& = ey (ufn — ||u 3o,

where ¢; > 0is a constant which is independent of ». Hence, by (5), we see
that (2) is true for our special case.

We next consider the case of variable coefficients c,. Suppose, first,
that the support of # is sufficiently small and contained, say, in a small
sphere about the origin. By the preceding case, we have, with a constant
¢o > 0 which is independent of «,

co ||#|[m=ReB[u, u] + ReI ' ﬁ [ (ca(0) — ¢y (%)) D°u - D'udx

ISI+ﬁ‘:<2 %) D°u - D'udx + C(e) ||u|f3.

)

If the support of « is so small that ¢y, has very small oscillation there,
we see that the second term on the right may be bounded by 27 cj ||« |[%,.
The third term on the right is bounded by constant times ||%/||,, - ||#|m—1-
Hence we find that, constants denoting positive constants,

"lc{,HuH,,, < ReB[u, u] + constant |||, - ||%||m_1 + C () |[#]|[5-
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Thus, by

2|a|-|B| = €|x[*+ &1 |B[? which is valid for every

e>0, (6)
we obtain |[|u|[} =< constant - Re B[u, u] + constant - ||u||%_; + C(e) -

|3, and so, by (5), we obtain (2).
Next we consider the general case. Construct a partition of unity in G:

N
1= ‘zlw,?, w; € CP(G) and w;(x) =0 in G,
=

such that the support of each w; may be taken as small as we please.
Then, by Leibniz’ rule of differentiation of the product of functions,
Schwarz’ inequality and the estimate of the case obtained above, we have

ReBlu,u] = Re thcs,D‘uD'ﬁdx = Re Ez S [ wicyD'uD'udx
S, S, 7
=Re [ T Zc,, D*(;u) D{w; u) dx + O ([l [#]m-1)
= & constant (|[w;u[z — [|eju [[p-) + O((]# ]l - [[# [ln-1)

= constant [[#|Z + O(||%]|n - ||%]|m-1)-
Thus we obtain (2) by (5). We remark that the constants ¢, C in (2)
depend upon ¢, ¢, and the domain G.

9. Friedrichs’ Theorem
Let
L = D’ D
ISI,ﬂYSm Cst(x) (1)

be strongly elliptic withreal C* coefficients ¢y (x) in a bounded open domain
of R™. For a given locally square integrable function f(x) in G, a locally
square integrable function # (x) in G is called a weak solution of
Lu=/, (2)

if we have

@ L= (gl L*= = (MDD, (@)
for every @ € C3° (G). Here (f, g)o denotes the scalar product of the Hilbert
space L2?(G). Thus a weak solution # of (2) is a solution in the sense of the
distribution. Concerning the differentiability of the weak solution %, we
have the following fundamental result:

Theorem (K. FRIEDRICHS {1]). Any weak solution # of (2) has square
integrable (distributional) derivatives of order up to (2m + ) in the
domain G; C G where f has square integrable (distributional) derivatives
of order up to p. In other words, any weak solution % of (2) belongs to
W#+27(G,) whenever f belongs to W*(G,).

12 Yosida, Functional Analysis
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Corollary. If p = oo, then, by Sobolev’s lemma, there exists a func-
tion u,(x) € C*(G,) such that u(x) = u,(x) for a.e. x € G,. Thus, after a
correction on a set of measure zero, any weak solution % (x) of (2) is C*®
in the domain C G where f(x) is C*°; the corrected solution is hence a
genuine solution of the differential equation (2) in the domain where f(x)
is C*.

Remark. When L = A4, the Laplacian, the above Corollary is Weyl’s
Lemma (see Chapter II, 7). There is extensive literature concerning
the extensions of Weyl’'s Lemma to general elliptic operator L;
such extensions are sometimes called the Weyl-Schwartz theorem.
Among an abundant literature, we refer to the papers by P. Lax [2],
L. NIReNBERG [1] and L. NIRENBERG [2]. The proof below is due
to the present author (unpublished). A similar proof was given by L. BERs
[1]. Tt is to be noted that a non-differentiable, locally integrable function
f(x) is a distribution solution of the Ayperbolic equation

of
ooy =
as may be seen from

f{f/ aya,, dy}dx (p(x,9) € CP (RY).

Proof of the Theorem. We shall be concerned only with real-valued
functions. Replacing, if necessary, L by I + «L with a certain constant
« 7~ 0, we may assume that the strongly elliptic operator L itself satisfies
Garding’s inequality

(@, L*@)o = 6 ||@]|[n (6 > 0), (4)
@ L*9)o| = ¥ ||@lm [|9]lm (v > 0), whenever @, p € CF(G).

The latter inequality is proved by partial integration. We assume here
that each of the derivatives of the coefficients ¢ (x) up to order m is
bounded in G, so that the constants § and » are independent of the
test functions p, p € CP(G).

Suppose that G, is a periodic parallelogram

0= %= 2n G=12,...,n), (5)

and that the coefficients of L and f periodic with the period 2z in each
%;. Under such assumptions, we are to deal with functions ¢ (x) defined
on a compact space without boundary, the #-dimensional torus G, given
by (5), and the distribution € C*(G,)" associated with the space of test
functions ¢ € C*®(G,) consisting of C* functions ¢ (x) = @ (x5, %g, . . ., %,,)
periodic with period 2z in each of the variables x;. It is to be noted that,
since G, is without boundary, we need not restrict the supports of our
test functions ¢(x).
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The condition v € W?(G,) thus means that the Fourier coefficients v,

of v(x) defined by the Fourier expansion

v(x) ~ %‘vk exp(tk - x)
n (6)
(k = (ky, .- Ry, x=1(%,...,%,), and k.x=: )_,l‘ijj>
]=
satisfy

Zlul 0+ apr<co (IbP= Z8). Q

For, by partial integration, the Fourier coefficients of the distributional
derivative D*v satisfy

(D*v(x), exp(ik - %)), = (=" (v(x), D° exp(ik - 2))g
= (—z‘)‘slfl=’i1 R vg, s = (51,82, -+ ) Sw),

and so, by Parseval’s relation for the Fourier coefficients of D7v € L%(G,),
we obtain (7).

It is convenient to introduce the space W?(G,) with integer ¢ £ 0, by
saying that a sequence {w,; k = (&, ko, . . ., k,)} of complex numbers ),
with w,=1w_, belongs to W (G,) if (7) holds. This space W?(G,) isnormed by
[[{wi}]l, = (‘k‘.‘ [y [? (1 + [k]z)")l’z. By virtue of the Parseval relation

with respect to the complete orthonormal system {(277)~"/2 exp (i % - %)} of

L2%(G,), we see that, when ¢ = 0, the norm ||v||, = ( g [|D*v(x) 2 dx)”z
Is|=¢ G,
is equivalent to the norm ||{v;}||,, where v (x) ~ kZ vy exp (1k - %).

The above proof of (7) shows that, if f € W?(G,), then D*f € W*~I4(G)),
and pf € W*(G,) for ¢ € C*(G,). Hence

if f€ W?(G,), then, for any differential operator N of
order ¢ with C*®(G,) coefficients, Nf¢c W?~l4(G,).

To prove the Theorem for our periodic case, we first show that we may
assume that the weak solution # ¢ L2(G;) = W°(G,;) of (2) belongs to
W™(G,). This is justified as follows. Let

% () N%‘uk exp(tk - x), v(x) ~k2uk(1 + |k ™ exp(ik - %).

(8)

Then it is easy to see that v(x) € W2™(G,) and that v is a weak solution

of (I —-A4)™ v = u, where 4 denotes the Laplacian jél' &?|0%%. Hence v is

a weak solution of the strongly elliptic equation of order 4m:
L(I—M)"v=f. (2

If we can show that this weak solution v € W?"(G,) actually belongs to
W4 +2(G,), then, by (8), u = (I —A)" v belongs to W*"#=2%(G ) =
12*
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W?*2m(G,). Therefore, without losing the generality, we may assume
that the weak solution # of (2) belongs to W”(G,), where m is half of
the order 2m of L.

Next, by Garding’s inequality (4) for L and that for (I — 4)™, we may
apply the Lax-Milgram theorem (Chapter III, 7) to the following effect.
The bilinear forms on C* (G,):

(@ v) = (@, L*y)y and (p, »)" = (@, I —A4)"p), 9

can both be extended to be continuous bilinear forms on W™ (G,;) such
that there exist one-one bicontinuous linear mappings 7°, T on W™ (G,)
onto W™(G,) satisfying the conditions

T'o,v) = (@ Vm T, 9)" = (@, ) for @,pe W™(G,).

Therefore, there exists a one-one bicontinuous linear map 7T, = 7" (")
on W™ (G,) onto W™ (G,) such that

(@ ¥)" = (Tme, p)"" whenever @, p€ W”(G,). (10)
We can show that
for any § = 1, T,, maps W™ (G,) onto W™ (G,) in

(11
a one-one and bicontinuous way. )

In fact, we have
(@, L*(I =2 9)o = (Tpp, [ —A)"Hy)y for ¢, peC(Gy).
On the other hand, there exists, by the Lax-Milgram theorem as applied

to the strongly elliptic operators (I —.A)" L and (I ——.A)"”"., a one-one
bicontinuous linear map T, ,; of W”*/(G,) onto W™*7(G,) such that

(@ L*I =AY y)o = (Tpyj 0, (I —A)"Hy)y for ¢, 9€C®(Gy).

Therefore, the function w = (T,,,; — Tp) ¢ is, for any € C*(G,), a
weak solution of (I — 4)™*’ w == 0. But, such a w (x) is identically zero.
For, the Fourier coefficient w, of w(x) satisfies

0= (I —A)"" w(x), exp(ik - x))o = (w(x), (I —A4)"* exp(ik - %))
=1+ |k|2)’”+j (w(x), exp(ik - 2))o = (1 + {E )"V w,,
and so w, = 0 for all & Thus (T,,,; —T,,) is 0 on C*(G,). The space

C®(G,) is dense in W™+ (G,) C W™(G,), since trigonometric polynomials

o0 w,, exp (i - x) are dense in the space W™+ (G,). Hence T,, 4i=Tp

on W™ (G,).

We are now ready to prove the differentiability theorem for our
periodic case. We have, for p € C*(G,),

(f: w)o = (u, L*y)g = (4, 9)" = (T, 9)"" = (Top1s, (I — A)™ p)g.
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Hence, for
T, u~ ‘kZCk exp(tk - x), p(x) ~ kEtpk exp(ik - x),

we obtain, by Parseval’s relation,
(T, (I —A)" p)g= ‘k): (L + |k = szk%-

By the arbitrariness of y € C*(G,), we have ¢, (1 + |k [))™ = f,, and so,
by f€ W#(G,), we must have T,u¢c W?*2"(G,). Hence, by (11),
u€ W?*2"(G,) .Itis to be noted that the above conclusion u€ W?+2"(G,)
is true even in the case 0= p = (1—m), ie., the case {f,} € W?(G)
with 0 = p = (1 —m). For, by p + 2m = m + 1, we can apply (11).

We finally shall prove, for the general non-periodic case, our differen-
tiability theorem. The following argument is due to P. Lax [2].

We want to prove, for the general non-periodic case, the differentia-
bility theorem in a vicinity of a point 2° of G. Let (x) € C3°(G) be identi-
cally one in a vicinity of %% Denote S« by #'. %' is a weak solution of

L' =Bf+ Nu, (12)

where N is a differential operator of order at most equal to (2m — 1)
whose coefficients are, together with f(x), zero outside some vicinity V'
of %9, and the operator N is to be applied in the sense of the distribution.
We denote the distribution 8f + N« by f'.

Let the periodic parallelogram G, contain ¥, and imagine the coeffi-
cients of L so altered inside G, but outside V' that they become periodic
without losing their differentiability and ellipticity properties. Denote
the so altered L by L’. Thus # is a weak solution in G of

L'y = f, where f' =8f+ Nu. (13)

We can thus apply the result obtained above for the periodic case to
our weak solution #’. We may assume that the weak solution %’ belongs
to W™ (G,). Thus, since N is of order =< (2m — 1) and with coefficients
vanishing ontside V, /' = 8f + N« must satisfy, by (8),

feW?(G,) with p’ =min(p, m— (2m— 1)) =min(p, 1 —m) = 1 —m.
Therefore, the weak solution #’ of (13) must satisfy
u' € WP (G,) with "' = min(p + 2m, 1 —m + 2m)
=min(p + 2m, m + 1).

Hence, in a certain vicinity of x°, # has square integrable distributional
derivatives up to order p” which is = (m + 1).Thus /' =8/ + Nu
has, in a vicinity of x9, square integrable distributional derivatives of
order up to

""" =min(p, p"" — (2m — 1)) = min (p, 2 —m).
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Thus again applying the result already obtained, we see that %’ has, in a
certain vicinity of x°, square integrable distributional derivatives up to
order

p® = min(p + 2m, 2 —m + 2m) = min(p + 2m, m + 2).

Repeating the process, we see that # has, in a vicinity of 2% square
integrable distributional derivatives up to order p + 2m.

10. The Malgrange-Ehrenpreis Theorem

There is a striking difference between ordinary differential equations
and partial differential equations. A classical result of PEANO states
that the ordinary differential equation dy/dx = f(x, y) has a solution
under a single condition of the continuity of the function /. This result
has also been extended to equations of higher order or to systems of
equations. However, for partial differential equations, the situation is
entirely different. H. LEwy [1] constructed in 1957 the equation

—i g g2+ i) 5= (%),
which has no solution at all if f is not analytic, even if f is C®. Lewy’s
example led L. HORMANDER [3] to develop a systematic method of
constructing linear partial differential equations without solutions. Thus
it is important to single out classes of linear partial differential equations
with solutions.

Let P (&) be a polynomial in &, &,, . . ., &,, and let P (D) be the linear
differential operator obtained by replacing &; by D; = 1~19/0x;. P (D) may
be written as

P(D) =} ¢,D,, where, for « = («, &, . . ., &) ,

@

D, =D%D% ... D

Definition 1. By a fundamental solution of P(D) we mean a distribu-
tion E in R” such that
PD)E =6=T,.
The importance of the notion of the fundamental solution is due to the
fact that
u = E % f, where f€ CP(R"),

gives a solution of the equation
PD)u=f.

In fact, the differentiation rule (10) in Chapter VI, 3 implies that
P(D)u=(PD)E)*f=06%]f=].
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”

2
Example. Let P (D) be the Laplacian 4 = Z gi—g in R” with n = 3.
7=1 J
Then the distribution

E =T,, where g(x) = (—2%)5 |x2=* and S, = the area of the

surface of the unit sphere of R”,

is a fundamental solution of 4.

Proof. We have, in the polar coordinates, dx = |x|[*~' d |x| dS,, and
so the function g(x) is locally integrable in R”. Hence
ATipn(p) = lim é |%[*=" - Ap dx, p € D(R").
Let us take two positive numbers ¢ and R (> &) such that the supp (¢)
is contained in the interior of the sphere |x| < R. Consider the domain G:
¢ = |x| = R of R* and apply Green’s integral theorem, obtaining

[ dp— 4 |xP ) dx:f(lxlg‘”-%~m-¢)d5
oG

G

where S = G is the boundary surfaces given by |x| = ¢ and |x[
and » denotes the outwards normal to S. Since ¢ vanishes around || R
4

T olx|

we have, remembering that A |x[*~" = 0 for x 5 0 and that — a

at the points of the inner boundary surface |x| = ¢,
Rj;[xF"”Aqux:—Hf_sz " ’ ‘dS—i— (2—n)el"”<pd5.

When ¢ | 0, the expression dg/d|x| = 21‘ (%i/|x]) - oplox; is bounded
]:

and the area of the boundary surface |x| = ¢ is S,&""!. Consequently
the first term on the right tends to zero as ¢ |, 0. By the continuity of ¢
and a similar argument to above, the second term on the right tends, as
€} 0,to (2—mn)S, ¢(0). Thus T, is a fundamental solution of 4.

The existence of a fundamental solution for every linear partial diffe-
rential equation with constant coefficients was proved independently by
B.MALGRANGE [1]and L. EHRENPREIS [1]around 1954—55. The exposition
of the result given below is due to L. HORMANDER [4].

Definition 2. Set
P@) = (|;|§o | P (&) |2>1/2 where P () = DfP(£), o
a“ﬁ“ﬁ"'*‘“n

DE:@E‘;‘-@E;*..‘&‘:”'
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We say that a differential operator Q (D) with constant coefficients is
weaker than P (D) if
@(E) < Cf’(f), £c R", C being a positive constant. (2)

Theorem 1. If 2 is a bounded domain of R” and f € L2((2), then there
exists a solution # of P (D) u = f in Q2 such that Q (D) » € L2({2) for all Q
weaker than P. Here the differential operators P (D) and Q (D) are to be
applied in the sense of the theory of distributions.

The proof is based on

Theorem 2. For every ¢ > 0, there is a fundamental solution E of
P (D) such that, with a constant C independent of «,

|(E % u) (0)] < Cﬁlp [l +in)|/P@) ds, ueCP(RY.  (3)
n|<e Rp
Here # is the Fourier-Laplace transform of u:
a) = 2n)y 2 [e oD u(x)dx, (=& +in,
Rn

and the finiteness of the right side of (3) is assured by the Paley-Wiener
theorem in Chapter VI, 4.

Deduction of Theorem 1 from Theorem 2. Replace # in (3) by
Q (D) u % v, where # and v are in C3° (R"). Then, by (10) in Chapter VI, 3,

[(Q(D) E % u % v) (0)| = |(E % Q(D) uxv) (0)| < CN(Q(D) u*uv),
where N (%) = lsg) R[ |it (& + in)|/P (&) - d&.

The Fourier-Laplace transform of Q (D) # % v is, by (1 ) in Chapter VI, 2
and (15) in Chapter VI, 3, equal to (27)"% Q(¢) #(¢) v (¢). Since, by
Taylor’s formula,

. l [+4 o i .74
Q +im) = 2 57 (=) DaQ(E), where (—)" = IT (= m)", (9
-3 1=
we have, by (2),
|QE +in)|/P@E) < C for |9 <eand € R",
where the constant C’ may depend on &. Thus

N(Q(D) %% v) < (2m)"2 C’ - sup f,u§+z17) (& + in)]| d¢.

Inl<e R
By Parseval’s theorem for the Fourier transform, we obtain, denoting
by || || the L?(R")-norm,

f [ + in)2 dé = [|u(x) 2" dx < ||u(x) el |2 when || <e,
R Rn

and a similar estimate for . Thus, by Schwarz’ inequality,
N(Q(D) uv) < C" ||u(x) || ||v(x) e*!|] whenever u and v€ C (R"),

C"’ denoting a constant which may depend on e.
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Therefore we have proved

J QD) Ex ) () v(=2) dx] < (CC)][ue™ ]| [[ve™]| (w, ve C?(R"())).
" ; b

We shall write L2 (R") for the Hilbert space of functions w (x) normed by
( f | (%) [2 e dx>1/2 = ||w(x) P [
Rn

Since C°(R") is dense in LZ(R") and, as may be proved easily, L%, (R
is the conjugate space of L%(R"), we obtain, by dividing (5) by ||v (%) " ||
and taking the supremum over v € C§° (R"),

QD) E % w) (x) e[| < (CC”) [Ju(@) e ||, we CF(RY).

Hence the mapping
u—>Q(D)E % u (6)
can be extended by continuity from C3® (R") to LZ(R"), so that it becomes
a continuous linear mapping on L2(R") into L%,(R"). Thus, to prove
Theorem 1, we have to take f; = fin 2 and f, = 0 in R" — £ and define
u as equal to u = E % f,.
For the proof of Theorem 2, we prepare three Lemmas.

Lemma 1 (MALGRANGE). If f(2) is a holomorphic function of a complex
variable z for |z| < 1 and $(z) is a polynomial in which the coefficient
of the highest order term is 4, then

n

|4 F(0)| < @n) [ |#(°) p ()] 6. (7

Proof. Let z’s be the zeros of p(z) in the unit circle |z| < 1 and put

Z— 25
z)_lj—IZ,z—l'

Then ¢ (2) is regular in the unit circle and |p (2) |= |¢(2) | for |2| = 1. Hence
we have
@)t [ 11 p()] a0 = @) [ |/(e) g(")] a8

= (27)- ff“’ (€) 6| = |(0) ¢(0)].

Thus Lemma 1 is proved since |¢(0)/4 | is equal to the product of the
absolute values of zeros of p (z) outside the unit circle.

Lemma 2. With the notations in Lemma 1, we have, if the degree of
p(2) is < m,
m! £

1100 2% ()| = G771 (@) [ (") p(c) | d6. ®)

-n
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Proof. We may assume that the degree of $(z) is » and that
Ld
p(a) = II ( —z).
i=1 \
Applying the preceding Lemma 1 to the polynomial 111 (2—2;) and the
i=

m

holomorphic function f(z) - ]kl_; ) (z — z;), we obtain
j=
10 T 5| < Cart [ 116 5] as.

A similar inequality will hold for any product of (#m — %) of the numbers
z; on the left hand side. Since p™* (0) is the sum of m!/(m—£)! such terms,
multiplied by (—1)”~*, we have proved the inequality (8).
Lemma 3. Let F({) = F({;,,, ..., ¢,) be holomorphic for |¢{|=
" 1/2
(21 | |2) < ooand P() = P({y, L, .- ., L) a polynomial of degree
i=

S=m. Let ®() =Dy, &, - . -, £,) be a non-negative integrable function

with compact support depending only on |{;|, |,], . - ., |{s]- Then we
have
m!
|F(0) D, P (0)] f [C*| @ ({)dl = m—a! f [F@C) PE)IP()das, (9
[fj< oo 4B

where d{ is the Lebesgue measure d&,dy), . . . d&,dn, (¢ = & + in;) and
m is regarded as multi-index (m, m, . . ., m).

Proof. Let f(z) be an entire holomorphic function and apply (8) to the
functions f(rz) and p (rz), where » > 0. Then we obtain

m! £ ) .
110) p%(0)] - # < sy @) [ [fre®) plre)| db.

Let y(r) be a non-negative, integrable function with compact support.
Multiplying the above inequality by 27z 7 p(r) and integrating with
respect to 7, we obtain

O p® O | [ [t (e at = _k,flf p@)|w(t)dt  (10)

where dt = rdrdf and the integratlon is extended over the whole complex
t-plane. Lemma 3 is obtained by applying (10) successively to the va-
riables {;, {;, . . ., {,, one at a time.

Proof of Theorem 2. Put P(D)u = v, where € CJ°(R"). Then
P()u() = v(). Apply Lemma 3 with F({) = (£ + {), with P({)
replaced by P (£ + {) and with |®({)| = 1 when |{| = ¢ and = 0 other-

wise. Since f’(&) < X |D*P(£)|, we obtain, from (9),

~

| w@PE)|=C [ l«i(e+c>P<e+c>|d¢=c1m£ 15(€ + &) | dC.

Ilse
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Hence, by Fourier’s integral theorem,

[ (0)| < (7)™ [ |0 (&)| d& < C; ! [ ([ 15¢ + &)|/P©) a8) a:

|se
< caf( [, @+ +in)PE a an')ae.
Eit+nise
On the other hand, we have

PE+¢&)PE) <C, when' |¢|<e,
because
* "y — ﬂ’ +B
DP(£+£-‘)—§ 5 D**PP(§),

so that |D*P (£ + ¢') [/ﬁ (&) is bounded when |¢' | < &. Therefore we have
lu(0)] < c;czf( [ PBE+ &+ in)|PE+ &) ag dn')ds

grirse
< G4 ||v||, where (11)

o]l = 1{Q(flv?(s +in) /P a)dy (€ CTR,),

C, denoting a constant depending only on e.

By the way, the finiteness of |v|’ is a consequence of the Paley-Wiener
theorem in Chapter VI, 4. Consider the space C§°(R") which is the
completion of C§° (R") with respect to the norm ||v||". Then, by the Hahn-
Banach extension theorem, the linear functional L :

v = P(D)u—>u(0) (where uc CP(R")

can be extended to a continuous linear functional L defined on C%°(R”).
As in the case of the space L!(R"), we see that there exists a Baire func-
tion k(& + ¢7) bounded a.e. with respect to the measure p (&) 1dédq
such that the extended linear functional L is represented as

L= [ ([ 3€ +ink@ +inPE adn. 0
n &

When v, (x) € C3° (R") tends, as A — oo, to 0 in the topology of D (R"),
v (x) e also tends to zero in the topology of ® (R"), uniformly with
respect to 7 for || =< e. Hence, as in Chapter VI, 1, we see easily that
Uy (£ 4- 77), as function of &, tends to zero in the topology of &(R"),
uniformly in 7 for |n| =< ¢. Therefore, by (12), L defines a distribution
T ¢ D(R™)'. Thus, by (5) in Chapter VI, 3.

L(v) = (T *7%) (0) = (T % v) (0). (13)
We have thus proved Theorem 2 by taking E = T. (3) is clear from (11).
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11. Differential Operators with Uniform Strength

The existence theorem of the preceding section may be extended to a
linear differential operator

P(x, D) = X a,(9) D. M

whose coefficients a, (x) are continuous in an open bounded domain £ of
R".
Definition. P (x, D) is said to be of uniform strength in Q, if
sup  P(x, £)[P(y, £) < oo, @)

%YED,ECRN
where P (x, &) is defined by (2 | P (x, &) |2)1/2 considering x as para-
meters.

Examples. The differential operator P(x, D) = Dsag,(x) D

Isl,lt| sm
with real, bounded C® coefficients a,,(x) = a, (%) in £2 is strongly elliptic
in 2 (see Chapter VI, 9) if there exists a positive constant & such that

RN ERIP ) ) o)

In such a case, P(x, D) satisfies the condition (2). Next let P(x, D) be
strongly elliptic in an open bounded domain 2 of R*~1, Then

3. — P(5. D) (4)
is said to be parabolic in the product space 2Xx{x,; 0 < x,}. It is easy
to see that the operator (4) is of uniform strength in the above product
space.

Theorem (HORMANDER [5]). Let P(x, D) be of uniform strength in an
open bounded domain {2 of R”. For any point x°, there exists an open
subdomain £, of 2 such that 20 € £, and the equation P (x, D) » = f has,
for every f€ L%(£2,), a distribution solution » € L%(£2,) for which, more-
over, Q(D) u € L%(82,) for every Q (D) weaker than P(x, D) for any fixed
2 €0,

P:oof. Write P (%0, D) = P, (D). The set of all the differential opera-
tors with constant coefficients weaker than P (D) is a finite dimensional
linear space. For, the degree of such operators Q (D) cannot exceed that
of Py(D). Thus there exist P, (D), £P,(D), ..., Py(D) which form a basis
for the differential operators weaker than 7, (D). Hence we can write

P, D)= Py(D) + 2 4,(x) Py(D), b =0, ®)

with uniquely determined &;(x) which are continuous in 2.
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By the result of the preceding section, there exists a bounded linear
operator T on L%(£2,) into L%(§2,) such that
Py(D)Tf=/{ for all feL2()), (6)

and that the operators P;(D) T are all bounded as operators on L2(£2))
into L2(£2,). Here £2, is any open subdomain of 2. We have only to take
T as the restriction to £, of E % f, where f, = fin 2, and f, = 0 in
R —Q,.

The equation P (x, D) # = f is equivalent to

N
Py(D)u + Zbi(x) Pj(D)u=1. O
We shall seek a solution of the form #» = T v. Substituting this in (7), we
obtain, by (6),
N
v +j=21 b;(x) P;(D) Tv=1. (8)

Let the sum of the norms of the bounded linear operators P;(D) T on

12(8,) into L2%(2,) be denoted by C. Since b;(x) is continuous and
b;(x°) = 0, we may choose £2; 5 2 so small that

C |bj(x)| < 1/N whenever x€ 2, =1,2,...,7).

We may assume that the above inequalities hold whenever x belongs
to the compact closure of £2,. Thus the norm of the operator

N
21 b;(x) P;(D) T is less than 1, and so the equation (8) may be solved
J=

by Neumann'’s series (Theorem 2 in Chapter II, 1):
N -1
v=(I+ Z6PO)T) 1 =41,

where A is a bouned linear operator on L2(£,) into L?(£2,). Hence
u = TAf is the required solution of P(x,D)u = f.

12. The Hypoellipticity (Hérmander’s Theorem)

We have defined in Chapter II, 7 the notion of hypoellipticity of
P(D) and proved Hérmander’s theorem to the effect that, if P (D) is
hypoelliptic, then there exists, for any large positive constant C;, a
positive constant C, such that, for all solutions { = & + 4% of the alge-
braic equation P ({) =0,

[l < CGif || <Gy (1)

To prove conversely that (1) implies the hypoellipticity of P (D),
we prepare the

Lemma (HORMANDER [1]), (1) implies that

o IPO@R] | PO@F>0as (R {00 (2)
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Proof. We first show that, for any real vector ® € R*, we have
P4 O)[P(£) > 1 as £E€ R, |£] > oo. 3)

We may assume that the coordinates are so chosen that @ = (1, 0,0, .. ., 0).
We have, by (1),

P(§ + in) % 0 when || < C, and |§] > C,.

Then the inequality |§ — ¢’ | = C; holds if |§] = C; + C; and P ({') = 0.
For, setting {’ = & -+ 4n’, we have either |n'| = C, or else |£'| < C, so
that |£ — &'| = C,. Giving fixed values to, &, &, ..., £, we can write

P)=C T 6 —w.c#0,

where (%, &;,...,&,) is a zero of P. Hence we have |t, — & | = C, if
|§| = C; + C,. Thus

PE+0) _ {Tatl—t _ 1] ( >
P® H n = 1 1+s,~tk
satisfies

‘Pé—i—@

1 ’ < mCPH 1+ CTY™1 i &= C, + G,

As we may take C, arbitrarily large by taking C, sufficiently large, we
have proved (3).
We have, by Taylor’s formula,

1 . «
P +m) =2 — Py
and so
L 1 k
PE+ %) = 2/ —7 P E) 2 t:(n9) 4
1,=1 3 ) 1=1

where 7 are arbitrary real vectors and # arbitrary complex numbers.
k

The coefficients ' ¢;(n®)% |a| < m, can be given arbitrary values by
i=1

a convenient choice of %, {; and #®. If otherwise, there would exist con-
stants C,, |&| < m, not all equal to zero and such that Z C.n* =0 for
every 7. Thus

P@ (£) = zi‘ ;P (& + n¥) with real vectors 5®

Since the principal part on the right must cancel out when |x| 7% 0, we
k
must have }i‘ t; = 0. Hence, by (3), we obtain (2).

Corollary. Suppose that P; () and P,(§) satisfy (2). Then P(¢) =
P (E) P, (£) also satisfies (2). Moreover, if Q;(D) is weaker than P;(D)
(7 = 1, 2), it follows that Q, (D) Q,(D) is weaker than P (D).



12. The Hypoellipticity (Hérmander’s Theorem) 191

Proof. By applying Leibniz’ formula of differentiation of product of
functions, we see that P (£) is a linear combination of products of
derivatives of P; (&) and P,(£) of the order sum =< (x). Hence (2) holds
for P(£). The latter part of the Corollary may be proved similarly.

We are now ready to prove

Theorem (HOrRMANDER [1]). P (D) is hypoelliptic iff the condition (2)
is satisfied.

Proof. The “only if”’ part is already proved (Chapter II, 7 and what
was proved above). We shall prove the “if”’ part.

Let £2 be an open subdomain of R". A distribution # € D (£2)’ is said
to belong to Hf, () if, for any g,€ CP(2), the Fourier transform #,
of uy, = @yu satisfies (see Chapter VI, 2)

R[ (1 + |EP) | (£) |2 dE < oo, that s, if uy = goue WH2(R"). (5)

By virtue of Sobolev’s lemma in Chapter VI, 7, the “if” part is
proved by the following proposition:

Let P (&) satisfy (2). If a distribution » € D (2)’ satisfies
P (D) u€ Hy,.(Q2) with a positive s, then u belongs to (6)
().

For, if P(D)u€ C® in Q, then P (D) u € H;(Q) for every positive s

because of Leibniz’ formula of differentiation.
The following proof of (6) is based upon two Lemmas:

Lemma 1. Let /€ W*2(R") and y € C§° (R"), s = 0. Then yf € W*2(R").

Lemma 2. Let P (£) satisfy (2). Then there exists a positive constant
u such that ‘P(‘") (&) &|/|P(&)|— 0 as &€ R", |&]| — oo for every o« 7 0.

The proof of Lemma 1 will be given later, and the proof of Lemma 2
will not be given here (for the latter, we refer the reader to L. HOr-
MANDER [6] or to A. FRIEDMAN [1]).

Next, let 22, and £2, be arbitrary open subdomains of £ such that their
closures £2¢ and 2§ are compact and 2§ CQ,, 22 CQ. By Schwartz’
Theorem in Chapter III, 11, the distribution » € ® (£2)’ is, when conside-
red as a distribution € D (£2,)’, a distributional derivative of the form
D!y of a function v(x) € L2(2,). Let ¢ € C°(£2,) be such that ¢ (x) =1
in,. Then u = uy = D’puv as distributions € D (2,)’. pv being € LZ(R"),
we see that there exists a (possibly) negative integer % such that

P® (D) uy, = P*)(D) D'¢pv € W*2(R") for every w. (7

Hence, by Lemma 1 and the generalized Leibniz formula (see Chapter1, 8)

P (D) pyuy = D) uy + Z i Dagr - P(D) uy, (8)
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we see by P (D)u,€ H}, (2) that, whenever ¢, € C3° (2),

P (D) ¢, u,€ Wh2(R") with k, = min(s, k). 9)
Thus the Fourier transform %, (&) of u, (x) = ¢, (%) %, (¥) satisfies
JIP@a@F (1 + g ae < oo (10)
and hence, by Lemma 2,
f | P (£) 0y () [2 (1 + |&[2)M+# dE < oo, that is,
(11)

P (D) u; € Whts2(R* for every o 7% 0.

Let £2, be any open subdomain of £, such that its closure £ is compact
and contained in ©,. Then, for any ¢, € C3°(£2,), we prove, by (8) and (11)
as above, that

P(D) gyuy € Wh2(R") with ky = min (s, k; + ) and hence
P (D) pou, € Whtr2(R") for every o 7 0.

Repeating the argument a finite number of times, we see that, for any
open subdomain £’ of £ such that its closure is compact and contained
in Q,
P (D) pu € W2(R") for all « 7 0 whenever ¢ € C3°(2').
Thus, P (&) = constant == 0 gives pu € W*2(R").
Proof of Lemma 1. The Fourier transform of yf is

(27)~"2 [ ¢ (n) f (¢ — 7) dn (see Theorem 6 in Chapter VI, 3)
RM

and thus we have to show that, fors =0,
Jarlerr| [oniE—ndn*ds<eco.
By Schwarz’ inequality, this can be estimated from above by

f<1 + |f|2>‘[f\¢<n)|dn- [1pm)]-17¢€—n) [ aé

(12)
= Jlo@lan[ [ [Q+[ERFRmI-17E— e dr].
We then make use of the inequality
L+ [EF < 48 (1 + [gBF (1 + [§— 9Py (13)
which may be proved by
e ~1+[f—nf
1+ [E— lz—4 +[nP), 40+ [EP) = 14 7

By (13), the right side of (12) is estimated by f | () | dn-times

41 [ 1 o0+ [Py ([ (1 + 16 —nP) [TE—n) df).
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This integral converges since /€ W*?(R") and 9 () € & (R™).
We have thus proved our Theorem.

Further Researches

1. A linear partial differential operator P (x, D) with C*®(£2) coeffi-
cients is said to be formally hypoelliptic in 2 C R" if the following two
conditions are satisfied: i) P (x° D) is hypoelliptic for every fixed x°¢€ Q
and ii) P(x2, &) = O(P (', £)) as £€ R", |£| — oo for every fixed x° and
x' €. L. HORMANDER [5] and B. MALGRANGE [2] have proved that,
for such an operator P(x, D), any distribution solution # € D (£2)" of the
equation P(x, D) u = f is C*™ after correction on a set of measure zero
in the open subdomain C 2 where f is C*. The proof above for the con-
stant coefficients case may be modified so as to apply for the formally
hypoelliptic case, see. e.g., J. PEETRE [1].

2. It was proved essentially by I. G. PETROWSKY [1] that all distri-
bution solutions # € ® (R") of P(D) u = 0 are analytic functions in R"*
iff the homogeneous part P, (§) of P (£) of the highest degree m does not
vanish for £¢€ R”. If this condition is satisfied then P (D) is said to be
(analytically) elliptic. It is proved that in such a case the degree m is
even and P (D) is hypoelliptic. It is to be noted that the hypoellipticity
of an analytically elliptic operator P (D) can also be proved by Friedrichs’
Theorem in Chapter VI, 9. For, by the non-vanishing of P,, (§), we easily
see, by the Fourier transformation, that P(D) or —P (D) is strongly
elliptic. For the proof of Petrowsky’s Theorem, see, e.g., L. HORMANDER
[6], F. TREvVEs [1] and C. B. MORREY-L. NIRENBERG [1].*

VII. Dual Operators

1. Dual Operators

The notion of the transposed matrix may be extended to the notion of
dual operator through

Theorem 1. Let X, Y be locally convex linear topological spaces and
X., Y. their strong dual spaces, respectively. Let T be a linear operator on
D(T) C Xinto Y. Consider the points {x’, ¥’} of the product space X; X Y
satisfying the condition

(Tx,y'>={<x,%") for all x€ D(T). (1)

Then #' is determined uniquely by y’ iff D (T) is dense in X.
Proof. By the linearity of the problem, we have to consider the condi-
tion:
(x,%"y =0 for all x€ D(T) implies =z = 0.

* See also Supplementary Notes, p. 466.

13 Yosida, Functional Analysis
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Thus the “if”’ part is clear from the continuity of the linear functional
%'. Assume that D(T)® % X. Then there exists, by the Hahn-Banach
theorem, an %y 7= 0 such that {x, %) = 0 for all x€ D (T); consequently,
the “only if”’ part is proved.

Definition 1. A linear operator T’ such that 7'y’ = ' is defined
through (1) iff D(T)* = X. T’ is called the dual or conjugate operator of
T; its domain D (T") is the totality of those y’ € Y, such that there exists
x' € X, satisfying (1), and 7"y’ = «’. Hence 7" is a linear operator defined
on D(T") C Y, into X such that

(Tx,y">=<x,T'y"y forall x€D(T) and all y' €D(T"). (2)

Theorem 2. If D(T) = X and T is continuous, then 7’ is a conti-
nuous linear operator defined on Yj into X_.

Proof. For any ¥y’ € Y¢, (Tx, 9" is a continuous linear functional of
% € X and so there exists an »’ € X; with 7"y’ = %’. Let B be a bounded
set of X. Then, by the continuity of T, the image T - B = {Tx ; X€ B}
is a bounded set of Y. Thus, by the defining relation (Tx, y'> = <{x, 1),
the convergence to 0 of ¥’ in the bounded convergence topology of Y’
(given in Chapter IV, 7) implies the convergence of x’ in the bounded
convergence topology of X’. Thus T” is a continuous linear operator on
Y; into X;.

Example 1. Let X = Y be n-dimensional euclidean spaces normed by
the (/2)-norm. For any continuous linear operator T € L (X, X), set

Tx=1y, where x=(x,%,...,%,) and y = (y1,¥2, -, Ya)-
”
Then y; = 21 ti% 0=1,2,...,m)and so, for z = (23, 25, . . ., 2,),
i=

Tx,2) =y,2) = ]Zyj = e (f‘_‘ tijxj) 2; = iji (;‘ tijz,-> .

Thus T'z = w is given by w; = _21 Lz (1=1,2,...,n). This proves

that the matrix corresponding to T” is the transposed matrix of the matrix
corresponding to T.

Example 2. Let X =Y be the real Hilbert space (/?), and let
T,€ L(X, X) be defined by

Ty, %y oo oy Xpy o2 ) = (%, X y1, Xpyo, - - 1)
Then from
Ty (%1, %9, .. 2), (21,22, - )) = %,2) + Xy 180 + XpyoZy + -+ -,
we obtain ot
To(z,29,...) =1(0,0,...,0,2,2,...).
oo 1/2
Since || T, (%, %a, . . ) || = m%x,z,, —0asn—>ooand|| T, (2,2, . ..)||

= |[(2y 23, . . .)||, we have
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Proposition 1. The mapping T— T of L(X, Y) into L(Y;, X;) is
not, in general, continuous in the simple convergence topology of opera-
tors, that is, lim T,x = T x for all x€ X does not necessarily imply

#—>00 N
lim T,y = T’y for all ' € Y’, in the strong dual topology of X..
7—>00

Theorem 2’. Let T be a bounded linear operator on a normed linear
space X into a normed linear space Y. Then the dual operator 7" is a
bounded linear operator on Y, into X, such that

1T =171 (3)
Proof. From the defining relation (Tx, "> = <x, '), we obtain
1Ty || = ||| = sup |<x, «]
llsll=1
= sup [<Tx,y>[=1[y'[|- sup [[Tx|| = [[¥]|-]
ll#lls1 [l#ll=1
and so ||T"|| = || T||.- The reverse inequality is proved as follows. For
any x,€ X, there exists an f,€ Y’ such that ||f)|| =1 and /,(Tx,) =
(T %y, foy = ||Txy}|- Thus fo = T"f, satisfies {x, fo» = ||T%,|| and so
T x|l = <o, Tfo> = [T o] - 1%0ll = 1T [] - [|%]], ice-,
7= 171l

Theorem 3. i) If T and S are €L(X,Y), then («T + BS) =

(xT" + BS’). ii) Let linear operators T, S be such that D(T), D(S),

R(T) and R(S) are all contained in X. If Sis€ L (X, X) and D(T)* = X,
then

7],

STy =T17S5". (4)
If, moreover, D (T S)* = X, then
(TS) 2S5'T’, ie., (TS) is an extension of S'T". (5)

Proof. i) is clear. ii) D(ST) = D(T) is dense in X, and so (ST)’
exists. If y € D((ST)"), then, for any x€ D(T) = D(ST), {Tx,S'y> =
(STx,y> =<x,(ST) y). This shows that S’y€ D(T’) and T'S'y =
(ST)'y,thatis,(ST)" CT'S’. Let,conversely,y € D(T'S’),i.e.,S’ye D (T").
Then, foranyx € D(T) = D(ST),{STx,y) =<Tx,S'y) = {x, T'S"y>.
This shows that y € D((ST)") and (ST)'y =T1"S"y, thatis, TS’ C(ST)".
We have thus proved (4).

To prove (5), let y€ D(S'T’) = D(T’). Then, for any x¢ D(TS),
KTSx,y> =<Sx,T'yy) =<x,S'T'y). This shows that y€ D((TS)")
and (TS)'y = S'T'y, thatis, S'T" C (TS)'.

2. Adjoint Operators

The notion of transposed conjugate matrix may be extended to the
notion of adjoint operator through

13*
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Definition 1. Let X, Y be Hilbert spaces, and T a linear operator
defined on D(T) C X into Y. Let D(T)* = X and let T’ be the dual
operator of T. Thus (Tx,y"> =<x,T'y") for x€ D(T), y' € D(T"). If
we denote by Jx the one-to-one norm-preserving conjugate linear corre-
spondence X3/ <> y,€ X (defined in Corollary 1 in Chapter III, 6), then

Txy>=v(Tx) = (Tx Jyy), xTy>=(T"Y) (%) = (x JxT'y).
We have thus
(Tx, Jyy') = (%, JxT'y'), that is, (Tx,y) = (v, JxT'J3'y).
In the special case when Y = X, we write
T* = JxT'J%'

and call T* the adjoint operator of T.

Remark. If X is the complex Hilbert space (/2), we see, as in the Exam-
ple in the preceding section, that the matrix corresponding to T* is the
transposed conjugate matrix of the matrix corresponding to 7.

As in the case of dual operators, we can prove

Theorem 1. T* exists iff D(T)* = X. It is defined as follows: y € X
is in the domain of D (T*) iff there exists a y* € X such that

(Tx,y) = (x,y*) holds for all x¢ D(T), (1)

and we define T* y = y*.
We can rewrite the above theorem in terms of the graph G (4) of the
linear operator A (the graph was introduced in Chapter II, 6):
Theorem 2. We introduce a continuous linear operator ¥V on X x X
into X X X by
Vix, v} = {—v, x}. (2)

Then (V G(T))* is the graph of a linear operator iff D(7)* == X, and, in
fact, we have
G(T*) = (VG(T)*. (3)

Proof. The condition {—T'x, x} | {y, y*} is equivalent to (Tx,y) =
(x, ¥*). Thus Theorem 2 is proved by Theorem 1.

Corollary. T* is a closed linear operator, since the orthogonal comple-
ment of a linear subspace is a closed linear subspace.

Theorem 3. Let T be a linear operator on D(7T) C X into X such that
D(T)* = X. Then T admits a closed linear extension iff T** —(T*)*
exists, i.e., iff D(T*)* = X.

Proof. Sufficiency. We have T** 2 T by definition, and T** = (T*)*
is closed by the above Corollary.

Necessity. Let S be a closed extension of T. Then G(S) contains
G (T)* as a closed linear subspace, and so G(7)* is the graph of a linear
operator. But G(T)* = G(T)++ = (G(T)1)* by the continuity of the
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scalar product, and, moreover, by VG(T*) = G(T)*, we obtain
(VG(T*)t = G(T)++. Therefore, (VG(T*))* is the graph of a linear
operator. Thus by Theorem 2 D (T*)* = X and T** exists.

Corollary. Under the condition that D (7)* = X, T is closed linear iff
T = T**.

Proof. The sufficiency is clear. Necessity is provéd by observing the
formula G(T)* = G(T**) obtained above. For, G(T) = G(7)* implies
that T = T**.

Theorem 4. An everywhere defined closed linear operator 7 is a con-
tinuous linear operator.

Proof. Clear from the closed graph theorem.

Theorem 5. If T is a bounded linear operator, then 7* is also bounded
linear and

il = 7= (8

Proof. Similar to the case of dual operators.

3. Symmetric Operators and Self-adjoint Operators

A Hermitian matrix is a matrix which is equal to its transposed
conjugate matrix. It is known that such a matrix can be transformed
into a diagonal matrix by a suitable (complex) rotation of the vector
space on which the matrix operates as a linear operator. The notion of the
Hermitian matrices is extended to the notion of self-adjoint operators
in a Hilbert space.

Definition 1. Let X be a Hilbert space. A linear operator on D (T) C X
into X is called symmetric it T* 2 T, i.e., if T* is an extension of 7. Note
that the condition of the existence of 7* implies that D (T)* = X.

Proposition 1. If T is symmetric, then 7** is also symmetric.

Proof. Since T is symmetric, we have D (T*) 2 D(T) and D (T)* =X.
Hence D (T*)* = X and so T** = (T*)* exists. T** is surely an exten-
sion of T and so D (T**) 2 D(T). Thus, again by D(T)* == X, we have
D (T**)* = X and so T*** = (T**)* exists. We have, from 7* 2 T,
T** C T* and hence T*** O T** which proves that T** is symmetric.

Corollary. A symmetric operator T has a closed symmetric extension
T** = (T*)*.

Definition 2. A linear operator T is called self-adjoint if T = T*.

Proposition 2. A self-adjoint operator is closed. An everywhere defined
symmetric operator is bounded and self-adjoint.

Proof. Being the adjoint of itself, a self-adjoint operator is closed.
The last assertion is proved by the fact that an everywhere defined closed
operator is bounded (closed graph theorem).

Example 1 (integral operator of the Hilbert-Schmidt type). Let
—oo = a< b=oo and consider L2(a,b). Let K(s,?) be a complex-
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valued measurable function for a < s, ¢ < b such that
fbfb{K(s, t)|2ds dt < oo.
a a
For any x(t) € L2(a, b), we define the operator K by
(K- %) (s) = fbK(s, t) x(t) dt.
a
We have, by Schwarz’ inequality and the Fubini-Tonelli theorem.
fb](K %) (s)[2ds = ffb!K(s, t)lzdtdsflx(t) 2 dz.
a a a a

Hence K is a bounded linear operator on L2(a, b) into L2(a, ) such that
b b 12
K| = <f J |K(s,#)[2dsdt) . Itis easy to see that the operator K*

b
is defined by (K*y) () = f K (¢, s) y(s) ds. Hence K is self-adjoint iff

K(s,t) = K(t,s) for a.e. s, ¢
Example 2 (the coordinate operator in quantum mechanics). Let
X = L%(—o00,00). Let D = {x(t); x(¢) and ¢ - x(f) both € L2(— oo, o0)}.
Then the operator 7" defined by T'x(t) = ¢ - x(f) on D is self-adjoint.
Proof. It is clear that D®* = X, since the linear combinations of
defining functions of finite intervals are strongly dense in L2(— oo, o).
Let y€ D(T*) and set T*y = y*. Then, forall x€ D = D(T),

_ofo tx(t)y(f) dt :—!o x(2) y*(t) dt.

If we take for x(¢) the defining function of the interval [«, #,], we have

4 b

f t- m dt = f y*(¢) dt, and hence, by differentiation, ¢, - ¥ ({,) = y* (¢,)
for a.e. {,. Thus y€ D and T*y(f) = ¢ - y(¢). Conversely, it is clear that
y € D implies that y € D(T*) and T*y(t) = ¢ - y(¢).

Example 3 (the momentum operator in quantum mechanics). Let
X = L?(— o0, 00). Let D be the totality of x(f) € L2(— oo, o0) such that
% () is absolutely continuous on every finite interval with the derivative
x'(t) € L2(— o0, 00). Then the operator T defined by Tx(f) = i~1x'(¢)
on D is self-adjoint.

Proof. Let a continuous function x,, (f) be defined by
%, (t) = 1 for t€ [«, ],
%,(¢) =0fort < &« —mntand fort=¢, + n1,

%, (¢) is a linear function on [x — #~1, x] and on [¢,, ¢, + n~1].
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Then the linear combinations of functions of the form x,, () with different
values of «, f, and # are dense in L2(— o0, o0). Thus D is dense in X.
Let y€ D(T*) and T*y = y*. Then for any x€ D,

foi—lx'(t)W)ﬁ: foox(t)yT(Bdt.

If we take x,,(f) for x(¢), we obtain

e L tytnt o
n [ iy@dt—n [ iy@di= [ %0y,
x—n? t T

and so, by letting 7 — oo, we obtain i1 (y (x) — y (f)) = f y*(2) dt for

a.e. o and #,. It is clear, by Schwarz’ inequality, that y* (t) is mtegrable
over any finite interval. Thus y(f,) is absolutely continuous in #, over
any finite interval, and so we have i~1y’({,) = y*(t,) for a.e. £,. Hence
y€ D and T*y() = +~1y’(f). Let, conversely, y € D. Then, by partial
integration

f L @) () dt =it () y (O + f @) 1y’ (¢)) dt.
By the integrability of x(f)y(f) over (—oo,00), we see that
ol )
@ I [x (t) y(t)]gl = 0; and SO f i—lx y(t f x (i—ly )dt
a}—00,b400 %

—00
Thus y € D(T*) and T*y (f) = i1y’ (¢).

Theorem 1. If a self-adjoint operator 7" admits the inverse 71, then
T-1is also self-adjoint.

Proof. T = T* is equivalent to (VG(T))* = G(T). We have also
G(IY) = VG(—T). Hence, by (—T)* = —T*=—T, (VG(—T)* =
G(—T) and so

(VT M): =Gt =(V6(~T)tt = VG(~T) = 6(T7),

that is, (IY)* =T
We have used, in the above proof, the fact that (VG(—T))* = VG(—T)
in virtue of the closedness of (—T).

Corollary. A symmetric operator 7T in a Hilbert space X is self-ad-
joint if D(T) = X orif R(T) = X.

Proof. The case D(T) = X was proved already. We shall prove the
case R(T)=X. Tx=0 implies 0= (Tx,y) = (x,Ty) for all
y€ D(T), and so, by R(T) = X, we must have x = 0. Therefore the
inverse 71 exists which is surely symmetric with 7. D(T-1) =R(T) =X,
and so the everywhere defined symmetric operator 7! must be self-ad-
joint. Hence T = (T-1)~! is self-adjoint by Theorem 1.
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We can construct self-adjoint operators from a closed linear operator.
More precisely, we have

Theorem 2 (J. voN NEUMANN [5]). For any closed linear operator T
in a Hilbert space X such that D(7T)* = X, the operators 7*T and T T*
are self-adjoint, and (I + 7*7T) and (I + TT*) both admit bounded
linear inverses.

Proof. We know that, in the product space X X X, G(T) and VG (T*)
are closed linear subspaces orthogonal to each other and spanning the
whole product space £ X X. Hence, for any 4 € X, we have the uniquely
determined decomposition

{h,0} = {x, Ta} 4+ {—T*y,y} with x€D(T), yc D(T*. (1)
Thus A =x—T*y, 0 = Tx + y. Therefore

x€D(T*T) and x+ T*Tx=h. (2)

Because of the uniqueness of decomposition (1), x is uniquely deter-

mined by %, and so the everywhere defined inverse (I 4+ T*7)-! exists.

For any 4, k€ X, let

= 4+ T*T)h, y= (I + T*T) k.

Then x and y € D(T*T) and, by the closedness of T, (T*)* = T. Hence

(b, (I +T*T)7 k) = (I + T*T) x,9) = (%, 9) + (T*Tx,y)

=®9y) + (TxTy) =(xy) + (x T*Ty)
=(x{I+T*T)y) =L +T*T)1h,k),

which proves that the operator (I + T*7)=1is self-adjoint. As an every-
where defined self-adjoint operator, (I + T*7)~1is a bounded operator.
By Theorem 1, its inverse (I + T*T) and hence T*T are self-adjoint.

Since T is closed, we have (T*)* = T, and so, by what was proved
above, TT* = (T*)*T* is self-adjoint and (I + 7T 7T*) has a bounded
linear inverse.

We next give an example of a non-self-adjoint, symmetric operator:

Example 4. Let X = L%(0, 1). Let D be the totality of absolutely
continuous functions x(¢) € L2(0, 1) such that x(0) = x(1) = 0 and
%' (t) € L2(0, 1). Then the operator T, defined by T,x(f) = i1’ (f) on
D = D(T,) is symmetric but not self-adjoint.

Proof. We shall prove that T} = Tz» where T, is defined by:

Tox(f) =4 1x'(¢) on D(T,) = {x(¢) € L%(0, 1); x(¢) is
absolutely continuous such that %' () € L2(0, 1)}.

Since D = D(T,) is dense in L2(0, 1), the operator 77 is defined.

Let y€ D(T¥) and set TYy = y*. Then, for any x € D = D(T}),
1

frlx y(t) dt = d[()y*—(t)dt.
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By partial integration, we obtain, remembering x (0) = x (1) = 0,

fx(t =—f Y*(f) dt, where Y*(t fy
0
Hence, by x( f t) dt = 0, we have, for any constant c,
0
1 ——
[« @) (Y*@®) —ily(t) —c)dt =0 for all x€ D(Ty).

t
On the other hand, for any z(f) € L2(0, 1), the function Z (f) = f z(¢) dt —
0

f t) dt surely belongs to D (T;). Hence, taking Z(f) for the above

(t) we obtain
1 1 —
Of{zm —sz(t) dt}-(Y*(t)—i“ly(t)—c) dt = 0.

1

If we take the constant ¢ in such a way that f (Y*(@)—ity(t)—c)dt=0,
0

then

[z20)(Y*(0) —Ty() —c)dt =0,

0
and so, by the arbitrariness of z€ L%(0, 1), we must have Y*(f) =

fy t)dt=1"1y(¢) + c. Hence y€ D(T,) and T,y = y*. This proves

that Tt C T,. 1t is also clear, by partial integration, that T, C TF and
so Ty =T7.
Theorem 3. If H is a bounded self-adjoint operator, then
1H]] = Sup [(Hx, 5)]. (3)
Proof. Set sup |(Hx, x)| = y. Then, by |(Hx,x)| < ||Hx||||%]|,

ll=ll=
y =< ||H||. For any real number A, we have

[(H(y £ A2),y + A2)| = |(Hy,y) & 2A Re(Hy, 2) + 22(Hz, 2) |
=7 lly £ Az|p.
Hence
|44 Re(Hy. 2)| = v (|ly + A2[* + ||y — 22|]}) = 2y (|| [[* + 22 [| ") -
By taking 4 = |]yH/”zH we obtain |Re(Hy, z)[ <y ||y]| H |- Hence,

by substituting ze' for z, we obtain |(Hy,
(Hy, Hy) = [|Hy[F = |ly[| || Hy

Cien 2.
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4. Unitary Operators. The Cayley Transform

A symmetric operator is not necessarily a bounded operator. Various
investigations of a symmetric operator H may be made through the
continuous operator (H —¢I) (H + ¢I)™! called the Cayley transform
of H. We shall begin with the notion of isometric operators.

Definition 1. A bounded linear operator T on a Hilbert space X into
X is called (bounded) ¢sometric if T leaves the scalar product invariant:

(Tx,Ty) = (x,9) for all x,y€X. (1)
If, in particular, R(T) = X, then a (bounded) isometric operator T
is called a unitary operator.

Proposition 1. For a bounded linear operator T, condition (1) is
equivalent to the condition of the isometry

[|Tx||=||#]| for all x€ X. (2)
Proof. It is clear that (1) implies (2). We have, by (2),
4Re(Tx, Ty) = ||T(x + 9) [P~ || T (x—9) |2
=llx+y[P—lle—y[P=4Re(xy).

By taking 7y in place of y, we also obtain 4Im(Tx, Ty) = 4Im(x,y),
and so (2) implies (1).

Proposition 2. A bounded linear operator on a Hilbert space X into X
is unitary iff 7% = 7L

Proof. If T is unitary, then 7! surely exists in virtue of condition (2),
and D (T-!) = R(T) = X. Moreover, by (1), T*T = I and so T* = T-1,
Conversely, the condition T* = T—! implies 7*T = I which is the con-
dition of the invariance of the scalar product. Moreover, T* = T—1
implies that R(T) = D(T7') = D(T*) = X and hence we see that T
must be unitary.

Example 1. Let X = L2(— oo, 00). Then, for any real number «, the
operator T defined by Tx(¢) = x(¢ + a) on L%(— oo, o) is unitary.

Example 2. The Fourier transform on L?(R”) onto L?(R") is unitary,
since it leaves the scalar product (f, g) = f f (%) g(x) dx invariant.

Rn

Definition 2. Let X be a Hilbert space. A linear operator T defined
on D(T) C X into X such that D(T)* = X is called normal if

TT* = T*T. (3)

Self-adjoint operators and unitary operators are normal.

The Cayley Transform

Theorem 1 (J. von NEuMmaNN [1]). Let H be a closed symmetric
operator in a Hilbert space X. Then the continuous (but not necessarily
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everywhere defined) inverse (H + ¢I)~! exists, and the operator
Uy = (H—1I)(H ++I)! with the domain D(Uy) =D((H +1iI)™) (4)
is closed isometric (||Ugyx|| = ||#]||), and (I — Up)! exists.
We have, moreover,
H=1i(I+ Uy (I — Uy (5)

Thus, in particular, D (H) = R(I — Uy) is dense in X.

Definition 3. Uy is called the Cayley transform of H.

Proof of Theorem 1. We have, for any x € D (H),

((H+ il %, (H+il)x) = (Hx, Hx) + (Hx, %) + (ix, Hx) + (v, %).

The symmetry condition for H implies (Hx,ix) = —i(Hx, x) =
—1(x, Hx) = — (1%, Hx) and so
|(H £ D) %P = [[Hx[]* + ||=]P. (6)

Hence (H + ¢I) x = 0 implies x = 0 and so the inverse (H + ¢I)!
exists. Since ||(H + ¢I) x|| = |||, the inverse (H + ¢I)~1is continuous.
By (6), it is clear that ||Ugy|| = ||y ||, i.e., Uy is isometric.

Uy is closed. For,let (H + ¢1I) %, = y,,—> yand (H —¢I) x,, = 2, = 2
as n—>oo. Then we have, by (6), ||y, — ym|[®= ||H (x, — %) |[> +
| %5 — % |2, and so (x,, — %,,) = 0, H (x,, — x,,) = 0 as n, m — co. Since
H is closed, we must have x = s-lim %, € D(H) and s-lim Hx, = Hx.

7—>00 7—>00
Thus (H + ¢I)x,—>y = (H + ¢I)x,(H—4I) x, >z = (H—1+I) x and
so Uyy = 2. This proves that Uy is closed.

From y=(H+¢iI)x and Uyxy=(H—:iI)x, we obtain
211 —Uyg)y =1ix and 271 + Uy)y = Hx. Thus (I —Ug)y =0
implies x =0 and so (I 4+ Ug)y =2Hx =0 which implies y =
21(I —Uyg)y + (I + Uy) y) = 0. Therefore the inverse (I — Ug)~!
exists. By the same calculation as above, we obtain

Hx =211+ Ug)y =4I 4+ Uy) I — Uy)~lx, thatis,
H=i(I+ Uy)(I— Uy
Theorem 2 (J. voN NEUMANN [1]). Let U be a closed isometric opera-

tor such that R(I — U)* = X. Then there exists a uniquely determined
closed symmetric operator H whose Cayley transform is U.

Proof. We first show that the inverse (I — U)~! exists. Suppose that
(I—U)y=0. For any 2= (I —U)wé€ R(I — U), we have, by the
isometric property of U, (y, w) = (Uy, Uw) as in Section 1. Hence
¥, 2) = (y,w) = (v, Uw) = (Uy, Uw) — (y, Uw) = (Uy —y, Uw) = 0.

Hence, by the condition R (I — U)* = X, y must be = 0. Thus (I — U)!
exists. Put H =14¢(I + U) (I —U)™Y. Then D(H)=D((I —U)?) =
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R(I — U) is dense in X. We first prove that H is symmetric. Let
2,y DH) =R(I—U) andputx =(I —U)u,y = (I — U) w. Then
(Uu, Uw) = (4, w) implies that
Hx,9)=0CL + U)u, (I —U)w)=1(Uu, w) — (4, Uw))
=((I—U)u,i(I + U)w) = (x, Hy).

The proof of Uy = U is obtained as follows. For x = (I — U) «, we have
Hx=14i(I + U)wuand so (H + ¢I) x = 2iu, (H —iI) x = 2¢Uw. Thus
D(Uy) ={2tu;uc D(U)} = D(U),and Uy (2¢u) = 27 - Uu = U (27u).
Hence Uy = U.

To complete the proof of Theorem 2, we show that H is a closed
operator. In fact, H is the operator which maps (I — U) % onto ¢ (I 4+ U) u.
If (I —U)wu, and ¢(I + U) u, both converge as # — oo, then , and

Uwu,, both converge as n — oco. Hence by the closure property of U, we
must have

Up—>u, ([ —U)uy—> I —U)u,s(I + U) u,— (I 4 U) u.
This proves that H is a closed operator.

For the structure of the adjoint operator of a symmetric operator,
we have

Theorem 3 (J. voN NEUMANN [1]). Let H be a closed symmetric
operator in a Hilbert space X. For the Cayley transform U g =
(H—1I) (H + ¢I)72 of H, we set

X} = D(Ug)*, Xg = R(Up)*. (M
Then we have

X ={x€cX,H*x =ix}, Xg ={x€ X; H*x = —ix}, (8)
and the element x of D (H*) is uniquely expressed as
% = %y + %, + %y, where %€ D(H), %, € X, x5 € X so that
H*x = Hxy + 1%, + (—i%,). (9)

Proof. x€ D(Uy)* = D((H + ¢+I)~")* implies (x, (H + +I)y) =0
for all y € D (H). Hence (x, Hy) = — (x,1y) = (ix, y) and so x € D (H*),
H*x = ix. The last condition implies (x, (H + ¢I) y) = Oforallye D (H),
ie. x€D((H + iI)™)* = D(Ug)*. This proves the first half of (8);
the latter half may be proved similarly.

Since Uy is a closed isometric operator, we see that D(Uy) and
R(Uy) are closed linear subspaces of X. Hence any element x € X is
uniquely decomposed as the sum of an element of D (Uy) and an element
of D(Ug)*. If we apply this orthogonal decomposition to the element
(H* + ¢I) x, we obtain

(H* +iI) x = (H + i) xp + »' where xo€ D(H), ¥ € D(Ug)*.
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But we have (H + i) xy = (H* + iI) x, by xy€ D(H) and H C H*.
We have also H*x' = ix’ by ' € D(Ug)* and (8). Thus
%' = (H* 4 ¢1) %y, %, = (2¢)"1 ' € D(Ug)*,
and so
(H* 4+ 4I) x = (H* + 1) xy + (H* + ¢I) x; where
%€ D(H), % € D(Uy)*

Therefore (x — %y — %;) € R(Ug)* by H* (x — 5y — %,) = —i (¥ — %y — %)
and (8). This proves (9). The uniqueness of the representation (9) is
proved as follows. Let 0 = xy + x; + %, with xy€ D (H), x, € D(Ug)~*
%€ R(Ug)*. Then, by H*xy = Hxy, H*x) = ix;, H*xy = — i %,,
0= (H* +4I) 0= (H* 4+ 1) (xy + %; + %5) = (H + ¢1I) %y + 22%,.

But by the uniqueness of the orthogonal decomposition of X as the sum
of D(Uy) and D (Uy)*, we obtain (H + ¢1) x, = 0, 2ix; = 0. Since the
inverse (H + ¢I)71 exists, we must have %y = 0 and so x, = 0 — xy —
X, = 0—0—0=0.

Corollary. A closed symmetric operator H in a Hilbert space X is self-
adjoint iff its Cayley transform Uy is unitary.

Proof. The condition D (H) = D(H*) is equivalent to the condition
D(Ug)* = R(Uy)* = {0}. The last condition in turn is equivalent to the
condition that Uy is unitary, i.e. the condition that Uy maps X onto
X one-one and isometrically.

>

5. The Closed Range Theorem

The closed range theorem of S. BANACH [1] reads as follows.

Theorem. Let X and Y be B-spaces, and T a closed linear operator
defined in X into Y such that D(T)* = X. Then the following proposi-
tions are all equivalent:

R(T)isclosedin Y, (1)
R(T") is closed in X', (2)
R(I)=N(T)* ={y€Y;{y,y*) =0 forall y*ec N(T")}, (3)
R(T)=N(T)* = {x*€ X';{x,x*) =0 forall xc N(T)}. (4)

Proof. The proof of this theorem requires five steps.

The first step. The proof of the equivalence (1) <> (2) is reduced to
the equivalence (1) <> (2) for the special case when T is a continuous
linear operator such that D(T) = X.

The graph G = G (T) of T is a closed linear subspace of X X Y, and so
G is a B-space by the norm |[{x, y}|| = ||x|| + ||¥|| of X X Y. Consider a
continuous linear operator S on G into Y:

S{x, Tx} =Tx.
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Then the dual operator S’ of S is a continuous linear operator on Y’ into
G’, and we have

{x, Ta}, S'y*> = (S{x, Ta}, y*> = Tx, 9*)
— ({x, T}, {0, y*>, x€ D(T), y*€ Y".
Thus the functional S’ - y* —{0, y*} € (XX Y)' = X’'X Y’ vanishes at
every point of G. But, the condition ({x, Tx}, {x*, yT}> = 0, x€ D(T),

is equivalent to the condition {x, x*) = (—Tx, yf), x€ D(T), that is,
to the condition — 7"y} = x*. Hence

ST ey* ={0,y*} + {=T'y1, 91} = {=T'51,y* + 91}, y* €Y',
By the arbitrariness of y*, we seethat R(S') = R(—T") X Y'=R(T")x Y.

Therefore R (S’) is closed in X’ X Y” iff R(T") is closed in X’, and, since
R(S) =R(T), R(S) is closed in Y iff R(T) is closed in Y. Hence we
have only to prove the equivalence (1) <> (2) in the special case of a
bounded linear operator S, instead of the original T.

The second step. Let X and Y be B-spaces, and T a bounded linear
operator on X into Y. Then (1) — (2).

We consider T as a bounded linear operator T, on X into the B-space
Y, = R(T)* = R(T). We have to prove that (2) is true. T1y5, yF € Y1,
is defined by
By the Hahn-Banach theorem, the functional y; can be extended to a
y* € Y’ in such a way that (T'x, y¥)> = (Tx, y*>, x€ D(T) = X. Hence
Tiyt = T'yf and so R(T7) = R(T’). Thus it suffices to assume that
R(T) =Y. Then, by the open mapping theorem in Chapter II, 5, there
exists a ¢ > 0 such that for each y¢€ Y, there exists an x€ X with
Tx =y, ||x]| = c||y]||. Thus, for each y* in D(T"), we have
[<y, y*>| = [<Tx, y*>| = [<x, T'y*> |

= |l [Tyl = el [l - [IT7 ¥*]]-
[ly*[] = sup [<3, y*>| = ¢ [|T"y*|
Ill=1

Hence

and so (7”)~! exists and is continuous. Moreover, (T7)~1is a closed linear
operator as the inverse of a bounded linear operator. Hence we see that
the domain D ((T”)™1) = R(T") must be closed in X'.

The third step. Let X and Y be B-spaces, and T a bounded linear
operator on X into Y. Then (2) - (1).

As in the second step, we consider T as a bounded linear operator
T, on X into Y; = R(T)* Then T; has the inverse, since 77y} = 0
implies

(Tyx,¥1) = (Tx, 91> = <&, Ty = 0, x€ D(Ty) = D(T) = X,
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and so, since R (T;) = R(T) is dense in Y, = R(7)*, ¥ must be 0. There-
fore, the condition that R(T") = R(T}) (proved above) is closed, implies
that T is a continuous linear operator on the B-space (R(7)%)' = Y;
onto the B-space R(T}) in a one-one way. Hence, by the open mapping
theorem, (73)~! is continuous.

We then prove that R(T) is closed. To this purpose, it suffices to
derive a contradiction from the condition

there exists a positive constant ¢ such that the image
{T,%; ||*|| = ¢} is not dense in all the spheres ||y [|§n‘1
m=1,2,...)0of Y, = R(T)* = R(T,)".

For, if otherwise, the proof of the open mapping theorem shows that

R(T)) =R(T) =Y,. Thus we assume that there exists a sequence
{ya} S Yy with

s-lim y, =0, v, € {Tyx; ||x]| < ¢&}* (n=1,2,...).
n—>00

Since {T,x; ||x|| = €} is a closed convex, balanced set of the B-space Y,
there exists, by Mazur’s theorem in Chapter IV, 6, a continuous linear
functional £, on the B-space Y, such that

faa) > sup |fu(Ty%)| (n=1,2,..)).
1] e

Hence || T1/,|| <& ||fu]|||¥4 ]|, and s0, by s-lim 9y, = 0, T; does not have
7n—>00

a continuous inverse. This is a contradiction, and so R (T) must be closed.
The fourth step. We prove (1) — (3). First, it is clear, from

<Tx: y*> = <x’ le*>’ x€ D(T)’ y* € D(T,)’

that R(T) C N(T')1. We show that (1) implies N (7")1  R(T). Assume
that there exists a y,€ N (T”)+ with y,€ R (7). Then, by the Hahn-Banach
theorem, there exists a yg € Y’ such that (y,, ya» 7% 0 and Tz, yg> = 0
for all x € D(T). The latter condition implies <%, T"yg> = 0, x€ D(T),
and hence T"yg = 0, i.e., yo € N{T")L. This is a contradiction and so we
must have N (T")+ C R(T).

The implication (3) — (1) is clear, since N (T")* is closed by virtue
of the continuity in y of {y, y*>.

The fifth step. We prove (2) — (4). The inclusion R(T') C N(T)* is
clear as in the case of (3). We show that (2) implies that N (T)+ C R(T").
To this purpose, let x* € N(T)+, and define, for y = Tx, the functional
f1(») of y through f, (y) = <{x, x*>. It is a one-valued function of y, since
T x = T %' implies (x —x") € N (T) and so, by x*€ N (T)+, {(x—%'), x*) = 0.
Thus £, (y) is a linear functional of y. (2) implies (1), and so, by the open
mapping theorem applied to the operator S in the first step, we may
choose the solution x of the equation y = T x in such a way that s-lim
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v = 0 implies s-lim x = 0. Hence f, (y) = {x, #*) is a continuous linear
functional on Y; = R(T). Let f€ Y’ be an extension of f;. Then

HTx) = ((Tx) = <x, 2%).
This proves that 7'f = x*. Hence N (T)1 C R(T").

That (4) implies (2) is clear, since {x, ¥*) is a continuous linear func-
tional of x.

Corollary 1. Let X and Y be B-spaces, and T a closed linear operator
on D(T) C X into Y such that D(T)* = X. Then

R(T) =Y iff T’ hasa continuous inverse, (5)
R(T') = X' iff T hasa continuous inverse. (6)

Proof. Suppose that R(T) = Y. Then, from (Tx, y*> = (x, T'y*),
%€ D(T) and T'y* = 0, we obtain y* = 0, that is, 7' must have the
inverse (7”)~1. Since, by R(T) = Y and (2), R(T") is closed, the closed
graph theorem implies that (T')—1 is continuous. Next let 7 admit a
continuous inverse. Then N(T') = {0} and also (2) holds since T" is
closed. Thus, by (3), R(T) = Y.

Suppose that R(T') = X'. Then, from <(Tx,y*) = (x, T'y*),
y*€ D(T') and Tx = 0, we obtain x = 0, i.e., T must have the inverse
T-1. Since, by R(T') = X' and (1), R(T) is closed, the closed graph
theorem implies that 71 must be continuous. Next let 7 admit a con-
tinuous inverse. Then N(T) = {0} and also (1) holds since T is closed.
Thus, by (4), R(T") = X'.

Corollary 2. Let X be a Hilbert space with a scalar product («, »), and
T a closed linear operator with dense domain D(7) C X and range
R(T) € X. Suppose that there exists a positive constant ¢ such that

Re(Tu,u) =c ||u|[* forall wec D(T). (7

Then R(T*) = X.

Proof. By Schwarz’ inequality, we have

[|Tul|-||#|| = Re(Tu,u) =c||u|® forall uecD(T).

(T), and so T admits a continuous inverse.
Thus, by the preceding Corollary, R(T') = X. Hence R (T*) =R(T") =X

Remark. A linear operator 7 on D(T) C X into X is called accretive
(the terminology is due to K. FrRIEDRICHS and T. KaTo) if

Re(Tu,u) =0 for all ue D(T). (8)
T is called dissipative (the terminology is due to R. S. Phillips) if —T
is accretive.

References for Chapter VII

For a general account concerning Hilbert spaces, see M. H. STONE
[1], N.I. AcHIESER-I. M. GLASMAN [1] and N.DUNFORD-]. SCHWARTZ
[56]. The closed range theorem is proved essentially in S. BaNacH [1].



1. The Resolvent and Spectrum 209

VIII. Resolvent and Spectrum

Let T be a linear operator whose domain D (T) and range R (7) both
lie in the same complex linear topological space X. We consider the linear
operator

T,=1—T,

where 4 is a complex number and I the identity operator. The distribution
of the values of 4 for which 7', has an inverse and the properties of the
inverse when it exists, are called the spectral theory for the operator T.
We shall thus discuss the general theory of the inverse of T,.

1. The Resolvent and Spectrum

Definition. If 4, is such that the range R(T,) is dense in X and T,
has a continuous inverse (4] — T)~1, we say that A, is in the resolvent
set o(T) of T, and we denote this inverse (4, — T)~! by R(4y; T) and
call it the resolvent (at 4)) of T. All complex numbers A not in ¢ (7") form
a set ¢(7) called the spectrum of T. The spectrum ¢ (T) is decomposed
into disjoint sets P,(T), C,(T) and R, (T) with the following properties:
P, (T) is the totality of complex numbers A for which T, does not have

an inverse ;P,(T) is called the point spectrum of T.

C,(T) is the totality of complex numbers A4 for which T, has a discon-
tinuous inverse with domain dense in X; C,(7T) is called the con-
tinuous spectrum of T.

R,(T) is the totality of complex numbers A for which T has an inverse
whose domain is not dense in X; R,(7) is called the residual
spectrum of T.

From these definitions and the linearity of T we have the

Proposition. A necessary and sufficient condition for A,¢€ P,(T)
is that the equation T'x = Ayx has a solution x 7% 0. In this case 4, is
called an ergenvalue of T, and x the corresponding eigenvector. The null
space N (Al — T) of T, is called the ezgenspace of T corresponding to the
eigenvalue 4, of T. It consists of the vector 0 and the totality of eigen-
vectors corresponding to 4,. The dimension of the eigenspace correspond-
ing to 4, is called the multiplicity of the eigenvalue A,

Theorem. Let X be a complex B-space, and T a closed linear operator
with its domain D (T') and range R (T) both in X. Then, for any 4, € o (T),
the resolvent (4,] — T)~! is an everywhere defined continuous linear
operator.

Proof. Since A;is in the resolvent set ¢ (T), R (A, I —T) =D ((}L—T)™)
is dense in X in such a way that there exists a positive constant ¢ for
which

[|(Af — T) x|| = ¢ ||x|| whenever x€ D(T).

14 Yosida, Functional Analysis
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We have to show that R(4y/ — T) = X. But, if s-lim (A, —T) x, =1y
7n—00
exists, then, by the above inequality, s-lim x,, = x exists, and so, by the
7n—>00

closure property of T, we must have (4 — T) x = y. Hence, by the
assumption that R (4] — T)* = X, we must have R(4,] — T) = X.

Example 1. If the space X is of finite dimension, then any bounded
linear operator T is represented by a matrix (¢;). It is known that the
eigenvalues of T are obtained as the roots of the algebraic equation,
the so-called secular or characteristic equation of the matrix (¢;):

det().é,]—-t,) = O, (l)

where det (A4) denotes the determinant of the matrix 4.
Example 2. Let X = L,(—o00,00) and let T be defined by

T -x(t) =tx(2),

that is, D(T) = {x(#); x(f) and ¢x(f) € L2(—oo,00)} and Tx(f) = tx(¢)
for x(¢) € D(T). Then every real number 4, is in C,(T).

Proof. The condition (4] — T) x = 0 implies (4, —¢) x(t) = 0 a.e.,
and so x(¢) = 0 a.e. Thus (4 — T)~! exists. The domain D((A4,] — 7))
comprises those y (f) € L2(— oo, o) which vanish identically in the neigh-
bourhood of ¢ = 4,; the neighbourhood may vary with y(¢). Hence
D((A,I — T)Y)is dense in L2(— oo, 00). It is easy to see that the operator
(AL — T)~1is not bounded on the totality of such y(¢)’s.

Example 3. Let X be the Hilbert space (/%), and let T, be defined by

TO(El’ 52» ) =0, 51; Ez, . )

Then 0 is in the residual spectrum of T, since R(T}) is not dense in X.
Example 4. Let H be a self-adjoint operator in a Hilbert space X.
Then the resolvent set g (H) of H comprises all the complex numbers 4
with Im(4) 5% 0, and the resolvent R(4; H) is a bounded linear operator

with the estimate
IR G: B) || < 1/|Tm (@) |. @)

Moreover,

Im((AI — H) %, x) = Im(4) ||x]|]®, x€ D(H). (8)

Proof. If x€ D (H), then (Hx, x) is real since (Hx, x) = (», Hx) =

(H %, x). Therefore we have (3), and so, by Schwarz’ inequality,
AL —H) || ||l#]| = (A — H) %, 2)| = [Tm @) | - [|2]*  (4)
which implies that
| — H) xl| = [Im(®)| - ||x]|, x€ D (H). (5)
Hence the inverse (A — H)™! exists if Im(4) = 0. Moreover, the range
R(AI — H) is dense in X if Im (4) 7= 0. If otherwise, there would exist a
y 7 0 orthogonal to R(AI — H),i.e.,((AI — H) x,y) = Oforall x € D (H)
and so (x, (A — H) y) = 0 for all x € D (H). Since the domain D (H) of a
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self-adjoint operator H is dense in X, we must have (1] —H)y =0,
that is, Hy = Ay, contrary to the reality of the value (Hy, ).

Therefore, by the above Theorem, we see that, for any complex
number 42 with Im(4) 5= 0, the resolvent R(4; H) is a bounded linear
operator with the estimate (2).

2. The Resolvent Equation and Spectral Radius

Theorem 1. Let T be a closed linear operator with domain and range
both in a complex B-space X. Then the resolvent set g(7) is an open
set of the complex plane. In each component (the maximal connected
sets) of o(T), R(4; T) is a holomorphic function of A.

Proof. By the Theorem of the preceding section, R(4; T) for A€ o(T)
is an everywhere defined continuous operator. Let 4, € ¢ (7)) and consider

SW =R DT+ Go— 2R 7). o

The series is convergent in the operator norm whenever [A,—A4]-
[|R(%; T)|| < 1, and within this circle of the complex plane, the series
defines a holomorphic function of A. Multiplication by (Al —T) =
(A—2) I + (I —T) on the left or right gives I so that the series
S (4) actually represents the resolvent R(A; T). Thus we have proved
that a circular neighbourhood of 4, belongs to o(7) and R(4; T) is
holomorphic in this neighbourhood.

Theorem 2. If 2 and u both belong to o(7), and if R(4; T) and
R(u; T) are everywhere defined continuous operators, then the resolvent
equation holds:

RAT)—Ru;T)=@—ARAGT)Ru;T). (2)

Proof. We have

RAT)=RWALT) (wI—T)R(u; T)
=RAG ) {(u—ANT + @I —T)} R; T)
=w—A)RMLGTDRw;T)+R(u;T).

Theorem 3. If T is a bounded linear operator on a complex B-space X
into X, then the following limit exists:

Bim || 77| = 7, (7). 3)
It is called the spectral radius of T, and we have
7,(T) = [|T]]. 4)

If |A| > 7,(T), then the resolvent R(4; T) exists and is given by the

series
RA;T) = 3 411 (5)

n=1
which converges in the norm of operators.
14*
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Proof. Set » = 1nf [IT"I[I/" We have to show that hm ]|T"|[””<r

For any ¢ > 0, choose m such that ||T"|'" <7 +&. For arbitrary #,
write #n = pm + g where 0 < ¢ < (m — 1). Then, by ||[4AB]|| < ||4]] -
[|B]|, we obtain

WM < (1771 - IT([" < ¢ + &y | T [
Since pm/n — 1 and g/n — 0 as # — oo, we must have lim ||77||"* <
n—>00

7 + &. Since ¢ was arbitrary, we have proved lim || T |[1/” <.
7n—00
Since ||T"|| < [|T||*, we have lim ||T*||'* < [|IT|]. The series (5)
7—00

is convergent in the norm of operators when |A| > 7,(T). For if 2] =
7,(T) + e with ¢> 0, then, by (3), ||l_"T"|| < (7,(T) + &)™
(ro(T) + 271¢)" for large #. Multiplication by (A — T) on the left or
right of this series gives I so that the series actually represents the resol-
vent R (4; T).

Corollary. The resolvent set g(7) is not empty when 7 is a bounded
linear operator.

Theorem 4. For a bounded linear operator T € L (X, X), we have

7,(T) = sup |4]. (6)
A€o(T)
Proof. By Theorem 3, we know that 7,(T) = sup |A|. Hence we
A€a(T)
have only to show that 7,(T) < sup |4].
A€a(T)
By Theorem 1, R(4; T) is holomorphic in 4 when [A]|> sup [1].

A€o(T)
Thus it admits a uniquely determined Laurent expansion in positive and
non-positive powers of 1 convergent in the operator norm for |1| >
sup |A]. By Theorem 3, this Laurent series must coincide with
l€a(T)

2}.’ "', Hence hm |A7"T"|| =0 if |A|> Sup |4], and so, for
A€o(

any ¢ > 0, we must have [T < (8 + sup |l|) for large n. This
proves that Aca(
7,(T) = lim |||} < Sup [4].

€a(T)
Corollary. The series ):1 A7"T"1 diverges if |4 < 7,(T).
n=
Proof. Let » be the smallest number = 0 such that the series

2:1 A™"T""! converges in the operator norm for |4| > r. The existence
e

of such an 7 is proved as for ordinary power series in A-1. Then, for
[A]| > 7, Lim [|A="T"|| = 0 and so, as in the proof of 7,(T) < sup (4],
A€a(T)
we must have lim ||T"|["* < ». This proves that 7,(T) < 7.
n—>00
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3. The Mean Ergodic Theorem

For a particular class of continuous linear operators, the mean ergodic
theorem gives a method for obtaining the eigenspace corresponding to the
eigenvalue 1. In this section, we shall state and prove the mean ergodic
theorem from the view point of the spectral theory, as was formulated
previously by the present author. The historical sketch of the ergodic
theory in connection with statistical mechanics will be given in
Chapter XIII.

Theorem 1. Let X be a locally convex linear topological space, and T
a continuous linear operator on X into X. We assume that

the family of operators {T™; n=1,2,...} is equi-

continuous in the sense that, for any continuous semi-

norm g on X, there exists a continuous semi-norm ¢’ on

X such that sup ¢(T"x) < ¢’ (x) for all x¢ X. 1) -
n=1

Then the closure R (I — T)* of the range R(I — T) satisfies

R(I—T) ={x€ X;lim Tyx =0, T, =n! 3 T"‘}, @)
#—>00 m=1
and so, in particular,
RI—-T)*NN{I—T)={0}. (3)
Proof. We have T,(I—7T)=»"(T —T"*1). Hence, by (1),
w€ R(I — T) implies that lim T,w = 0. Next let z€ R(I — T)*. Then,
7—>00
for any continuous semi-norm ¢’ on X and £> 0, there existsaw€R (I —T)
such that ¢'(z—w) <<e. Thus, by (1), we have ¢(T,(z —w)) =
nt anq(T’”(z—w)) <q¢(z—w) <e Hence ¢(T,2 =q(T,w)+
m=
g(T,(2—w)) < q(T,w) + ¢, and so lim T,z= 0. This proves that
71—>00
R(I—T)* g{xEX; lim T,x = 0}.
7#—>00 ]
Let, conversely, lim 7,x = 0. Then, for any continuous semi-norm
7—>00

¢ on X and &> 0, there exists an #» such that g(x — (x — T,,x)) =
¢(T,x) < &. But, by

s

x—Tox=n"1 3 (I —-T"x

m=1

=nt SA—T I +T+T 4+ T Y,
(x —T,x) € R(I —T). Hence x must belong to R(I — T)".

Theorem 2 (the mean ergodic theorem). Let condition (1) be
satisfied. Let, for a given x € X, there exist a subsequence {n'} of {n}
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such that
weak-lim T, x = x, exists. (4)
7 —>00

Then Txy = xy and lim T,x = x,.
7—>00

Proof. We have TT,—T,=n"'(T""'—T), and so, by (1),
lim (TT,x—T,x) =0. Thus, for any /€X', lm (TT,x > =
7—>00 7n—>00
lim (T, x T'f) exists and = lim <7, x,/> = (%, f>. Therefore
7n—>00 7n—>00
{(%g, > = (T x4, f> and so, by the arbitrariness of /€ X’, we must have
T %y = %,.

We have thus T7x = T"xy + T™(x — %) = %5 + T™(x — x,) and
so T,x =15+ T,(x —x). But, (x —x) = weak;l_i’r.}'xo (*— T, x) and,
as proved above, (¥ — T,yx) € R(I — T). Therefore, by Theorem 11 in
Chapter V, 1, (x—x,) € R(I—T)% Thus, by Theorem 1, lim T, (x—x,) =0

n—>00

and so we have proved that lim 7T,x = x,.
7—>00

Corollary. Let condition (1) be satisfied, and X be locally sequen-
tially weakly compact. Then, for any x € X, lim T,x = x, exists, and
7n—00

the operator T, defined by T\,x = x, is a continuous linear operator such
that

To=T2=TT,=T,T, (5)
R(T)=N({I—T), (6)
N(T) =R(I—T)* =R(I—T,). ()

Moreover, we have the direct sum decomposition
X=RI—-T)®eNI-—T1), (8)

i.e.,any x € X isrepresented uniquely as the sum of an element € R (I —T)*
and an element € N(I — T).

Proof. The linearity of T is clear. The continuity of T, is proved by
the equi-continuity of {T,} implied by (1). Next, since T x, = x,, we have
TTy=T, and so T"Ty=T,, T,To= T, which implies that T2 = T,.
On the other hand, T, — 7,7 = » (T — T"*!) and (1) imply that
T, = To,T. The equality (6) is proved as follows. Let Tx = x, then
T"x = x, T,x = x.and so Tyx = %, that is, x€ R(T,). Let conversely,
%€ R(T,). Then, by T§ = T,, we have Tyx = x and so, by TT, = T,
Tx = TTyx = Tyx = x. Therefore, the eigenspace of T corresponding
to the eigenvalue 1 of T is precisely the range R(T,). Hence (6) is proved.
Moreover, we have, by Theorem 1, N (Ty) = R(I — T)*. But, by 72 = T,,
we have R(I—Ty) C N(Ty), and if x€ N(T), then x =x—Tyx€
R(I —T,). Thus N(T,) = R(I — Ty).
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Therefore, by I = (I — T,) + T, and (6) and (7), we obtain (8).
Remark. The eigenspace N (A — T) of T belonging to the eigenvalue

A with || = 1 may be obtained as R (T (1)), where T'(1) x = lim n~1 _S:'
(T/A)™ .

m=1

The Mean Ergodic Theorem of J. von Neumann. Let (S, 8, m) be a
measure space, and P an equi-measure transformation of S, that is, P
is a one-one mapping of S onto S such that P - B¢ B iff Bis€ 8 and
m (P - B) = m(B). Consider the linear operator T on L%(S, 8, m) onto
itself defined by

(Tx) (s) = x(Ps), x€ L%(S, B, m). (9)

By the equi-measurable property of P, we easily see that the operator T’
is unitary and so the equi-continuity condition (1) is surely satisfied by
[|T"|| = 1(n =1, 2, ...). Therefore, by the sequential weak compactness
of the Hilbert space L2(S, B, m), we obtain the mean ergodic theorem of
J. von Neumann:

For any x € L*(S, B, m), s-limn™? L”’ T"x = x5 € LZ(S, B, m)

7n—>00 m=1 10
exists and T x; = %,. (10)

Remark. Theorem 1 and Theorem 2 are adapted from K. Yosipa [3].
Cf. also S. KakuTanI [1] and F. Riesz [4]. Neumann’s mean ergodic
theorem was published in J. voN NEUMANN [3].

4. Ergodic Theorems of the Hille Type Concerning Pseudo-resolvents

The notion of resolvent is generalized to that of pseudo-resolvent by
E. HiLLe. We can prove ergodic theorems for pseudo-resolvents by a
similar idea to that used in the proof of the mean ergodic theorems in the
preceding section. See K. Yosipa [4]. Cf. T. Kato [1]. These ergodic
theorems may be considered as extensions of the abelian ergodic theo-
rems of E. HILLE given in E. HiLLE-R. S. PrILLIPS [1], p. 502.

We shall begin with the definition of the pseudo-resolvent.

Definition. Let X be a locally convex complex linear topological
space, and L (X, X) the algebra of all continuous linear operators defined
on X into X. A pseudo-resolvent [, is a function defined on a subset
D(J) of the complex A-plane with values in L (X, X) such that

Jai—J.= (—2) J.J, (the resolvent equation). (1)

Proposition. All J,, A€ D(J), have a common null space, which we
denote by N (J), and a common range which we denote by R (J). Simi-
larly, all (I —1],), A€ D(J), have a common null space, which we denote
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by N (I — J), and a common range which we denote by R (I — J). More-
over, we have the commutativity:

Proof. By interchanging 4 and g in (1), we obtain
Ju—Di=QAQ—p) JuJa=—@—2) JuJs

and hence (2) is true. The first part of the Proposition is clear from (1)
and (2). The second part is also clear from

I—=2J) =T —@A@—w) )T —pl) (1)
which is a variant of (1).
Theorem 1. A pseudo-resolvent J; is a resolvent of a linear operator 4
iff N (J) = {0}; and then R(J) coincides with the domain D (4) of 4.
Proof. The “only if”’ part is clear. Suppose N (J) = {0}. Then, for
any A€ D(J), the inverse J; ! exists. We have
Al—Jit=pl—J;' (A ueD()). (3)
For, by (1) and (2),
LTI — it —pl + T2 = A—p) InJu— T Ut — T2

:(}“—:u)]l]u—(],‘—]z) = 0.

A= (- J. (4
Then [, = (AI — A)7! for A€ D(J).
Lemma 1. We assume that there exists a sequence {4,} of numbers
€ D(]) such that

lim 4, = 0 and the family of operators {4,/ } is equi-continuous. (5)
7—>00

We thus put

Then we have

R(I—])* = [x€ X; lim 4, ],% =0, (6)
and hence
N(I—]) NR{I —J)* ={0}. (7)

Proof. We have, by (1),
A —pl) =Q—pp—A DAL —AA—wW ulu (8
Hence, by (5), the condition x€ R(I —uJ,) = R(I — J) implies that
lim A, ];,x = 0. Let y € R(I — J)*. Then, for any continuous semi-norm
7—>00

gon X and ¢ > 0, there exists an x € R(I — J) such that g(y —x) <e.
By (b), we have, for any continuous semi-norm ¢’ on X,
¢ Ay —2) =qly—2) (n=1,2,...)

with a suitable continuous semi-norm ¢ on X. Therefore, by 4,];.y =
AT 2% + A, T2, (y — %), we must have lim 4,/;,y = 0.
7n—>00
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Let, conversely, lim A,/; * = 0. Then, for any continuous semi-
7n—>00

norm g on X and ¢ > 0, there exists a 4, such that g(x — (x — 4, J3,%)) < e.
Hence x must belong to R(I —4,];)* =R — J)*

Lemma 1’. We assume that there exists a sequence {4,} of numbers
€ D(J) such that

lim |4, | =oo and the family of operators {4, J;,} is equi-continuous. (5’)
n—>00

Then we have

RUY = [v€ X; lim 7,];,x =), (6)
and hence "o
N(J) N R(])* = {0}. (7)

Proof. We have, by (1),

1
AJu=5 AT —7 AL+ T,
Hence, by (5'), the condition x¢€ R(J,) = R(J) implies that
lim A, J; x = x. Let y € R(])®. Then, for any continuous semi-norm ¢
7—>00

on X and ¢ > 0, there exists an x € R(J) such that ¢(y — x) < e. By
(5"), we have, for any continuous semi-norm ¢’ on X,

q’(}'”]ln(y_—x))§q(y_x) (nzlr 2:“‘)
with a suitable continuous semi-norm ¢ on X. Therefore, by (5) and

MJay —y = MJa,x—2%) + (x—9) + 4, ]5,(y — %),

we must have lim 4,/; v =y.
n—00
Let, conversely, lim A,/; ¥ = x. Then, for any continuous semi-
n—>00

norm ¢ on X and & > 0, there exists a 4, such that ¢(x — 4, ], x) < &.
Hence x must belong to R(];,)* = R(J)".

Theorem 2. Let (5) be satisfied. Let, for a given x € X, there exist a
subsequence {n'} of {#} such that

weak-lim 4, [, ,x = %, exists. (9)
7n—>00
Then %, = lim 4, /; xand x, e N(I — ]), %, = (x — %) E R(I — ])*“.
7—>00
Proof. Setting u = A, in (1') and letting »’ — oo, we see, by (5),
that (I —AJ;) x = (I —1];) (x —x,), that is, (I —A4],) x;, = 0. Hence
%€ N(I — J) and so
AJa% =% + A 2, (x — %) (10)
Therefore we have only to prove that lim 4,]; (x —x;) = 0, or, by
7n—>00

Lemma 1, (x —x) € R(I —J)*. But (x —A4,/3,2) € R(I —J), and so,
by Theorem 11 in Chapter V, 1, we must have (x — x;) € R(I — ])*.
Corollary 1. Let (5) be satisfied, and let X be locally sequentially

weakly compact. Then
X=N{I—])®R(I—])". (11)
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Proof. For any x € X, let x, = lim 4,];,x and x, = (x — x,) be the
n—>00

components of x in N(I — J) and R (I — J)*, respectively.
Theorem 2'. Let (5') be satisfied. Let, for a given x € X, there exist
a subsequence {#n'} of {#} such that

weak-lim 4, J; .x = %, exists. (9
7n—>00
Then x;, = ,l‘;’{,‘o’lﬂfﬂn" and xy € R(])%, %y = (x — x4) € N(J).

Proof. Setting g = A, in (8) and letting n’ — oo, we see, by ('), that
AJ,(x —xy) = 0, that is, (x — x;:) € N(J). Hence

InJ3n% = Ay J a2 - (10)
Therefore we have only to prove that lim 4,/]; %y = %, or, by
7n—>00

Lemma 1', x; € R(J)*. But 4, J3.% € R(J), and so, by Theorem 11 in
Chapter V, 1, we must have x, € R(])".
Corollary 1'. Let (5') be satisfied, and let X be locally sequentially
weakly compact. Then
X =N(J)®R())" (11)
Proof. For any x€ X, let x, = lim 4,/;,x and x, = (x — xy) be
7n—>00

the componerts of X in R(J)* and N (/), respectively.

Remark. As a Corollary we obtain: In a reflexive B-space X, a pseudo-
resolvent [, satisfying (5’) is the resolvent of a closed linear operator 4
with dense domain iff R(J)* = X. This result is due to T. KaTo, loc.
cit. The proof is easy, since, by Eberlein’s theorem, a B-space X is
locally sequentially weakly compact iff X is reflexive.

5. The Mean Value of an Almost Periodic Function

As an application of the mean ergodic theorem we shall give an
existence proof of the mean value of an almost periodic function.

Definition 1. A set G of elements g, 4, . . . is called a group if in G a
product (in general non-commutative) g4 of any pair (g, #) of elements
€ G is defined satisfying the following conditions:

ghea, (1)
(gh) k = g(hk) (the associativity), (2)
there exists a unique element ¢ in G such that eg =

ge =g for all g€ G; e is called the identity element
of the group G, (3)

for every element g € G, there exists a uniquely deter-
mined element in G, which is denoted by g1, such
that gg! = g71g = ¢; the element g—! is called the
tnverse element of g. (4)
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Clearly, g is the inverse of g71 so that (g71)~! = g. A group G is said to be
commutative if gh = hg for all g, h€ G.

Example. The totality of complex matrices of order » with determi-
nants equal to unity is a group with respect to the matrix multiplication;
it is called the complex unimodular group of order n. The identity of this
group is the identity matrix and the inverse element of the matrix a is
the inverse matrix a=. The real unimodular group is defined analogously.
These groups are non-commutative when n = 2.

Definition 2 (J. voN NEUMANN [4]). Given an abstract group G. A
complex-valued function f(g) defined on G is called almost periodic on G
if the following condition is satisfied:

the set of functions {g;(f, 4); s € G}, where f(g, ) =
f(gsh), defined on the direct product G XG s totally
bounded with respect to the topology of ur orm con-
vergence on GXG. (5)

Example. Let G be the set R! of all real numbers in which the group
multiplication is defined as the addition of real numbers; this group R!
is called the additive group of real numbers. The function f(g) = &,
where « is a real number and 7z = ]/»——1, is almost periodic on RY. This
we easily see from the addition theorem f(gsh) = ¢'*¢ ¢ ¢*** and the
fact that {¢; t€ R'} is totally bounded as a set of complex numbers
of absolute value 1.

Proposition 1. Suppose f(g) is an almost periodic function on G. If
we define, following A. WEIL,

dis(s, #) = sup |f(gsh) —f(guh)], (6)
8hEG
then
dis(s, #) = dis(asb, aub). (7)
Proof. Clear from the definition of the group.

Corollary 1. The set E of all elements s which satisfies dis(s, ¢) = 0
constitutes an invariant subgroup in G, that is, we have

if ¢, e, € E, then e¢;e,€ E and ae;a '€ E for every a€ G. (8)

Proof. Let dis(e;, ) = 0, dis(e,, ¢) = 0. Then, by (7) and the triangle

inequality, we obtain
dis (e, €5, €) = dis(e; €, ¢;€) + dis(eye,¢) = 0 4+ 0 = 0.

Similarly we have dis(ae;a™l, ¢) = dis(ae;al, aeal) =0 from
dis(e;, €) == 0.

Corollary 2. If we write s= u (mod E) when su~1¢€ E, then s = u
(mod E) is equivalent to dis(s, #) = 0.

Proof. Clear from dis(su™!, ¢) = dis(s, en) = dis(s, #).
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Corollary 3. The concept s = « (mod E) has all the general properties
of equivalence, namely

s= s (mod E), 9)
s = u (mod E), then % = s (mod E), (10)
if s;=s5,(mod E) and s,=s; (mod E), then s;,=s,

(mod E). (11)

Proof. Clear from Corollary 2 and the triangle inequality for the
dis (s, u).

Hence, as in the case of the factor space in a linear space, we can
define the factor group or residue class group G|E as follows: we shall
denote the set of all elements € G equivalent (mod E) to a fixed element
%€ G by &,, the residue class (mod E) containing x; then the set of all
residue classes &, constitutes a group G/E by the notion of the product

'ExEy = Cxy- (12)
To justify this definition (12) of the product, we have to show that
if x; = %, (mod E), y, =y, (mod E), then x,y, = x,y, (mod E). (13)
This is clear, since we have by (7) and Corollary 2,
dis (%, Y1, %3¥p) = dis(x; Yy, %¥;) + dis (%391, %27)
= dis (%4, %) + dis(y;, ¥5) = 04+ 0= 0.

Since the function f(x) takes the same constant value on the residue
class &,, we may consider f(x) as a function F (£,) defined on the residue
class group G/E.

Corollary 4. The residue class group is a metric space by the distance

dis(&,, &,) = dis(x, y). (14)

Proof. x = x, (mod E) and y = y; (mod E) imply

dis (¥, y) = dis(x, x,) + dis (%, ¥,) + dis(y;, ¥) = 0 + dis(x;, ¥,) + 0
and dis (%, y,) =< dis(x, y) to the effect that dis(x, y) = dis(x,, ;). Thus
(14) defines a distance in G/E.

Corollary 5. The group G/E is a topological group with respect to the
distance dis (£,, £,), that is, the operation of multiplication £,£, is con-
tinuous as a mapping from the product space (G/E) X (G/E) onto G/E,
and the operation &;! is continuous as a mapping from G/E onto G/E.

Proof. We have, by (7),

dis(su, s'w') =< dis(su, s'u) + dis(s'u, s'u’) = dis(s, s") + dis (%, %)
and
dis (s, 1) = dis(ss™1u, su~1u) = dis(u, s) = dis(s, #).

We have thus proved the following
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Theorem 1 (A. WEIL). The topological group G/E, metrized by (14),
is totally bounded, and the function f(x) gives rise to a function F(£,)
(= (%)) which is uniformly continuous on this group G/E.

Proof. The uniform continuity of the function F(£,) is clear from

|F (&) —F@&)| = [f(x) — ()] = dis(x, 9) = dis(&,, £,).
The almost periodicity of the function f(x) implies, by (7) and (14), that
the metric space G/E is totally bounded.

By the above theorem, the theory of almost periodic functions is
reduced to the study of a uniformly continuous function f(g), defined on a
totally bounded topological group G, metrized by a metric dis (g, g,)
satisfying condition (7). By virtue of this fact, we shall give a proof for
the existence of the mean value of an almost periodic function.

Since G is totally bounded, there exists, for any & > 0, a finite
system of points gy, g,, . . ., g, such that lr;i;ln dis (g,8;) = eforany g€ G.

Hence, collecting these finite systems of points corresponding to ¢ =

1,271,371, ..., respectively, we see that there exists a countable

system {g;} of points € G such that {g;} is dense in G. We take a sequence
00

o = 1. Let C(G) be the set of all
J=

uniformly continuous complex-valued functions % (g) defined on G. C(G)
is a B-space by the operation of the function sum and the norm ||A|| =
sup |%(g) |. We define an operator T defined on C(G) into C(G) by

8€G

of positive numbers o; such that

(1) (&) = & ok (g, (19)

By the uniform continuity of %(g) on G, there exists, for any ¢ > 0, a
6 > 0 such that dis(g, g') < 6 implies |k (g) — A (g")| =< &. Thus, by (7),
|h(gig) —h(gig')| =e(=1,2,...) whenever dis(g, g') = 6. Hence it is

00
easy to see, by o; > 0 and 21 o; = 1, that T is a bounded linear opera-
i<

tor on C(G) into C(G). By the same reasoning we see that the set of
functions 4, (g) defined by

”

By (g) =nt 21 (T™h) (g), which is of the form

(16)
o0 (e
ha() = ZPih(ge) with f;>0, 3 p =1,

is equi-bounded and equi-continuous with respect to #. Hence, by the
Ascoli-Arzeld theorem, the sequence {4, (g)} contains a subsequence which
is uniformly convergent on G.
Therefore, by the mean ergodic theorem, there exists an A*(g) € C (G)
such that
lim sup |A,(g) —A*(g)| = 0 and Th* = h*. (1)

"0 g
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Proposition 2. 4* (g) is identically equal to a constant.

Proof. We may assume, without losing the generality, that 4 (g) and
h* (g) are real-valued. Suppose that there exist a point g, € G and a posi-
tive constant 4 such that
h*(go) = B — 20, where § = sup A*(g).
8€G
By the continuity of 4* (g), there exists a positive number ¢ such that

dis(g’, g') < ¢ implies |h*(g') — h*(¢")| < 8, in particular, we have
k*(g"”) = B — 6 whenever dis (g, g”') = e. Since the sequence {g;} is dense
in G, there exists, for any ¢ > 0, an index # such that, for any g€ G, we
have 11;1}2" dis(g, g;) < ¢. Hence, by (7), we have, for any g€ G,

L <
oin dis (g, gg) = &

Let the minimum be attained at j = ,. Then
o]

h*(g) = (Th*) (§) = X ojh*(gg) =, (B—0) + (1—o) f=p—0x,0 <,

j=1
contrary to the assumption that g was an arbitrary point of G. Therefore
h*(g) is identically equal to a constant.

Definition 3. We shall call the constant value A*(g) the left mean
value of h(g) and denote its value by M} (k(g))

lﬁ By

My (h(g)) = lim n™* X (T™h) (g). (18)

m=1

It

Theorem 2 (J. voN NEUMANN). We have

My(xh(g)) = a My (k(g)), (i)
My (hy(8) + h2(8)) = My (R (8)) + M (hs(g)), (ii)
ML) =1, (iii)

if 2(g) = 0 on G, then M, (h(g)) = 0;
if, moreover, %(g) == 0, then M’g (h(g) >0, (iv)
| Mg (h(g)| = M (|2 () ]). (v)
My (h(g)) = M, (1 (), (vi)
M, (h(ga)) = My(h(g)), (vii)
My (h(ag)) = My (2 (g), (vii")
My (h(g™) = My (h(g)- (viii)

Proof. By definition (18), it is clear that (i), (ii), (iii), the first part of
(iv), (v) and (vi) are true. The truth of (vii) is proved by Proposition 2.
(vii") is proved as follows.
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Starting with the linear operator 7’ defined by

(T7h) (8) = X x5k ee;).,

we can also define a rzght mean M} (h(g)) which, as a functional of 4(g),
satisfies (i), (ii), (iii), the first part of (iv), (v), (vi) and (vii’). We thus
have to prove that the left mean Mj(k (g)) coincides with the right mean
My (h(g)). By its definition of the Ieft mean, there exist, for any ¢ > 0,
a sequence of elements {#;} C G and a sequence of positive numbers g7

o0
with 21 B; = 1 such that
i=

l‘ﬂ:

sup | 3 ;b (ke) — My(h(@))| . (19
g U=

Similarly, there exist a sequence of elements {s;} C G and a sequence of

o0
positive numbers y; with ,Z; y; = 1 such that
J=

sup | Ey,gs) — ;)| <. (20)

We have, from (19) and (vii)
sup 2%13; (kigs:) Mé(h(g))! se

and, similarly from (20) and (vii'),
Sup'zytﬂ] (kigsi) — M’<h ){é

Hence we must have M} (k(g)) = M} (k(g))-

We next remark that a linear functional M, (4 (g)) defined on C(G) is
uniquely determined by the properties (i), (ii), (iii), the first part of (iv),
(v), (vi) and (vii) (or (vii") as well). In fact, we have, by (20),

Myh(g) —e = 2)/1 (gs:) = My(h(g)) + ¢ for real-valued A(g).

Hence, for real-valued %(g), M,(k(g)) must coincide with the right mean
M} (h(g)) and hence with the left mean M} (k(g)) as well. Therefore we
see that we must have M, = M} = M‘ Bemg equal to the right mean,
M, must satisfy (vii’). Moreover since Ml 2(h(g71)) satisfies, as a linear
functional, (i), (i), (iii), the first part of (1v) (v), (vi) and (vii’), we must
have M’ (h (1)) = M (h(g)) = M} (h (g)-

Finally we shall prove the last part of (iv). Suppose %(g,) > 0. For
any ¢ > 0, there exists, by the total boundedness of G, a finite system
of elements s;, s, . . ., s, such that

Bin sup |h(gs) —higs)|<e
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for all s € G. This we see by the uniform continuity of %(g) and the fact
that dis(gs;, gs) = dis(s;, s). Hence, for ¢ = %(gy)/2, we obtain, for any
s€ G, asuffixs, 1 <7 =< #, such that

h(gosis) = h(go)/2.
Thus, by the non-negativity of the function 4 (g), we obtain

.f‘,;h(gosi_ls) =h(g)/2>0 forall s€G.
Therefore, by taking the right mean of both sides, we have

M3 Z hlaosi™9) = n Mi(h(s)) = h(go)f2 > .

Remark. The happy idea of introducing the distance (1) is shown in
A. WEIL [1]. The application of the mean ergodic theorem to the exi-
stence proof of the mean value is due to the present author. See also
W. Maax [1].

6. The Resolvent of a Dual Operator

Lemma 1. Let X and Y be complex B-spaces. Let T be a linear
operator with D (T)* =X and R(T) C Y. Then (") lexists iff R(T)* =Y.

Proof. If T'y¥ = 0, then

o, T'ye> =<(Tx,y5> =0 for all x€D(T),

and hence y§ (R(T)*) = 0. Thus R(7)* = Y implies y3 = 0 and so T"
has an inverse. On the other hand, if y,€ R(T)% then, the Hahn-Banach
theorem asserts that there exists a continuous linear functional yg € Y’
such that yg (y,) = 1 and yg (R(T)*) = 0. Hence (Tx, yg> = 0 for all
x€D(T), and so y3 € D(T’) and T'yg = 0, whereas yg (yo) 7 0, i.e.,
yo # 0. Therefore, the condition R(T)*# Y implies that 7’ cannot
have an inverse.

Theorem 1 (R.S. PHiLLIPS [2]). Let T be a linear operator with an
inverse and such that D(7)* = X and R(T)* = Y, where X and Y are
B-spaces. Then

(T = (T (1)
T-1 is bounded on Y iff T is closed and (7)~! is bounded on X;.

Proof. (T71)' exists because D(T-1) = R(T) is dense in Y. (7')~!
exists by Lemma 1. We have to show the equality (1). If y € R(T) and
y*€ D(T'), then

G, y* =TTy, y*) =Ty, T'y*).

Hence R(T') C D((T-Y)") and (TY)’ (T’ y*) = y* for all y* € D(T"). Thus
(T-1) is an extension of (T’)~L. Next, if x € D(T), then

(x, 2%y =TT x, 2*) = (Tx, (T7Y) x*) for all x*c D((T)).
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Hence R((T7Y)') C D(T’) and T'(T7) x* =«* for all x*¢ D((TY)").
Thus (T7Y)’ is a contraction of (7”)~1. Therefore we have proved (1).

If, in addition, T-! is bounded on Y, then (T’ is also bounded.
Conversely, if (7’)~! is bounded on X!, then, for all x€ R(T) and
x* € X', we have, by (1),

(T4, 2% | = [, (T 2% | =[x, (T) 2 2% |
< @) - - Nl

Since T-1is closed and R(T)* = Y, T must be bounded.

Lemma 2. Let T be a linear operator with D (T)* = X and R(T) C Y,
where X and Y are B-spaces. If R(T") is weakly* dense in X', ', then T has
an inverse.

Proof. Suppose that there exists an x, %= 0 such that Tx, = 0. Then

(x, T'y*y = (T %y, y*> =0 for all y*e€ D(T).

This shows that the weak* closure of R(7T”) is a proper linear subspace
of X', contrary to the hypothesis.

Theorem 2 (R. S. PHILLIPS [2]). Let X be a complex B-space,and T a
closed linear operator with D (T)* = X and R(T) C X. Then

o(T) =0o(T") and RA;T) =R@A; T) for Ac€o(T). (2)

Proof. If A€ o(T), then, by Theorem 1, A€ o(T’) and R(A; T) =

R(A; T’). On the other hand, if A€ ¢(7”), then Lemma 2 shows that

(AI —T) has an inverse (A — T)~! which is closed with (A — T).

Lemma 1 then shows that D((A — T)~!) = R(AI — T) is strongly dense
in Y. Hence, by Theorem 1, A€ o(T).

7. Dunford’s Integral

Let X be a complex B-space and T a bounded linear operator € L (X, X).
We shall define a function f(T) of T by Cauchy’s type integral

HT) = @mi)t [ F(3) R}; T) da.
C

To this purpose, we denote by F(T) the family of all complex-valued
functions f(A) which are holomorphic in some neighbourhood of the spec-
trum o (7T) of T; the neighbourhcod need not be connected, and can
depend on the function f(4). Let f€ F(T), and let an open setU 2 o (7T)
of the complex plane be contained in the domain of holomorphy of f,
and suppose further that the boundary oU of U consists of a finite num-
ber of rectifiable Jordan curves, oriented in positive sense. Then the
bounded linear operator f(7) will be defined by

HT) = 2ni)~ ff (1)

15 Yosida, Functional Analysis
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and the integral on the right may be called a Dunford’s integral. By
Cauchy’s integral theorem, the value f(T°) depends only on the function f
and the operator T, but not on the choice of the domain U.

The following operational calculus holds:

Theorem (N. Dunrorp). If f and g are in F(7T), and « and f are
complex numbers, then

af +Bgisin F(T) and af(T) + Bg(T) = («f + pe)(T)., (2)
f-gisin F(T) and £(T) - g( )=(f-g)( ), (3

oo
if f has the Taylor expansion j(1) = 20 o, A" con-
vergent in a neighbourhood U of o(7), then (4)

[ e]
HT) = 20 &, T" (in the operator norm topology),
e

let f,€e F(T) (n =1, 2,...) be holomorphic in a fixed
neighbourhood U of o(T). If f,(4) converges to f(4)

5
uniformly on U, then f,(T) converges to f(7) in the ©)

operator norm topology,
if f€ F(T), then f€ F(T") and {(T") = {(T)’. (6)

Proof. (2) is clear. Proof of (3). Let U, and U, be open neighbourhoods
of ¢(T) whose boundaries U, and dU, consist of a finite number of
rectifiable Jordan curves, and assume that U, + 90U, C U, and that
U, + 09U, is contained in the domain of holomorphy of f and g. Then,
by virtue of the resolvent equation and Cauchy’s integral theorem, we
obtain

HT)g(T) =— (4%t [f(A)R(A; T)dA- fg R(u; T) du

oU,
— (4 | f/ ) (u—A1(R(A; T) — R (u; T))dAdu
oU, 0U,
= (27i) [fA)R( /‘L;T)-i(2m’)—1 [ (e — 21 g (u) dul da
U, oU, J

— (2me)™ fg () R(u; T) - {(27”')‘1 af(/t~/'l)‘1/‘( )dl} dp
= (2me)! f/‘ gA R(A; T)dr = (f-¢) ().

ou,

Proof of (4). By hypothesis, U must contain a circle {1; |1 | < 7,(T) + &}
€ > 0, in its interior, where 7,(T) is the spectral radius of 7" (Theorem 4

oo
in Chapter VIII, 2). Hence the power series f(1) = 20 x,A" converges
uniformly on the circle C = {4; |A| = 7,(T) + &}, for some £ > 0. Hence,
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by Cauchy’s integral theorem and Laurent’s expansion R(A;T) =
2 A7*T"! of R(A; T) (Chapter VIII, 2, (5)),

n=

HT) = (27i)! f(ﬁak/ﬂ R(E; T)dh = @it 2 o, JER@T) ar

k=0

= (2ms)~! szk = S [Tl = s* o T,
ac
(6) is proved by (1), and (6) is also proved by (1) and formula (2) of
the preceding section.

Corollary 1 (Spectral Mapping Theorem). If f is in F(7), then
1o (T)) = a(f(T)).

Proof. Let A € ¢(T), and define the function g by g(u) = (f(2) — f(u))/
(A—u). By the Theorem, f(A) I —f(T)= (Al —T)g(T). Hence, if
(f(4) I — f(T)) had a bounded inverse B, then g (T") B would be the boun-
ded inverse of (AI — T). Thus A€ ¢(7T) implies that /(1) € o(f(T)). Let,
conversely, A€ ¢(f(T)), and assume that A€ f(o(T)). Then the function

u) = (f(u) — A~ must belong to F(T), and so, by the preceding
Theorem, g(T) (f(T) —AI)=1I which contradicts the assumption
Aea(f(T))

Corollary 2. If f€ F(T), g€ F(f(T)) and h(1) = g(f(4)), then A is
in F(T) and A(T) = g(f(T )

Proof. That A€ F(T) follows from Corollary 1. Let U; be an open
neighbourhood of o (f(T)) whose boundary U, consists of a finite number
of rectifiable Jordan curves such that U; + 90U, is contained in the
domain of holomorphy of g. Let U, be a neighbourhood of ¢ (T) whose
boundary 9U, consists of a finite number of rectifiable Jordan curves
such that U, + 0U, is contained in the domain of holomorphy of f and
f(U, + 6U,) € U;. Then we have, for A€ oU;,

R(4; £(T)) = (274)~ f(2~f,u))—1Ry T) du,

since the right hand operator S satisfies, by (3), the equation
(AI —f(T)) S = S(AI —f(T)) = I. Hence, by Cauchy’s integral theo-
rem,

gU(T) = @) [ g(WR(; /(1)) dA
—4a®) [ [g(d) (A— () R(u; T) du di
aU, aU,

= (273)~! wfR(/t; 1) g(f () du = A(T).

Remark. The introduction of the operational calculus based on a
formula like (1) goes back to the investigations by H. POINCARE on

15%
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continuous groups (1899). The exposition of the operational calculus in
this section is adapted from N. DUNFORD-]J. SCHWARTZ [1]. In the next
chapter on semi-groups, we shall frequently make use of Dunford’s inte-
gral for a closed unbounded operator 7.

8. The Isolated Singularities of a Resolvent

Let 4, be an isolated singular point of the resolvent R(4; T) of a closed
linear operator T on a complex B-space X into X. Then R(A; T) can be
expanded into Laurent series

RAET) = 3 (A—A) 4y 4, = (2i)™ J@—2 R T)
e (1)

where C is a circumference of sufficiently small radius: |2 — 4| =¢
such that the circle |[A—y| < & does not contain other singularities
than A = 4y, and the integration is performed counter-clockwise. By
virtue of the resolvent equation we obtain

Theorem 1. A’s are mutually commutative bounded linear operators

and
TArx =A3Tx for x€ D(T) (k=0,+1,42,...),

A4, =0 for =0, m=—1,
Ay = (1" 45" (n= 1),
Apgpi=A4_p4_, (pg=1).

(2)

Proof. The boundedness and the mutual commutativity of A’s
and the commutativity of A’s with T are clear from the integral
representation of A’s.

We substitute the expansion of R(A; T) in the resolvent equation
RA;T)—R(u; T) =(u—A) R(A; T) R(u; T), and obtain

e A—=W*—@w—4*_ R 2k ym

e A2 = R) T ame A= A = A"
The coefficient of 4, on the left is
(=2 + A=A =R+ =) 2 L

—{A—2)" =2+ A=) (=) +
+A—=2)7 (—A)"} < 0.
Hence the terms containing (A — Ag)* (u — A,)™ with A = 0 and m < — 1

are missing so that we must have the orthogonality 4;4,, =0 (¢ = 0,
m < — 1). Hence

RF(A; T) = gA”(A—lo)” and R-(LT) = 3 A,(A— i)

7n=—00
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must both satisfy the resolvent equation. Substituting the expansion
of R*(4; T) in the resolvent equation

Rt(A; T)—R+(A; T)=(u—A) R*(A4; T) R (u; T),
we obtain, setting (A —4g) = &, (u — 4)) = &,

2 A — 1) = (k—h) (;’3 Aﬂ;")(},‘ 4 k’)
Hence, dividing both sides by (£ — %), we obtain

oo

——PZIAP(hP“l-}-hP—zk—{w---+k1") pz h’k"APA

= ,q=

so that we have —4,,,,1 = 4,4, (p, ¢ = 0). Thus, in particular,

Ay =—A% Ay = —A14g= (—1)24}, ..., 4, = (—1)" 42" m=1).
Similarly, from the resolvent equation for R—(A; T), we obtain,
setting (A —Ag) 1 =4, (u—4) 1 =%,

oo
S AW R4+ R =
p=1 b,

‘n'Ma

; WIEYA_ A,
so that we have A_,_, .1 =A_,A_, (p, ¢ = 1). In particular, we have
A =A%, A y=A_ A, ..., A_,=A_A_, n=1).

Theorem 2. We have
A, = (T —21) Apyy (n=0),
(T—ANA_,=A4_(1y=T—3)"4A_; n=1), (3)
(T —Al)Ag=A_,—1.

Proof. By the integral representation of 4,, we see that the range
R(4,) is in the domain of T, so that we can multiply 4, by T on the left.
Thus our Theorem is proved by the identity

I=@RI—T) kg’; Ay (h— 20

={A—) I+ AI—-T }2 Ay(A—29)*.

Theorem 3. If 4, is a pole of R(A; T) of order m, then A, is an eigen-
value of 7. We have

R(A_))=N((ApI—T)")and RU—A_;) =R((AI—T)") for n=m, (4)
so that, in particular,

X = N((}I —T)") ® R((heI —T)*) for n=m. (5)
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Proof. Since 4_; is a bounded linear operator satisfying 42, = 4_,,
it is easy to see that

N(d) = R(I—4_,). (6)
We put X; =N(4_;) = R(I — 4_,), and put also

X, =R(d_), Ny = N((loI —T)") and R, = Ry((ll — TV"). (7)
Let x € N, where n = 1. Then we see, by (T — Ay I)* 4,_; = (T — 4,1) 4,
=A_,—1, that 0=A, (T —4I)"x=(T—2)*4Ap_qx =
(T —Apl) Agx = A_yx —=x so that x = A_;x€ X,. Thus N, with n > 1
belongs to X,. Let, conversely, x € X,. Then we have x = A_,y and so
x=A_1A_1y=A_ xbyA_; = A%,; consequently, we have (T — 1,1)"
x=A_y1xby (T —AI)"A_y = A_(n41). Since A_i, ;) =0for n =m
by hypothesis, it follows that X, C N,, for # = m and so

N,=X, it n=m. (®)

Because (I'—2gl) A_,, = A_(p41y =0 and A4_,, 5 0, the number 4,
is an eigenvalue of T.

We see that X; =N(4A_,) =R(I —A_,) SR, by (T — A I)*" 4, , =
A_;—I1.Ifn =m, then x€ R, N\ N, implies x = 0. For, if x = (] —T)"y
and (A, — T)"x = 0, then, by (8), y€ N,, = N, and therefore x = 0.
Next suppose x € R, with » = m, and write x = x; + x, where x; =
(I—A_)x€X;,20=A4_1x€ X,. Then, since X; CR,, %o = x — %, € R,.
But %, € X5, =N, by (8), and so x, € R, \ N,,, x, = 0. This proves that
x = %, € X;. Therefore we have proved that R, = X, if n = m.

Theorem 4. If, in particular, T is a bounded linear operator such that
X, = R(A_,) is a finite dimensional linear subspace of X, then A, is a pole
of R(A4; 7).

Proof. Let %, x,,...,%, be a base of the linear space X,. Since
%y, Ty, T2x4, . . ., Tkxl are linearly dependent vectors of X,, there
exists a non-zero polynomial P,(4) such that P,(T)x; = 0. Similarly
there exist non-zero polynomials Py (4), . . ., P, (4) such that P;(T)x; = 0

R
(7=2,8,..., k). Then for the polynomial P (1) = ]Il P; (), we must
§=
have P(T)x; =0 (j =1, ..., k) and hence P (T)x = 0 for every x € X,.
Let

PO)=a IT (=4 (a+0)
be the factorization of P(4). Then we can prove that (' — A I)"x = 0
for every x€ X,. Assume the contrary, and let x,€ X, be such that
(T —AgI)” xy7 0. Then, by P(T)x,= 0, we see that there exist at
least one A; (f # 0) and a polynomial ) (4) such that

(T=4DQ(INT—2I)x%,=9
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and y = Q(T) (T —AyI)*xy5 0. Thus y€ X, is an eigenvector of T
corresponding to the eigenvalue 4;. Hence (A —T)y = (A —4;)y and
so, multiplying both sides by R(4; T), we obtain y = (A—4) R(A; T)y
which implies
y=A_1y=Q2ni)" [RAGT)ydd= Qni)™ [(A—A4) ydi=0,
¢ ¢

by taking the circumference C with 4, as centre sufficiently small. This
is a contradiction, and so there must exist a positive integer m such
that (T’ —24,1)" X, = 0. Thus, by X, = R(4_,) and (T —A,1)*4_, =
A_ 41y, we see that A_, 1) = 0 for n = m.

Comments and References

Section 6 is adapted from R. S. PHirrips [2]. Section 8 is adapted
from M. NaguMo [1] and A. Tavior [1]. Parts of these sections can
easily be extended to the case of a locally convex linear topological space.
See, e.g., section 13 of the following chapter.

IX. Analytical Theory of Semi-groups

The analytical theory of semi-groups of bounded linear operators in a
B-space deals with the exponential functions in infinite dimensional
function spaces. It is concerned with the problem of determining the
most general bounded linear operator valued function 7' (¢), ¢ = 0, which
satisfies the equations

TE+s)=T@ - -T(s), T(0)=1I.
The problem was investigated by E. HiLLE [2] and K. Yosipa [5] inde-

pendently of each other around 1948. They introduced the notion of the
wnfinitesimal generator A of T (¢) defined by

= s-lim (T () —
Stlirglt (T@®—1),

and discussed the generation of T (¢) in terms of 4 and obtained a cha-
racterization of the infinitesimal generator 4 in terms of the spectral
property of 4.

The basic result of the semi-group theory may be considered as a
natural generalization of the theorem of M. H. SToNE [2] on one-para-
meter group of unitary operators in a Hilbert space, which will be ex-
plained in a later section. Applications of the theory to stochastic processes
and to the integration of the equations of evolution, which include diffusion
equations, wave equations and Schrédinger equations, will be discussed
in Chapter XIV.*

In this chapter, we shall develop the theory of semi-groups of con-
tinuous linear operators in locally convex linear topological spaces rather
than in Banach spaces.

* See also Supplementary Notes, p. 468.
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1. The Semi-group of Class (C,)

Proposition (E. HILLE). Let X be a B-space, and T;, £ = 0, a one-
parameter family of bounded linear operators € L (X, X) satisfying the
semi-group property

T,T,="T,,, for £ s>0. (1)
If (¢) = log || T}|| is bounded from above on the interval (0, @) for each
positive a, then

lim ¢~ log || T}|| = inf £ log || T3 )
t—00 t>0
Proof. We have p(t + s) < p () + p(s) from ||T,, || = ||T.Ts|| <

I Te|| - || Ts||- Let B =ti§1(f)t—1 - p(t). B is either finite or —oco. Suppose

that g is finite. We choose, for any ¢ > 0, a number a > 0 in such a way
that p(a) < (B + €) a. Let £ > a and » be an integer such that na <
t < (n + 1) a. Then

5§P_(f)§1>(na) +P(l—”a) gﬁgﬁ(a) +1’(’--7“1)

t t t t a t
na p(t—mna)
t

<22 +e + 22

By hypothesis, p(f —na) is bounded from above as f-»oo. Thus,
letting ¢ — oo in the above inequality, we obtain }im t71p(¢) = . The
00

case f = — oo may be treated similarly.
Definition 1. If {T,;¢ = 0} C L (X, X) satisfy the conditions
T, T, =T, (for t,s = 0), (1)
T, =1, (3)
s—tl_ig: T,x = T, x for each {, = 0 and each x€ X, (4)

then {T,} is called a semi-group of class (C).
In virtue of the Proposition, we see that a semi-group {7} of class
(C,) satisfies the condition

IT || S M (for 0<t< o), (5)

with constants M > 0 and § < oco.

The proof is easy. We have only to show that || T, || is, for any interval
(0, @) withoo >a > 0,bounded on (0, 2). Assume the contrary and let there
exist a sequence {t,} C (0, @) such that ||T, || > » and nlirgxo by =ty < a.

By the resonance theorem, ||T,,x|| must be unbounded at least for one
x € X, which surely contradicts the strong continuity condition (4).

Remark. By multiplying ¢ %, we may assume that a semi-group
{T}} of class (C) is equi-bounded:

IT|<M (for 0 << o0). (6)
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If, in particular, M is < 1, i.e., if
T =1 (for 0=t <o0), (7
then the semi-group {7} is called a contraction semi-group of class (C).
As for the strong continuity condition (4), we have the following
Theorem. Let a family {T',; ¢ = 0} of operators € L (X, X) satisfy (1')
and (3). Then condition (4) is equivalent to the condition

w—ltiﬁ)l T,x=x forevery x€X. (8)

Proof. Suppose that (8) is satisfied. Let x, be any fixed element of
X. We shall show that s- hm Ty,xy =T, %, for each {, = 0. Consider the

function x (¢) = T,x,. For each to = 0, x(¢) is weakly right continuous at

ty, because w- }th T,x = w- 11m T, T, =T, x,. We next prove that

[|T,|| is bounded ina v101n1ty of t = 0. For, otherwise, there would exist
a sequence {f,} € such that ¢, 0 and lim ||T,,x,|| = oo, contrary
7—00

to the resonance theorem implied by the weak right continuity of x (f) =
T,x,. Thus by (1’), we see that T,x, = x(¢) is bounded on any compact
interval of ¢. Moreover, x (¢) is weakly measurable. For, a right continuous
real-valued function f(¢) is Lebesgue measurable, as may be proved from
the fact that, for any «, the set {¢; f(#) << «} is representable as the union
of intervals of positive length. Next let {¢,} be the totality of positive
rational numbers, and consider finite linear combinations JZ: Bix(t)

where f; are rational numbers (if X is a complex linear space, we take
Bi=a; + 1b; with rational coefficients a; and 4;). These elements form a
countable set M = {x,} such that {x(¢); £ = 0} is contained in the strong
closure of M. If otherwise, there would exist a number ¢’ such that x(¢')
does not belong to M*. But, being a closed linear subspace of X, M* is
weakly closed by Theorem 11 in Chapter V, 1; consequently, the condi-
tion x (¢') € M*® is contradictory to the weak right continuity of x(#), i.e.,
to x(t') = w;ligpx(t,,).

We may ’?hus apply Pettis’ theorem in Chapter V, 4 to the effect that
% (#) is strongly measurable, and so by the boundedness of || x (f) || on any

compact interval of ¢, we may define the Bochner integral f t) dt

and we have

B8
JE10) dt”§ f ||%(®) ]| dt for 0 < « < B < co. By virtue

B+s
of the strong continuity in s of the integral f x(t+s)dt = f x () dt,
-3 a+s
which is implied by the boundedness of x(¢) on any compact interval
of ¢, N. DunForD [3] proved that x(¢) is strongly continuous in ¢ > 0.

We shall follow his proof.
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Let 0= a<n<f<&—e<& with 6> 0. Since x(&) = Texp =
T,Te,%=T,x(E—m), we have

B B
(ﬂ~¢x)x(§)=f x(§) dn = f Tyx(@—mn)dn,
and so, by sup [|T,|| < oo which is 1mphed by (1’) and (3), combined
<B

with the boundedness of ||T,|| near ¢ = 0, we obtain
B

B—o){xE+ o) —xE)}= [ T, {x(E L e—n) —xE—n)}dny,

f—a

B—o) ||xE+e)—x@)]| = sup T, - Efﬂ [|#(x 4 &) — x(7) || dv.
The right hand side tends to zero as s | 0, as may be seen by approximat-
ing % () by finitely-valued functions.

We have thus proved that x(¢) is strongly continuous in ¢ > 0. To
prove the strong continuity of x(f) at ¢ = 0, we proceed as follows. For
any positive rational number #,, we have T,x(¢,) = T, T, %y = T; 4, % =
%(¢t + ¢,). Hence, by the strong continuity of x(f) for ¢ > 0 proved
above, we have s-‘lif(r)l T,x(t,) = x(¢,). Since each x,, € M is a finite linear

combination of x(2,)’s, we have s—‘lixgl Ti%y =%, (m=1,2,...). On the
other hand, we have, for any ¢ € [0, 1],
2@ — %ol = | Tom — 2 || + |2 — %0 || + || (%0 — %) |
= [ Texp — % || + |2 — %ol| + sup || Ti]] - ||20 — %l
o 0st<1
Hence lim || () — % || < (1 + sup [|T}|]) ||#m —%0||, and so s-lim x(¢)
£40 o<t=1 140

= %, byxilgw [|% — % || = 0.

2. The Equi-continuous Semi-group of Class (C,) in Locally
Convex Spaces. Examples of Semi-groups

Suggested by the preceding section, we shall pass to a more general
class of semi-groups.

Definition. Let X be a locally convex linear topological space, and
{T,; t = 0} be a one-parameter family of continuous linear operators
€ L(X, X) such that

T, =Ty, To=1, (1)
lim Tyx =T, x for any 4, =0 and x€X, (2)

t—>t,
the family of mappings {T}} is equi-continuous in t,
i.e., for any continuous semi-norm p on X, there (3)
exists a continuous semi-norm ¢ on X such that
p(T;x) = g(x) forallt = 0and all x€ X.

Such a family {7} is called an equi-continuous semi-group of class (Cy).
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The semi-groups {7} satisfying conditions (1), (3), (4) and (6) of
Section 1 are example of such equi-continuous semi-groups of class (C,).
We shall give concrete examples.

Example 1. Let C[0,00] be the space of bounded uniformly con-
tinuous real-valued (or complex-valued) functions on the interval [0, co),
and define T,, ¢ = 0, on C [0, oo] into C [0, co] by

(Tyx) (s) =x(¢t + s).
Condition (1) is trivially satisfied. (2) follows from the uniform con-
tinuity of x(s). Finally ||T,|| < 1 and so {T}} is a contraction semi-
group of class (Cy). In this example, we could replace C[0,o00] by
C [— o0, 00] or by L? (— o0, 00).
Example 2. Consider the space C[— oo, co]. Let
Ny(u) = @at) M2 e, — 0o <u<oo, t>0,

which is the Gaussian probability density. Define 7, = 0, on C [—oc0,00]
into C [— o0, 00] by
o0
(Tyx) (s) = f Ny(s — u) x(u) du, for t > 0,
—c0
= x(s), for £ = 0.
oo

Each 7, is continuous, since, by f N,(s—u)du =1,

—o00
ITexl| < [l#]] [ Nils —w) du = ||x]|.

Ty=1 by the definition, and the semi-group property 7,7, =T,
is a consequence from the well-known formula concerning the Gaussian
probability distribution:
1 1 1 7
_wezerry L 1 —(u—o)j2t o2t g
Ven(t + t) ¢ V2nt V2nt'_{[° ¢ ¢ v
This formula may be proved by applying the Fourier transformation
on both sides, remembering (10) and (13) in Chapter VI, 1. To prove the
oo

strong continuity in ¢ of 7, we'observe that x(s) = f N, (s —u) x(s) du.
—00
Thus
[ee]
(Te%) () —%(s) = [ Ni(s —u) (x(u) — x(s)) dus,
—00

which is, by the change of variable (s — )/ [/t—= z, equal to

_.!o N, (2) (x(s—l/t}) —x(s)) dz.
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By the uniform continuity of x(s) on (— oo, oo) there exists, for any
¢ > 0, a number § = d(¢) > 0 such that |x(s;) — x(s,) | < ¢ whenever
|s; — s,| < 8. Splitting the last integral, we obtain

(T () =26 = [ Ny |a(s—Via)—x(s)|de+ [ (-)dz

[Vl <o IVTx]>o
e Mm@l [ N
]Vlzsﬁ tz >4
<e+2|x|]| [ Ny(2) dz.
t::]>6

The second term on the right tends to 0 as £— 0, since the integral
oo
f N, (2) dz converges. Thus ]im sup| T,x) (s) —x(s)| =0 and hence

s- ltlg)l T;x = x; consequently, by the Theorem in the preceding section,

we have proved (2).
In the above example, we can replace C[— oo, co] by L? (— oo, 0o).
Consider, for example, L1(— oo, 0o). In this case, we have

oo
ITexll < [[Ny(s —w) |x(w)| ds du < || ]|,
—o0
by Fubini’s theorem. As for the strong continuity, we have, as above,
oo —
T — x| = []f Nyz) (x(s —Vt-2) — x(s)) dz|ds
—o0

g_ofo N, (2) [_[ | %(s— )/t 2) wx(s)lds] dz

ofoNl “|l=]

H/\

Hence, by the Lebesgue-Fatou lemma, we obtain
—_— g — 0 e
lim||T,x — || < [ Ny(?) <1im [ |x(s—Vt-2) —« (s)]ds) dz=0,
tl0 —0 40 o

because of the continuity in the mean of the Lebesgue integral. which may
be proved by approximating x(s) by finitely-valued functions.

Example 3. Consider C[—o0,00]. Let 4> 0, x> 0. Define T,
t =0, on C[—o0,00] into C [— o0, 00] by

(Tyx) (s) = e‘”é T x(s—kp).
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We have
o ] Aw)™ | _ °°A 3
(Tu(Ti2)) () = e 3 C0F { “ 3G x(s—k#—mu)}
ey N 1 2, (Aw)m (At)p—m
= ¢~ ¥ t)gﬂj[ﬁ'g(:’? ((pim),x(s—p,u)]
1

= ¢ et Zp (Aw + A9 x(s —pH) = (Tuss%) (s).

Thus it is easy to verify that T} is a contraction semi-group of class (C,).

3. The Infinitesimal Generator of an Equi-continuous
Semi-group of Class (C,)
Let {T,;¢t=0} be an equi-continuous semi-group of class (C,)
defined on a locally convex linear topological space X which we assume

to be sequentially complete. We define the infinitesimal generator 4 of T,
by

Ax=’1‘i£ YT, —1I)x, (1)
ie., A is the linear operator whose domain is the set D(4) =
{xeX; ;1.%] h(T,—1I)x exists in X}, and, for x€ D(4), Ax ==
)l,ixg h1(T}, —1I) x. D(A) is non-empty; it contains at least the vector 0.
Actually D (A) is larger. We can prove

Theorem 1. D (A) is dense in X.

Proof. Let @,(s) =ne™™, n> 0. Consider the linear operator C,,
which is the Laplace transform of T, multiplied by =:

Co x_f<p,, T,xds for x€X, (2)

the integral being defined in the sense of Riemann. The ordinary proce-
dure of defining the Riemann integral of numerical functions can be
extended to a function with values in a locally convex, sequentially
complete space X, using continuous semi-norms p on X in place of the
absolute value of a number. The convergence of the improper integral isa
consequence of the equi-continuity of 7, the inequality

P (pa(s) Tsx) = ne ™™ p(T2)
and the sequential completeness of X.
We see, by

o0
%) < [ me™™ p(T,x) ds < sup p(T,%),
0 s=0
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that the operator C,,_ is a continuous linear operator € L (X, X). We shall
show that

R(C,,) S D(A) for each n> 0, (3)
and
lim C, x =x for each x€X. (4)
n—>00

o0
Then U1 R(C,,) will be dense in X, and a fortiori D (4) will be dense in
X. To prove (3), we start with the formula
(T, — 1) C%x_h—lf @ (s) T3 Tsxds — b1 f @ (s) Txds.

oo oo

The change of the order: T, f cee = f Ty - - - is justified, using the
0 0
linearity and the continuity of 7. Thus

[e o]
A (Ty—1I) Cpox =kt [ @,(s) TH_,,xds—h—lf @a(s) Tyxds
0

B
_ 1
—~n | e™T,xdoc— ﬁ-ndfe'”s T,xds

:eﬁh};—l{c x—fne T xda} h f‘P» Txds

By the continuity of ¢, (s) T« in s, the second term on the right tends

to —@,(0) Ty x = —nx as k| 0. Similarly, the first term on the right
tends to nC,, x as 4 |, 0. Hence we have
AC, x =n(C,, —I)x, x€ X. (5)

[e o]
We next prove (4). We have, by f ne ™ds =1,
o ¢
Copx—x=mn f e (Tyx —x) ds,
]

oo [ oo
p(C%x~x)§nf e p(Tex —x) ds:nf +nf = I, + I,, say,
0 0 §

where 6 > 0 is a positive number. For any ¢ > 0, we can choose, by the
continuity in s of Tsx, a § > 0 such that p(T\x —x) S efor 0 < s < 6.
Then ] o0
I, = enfe—"s ds < en f e Mds =e¢.
0 0

For a fixed § > 0, we have, by the equi-boundedness of {T;x} in s = 0,
oo
I,<n f e (p(Tsx) + p(x)ds—0 as ntoo.
5

Hence we have proved (4).
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Definition. For x € X, we define
D,T,x = )lgxol A YTy —Ty) (6)

if the right hand limit exists.
Theorem 2. If x € D(A4), then x€ D(D,T,) and

DTy x=AT,x=T,Ax, t = 0. (7)
Thus, in particular, the operator A4 is commutative with T,.
Proof. If x€ D(A), then we have, since T, is continuous linear,
T,Ax=T, ;l,if? Y (T—1)x = ;l;if% YT, Ty—T,)x= lifrol YTy —To)x
= },ifl(} AT, —1)T,x =AT,x.
Thus, ifx€ D(A), then T,x€ D(A) and T,Ax = AT,x = }'1?3 h1

(Ty4n —T;)x. We have thus proved that the right derivative of T,x
exists for each x € D (4). We shall show that the left derivative also
exists and is equal to the right derivative.

For this purpose, take any f,€ X’. Then, for a fixed x € D(4), the
numerical function fy(7T,x) = (T\,x, f,> is continuous in { = 0 and has
right derivative d+f,(T,x)/dt which is equal to f,(4 T,x) = f,(T,Ax) by
what we have proved above. Hence d*f,(T,x)/dt is continuous in ¢ We
shall prove below a well-known Lemma: if one of the Dini derivatives

D+{(), D*/(9), D-f() and D-f()

of a continuous real-valued function f(#) is finite and continuous, then
f(¢) is differentiable and the derivative is, of course, continuous and equals
D*(#). Thus f, (T,x) is differentiable in ¢ and

fo(Tix — %) = fo(Ty%) — fo(Tox) =Of atfo(Tsx)[ds - ds = J}fo(TsAx)dS
=/ <of TsAxds>.
Since f, € X’ was arbitrary, we must have
Tix —x = Oft T;Axds foreach =x€D(4).

Since T, A x is continuous in s, it follows that T, is differentiable in £ in

the topology of X and
t+h

D,T,x =}1'in3 W[ TAxds=T,Ax.
=> ¢

Thus we have proved (7).
Proof of the Lemma. We first prove that the condition: D+f(f) = 0
for a =<t =< b implies that f(b) — f(a) = 0. Assume the contrary, and
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let f(b) —f(a) < —€&(b — a) with some & > 0. Then, for g(t) = /(¢) —
f(a) + e(t — a), we have D*g(a) = D*f(a) + ¢ > 0,and so, by g(a) = 0,
we must have g (f,) > 0 for some #, > a near 4. By the continuity of g (¢)
and g(b) < 0, theré must exist a # with a <{,<<? < b such that
g(t;) = 0 and g(f) < 0 for ¢; < ¢ << b. We have then D*g(¢,) < 0 which
surely contradicts the fact D*g(¢) = D*f(¢,) + ¢ > 0.

By applying a similar argument to f(#) — «¢ and to 8¢ — f(¢), we prove
the following: if one of the Dini derivatives D () satisfies

o« = Df(Y) = B on any interval [¢, 4],

theno = (f(t,) — f(¢)))/(2s —¢,) =< B. Hence, the suprema (and the infima)
on [t, t,] of the four Dini derivatives of a continuous real-valued func-
tion f(¢) are the same. Thus, in particular, if one of the Dini derivatives of
a continuous real-valued function f(#) is continuous on [¢,, #,], then the
four Dini derivatives of f(f) must coincide on [t #,].

4. The Resolvent of the Infinitesimal Generator A

Theorem 1. If n > 0, then the operator (n — A) admits an inverse
R(n; A) = (nI — A)1¢ L(X, X), and

o0
R(n;A)x:fe‘”‘Tsxds for x€ X. (1)
0

In other words, positive real numbers belong to the resolvent set g (A4)
of A.

Proof. We first show that (n] — A)~! exists. Suppose that there
exists an %,7 0 such that (nJ — A4) x, =0, that is, Ax) = nx,. Let f,be a
continuous linear functional € X’ such that f,(x,) = 1, and set ¢ (f) =
fo(T%,). Since xy € D (4), ¢ (¢) is differentiable by Theorem 2 in the prece-
ding section and

do (t)[dt = fo (D, Ty%5) = fo(TyA%,) = fo(Tynx) = nep(?).

If we solve this differential equation under the initial condition ¢ (0) =
fo(x)) = 1, we get @(f) = ™. But, ¢(¢) = f,(T,%,) is bounded in ¢,
because of the equi-boundedness of T,x, in £ = 0 and the continuity of
the functional f,. This is a contradiction, and so the inverse (nl — A4)™1
must exist.

Since, by (5) of the preceding section, 4 C,, x = n(C,, —I) x, we have
(nI —A) C,,x =mnx for all x€ X. Thus (nI —A) maps R(C,,) € D(4)
onto X in a one-one way. Hence, a fortiori, (nI — 4A) must map D(4)
onto X in a one-one way, in virtue of the existence of (n — 4)~1. There-
fore, we must have R(C,,) = D(4) and (nI — A)71 =n"1C

Pn
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Corollary 1. The right half plane of the complex A-plane is in the
resolvent set p(4) of 4, and we have

[ee]
RA; A)x=AI—A)1x= f e ¥T,xdt for Re(d)> 0 and x€ X. (2)
0
Proof. For real fixed t, {e“" T,;t = 0}, constitutes an equi-continuous
semi-group of class (C,). It is easy to see that the infinitesimal generator
of this semi-group is equal to (4 — ¢t I). Thus, for any ¢ > 0, the resolvent
R(o 4+ it; A) = ((0 + ¢7) I — A)™! exists and
(o]
R(o+it)I—A)yx= [ e+ T xds for all x€X. (2)
0

Corollary 2.

D(4) =R((AI —A)™)=R(R(A; A)) when Re()> 0, (3)
AR(A; A)x=R(A; A) Ax =(AR(@A; A) —I)x for x€ D(4), (4)
AR@A; A)x=(AR@A; A)—I)x for x€ X, (5)

(6)

lim AR(J; A)x==x for xcX.
A poo

Proof. Clear from R(A; A) = (Al — A)™! and (4) of the preceding
section.

Corollary 3. The infinitesimal generator 4 is a closed operator in the
following sense (Cf. Chapter II, 6):

if x,€ D(4) and hlixgloxh=x€X, hl_i)rgAx,,:yEX, then
x€D(A) and Ax=y.

Proof. Put (I — A4) x;, = z,. Then hlir&z,,:x—y and so, by the
i A1y — ([ — A)1 (g —
Jim (I —A)7 2 = (I —A4)7 (x—y)

that is, x =(I —A)?(x—y), { —A4)x=2x—1y. This proves that
y = Ax.

- -l 1 _
continuity of (I — 4) ,hl_l)lg X

Thecrem 2. The family of operators

{AR@; 4))} ("
is equi-continuousin A > 0andin» =10,1,2,.. .
Proof. From the resolvent equation (Chapter VIII, 2, (2))

R(u; A) —R(A; A) = (A—p) R(u; 4) R(4; 4),
we obtain

lim (u—A)7 (R (43 4) =R (1;0)) v =dR (4; 4) x/dh=—R(1; 4)* x, € X.

To derive the above formula, we have to appeal to (2) in order to show
that lin} R(u;A)y=R(};4)y,ye X.
p—>

16 Yosida, Functional Analysis
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Therefore, R (A; A) x is infinitely differentiable with respect to A when
Re(4) > 0 and

A"R(A; A) xjdl* = (—1)"n! R(A; A)*t1x (n=10,1,2,...). (8)

On the other hand, we have, by differentiating (2) n-times with respect
to 4,

d"R (A; A) x|dA* = f e~ ¥ (—t)" T, xds. (9)

Here the differentiation under the integral sign is justified since {T,x}
[o.e]

is equi-bounded in ¢ and [ e~*#" dt= (n!)/A**1 when Re(A)> 0. Hence
0
ant
(AR@A; A)yH1x =" [ e Tyxdt for x€ X and Re(2) > 0, (10)
"0
and so, for any continuous semi-norm p on X and A > 0, n > 0,
n+1 X
PAR(; Ay rx) =27 [ e at sup p(Tyr) = sup p(Tin). (1)
"0 20 £20
This proves Theorem 2 by the equi-continuity of {T}} in ¢.

b. Examples of Infinitesimal Generators
We first define, for n > 0,

Jo=U—n1A)1=nR(n; A), (1)
so that
AJpy=n{J,—1I). (@)
Example 1. (T,x) (s) = x(t + s) on C [0, oo].
o]
Writing ¥, (s) = (J.%) (s) = n f eMx(t+s)dt=mn [ e (1) dt,
we obtain y, (s) = —n e "z (s) + #u2 [ eI x(f) dt = — nx(s) +

n y,(s). Comparing this with the general formula (2):
(A Jnx)(s) = n((J»— 1) 2)(s)
we obtain 4y, (s) = y,(s). Since R(],) = R(R(n; A)) = D(A4), we have
Ay(s) =9y'(s) for every y€ D(A4).

Conversely, let y(s) and ¥’ (s) both belong to C [0, oo]. We will then show
that y € D(4) and Ay(s) = 9’ (s). To this purpose, define %(s) by

Y'() —ny(s) = —nx(s).
Setting (J,x)(s) = ¥,(s), we obtain, as shown above,

Yu(8) — 1Yu(s) = —nx(s).
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Hence w(s) = y(s) — y,(s) satisfies »’(s) =nw(s) and so w(s) = Ce™.
But, w must belong to C [0, o] and this is possible only if C = 0. Hence
¥(s) = ¥a(s) € D(4) and Ay (s) = ' (s).

Therefore, the domain D (4) of 4 is precisely the set of functions y ¢
C [0, co] whose first derivative also € C [0, o0], and for such a function
y we have Ay = y’. We have thus characterized the differential operator
d/ds as the infinitesimal generator of the semi-group associated with the
operation of translation by ¢ on the function space C [0, co].

Example 2. We shall give a characterization of the second derivative
d?/ds? as the infinitesimal generator of the semi-group associated with
the integral operator by Gaussian kernel. The space is C [— oo, 00] and

o
(Ty%)(s) = @)™ V2 [ e~ x(v) dv if ¢ > 0, = x(s) if £ = 0.
—00
We have

Vu(s) = (Jn2)(s) = }ox(v) [}on(2nt)‘1/2 g s—u)2e dt} dv

0

— fx [2 ]/nf 27r) 12 gt nls—v) 20t da} dv

(by substituting ¢ = o?/n).

Assuming, for the moment, the formula

o}o et rio) gy —VZ g o/ |s—olyE > o, 3)
we get
Yuls) = [ x(v) (n[2)M2 e~ Verls—ol gy

x (v) being continuous and bounded, we can differentiate twice and obtain

o) o s
V' (5) =n f % (v) eV =) gy g f % (v) e~ Ven =0 gy

—00

1) = w219 o0 + VI Vi T )

+V2yn f % (v) e V2 (—v) dv}
=—2nx(s) + 2ny,(s).
Comparing this with the genera.l formula (2):
(Aya)(s) = (A]n s) = n((Jn— 1) %)(s) = n(yn(s) — %(s)),
we find that 4y,(s) = ¥, (s)/2. Since R(],) = R(R(n; A)) = D(4), we
16*
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have proved that
Ay(s) (s)/2 for every ye€D(4).
Conversely, let y(s) and 3" (s) both belong to C [— oo, oo]. Define x (s) by
y'(s) —2ny(s) = — 2nx(s).
Setting ¥, (s) = (J,%)(s), we obtain, as shown above,
Y (5) — 2ny,(s) = — 2nx(s).
Hence w(s) = y(s) — ¥, (s) satisfies »’’ (s) — 2nw(s) = 0, and so w(s) =

C, eVens 4 C, ¢~¥2%s This function cannot be bounded unless both C,
and C, are zero. Thus y(s) = y,(s), and so y € D(4), (Ay) (s) = y"' (s )/2

. . 1 a2 . .
Therefore, the differential operator 5 i is characterized as the

infinitesimal generator of the semi-group associated with the integral
transform by the Gaussian kernel on the function space C [— oo, 0o].
The proof of (3). We start with the well-known formula

o0
[ e* dx =Vn/2.
0

Setting x = o — c/o, we obtain

o 0]
f [ eI + cfo?) do = &* f e~ @+ (1 4 ¢/o?) do
Ve c

— ool Ferwramao 1. T owserm 2.
Ve Ve

Setting ¢ = ¢/t in the last integral, we obtain
~—2V72 = { i e— @ +ellet) go f o~ (P +8) dt} — 2% f e+ gy
Ve Ve
Exercise. Show that the infinitesimal generator 4 of the semi-group
{T;} on C[— o0, c0] given by

/18

T = > Grat—hm  hu>0),

I
o

is the difference operator A:

(Ax)(s) = A{x(s —p) — x(s)}-

6. The Exponential of a Continuous Linear Operator
whose Powers are Equi-continuous

Proposition. Let X be a locally convex, sequentially complete, linear
topological space. Let B be a continuous linear operator € L (X, X) such
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that {B*; k=1,2,...} is equi-continuous. Then, for each x € X, the

series
kg‘] (BN (B x (¢ = 0) 1)

converges.

Proof. For any continuous semi-norm p on X, there exists, by the
equi-continuity of {B*}, a continuous semi-norm ¢ on X such that
p(B*x) < ¢q(x) for all £ = 0 and x € X. Hence

p(E enr )< EpE o < g Eip.

k=n

”
Therefore {kEO (tB)"x/k!} is a Cauchy sequence in the sequentially
complete space X. The limit of this sequence will be denoted by (1).
e
Corollary 1. The mapping x — k‘_‘% (¢tB)* x/k! defines a continuous

linear operator which we shall denote by exp (¢B).
Proof. By the equi-continuity of {B*}, we can prove that B, =
kz'; (¢B)*/k! (n =0,1,2,...) are equi-continuous when ¢ ranges over

any compact interval. In fact, we have
” ”
PB.) S SEpBRR S g) - SRS g(x).

Hence the limit exp (¢B) satisfies

p(exp (¢B) x) = exp () - ¢(x) (¢ = 0). (2)
Corollary 2. Let B and C be two continuous linear operators€ L (X, X)
such that {B*} and {C*} are equi-continuous. If, moreover, BC = CB,
then we have
exp(tB) exp(tC) = exp(¢(B + C)). (3)
Proof. We have

& k
P(B+ 0P ) = ZuCp(B* C 1) < 3,0, q(C0) = 2" sup ¢(C*4).
s= 0ss

s=0

Hence {27* (B + C)*} is equi-continuous, and we can define exp (¢ (B + C)).
By making use of the commutativity BC = C B, we rearrange the series

2 (B + ) x
so that we obtain <k§0 (tB)"/k!) <k§) (tC)* x/k!> as in the case of

numerical series kg}) (b + c)*/kR!.
Corollary 3. For every x € X,
}i{l& hl(exp(hB) —I) x = Bx, (4)



246 IX. Analytical Theory of Semi-groups

and so, by making use of the semi-group property

exp((¢ + #) B) = exp(¢B) exp (hB) (5)
proved above, we obtain
D,exp(tB) x = exp(¢B) Bx = Bexp(tB) . (6)

Proof. For any continuous semi-norm  on X, we obtain, as above

(o]
phL(exp(hB) —I) x — Bx) =< k22 K1 p(Br) (k! < g(x) kz°:: Rk
which surely tends to 0 as % | 0.

7. The Representation and the Characterization of Equi-continuous
Semi-groups of Class (C;) in Terms of the Corresponding
Infinitesimal Generators

We shall prove the following fundamental

Theorem. Let X be a locally convex, sequentially complete, linear
topological space. Suppose A is a linear operator with domain D(4)
dense in X and range R(4) in X such that the resolvent R(n; A) =
(nI — A)1e L(X, X) exists forn = 1, 2, . . . Then 4 is the infinitesimal
generator of a uniquely determined equi-continuous semi-group of class
(C,) iff the operators {(I —n~!A)~™} are equi-continuousinn =1, 2, ...
andm=20,1, ...

Proof. The “‘only if"’ part is already proved. We shall prove the “‘if’’

part.
Setting
Jo=(T—n14)7, 1)
we shall prove
lim J,x =x for every x€X. (2)
7#—>00

In fact, we have, for x€ D(4), AJ,x = J,Ax=n(J,—I)x and so
Jax—x=mn1],(Ax) tends to 0 as n—>oo, in virtue of the equi-
boundedness of {J,(4%)}inn=1,2,.... Since D(4) is dense in X and
{Js} is equi-continuous in #, it follows that lim J,x = x for every

7n—->00
xec X.
Put

T = exp(t4 ],) = exp(tn(J, — 1)) =exp(—nd) exp(nt ],), t=0. (3)
Since {72} is equi-bounded in # and &, the exp (¢# J,) can be defined, and
we have, as in (2) of the preceding section,

plexp(nt]) ) < 3 (1) (B)1p U5 1) < exp(nd) - 4().
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Consequently, the operators {T{"} are equi-continuous in #=> 0 and
n=1,2,...1in such a way that
p(TMx) < q(x). (4)

We next remark that J, J,, = J,,J, for n, m > 0. Thus ], is commu-
tative with 7{™. Hence, by D,T{"x = A J,T"x = T{" A J,,», proved
in the preceding section,

P(TMx—TMx) = p ( f D (T T™ %) ds>
0
, (5)
= (f TMTW (AT, — AT, % ds).
0

Hence, if x € D (4), there exists a continuous semi-norm g on X such that

p(TMx—TiMx) < j?((A]n—A]m) x) ds = tq((Jad — Jnd) %).
0

Therefore, by (2), we have proved that lim p(T{™x—T{x) =0

7,m—>00
uniformly in ¢ when ¢ varies on every compact interval. Since D (4) is dense
in the sequentially complete space X, and since the operators {7™} are

equi-continuous in £=0 and in %, we see that lim T{"x = T,x
7—>00

exists for every € X and ¢ = 0 uniformly in ¢ on every compact interval
of ¢. Thus the operators {T,} are equi-continuous in ¢ = 0, and from the
uniform convergence in ¢, T,x is continuous in ¢ = 0.
We next prove that T, satisfies the semi-group property T, T, = T, .
Since T{?, = T T™, we have
ﬁ (Tt+sx - Tthx) é ?(T¢+sx - Tt(i)sx) + ﬁ (Tt(:-)sx - T(tn) Tﬁ")x)
+ p(TP TP % — TP T,2) + p(TP T,x —T,T,2)
é 15 (TH-sx - Tt(i)sx) + Q(Tg")x - Tsx)
+p((T™W —T,) Tyx) > 0 as n— oo.
Thus p(Ty4s% — TyT,x) = 0 for every continuous semi-norm p on X,
which proves that T, = T,T,.
Let 4 be the infinitesimal generator of this equi-continuous semi-

group {T}} of class (C;). We have to show that A=A Let x¢ D(4).
Then lim T{" A J,x = T,Ax uniformly in ¢ on every compact interval
7—>00

of £. For, we have, by (4),
p(TAx—TPAT,0) < p(Tydx— TP A%) + p(T{P Ax—T{ 4], )
= p((T,—TP) Ax) + q(Ax— ], A42)
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which tends to 0 as #» — oo, since lim J,4x = A x. Hence
7—>00
t
T,x —x = lim (T"x — x) = lim ng”)A],,xds
7n—00 71—>00 0
¢ ¢
= f(lim ™ AJux)ds = [ T, Axds
0 \n—ooo / 0

t
so that %i{{)l Y (Tyx — %) = %1%1 1 f T, A xds exists and equals 4 x. We
0

have thus proved that x€ D(A4) implies x € D(/f) and Ax = A x, l.e.
A is an extension of 4. 4 being the infinitesimal generator of the semi-
group T,, we know that, for » > 0, (nI——/i) maps D(ff) onto X in
one-one way. But, by hypothesis, (n] — 4) also maps D(4) onto X in

one-one way. Therefore the extension A of A must coincide with A.
Finally, the uniqueness of the semi-group T} is proved as follows.

Let T, be an equi-continuous semi-group of class (C,) whose infinitesimal
generator is precisely 4. We construct the semi-group 7. Since A4 is

commutative with T, we see that 4 J, and T are commutative with
T,. Then, for x € D(A4), we obtain, as in (5),

t
P(Ty')x - Ttx) =9 <st (T~l—s Tg') x) ds)
0 /6)
\

t
=p <f—T,_sT§”) A—A4],) xds> )

0
Thus, by virtue of lim A J,x=Ax for all x€D(4), we prove lim
n—>00 n—>00

T x = T,x for all x€ X similarly to the above proof of the existence of
lim TMx, x € X.
7—>00 - ~

Therefore, T;x = T,x for all x € X, that is, T, = T,.

Remark. The above proof shows that, if 4 is the infinitesimal genera-
tor of an equi-continuous semi-group 7, of class (C,), then

T,x = lim exp(tA(I —n14)) %, x€ X, (7)
7—>00

and the convergence in (7) is uniform in ¢ on every compact interval of £.
This is the representation theorem for semi-groups.

Corollary 1. If X is a B-space, then the condition of the Theorem
reads: D (A4)* = X and the resolvent (I — »n~1A4)~ exists such that

I —n14)™||<C (n=1,2...m=12..) (8)

with a positive constant C which is independent of » and #. In particular,
for the case of a contraction semi-group, the condition reads: D(4)* = X
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and the resolvent (I — #~14)~1 exists such that
[ —n14) <1 (n=1,2,...). (9)

Remark. The above result (9) was obtained independently by E. HiL-
LE [2] and by K. Yosipa [5]. The result was extended by W. FELLER
1], R. S. Pairips [3] and I. MivADERA [1] and the extension is
given in the form (8). It is to be noted that in condition (8) and (9), we
may replace (n =1, 2,...) by (for all sufficiently large #). The exten-
sion of the semi-group theory to locally convex linear topological spaces,
as given in the present book, is suggested by L. ScHwARTZ [3].

Corollary 2. Let X be a B-space, and {T,; ¢ = 0} be a family of
bounded linear operators L (X, X) such that

T, T,="T, .t s=0), Ty=1, (10)
s-}iﬁ)l T,x =x for all x€ X, (11)

[|T|| = MeP for all ¢ = 0, where M > 0 and f = 0 are 19
independent of ¢. (12)

Then (4 — BI) is the infinitesimal generator of the equi-continuous semi-
group S, = ¢ #T, of class (C,), where 4 is the operator defined through
Ax = s—lti?g t-1(T,— I) x. Thus, by Corollary 1, we see that a closed

linear operator 4 with D(4)* = X and R(4) € X is the infinitesimal
generator of a semi-group T satisfying (10), (11) and (12) iff the resolvent
(I —n1(4 — BI))™! exists such that

| —n1A4—BI)™||=M (for m=1,2,... and all large n). (13)
This condition may be rewritten as

| —n1A)™| <M1 —n"1p)"" (for m =1,2,... and all large .
(13')
In particular, for those semi-groups T, satisfying (10), (11) and

[|T¢|| < é# for all t=0, (14)
condition (13') may be replaced by
[[{—n1A)| =< (1—n1p)t (for all large n). (13"

An application of the representation theorem to the proof of Weierstrass’
polynomial approximation theorem. Consider the semi-group T defined by
(Tyx) (s) = x(t + s) on C [0, 00]. The representation theorem gives

(Tyx) (s) = x(t + s) = s-lim exp (¢4 J,x) (s) = s-lim Z.o:’—i;' (AT )"x(s),
%—00 #—>00 = M

and the above s-lim is uniform in ¢ on any compact interval of ¢{. From
7n—>00

this result we can derive Weierstrass’ polynomial approximation theo-
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rem. Let z(s) be a continuous function on the closed interval [0, 1]. Let
%(s) € C [0, 00] be such that x(s) = z(s) for s€ [0, 1]. Put s = 0 in the
above representation of x (¢ + s). Then we obtain

(T,%) (0) = () = s-lim "é‘oot'"(A TPz ©m! in C[0,1],

uniformly in Zon [0, 1]. Hence z (¢) is a uniform limit on [0, 1] of a sequence
of polynomials in ¢.

8. Contraction Semi-groups and Dissipative Operators

G. LuMER and R. S. PHILLIPS have discussed contraction semi-groups
by virtue of the notion of semi-scalar product. The infinitesimal generator
of such a semi-group is dissipative in their terminology.

Proposition. (LuMER). To each pair {r,y} of a complex (or real)
normed linear space X, we can associate a complex (or real) number
[%, ¥] such that
[x + ynz]: [x,z] + [y'z]: [ﬂ-x,y]ZA[x,y], [x; x]= ”xilzr (1)

|t 1= (1%l Iy 1]
[x, ] is called a semi-scalar product of the vectors x and y.

Proof. According to Corollary 2 of Theorem 1 in Chapter IV, 6, there
exists, for each x,€ X, at least one (and let us choose exactly one)

bounded linear functional f, € X’ such that ||/, || =||%] and
(%o, fry = ||%o|[?- Then clearly
[x' y] = <xr fy> (2)

defines a semi-scalar product.

Definition. Let a complex (or real) B-space X be endowed with a
semi-scalar product [, y]. A linear operator 4 with domain D(A4) and
range R (A4) both in X is called dissipative (with respect to [x, y]) if

Re[Ax,2] =0 whenever x€ D(A4). (3)

Example. Let X be a Hilbert space. Then a symmetric operator 4 such
that (4x, x) < 0 is surely dissipative with respect to the semi-scalar
product [, y] = (x, y), where (x, y) is the ordinary scalar product.

Theorem (PHILLIPS and LUMER). Let 4 be a linear operator with do-
main D (A) and range R(4) both in a complex (or real) B-space X such
that D(4)* = X. Then 4 generates a contraction semi-group of class (C,)
in X iff 4 is dissipative (with respect to any semi-scalar product [x, ¥])
and R(I — 4) = X.

Proof. The ““if”’ part. Let 4 be dissipative and A > 0. Then the inverse
(AI — A)texistsand || (A — A)1y|| < A1 ||y||wheny € D((AI — A)™Y).
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For, if y = Ax — A x, then
Az =A%, #]= Re(A[x, x] — [A%,%]) = Re[y, x]=||y]|- ||#]], (4)
since A is dissipative. By hypothesis, R(I — A) = X so that A = 1 isin
the resolvent set g(4) of A, and we have ||[R(1;4)|| <1 by (4). If
|A—1| < 1, then the resolvent R(4; A) exists and is given by

R(; 4) =R(1; 4) (I + (A— 1) R(1; 4))~

— R(1; 4) - ”é‘c;((l——l)R(l;A))”,

(see Theorem 1 in Chapter VIII, 2). Moreover, (4) implies that
[|R(A; 4)|| = A for A > 0 with |2 — 1| < 1. Hence, again by
R(u; 4) = R(%; 4) (I + (— ) R(3; 4)),

which is valid for g > 0 with |u — 4| ||R(A; 4) || < 1, we prove the exi-
stence of R(u; A) and ||R(u; 4) || =< p~'. Repeating the process, we see
that R(4; A) exists forallA > 0 and satisfies the estimate || R(4; 4) [| < A1
As D(A) is dense by hypothesis, it now follows, from Corollary 1 of the
preceding section, that 4 generates a contraction semi-group of class (C,).

The “only if” part. Suppose {T,; ¢ = 0} is a contraction semi-group
of class (C,). Then

Re[Tyx —x,x] = Re[Tyx, x] — || |P < || T, x| - ||x]|| — ||x | = 0.
Thus, for x € D(A), the domain of the infinitesimal generator 4 of T, we
have Re[Ax, x] = }1{(1)1 Re{t72[T,x — x, x]} = 0. Hence 4 is dissipative.
Moreover, we know that R(I —A4) = D(R(1; 4)) = X, since 4 is the
infinitesimal generator of a contraction semi-group of class (C,).

Corollary. If A is a densely defined closed linear operator such that
D(A) and R (A) are both in a B-space X and if 4 and its dual operator

A’ are both dissipative, then 4 generates a contraction semi-group of
class (C,).

Proof. It sufficies to show that R(I — A) = X. But, since (I — 4)™!
is closed with 4 and continuous, R (I — A) is a closed linear subspace of X.
Thus R(I — A) # X implies the existence of a non-trivial " € X’ such

that {(x— Ax),x">y =0 for all x€D(4).

Hence " — A'x" = 0, contrary to the dissipativity of 4’ and %’ 5~ 0.
Remark. For further details concerning dissipative operators, see
G. LuMER-R. S. PriLLips [1]. See also T. KaTto [6].

9. Equi-continuous Groups of Class (C,). Stone’s Theorem

Definition. An equi-continuous semi-group {7} of class (C,) is called
an equi-continuous group of class (C,), if there exists an equi-continuous

semi-group {i‘,} of class (C,) with the condition:
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If we define S, by S, =T, for £= 0 and S_, = T, for ¢= 0, then
the family of operators S;, — oo << ¢ << oo, has the group property
S5;Ss =Sips (oo <t s<o0), Sy =1. (1)

Theorem. Let X be a locally convex, sequentially complete linear
topologicadl space. Suppose A4 is a linear operator with domain D (4) dense
in X and range R(A) in X. Then 4 is the infinitesimal generator of an
equi-continuous group of class (C,) of operators S,€ L (X, X) iff the
operators (I —n~1A4)™™ are everywhere defined and equi-continuous in
n=-+1+2,...andinm=1,2,...

Proof. The “‘only if”’ part. Let T, = S, for ¢ = 0 and f‘, = S_, for
t=0.Let A and A be the infinitesimal generator of f, and T, respec-
tively. We have to show that A=—A.If x¢ D(z‘f), then, by putting
2= h"1 (f“,, — I) x and making use of the equi-continuity of T,

p(Thny— A%) < p(Ti, — TyAz) + p((T, —1) Ax)
Sqm—Ax) +p(Th—1)Ax)
where p and gare continuous semi-normson X such that, foragiven p, we
can choose a g satisfying the above 1nequa11ty forall2= 0and allx€ D (A)
simultaneously. Thus hm Thxy = Ax, and so x€ D(A) implies Ax =
}1{2 T,k T,, N)x= }1:13 h I —T,) x=—Ax, Hence —A4 is an

extension of 4. In the same way, we can prove that A4 is an extension of

—A. Therefore A — — A.
The ““if”” part. Define, for £ = 0,

T,x = lim T{"x = lim exp(tA(I —n~14))x,
7n—>00 7n—>00
Tyx = lim T™x = lim exp(tA (I —n14)Y) %, where A = —A4.
7—>00 7—>00
Then T, and 7:, are both equi-continuous semi-groups of class (C;). We
have
P T —TPTPx) < p(T,Tix — TP Tyx) + p(TW Tyx — TP T %)
< p((Ti— T) Tx) + ¢(Tyx — 1)

by the equi-continuity of {T{™} in » and #=0. Thus we have
lim T™WT{™x = T,T,x. We have incidentally proved the equi-con-
n—00

tinuity of T,T, by the equi-continuity of T{ T{™. On the other hand,
we have T?WT™ — T™T® by the commutativity of (I —n-14)-1
and (I —m14)t, Thus (TPTP) (TPTY) = TN, T, and so
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(T,f’,) with £ = 0 enjoys the semi-group property (7T, f,) (T, fs) =
Tyys f‘,_,_s. Hence {T,T,} is an equi-continuous semi-group of class (C,).
If x€ D(A) = D(A), then

s 71 ro__ — 1 —1(T, im A1 _
)1‘1?(} YT, Ty —1)x }I‘i‘n& Ty Y (T —1I)x + }‘III& BT, —1)x
=Ax+ Ax=0,

so that the infinitesimal generator 4, of {T; f‘,} is 0 at every x € D(f.f).
Since (I — 4,) is the inverse of a continuous linear operator (I — 4,)"1¢€
L (X, X), we see that 4, must be closed. Hence 4, must be = 0, in virtue

of the fact that A, vanishes on a dense subset D(4) = D(4) of X.
Therefore (T,T,) x = lim exp(¢-0- (I —n1-0)")x = «, that is,
n—>00

T, f, = I. We have thus proved the group property of S,,—oo < ¢ < oo,
where S, = Tyand S_, = T, for £ = 0.

Corollary 1. For the case of a B-space X, the condition of the Theorem
reads: D(4)* = X and the resolvent (I — n~1A4)~! exists such that

I —n"14)™||=<M (for m=1,2,... and all large |n|, n=0). (2)

For the group S, satisfying ||S, || < Ml (8 = 0) forallt, —oco< ¢ < oo,
the condition reads: D(4)* = X and the resolvent (I —n 14)~! exists
such that

| —n1A)y™|| =M (1—|ntp)™™ (for m=1,2,...
and all large |z|, » =< 0).

3)

For the particular case ||S;|| = Pl for all ¢, — oo < ¢ < oo, the condi-
tion reads: D (4)* = X and the resolvent (I — #~1A)~! exists such that

(I —n14)| =< (1 —|n|f)! (for all large |n|, n=10). (4)
Proof. As the proof of Corollary 1 and Corollary 2 in Chapter IX, 7.
Corollary 2 (Stone’s theorem). Let U, , — oo < ¢ << 0o, be a group of

unitary operators of class (Cy) in a Hilbert space X. Then the infinitesimal
generator 4 of U, is ]/—1 times a self-adjoint operator H.
Proof. We have (U, x,y) = (x, Ur'y) = (x, U_,y) and so, by diffe-
rentiation,
(Ax,y) = (v, —Ay) whenever x and y€ D(4).

Thus —¢ A = H is symmetric. 4 being the infinitesimal generator of U,,
(I —n1A) = ([ —n'iH)™! must be a bounded linear operator such
that ||(I —»'iH)™'||< 1forn = 41, 42, ... Hence, taking the case
n = 4 1, we see that the Cayley transform of H is unitary. This proves
that H is self-adjoint.
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Remark. If 4 is of the form 4 = |/—1 - H, where H is a self-adjoint
operator in a Hilbert space X, then condition (4) of Corollary 1 is surely
satisfied, as may be proved by the theory of Cayley’s transform. There-
fore, 4 is the infinitesimal generator of a group of contraction operators
U, in X. It is easy to see that such U, is unitary. For, a contraction
operator U, on a Hilbert space X into X must be unitary, if U;l=U_,
is also a contraction operator on X into X.

10. Holomorphic Semi-groups

We shall introduce an important class of semi-groups, namely, semi-
groups T, which can, as functions of the parameter ¢, be continued holo-
morphically into a sector of the complex plane containing the positive
t-axis. We first prove

Lemma. Let X be a locally convex, sequentially complete, linear
topological space. Let {T,;¢ = 0} C L (X, X) be an equi-continuous semi-
group of class (Cy). Suppose that, forall¢ > 0, T, X C D (4), the domain
of the infinitesimal generator 4 of T,. Then, for any x € X, T,x is in-
finitely differentiable in £ > 0 and we have

TMx = (Ty,)"x for all ¢>0, (1)

where T} = D,T,, T’ = D,T}, ..., T = D, T{" ™Y,

Proof. If ¢t >, > 0, then Tjx = AT,x = T, AT, x by the com-
mutativity of 4 and T, s=0. Thus T; X C T, , X C D(A4) when
t> 0,and so T} x exists for all £ > 0 and x € X. Since 4 is a closed linear
operator, we have

TYx =Dy AT)x=A-lim - n(Tyyn—T)x=A(AT) x
7n—>00
= AT ATypx = (T;/z)2 x.

Repeating the same argument, we obtain (1).

Let X be a locally convex, sequentially complete, complex linear
topological space. Let {T,;¢ = 0} C L (X, X)be an equi-continuous semi-
group of class (C;). For such a semi-group, we consider the following three
conditions:

(I) For all t> 0, T,x€ D(A4), and there exists a positive constant
C such that the family of operators {(C¢T})"} is equi-continuous in
n=0and?{ 0<t< 1.

(II) T, admits a weakly holomorphic extension T, given locally by

o0
Tyx=3 A—t)"TMx/n! for |argl| < tan™!(Ce™?), (2)
and n=0
the family of operators {¢~*T}} is equi-continuous in A for

|arg 4| < tan~! (2=*Ce~!) with some positive constant &. (3)
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(IIT) Let A be the infinitesimal generator of 7T,. Then there exists
a positive constant C; such that the family of operators {(C;AR (4;4))"}
is equi-continuous in # = 0 and in A with Re(A) = 1 + ¢, &> 0.

We can prove

Theorem. The three conditions (I), (II) and (III) are mutually equi-
valent.

Proof. The implication (I) — (II). Let p be any continuous semi-
norm on X. Then, by hypothesis, there exists a continuous semi-norm ¢
on X such that p((tTy)"%) < C "g(x), 0<C for 1=¢t>0, n=0
and x € X. Hence, by (1), we obtain, for any ¢ > 0,

- A=t ™ 1 (1t o\
p(A—1) T§>x/n!)§'—T’—%5p((;CT,/n) x)
g(“ dios ) -¢(x), whenever 0=<t¢/n< 1.

Thus the right side of (2) is convergent for |arg 1| < tan1(Ce™?), and
so, by the sequential completeness of the space X, T,x is well defined
and weakly holomorphic in A for |arg 2| < tan—1(Ce™1). That is, for any
x€ X and f€ X', the numerical function f(T,x) of ¢ ¢> 0, admits a
holomorphic extension f(T;x) for |arg A| < tan~1(Ce1); consequently,
by the Hahn-Banach theorem, we see that T, x is an extension of T,x for
|arg 2| < tan~!(Ce7Y). Next put S, = ¢*T,. Then S; = ¢ *T; —¢~*T,
and so, by 0 =<te* <1 (0 < ¢ and (I), we easily see that the family
of operators {(27*C¢S;)"} is equi-continuous in ¢ > 0 and # = 0, in virtue
of the equi-continuity of {7} in £ > 0. The equi-continuous semi-group
S, of class (C,) satisfies the condition that ¢ > 0 implies S,X C D (4 — I)
= D(A4), where (4 — I) is the infinitesimal generator of S,. Therefore,
by the same reasoning applied above to T, we can prove that the weakly
holomorphic extension ¢~*T); of S, = ¢~*T, satisfies the estimate (3).
By the way, we can prove the following

Corollary (due to E. HiLLE). If, in particular, X is a complex B-space
and 1}{(1)1 [|#T¢|| < e7%, then X = D(4).
Proof. For a fixed ¢ > 0, we have lim ||(¢/#) T}, || < ¢!, and so the
71—00

series

oo oo
ATy s (A ) n"
S 0— TPy = 3 - ( T,,,,)
strongly converges in some sector
{A;|A—t|/t< 1+ 6 with some &> 0}

of the complex A-plane. This sector surely contains 4 = 0 in its interior.
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The implication (II) — (III). We have, by (10) in Chapter IX, 4,

(AR@A; A"t x = l—:'—l fooe_”t"T,xdt for Re(d) >0, x€ X. (4)
Hence, putting S, = ¢™* T(:, we obtain
(c+14+4)R(c+ 14147, 4)* 1«
(u + 1+ gt

n!

% .
f eOrPS vdt 6> 0.
0

Let 7 < 0. Since the integrand is weakly holomorphic, we can deform,
by the estimate (3) and Cauchy’s integral theorem, the path of integra-
tion: 0 < ¢ < oo to the ray: r¢® (0 < 7 < oo) contained in the sector
0 < arg A < tan~1(27*Ce) of the complex A-plane. We thus obtain

(6+14+i7)R(c+ 1 +i7; A)"*x
_(o+14dg™

o )
p f e—-(a+ir)n’orne£n0 S,,ioxe"odr,
and so, by (3),
p((c+ 1+ i7) R(e + 1 + i7; )" x)

= sup p(S,.0%) !

o+ 147 .
L(LI*‘_L f gl—ocosd+sinb)r ;g
0<r<o0 0

<q(x lo +1 +izn where ¢’ is a continuous semi-norm on X
=1 |t sin § — g cos 6™+’ 7 )

A similar estimate is also obtained for the case 7 > 0. Hence, combined
with (7) in Section 4, we have proved (III).

The implication (III) — (I). For any continuous semi-norm $ on X,
there exists a continuous semi-norm ¢ on X such that

p((C1AR(A; A))* %) < ¢(x) whenever Re(1) =1 + ¢, >0, and n=0.
Hence, if Re(4,)) = 1 + ¢, we have

I’» |
Thus, if |2 — 10 |/C |/'lo| <1, the resolvent R(A, A) exists and is given by

R(A; A) x—— Zo A" R(%; A)** x  such that

PR@A A) %) = (1— Cl 207 [A— 20 )" g (R (A; 4) 7).
Therefore, by (III), there exists an angle 6, with 7/2 << 6, << & such that
R (A; A) exists and satisfies the estimate

PR A) %)= I_il ¢’ () with a continuous semi-norm ¢’ on X  (5)
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in the sectors #/2 < arg A < 6, and —0, < arg A =< — =/2 and also for
Re(2) = 0, when |4] is sufficiently large.
Hence the integral

Tix = (2ni)™ [#R(A;4)xdA (¢> 0, x€ X) (6)
Cs

converges if we take the path of integration Cy = A(0), — o0 < 0 << 00,
in such a way that I1|1¥n |A(0) | = oo and, for some & > 0,
ag[too

w2 +e=argi(o) =6, and —O,=<argli(o) <—m/2—¢
when ¢4 4 oo and o | — oo, respectively; for |o| not large, A(o) lies
in the right half plane of the complex A-plane.
We shall show that f‘, coincides with the semi-group T itself. We
first show that ]‘j‘? f}x =« for all x€ D(A4). Let x, be any element
€ D (A), and choose any complex number 4, to the right of the contour

C, of integration, and denote (4,1 — A) x5 = y,. Then, by the resolvent
equation,

Tyxo =T, R(Ao; A) yo = (27i) " [ &*R(A; 4) R(do; 4) y0dA
C,
= (2ad)7! [*(Ag— A R(A; A) yodA
C,

— 2mi)™" [ ¥ (o — A R(k; 4) yoda.
C,y

The second integral on the right is equal to zero, as may be seen by
shifting the path of integration to the left. Hence

Ting = (270)™Y [ *(log— A7  R(A; 4) yodd, yo = (R — 4) %.
C,

Because of the estimate (5), the passage to the limit ¢ 0 under the
integral sign is justified, and so
lim T3 = (2i) ™" [ (o — A7 R(%; 4) 30, 30 = (ol — 4) %o.

To evaluate the right hand integral, we make a closed contour out of the
original path of integration C, by adjoining the arc of the circle [A| =
which is to the right of the path C,, and throwing away that portion
of the original path C, which lies outside the circle |A| = 7. The value of
the integral along the new arc and the discarded arc tends to zero as
7 4 oo, in virtue of (5). Hence the value of the integral is equal to the
residue inside the new closed contour, that is, the value R (4y; 4) ¥, = %,-

We have thus proved 1‘1;1(1)1 f,xo = xg when %, € D(4).

We next show that T'x = Af‘,x for £> 0 and x€ X. We have
R(@A; A) X =D(A) and AR(A; A) =AR(A; A) —1, so that, by the

17 Yosida, Functional Analysis
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convergence factor ¢¥, the integral (2i)™' [ ¥ AR(A; A)x dA has a
Cs

sense. This integral is equal to 4 T,x, as may be seen by approximating
the integral (6) by Riemann sums and using the fact that 4 is closed:
lim x, = x and lim Ax, =1y imply x€ D(A) and A x = y. Therefore
7—>00

AT,x = (2mi)7 ! fe”AR(). A) xdA, t> 0.

On the other hand, by dlfferentlatmg (6) under the integral sign, we
obtain
Tix = (2mi)™ je”ue(z A) xdA, t> 0. (7)

The difference of these two integrals is (277)~ f e¥xd}, and the value

of the last integral is zero, as may be seen by shlftmg the path of integra-
tion to the left.

Thus we have proved that %(f) = T,xy, %o€ D(A), satisfies i)
lim & () = %, i) dx(f)jdt = A% (¢) for ¢> 0, and iii) {x(f)} is by (6) of

exponential growth when ¢4 oo. On the other hand, since x,€ D(4)
and since {T,} is equi-continuous in ¢ = 0, we see that x(f) = T,x, also
satisfies 1‘151 %(t) = %y, dx(t)/dt = Ax () for ¢t = 0, and {x(¢)} is bounded

when ¢ = 0. Let us put () — x(f) = y(#). Then 1‘1£1 y(t) =0, dy(¢)/dt =

Ay (¢) fort > 0 and {y ()} is of exponential growth when ¢ 4 co. Hence we
may consider the Laplace transform

LA;y) = f e %y (t) dt for large positive Re(A).
We have

B B 8
Je*ytydt= [ eFAyt)dt=A [ eFy(t)dt, 0<a < f<oo,

by approximating the integral by Riemann sums and using the fact that
A is closed. By partial integration, we obtain

f ety (f) dt = e ?y(f) — ey (x) +}lfpe‘”y(t) dt,

which tends to AL{A;y) as « | 0, f4oo. For, y(0) = 0 and {y(8)} is
of exponential growth as 4 co. Thus again, by using the closure pro-
perty of A, we obtain

AL(A;y) =AL(A;y) for large positive Re(4).

Since theinverse (A1 — A) ! exists for Re(4) > 0, wemust have L (;y) =0
when Re () is large positive. Thus, for any continuous linear functional
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f€ X', we have

o0
[ e®f(y(t)) d¢ =0 when Re(d) islarge positive.
0

We set A = ¢ + ¢t and put
g () = e *f(y(f)) or =0 according as ¢=0 or £<O0.

Then, the above equality shows that the Fourier transform
00

(2m)™ [ e ™ g,(t) d¢ vanishes identically in 7, —oo < 7 <00, so
—00

that, by Fourier’s integral theorem, g, () = 0 identically. Thus f(y (f)) =0
and so we must have y(f) = 0 identically, in virtue of the Hahn-Banach
theorem.

Therefore f‘,x = T,x for all{> 0 and x€ D(4). D(4) being dense in
Xand f‘,, T,both belonging to L (X, X), we easily conclude that i‘,x =T;x
for all x€ X and ¢ > 0. Hence, by deﬁning f‘ = I, we have f", =T,
for all ¢t > 0. Hence, by (7), Tix = (2n1)~ me(z A) xdd, t> 0,

and so, by (1) and (5), we obtain
(Tya)* 2 = TP x = (2mi)~ fe”}."R A; A) xdd, t>0.

Hence
¢T)"x = (2ni)"lcfe"”(t}.)"R(}.;A) xdh, t>0.

Therefore, by (ITI),
p(ETY" x) =< (27) " ¢ () cf [ e A1 a ||

If 0 <t=1, then the last integral is majorized by C§ where C; is a
certain positive constant. This we see, by splitting the integration path
C, into the sum of that in the right half-plane Re(4) = 0 and those in
the left half-plane Re(A) < 0, and remembering the integral representa-
tion of the I™-function.

References. The result of the present section is due to K. Yosipa [6].
See also E. HitLE [3] and E. HiLre-R. S. Prirries [1].

11. Fractional Powers of Closed Operators

Let X be a B-space, and {T}; ¢t = 0} C L (X, X) an equi-continuous
semi-group of class (C,). We introduce
1 0+100
ha =5 [ & dz(0>0,t>01=00<a<1),
0—100

=0 (when 1 <0), (1)
17*
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where the branch of z* is so taken that Re(z*) > 0 for Re(z) > 0. This
branch is a one-valued function in the z-plane cut along the negative
real axis. The convergence of the integral (1) is apparent in virtue of the
convergence factor ¢~**. Following S. BoCHNER [2] and R. S. PHILLIPS
[6], we can show that the operators

T,“x_T,x_ff,,, T,xds (> 0),

constitute an equi-continuous semi-group of class (C,). Moreover, we can
show that {f ¢} is a holomorphic semi-group (K. Yosipa [8] and V. BALA-
KRISHNAN [1]). The infinitesimal generator A= /f,, of fI“, is connected
with the infinitesimal generator 4 of T, by

Ay =—(—A)yx for x€D(4), (3)
where the fractional power (—A4)* of (—A) is given by

sin am

(—A)* x = Fz“—l (A — Ay  (—Ax)dA for xeD(A) (4)
0

and also by

o0

(—A)*x =(—oa)™ [ 2771 (T, — 1) xdA for xeD(4). (5)
0

Formula (4) and (5) were obtained by V.BALAKRISHNAN. For the
resolvent of A:,, we have the following formula due to T. KaTO:

(Wl —4,)" =

In this way, we see the abundance of holomorphic semi-groups among
the class of equi-continuous semi-groups of class (C).

To prove the above result, we have to investigate the properties of
the function f, ,(4) in a series of propositions.

Proposition 1. We have

o

I—A4)! 4 dr. (6
(,f(r ) u?—2ur*cos an + »** 7. (6)

sin ax

e [ g N dd (>0, a>0). @
]

Proof. It is easy to see, by the convergence factor ¢~**, that the
function f;,(4) is of exponential growth in 4. By Cauchy’s integral theo-
rem, integral (1) is independent of ¢ > 0. Let a > o = Re(z) > 0.
Then, by Cauchy’s theorem of residue, '

00 ,14 1 04400 As—a) JA=00 ”
- _ 1 —z%
of € fa(A) d}»—gnia_m [z—a]a=o e dz
—1 o+100 1

— —fas®
Pty — e,

21 S z—a
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Proposition 2. We have
frad) =0 for all A> 0. (8)
Proof. If we set a* = g(a), e = k(x), then
()1 g"@) =0 n=1,2,...), gl@)=0 and
()" A" (x) =0 (m=0,1,...), when a=0 and x=>0.
Hence k(a) = h(g(a)) = ¢~ satisfies
(—1)" B (a) = (—1) &' (%) (=1)** g™ (a)
+ z C&Z . M 1)#. pAtDl (x) (_1)9; g(p1+1) (a) . (__1)?,. g(p,+1) (a)
(cz;; 20502272 0,....5,Z 0with py < 5 pi=n,and v arbitrary)
>0, (n=0,1,...).
(9)

That is, the function k(a) = " is completely monotone in a = 0.
We next prove the Post-Widder inversion formula

hath) = lim S (2) 0 (2), 2> 0 (10)

so that, by (9), f;4(4) = 0. The proof of (10) is obtained as follows. We
find, differentiating (7) n-times,

B(3) =1 [ et ds

Substituting this into the right side of (10), we get

Jim 5 F f [ exe (1= 5)] a9

M " " |= L3 4 ’
”_hgxo n"[}/27an "n! =1 (Stirling’s formula),

Since

we have to prove that
T m ® 3/2 S N 4
foale) = lim T [ o2 [ - exp (1= )] hiale) ds, 20> 0. (11)

Let # be a fixed positive number such that # < 4,. We decompose the
last integral into three parts,

0o A—7n A+

f=f + f + f=]1+]2+]3'
(1] A—n dotn

0

Since x - exp (1 — %) increases monotonically in [0, 1] from 0 to 1, we see,
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by the boundedness of f,,(s) in s, that lim J, = 0. Next, since
#—>00

% - exp (1 — x) decreases monotonically in [1, co] from 1 to 0, we have

S (1R ) <p<

and so, since f;,(s) is of exponential growth as s 4 oo,

VAES S gmﬁ"“ﬂ.jo(%)”.exp (—n—;f) [fia(s)|ds—0 as n—o0.

By the continuity of £, ,(s) in s, we have, for any positive number ¢,
frallo) —& = fra(s) = f1u(Ao) + & whenever Ay—n=s=2+ 7,
if we take n > 0 sufficiently small. Thus

(fra(lo) —8) Jo = J2 = (fia(d0) + ©) Jo. (12)

where

Jo= w5 e (1 )T ds. (13)

The whole preceding argument is true for the particular case of the

completely monotone function
oo

k@) =al= [ e*4a.
o

In this case, 2™ (n/A)) = (—1)" n!(4y/n)**1. Substituting this in (10), we

find that (10) holds for f;,(1) = 1. Since (10) and (11) are equivalent,

(11) must also hold for f; , (4) = 1. Thus, since lim J;, =0and lim J; =0
7—>00 7—>00

for a general f,,, we obtain
1= ”lilglo l/ 27 };6_ 1 ] 0
Therefore, by (12), we get (11) and the equivalent formula (10) is proved.
Proposition 3.
oo
of fa(d) dA =1, (14)

fevsa(R) = of foaA —p) fsa () dp. (15)

Proof. Since the function f;,(4) is non-negative, we have, by the
Lebesgue-Fatou lemma and (7),

o0
[ lim (¢}, () dA< lim e = 1.
0 a0 a0

Thus f,,(4) is integrable with respect to 1 over (0, o0) and so, again by
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the Lebesgue-Fatou lemma and (7), we obtain (14). We next have, by (7),
[ biah— 1) foa () G} d
=[O A=) AR —p) - [ e [ o () du
= g% g = gt f e fysaA) dl, a>0.
Hence, by inverting the Laplace transform as in the preceding section,
we get (15).
Proposition 4. We have

ofoa/,,, (A)/at-dA =0, t>0. (16)

Proof. By deforming the path of integration in (1) to the union of
two paths 7™ (—oo < —7 < 0) and 7¢* (0 < 7 < o0), where #/2 <
6 < n, we obtain

(o]
frals =—71;f exp (s - cos § — tr* cos « 6)
0

X sin(s7 - sin  —¢7*sin x 0 + 0) dr. (17)
Similarly, by deforming the path of integration in

1 o+100

OhaW)jot =5~ [ & (—£) dz

to the union of two paths,7¢™** (—oo < —7 < 0) and 7€ (0 < 7 < 00),
we obtain

fia(8) = Ofyu(s)/0t = % f exp (s7 - cos 6 — t7* cos « 6)
0

X sin(s7 - sin @ — 7" sin x0 + x6 + 6) r*dr. (18)
If we take
0=0,=n=/1+ «),
then

fial % f exp ((s7 + t7%) cos 0,) - sin (s —tr*) sin 0,) r*dr.  (19)

Thus we see, by the factor * (0 < & < 1), that £ ,(s) is integrable with
respect to s over (0, c0). Hence, by differentiating (14) with respect to ¢,
we get (16). '

We are now able to prove

Theorem 1. {T,} is a holomorphic semi-group.

Proof. That {T,} enjoys the semi-group property T,T = T,+,
(¢, s > 0) is clear from (2) and (15). We have, by (2) and (17) with 6 = 6,,

o3

- oo
Tix = —71; f T xds f exp ((s7 + ¢7*) cos 6,)
0 0
"X sin((sz —¢7) sin 0, + 6,) dr, (20)
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which gives by the change of variables
s = ot y = ut™*, (21)
f‘,x = —f Tyl - xdv f exp ((uv + u*) cos 0,)
X sin((uv — u*) sin 0, + 0,) du. (20")

The second integral on the right is exactly 7 - f, ,(v), and so, by the
equi-boundedness of {||T,x|[} in £ = 0, we see, by (14), that

[e 2]
|Tex|| < sup ||Tx|| [ () dv =sup || T,x||. (22)
=0 0 =0

By passing to the limit ¢ | 0 in (20), which is justified by the integra-
bility of f, ,(v) over [0, c0), we obtain, by (14),

shmT,x_.ffl,, dv-x = x.

Hence {i‘,} is an equi-continuous semi-group of class (C,) such that (22)
holds.

By the integrability of f; ,(s) = 0f,,(s)/0t over [0,00) and the equi-
continuity of {T}}, we obtain, by differentiating (2) with respect to ¢
under the integral sign,

- [e o]
1= [ fia(s) Tsxds
(1]

oo (=2
= 71!—0f Tsxdsof exp ((s7 + £7%) cos 0,) - sin ((sr —¢7*) sin 0,) r*dr,

(23)
which is, by the change of variables (21),
(e o)
f (Totle - %) - f1a(v) dv - £71.
0

Thus, by the integrability of f; ,(v) over [0, co) and the equi-continuity
of {T} in ¢t = 0, we see that

B ||¢73]] < oo,

that is, {f‘,} is a holomorphic semi-group.

Theorem 2. The infinitesimal generator A.,, of f, is connected with
the infinitesimal generator 4 of T by (3), where (—A4)* is defined by (4)
and also by (5). We have, moreover, (6).
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Proof. By (16) and (23), we obtain

N 1 (o] (o]
Tix=— [ (T, —1)xds:[ exp((s7 + t7*) cos 6,)
0 0
X sin((s7 — t7*) sin 6,) r*dr. (24)

If x€ D(4), then s-lifgl s1(T,—1I)x=Ax and ||(T;—I) - x|| is boun-
$.
ded in s = 0. Thus, we obtain, letting ¢ | 0 in (24),
oo

(o]
s-im T;x = —3? f (Ts—1I)xds f exp(sr - cos ,) - sin(sr - sin 6,) r* dr
0 0

= (—TI (—x)™? _Tos"‘"”l (T, —1I) xds,
0

because, by the I'-function formulae

I'iz)=¢ joe"” 7 1dr (Re(z) > 0, Re(c) > 0) (25)
0
and
I'(z)I'(1—2) = zn/sin nz, (26)

we obtain, by (« + 1) 6, = =,
1 ® oo 0
;f exp (s - cos 0,) - sin (s7 - sin 8,) 7*dr = (ni)™* Im {f e "‘)r“dr}
0 0
= (7d) Im((—s€®) ™ ) (1 + «) = s~ sin (xm) I'(1 + «)
e (¢ T o) N -1 —a—1
=515 T (—I'(—a) s .

Thus, by f;x = A;f,x (when ¢ > 0), the continuity at ¢ = 0 of f‘,x and
the closure property of the infinitesimal generator A;, we obtain

4, x= (—I(—a)? }os""_l(Ts —I)xds when x€D(4).
0

(o]
Hence, by (25), (26) and (I — A)™' = [ e *T,ds, we obtain
o

Ax=T(— o)1+ a)? f{}o e t“dt} (I — T,) xds

0 0

. oo
__sinan -1__ 41
o Oft“((tI—A) — 7 D) xdt
. [
=smnomf #1¢l — Ay Y Axdt for x€ D(A).
0
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Finally we have, by taking 6§ = = in (17) and (2),
-~ oo ~
(I — A4, = [ e™T,at
0

oo oo oo
=x"! f drf e " Tyds f exp (—put —tr* cos am) -« sin (¢7* sin a ;) dt
0 0 0

(o]

[e 2]
=n"! f (rI—A4)™! {f exp (—ut — t7* cos ) - sin (¢7* sin ) di§ dr
0 0

sin anw & *
== [ (I —4)" dr.
0

u*—2v*u cos anm + v

Remark. Formula (2) was devised by S. BoCHNER [2] without de-

tailed proof. Cf. R. S. PHiLLIPs [5]. That T, is a holomorphic semi-group
was proved by K. Yosipa [8], V. BALAKRISHNAN [1] and T. KaTo [2].
Formulae (4) and (5) are due to V. BALAKRISHNAN (1], who, by virtue of
(4), defined the fractional power (—A)* of a closed linear operator 4
satisfying the condition:

the resolvent R(A; A) = (Al — A)™! exists for Re(d) > 0

and sup |Re(d)|-||R(4; 4)]| < oo. (27)
Re()>0

He also proved that (—A)* enjoys properties to be demanded for the
fractional power. In fact we have

Theorem 3. Let a closed linear operator A satisfy condition (27). Then,
by (4), a linear operator (—A)* is defined, and we have .

(—A)* (—Af x = (—A)*Px if xcD(4% and 0<a,B

with «+ <1, (28)
s-ligln (—A)Yx=—Ax if x€D(4), (29)
s—hr()n (—4)yx=x« if S'}ISI AR(A; A)x =0, (30)

and, if 4 is the infinitesimal generator of an equi-continuous semi-group
T, of class (Cy),

(An)p = Aap, where A4, is the operator A, defined through
(31)
Kato’s formula (6).

Remark. The last formula (31) is due to J. WATANARE [1].

Proof. |71 (rI—A)"'(—A4x)]| is, by (27), of order O(»*"%) when
7 foo, and, by (rI —A4)™' (—Ax) =x—r(I —A)"'x and (27), it is
of order O (") when 7 | 0. Thus the right side of (4) is convergent.
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It is clear that x € D (42%) implies (—A4)?x € D (4). For, by approximat-
ing the integral by Riemann sums and making use of the closure property
of A, we have (—A)?x C D(A4). We can thus define (—A4)*(—4)Px.

(—A)” (A 5 =22 %ﬁﬁof [ #e R 4) R (i3 4) A2 xdh g
can be rewritten, decomposing the domain of integration into those for
which 4 = u and 4 < , as follows.
. . 1 0

sin sin — — a+p—

soon —f—"of @7+ & do [ 177 R(io; 4) R(4; 4) 4°xdi.
By theresolvent equation R(A; 4) — R(u; A) = (u —2) R(A; A) R(u; A4)
and R(A; A) (—A4) =1 —AR(A; A) valid on D (4), we obtain

R(Ao; A) R(A; A) A%x = (1 —0)1{—0R(Ao; 4) + R(A; A)} (—4x),
and hence
(—A4)* (—A4)Y =

t
__sin ax sin Bz Ry 1 -1 -1
=Snoxsnfn s‘llTx{IJ(oB + Y (1 —o) " do

X f 1481 (_gR(Ao; A) + R(3; A)) (—Ax) dA
0

oo 1
f (sin an sin f P L R L B )
== dO'
7 n 1—o

0 )
X A*FIR(A; A) (—Ax) dA.
The coefficient ( ) above is evaluated as =~!sin @ (x + f), as may be
seen by expanding (1 — o)~ into powers of 0. We have thus proved (28).
oo

To prove (29), we shall make use of [ A*~! (1 + A)~'dA = n/sinan.
0
Thus

(—A)* % — (—4) x M[ » (R (/1;A)—ﬁ~1)(_,4x) da.

We split the integral into two parts, one from 0 to C and the other from
C to oco. For a fixed C, the first part goes to zero as « 4 1, since
R(A; A) (—Ax) = x—AR(A; A) % is bounded in A > 0. The second part
is, in norm,

sSin x 7

S Lt [CICRIRTES)

We have s;lfim}.R().; A)x=xbyx—AR(A; A)x = R(A; A) (—A %) and
oo

(27). Hence s-h'ﬂ of the second part is arbitrarily near 0 if we take C

ax.

sufficiently large. This prove~ (29).
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To prove (30), we split the integral into two parts, one from 0 to C and
the other from C to co. Because of (27), the second part tends to zero
as «{ 0. By R(4; 4)(—Ax) =x—AR(A; A) x and the hypothesis

—hm AR(A; A) x = 0, the first is, for sufficiently small C, arbitrarily
near the value (x7)™" sin az - C*x, which tends to x when « | 0. This
proves (30).

We shall prove (31). By virtue of the representation (6), we obtain

o0 o0

_ L 1 1
WI— ()7 = [ [ @it ()

$ ,u——ﬂ.p'e
1 1

— — 4)-1
X<1~C“'e_i"“ A—C“.eina)(cI A)1dAdg.

This double integral is absolutely convergent in norm, and so we may
interchange the order of integration. Hence we obtain (31), because the
inner integral is

. —1 1 1
=3 2 -2 . —_ 5
( 7”‘) Cf/‘ _ 2‘8 (Z_cae—-ma Z_Caem«x)dz

ol —1 —1
= (271) (,u — e—imxﬁ_” e eimxﬁ)
where the path of integration C runs from oo ¢ to 0 and from 0 ‘o
oo ¢,
An example of the fractional power. If x = 1/2, then we have, by
taking 6 = = in (17),
frae(s) =n1 f e sin(tr'?) dr = 7 e (23)s) 7P 7ML (32)

Thus, if we take the seml-group {T} associated with the Gaussian kernel:

1 —(u—v)3/4s
(T, x) () = Vs f e~ =l x () dv, x € C[—o0,00],
—00
then o[ oo )
Iy 10%) (4) = % (v 5 e~ (0 +0es gt dy
Tyie T (u—vr+t)as g b g
—o0 |0
~ 1
¢
- fﬂ-{—(u——v)zx(v)dv’

—00
that is, the semi-group {7} is associated with the Poisson kernel. In this
case, the infinitesimal generator A4 of T}, is given by the differential opera-

tor d?/ds?, while the infinitesimal generator A of T,is given by the singular

integral operator o

o .1 x(s—v) —x(s)
(Aypx) (s) = s-lim = f Lm—— dv,
—00
and not by the differential operator d/ds. For another example, see
K. Yosipa [30].
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12. The Convergence of Semi-groups. The Trotter-Kato Theorem

We shall denote by exp(¢4) the semi-group of class (C,) with the
infinitesimal generator 4. Concerning the convergence of semi-groups,
we have

Theorem 1. Let X be a locally convex, sequentially complete complex
linear space. Let {exp(t4,)} C L (X, X) be a sequence of equi-continuous
semi-groups of class (Co) such that the family of operators {exp (¢4,)} is
equi-continuous in £ = 0 and in » = 1, 2, . . . Thus we assume that, for
any continuous semi-norm p (x) on X, there exists a continuous semi-norm
¢(x) on X such that

plexp(t4,) x) < g(x) for all £ =0, x€ X and n =1,2,... (1)
Suppose that, for some 4, with Re(4,) > 0,

lim R(4y; 4,) x = J (4y) x exists for all x€ X in such
700

(2)
a way that the range R(J(4,)) is dense in X.

Then J(A,) is the resolvent of the infinitesimal generator 4 of an equi-
continuous semi-group exp (¢4) of class (C,) in X and

lim exp(¢A4,) x = exp(¢4A) x for every x€ X. (3)
7—>00

Moreover, the convergence in (3) is uniform in ¢ on every compact interval
of ¢.
For the proof, we prepare

Lemma. Let T, = exp(¢4) be an equi-continuous semi-group of class
(Cp) in X. Then, for any continuous semi-norm p (x) on X, there exists a
continuous semi-norm ¢ (x) on X such that

p(Tix— (I —tn PA) " 2) < (2n) 12 g(4%x) (n=1,2,...) .

whenever x € D (4%). *)

Proof. Set T (¢, n) = (I —n~'¢A)™". Then we know (Chapter IX,7)
that {T (¢, n)} is equi-continuous in ¢ = 0 and » =1, 2, ... Moreover,
we have (Chapter 1X,4), for any x€ D(4),

DT, n)=I—n Ay " Ax=AI —n1tA) " «,
DiTx=T,Ax = ATx.
Thus, by the commutativity of T, and T (¢, n),

T,x—T (@ n)x= fl [D,T(t—s, n) Tsx]ds
° (6)

t—s

=of:r(t_s, n) Ts(Ax—(I— A>_1Ax)ds, x€ D(4).
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Hence, if x€ D(A%, we have, by (I —m4A) 1 Ax=—m (I -
(I —m1A)D)x,

s—1
”

p(Tyx—T(t,n)x) < _fp[T(t—s,n) T (I—n1(t—s)A)? A%x | ds,
0

and so, by a continuous semi-norm ¢(x) on X which is independent of x
and #»,
p(Tix—T(t, n) %) < (2n)"112q(A%x).

Corollary. For any x € D(A4%),s> 0and ¢t = 0,
p(Tyx— (I —sA)y ¥l x) < sqy(Ax) + %s q(A2x), where
¢, (%) is a continuous semi-norm on X which is indepen- (6)
dent of x, ¢ and s, and [¢/s] is the largest integer = #/s.
Proof. We have, for ¢ = ns,
P (Tpx— (I —sA)™" x) < 271 stg(A%x).
Ift =ns + uwith 0 < % < s and » = [¢[s],

3 t
p(Tx—Tpex) = ( / T;xdo) < [#(T,A%) do < sq,(47).

Proof of Theorem 1. By (1) and by (11) in Chapter IX, 4, we see that
{(Re(A) R(A; A,)™)} is equi-continuous in Re(d) > 0,inzn =1,2,...and
in m=20,1,2,... From this and by (2), we can prove that (1) =
(Ao — A)™ with some 4 and

lim R(A; 4,) x = R(4; A) x whenever Re(A) > 0, and
7—>00
the convergence is uniform with respect to 4 on every com- (7

pact subset of the right half-plane Re(4) > 0.
To this purpose, we observe that
[e2]
R(L; 4,) v = 3 (ho— A" Rllo; 4" % (for |2—ho/Re(ho) < 1)
m=

and that the series is, by the equi-continuity of {(Re(4o) R (49; 4,))™} in
n=1,2,...and m=0,1,2,..., uniformly convergent for |A— 4|/
Re(d) < 1—eandn =1, 2, ... Herecisafixed positive number. There-
fore, for any & > 0, there exists an m, and a continuous semi-norm g (x)
on X such that, for |1 —4y|/Re() < 1 —e&,

PRUA) 5 — R 4,) )= 3 |lo—a[".
P(R(Ag; A,)™ ™ x — R(Ag; Ap)™* 1 x) + 26 ¢(#) for all x€ X.



12. The Convergence of Semi-groups. The Trotter-Kato Theorem 271

Hence, by (2), we see that lim R(4; 4,) x = J () x exists uniformly for
7n—>00

|A— A |/Re(A) = 1 — . In this way, extending the convergence domain
of the sequence {R(4; 4,)}, we see that

lim R(A; A) x = J (A) x exists and the convergence is uniform
7—>00

on any compact set of A in the right half-plane Re(A) > 0.
Thus J(A) is a pseudo-resolvent, because [(4) satisfies the resolvent
equation with R(4; 4,) (n=1,2, ...). However, by R (J(4,))* = X and
the ergodic theorem for pseudo-resolvents in Chapter VIII, 4, we see that
J (4) is the resolvent of a closed linear operator 4 in such a way that
J(A) =R(A; A) and D(4) = R(R(A; A)) is dense in X.

Thus we see that exp(£4) is an equi-continuous semi-group of class
(Cp) in X. We have to show that (3) is true. But we have, by (6),
p((exp(td,) — (I — s AU (I — 4,57 %)

Ssq(A,(I—4,)72%) + 271 tsq(A2(I — 4,) 2x),
for any x€ X, s> 0and ¢ = 0.
The operators
AT —A) =T —A) " —T1, A,(I—4)2 = A,(I — 4,) (I — 4,
and A2(I —A4,) %= (4,(I — 4,12
are equi-continuous in # = 1, 2, ... On the other hand, by (7),
lim (I —sA,) ¥ (I —A4,)2x= (I —sA) ¥ (1 —4)2
7—>00
uniformly in s and ¢, if s > 0 is bounded away from 0 and oo, and if ¢
runs over a compact interval of [0, c0). Moreover, we have, by (6),
p((exp(t4) — (I — s A)™"0) (I — A)‘2 %) < sq (A — A) %)
+ 27 tsq (A2 (I — A)%x)
for every x€ X, s> 0 and ¢ = 0. Thus, by taking s > 0 sufficiently
small, we see that
lim exp(t4,)y = exp(t4) y for any y€ R(1; 4)*- X,
7#—>00
and the convergence is uniform in ¢ on every compact interval of ¢.

R(1;A)%- X being dense in X, we see, by the equi-continuity of exp
(tA) and exp(tA4,) in £ =0 and in n =1, 2, ..., that (3) holds.

Theorem 2. Let a sequence {exp (£4,)} of equi-continuous semi-groups
of class (C,) in X be such that {exp (¢4,)} is equi-continuous in = 0 and
inn=1,2,...If foreach x€ X,

lim exp(¢A4,) x = exp(t4A) x
7—>00
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uniformly with respect to ¢ on every compact interval of ¢, then
lim R(A; 4,) x = R(4; A) x for each x€ X and Re(d) > 0
7—00
and the convergence is uniform on every compact set of 4

in the right half-plane Re(1) > 0.
Proof. We have -

R(; A)x—R(A; A,) x = [ e %(exp(tA) —exp(t4,)) xdt.
0

Hence, splitting the integral into two parts, one from 0 to C and the
other from C to oo, we obtain the result.

Remark. For the case of a Banach space X, Theorem 1 was first
proved by H. F. TRoTTER [1]. In his paper, the proof that J(4) is the
resolvent R (4; A) is somewhat unclear. This was pointed out by T. KATo.
The proof given above is adapted from Kato’s modification of Trotter’s
proof. For perturbation of semi-groups, see E. HiLLE-R. S. PHirLIPS [1],
T. Kato [9] and K. Yosipa [31].

13. Dual Semi-groups. Phillips’ Theorem

Let X be a locally convex sequentially complete linear topological
space, and {T,;¢t= 0} C L(X, X) an equi-continuous semi-group of
class (C,). Then the family {T}"; ¢ = 0} of operators € L (X', X') where (*)
denotes the dual operators in this section, satisfies the semi-group
property: T# T = T}, Ty = I* = the identity in X, (see Theorem 3
in Chapter VII, 1). However, it is not of class (C,) in general. For, the
mapping T, — T} does not necessarily conserve the continuity in # (see
Proposition 1 in Chapter VII, 1). But we can show that {T*} is equi-
continuous in £ = 0. For, we can prove

Proposition 1. If {S,;¢ = 0} C L(X, X) is equi-continuous in ¢ = 0,
then {S}; ¢ = 0} C L(X’, X') is also equi-continuous in ¢ = 0.

Proof. For any bounded set B of X, the set ;tzJo S, - B is by hypothesis

a bounded set of X. Let U’ and V" be the polar sets of B and tgo S, B:
U'={x€X';sup|bxy|=1}, V'={x"€X'; sup |[(5;-b,x)|=1}.
b€B b€ BL=0

Then (see Chapter IV, 7), U’ and V' are neighbourhoods of 0 of X;. From
[<S;- b, %"y =|< b Sfx'>| <1 (when b€ B, x' € V')

we see that S} -V’ C U’ for all £ = 0. This proves that {S;} is equi-

continuous in ¢ = 0.

Let A be the infinitesimal generator of the semi-group 7,. Then
D(A®=X, R(A) C X, and, for 1> 0, the resolvent (Al —A4)1¢
L (X, X) exists in such a way that
{A"(AI — 4)~™} is equi-continuous in A >0 andin m =0,1... (1)
We can prove (cf. Theorem 2 in Chapter VIII, 6)
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Proposition 2. For A > 0, the resolvent (A/* — A*)~1 exists and
(AI* — 4%)71 = (AT — 4))*. (@)

Proof. We have (A] — A)* = AI* — A*. Since (Al — 4)1¢ L(X, X),
the operator ((AI —A)™)*€ L(X’, X’) exists. We shall prove that
(AI* — A*)7! exists and equals ((AI — A4)~1)*. Suppose there exists an
%' € X' such that (AI* —A*)x’ = 0. Then 0= <(x, (AI* — A*) x> =
{(AI — A) %, ") for all x€ D(A4). But, since R(A] — A) = X, we must
have " = 0. Hence the inverse (AI* — A*)~! must exist. We have, for
x€X, ¥ €D(4¥%),

&y = (AT — A) A1 — A) 2 5, 2"y = (AT — A)"L x, (AI* — A%) 2.

Thus D((AI—A)~Y)*) 2R (AI* — A*) and (A — A)2)* - (AI* — A%) 2’ —«'
for every x'€ D(A*). This proves that ((AI — A)™1)* 2 (AI* — A*)~L
On the other hand, if x€ D(4) and ' € D(((AI — A)‘l)"‘) then

%, %) =<Al —A)P (Al — A) x,2") = (Al — A) x, (AT — A))* 2>
This proves that D(4*) = D((AI — A)*) 2 R((AI —A)™)*) and
(AL — A)* - (AL — A)™)* 2’ = &’ for every x' € D(((AI — A)™)*), that
is, ((AI — A)™)* C (AI* — A*)~1. We have thus proved (2).

We are now ready to prove

Theorem. Let X be a locally convex sequentially complete linear
topological space such that its strong dual space X’ is also sequentially
complete. Let {7} C L(X, X), ¢ = 0, be an equi-continuous semi-group
of class (C,) with the infinitesimal generator 4. Let us denote by X+ the
closure D (4*)* of the domain D (4*) in the strong topology of X'. Let T;
be the restriction of T} to X*. Then T}t € L(X™*, X*) and {T;";¢= 0}
is an equi-continuous semi-group of class (C,) such that its infinitesimal
generator A+ is the largest restriction of 4* with domain and range in X+.

Remark. The above Theorem was proved by R. S. PHiLLIPS [2] for
the special case of a B-space X. The extension given above is due to
H. KoMATSU [4].

Proof of the Theorem. We have the resolvent equation R(4; 4) —
R(u;A)=(u—2A2)R@A; A) R(u; A) and the equi-continuity of
{A"R(A; A)"} in A> 0 and in m =0, 1, 2,... Thus, by Proposition 1
and 2,

AI* — A% — (uI* — A*) 1= (u—A) (AI*—A*)L (uI*— A% (3)
{A™(AI* — A*)~™} is equi-continuous in A > 0 and inm = 0,1,2,... (4)
Thus, if we denote by ] (4) the restriction to X+ of (AI* — A*)~1, we have

—JW =@E—4J@A) ]k, 3)

{A™ J (A)™} is equi-continuous in A>0 andinm=10,1,... (4)
18 Yosida, Functional Analysis
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Since D (4*) is dense in X+ and since (4') holds, we see, asin Chapter IX, 7,
that Alim AJ(A) x ==« for x€ X+. Thus we have R(J(4))* = X+ and
—>00

so, by (7') in Chapter VIII, 4, that N(J(4)) = {0}. Thus the pseudo-
resolvent J () must be the resolvent of a closed linear operator A+ in X+.
Hence, by the sequential completeness of X+ and (4'), A+ is the infinite-
simal generator of an equi-continuous semi-group of class (C,) of operators
T, € L(X*,X%). Forany x€ X and y' € X*, we have

(I —m T A) ™ %,y = (x, (I —m A"y,

and so, by the result of the precedmg section, we obtain by lettmg
m — oo the equality <T,x, y'> = (x, & 9'>. Hence Tf y' = T} ¢/, that
is, T; is the restriction to X* of T} .

We finally show that A+ is the largest restriction of A* with domain
and range in X*. It is clear, by the above derivation of the operator A+,
that A+ is a restriction of A*. Suppose that " € D (4*) and that x’ € X+,
A* ¥’ € Xt. Then (AI* — A*) ' € X+ and hence (AI* — A+)"1(AI* — A*)
x' =x'. Thus, applying (AI* — A+) from the left on both sides, we obtain
A*x’ = A+x'. This proves that A+ is the largest restriction of A* with
domain as well as range in X+.

X. Compact Operators

Let X and Y be complex B-spaces, and let S be the unit sphere in X.
An operator T € L(X, Y) is said to be compact or completely continuous
if the image T - S is relatively compact in Y. For a compact operator T €
L(X, X), the eigenvalue problem can be treated fairly completely, in
the sense that the classical theory of Fredholm concerning linear integral
equations may be extended to thelinear functional equation Tx —Ax =y
with a complex parameter A. This result is known as the Riesz-Schauder
theory. F. RiEsz [2] and J. SCHAUDER [1].

1. Compact Sets in B-spaces

A compact set in a linear topological space must be bounded. The
converse is, however, not true in general; we know (Chapter III, 2) that
the closed unit sphere of a normed linear space X is strongly compact
iff X is of finite dimension. Let S be a compact metric space and C(S)
the B-space of real- or complex-valued continuous functions x(s) on S,
normed by ||x|| = sup |x(s)|. We know (Chapter III, 3) that a subset

SES

{x,(s)} of C(S) is strongly relatively compact in C(S) iff {x,(s)} is equi-
bounded and equi-continuous in «. For the case of the space L? (S, 8B, ),
1 < p < oo, we have
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Theorem (FRECHET-KOLMOGOROV). Let S be the real line, % the
o-ring of Baire subsets B of S and m (B) = f dx the ordinary Lebesgue
B

measure of B. Then a subset K of L?(S, B, m), 1 < p < oo, is strongly
pre-compact iff it satisfies the conditions:

sup|[x[[=sup(flx(s) |”ds)1/"<oo, (1)

%€ XK <€K \S

. B b ge _ . .

?_Igsflx(t + s) — x(s)|? ds = 0 uniformly in x€ K, (2)
lim [ [x(s)[?ds = 0 uniformly in x€ K. (3)
o400 5>

Proof. Let K be strongly relatively compact. Then K is bounded and
so (1) is true. Let ¢ > 0 be given. Then there exists a finite number
of functions € L?:f;, fs, ..., f. such that, for each f€ K, there isa g
with ||f—/;|| = &. Otherwise, we would have an infinite sequence {f;} C K
with |[|f; — f;|| > & for j# i, contrary to the relative compactness of
K. We then find, by the definition of the Lebesgue integral, finitely-
valued functions gy, g, . - ., g, such that ||, —g;|| <e (=1,2,...,n).
Since each finitely-valued function g; (x) vanishes outside some sufficiently
large interval, we have, for large «,

o  —a Up [ == 1p
(f +_°fo I/(s)lf’ds> g(f +_£ lf(s)—gf(s)l"dS)

0 — 1/p o —a 1/p
+<f +_J Ig;(s)l”ds> éllf—g,-ll+(f + J lgj(s)l"dS) :

This proves (3) by ||/ — gl S ||/ —fill + ]| — gl = 2e.

The proof of (2) is based on the fact that, for the defining function
C;(s) of a finite interval I, zgg_f |Cr(s +8) —Cr(s)|Pds =10 (see
Chapter 0, 3). Thus (2) holds for (finitely-valued functions g;(s)
(1=1,2,...,n). Hence we have, for any f€ K,

- 0o 1/p - 0o 1/p
lim <_f [f(s+t)—f(s)|ﬁds> élirg(_f |f(s+t)—f,.(s+t)[f’ds>

oo p o 1/p
+ig( [l +0—gororas) -+ [latro—gopa)

g 1p g 1p
+(_f Igf(s)~fj(s)i"d~*) +( flfj(S)—f(S)I’tiS) <etet+0+ete,

—00
by taking f; in such a way that || — f;|| < &. This proves (2).

We next prove the converse part of the Theorem. We define the trans-
lation operator T, by (T,f) (s) = f(t + s). Condition (2) says that
18*
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s-li‘_ixo; T,f =/ uniformly in f€ K. We next define the mean value

(M,f) (s) = (2a) fa (T,f) (s) @¢. Then, by Holder’s inequality and

the Fubini-Tonelli theorem,

”sz—fHé( fo{_[a 2a) 1 |f(s + ) — (s ]dt} )1/9

—00

§(2a)‘1< foo lefs+t~f (s) [P dz - 2a)””"ds)m

—00 —a

§<(2a)—1 fdt folf(s+t)——f(s)|1’ds)llp if 1<4<o0.

Thus we have

[|Maf—F|| < sup || Tif — ],
lt|sa

so that s—laigl M,f = f uniformly in f€ K. Therefore, we have to prove

the relative compactness of the set {M,f; f€ K} for a sufficiently small

fixed a > 0.
We will show that, for a fixed a > 0, the set of functions {(M,f) (s);
/€ K} is equi-bounded and equi-continuous. In fact, we have, as above,

|(Maf) (s1) — (Maf) (s2) | = (‘Za)“_f |F(s1 + #) —F(sp + 2)| at

a 1/p
< ((2a)-1 S s+ 8 —Fsy + 0P dt) -
Thus, by (2), we have proved the equi-continuity of the set of functions
{(M,f) (s); f € K} for a fixed a > 0. The equi-boundedness of the set may
be proved similarly. Thus, by the Ascoli-Arzela theorem, there exists, for
any positive 2 > 0, a finite number of functions M,f,, M, f,, . .., M,f,
with ;€ K (j =1, 2, .. ., n) such that, for any € K, there eXlStS some §
for which sup |(M,f) (s) — (M,f;) (s)| =< &. Therefore
Is|se

|Maf — Mfi|IP < f |(Maf) () — (Maf;) (s) [P ds
+ [ 1(Maf) () — (Mafy) (s) [P ds. (4)

s>«

The second term on the right is, by Minkowski’s inequality, smaller than
(1Mat =111+ (L V=K@ Pasf? (] 15()—(aty) () Pds) )
Is|>a s[>«

The term || M, — {|| is small for sufficiently small 2 > 0, and, by virtue
of ( f |f(s) — f;(s) [P ds and [ |f;(s) — (MLf;) (s)|? ds are both
Is|>a
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small for sufficiently large o > 0, if 2 > 0 is bounded. Also the first term
on the right of (4) is < 2«e? for an appropriate choice of j. These esti-
mates are valid uniformly with respect to f€ K. Thus we have proved
the relative compactness in L? of the set {M,f; f€ K} for sufficiently
small a > 0.*

2. Compact Operators and Nuclear Operators

Definition 1. Let X and Y be B-spaces, and let S be the unit sphere of
X. An operator T € L (X, Y) is said to be compact or completely continuous
if the image T - S is relatively compact in Y.

Example 1. Let K(x,y) be a real- or complex-valued continuous
function defined for —oco << 2 < x, ¥y < b < oo. Then the integral opera-
tor K defined by

(Kf) (x fK (x, ) [ (y) dy (1)

is compact as an operator € L (C [a, b], C [a, b]).
Proof. Clearly K maps C [a, b] into C [a, b]. Set sup |K(x,y)| =M

%y
Then ||K-f||< (b—a)M ||f|| so that K-S is equi-bounded. By
Schwarz’ inequality, we have

b
(K ) (%)) — (K ) (xz)lﬁgaf |K (21, 9) — K (%5, y) [ dy - f [f(3) | dy,

and hence K - S is equi-continuous, that is,
lim sup |(K/) (%) —(K/f) (%5)| = O uniformly in f€S.
%0 [P AR
Therefore, by the Ascoli-Arzela theorem (Chapter III, 3), the set K - S is
relatively compact in C [a, b].
Example 2. Let K(x,y) be a real- or complex -valued B-measurable
function on a measure space (S, 8, m) such that

S Gy o) m@y) < oo. )
Then the integral operator K defined by the kernel K (x, y):
(Kf) (= fK x,9) [(y) m(dy), f€ L3(S) = L*(S, B, m), (3)

is compact as an operator € L (L2(S), L2(S)). The kernel K (x, y) satis-
fying (2) is said to be of the Hilbert-Schmidt type.

Proof. Take any sequence {f,} from the unit sphere of L?(SJ. We have
to show that the sequence {K - f,} isrelatively compact in L2(S). Since a
Hilbert space L2(S) is locally sequentially weakly compact, we may assume
that {f,} converges weakly to an element f € L2(S) ; otherwise, we choose a
suitable subsequence. By (2) and the Fubini-Tonelli theorem,

* See also Supplementary Notes, p. 466.
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f |K(%,y)[2m(dy) <oo for m-ae. x Hence, for such an z,
lim (Kf,) () = ”_hgst(x, Y) In(y) m(dy) ="1_;“g(fn(-)» K(x,.)) =
(), K@) = SfK(x, y) }(y) m(dy). On ‘the other hand, we have, by
Schwarz’ inequality,

|(K 1) (%) |“‘§!|K(x,y) lzm(dy)'sfl/n(ZV) |2m(dy)§sf|K(", y) 2 m (dy)

for m-a.e. x. (4)
Hence, by the Lebesgue-Fatou theorem, lim s[ | (K fp) (%) 2 m(dx) =
f [(Kf) () |2 m(dx). This result, if combmed with w-hm K.-f,=K-/,

1mphes s-lim K - f,, K . f by Theorem 8 in Chapter V,1. But, as proved
7—>00
above in (4), we have
[ (K ) (%) 2 m(dx) < jf[K(x y) |2 m (dy) m (dx) - flh ) [2 m (),
N

and so

K| < (J] 1K @) P (d)m @) (5)

Hence, from w-lim f, = f, we obtain w-lim K - f, = K - f, because, for
7—00 7—>00

any g€ L*(S), lim (K - f,, g§) = lim (f,, K*g) = (f, K*g) = (K - {, ).
7—>00 7—>00

Theorem. (i) A linear combination of compact operators is compact.
(ii) The product of a compact operator with a bounded linear operator
is compact; thus the set of compact operators € L (X, X) constitutes a
closed two-sided ideal of the algebra L (X, X) of operators. (iii) Let a
sequence {T,} of compact operators € L (X, Y) converge to an operator
T in the sense of the uniform operator topology, i.e., ,,lfﬂ [|T—T,||=0.

Then T is also compact.

Proof. (i) and (ii) are clear from the definition of compact operators-
The closedness, in the sense of the uniform operator topology, of the ideal
of compact operators in the algebra L (X, X) is implied by (iii).

We shall prove (iii). Let {,} be a sequence from the closed unit sphere
S of X. By the compact property of each T, we can choose, by the dia-
gonal method, a subsequence {x,} such that s;gg T, x) exists for every

fixed n. We have

NT 2w — Txp || = || Tow— Torw || + U T — Tpxpe || + || Tptwr — T2 ||
< 1T =Tall + 1Tom — Tome || + 1T, — T,

and so hrn |T -2 —T-xp|| < 2||T—T,|. Hence {Tx} is a

Cauchy sequence in the B-space Y.
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Nuclear Operator. As an application of the Theorem, we shall consider
the nuclear operator introduced by A. GROTHENDIECK [2].

Definition 2. Let X, Y be B-spaces and T € L (X, Y). If there exist a
sequence {f,} C X', a sequence {y,} C Y and a sequence {c,} of numbers
such that

sup ||/,]] < o0, sup [jy|| < oo, X'|es| < oo and
” ” (6)

T.x=s-lim Zm ¢y <%, 1> ¥ in Y for every x€ X,
m—>00 n=1

then T is called a nuclear operator on X into Y.
Remark. The existence of the s-lim in (6) is clear, since

| Zeantpn| s ol U150 Il < constant - E g |[»]]

The nuclear condition says that the s-lim is equal to T - x for every
x€X.

Proposition. A nuclear operator T is compact.

Proof. Define the operator T, by

T, =,-=2"1 6 <x, 15 9. (1)

Since the range R(T,) is of finite dimension, T, is compact as may be
proved by the Bolzano-Weierstrass theorem. Moreover, by (6) and

o0 oo
Ira— Tl =] & ooy < constant F 1o 111,
we have lim ||T — T,|| = 0 and so T must be compact.
n—>00

An Example of the Nuclear Operator. Let G be a bounded open do-
main of R”, and consider the Hilbert space H(G). Suppose (k — ) > n.
Then the mapping T .

HG(6) 59 — ¢ € H}(G) (8)
is a nuclear operator € L (Hg(G), Hj(G)).

Proof. We may assume that the bounded domain G is contained in the
interior of the parallelogram P:

0=x,=27 (1=12,...,n).
We recall that H%(G) is the completion of H%(G) = C%(G) with respect

to the norm ||| =(st‘k [|D°p ()2 dx)ll2 (see Chapter I, 10). We
SISk

extend the functions € ﬁﬁ (G) to be periodic with period 2z in each
variable x, by defining the function values as 0 in P — G. The functions

fo(%) = (27)""2 exp (i - ), where § = (B, B, - - -, B)

is an n-tuple of integers and f-x = él Bsxs, (9)
s=



280 X. Compact Operators

form a complete orthonormal system of L?(P) = HJ(P). Thus, denoting
by D° the distributional derivative, we have, for |s] < k, the Fourier

expansion in L2 (P) of functions D*g (x) where ¢ € H2(G):
Dp(x) 2 (D, fg)o fs, Where (v, fg)o = f‘/’ (x) fs(x) dx.  (10)
We have, by
(D, fplo = 1" (@, D fpdo = IT (iBa)™ (@, /o

and the Parseval relation
Z|0. faal* = [ 1000 Fax < llpli (5] < ),
the inequality
@, (1 + |BHY2 f5)o |2 < constant Isék |(D*@, fg)o|? < constant ||g|%.
Therefore the functional f; € H§(G)’ defined by
p. > = (@, (1 + [BPY* fg)o

satisfies sup ||f3|| < oo. Moreover,
B .
v = (1 + |BY 2 f
satisfies sup ||y;||; < oo by D*fs = ‘InIl (¢B:)°¢ f5. We also have
p =
§|cﬁ| < oo, where ¢ = (1 + |B[)VH2,

because, for positive integers f;,

>y +1 A <<ﬂ, PR ﬁ”),)“—”'”

< ;‘ A ﬂ”)(k_J)/” pZ ( )(k—])/n‘ ; ( _;_2 )(k—j)/"
...;‘(%)(k—:)/n< ( i

Therefore, we have proved the (Fourier) expansion

¢=%‘cﬁ<¢'fé>yﬁ-

> 1.

Remark. If there exists a complete orthonormal system {g;} of eigen-
functions of a given bounded linear operator K € L (L2%(S), L%(S)) such
that Kg; = A4 ¢; (1 = 1, 2,...), then, from the Fourier expansion

f= 2 (. 0) 0 1€ L2(S),

j=1
we obtain

Ki=21(.9)
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We have 4, = (K¢;, ¢;), and so, if the eigenvalues 4; are all > 0 and

jéo,‘: Aj < oo, then the operator K is nuclear. The condition j;_;,‘: [(Ke;, @)

< oo is surely satisfied, if the operator K is defined by a kernel
{K(x, y) = Sf K, (z, %) K, (2, y) m(dz), where the kernels

K, (x, y) and K, (¥, ) are of the Hilbert-Schmidt type.
For,

31®: Kgno) | = X |(Kagy Kog) | =(Z 1Kyl 2 Ko l1)
and, by Parseval’s relation, we have

3Kl =3 [ | Kele.9) 9,0) mi@y) Pmide
7=1 =15 |s

S 2
= ‘Sf Ki(z, ) 9;(9) m(dy)l m (dz)
=sf {sf | Ky (2,9) lzrn(dy)} m(dz) < oo,
and similary for g; || K29;|[>. A bounded linear operator K in a sepa-
]=

[
rable Hilbert space X is said to be of the #race class if 21 | (Kgj,9) | <oo
] ==

for arbitrary complete orthonormal systems {g;} and {y;} of X. For a
general account concerning the trace class and the nuclear operator, see
R. ScHATTEN [1], and I. M. GELFAND-N. Y. VILENKIN [3].

3. The Rellich-Garding Theorem

Theorem (GARDING [1]). Let G be a bounded open domain of R”. If an
operator T € L(HE(G), H§(G)) satisfies, for j < &,

ITo|ls < C ||p|l; for all p € H§(G), where C is a constant, (1)
then T is compact as an operator € L(Hg(G), HE (G)).

Proof. By the definition of the space H&(G) (see Chapter I, 10), it
would be sufficient to show the following: Let a sequence {p,} < H%(G) =
C§(G) be such that ||@,|[ =1 (» =1, 2,...). Then the sequence {T¢,}
contains a subsequence strongly convergent in H§(G). The Fourier
transform @, (§) = (27)~ "2 of @, (1) exp(—ix&)dx satisfies, by Schwarz’
inequality,

[¢p, |2 = (@n)™" fdx f|¢p, )|2 dx < (2nm)™ fdx,

and hence {@,(£)} is equi-bounded in &€ R" and in . We may assume,
by the boundedness of ||g, ||o, that a subsequence {g,} is weakly conver-
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gent in L%(G) = HJ(G). Since, for each £, the function exp(—ix&)
belongs to L2%(G), we know that the sequence of bounded functions
@y (&) = (py, (27)~"2 exp(—ixé)), converges at every £ Thus, by (1)
and the Parseval relation for the Fourier transform (Chapter VI, 2),

I Tor — Towlli = [IT @ — o) IE = Clpy — o |If
P

—C 3 |IDr—g) [B=C* 3 (D (g — ) |
|5ng v u 0 lséj (pv 'Pp 0
” R “ 2

= C? £ LG8 B =) @)

n |
<2 st (), —_—., 2
=&, é | L& Gy €)= @) Pl
+ C2¢, ; £ [E[7 | @y (€) — @ur (6) P dE,

where C, is a positive constant.

The first term on the right converges, for fixed 7, to 0as+’ and u'—oo.
This we see by the Lebesgue-Fatou Lemma. The second term on the right
is, for r > 1.

S O [ (6P [ ) — )
>r
= CHCu ™ [IE[* (B (6) — b @)
) P
= CPC G r Is'lgk [(D°py — D’,) ”(2)

— C2C,C, 2 o 10" — ) 15
= C2C,C, 7% ||gy — @ |[} < 4C2C, Cy ¥ 2

with a constant C,.

The last term converges, by 7 <<k, to 0 as r — oo. Therefore,
Lim [T, —Te.|l=0.
¥,u—00

4. Schauder’s Theorem

Theorem (SCHAUDER). An operator 7 € L(X, Y) is compact iff its
dual operator T’ is compact.

Proof. Let S, S’ be the closed unit sphere in X, Y’, respectively. Let
T€L(X,Y) be compact. Let {y;} be an arbitrary sequence in S’. The
functions F;(y) = (y, y;> are equi-continuous in the sense that

|Fi() = F; (@) | = [<y — 2z 9| < ||y —2]|
Moreover, {F;(y)} is equi-bounded in j on any bounded set of y, since
|F;(»)| = ||y ||- Therefore, by the Ascoli-Arzela theorem, as applied tothe
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functions {F;(y)} defined on the compact set (T - S), we see that some
subsequence {F; (y)} converges uniformly in yé€ (T -S)*. Hence
{Tx,y;» =<x,T'y;> converges uniformly in x€S, and so {T" -y}
converges in the strong topology of X’. This proves that T’ is compact.

Conversely, let T’ be compact. Then, by what we have proved above,
T" is compact. Hence, if S”’ is the closed unit sphere in X", (T"" - S”") is
relatively compact. Weknow that Y isisometrically embeddedin Y’ (see
Theorem 2 in Chapter 1V, 8). Hence7-S C T"-S” andso T - S is relati-
vely compact in the strong topology of Y”’ and so in the strong topology
of Y. Therefore, T is compact.

5. The Riesz-Schauder Theory

We prepare

Lemma (F. Riesz [2]). Let V be a compact operator € L (X, X), where
Xis a B-space. Then, for any complex number 4,5 0, the range R (4, — V)
is strongly closed.

Proof. We may assume that 4y = 1. Let {x,} be a sequence of X such
that y, = (I — V) x,, converges strongly to y. If {x,} is bounded, then by,
the compactness of the operator V, there exists a subsequence {x,,} such
that {V x,,} converges strongly. Since %,, = y,, + Vx,,, {x,,} converges to
some x, and soy = (I — V) «.

We next assume that {||#,|[} is unbounded. Set T = (I — V) and put
&, = dis(%,, N (T)), where N(T) = {x; Tx = 0}. Take a w, € N (T) such
that &, < ||, —w,|| = (1 + ») «,. Then T (x, —w,) = Tx,, and so
in the case when {«,,} is bounded, we can prove, as above, that y € R(T) =
R(I — V). Suppose that lgg &, = oo. Since z, = (x, — »,)/||x, — w, ]|

satisfies ||z,||=1 and s-lim Tz, = 0, we can prove, as above, that
7—>00
there exists a subsequence {z,} such that s-lim z, = w,, s-lim T z,, = 0.
7n—>00 7—>00

Hence wy € N (T). But, if we put 2, — wy = u,, then, in

Xy — Wy — Wy Hxn'—wnH = U, Hxn —wn“r
the second and the third terms on the left belong to N (T') so that we must
have ||%,|| - ||%s — @, || = «,. This is a contradiction, since s-lim #,, = 0,
7—00

[|#, — @, ]| = (1 + 7Y &, and lim «, = oo.
7—>00

We are now able to prove the Riesz-Schauder theory ; for convenience
sake, we shall state the theory in a series of three theorems.

Theorem 1. Let V be a compact operator € L (X, X). If 4,5~ 0 is not
an eigenvalue of V, then 4, is in the resolvent set of V.

Proof. By the preceding Lemma and the hypothesis, the operator
T, = (Al — V) gives a one-one map of X onto the set R(T,) which is
strongly closed in X. Hence, by the Corollary of the open mapping theo-
rem in Chapter II, 5, T; has a continuous inverse. We have to show that
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R(T,) = X. If not, the topological image X; = T, X of X is a proper
closed subspace of X. Hence, if we set X, =T, X;, Xy =T, X,, .. .,
then X, ., is a proper closed subspace of X,, (n =0, 1, 2, .. .; X, = X).
By F. Riesz’ theorem in Chapter III, 2, there exists a sequence {y,} such
that y, € X,,, ||¥x|| = 1 and dis(y,, X,,1) = 1/2. Thus, if n > m,

VY —VY0) = Vm + {—Vn— (T0,9m — Ta,¥n) A0} = Ym— Y
with some y€ X, ;.

Hence ||Vy,— Vym|| = |40|/2, contrary to the compactness of the
operator V.

Theorem 2. Let V be a compact operator € L (X, X). Then, (i) its
spectrum consists of an at most countable set of points of the complex plane
which has no point of accumulation except possibly 4 = 0; (ii) every
non-zero number in the spectrum of V is an eigenvalue of V of finite
multiplicity; (iii) a non-zero number is an eigenvalue of V iff it is an
eigenvalue of V.

Proof. By Theorem 1, a non-zero number in the spectrum of V is an
eigenvalue of V. The same is also true of V’, since, by Schauder’s theo-
rem, V' is compact when V is. But the resolvent sets are the same for V
and V’ (see Chapter VIII, 6). Hence (iii) is proved. Since the eigenvectors
belonging respectively to different eigenvalues of V are linearly indepen-
dent, the proofs of (i) and (ii) are completed if we derive a contradiction
from the following situation:

‘ There exists a sequence {x,} of linearly independent vectors
lsuch that Vx,=A4,x (»n=1,2,...)and lim 4, =215 0.
71—>-00
To derive a contradiction, we consider the closed subspace X, spanned by
Xy, %2, - - ., %,. By F.Riesz’ theorem in Chapter III, 2, there exists a

sequence {y,} such that y,€ X,, ||y,||=1 and dis(y,, X,_;) = 1/2
n=2,3,...). If n> m, then

A;l Vyn - A;l Vym = Yu + (_—ym - A;l Tl,.yn + 1;1 Tl,,.ym) = Yu—2,
where z€ X,,_;.

” ”
For, if y,= 21 B; %;, then we have y,—A;1Vy,= 21‘ B; % —
1= j=

3 35 2% € X,y and similatly T,y € X, Therefore [|2;1Vy, —
j=
2,1V y,|| = 1/2. This contradicts the compactness of V combined with
the hypothesis lim 4, 7 0.

71—>00

Theorem 3. Let A, 0 be an eigenvalue of a compact operator V ¢
L (X, X). Then A, is also an eigenvalue of V'’ by the preceding theorem.
We can prove: (i) the multiplicities for the eigenvalue A, are the same for V'
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and V’. (ii) The equation (4g — V)x =y admits a solution x iff y€
N (A, I' — V')+, that is, iff V'f = 4,f implies <y, f) = 0. (iii) The equa-
tion (41’ — V'f) = g admits a solution f iff g€ N (4] — V)=, that is,
iff Vx = Ayx implies {x, g) = 0.

Proof. Since the eigenvalue 4, 0 is an isolated singularity of the
resolvent R(A; V) = (Al — V)1, we can expand R(4; V) in Laurent
series

RUV) = F (—k) 4,

We are particularly interested in the residue A_,; = (2xns)! [ R(4;V)dA.
|A—=2g| =8
As was proved in Chapter VIII, 8, A_, is an idempotent, i.e., 4%, = 4_,.

If weset (A — V)1 =211 + V,, 'thenfrom AI — V) (A + V,;) =1
we obtain V; = V(A" V,; + A2I), and so V, is compact when V is.
Hence, by

A= @n)t [ R@A;V)dAi=(2ni)t [ 21dA-I

|A—2|=e [A—4g| =8
+@ui)t [ Vidd= Qa7 [ V,di.
[A=2|=¢ |A—Z|=e

Thus, by the Theorem in Chapter X, 2, 4_; is a compact operator.
Therefore, by A_; X = A_;(A_; X) and the compactness of 4_;, the
unit sphere of the normed linear space A_; X isrelatively compact. Hence,
by F. Riesz’ theorem in Chapter III, 2, the range R(A_;) is of finite
dimension. On the other hand, Vx=14yx, x5 0, implies that
A —V)lxa=A—A)x by AI —V)x=(A—A)%, and so 4_;x =
(2mi)t [ (A—2)'dA-x ==x. Therefore, the eigenvalue equa-
A—Ag| =8
tion VxI =Mlox is equivalent to Vx = Ayx, x € R(A_,). In the same way,
we can prove that the eigenvalue equation V'f = 4,/ is equivalent to
V'f = 2f, 1€ R(AL,). But R(4_,) and R(AL,) are of the same dimen-
sion. For, A’ ,f = g satisfies 4’ ;g = A’ ;(A_,f) = g, and this is equi-
valent to (x, g) = {A_;%, g> for all x € X and so the functional g may be
considered as a functional defined on the finite dimensional space R (4_,).
Now, by the well-known theorem in matrix theory, the eigenvalue
equation Vx = Ayx (in R(A_,)) and its transposed equation V'f = Ayf
(in R(A.,)) both have the same number of linearly independent solu-
tions. We have thus proved (i). The propositions (ii) and (iii) are already
proved by the Lemma and the closed range theorem (Chapter VII, 5).

Extension of the Riesz-Schauder Theory. Let a power V" of V€ L (X, X)
be compact for some positive integer #». Then, by the spectral mapping
theorem in Chapter VIII, 7, ¢(V™ = ¢ (V)" and, by the compactness of
V*, o(V™") is either a finite set or else a countable set accumulating only
at 0. Therefore, o (V) is either a finite set or a countable set accumulating
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only at 0. V" being compact,
@mi)t [ R(@A; V") dA
li—Al=s
is, for any A, # 0 of ¢ (V") and sufficiently small ¢ > 0, of finite-dimen-
sional range. Hence 4, is a pole of R(4; V") (see Chapter VIII, 8). But
WI—V"N=@A—V)@A@ I+ 22V + .-« 4+ V") and hence

W T—V @ oo VY = (A — V)L,

which proves that any 4,5 0 of o(V*) is a pole of R(4; V) and so is an
eigenvalue of V. These facts enable us to extend the Riesz-Schauder theory
to operators V for which some power V" is compact. This extension is
highly important in view of its application to concrete problems of
integral equations, such as the Dirichlet problem pertaining to potentials.
See, e.g., O. D. KELLoGG [1]. It can be proved that the Riesz-Schauder
theory for 4, = 1 is valid also for an operator V € L (X, X) if there exist a
positive integer m and a compact operator K € L(X, X) such that
[|[K—V™||< 1. See K.Yosma [9]. It is to be noted here that, if
K, (s, t) and K, (s, f) are bounded measurable for 0 < s, # < 1, then the
integral operator T defined by

%(s) = (T %) (s) = (K K,%) (s), where (K;x) (s) =0f1 K;(s, t) x(t) dt,

is compact as an operator L(L!(0, 1), L1(0, 1)). See K. Yosipa-Y. Mi-
MURA-S. KAKUTANI [10].

6. Dirichlet’s Problem
Let G be a bounded open domain of R”, and

—_ s 2
L= lsl,%san ¢y (x) D

a strongly elliptic differential operator with real C*(G*) coefficients
¢t (%) = ¢4 (x). We shall deal only with real-valued functions. Let f€ L2(G)
and #, € H™(G) be given. Consider a distribution solution u,€ L2(G) of

Lu = f such that (uy—u,) € HF(G). (1)
The latter condition (¥, — %) € Hy' (G) means that each of the distribu-

tional derivatives
(Diug— Diuy) for |f| < m (2)

is the L2(G)-limit of a sequence {D’g,;}, where g, ;€ C(G) (see Chap-
ter I, 10 ). Thus it gives roughly the boundary conditions:
Diuy = Diu, on the boundary G of G for |j| < m. (3)

In such a sense, (1) will be called a Dirichlet’'s problem for the operator
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L. We shall follow the treatment of the problem as formulated and solved
by L. GArDING [1].
We first solve

uw+olu=f (u—u)€HF(G), (4)
where the positive constant « is so chosen that Garding’s inequality
@ + xL*@, p)o = 8 ||@|% holds whenever ¢ € CP(G). (5)

Here L* = Iﬁ (—1)e+ Dt e (x) D° and & is a positive con-
s, m

stant. The existence of such an « is guaranteed if the coefficients c(x)
are continuous on the closure G* of G. We also have, by m-times partial
differentiation, the inequality

@+ «L*g, p)o| =¥ [|@]ln - ||¥]ln Whenever p, p€ CT(G),  (6)
where y is another positive constant independent of ¢ and .

We have, for », € H™(G) and g€ C° (G),
(L*@, wy)o = 2, (—1)H+H D ey D, %1)o = 2, (—1)¥ (cu D°p, D'uy)o,
s, S,

by partial differentiation. By Schwarz’ inequality, we obtain, remember-
ing that the coefficients cy are bounded on G*,

L*o, < D D (1) = 7).
I( ?’ul)ol_nlsl’ﬁm” @lo || D*21]lo (i“l;glct(x)[ ’7)

The right hand side is smaller than constant times ||@ ||,
Thus the linear functional

F(p) = (p + xL*p, uy)o, € Cq°(G),

can be extended to a bounded linear functional defined on Hg (G) which
is the completion of C§° (G) with respect to the norm ||@||,. Similarly, we

see, from
[@. Nol = llello - 11l = [1@[lm - [I#]lo
that the linear functional (g, f); of ¢ € C3°(G) can be extended to a
bounded linear functional of ¢ € H (G). Hence, by F. Riesz’ represen-
tation theorem as applied to the Hilbert space Hg (G), there exists an
' =1 (f, wy) € HY (G) such that
(@ Nlo— (@ + xL*@, u1)o = (@, /')m Whenever ¢ € C5°(G).

Hence, by the Milgram-Lax theorem in Chapter III, 7, applied to the
Hilbert space Hg (G), we have

(@ No— (@ + xL*p, w1)o = (@, f')m = B(p, SF), S € HF(G), (7)

where

B(@,y) = (@ + xL*p,y)y for ¢cCFP(G), y€ HF(G). (8)
Thus

(@, flo= (@ + xL*p, u; + Sf’) whenever @€ CF(G),
and so uy = %, + S{’ is the desired solution € L?(G) of (4).
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We shall next discuss the original equation (1). If u,€ L?(G) satisfics
(1), then uy = uy — u, € HZ (G) satisfies
(4o, L*@)o = (1, L*@)o + (42, L*@)o = (£, p)o, ¢ € T (G).
We obtain, by partial integration as above,
|(#1, L*@)o| =< a constant times ||@||m,
[t ol = [I£]lo llllo = [I£]lo- ll®lm-

We may thus apply F. Riesz’ representation theorem in Hg (G) to the
linear functional (f, @) — (#;, L*@)o of ¢ € CF° (G). Hence there exists a
uniquely determined » € Hg (G) such that

(, @)o — (41, L*@)o = (v, p)m whenever @€ C3°(G).

By the Milgram-Lax theorem, applied to (v, ¢),,, we obtainan S, v€ Hf (G)
such that

(v, p)m = B(S1v,p) whenever @€ CP(G), v€ HR (G).
Thus the Dirichlet problem (1) is equivalent to the problem: For a given
S,v € Hg (G), find a solution u, € Hy (G) of
(ug, L*@)o = B(S19,9), 9 € CF°(G). 1)
Now, for a given # € L%(G) = HJ(G),

|6, @do| = ll%llo - llello = [I%]lo - |1l

so that, by F. Riesz’ representation theorem in the Hilbert space Hg (G),
there exists a uniquely determined #’ = T € Hy (G) such that, whenever

9€CT(G). , ,
. @)o = (W, @)m and [ [l = [|#]lo-
Hence, by the Milgram-Lax theorem, we obtain
(#, @lo=(,@)w=B(51%,9) =B (5, Tw,9), ||S1T%[|n=067{|u[lo. (9)
Therefore, by (1'), we have, whenever ¢ € C3°(G),
B (uy, @) = (ug, @ + xL*@)g = (3, @)o + & (43, L*@),

= B(5;Tuy, ¢) + «B(S;v,9),
that is,
B(uy— S;Tuy—oaSyv,9) = 0.

Because of the positivity B(p, ¢) > 0 of B, we must have
Up— 51 T4y =a Syv. (1)

The right hand term ¢ S;v€ Hg (G) is a known function. By ||S; T# ||, <
071 ||#||o, we see that the operator S; T defined on Hj'(G) into Hy (G) is
compact (the Rellich-Garding theorem in Chapter X, 3). Therefore, we
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may apply the Riesz-Schauder theory to the effect that one of the
following alternatives holds:

Either the homogeneous equation # — S;T# = 0 has a non-trivial
solution # € Hy (G), or the inhomogeneous equation # — S; 7% = w has,
for every given w € Hg (G), a uniquely determined solution # € Hg (G).

The first alternative corresponds to the case (u, ¢ + aL*@)y = (%, @),
that is, to the case Lu = 0. Hence, returning to the original equation (1),
we have

Theorem. One of the following alternatives holds: Either i) the homo-
geneous equation L% = 0 has a non-trivial solution » € Hg (G), or ii) for
any f€ L*(G) and any u, € H™(G), there exists a uniquely determined
solution #y € L%(G) of Lu = f, u — u; € HY (G).

Appendix to Chapter X. The Nuclear Space of
A. Grothendieck
The nuclear operator defined in Chapter X, 2 may be extended to
locally convex spaces as follows.

Proposition 1. Let X be a locally convex linear topological space, and
Y a B-space. Suppose that there exist an equi-continuous sequence
{fi} of continuous linear functionals on X, a bounded sequence {y;} of

”
elements € Y and a sequence of non-negative numbers {cj} with 21 ¢; < oo.
j=
Then

T-x=s-lim Xc;<{x, [} (1)
7n—00 j=1
defines a continuous linear operator on X into Y.

Proof. By the equi-continuity of {f;}, there exists a continuous semi-
norm p on X such that sup |[<{x, f;> | = # (x) for x € X. Hence, for m > n,

J
oy

=p()sup |yl - X .

i1 j=n
This proves that the right hand side of (1) exists and defines a continuous
linear operator T on X into the B-space Y.

Definition 1. An operator T of the form (1) is said to be a nuclear
operator on X into the B-space Y.

Corollary. A nuclear operator T is a compact operator in the sense

that it maps a neighbourhood of O of X into a relatively compact set
of Y.

19 Yosida, Functional Analysis
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Proof. We define
T, x= 2 ¢; {x, I ).

T, is compact, since the image by T, of the set V= {x;p (x) = 1} of
X is relatively compact in Y. On the other hand, we have

15— Toa]] =

L2 6

<p® f;}l) ”3’1'Hj=%1 Kl

and so T,x converges to Tx strongly and uniformly on V. Hence the
operator T is compact.

As was proved in Chapter X, 2, we have a typical example of a nuclear
operator:

Example. Let K be a compact subset of R. Then, for (¢ — ) > #, the
identity mapping T of H§(K) into Hj(K) is a nuclear operator.

Proposition 2. Let X be a locally convex linear topological space, and

V a convex balanced neighbourhood of 0 of X. Let py,(x) = inf 4
[AEV,1>0

be the Minkowski functional of V. py, is a continuous semi-norm on X.
Set

Ny={x€X; pp(x) =0} ={x€ X;AxcV for all A> 0}.
Then Ny, is a closed linear subspace of X, and the quotient space X, =
X /Ny is a normed linear space by the norm

[|%|lv = pv (%), where % is the residue class mod N,
. (2)
containing the element x.

Proof. Let (x — x;) € Ny. Then py, (x1) =< pp (%) + Py (%1 — %) = pp (%),
and similarly py (x) < pp (%;). Thus pp (x) = py (x) if x and x, are in the
same residue class mod N,. We have HxHV >0 and ||0]|y =0. If
[|%]ly =0, then x€ % implies x € Ny, and so ¥ = 0. The triangle ine-

quality is proved by ||z 4+ ¥y =pr(x+y) =Zpp(¥) + pr(¥y) =

lIZl]y + [|7]ly. We have also [|a[ly = py (x2) = |&|py (x) = || || %]
Corollary. By the equivalence
r.=pv) < (V2 S T), (3)

we can define the canonical mapping
Xy,— Xy, (when V, C V3)

by associating the residue class %, (mod Ny,) containing x to the residue
class xy, (mod Ny,) containing ¥. The mapping thusobtained is continuous,
since

”;‘V,“V, = py, (%) = py,(¥) = ”;‘V,IIV,-

We are now ready to give the notion of a nuclear space, introduced in
analysis by A. GROTHENDIECK [2].
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Definition 2. A locally convex linear topological space X is said to

be a nuclear space, if, for any convex balanced neighbourhood V of 0,

there exists another convex balanced neighbourhood U C V of 0 such
that the canonical mapping '

T:Xy—>Xy (4)

is nuclear. Here X is the completion of the normed linear space Xy.

Example 1. Let R4 be the topological product of real number field
R in such a way that R4 is the totality of real-valued finite functions x (a)
defined on 4 and topologized by the system of semi-norms

pul0) = |%(a)|, a€ A. (5)
Then R* is a nuclear space.

Proof. Ny, is the totality of functions x(a) € R* such that, for some
finite set {a;€ 4; 7=1,2,...,n}, x(a) =0 (j=1,2,..., n). Hence
Xy = RNy, is equivalent to the space of functions xy () such that
xy(@) =0 for a4 a; ( =1, 2, ..., n) and normed by

l|#v(a)|ly = sup |%(a))|.
1sjsn

We take Ny the totality of functions x(a) € R4 such that x(a,) = 0 for
a€ A" where A’ is any finite set of integers containing 1,2, ..., n.
Thus, for U CV, the canonical mapping Xy = R*/Ny— RN, = Xy,
is nuclear. For the mapping is a continuous linear mapping with a finite-
dimensional range.

Example 2. A nuclear B-space X must be of finite dimension.

Proof. Since X = X, for any convex balanced neighbourhood V of 0
of a B-space, the compactness of the identity mapping X — X implies
that X is of finite dimension by F. Riesz’ theorem in Chapter III, 2.

Example 3. Let K be a compact subset of R*. Then the space D (R")
introduced in Chapter I, 1 is a nuclear space.

Proof. As in Chapter I, 1, let

prp(f) = sup [Df(%)]

€K [s|<k

be one of the semi-norms which define the topology of D (R"). Let
Vi ={f€ Dk (R"); pxs(f) = 1}. Then Ny, is {0}, and Xy, = XNy, =
Dx (R")[Ny, is precisely the space Dy (R”) normed by pg ;. If (k—7) > =,
then it is easy to prove, as in the example following the Corollary of
Definition 1 above, that the canonical mapping of Xy, into Xy, is anuclear
transformation. Hence D (R™) is a nuclear space.

Theorem 1. A locally convex linear topological space X is nuclear,
iff, for any convex balanced neighbourhood V of 0, the canonical mapping
X—>X v is nuclear.

19*
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Proof. Necessity. Let U C V be a convex balanced neighbourhood
of 0 of X such that the canonical mapping X, — X is nuclear. The
canonical mapping T : X — X, is the producf of the canonical mapping

X — Xy and the canonical nuclear transformation Xy — X,. Hence T
must be a nuclear transformation.

Sufficiency. Let the canonical mapping 7T : X — X v be given by a
nuclear transformation
(2.
Tx =]_=21(:]- x, 1y

Forany o« > 0, theset {x€ X; |[<(x,f>| Saforj=1,2,...}isaconvex
balanced neighbourhood U, of 0 of X, because of the equi-continuity of
{fi} € X'. Moreover,

Ty = “‘12 ¢ <%, ;> y,-HV < asup ||yjHVj2(:j whenever x € U,,.
j
Let « be so small that the right hand side is < 1. Then || T x| < 1 and
U, C V. Each f; may be considered as belonging to the dual space X ’Ua'

and so
Tx=Tz=Xc¢;<x[>y; whenever (x—z)€ Ny .
] -3
Thus the canonical mapping Xy — X v is given by a nuclear transforma-
tion
Xy, —> ‘,2 ¢; xy,, 1 ¥
Theorem 2. Let a locally convex linear topological space X be nuclear.

Then, for any convex balanced neighbourhood V of 0 of X, there exists a

convex balanced neighbourhood W C V of 0 of X such that X is a Hilbert
space.

Proof. The nuclear canonical mapping Xy — X (U < V) defined by
Txg= %'05 (Zu 1) v;
is factored as the product of the two mappings
o: Xy— () and B:(2) > X, where « is given by
xy— {cJ* (xy, fip} and Bis given by {£}— 12 c® &vy;.
The continuity of « is clear from
F 197 G [y = (e 11 ol - £

and that of § is proved by

| & 5%, = Zellwlly - Z1&F = sup 117 [1{&3 R - & e

Let U, be the inverse image in (/2) by § of the unit sphere of Xy. Then U,
is a neighbourhood of 0 of (/2) and so contains a sphere S of centre 0 of (/).
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Let W be the inverse image in X of S by the continuous mapping &
defined as the product of continuous canonical mapping X — X and the
continuous mapping «: Xy — (/2). Then clearly W C V and, for any
Zw € Xw,

[lXw||lw = x/zeitrvl,fbo}‘ = zx/zier;,fbol = ||a%||» (the radius of S).

Since || ||;s is the norm in the Hilbert space (/%), X is a pre-Hilbert space.
Corollary. Let X be a locally convex nuclear space. Then, for any

convex balanced neighbourhood ¥V of 0 of X, there exist convex balanced

neighbourhoods W, and W, of 0 of X with the properties:

WoCW,CV, X w, and X w, are Hilbert spaces and the canonical
mappings X — b'e Wor X w,—> b'¢ W X w,—> X y are all nuclear.

Therefore, a nuclear space X has a fundamental system {V,} of neigh-
bourhoods of 0 such that the spaces X v, are Hilbert spaces.

Further Properties of Nuclear Spaces. It can be proved that:

1. A linear subspace and a factor space of a nuclear space are also
nuclear.

2. The topological vector product of a family of nuclear spaces and
the inductive limit of a sequence of nuclear spaces are also nuclear.

3. The strong dual of the inductive limit of a sequence of nuclear
spaces, each of which is an F-space, is also nuclear.

For the proof, see the book by GROTHENDIECK [1] referred to above,
p- 47. As a consequence of 2., the space D (R"), which is the inductive
limit of the sequence {Dg,(R"); » =1,2,...} (here K, is the sphere
|x| = 7 of R"), is nuclear. Hence, by 3., the space D (R")’ is also nuclear.
The spaces €(R"), €(R")’, &(R") and & (R")" are also nuclear spaces.

The impertance of the notion of the nuclear space has recently been
stressed by R. A. MiNLos [1]. He has proved the following generalization
of Kolmogorov’s extension theorem of measures:

Let X be a nuclear space whose topology is defined through a countable
system of convex balanced neighbourhoods of 0. Let X’ be the strong dual
space of X. A cylinder set of X' is defined as a set of the form

Z={{eX; a<x,/><b (=12 ...,0)}.
Suppose there is given a set function y,, defined and = 0 for all cylinder
sets. Let u, be o-additive for those cylinder sets Z’ with fixed x;, x,, . . ., ,.
Then, under a compatibility condition and a continuity condition, there
exists a uniquely determined extension of y, which is c-additive and
= 0 for all sets of the smallest g-additive family of sets of X’ containing all
the cylinder sets of X'.

For a detailed proof and applications of this result, see I. M. GELFAND-
N.Y. VILENKIN [3].*

* See also Supplementary Notes, p. 466.
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XI. Normed Rings and Spectral Representation

A linear space 4 over a scalar field (F) is said to be an algebra or
a ring over (F), if to each pair of elements x,y € 4 a unique product
xy € A is defined with the properties:

(xy) z = x(y2) (associativity),
x(y + 2) = xy + xz (distributivity), (1)
af(xy) = (=) (BY)-

If there exists a unit element ¢ such that ex = xe = x for every x€ 4,
then A4 is said to be an algebra with a unit. A unit e of A, if it exists, is
uniquely determined. For, if ¢’ be another unit of 4, then we must have
e¢’ = ¢ =¢'. If the multiplication is commutative, i.e., xy = yx for
every pair x,y € A, then 4 is called a commutative algebra. Let A be an
algebra with a unit e. If, for an x € 4, there exists an x’ € 4 such that
xx' = x'x = e, then x’ is called an inverse of x. An inverse x’ of x, if it
exists, is uniquely determined. For, if " be another inverse of x, then
we must have
' (xx) =2"e=x" = (x""2) 2 =ex’ =x'.

Thus we shall denote by x~1 the inverse of x if ¥ has an inverse.

An algebra is called a Banach algebra, or in short a B-algebra if it is a
B-space and satisfies

lxy (I = [l |- (2)

The inequality

[[%3Yn — 2V || = || %0 O — M) || + || (20 — %) ¥|]
= 1%l |G =] + || — ) || [|¥]]

shows that xy is a continuous function of both variables together.

Example 1. Let X be a B-space. Then L (X, X) is a B-algebra with a
unit by the operator sum T + S and operator product T'S; the identity
operator I is the unit of this algebra L (X, X), and the operator norm
||T || is the norm of the element T of this algebra L (X, X).

Example 2. Let S be a compact topological space. Then C(S) is a
B-algebra by (%, + %) (s) = 2,(5) + #,(s), (*#) (s) = ax(s), (x1%,) (5) =
%, (s) %5(s) and ||x|| = 51€1§> [%(s) |-

N

Example 3. Let B be the totality of continuous functions x(s),
0 < s = 1, which are representable as absolutely convergent Fourier
series:
oo o0

x(s) — 2 C”ezmns with g |C”l < 00. (3)

7n=—00 n=
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Then it is easy to see that B is a commutative B-algebra with a unit by
the ordinary function sum and function multiplication, normed by

oo

o= 2 Jel. (@

In the last two examples, the unit is given by the function e(s) = 1
and ||e|| = 1. In the following sections, we shall be concerned with the
commutative B-algebra with the unit e such that

llel] = 1. (5)
Such an algebra is called a normed ring.

A Historical Sketch. The notion of Banach algebras was introduced
in analysis by M. Nacumo [1]. He proved that Cauchy’s complex func-
tion theory can be extended to functions with values in such an algebra,
and applied it to the investigation of the resolvent of a bounded linear
operator around an isolated singular point. The result is an abstract
treatment of those given in our Chapter VIII, 8. K. YosIipa [11] proved
that a connected group embedded in a B-algebra is a Lie group iff the
group is locally compact. This result is an extension of a result due to
J. von NEUMANN [6] concerning matrix groups. Cf. E. HiLLE-R. S. PHIL-
LIps [1], in which the result of K. Yosipa [11] is reproduced.

The ideal theory of normed rings was initiated by I. M. GELFAND [2].
He has shown that such a ring can be represented as the ring of continuous
functions defined on the space of maximal ideals of the ring. By virtue of
this representation, we can give an integration free treatment of the
spectral resolution of bounded normal operators in a Hilbert space; see
K. Yosipa [12]. This result will be exposed in the following sections. The
Gelfand representation may also be applied to a new proof of the Tauberian
theorem of N. WIENER [2]. We shall expose this application in the last
section of thischapter. For turther details about B-algebras, see N. A. NaI1-
MARK [1], C. E. Rickart [1] and I. M. GEeLFAND-D. A. RAIKOV-
G. E. Smov [5].%

1. Maximal Ideals of a Normed Ring

We shall be concerned with a commutative B-algebra B with a unit e
such that |[|e|| = 1.

Definition 1. A subset J of B is called an ¢deal of B if x, y € J implies
that (xx + By) € J and zx € J for every z€ B. B itself and {0} are ideals
of B. Ideals other than B and {0} are called non-trivial ideals. A non-
trivial ideal [ is said to be a maximal ideal if there exists no non-trivial
ideal containing J as a proper subset.

Proposition 1. Each non-trivial ideal ], of B is contained in a maximal
ideal J.

* See also Supplementary Notes, p. 467.
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Proof. Let [],] be the set of all non-trivial ideals containing J,. We
order the ideals of [],] by inclusion relation, that is, we denote J; < J,
if J, is a subset of J,. Suppose that {J,} is a linearly ordered subset of

[Jo] and put Jg = ; eL{J],,‘) J« We shall show that ]z is an upper bound

of {J.}. For, if x,y€ Jg, then there exist ideals J, and J,, such that
%€ J,,andy€ J,. Since {],} is linearly ordered, J, < J,, (or J,, > Ja,)
and so x and y both belong to J, ; consequently (x —y) € J, < Jz and
2x€ J,, € Jgfor any z¢€ B. This proves that [y is an ideal. Since the unit
element ¢ is not contained in any J,, ¢ is not contained in J; = ; %(Jj , Ja
Thus Jg is a non-trivial ideal containing every J,. Therefore, by Zorn’s
Lemma, there exists at least one maximal ideal which contains J,.

Corollary. An element x of B has the inverse x1¢€ B such that
x71x = xx~! = ¢ iff x is contained in no maximal ideal.

Proof. If x~1 ¢ B exists, then any ideal J 3 x must contain ¢ = xx~1
so that J must coincide with B itself. Let conversely, x be contained in
no maximal ideal. Then the ideal xB = {xb; b € B} % {0} must coincide
with B itself, since, otherwise, there exists at least one maximal ideal
containing x B 5 x = xe. It follows that xB = B, and so there must exist
an element b € B such that xb = e. By the commutativity of B, we have
xb=bx =e, that is, b = x L.

Proposition 2. A maximal ideal J is a closed linear subspace of B.

Proof. By the continuity of the algebraic operations (addition, multi-
plication and scalar multiplication) in B, the strong closure J* is also an
ideal containing J. Suppose J* 7= J. Then J* = B, because of the maxi-
mality of the ideal J. Thus e€ J*, and so there exists an x € J such that
|le—x|| < 1. x has the inverse x~ € B which is given by Neumann’s

series e+ (e—x) + (e—x)?+ - -
For, by || (¢ — x)"|| = ||e — x||", the series converges to an element € B

which is the inverse of x, as may be seen by multiplying the series by

x = ¢— (¢ —x). Hence e = x~1 x € J and so J cannot be a maximal ideal.
Proposition 3. For any ideal J of B, we write

x=19 (mod J) or x ~ y (mod J) or in short x ~ y,if (x —y)€ J. (1)
Then x ~ y is an equivalence relation, that is, we have

x ~ x (reflexivity),

x ~ y implies y ~ x (symmetry),

x ~ y and y ~ z implies x ~ 2z (transitivity).
We denote by x the set {y; (y —x) € J}; it is called the class (mod J)
containing x. Then the classes (x + y), xx and (xy) are determined inde-

pendently of the choice of elements x and y from the classes ¥ and v,
respectively.
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Proof We have to show that x ~ x’, y ~ 9’ implies that (x + y) ~
(" +9'), xx ~ xx’ and xy ~ x’y’. These are clear from the condition
that J is an ideal. For instance, we have xy —x'y' = (x —x") y +
®(y—y)€J by (x—=x)€Jand (y—y)€].

Corollary. The set of classes x (mod J) thus constitutes an algebra by

T+Yy=x+y xx=0a%xy=2xy. (2)

Definition 2. The above obtained a.lgeBra is called the residue class
algebra of B (mod J) and is denoted by B/J. Thus the mapping x — x
of the algebra B onto B = B/] is a homomorphism, that is, relation (2)
holds.

Proposition 4. Let J be a maximal ideal of B. Then B = B[] is a
field, that is, each non-zero element x¥ € B has an inverse x~! € B such
that x 1 x=xx!=ce.

Proof. Suppose the inverse ! does not exist. Then the set xB =
{x ;b€ B} is an ideal of B. It is non-trivial since it does not contain e,
but does contain x 7~ 0. The inverse image of an ideal by the homomor-
phism is an ideal. Therefore, B contains a non-trivial ideal containing [
as a proper subset, contrary to the maximality of the ideal J.

We are now able to prove

Theorem. Let B be a normed ring over the field of complex numbers,
and J a maximal ideal of B. Then the residue class algebra B = B/] is
isomorphic to the complex number field, in the sense that each x € Bis
represented uniquely as ¥ = £¢, where £ is a complex number.

Proof. We shall prove that B = B/] is a normed ring by the norm

|[#]] = inf [|x]]. (3)
%€x
" If this is proved, then B/] is a normed field and so, by the Gelfand-

Mazur theorem in Chapter V, 3, B = B/] is isomorphic to the complex
number field.

Now we have ||ax|| = |x||[%]|, and |[x + ¥|| = mf ”x +y|| =
infll«]] + inf lly[] = [I%[] + [I¥[; 71| < [E][[5]] 5 proved simi-
larly If Hx“ = 0, then there exists a sequence {x,} €% such that

s-lim x,, = 0. Hence, forany x € %, (x — x,,) € J andsos-lim(x—x):x
7n—00

which proves that x € J* = J, that is, ¥ = 0. Hence HxH 0 is equi-
valent to x = 0. We have ||¢|| < ||e¢|| = 1. If ||e|| < 1, then there exists
an element x € J such that ||¢ — x || < 1. As in the proof of Proposition 2,
the inverse x~! exists, which is contradictory to the Corollary of Propo-
sition 1. Thus we must have |[¢|| = 1. Finally, since B is a B-space and [
is a closed linear subspace by Proposition 2, the factor space B = B/]
is complete with respect to the norm (3) (see Chapter I, 11). We have
thus proved the Theorem.
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Corollary. We shall denote by x (/) the number £ in the representation
% = Ee. Thus, for each x € B, we obtain a complex-valued function x (/)
defined on the set {/} of all the maximal ideals of B. Then we have

(x+ ) () =2() +y(), &2) (J) = ax(]),
xy) (J) ==2(J)y(J), and e(J)=1.

We have, moreover,

4)

sup [2(])| = |[#]], ()
Je{J}
and
sup |x(J)| =0 implies x = 0 iff N J = {0}. (6)
Je{T} Je{T}

Proof. The mapping x — x = x(J) e of the algebra B onto the residue
class algebra B = B/] is a homomorphism, that is, relation (2) holds.
Hence we have (4). Inequality (5) is proved by

&= |&] llell = |I=]| = inf ||x[| < [|»]].
Property (6) is clear, since x(J) = 0 identically on {J} iff x € ]QJ} J.
Definition 3. The representation

x— %(J) ()

of the normed ring B, by the ring of functions x(J) defined on the set {J}
of all the maximal ideals J of B, is called the Gelfand-representation of B.

2. The Radical. The Semi-simplicity

Definition 1. Let B be a normed ring over the complex number field,
and {J} the totality of the maximal ideals J of B. Then the ideal
; eﬂ{] ) J is called the radical of the ring B. B is said to be semi-simple if its

radical R = Jén{J ) J reduces to the zero ideal {0}.
Theorem 1. For any x € B, lim ||+"||* exists and we have
7n—>-00
lim [|"||*" = sup |x(])|. (1)
n—00 JE{T}
Proof. Set « = sup |x(])|. Then, by ||2"|| = |2" (]) | =] = (])|", we have
€
[|#"]| = «”, and so lim |[4*|[*=«. We have thus to prove
n—>00

fim || < .
7n—00

Let |B| > «. Then, for any J € {J}, x(J]) —f# 0, i.e., (x —Be) € ].
Hence the inverse (e — x)~1 exists. Setting §~! = A4, we see that the
inverse (fe — x)™! = A(e — Ax)7! exists whenever |A| < a~1. Moreover,
as in Theorem 1 in Chapter VIII, 2, we see that A(e —Ax)™! is, for
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|A] < &1, holomorphic in A. Hence we have the Taylor expansion

AMe—Ax)yP=A(e + Axg + Axp + - - - + A*x, + - - ).

That x, = ™ may be seen by Neumann’s series (¢ —Ax)™! = 20 xt

which is valid for [|Ax|| < 1. By the convergence of the above Taylor
series, we see that

lim |[A"x"||=0 if [A]<oa™l.

700

Thus ||x*|| = [A|7"||A"x"|| < [A]|7” for large # when [1] < &%, and so

lim ||2*|[*" < [A|* when [A|™} > a, that is, lim ||2"]|"" < &.
7n—>00 ‘ 7—-00

Corollary. The radical R = JE{?]} J of B coincides with the totality
of the generalized nilpotent elements x € B which are defined by

: n(|1/n __
Jim |24 = 0. )

Definition 2. A complex number A is said to belong to the spectrum
of x € B, if the inverse (x — A¢)~! does not exist in B.

If A belongs to the spectrum of x, then there exists a maximal ideal
J such that (x — Ae) € J. Conversely, if (x — Ae) belongs to a maximal
ideal J, then the inverse (x — Ae)~! does not exist. Hence we obtain

Theorem 2. The spectrum of x€ B coincides with the totality of
values taken by the function x(J) on the space {J} consisting of all the
maximal ideals J of B.

Application of Tychonov’s theorem. We define, for any J,€{/},
a fundamental system of neighbourhoods of J, by

el lw)—wl)|<e @=1,2..., n)}, 3)
where ¢; > 0, # and x; € B are arbitrary. Then {/} becomes a topological
space and each x(J), x € B, becomes a continuous function on {J}. We
have only to verify that if J, J,, then there exist a neighbourhood
V, of J, and a neighbourhood V', of J; with empty intersection. This may
be done as follows. Let %, € [, and x,€ [, so that %, (/o) = 0and x,(J,) =

a7#0. Then Vo={J€{J};|%()|<|x|/2} and V,={J€{J};
[%(J) — % (J1) | < |x|/2} have an empty intersection.

Theorem 3. The space {J}, topologized as above, is a compact space.
Proof. We attach, to each x € B, the compact set
K, ={z;|z| = ||#|[}
of the complex z-plane. Then the topological product

S=IIK,
*€B
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is a compact space, by virtue of Tychonov’s theorem. See Chapter 0. To
any maximal ideal [, € {J}, we assign the point

Ty =sUo€S.

{J} is in one-one correspondence with a subset S; of S by the above
correspondence [, — s(/J,). Moreover, the topology of {/} is the same as
the relative topology of S, as a subset of S. Hence, if we can show that S,
is a closed subset of the compact space S, then its topological image {J}
is compact.

To prove that S, is a closed set, we consider an accumulation point
o= zg A,€S of the set S; in S. We shall show that the mapping

% — A, is a homomorphism of the algebra B into the complex number field
(K). Then J, = {x; A, = 0} becomes, as may be seen from the isomor-
phism of B[], with (K), a maximal ideal of B and (x — A,¢) € J,, that
is, x(Jo) = A,. This proves that the point v = xg Ay = zg % (Jo) belongs
to S;. '

We thus have to show that

}"“H' = }" + AY’ }‘az = OC}»,, Azy = }'z}'y: }'e =1.
We shall, for instance, prove that 4,,, =4, + 4,. Since v = g A, is
X

an accumulation point of S;, there exists, for any ¢ > 0, a maximal ideal
J such that

I}'x_x(])l <eg, I}‘y_y(])|<£» Mx+y_(x + y) (])I<£
By (x + 9) (J) = x(J) + ¥(J) and the arbitrariness of ¢ > 0, we easily
see that 4,,, = 4, 4+ 4, is true.

We can now state the fundamental facts about the Gelfand represen-
tation x — x(J) of the normed ring B in the form of

Theorem 4. A normed ring B over the complex number field is repre-
sented homomorphically by the ring of functions x(J) on the compact
space {J} of all the maximal ideals J of B. The radical R of B consists of
those and only those elements which are represented by functions iden-
tically equal zero on {J}. The representation x — x(J) is isomorphic iff
the ring B is semi-simple.

Application of the Stone-Weierstrass Theorem (of Chapter 0). The
above obtained ring of functions is dense in the space of all complex-
valued continuous functions on {J} with uniform convergence topology
if the ring B is symmetric (or involutive) in the following sense:

For any x € B, there exists an x*€ B such that x*(J) = x{J) on {J}. (4)

Examples of Gelfand Representations

Example 1. Let B = C(S) where S is a compact topological space, and
Jo a maximal ideal of C(S). Then there exists a point s,€ S such that
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%(sp) = 0 for all x € J,. Otherwise, for any s, € S, there exists an x, € J,
such that x,(s,) 7 0. x,(s) being a continuous function, there exists a
neighbourhood V, of s, such that x,(s) % 0 in V,. Since S is compact,

”
there exists a finite system, say, V,,, V,,, . . ., V,, such that .Ul Va =S.
i=

Hence the function
x(s) == 1.=21 Koy (S) Xa; (S) € ]0

does not vanish over S, and the inverse x71, x71(s) = x(s)~%, of x€ J,
exists, contrary to the maximality of the ideal J,. Thus we see that ], is
contained in the maximal ideal ]’ = {x € B; x(s,) = 0}. By the maxi-
mality of J,, we must have J, = J’. In this way we see that the space

{/J} of the maximal ideals J of B is in one-one correspondence with the
points s of S.

Example 2. Let B be the totality of functions x(s), 0 =< s =< 1, which
can be represented by absolutely convergent Fourier series:

oo . o0
x(s) = c, ™", 3 |c,| <oo.
7n=—00 n_=—00
B is a normed ring by (x + y)(s) = x(s) + ¥ (s), (xy) (s) = x(s) ¥ ()
and ||x|| = ‘,E |¢;|. Let J, be a maximal ideal of B. Set €™ = x,. Then
art =7, and so, by | (Jo)| = [|m || = LIx*(Jo)| = (o) =
[|x71]|] = 1, we see that |x,(J,)| = 1. Hence there exists a point s,,

0<s,<1, such that « = e?™ Thus x, = ™" = x} satisfies
0 1o 1

‘ o .
%, (Jo) = ™", and so x(Jo) = X ¢, =x(s,). In this way, we
n=—00

see that for any maximal ideal J, of B, there exists a point sy, 0 <5, =1,
such that the homomorphism x— x(J,) is given by x(J,) = x(s,), for all
x € B. It is also clear that the mapping x — x(s,) gives a homomorphism
of the algebra B into the complex number field. Therefore we see that
the maximal ideal space of B coincides with {e?™; 0 < s < 1}.

Corollary (N. Wiener’s theorem). If an absolutely convergent Fourier

o )

series x(s) = X c,e?™" does not vanish on [0, 1], then the function
n=—00

1/x(s) is also representable as an absolutely convergent Fourier series.

For, x does not belong to any of the maximal ideals of the normed ring

of the above Example 2.
Example 3. We take B; = C [0, 1], and define, for x, y € B,,
(x +y)(s) = 2(s) +5(s), (xx)(s) = xx(s), (xy) (s) =

s

[ x(s—1#) y(t) dtand ||x|| = sup |x(s)].
0 s€[0,1]
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B, is a commutative B-algebra without unit. Adjoining formally a unit ¢
by the rule ex = xe = x, ||¢|| =1, the set B = {z = Ae + x;x€ By}
becomes a normed ring by the operations

(Are + %)) + (Age + %5) = (A + Ap) € + (%) + %)), x(Ae + %)
=alde + ax, (e + %) Aye + %) = Aidhe + A%y + Ap2; + 2%,
and [|2e + x|| = || + ||=]].

We have, by induction,

sz n-1
|22(s) | < MPs, |#3(s) | < M3, .., |27 () | < M"zn_s:T)-!,
where M = sup |x(s)| = ||x||. Thus every x¢€ B, is a generalized
S€S

nilpotent element of B, due to the fact that lim (#!)!/* = co.
7=00

3. The Spectral Resolution of Bounded Normal Operators

Let X be a Hilbert space, and let a system M of bounded normal
operators € L (X, X) satisfy the conditions:

T,S€M implies TS = ST (commutativity), (1)
T € M implies T*€ M. (2)
A system M consisting of a bounded normal operator 7€ L (X, X) and its
adjoint T* surely satisfies (1) and (2).
Let M’ be the totality of operators € L (X, X) which commute with
every 7€ M,andlet B=M'""= (M) be the totality of operators€ L (X, X)
commutative with every operator S¢€ M’.

Proposition 1. Every element of B is a normal operator. B is a normed
ring over the complex number field by the operator sum, the operator
product, the unit I (the identity operator) and the operator norm || T ||.

Proof. M C M’ by (1), and so M’ 2 M"'. Hence M""' = (M"') 2 M"’
and so B = M" is a commutative ring. The identity operator I belongs
to B and is the unit of this algebra B. By (2), we easily see that every
operator € B is normal. Since the multiplication TS and the adjoint
formation 7 — T* in the algebra B are continuous with respect to the
norm of the operator, it is easy to see that the ring B is complete with
respect to the operator norm.

Theorem 1. By the Gelfand representation
B>T—>T(]), 3

the ring B is represented isomorphically by the algebra C({J}) of all
continuous functions T (J) on the compact space {/} of all the maximal
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ideals J of B in such a way that

|T|| = sup [T(])], 4)
JE{J}
T (J) is real-valued on {J} iff T is self-adjoint, (5)
T(J) = 0 on {J} iff T is self-adjoint and positive,
that is, (Tx,x) = 0 forall x€ X. (6)
Proof. We first show that, for any bounded normal operator T,
72 = (|7 )

By the normality of T, we see that H = TT* = T*T is self-adjoint.
Hence, by Theorem 3 in Chapter VII, 3,
[|T|= sap (Tx,Tx)=sup [(T*Tx,x)|=||H||=||T*T||=||TT*|.
lixll=1 ll=l]=1
Since (T*)% = (T%*, T2 is normal with T. Thus, as above, we obtain
|| T2||2 = || T*2T?||, which is, by the commutativity TT* = T*T, equal
to |[(T*T)?|| = ||H?||. Since H? is self-adjoint, we obtain, again by
Theorem 3 in Chapter VII, 3,
[|H|?= sup (Hx, Hx) = sup [(H?x, x) | = ||H?||.
ll=ll= [l#ll=
Therefore, nﬂnz—nmn— = ([T, tat i, 73] = |
We have, by (7 1m [|T*||"*, because we know already that

the right hand limit exists (see ( ) in Chapter VIII, 2). Hence, by Theo-
rem 4 of the preceding section, the representation (3) is isomorphic and
(4) is true.
Proof of (5). Let a self-adjoint T € B satisfy, for a certain Jo€{J},
T (J) =a+ 1bwith b5~ 0. Then the self-adjoint operatorS = (T'—al)/b€B
satisfies (I + S2?) (J,) =1 + 2= 0,andso (I + S?) does not have an
inverse in B. But, by Theorem 2 in Chapter VII, 3, (I + S%) has an
inverse which surely belongs to B. Thus, if T€ B is self-adjoint,
T(J) must be real-valued. Let T € B be not self-adjoint, and put
T+T* .T—T*
g T!'Ta -
Then, since the first term on the right is self-adjoint, the self-adjoint
operator (T — T*)/2¢ must be 7= 0. Thus, by the isomorphism of

representation (3), there must exist a J,€ {J} such that =1 ( Jo) 7~ 0.
Hence T (J,) = £+ e

above, self-adjoint operators are represented by real-valued functions.
Proof of (6). We first show that

T*(J) =T(J) on {J}. (8)

T =

(Jo) + 1 — (/o) is not real. For, as proved
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This is clear, since self-adjoint operators (T + T*)/2 and (T — T*)/2:
are represented by real-valued functions. Therefore, by (4) and the result
of the preceding section, the ring B is represented by the ring of all con-
tinuous complex-valued functions on {J} satisfying (5) and (8). Let
T(J) = 0 over {J}. Then S(J) = T(J)*? is a continuous function on
{J}. Hence, by the isomorphism of the representation (3), S2 = T. By
(6), we have S = S*. Hence (Tx,x) = (S2x,x) = (S¥, Sx) = 0. To
prove, conversely, that the condition (Tx %) = 0 for all x€ X implies
T(J)=0over{J}, wesetT,(J) =max(T(]),0)and T, (J) =T, (J)—T (J).
Then, by what we have proved above, T, and T, are both € B, self-ad-
joint and positive: (T;x, x) = 0 for all x€ X (' = 1, 2). Moreover, we
have T,T, = 0 and T, = T; — T. The former equality is implied by
Ty (J) Ty(J) = o.

Therefore, we have
0 < (TTyx, Tox) = (—T3%, Tyx) = — (Tsx, %) = — (T Tyx, Tox) < 0.
Thus (T3x,x) = 0 and so, by Theorem 3 in Chapter VII, 3, we must
have T§ = 0. Hence, by ||T;|| = Jim [|T3|[M", we obtain T, = 0. We
have thus proved T = T, and hence T'(J) = 0 on {J}.

We shall thus write T = 0 if T is self-adjoint and positive. We also
write S=Tif (S—T) = 0.

Theorem 2. Let {T,,} C B be a sequence of self-adjoint operators such
that

==l --£T,<---<£S5¢€B. (9)

Then, for any x € X, s-lim T,,x = T x exists, i.e., s-lim T, = T exists and
7—>00 7—>00
TeB, S=2T=T,(n=1,2,...).
Proof. We first remark that, by (6),
E,FEBand E=0, F=0 imply E4+F=0and EF = 0. (10)

Thus 0STI<Ti<---<T:<...< S2 Hence, for any 2€ X, a
finite lim (T2, x) exists. Since, by (6), T2 =T, 1 T = TZ, we also
7—-00
have
lim (T2,4%,%) = Hm (Th 1 TW%, %) = lim (T2x, x).
#,k—>00 k—00

”,

Therefore, hm (Ty—T,)% % %)= Jim [|Tyx — Tpx|[> = 0 so that
hm Tpx = Tx exists. That T€ B and S=T =T, is clear from the
process of the proof.

Theorem 3. Let a sequence of real-valued functions {T,(/)}, where
T, € B, satisfy the condition

0T ()STo()S - < T,(J)<--- < a finite constant on {J}. (11)
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Then, by (6) and Theorem 2, s-lim T,, = T exists. In such a case, we can
n—>00

prove that
D ={J€{J}: T() # lim T,()}

is a set of the first category, and so D¢ = {J} — D is dense in {J}.
Proof. By Theorem 2, T = T,, and so T(J) = lim T,(J) on {J}.
7—00

By Baire’s theorem in Chapter 0, 2, the set of points of discontinuity of
the function lim T,(J) is of the first category. Hence, if the set D is not
7n—00

of the first category, then there exists at least one point J, € D at which
lim T, (J)is continuous. In other words, there exists a positive number 8
7n—>00

and an open set V (/) 3 J, of {J} such that
T{J) =6 + lim T,(]) whenever J €V (]o).

Since the compact space {J} is normal, and since T'(J) = lim 7,(J) on
7n—>00

{/}, we may construct, by Urysohn’s theorem an open set V,(/,) 3 Jo
and a function W(J) €C({J}) such that 0= W (J)<4 on {J},

ViUJo)* S V() W(J) = 8/2 on Vy(Jy) and W(J) =0 on V(J,)°.
Hence T(J) — W (]) Z lim T,(J) on {]}, and so, by (6), T — W = T,

(»n=1,2,...). W(J) == 0 implies, by the isomorphism (3), that W 5 0,
W = 0. Thus, again by (6), T —W = s-lim T, contrary to T = s-lim T,,.
7—>00 n—>00

Finally, since {/} is a compact space, the complement D¢ = {J} — D
of the set D of the first category must be dense in {/}.
We are now able to prove (K. Yosipa [12])

The spectral resolution or the spectral representation of operators € B,

Consider the set C'({J}) of all complex-valued bounded functions
T'(J) on {J} such that T’ (J) is different from a continuous function T (J)
only on a set of the first category. We identify two functions from C’ ({J})
if they differ only on a set of the first category. Then C’({/}) is divided
into classes. Since the complement of a set of the first category is dense
in the compact space {J}, each class T contains exactly one continuous
function T (J) which corresponds, by the isomorphism B« C({J}), to
an element T € B.

For any T € B and for any complex number z = 4 + ¢y, we put
E, = the element € B which corresponds to the class E; containing the
defining function E; (J) of the set {J € {J}; Re T (J) <A, Im T (]) < u}-
It is clear that there exists a monotone increasing sequence of continuous
functions f, of complex argument such that E,(J) = ,}H& f+ (T(J)) and

20 Yosida, Functional Analysis
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so E,(J)eC'( {]} ). We have then

|T ]) ()' + 1’/‘]) (El,+tnj ]) + E;j_;-f-i[lj_) (]) - E;.;_l-i-i/l; (])
— Ejvia ()| = € on {J} if
11=—zx—VL2_§12§'--§1,,=oc=sup |ReT ()

JE{J}
&
hh=—f—F==pp=-=p=pF=sup|ImT(])|,
! Ve JE(} | |

(SI%P (A — 2_1)* + sup (ﬂj—ﬂj—1)2)1/2 Se.
] ]
Thus, by the definition of E,(]), we have

l T ]) (}' + zIMJ (El,+m; ]) + El;-;-i-im_, (])

El;_,-i-sm (]) El;+iy,~_. (])) l é [

on {J}, since the complement of a set of the first category is dense in the
compact space {J}. Therefore, by (4), we have

“ T_j‘____z; (}'j + 1:/‘1') (El;'+iu;' + Eli_x+iui_: - Eli-x+im - E15+im'_x) H =e,
which we shall write as
T = [[zdE,, (12)
and it is called the spectral resolution of the normal operator T.

4. The Spectral Resolution of a Unitary Operator

If T is a unitary operator € B, then, by
TOHT*N=TNTJ) =1, 1)

we see that the values taken by the function T (J) on {J} are complex
numbers of absolute value 1. From this fact, we can simplify the spectral
resolution [ [ zdE, of T.

The defining function Eg(J) of the set {J € {J}; arg(T'(J)) € (0, 6)},
0 < 6 < 27, belongs to C’'({/}), and we have, by setting Eq(J) = 0,
E,Zn (]) =1,

|T0) — 2 #%(E, 1) — Eo ()] < max | o4 — o]
0=6<6,<:---<0,=2n).

Let Eq(J) be the continuous function on {J} which is different from
Eg(J) only on a set of the first category, and let E, be the operator € B
which corresponds to E4(/]) by the isomorphic representation BT« T(]).
Then, as in the preceding section,

|IT — 3 6% (Eq,— Eg, )| | < max |64 — o],
= J



4. The Spectral Resolution of a Unitary Operator 307

This we write, in view of the fact 2 =1,
2x

T = [ ¢9dF (), where
0
F) =FEg,g—E o for 0<0<2n F(0)=0, F2n)=1. (2)
Here Eg . is defined by Eq g% = s-lgfg Eyx, the existence of this limit
will be proved below.

Theorem 1. The system of operators F (), 0 < 0 < 2a, satisfies the
conditions:

each F () is a projection operator, commutative with

every bounded linear operator commutative with T, (3)
F(6) F(6") = F(min (6, 6"), (4)
F@0)=0, F(2n) =1, (5)
FO+0)=F(), 0=60<2n in the sense that

S-!‘.’iﬁl F(0') x = F(0) x for every x€ X. (8)

Proof. It is sufficient to prove that E, 0 < § < 2ax, satisfies the
conditions:

each E, is a projection operator € B, (3"
E¢Eg¢ = Emino,0) (4)
E0=0, E2,‘=I, (5’)
Eox = s-loi'rg Egx for every x€ X and 0 =< 0 < 2m. (6"

We have Ey(J) = E5(J) and Ey(J)2 = E5(J). Hence, by the result of
the preceding section, we obtain Eq = Ej and E% = E,. This proves (3').
(4) is proved similarly from Eg(]) E¢(J) = Epins,e)(J), and (5") is
proved similarly. Next let 6, | 6. Then Eg, (J) = E,,,(J) = Eg(/J), and
so, by the result in the preceding section, s;l_ig Ee, = E exists and

E(J) =Es()) = %}.?3 E5, (J) on {J} except possibly on a set of the first
category. Thus E = E,.
Example 1. Let a linear operator T defined by
Ty(s) = e**y(s), where y(s)€ L%(—o0,00).
T is unitary. We define, when 2nn < s < 2(n 4 1) =,
F@) y(s) =y(s) for s=0+ 2nn<=2(n+ 1),
F({6)y(s) =0 for 6+ 2nn <s.

25

It is easy to see that T = [ ¢®dF(6).
0

20*
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Example 2. Let a linear operator T, be defined by
T)x(t) =%+ 1) in L%2(—oo0, co).

T, is unitary. By the Fourier transformation

y(s) = Ux(f) = Lim. (2n)" "2 [ e="x(s) at,

n—00 “n
we obtain Ux (¢ + 1) = ¢* Ux(f) = ¢“y(s). Thus
Tyx(t) =20+ 1) =Ute¥y(s) = U Ty(s) = U T Ux(¢),

that is, T, = U~1T U. Therefore, we have

2%
T, = [ ¢°dF,(0), where F () =U"'F(§) U.
0

The uniqueness of the spectral resolution. Since 7-! = T* and
TY(]) =T*(J) = T(J)™, we easily see that

Tt :jne“odF(B). (7)
Let max |e'% — ¢%-1| < ¢. Then, from
’ T = 3 %F6) — F0;-1) + 0, [|3]|<e,
we obtain, by (4),
T2 = 3 ®%(F (0,) — F(6;_,)) + &', where
181 = 1@~ 8l + 18— )| + (18]
S(ITI +e)e+e(IT] +e) + &

27
Hence we have T2 = f e?°dF (0), and, more generally,
0
on
T"= [ ¢™dF(6) (n=10,41,+2,...). (8)
0

2
Therefore, if there exists another spectral resolution T = f e%dF, ()
. 0 .
satisfying (3) to (6), then, for any polynomial # (6) in ¢ and e,
27
J 2O d(FO) 2 ) —(F1(0) %) =0, (x.yeX).

Thus, by continuity, the above equality holds for any continuous func-
tion $ (6) with p (0) = p(27). Let 0 < 6, < 0, < 27, and take

pa(6) = 0for 0 < 6 < 6y and for 6, ++ =< 6 < 27,
= 1forfy+ > < 6 < 6,

= linear for 0, < 0 =0, + %and for 01§0§01+—;-.
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Then letting n» — oo, we obtain, by (6),

27
”lirg%f 4 (0) [(F (0) x,5) — (F1(0) x,5)]=[(F (6) ) — (F, (6) x,9)16,=0,

which is valid for all x, y € X. Hence, letting 6, 0 and making use of
conditions (5) and (6), we see that F (6,) = F,(6). Therefore, the spectral
resolution for a unitary operator is uniquely determined.

b. The Resolution of the Identity

Definition 1. A family of projections E (1), —oo << A < oo, in a Hil-
bert space X is called a (real) resolution of the identity if it satisfies the
conditions:

E (i) E () = E(min (i, ), (1)

E(—o0) =0, E(4 oo) = I, where E(—o0) x = s;iiinoo E(A) x and
E(+ o0) x = s;l%xg E@QA)x @)
E(A + 0) = E(A), where E().—}-O)x:s-}iﬁxE(p)x. (3)

Proposition 1. For any x, y € X, the function (E () x, y) is, as a func-
tion of A, of bounded variation.

Proof. Leti, <A, <---<4, Then,by(1),E(x, f]=E()—E(x)
is a projection. Thus we have by Schwarz’ mequahty,

2| (Aj—1, ] %, y[ —EI (}‘j—l»}'j] x»E(}'j-—IJ)‘j] y)]
= JNEG-1 K1 2| [[EGir, 4] v
< (FIEGrn 41 2[F) - (3 1IE Goon, ][
= (1B (0. A1 %)M (I1E (o, ]y [P < (] 2] [l ] -
For, by the orthogonality
E(Rim1, 4] E(img, 4] =0 (7 1) (4)
implied by (1), we have, for m > =,
1218 2 1B G ) 5[ = 1B, Aoyl 5[ )

Corollary. For any 4, —oo << A << oo, the operators E(4 + 0) =
S;]’.i&‘l E(})and E{A—0) = s;;igx E (A') do exist.
Proof. From (b), we see that, if 4, } 4, then
dim |[EGy, Al #[p =0,

and the same is true for the case 4, | 4.
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Proposition 2. Let f(1) be a complex-valued continuous function
on (—oo,00), and let x € X. Then we can define, for —co < & < p<oo,

B
1A dE @A) %

as the s-lim of the Riemann sums
?f(l}) E (4, 441 %, where o =2 <o < -+ <A, =, € (A, A1l

when the max |4;; — 4;| tends to zero.
i

Proof. f(4) is uniformly continuous on the compact interval [«, 8].
Let |f(A) — f(A')| =< & whenever |1 — 4’| < 8. We consider two partitions
of [, f]:

a=M0<- --<l,,=ﬂ,m]a.x|lj+1—}.j[§6,

a=py < < o =By max fpyn — | 6,
and let

=< <vp=pp=m+mn,

be the superposition of these two partitions. Then, if u}, € (ug, x41], We

have
f(ﬂy") E(4;, Aj+1] x— A:-‘ f(.“;z) E (uy, pry1] %

>
i

= X & E (¥, v:41] %, with |g| < 2e,
s

and so the square of the norm of the left side is, as in (5),

< 6| ZE(ura] = e[| Ew, B x| < o |||

o B
Corollary. Wemay define [ f(A)dE (A) xasthe s-lim [ f(A)dE(A) x,

ax}—00,ft00,
when the right side limit exists.

Theorem 1. For a given x€ X, the following three conditions are
mutually equivalent:

B f" f(A) dE (A) x exists, (6)
JIfQ R |E@) [ < oo, (7)

oo
F(y)= f f(A) d(E () y, x) defines a bounded linear functional. (8)

Proof. We shall prove the implications (6) — (8) — (7) — (6).
(6) — (8). The scalar product of y with the approximate Riemann
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oo
sum of f f(4) dE (4) x is a bounded linear functional of y. Hence, by

—00
(v, E(A) x) = (E(A) ¥, x) and the resonance theorem, we obtain (8).
(8) — (7). We apply the operator E (x, ] to the approximate Riemann
B

sum of y = ff_(I) dE(A)x. We then see, by (1),that y = E (e, Bly.
Thus, again by (1),

)
R oo _ |
Fo)= [IWAENxy) =, lim [ [Q)IE@* )

f
Hence ||y|2 < ||F]|-||¥|, ie., {|y]| < ||F]|- On the other hand, by
approximating y f ) dE (A1) x by Riemann sums, we obtain, by (1),

aﬁ
Iy = “f

so that f |[f(A)2d||E@A) x|* < ||F|[> Therefore, by letting « | — oo,

2

B
o = JlrapaEap,

B | oo, we see that (7) is true.
(7) = (6). We have, for o’ <a < < f,

i # 8
J 1A AE@) x— [ [(3) dE(3) »

(-2

i2

o B
=/ lf(l)ldeE(l)xH“rﬂf [T a[[E@)x[P

as above. Hence (7) implies (6).

Theorem 2. Let f(A) be a real-valued continuous function. Then,
a self-adjoint operator H with D (H) = D is defined through

(Hx,y) = f f() d(E (A) %, y), where (9)

xeD={x;_f [f(A) 2 a [[E(A)x|[2<oo}and any y€ X,

and we have HE (1) 2 E(A) H, that is, HE (A) is an extension of E (1) H.
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Proof. For any y€ X and for any & > 0, there exist « and g with
—o00 < & < f§ < oo such that ||y — E (x, ] ¥|| < &. Moreover, we have

o 8
f |f@) IzdIIE(l)E(a,ﬁ]sz:flf(l)ldeE(l)sz-
Hence E (x, 8] y € D and so, by (2), D* = X. H is symmetric by

A =¢R), (EWxy)=(ER)y, ).
If y€ D(H*) and H*y = y*, then, by E («x ﬂ]zeDand( ),
E(x, Bly*) = (E (>, Bl 2, H*y) = (HE (, B] 2,) = f/ Y)-

Thus, by the resonance theorem,

Ldm  GEEA = [ I0aED ) =

is a bounded linear functional. Hence, by the preceding theorem,
oo
[ /W a||E@X) y|[ < oo, that is, y€ D.
—00

Therefore, D = D(H) 2 D (H*). Since H is a symmetric operator, we
have H C H* and so H must be self-adjoint, i.e., H = H*.
Finally, let x € D (H). Then, by applying E (u) to the approximate Rie-

mann sums of Hx = j_O f(A) dE (2) x, we obtain, by (1),
E@Hx= [ 1) d(E) EQ) )

(o )

~ [ /WaEN E@ = HE @) ».
Corollary 1. In the particular case f(4) = 4, we have
(Hx,y)= fld(E )x,y), for x€D(H), ye X. (10)
We shall write it symbolically
H= jo AdE(}),
—o0

and call it the spectral resolution or the spectral representation of the self-
adjoint operator H.

Corollary 2. We have, for H = f /(A) dE (%) given by (9),

||Hx||2=_£° |f(A)2d |E(A) #|* whenever x€ D(H). (11)
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In particular, if H is a bounded self-adjoint operator, then
(H"x, y) f fA*d(E@) x,9) for x,y€X (n=0,1,2,...). (12)
Proof. Since E () Hx = HE (A) x for x € D(H), we have, by (1),

(Hx, Hx) = [{(2) d(E(A) », Hx) = [f(3) d(HE (A) %, %)
= [7(A) & {[ [ () 4, (E () E(}) x, x)}

A
= [t dz{‘Lf(#)d(E(ﬂ)x»x)}=ff(/1)2dHE(1)xH2-

The last part of the Corollary may be proved similarly.

Example. It is easy to see that the multiplication operator

Hx(t) =tx(t) in L2%(— oo, 00)
o0
admits the spectral resolution H = f A dE (1), where
—00

EQ) x(t) = x(t) for ¢t< A,

(13)
=0 for ¢t> 4.

For,

oo

foozzd”E(z)xnzz fm;lzal,l f|x(t)]2dt= j 2|x(t) |2 dt = ||Hx|2,
i

-_Fld(E(}.)x,y)_—.—z:}.dl [ x@®)y() f: x(t)y(t) dt = (Hx,y).

—00

6. The Spectral Resolution of a Self-adjoint Operator

Theorem 1. A self-adjoint operator H in a Hilbert space X admits
a uniquely determined spectral resolution.

Proof. The Cayley transform U = Uy = (H —+I) (H + ¢I)~! of the
self-adjoint operator H is unitary (see Chapter VII, 4). Let U = f ’ e dF (6)
be the spectral resolution of U. Then we have ’

F(2n—0) =s—loiiréF(2:rz— 0) =F(2n) =1.
If otherwise, the projection F (25) — F (2x —0) would not be equal to the
zero operator. Thus there exists an element y % 0 such that

(F(2m) —F(2n—0))y =y.
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Hence, by F (6) F (') = F (min (6, 6")),
Uy= _;” ¢?d(F (0) (F(2n) — F (27— 0)) y
0
=FQ2r) —FQ2rn—0)y=1y.

Thus (y,2) =(Uy, Uz) =(y,Uz) and so (y,z— Uz) =0 for every
2€ X. U being the Cayley transform of a self-adjoint operator H, we
know (see Chapter VII, 4) that the range R (I — U) is dense in X. Hence
we must have y = 0, which is a contradiction.
Thus, if we set
A=—coth, E(A) = F(6),

then 0 < § < 27 and — oo << A < coare in a topological correspondence.
Hence E(A) is a resolution of the identity with F (6). We shall show
that the self-adjoint operator

= fosz(A)

is equal to H. Since H =4(I + U)(I — U)™, we have only to show
that
H@y—Uy),x) =Gy + Uy),x) for al x,ycX.

But, since D(H')* = X, we may restrict x to be in the domain D (H’).
Now, by F(0) - F(8') = F (min(6, 6")),

(y— Uy, F(6) x) = f (1—&%) dg (F(0') y, F (6) %)
=0f (1—&?)dy (F(0) F(6')y, x)

= [ 1= d(F©)y,5).

Hence

(y—Uy, H'x) =_{° Ad(y — Uy, E(}) x)

[}

= fn_ cot 0 {f (1—e%) d(F (6 y, x)}
0

f 1+ d(F(6)y,x)=(3G(y+ Uy), %).
The uniqueness of the spectral representation. Suppose H = f AdE (2)
—00

(e ]
admits another spectral representation H = f AdE’(A) such that
—00
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E' (%) 7% E (4g) for some A,. Then, by setting
A= —cotb, E'(}) =F'(0),

we have F’(6,) # F (6,), where Ay = — cot §,. By a similar calculation

(o]
to the above, we can prove that the Cayley transform of f AdE’ (2) is equal
-0

27

to f ¢’ dF’(0). Hence the unitary operator U admits two different
6

2n 27
spectral representations U = [ ¢°dF(0) and U = [ ¢ dF’(6), con-
6 0

trary to what we have proved in Chapter XI, 4.
We have thus proved (see Chapter VII, 3 and 4) the fundamental
result due to J. voN NEUMANN [1]:

Theorem 2. A symmetric operator H has a closed symmetric extension
H**_ A closed symmetric operator H admits a uniquely determined spec-
tral representation iff H is self-adjoint. H is self-adjoint iff its Cayley
transform is unitary.

Remark. It sometimes happens, in applications, that H is not self-
adjoint but H* is self-adjoint. In such a case, H is said to be essentially
self-adjoint. In this connection, see T. KATO [7] concerning Schrédinger’s
operators in quantum mechanics.

The spectral representation of the momentum operator H;:
1d .
Hyx(t) =7 z=() in L*(—o0,00).
The Fourier transform U defined by
x(t) = U-y(s) =Lim. 2n)""2 [ &y (s) ds
7—>00 Zn

is unitary and U-lx(f) = U*x(f) = Ux(—¢). Hence, denoting by E(4)
the resolution of the identity given by (13) in Chapter XI, 5, we obtain a
resolution of the identity {E’ (1)}, E' (1) = UE(A) U~L. If both y(s) and
sy (s) belong to L?(— oo, 00) N L (— oo, o0), then

-}%x(t):% <(27‘t) 1z jqoe‘s‘y(s) ds)

—00
= (2n)" 12 fe sy(s) ds = U(sy(s)) = UsUx(),
or, symbolically,

1 d _
Td—zUSU (1)
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o0
Hence, for the self-adjoint operator H = s - = f AdE (1), we have
—00

UH,U - y(s) = s - y(s) = Hy(s) whenever y(s),
sy(s) both belong to L%(— oo, 00) ) L (— o0, 00).

For any y(s) € D(H) = D(s -), set
¥ (s) = ¥(s) or = 0 according as |s| < n or [s|> n.

Then surely y,,(s), sy, (s) both € L2(— o0, 00) ) L!(— oo, 00) and, more-
over, s-limy, =y, s-lim Hy, = Hy. Thus, since the self-adjoint opera-
7n—>00 7n—>00
tors U-'H, U and H are closed, we have, by (U1H,U) vy, = Hy,,
(UH,U)y = Hy whenever y¢€ D(H),
that is, U71H, U is a self-adjoint extension of the self-adjoint operator

H. Hence, by taking the adjoint, we see that H* = H is also an exten-
sion of (U™*H,U)* = U'H, U; consequently U'H,U = H and so

H =UHU! = fold(UE(l) U= foz dE' (3).

7. Real Operators and Semi-bounded Operators.
Friedrichs’ Theorem

Real operators and semi-bounded operators, defined below, have self-
adjoint extensions. Thus we can apply von Neumann'’s theorem to these
extensions to the effect that they admit spectral resolutions.

Definition 1. Let X = L2(S, B, m) and let H be a symmetric operator
defined in X into X. H is said to be a real operator, if i) x (s) €D (H) then
%(s) € D(H), and ii) H maps real-valued functions into real-valued func-
tions.

Example. Let f(s) be a real-valued continuous function in (— oo, 00).
Then, for X = L?(— o0, 00), the operator of multiplication by f(s) is a
real operator.

Theorem 1 (J. voN NEUMANN [1]). A real operator H admits a self-
adjoint extension.

Proof. Let U = Uy be the Cayley transform of H. Then D(U) =
{(H + ¢I) x; x€ D (H)} consists of the functions obtained by taking the
complex-conjugate of the functions of R(U) = {(H —iI) x; x€ D(H)}.
Thus, if we define an extension U, of U through

U,= U in D(U),
U, (% ca%) = %‘ C+Pa» Where {p,} is a complete
orthonormal system of the Hilbert space D (U)+,

then U, is a unitary extension of U. Therefore the self-adjoint extension
H, of H exists such that U; = Uy, (see Chapter VII, 4).



7. Real Operators and Semi-bounded Operators 317

Definition 2. A symmetric operator H is said to be upper sems-
bounded (or lower semi-bounded) if there exists a real constant « such that

(Hx, %) < o ||%|[? (or (H%, %) = & ||x]|[?) for all x€ D(H).
If (Hx,x) = 0 for all x€ D (H), then H is said to be a positive operator.
Example. Let ¢(s) be continuous and non-negative in (— oo, 00).

Consider the operator H defined for C? functions x(s) with compact
support by

(H2)(s) =—2"(s) + ¢(s) x(s).
Then H is a positive operator in the Hilbert space L2(— oo, 00), as may be
verified by partial integration.
Theorem 2 (K. FRIEDRICHS [3]). A semi-bounded operator H admits
a self-adjoint extension.

Proof (due to H. FREUDENTHAL [1]). —H is lower semi-bounded if H
is upper semi-bounded. If H is lower semi-bounded as above, then
H, = H + (1 —«) I satisfies the condition that (H,x, x) = ||x||? for all
x € D(H,). Therefore, since «I is self-adjoint, we may assume that the
symmetric operator H satisfies the condition

(Hx, %) = ||%||* for all x€ D(H). (1)

We introduce a new norm || || and the associated new scalar product
(%, y)"in D (H) through

l2|I' = (Hx, %), (x,9)" = (H=x,7). (@)
Since H is symmetric and satisfies (1), it is easy to see that D (H) becomes
a pre-Hilbert space with respect to ||x||" and (x, y)’. We denote by D (H)’
the completion of this pre-Hilbert space.

We shall show that D(H)' is, as an abstract set without topology, a
subset of the set X which is the original Hilbert space. Proof: A Cauchy
sequence {x,}’ of the pre-Hilbert space D(H) satisfies ||, — .|| =
| %4 — % || and lim ||x, — %,,|| = 0; consequently {x,} is also a Cauchy

7,m—>00
sequence of the original Hilbert space X. If we can show, for a Cauchy
sequence {y,} of D(H)’, that
lim ||y,||" 5 0 does not imply lim ||y,|| =0, 3

then the correspondence

{xa} = {2} (4)
is one-one from the Cauchy sequences of D (H) into the Cauchy sequences
of X. Two Cauchy sequences {x,}’, {z,}’ of D(H) (of X) being identified
if im ||x, — z,|| = O(if lim ||%, — z,|| = 0). Since X is complete, we

7—>00 7n—>00

may thus identify its Cauchy sequence {x,} with the element x € X such
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that lim ||x, — x|| = 0. Therefore, D(H)" may, as an abstract set with-
7n—>00

out topology, be identified with a subset of X by the correspondence (4).

‘The proof of (3) is obtained, remembering the continuity of the scalar

product in D(H)’ and in X, as follows. lim [|x,—x,]|'=0,
7,mM—>00

lim ||x,||' =« > 0 and lim ||x,|| = 0 imply a contradiction
7—>00 7—>00
a?= lim (%,,%,) = lim (Hx,,*,) = lim (Hx,, 0) = 0.
7,m—>00 ”n,m—>00 f—>oc0
We next set

D = D(H*) n D(H)'. (5)

Since D (H) € D(H*), we must have D (H) C D C D(H*). Hence we can
define an extension H of H by restricting H* to the domain D=D ( H )-
We have to show that H is self-adjoint.

We first show that H is symmetric. Suppose x, y € D; there exist two
sequences {x,}’, {y,}’ of D (H) such that ||[x —x,||' >0, ||y —ya|| = 0
as n—oco. Hence, by the continuity of the scalar product in D (H)’,

we see thatafinite lim (x,,9y,) = lim (Hx,9,), = lim (x,, H Vo)
7,m—>00 7,m—>00 7,Mm—>00

exists. This limit is equal to
lim lm (Hx,,y,) = lim (Hx,,y) = lim (v, Hy) = (x, Hy)
7—>00, M—>00 7—>00 7—>00

and also to
lim lim (Hx,,y,) = lim (v, Hy,,) = lim (Hx,y,) = (Hx,y).
m—»og_»—»oo m—>00 - - mM—>00
Hence H is symmetric, that is, H C (H)*.
Next let x € D (H), y € X. Then, by

[, ) | = [l Iy ll = [I=]]" - ll21].

we see that f(x) = (x, ¥) is a bounded linear functional on the pre-Hilbert
space D (H). Hence f(x) can, by continuity, be extended to a bounded
linear functional on the Hilbert space D (H)'. Hence, by F. Riesz’ repre-
sentation theorem as applied to the Hilbert space D (H)’, there exists a
uniquely determined y’ € D (H)' such that

f(x) = (x,9) = (x,¥)" = (Hx,y") for all x€ D(H).
This proves that y’ € D(H*) and H*y' = y. Hence y' € DandHy =y.

We have thus proved that R (f} ) = X, and so, by the Corollary of Theo-
rem 1 in Chapter VII, 3, H must be self-adjoint.
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8. The Spectrum of a Self-adjoint Operator. Rayleigh’s
Principle and the Krylov-Weinstein Theorem. The Multiplicity of
the Spectrum

Theorem 1. Let H = f A dE () be a self-adjoint operator in a Hilbert
space X. Let o(H), P,(H), C,(H) and R,(H) be the spectrum, the point
spectrum, the continuous spectrum and the residual spectrum of H,
respectively. Then (i) o(H) is a set on the real line; (ii) Ay € P,(H) is
equivalent to the condition E (4j) 7 E (4, — 0) and the eigenspace of H
corresponding to the eigenvalue 4y is R (E (Ag) — E (49— 0)); (iii) Ay € C, (H)
is equivalent to the condition E(4) = E(4,— 0) in such a way that
E (4,) # E (A3) whenever 4; < 3y < Ay; (iv) R, (H) is void.

Proof. We know already that, for a self-adjoint operator H, the resol-
vent set g (H) of H comprises all the complex numbers A with Im (1) 5% 0

oo

(see Chapter VIII, 1). Hence (i) is clear. We have 3] =4, [ dE (i) by
—00

the definition of the resolution of the identity {E (1)} and so (H —4,1) =

(o]

f (A—4,) dE (2). Hence, as in Corollary 2 of Theorem 2 in Chapter XI,5,

—00
we obtain

oo
IEH 2D x|P= [ G—APd||EQ = xeD@E). (1)
—00
Thus, by E (— oo) = 0 and the right continuity of ||E (4) x|[? in 4, we see
that Hx = Ay« iff

EQx=EM+0x=E@)x for A=41 and
{E(Z)x:E(%—O)x:O for A <4y,

that is, Hx = Ayx iff (E (&) — E (4 — 0)) x = x. This proves (ii). Next
we shall prove (iv). If g€ R,(H), then, by (i), 4 is a real number. By
the condition R(H —1,I)* = D((H — Ay I)71)* 5% X, we see that there
exists a y 7= 0 which is orthogonal to R (H — 4 I), i.e., (H — 2yI) x,y) =0
for all x€ D(H). Hence.(Hx,y) = (4%, y) = (%, Ayy) and so y € D (H*),
H*y = },y. This proves that Hy = 4,y, i.e., 4, is an eigenvalue of H.
Hence we have obtained a contradiction A,€ R,(H) N P,(H), and so
R, (H) must be a void set.

Let A, be a real number not belonging to ¢(H). Then the resolvent
(Al — H)™* exists. Hence H,; = (H —A4,I) has a continuous inverse
(H — 2,1)71. The last condition is, by (iv), equivalent to 4, € ¢ (H) and
to the condition that there exists a positive number « such that

[(H —=%1) z|| 2 & [[#]| for all z€ D(H).
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This condition is by (1) equivalent to
o0
[ A—2)2d ||[E®) »|P=o2||%|[2 forall xcD(H). (2)
—00
Suppose that we have, for 4, <1, <4, with 4g—24, =24, — 1 < &,
E (4;) = E (4;). Then, contrary to (2), we obtain

[ 0=t |E@x|P <o [ a[|E@ x| =a2|| 5P

—00
This proves (iii) by (i), (ii), (iv) and (2).
Remark. The Example in Chapter X1, 5 gives a self-adjoint operator H
for which all real numbers are in the continuous spectrum of H.
Theorem 2. Let H be a bounded self-adjoint operator. Then
sup A= sup (Hx,x), inf A= inf (Hux,x). 3
Z.Go(II)-I) ||x||21( ) A€o (H) lellsl( ) )
Proof. Since (Hx,x) = (x, Hx) = (H«, x) = real number, we can
consider

= inf (Hx, and = sup (Hzx,x).
s, (H % %) %2 ]|x[|§1( )

Let Ay€ o(H). Then, by Theorem 1, there exists, for every pair
(A1, Ay) of real numbers with 4, <4y <4,, a ¥ =y, 7 0 such that
(E(A) — E(4))y = y. We may assume that ||y|| = 1. Hence

(Hy,y)=[Ad(E(A)y,y)= [Ad||EQ) y|P?
_ [Ad||E () (E () —E () y |1

Ay
=lf Ad|[(EQ) —E@R)) y|P.

Thus, by letting 4, 4 4y, 4, | 4y, we obtain lim (Hy;, s, ¥2,.2) = 4. This

proves that sup A= sup 4; < «,.
A€o(H

Let us assuin)e that &, € o (H). Then, by Theorem 1, there exists a pair
(4, 4;) of real numbers such that 4, < &, << 4, and E(4,) = E (4,). Hence
IT=I—E@R) +E®X), (—E@R)E@N)=E@R) ([ —E@A))=0 and
so either (I —E(4,)) or E(4,) is not equal to the zero operator. If
(I — E(Ay)) # 0, then there exists a y with ||y||=1,T —E(4y))y=y.
In this case, we have

(Hy,9) = [Ad|EQ) y|t = [1d |EQ) I —EG) v
= [ralE@y Iz > o

and in the case E (4;) # 0, we obtain
(Hz,2) S 4y < &, for a z with ||z]|=1, E(4) z=z.

*1
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Therefore the assumption «, € ¢ (H) is absurd and so we have proved that

sup A = sup, H(x, x). Similarly, we can prove that inf 1= inf
Aea(g) ||z||£1 ( ) y P A€a(H) ll#ll=1
(Hx ).

Theorem 3 (KRYLOV-WEINSTEIN). Let H be self-adjoint, and define,
for any x € D (H) with ||x|| =1,

oy = (Hz, %), f, = ||Hx]|. (4)
Then, for any ¢ > 0, we can find a A, € o (H) satisfying the inequality
ay— (Bi—od)P—e =l <o, + (B2—ad)? +¢. (5)
Proof. We have

B = (Hx, Hx) = (H?x, %) = [Ad||E@) %2,
a, = (Hx, %) = [A1d||[EQ) x|,
x| =/ a||E@) =[P,

and so
Bi—oi= [Ra||[EQ) x| —2a,[Ad||[E@) x| + o [d||E@) x|
=[(A—a,)2d||E@) x|}

Therefore, if ||E () x|[* does not vary in the interval given by (5), we
would obtain a contradiction

Br—o 2 (B— oY + 9 > 2 —ol.

Remark. The so-called Rayleigh principle consists in taking o, as
an approximation to the spectrum of the operator H. If we calculate §,,
then Theorem 3 gives an upper bound of the error when we take
«, as an approximation of the spectrum of H. For a concrete application of
such error estimate, we refer the reader to K. Yosipa [1].

The Multiplicity of the Spectrum. We shall begin with the case of a
self-adjoint matrix H = f A dE (4) in an n-dimensional Hilbert space X,,.
Let 41, 4, ..., 4, (p = n) be the eigenvalues of H with the multiplicity

LY
normal eigenvectors of H belonging to the eigenvalue 4;(H x; = 4;x;) so
that{x;,; s =1,2,...,m,} spans the eigenspace E;, = R (E (4;) — E (4,—0))

Js’
of H belonging to the eigenvalue A;. Then the set {x;,; 7= 1,2,...,9
and s=1,2,..., mj} is a complete orthonormal system of vectors of
the space X,,, and hence every vector y of X,, is represented uniquely as

the linear combination of xj.’s:

. »
My, My, ..., My, respectively (1‘:_,‘1 m; = n) Let %, %, - .., %;, be ortho-

Yy = é glxhxj . (6)

j=1s=1 s
21 Yosida, Functional Analysis
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Thus, denoting by P, the projection (E(4;) — E(4;—0)) upon the
eigenspace E;, we have, for any « < g,

—_— f— ,)'2 . . _ )
E@-rny=_5 (Zum)= L Py 0
P, (EB)—E)y= Zfzxj, %;,0r = 0 according as &« << 4; =< f or not.
- (8)

Hence, for fixed « << f and a fixed linear subspace M of X, the set

{(E(B)—E)y;ye M}
does not contain E;_ if the dimension of M, dim (M), is < m,. Moreover,
for a suitable M with dim (M) = m;, the set {(E(f) — E (x)) y; y€ M}
with « << 4, =< B contains E,. In fact, the statement is true for M con-
taining x;, %;, . - -, i, In particular, m; = my = -+ - =m, = 1 with
p = n iff there exists a fixed vector y € X,, such that the set of vectors
{(E@B) —E@)y; o <p}
spans the whole space X,,.

These considerations lead to the following definitions:

Definition 1. The spectrum of a self-adjoint operator H = f AdE (R)
in a Hilbert space X is said to be simple, if there exists a fixed vector
y€ X such that the set of vectors {(E(B) —E (x)) ¥; « << 8} span:s a linear
subspace strongly dense in X.

Definition 2. Let H = f A dE (1) be a self-adjoint operator in a Hilbert
space X. For fixed o < f, consider linear subspaces M of (E(f) —
E (x)) - X such that

(E@)—E@W) M= (EF —E@)-X. 9
We may take, for example, M = (E (f) — E (x)) - X to meet condition
(9). The minimum of the set of values dim (M), where M satisfies
condition (9), will be called the tofal multiplicity of the spectrum of H
contained in the interval («, 8].

Definition 3. The multiplicity of the spectrum of a self-adjoint operator
H= f AdL (A) at A = Ay is defined as the limit, as # — oo, of the total
multiplicity of the spectrum of H contained in the interval (4, —»71,
Ao + n71.

Example. The coordinate operator H, i.e., the operator H defined by
H-x() =t-x(f) in L?(— 00, 00), is of the simple spectrum.

Proof. We know that the spectral resolution H = f A dE () is given by

E(A) x(f) = x(f) or = 0 according as ¢ < dor ¢ > A.
Let y(¢) be defined by

y(@t) =¢c,>0for b—1<t=k (k=0,41,42,..))
with §c§<oo so that y () € L2 (— o0, 00).
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Then it is easy to see that the linear combinations of vectors of the form
(E(B) — E (x)) ¥, < B, are strongly dense in the totality of step functions
with compact support and consequently strongly dense in L% (— co,00).

The Problem of the Unitary Equivalence. Two self-adjoint operators
H, and H, in an n-dimensional Hilbert space X,, are said to be unitarily
equivalent to each other if there exists a unitary matrix U in X, such
that H, = UH,U™. It is well-known that H, and H, are unitarily
equivalent to each other iff they have the same system of eigenvalues
with respectively the same multiplicities. Thus the eigenvalues together
with the respective multiplicities are the unitary invariants of a self-ad-
joint matrix.

The investigation of the unitary invariants for a self-adjoint opera-
tor in an infinite dimensional Hilbert space goes back to a paper by
E. HELLINGER [1] published in 1909. See, e.g., M. H. STOoNE [1]. There
the Hilbert spaceis assumed to be separable. For the non-separable Hilbert
space case, see F. WECKEN [1] and H. Nakano [1] and also P. R. HAL-
Mos [2]. K. Yosipa [13] proved the following theorem:

Let H be a self-adjoint operator in a Hilbert space X, and let us
denote by (H)' the totality of bounded linear operators € L (X, X) which
are commutative with H. Then two self-adjoint operators H; and H, in
X are unitarily equivalent to each other iff there exists a one-to-one
mapping T of (H;)" onto (H,)" such that T defines a ring-isomorphism
of the ring (H;)’ with the ring (H,)" in such a way that (T - B)* = T - B*
for every B€ (H,)'.

Thus the algebraic structure of the ring (H,)’ is the unitary invariant
of H,.

9. The General Expansion Theorem. A Condition for the Absence
of the Continuous Spectrum

Let H = f AdE (A) be a self-adjoint operator in a Hilbert space X.
Then, by E (4 oo) = I and E (— oo) = 0, we have the representation

Ay
x = s-lim f dE(A) x = s-lim (E(A,) —E(4,)) % for every x€X.

A § —00,4; 400 s Ay § —00,4, + 00
1)

We shall call (1) the general expansion theorem associated with the self-
adjoint operator H. In concrete cases, it sometimes happens that the
resolvent (A1 — H)™! is obtainable more easily than the spectral resolu-
tion H = f AdE (). In such a case, the general expansion theorem (1)

21*
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may be replaced by

x=“$_80£1‘1314008;l:0 2721[-’.(“_“))1 H)7 xd

(1)

+ f((u—i—iv)I—H)‘lxdu], x€X.
B

Proof. If v % 0, then

(( +0) I —H) % =f

—00

) %, for every x€ X.

For, by approximating the integral by Riemann sums and remembering
the relation E (1) E (2') = E(min (4, A')), we obtain, for Im (u) 5~ 0,

_fz 1) dE () {f/1 }

— fw {f T W E® E(}.’))}
— fw(z ) {fl dE(l’}: jodE(l)z

oo

fl”@Fa.[w—mww4

=f1”{fw w) dx (E0) aﬂ
4] A oo
- fli” {f(l'——,u dE(}.')} de().):I.

Therefore, we have

B «
7 _ -1 ; . —1
;[((u i) —H) " xdu +ﬂf((u+ v) I —H)y 'xdu
o B «
= f dE(’l)x{fu~i:_a.tfu+i:—a}
—00 o B

oo

B &
- f dE(}.)x[fd,,log(u——iv—l) + fd,,log(u kv -,1)}
—00 ] B
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which tends, when v |, 0, strongly to
-0
[ 2nidEQ) x + ni(EB)—E(B—0)x + ni(E(x) —E(x—0) x
«+0
=ni(E(f) + E(f—0) x —n1(E(x) + E(x—0)) x.
This proves formula (1').
Remark. The eigenfunction expansion associated with the second
order differential operator

a2
—zm T 9

with real continuous ¢(x) in an open interval (a, b)) was inaugurated by
H. WEvL [2], further developed by M. H. SToNE [1], and completed
by E. C. TircuMARsH [2] and K. Kopalra [1] who gave a formula which
determines the expansion explicitly. The expansion is exactly a
concrete application of (1). The crucial point in their theory is to give the
possible boundary conditions at x = & and x = b so that the operator

2
- ;%; +¢(®)

becomes a self-adjoint operator H in the Hilbert space L2(a, b). Their
theory is very important in that it gives a unified treatment of the
classical expansions in terms of special functions, such as the Fourier
series expansion, the Fourier integral representation, the Hermite poly-
nomials expansion, the Laguerre polynomials expansion and the Bessel
functions expansion. We do not go into details, and refer the reader to
the above cited book by TiTCHMARSH and the paper by Kopalra. Cf.
also N. A. NAIMARK [2], N. DUNFORD- J. SCHWARTZ [5] and K. Yosipa [1].
The last cited book gives an elementary treatment of the theory.

If the continuous spectrum C,(H) is absent, then the expansion (1)
will be replaced by a series rather than the integral. We have, for in-
stance, the following

Theorem 1. Let H = f A dE () be a self-adjoint compact operator in
a Hilbert space X. Then (i) C, (H) contains no real number except possibly
0; (ii) the eigenvalues of H constitute at most a countable system of real
numbers accumulating only at 0; (iii) for any eigenvalue A, 0 of H,
the corresponding eigenspace E, is of finite dimension.

Proof. Suppose a closed interval [A’, "] on the real line does not
contain the number 0. Then the range R(E(A") — E (X)) is of finite
dimension. If otherwise, there exists, by E. Schmidt’s orthogonalization
in Chapter III, 5, a countable orthonormal system {x;} contained in
R(E(A')—E(\)). We have w;l_l’{‘rcx’ %; = 0, since, by Bessel’s inequality,

ng(ﬂx,-)lzg [|f|[2 for any feX.
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Hence, by the compactness of the operator H, there exists a subsequence
{x;} such that s-.h'm H x; = w-lim Hx; = 0. On the other hand, we have
J—00

|| Hx | —fM |E@) %|F = [2d||E®) (E@X")—E@X)) ]2
——f/lzﬂlll(E(/1 EX)) | = ||%][3- min ([2"[2, |27 [?)

= min (|A'[2, [2"]?),
which is a contradiction.

If C,(H) contains a number 4y 7% 0, then, by Theorem 1 in the preced-
ing section, s“lif% (E(A—¢) —E(Ay—¢)) x = 0for any x € X. As proved
above, the range R(E (4, + &) — E (4y—¢€)) is of finite dimension and
this dimension number is monotone decreasing as ¢, 0. Hence we see
that (E (4, + &) — E (4 —¢)) = 0 for sufficiently small ¢ > 0, and so,
by Theorem 1 in the preceding section, 4, cannot be contained in C, (H).

This proves our Theorem.

Corollary 1. Let {4;} be the system of all eigenvalues of H different
from 0. Then, for any x € X, we have

5= (EO) —E(0—0)x+slim Z(EQ) —EG—0)x. ()

Proof. Clear from (1).
Corollary 2 (The Hilbert-Schmidt Expansion Theorem). For any x€ X,
we have

Hx = slim 3 3,(E(}) —E (4 —0) *. (3)

Proof. Clear from the continuity of the operator H and the fact that
HE@O —E0—0))=0 and H(EQ})—E@ — 0)x=4(E®)
— E (4 — 0)) %, the latter being implied by R(E (4) —E (4;—0))=E,,,
the eigenspace of H belonging to the eigenvalue 4;.

Remark. The strong convergence in (3) is uniform in the unit circle
{x; ||#|| = 1}. For, we have

”Hx— [ 2dE®) l

|1A|>e

fAdE(A)xH2= fsldeE(l) x|[?
|A|<s -8

|

<o [AEDIP<e[a]|ED 2|p=e |l2]p < .

10. The Peter-Weyl-Neumann Theory

Let G be a totally bounded topological group, metrized By a
distance satisfying the condition (see Chapter VIII, 5)

dis(x, y) = dis(axb, ayb) for every x,y,a and b€ G. (1)
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Let f(g) be a complex-valued bounded uniformly continuous function
defined on G. For any ¢ > 0, set

V={3’EG;SUP I/(x)—f(y‘lx)|<s}. (@)
2€G

Then, by the continuity of f, the set V is an open set containing the unit
e of the group G. Hence the set U =V N\ V1, where V-1 = {y~1; y € V},
is also open and > e. If we put

k(x) = 271 (R (x) + &, (x71)), where

. dis (x, U°) . Oy i s
B =4 (%, ¢) + dis(x, U°) (dls (r, U7) = ;g,fc dis (x, y))'

then we have the results:

(3)

k(x) is bounded uniformly continuous on G, and

k(x) =k(x1), 0Zk(x)=1 on G, k(e)=1 and (4)

k(x) = 0 whenever x¢€ U°.
Hence, for all %, y € &, we obtain

|&(y) (F(x) — fy12)) | < e k(y).
By taking the mean value (see Chapter VIII, 5) of both sides, we obtain
|M, (k) () — M, (k(y) v 2)) | = & M, (R (5))-
We have M, (k(y)) > 0 by k(y) = 0 and k(y) == 0. Hence
[f(x) — M, (ko () {y7 %)) | S &, where ko(x) = k(x)[M,(k(x). (5)
Thus, by virtue of the invariance M, (g (y ™)) = M, (g (y)) = M, (g (ay)) =
M, (g (ya)) of the mean value, we obtain, from (5),
() — M, (ko (xy™") f(9))| S & for all x€G. (6)

Proposition 1. We shall denote by C (G) the set of all complex-valued
bounded uniformly continuous functions %(g) defined on G. Then

C(G) is a B-space by the norm ||%||, = sup |A(g) |. Then, for any b and
he C(G),

(bxR) (x) = M, (b(xy™") h(¥)) ()
also belongs to C(G).

Proof. By dis(x, z) = dis(axc, azc) and the uniform continuity of the
function &(g), there exists, for any § > 0, an 5 = 5(d) > 0 such that

sup |b(xy™Y) —b(x'y )| < 6 whenever dis(x, *') < 7.
¥y
Hence, as in the case of Schwarz’ inequality, we obtain
| M, (b (xy™) h(y)) — M, (5('y™") h(y)) [

- rom (8)
= M ((b(xy™) — o'y N)%) - My (|h () ) = 6*M,, (|2 (9) )
whenever dis(x, ') < #. This proves our Proposition 1.
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Proposition 2. C(G) is a pre-Hilbert space by the operation of the
function sum and the scalar product

(6, B) = (bxh*) (e) = M, (b(y™) h(y~Y)) = M, (b(y) h(y)), where
h*(y) = k(y'). We shall denote this pre-Hilbert space by (G (G).

Proof. Easy.
Proposition 3. We shall denote the completion of the pre-Hilbert space

€ (G) by C (G), and the norm in the Hilbert space C(G) by ||k]| = (h, W)=
Then the linear mapping T on c (G) into c (G) defined by

(Th) (%) = (kgXh) (x), x€G, (10)

can, by the continuity in ¢ (G), be extended to a compact linear operator
T on C(G) into C (G).
Proof. By virtue of M, (1) = 1, we obtain

|21l = (b, B = M, (h(y) )1’2<Suplh W =IlAll. (1)

The continuity of the operator T in C(G) is clear from the Schwarz
inequality for (7), and so, by the denseness of c (G) in c (G), we can
extend T to a bounded linear operator TinC (G). On the other hand, we
see, by (8), that T is a compact operator on ¢ (G) into C(G). We prove
this by the Ascoli-Arzela theorem. Thus, by (11), we easily see that Tisa
compact operator on ¢ (G) into ¢ (G).

Therefore, by the denseness of C(G (G)in C (G) we see that the extended
operator T is also compact as an operator on C (G) into c (G).

We are now ready to prove the Peter-Weyl-Neumann theory on the
representation of almost periodic functions.

It is easy to see that, by &y (xy~) = &, (y2 1), the compact operator Tis
self-adjoint in the Hilbert space C (G). Hence, by the Hilbert-Schmidt
expansion theorem in the preceding section, we obtain

Th = s-lim 2 APy, h uniformly in A satisfying ||A]| < 1, (12)

o0 =1
if we denote by {4,} the system of all eigenvalues of T different from
0, and by P,  the projection upon the eigenspace of T belonging to the
eigenvalue 4,,.

Since f(g), introduced at the beginning of this section, belongs to
C(G), we have Tf=TfeC (G). Since the eigenspace R(P; ) = P, , - C (G)
is of finite dimension, there exists, for every eigenvalue A,,, a finite
system {A,;};—1,.n, Of elements € E(G) such that each A€ R(P,;,) =
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p,. - C (G) can be represented as a uniquely determined linear combina-
tion of A,;'s (1 =1,2,...,n,). Let

P, h= é:‘ Cihyj, Where ¢’s are complex numbers. (13)
=

Then, since A,; € R(P,,), we have fh,,,- = Amhu;, and so, by applying

(8) to the operator T given by (10), we see that 4,,; = }.;l(f‘h,,,j) must

belong to C (G). Hence, by (13), we see that, for each eigenvalue 4, of T,

the eigenspace R(P,,)) =P, , - C (G) is spanned by the functions 4,,;€ C (G).
Therefore, we have, by (12),

(Tf) (x) = s-lim 2”: Amlm (%) in the strong topology of c (G),
7—>00 m=1

where f,, = P, - f€ C(G) for each m.
By applying (8) to the operator T given by (10), we see that
(1) (x) = lim M, (ko ™ E Al (y)> uniformly in x. (14)
On the other hand, by (6) and M, (k,(y)) = 1, we obtain
| M, (ko (x277) }(2)) — M, (ko (x27) M, (Ro(2y™Y) 1)) | < &,
and so, combined with (6), we have
|1 (%) — M, (ko (x27") M, (ko @y 1) = 2e. (15)
The left hand side is precisely |/ (x) — (T2f) (¥) | < 2e.
Since T+ R(P;,) ¢ R (Py), we have proved

Theorem 1. The function f(x) can be approximated uniformly on G by
linear combinations of the eigenfunctions of T belonging to the eigen-
values which are different from 0.

We shall take a fixed eigenvalue A4 # 0 of T, and shall denote the
base {#;} C C(G) of the corresponding eigenspace P; - C(G) by e (%),
es(%), . . ., ex(¥). Then, by the invariance of the mean value, we obtain,
for any a € G,

M, (ko (xy™") €;(ya)) = M, (ko (xa-a™ 'y ™) ¢ (ya) = M, (ko (xa-27") ¢;(2))
= (T¢;) (xa) = Aej(xa).

Since the left hand side is equal to the result of applying the operator T
upon the function ¢;(ya) of y, we see that, for any given a € G, the func-
tion ¢;(xa) of ¥ must be uniquely represented as a linear combination of
the functions e, (x), €2 (%), . . ., €;(x). We have thus

€(xa) = .zkl‘ di(a) e;(x) (1=1,2,...,k), (16)

=
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or, in vectorial notation,

e(xa) = D(a) e(x). (16")
By e(x - ab) = D(ab) e(x), e(xa - b) = D (b) e(xa) = D (b) D (a) e(x), we
see, remembering the linear independence of ¢, (x), e (%), . . ., ¢, (%), that

D (ab) = D (b) D(a), D (e) = the unit matrix of degree k.  (17)

By applying E. Schmidt’s orthogonalizition, we may assume that {¢;(x)}
constitutes an orthonormal system in C (G). Then, by (16),

M, (¢;(xa) € (x)) = dj;(a) (18)

and so the elements d;;(a) of the matrix D (a) belong to C(G). By the
invariance of the mean value, we see that

M, (¢;(va) e (ya)) = M, (¢;(y) & (y)) = 5.
Hence the matrix D (a) gives a linear mapping transforming the ortho-
normal system {¢; (x)} onto the orthonormal system {e;(x4)}. Therefore
D (a) must be a unitary matrix. Hence the tranposed matrix D (a)’ of
D (a) is also unitary and we have

D(abd) = D(a) D(b)’, D(e)’ = the unit matrix of degree k. (17')

Hence D (a)’ gives a unitary matrix representation of the group G such that
its matrix elements are continuous functions of a. Letting x = ¢ in (16),
we see that each ¢;(a) is a linear combination of the matrix elements of
the representation D (a)’.

We have thus proved

Theorem 2 (PETER-WEYL-NEUMANN). Let G be a totally bounded
topological group, metrized by a distance satisfying dis(x,y) =
dis(axb, ayb). Let f(g) be any complex-valued bounded uniformly
continuous function defined on G. Then, f(g) can be approximated uni-
formly on G by linear combinations of the matrix elements of unitary
uniformly continuous matrix representations D (g)’ of the group G.

Referring to A. Weil’s reduction given in Chapter VIII, 5, we obtain
the following

Corollary. Let G be an abstract group, and f(g) an almost periodic
function on G. Then f(g) can be approximated uniformly on G by linear
combinations of the matrix elements of unitary matrix representations
D (g)’ of the group G.

Remark 1. Let the degree of a unitary matrix representation D (g)’
of the group G be 4, i.e., the degree of the matrix D (g)’ be d. Then each
D (g)’ gives a linear mapping of a fixed d-dimensional complex Hilbert
space X, onto itself. The representation D (g)’ is said to be irreducible if
there is no proper linear subspace # {0} of X, which is invariant by
applying the mappings D(g)’, g€ G. Otherwise, the representation
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D(g)" is called reducible, and there exists a proper linear subspace
X417 {0} invariant by every D(g)’, g€ G. Then the orthogonal com-
plement X}y of X;; in X, is, by the unitarity of the representation
D(g)’, also invariant by every D (g), g € G. If we take for the base of the
linear space X, the orthonormal system of vectors composed of one
orthonormal system of vectors of X,; and one of X, then, by this
choice of an orthonormal base of X,, the representation D(g)" will be
transformed into the form

UD{'U = (D’ég) Dﬁg}’) , where U is a fixed unitary matrix.

’

Hence a reducible unitary representation D (g)" is completely reducible
into the sum of two unitary representations D;(g)’ and D,(g)’ of the
group G acting respectively upon X,; and X7;. In this way, we finally
can choose a fixed unitary matrix U, such that the representation
U,D(g) U7' is the sum of irreducible unitary representations of the
group G. Therefore, in the statements of Theorem 2 and its Corollary,
we can impose the condition that the matrix representations D (g) are all
irreducible.

Remark 2. In the particular case when G is the additive group of real
numbers, a unitary irreducible representation D (g)’ is given by

D(g)’ = ¢, where  is a real number and 7 = y—1. (19)

For, by the commutativity of the unitary matrices D(g)’, g€ G, the
representation D(g)’ is completely reducible into the sum of one-dimen-
sional unitary representations yx(g), that is, complex-valued solutions

% (g) of

2@+ 8) = 2@ -2, |x(@) =1 (€ &€6).x (0)=1. (20)
It is well known that any continuous solution of (20) is of the form
2 (g) = ¢*¢. Hence, any continuous almost periodic function /(g) on the
additive group G of real numbers can be approximated uniformly on G
by linear combinations of e*¢ with real «’s. This constitutes the fun-
damental theorem in H. Bohr’s theory of almost periodic functions.
According to the original definition by Bohr, a continuous function f(x)
(—o0 < x < o0) is called almost periodic if for each € > 0 there exists a
positive number p = $ (¢) such that any interval of the form (¢, £ + p)
contains at least one 7 such that

[fx+71)—f@®)|=e for —oo < x<oo.

See H. Bonr [1]. S. BoCHNER [4] has shown that a continuous function
f(x) (— oo < x < o0) is almost periodic in Bohr’s sense iff the following
condition is satisfied: For any sequence of real numbers {a,}, the system
of functions {f,,(%); f,, (%) = f(x + a,)}is totally bounded in the topology
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of the uniform convergence on (—oo,o0). It was extended by J. von
NEUMANN [4] to almost periodic functions in a group. Neumann's result
contains as a special case, the Peter-Weyi theory of continuous representa-
tion of a compact Lie group (PETER-WEYL [1]). According to our treat-
ment, Bohr’s result is easily proved by observing that lim |s — ¢ = 0
implies lim [sup [f(asb) — f(atb)[] =0.

ab

11. Tannaka’s Duality Theorem for Non-commutative Compact
Groups

Let G be a compact (fopological) group. This means that G is a compact
topological space as well as a group in such a way that the mapping

(%,5) > xy
of the product space G X G onto G is continuous.

Proposition 1. A complex-valued continuous function f(g) defined
on a compact group G is uniformly continwous in the following sense:

for any £ > 0, there exists a neighbourhood U (e) of
the unit element ¢ of G such that |f(x) —f(y)| <e (1)
whenever xy~1¢€ U (¢) and also whenever x~1y € U (e).

Proof. Since f(x) is continuous at every point a € G, there exists a
neighbourhood V, of a such that x € V, implies |f(x) —/f(a)| < /2.
If we denote by U, the neighbourhood of e defined by U, = V,a™! =
{va~'; v€ V}, then xa~ '€ U, implies |f(x) — f(a)| < ¢/2. Let us denote
by W, the neighbourhood of e such that W2 C U,, where W2 =
{wywy; w; € W, (i =1, 2)}. Obviously, the system of all open sets of
the form W, - a, where a is an arbitrary element of G, covers the whole
space G. G being compact, there exists a finite set {a,; 1 =1,2,...,n}
such that the system of open sets W, -a; (1 =1, 2,...,n) covers G.
We denote by U (¢) the intersection of all open sets of the system {W, }.
Then U (e) is a neighbourhood of e. We shall show that if xy~1¢€ U (e),
then |f(¥) — /()| = ¢. Since the system W,, - a; covers G, there exists
anumber & such that ya; ' € W, C U,, and therefore [F(y) — Fa) | < /2.
Furthermore we have xa;! = 2y 'ya;t € U(e) W,, C W2, C U,, so that
|f(x) —f(as)| < &/2. Combining these two inequalities we get
1) —10) | < e.

If we start with a neighbourhood U, of ¢ such that x~*a ¢ U, implies
|f(x) — f(a)| < €/2, we would obtain a neighbourhood U (¢) of e such
that |f(x) — f(y)| < ¢ whenever x~'y € U(e). Thus taking the inter-
section of these two U (e)’s as the U (e) in the statement of the Proposi-
tion, we complete the proof.
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Corollary. A complex-valued continuous function f(x) on a compact
group G is almost periodic on G.

Proof. Let U (e) be the neighbourhood of ¢ given in Proposition 1.
For any a€ G, U (e) a is a neighbourhood of a. The compact space G is
covered by the system of open sets U (¢) @, a € G, and therefore some
finite subsystem {U(e) a;;i=1,2,...,n} covers G. That is, for any
a € G, there exists some a, with # < » such that aa;' € U (¢). Hence, by
(a%) (a,x)" = aay?, we have sup |f(ax) — f(a,x)| < e. Similarly, we

can find a finite system {b;, 1 = 1, 2, ..., m} such that, for any b€ G,
there exists some &; with § < m satisfying the inequality

sup |f(a;x0) — f(a;xb;) | < e.
Therefore, for any pair a, b of elements € &, we can find 4, and b;
(¢ < m, 7 < m) such that
sup |f(axb) — f(apxb)) | < 2e.
x

This proves that the system of functions {f,(x); /. (*) = f(axd), a and
b€ G} is totally bounded by the maximum norm ||4|| = sup |4(x) |. Hence
x

f(x) is almost periodic on G.

We are now able to extend the Peter-Weyl-Neumann Theory of the
preceding section to complex-valued continuous functions f(x) on a
compact group G. For such a function f(x) and ¢ > 0, we set

V= {ye G;sup [f(x) —fly1a) | < 8}-

Then, by the continuity of /, the set V' is an open set containing e. By
Urysohn’s theorem as applied to the normal space G, we see that there
exists a continuous function %, (¥) defined on G such that

0<k(x)<1lonG, k() =1 and % (x) =0 whenever x€ V°.
Then the continuous function
k(x) = 271 (ky (%) + By (x71) (2)
satisfies the condition %(x1) = % (x) and
0=k(*)=1onG, k(e)=1 and k(x)=0
whenever x € US, where U =V V1,

Therefore, if we denote by C(G) the B-space of all complex-valued
continuous functions % (x) defined on G normed by the maximum norm,

we can define a linear operator T on ¢ (G) into ¢ (G) by

(Th) (x) = (kg Xh) (x), x€G. (3)
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Here, as in the preceding section,

ko (%) = k(%)M (k(x)) (4)
and C (G) is the the space Clg) endowed witht the scalag E)duct
(b, k) = M, (b(y) h(y)) = (bXA*) (¢), B*(y) = h(y™). (5)

Thus, as in the preceding section, we obtain

Theorem 1. Any complex-valued continuous function f (¢) defined on a
compact group G is almost periodic, and f(g) can be approximated uni-
formly on G by linear combinations of the matrix elements of unitary,
continuous, irreducible matrix representations of G.

We shall say that two matrix representations 4,(g) and 4,(g) of a
group G are equivalent if there exists a fixed non-singular matrix B
such that B—14,(g) B = A4,(g) for all g€ G.

Proposition 2 (I. Schur’s lemma). If the representations 4, (g), 4,(g)
are irreducible and inequivalent, then there is no matrix B such that

4,(g) B = B4,(g) (6)

holds identically in g, except B = 0. In (6), the matrix B is assumed
to be of n; rows and 7, columns, where #,, n, are the degrees of 4, (g),
A,(g), respectively.

Proof. Let X, and X, be the linear spaces subject to the linear
transformations 4,(g) and A,(g), respectively. B in (6) can be inter-
preted as a linear mapping x, — x; = Bx, of X, onto X,. The linear
subspace of X, consisting of all vectors x, of the form Bx, is invariant,
for A,(g) x, = Bxy with x5 = A, (g) x,. By virtue of the irreducibility
of A, (g), there are only two possibilities: either Bx, = 0 for all x, in X,,
ie. B=0, or X; = BX, On the other hand, the set of all vectors x,
in X, such that Bx, = 0is an invariant subspace of X,, for BA,(g) x, =
A,(g) Bxy = 0. From the irreducibility of A4,(g) we conclude: either
Bx, = 0 for all , in X,, i.e. B =0, or x, = 0 is the only vector in X,
such that Bx, = 0, so that distinct vectors in X, go into distinct vectors
in X, under the linear mapping B. Hence if B % 0 we conclude that B
defines a one-one linear mapping of X, onto X,. But this means that B
is a non-singular matrix (n, = #,) and so 4, (g) and 4, (g) would be equi-
valent.

Proposition 3 (the orthogonality relations). Let A, (g) = (aj;(g)) and
As(g) = (a%(g)) be unitary, continuous, irreducible matrix representa-
tions of a compact group G. Then we have the orthogonality relations:

M, (aj;(g) a%(g)) = 0, if A,(g) is inequivalent to 4, (g), @
M, (a;(g) a},(g)) = n1"6;;,6; where n, is the degree of 4, (G).

Proof. Let n, n, be the degrees of 4, (g), 4,(g) respectively. Take any

matrix B of #, rows and #, columns, and set 4(g) = A,(g) BA,(g™Y).
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Then the matrix 4 = M, (A (g)) satisfies 4,(g) A = A A,(g). For, we
have, by the invariance of the mean value,

A1(y) A4y (y77) = My (41 (y) 41(g) BAs(g7") A2 (v™))
= M, (4:(vg) BAz((yg)‘l) =4
By Schur’s lemma, 4 must be equal to a zero matrix. If we take B — (bs1)

in such a way that only the element &;, is not zero, then, by the unitarity
condition 4,(g!) = A,(g)’, we obtain
M, (ak(g) af(g)) = 0.
Next we have,asabove, 4; (g) A=A A, (g) for A= M (A4, (g) BA,(g7Y)).

Let « be any one of the eigenvalues of the matrix 4. Then the matrix
(A —al,), where I, denotes the unit matrix of degree »;, satisfies

4,(8) (A —wl,) = (4 —al,) 4:(g).

Therefore, by Schur’s lemma, the matrix (4 —«I,,) is either non-singular,
or (A —«l,) = 0. The first possibility is excluded since « is an eigen-
value of 4. Thus A = « I, . By taking the ¢race (the sum of the diagonal
elements) of both sides of 4 = M, (4, (g) BA,(g"?)), we obtain

nyo = trace(4) = M, (trace (4, (g) BA1(g)™") = M, (trace(B))
= trace(B).

Therefore, if we take B = (b;) in such a way that b; = 1 while
the other elements are all zero, then, from M, (4,(g) BA,(¢g™Y)) = n7!
trace(B) 1,,, we obtain

Mg(a}j( akl )—nl 61k6 .

Corollary. There exists a set I of mutually inequivalent, continuous,
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