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Preface

Since the 1980s, Fourier analysis methods have become of ever greater interest
in the study of linear and nonlinear partial differential equations. In partic-
ular, techniques based on Littlewood–Paley decomposition have proven to be
very efficient in the study of evolution equations. Littlewood–Paley decom-
position originates with Littlewood and Paley’s works in the early 1930s and
provides an elementary device for splitting a (possibly rough) function into a
sequence of spectrally well localized smooth functions. In particular, differen-
tiation acts almost as a multiplication on each term of the sequence. However,
its systematic use for nonlinear partial differential equations is rather recent.
In this context, the main breakthrough was achieved after J.-M. Bony intro-
duced the paradifferential calculus in his pioneering 1981 paper (see [39]) and
its avatar, the paraproduct.

Surprisingly, despite the growing number of authors who now use such
techniques, to the best of our knowledge, there is no textbook presenting
Fourier analysis tools in such a way that they may be directly used for solving
nonlinear partial differential equations.

The aim of this book is threefold. First, we want to give a detailed presen-
tation of harmonic analysis tools that are of constant use for solving nonlinear
partial differential equations. Second, we want to convince the reader that the
rough frequency splitting supplied by Littlewood–Paley decomposition (which
turns out to be much simpler than, e.g., Calderon–Zygmund decomposition
or wavelet theory) may still provide elementary and elegant proofs of some
classical inequalities (such as Sobolev embedding and Gagliardo–Nirenberg or
Hardy inequalities). Third, we give a few examples of how to use these basic
Fourier analysis tools to solve linear or nonlinear evolution partial differential
equations. We have chosen to present the most popular evolution equations,
namely, transport and heat equations, (linear or quasilinear) symmetric hy-
perbolic systems, (linear, semilinear, or quasilinear) wave equations, and the
(linear or semilinear) Schrödinger equation. We place a special emphasis on
models coming from fluid mechanics (in particular, on the incompressible
Navier–Stokes and Euler equations) for which, historically, the Littlewood-
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viii Preface

Paley decomposition was first used. It goes without saying that our methods
are also relevant for solving a variety of other equations. In fact, there has been
a plethora of recent papers dedicated to more complicated nonlinear partial
differential equations in which Littlewood–Paley decomposition proves to be
a crucial tool.

This book is almost self-contained, inasmuch as having an undergraduate
level understanding of analysis is the only prerequisite. There are rare excep-
tions where we have had to admit nontrivial mathematical results, in which
case references are given. Apart from these, we have postponed references,
historical background, and discussion of possible future developments to the
end of each chapter. The book does not contain any definitively new results.
However, we have tried to provide an exhaustivity that cannot be found in any
single paper. Also, we have provided new proofs for some well-known results.

We have also decided not to discuss the theory of wavelets, even though this
would be the natural extension of Littlewood–Paley decomposition. Indeed, it
turns out that, to the best of our knowledge, there are almost no theoretical
results for nonlinear partial differential equations in which wavelets cannot be
replaced by a simple Littlewood–Paley decomposition.

When writing this book, we tried as much as possible to make a distinction
between what may be proven by means of classical analysis tools and what
really does require Littlewood–Paley decomposition (and the paraproduct).
In fact, with only a few exceptions, all the material concerning Littlewood–
Paley decomposition is contained in Chapter 2 so that the reader who is not
accustomed to (or who is afraid of) those techniques may still read a great deal
of the book. In fact, the whole of Chapter 1, the first section of Chapter 3, the
first half of Chapter 4, Chapter 5 (except for the last section), the first section
of Chapter 6, and the first two sections of Chapter 8 may be read completely
independently of Chapter 2. In most of the other parts of the book, Chapter 2
may be used freely as a “black box” that does not need to be opened.

Roughly speaking, the book may be divided into two principal parts: Tools
are developed in the first two chapters, then applied to a variety of linear and
nonlinear partial differential equations (Chapters 3–10). A detailed plan of
the book is as follows.

Chapter 1 is devoted to a self-contained elementary presentation of clas-
sical Fourier analysis results. Even though none of the results are new, some
of the proofs that we present are not the standard ones and are likely to be
useful in other contexts. We also pay attention to the construction of explicit
examples which illustrate the optimality of some refined estimates.

In Chapter 2 we give a detailed presentation on Littlewood–Paley de-
composition and define homogeneous and nonhomogeneous Besov spaces. We
should emphasize that we have replaced the usual definition of homogeneous
spaces (which are quotient distribution spaces modulo polynomials) by some-
thing better adapted to the study of partial differential equations (indeed,
dealing with distributions modulo polynomials is not appropriate in this con-
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text). We also establish technical results (commutator estimates and func-
tional inequalities, in particular) which will be used in the following chapters.

In Chapter 3 we give a very complete theory of strong solutions for trans-
port and transport-diffusion equations. In particular, we provide a priori es-
timates which are the key to solving nonlinear systems coming from fluid
mechanics. Chapter 4 is devoted to solving linear and quasilinear symmetric
systems with data in Sobolev spaces. Blow-up criteria and results concerning
the continuity of the flow map are also given. The case of data with critical
regularity (in a Besov space) is also investigated.

In Chapter 5 we take advantage of the tools introduced in the previous
chapters to establish most of the classical results concerning the well-posedness
of the incompressible Navier–Stokes system for data with critical regularity.
In order to emphasize the robustness of the tools that have been introduced
hitherto in this book, we present in Chapter 6 a nonlinear system of partial
differential equations with degenerate parabolicity. In fact, we show that some
of the classical results for the Navier–Stokes system may be extended to the
case where there is no vertical diffusion. Most of the results of this chapter
are based on the use of an anisotropic Littlewood–Paley decomposition.

Chapter 7 is the natural continuation of the previous chapter: The diffu-
sion term is removed, leading to the study of the Euler system for inviscid
incompressible fluids. Here, we state local (in dimension d ≥ 3) and global
(in dimension two) well-posedness results for data in general Besov spaces.
In particular, we study the case where the data belong to Besov spaces for
which the embedding in the set of Lipschitz functions is critical. In the two-
dimensional case, we also give results concerning the inviscid limit. We stress
the case of data with (generalized) vortex patch structure.

Chapter 8 is devoted to Strichartz estimates for dispersive equations with a
focus on Schrödinger and wave equations. After proving a dispersive inequality
(i.e., decay in time of the L∞ norm in space) for these equations, we present,
in a self-contained way, the celebrated TT � argument based on a duality
method and on bilinear estimates. Some examples of applications to semilinear
Schrödinger and wave equations are given at the end of the chapter.

Chapter 9 is devoted to the study of a class of quasilinear wave equations
which can be seen as a toy model for the Einstein equations. First, by taking
advantage of energy methods in the spirit of those of Chapter 4, we establish
local well-posedness for “smooth” initial data (i.e., for data in Sobolev spaces
embedded in the set of Lipschitz functions). Next, we weaken our regularity
assumptions by taking advantage of the dispersive nature of the wave equa-
tion. The key to that improvement is a quasilinear Strichartz estimate and a
refinement of the paradifferential calculus. To prove the quasilinear Strichartz
estimate, we use a microlocal decomposition of the time interval (i.e., a de-
composition in some interval, the length of which depends on the size of the
frequency) and geometrical optics.

In Chapter 10 we present a more complicated system of partial differential
equations coming from fluid mechanics, the so-called barotropic compressible
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Navier–Stokes equations. Those equations are of mixed hyperbolic-parabolic
type. We show how we may take advantage of the results of Chapter 3 and the
techniques introduced in Chapter 2 so as to obtain local (or global) unique
solutions with critical regularity. The last part of this chapter is dedicated
to the study of the low Mach number limit for this system. It is shown that
under appropriate assumptions on the data, the limit solution satisfies the
incompressible Navier–Stokes system studied in Chapter 5.

In writing this book, we had help from many colleagues. We are particu-
larly indebted to F. Charve, B. Ducomet, C. Fermanian-Kammerer, F. Sueur,
B. Texier, and to the anonymous referees for pointing out numerous mistakes
and giving suggestions and advice. In addition to J.-M. Bony, our work was in-
spired by many collaborators and great mathematicians, among them B. Des-
jardins, I. Gallagher, P. Gérard, E. Grenier, T. Hmidi, D. Iftimie, H. Koch,
S. Klainerman, Y. Meyer, M. Paicu, D. Tataru, F. Vigneron, C.J. Xu, and
P. Zhang. We would like to express our gratitude to all of them.

Paris Hajer Bahouri
Jean-Yves Chemin
Raphaël Danchin
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1

Basic Analysis

This chapter is devoted to the presentation of a few basic tools which will
be used throughout this book. In the first section we state the Hölder and
Minkowski inequalities. Next, we prove convolution inequalities in the general
context of locally compact groups equipped with left-invariant Haar measures.
The adoption of this rather general framework is motivated by the fact that
these inequalities may be used not only in the R

d and Z
d cases, but also

in other groups such as the Heisenberg group H
d. Both Lebesgue and weak

Lebesgue spaces are used. In the latter case, we introduce an atomic decompo-
sition which will help us to establish a bilinear interpolation-type inequality.
Finally, we give a few properties of the Hardy–Littlewood maximal operator.

The second section is devoted to a short presentation on the Fourier trans-
form in R

d. The third section is dedicated to homogeneous Sobolev spaces
in R

d. There, we state basic topological properties, consider embedding in
Lebesgue, bounded mean oscillation, and Hölder spaces, and prove refined
Sobolev inequalities. The classical Sobolev inequalities are of course invariant
by translation and dilation. The refined versions of the Sobolev inequalities
which we prove are, in addition, invariant by translation in the Fourier space.
We also present some classes of examples to show that these inequalities are in
some sense optimal. In the last section of this chapter, we focus on nonhomo-
geneous Sobolev spaces, with a special emphasis on trace theorems, compact
embedding, and Moser–Trudinger and Hardy inequalities.

1.1 Basic Real Analysis

1.1.1 Hölder and Convolution Inequalities

We begin by recalling the classical Hölder inequality.

Proposition 1.1. Let (X, μ) be a measure space and (p, q, r) in [1, ∞]3 be
such that

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 1, c© Springer-Verlag Berlin Heidelberg 2011

1

http://dx.doi.org/10.1007/978-3-642-16830-7_1
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1
p

+
1
q

=
1
r

·

If (f, g) belongs to Lp(X, μ) × Lq(X, μ), then fg belongs to Lr(X, μ) and

‖fg‖Lr ≤ ‖f ‖Lp ‖g‖Lq .

Proof. The cases where p = 1 or p = ∞ being trivial, we assume from now
on that p is a real number greater than 1. The concavity of the logarithm
function entails that for any positive real numbers a and b and any θ in [0, 1],

θ log a + (1 − θ) log b ≤ log(θa + (1 − θ)b),

which obviously implies that

aθb1−θ ≤ θa + (1 − θ)b.

Hence, assuming that ‖f ‖Lp = ‖g‖Lq = 1, we can write∫
X

|fg|r dμ =
∫

X

(|f |p)
r
p (|g|q)

r
q dμ

≤ r

p

∫
X

|f |p dμ +
r

q

∫
X

|g|q dμ

≤ r

p
+

r

q
= 1.

The proposition is thus proved. ��

The following lemma states that Hölder’s inequality is in some sense optimal.

Lemma 1.2. Let (X, μ) be a measure space and p ∈ [1, ∞]. Let f be a mea-
surable function. If

sup
‖g‖

Lp′ ≤1

∫
X

|f(x)g(x)| dμ(x) < ∞,

then f belongs to Lp and1

‖f ‖Lp = sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

Proof. Note that if f is in Lp, then Hölder’s inequality ensures that

sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x) ≤ ‖f ‖Lp

so that only the reverse inequality has to be proven.
1 Here, and throughout the book, p′ denotes the conjugate exponent of p, defined
by

1

p
+

1

p′ = 1, with the rule that
1

∞ = 0.
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We start with the case p = ∞. Let λ be a positive real number such

that μ(|f | ≥ λ) > 0. Writing Eλ
def= (|f | ≥ λ), we consider a nonnegative

function g0 in L1, supported in Eλ with integral 1. If we define

g(x) =
f(x)

|f(x)| g0,

then g is in L1 so that fg is integrable by assumption, and we have
∫

X

fg dμ(x) =
∫

X

|f |g0 dμ(x) ≥ λ

∫
X

g0 dμ(x) = λ.

The lemma is proved in this case. We now assume that p ∈ ]1, ∞[ and consider
a nondecreasing sequence (En)n∈N of subsets of finite measure of X, the union
of which is X. Let2

fn(x) = 1En ∩(|f |≤n)f and gn(x) =
fn(x)|fn(x)|p−1

|fn(x)| ‖fn‖
p
p′
Lp

·

It is obvious that fn belongs to L1 ∩ L∞ and thus to Lp for any p. Moreover,
we have

‖gn‖p′

Lp′ =
1

‖fn‖p
Lp

∫
X

|fn(x)|(p−1) p
p−1 dμ(x) = 1.

The definitions of the functions fn and gn ensure that
∫

X

f(x)1En ∩(|f |≤n)gn(x) dμ(x) =
∫

X

fn(x)gn(x) dμ(x)

=
(∫

X

|fn(x)|p dμ(x)
)

‖fn‖
− p

p′
Lp

= ‖fn‖Lp .

Thus, we have

‖fn‖Lp ≤ sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

The monotone convergence theorem immediately implies that

‖f ‖Lp ≤ sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

Finally, in order to treat the case where p = 1, we may consider the se-
quence (gn)n∈N defined by

gn(x) = 1(fn �=0)(x)
fn(x)

|fn(x)| ·

2 Throughout this book, the notation 1A, where A stands for any subset of X,
denotes the characteristic function of A.
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We obviously have ‖gn‖L∞ = 1 and
∫

X

f(x)gn(x) dμ(x) =
∫

X

|fn(x)| dμ(x).

Using the monotone convergence theorem, we get that
∫

X

|f(x)| dμ(x) < ∞ and
∫

X

|f(x)| dμ(x) = lim
n→∞

∫
X

|fn(x)| dμ(x),

which completes the proof of the proposition. ��

We now state Minkowski’s inequality.

Proposition 1.3. Let (X1, μ1) and (X2, μ2) be two measure spaces and f a
nonnegative measurable function over X1 × X2. For all 1 ≤ p ≤ q ≤ ∞, we
have ∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

≤
∥∥∥‖f(x1, ·)‖Lq(X2,μ2)

∥∥∥
Lp(X1,μ1)

.

Proof. The result is obvious if q = ∞. If q is finite, then, using Fubini’s

theorem and r
def= (q/p)′, we have

∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

=

(∫
X2

(∫
X1

fp(x1, x2) dμ1(x1)
) q

p

dμ2(x2)

) 1
q

=

(
sup

‖g‖Lr(X2,μ2)=1
g≥0

∫
X1×X2

fp(x1, x2)g(x2) dμ1(x1) dμ2(x2)

) 1
p

≤
(∫

X1

(
sup

‖g‖Lr(X2,μ2)=1
g≥0

∫
X2

fp(x1, x2)g(x2) dμ2(x2)
)

dμ1(x1)

) 1
p

.

Using Hölder’s inequality we may then infer that

∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

≤
(∫

X1

(∫
X2

fq(x1, x2) dμ2(x2)
) p

q

dμ1(x1)
) 1

p

,

and the desired inequality follows. ��

The convolution between two functions will be used in various contexts in
this book. The reader is reminded that convolution makes sense for real- or
complex-valued measurable functions defined on some locally compact topo-
logical group G equipped with a left-invariant Haar measure3 μ. The (formal)
definition of convolution between two such functions f and g is as follows:
3 This means that μ is a Borel measure on G such that for any Borel set A and
element a of G, we have μ(a · A) = μ(A).
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f � g(x) =
∫

G

f(y) g(y−1 · x) dμ(y).

We can now state Young’s inequality for the convolution of two functions.

Lemma 1.4. Let G be a locally compact topological group endowed with a
left-invariant Haar measure μ. If μ satisfies

μ(A−1) = μ(A) for any Borel set A, (1.1)

then for all (p, q, r) in [1, ∞]3 such that

1
p

+
1
q

= 1 +
1
r

(1.2)

and any (f, g) in Lp(G, μ) × Lq(G, μ), we have

f � g ∈ Lr(G, μ) and ‖f � g‖Lr(G,μ) ≤ ‖f ‖Lp(G,μ)‖g‖Lq(G,μ).

Proof. We first note that, owing to the left invariance and (1.1), for all x ∈ G
and any measurable function h on G, we have

∫
G

h(y) dμ(y) =
∫

G

h(y−1 · x) dμ(y).

Therefore, the case r = ∞ reduces to the Hölder inequality which was proven
above.

We now consider the case r < ∞. Obviously, one can assume without loss
of generality that f and g are nonnegative and nonzero. We write

(f � g)(x) =
∫

G

f
r

r+1 (y) g
1

r+1 (y−1 · x) f
1

r+1 (y) g
r

r+1 (y−1 · x) dμ(y).

Observing that (1.2) can be written
r

r + 1

(1
p

+
1
q

)
= 1, Hölder’s inequality

implies that

(f � g)(x) ≤
(∫

G

fp(y)g
p
r (y−1·x) dμ(y)

) r
(r+1)p
(∫

G

f
q
r (y)gq(y−1·x) dμ(y)

) r
(r+1)q

.

Applying Hölder’s inequality with α = rq/p (resp., β = rp/q) and the mea-
sure fp(y) dμ(y) [resp., gq(y−1· x) dμ(y)], and using the invariance of the mea-
sure μ by the transform y 
→ y−1 · x, we get

(f � g)(x) ≤
(∫

G

fp(y)gq(y−1 · x) dμ(y)
) 1

r+1 ( 1
p+

1
q )

‖f ‖
r

r+1

(
1− p

qr

)
Lp(G,μ) ‖g‖

r
r+1

(
1− q

pr

)
Lq(G,μ) .

Hence, raising the above inequality to the power r yields
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∣∣∣∣
(

f

‖f ‖Lp

�
g

‖g‖Lq

)
(x)
∣∣∣∣
r

≤
(

|f |p
‖f ‖p

Lp

�
|g|q

‖g‖q
Lq

)
(x).

Since the left invariance of the measure μ combined with Fubini’s theorem
obviously implies that the convolution maps L1(G, μ)×L1(G, μ) into L1(G, μ)
with norm 1, this yields the desired result in the case r < ∞. ��

We now state a refined version of Young’s inequality.

Theorem 1.5. Let (G, μ) satisfy the same assumptions as in Lemma 1.4.
Let (p, q, r) be in ]1, ∞[3 and satisfy (1.2). A constant C exists such that, for
any f ∈ Lp(G, μ) and any measurable function g on G where

‖g‖q
Lq

w(G,μ)

def
= sup

λ>0
λqμ(|g| > λ) < ∞,

the function f � g belongs to Lr(G, μ), and

‖f � g‖Lr(G,μ) ≤ C‖f ‖Lp(G,μ)‖g‖Lq
w(G,μ).

Remark 1.6. One can define the weak Lq space as the space of measurable
functions g on G such that ‖g‖Lq

w(G,μ) is finite. We note that since

λqμ(|g| > λ) ≤
∫

(|g|>λ)

|g(x)|q dμ(x) ≤ ‖g‖q
Lq(G,μ), (1.3)

the above theorem leads back to the standard Young inequality (up to a
multiplicative constant).

We also that the weak Lq space belongs to the family of Lorentz spaces
Lq,r(G, μ), which may be defined by means of real interpolation:

Lq,r(G, μ) = [L∞(G, μ), L1(G, μ)]1/q,r for all 1 < q < ∞ and 1 ≤ r ≤ ∞.

It turns out that the weak Lq space coincides with Lq,∞(G, μ). From general
real interpolation theory, we can therefore deduce a plethora of Hölder and
convolution inequalities for Lorentz spaces (including, of course, the one which
was proven above).

We also stress that the above theorem implies the well-known Hardy–Little-
wood–Sobolev inequality on R

d, given as follows.

Theorem 1.7. Let α in ]0, d[ and (p, r) in ]1, ∞[2 satisfy

1
p

+
α

d
= 1 +

1
r

· (1.4)

A constant C then exists such that

‖ | · | −α � f ‖Lr(Rd) ≤ C‖f ‖Lp(Rd).

Our proof of Theorem 1.5 relies on the atomic decomposition that we intro-
duce in the next subsection.
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1.1.2 The Atomic Decomposition

The atomic decomposition of an Lp function is described by the following
proposition, which is valid for any measure space.

Proposition 1.8. Let (X, μ) be a measure space and p be in [1, ∞[. Let f be
a nonnegative function in Lp. A sequence of positive real numbers (ck)k∈Z and
a sequence of nonnegative functions (fk)k∈Z (the atoms) then exist such that

f =
∑
k∈Z

ckfk,

where the supports of the functions fk are pairwise disjoint and

μ(Supp fk) ≤ 2k+1, (1.5)

‖fk ‖L∞ ≤ 2− k
p , (1.6)

1
2

‖f ‖p
Lp ≤
∑
k∈Z

cp
k ≤ 2‖f ‖p

Lp . (1.7)

Remark 1.9. As implied by the definition given below, the sequence (ckfk)k∈Z

is independent of p and depends only on f .

Proof of Proposition 1.8. Define

λk
def= inf
{
λ /μ(f > λ) < 2k

}
, ck

def= 2
k
p λk, and fk

def= c−1
k 1(λk+1<f ≤λk)f.

It is obvious that ‖fk ‖L∞ ≤ 2− k
p . Moreover, (λk)k∈Z is a decreasing se-

quence which, owing to the fact that f is a nonnegative function in Lp, con-
verges to 0 when k tends to infinity.

By the definition of λk, we have μ(f > λk) ≤ 2k and thus μ(Supp fk) ≤
2k+1. This gives

∑
k∈Z

cp
k =
∑
k∈Z

2kλp
k

= p
∑
k∈Z

∫ ∞

0

2k1]0,λk[(λ)λp−1 dλ.

Using Fubini’s theorem, we get

∑
k∈Z

cp
k = p

∫ ∞

0

λp−1

( ∑
k / λk>λ

2k

)
dλ.

By the definition of the sequence (λk)k∈Z, λ < λk implies that μ(f > λ) ≥ 2k.
We thus infer that
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∑
k∈Z

cp
k ≤ p

∫ ∞

0

λp−1

( ∑
k / 2k ≤μ(f>λ)

2k

)
dλ

≤ 2p

∫ ∞

0

λp−1μ(f > λ) dλ.

The right-hand inequality in (1.7) now follows from the fact that, by Fubini’s
theorem, we have

‖f ‖p
Lp = p

∫ ∞

0

λp−1μ(|f | > λ) dλ. (1.8)

In order to complete the proof of (1.7) it suffices to note that, because the
supports of the functions (fk)k∈Z are pairwise disjoint, we may write

‖f ‖p
Lp =
∑
k∈Z

cp
k ‖fk ‖p

Lp .

Taking advantage of inequalities (1.5) and (1.6), we find that

‖fk ‖p
Lp ≤ 2 for all k ∈ Z .

This yields the desired inequality. ��

1.1.3 Proof of Refined Young Inequality

Let f and g be nonnegative measurable functions on (G, μ). Consider a non-
negative function h in Lr′

and define

I(f, g, h) def=
∫

G2
f(y)g(y−1 · x)h(x) dμ(x) dμ(y).

Arguing by homogeneity, we can assume that ‖f ‖Lp = ‖g‖Lq
w

= ‖h‖Lr′ = 1.

Stating Cj
def= {y ∈ G , 2j ≤ g(y) < 2j+1}, we can write

I(f, g, h) ≤ 2
∑
j∈Z

2jIj(f, h) with

Ij(f, h) def=
∫

G2
f(y)h(x)1Cj (y

−1 · x) dμ(x) dμ(y).

Because ‖g‖Lq
w

= 1, we have ‖1Cj ‖Ls ≤ 2−j q
s for all s ∈ [1, ∞]. Thus, if we

directly apply Young’s inequality with p, q, and r, we find that Ij(f, h) ≤ 2−j ,
so the series

∑
2j+1Ij(f, h) has no reason to converge. In order to bypass this

difficulty, we may introduce the atomic decompositions of f and h, as given
by Proposition 1.8. We then write

Ij(f, h) =
∑
k,�

ckd�Ij(fk, h�).
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Using Young’s inequality, for any (a, b) ∈ [1, ∞]2 such that b ≤ a′ and for
any (f̃ , h̃) ∈ La × Lb, we get

Ij(f̃ , h̃) ≤ ‖f̃ ‖La ‖h̃‖Lb ‖1Cj ‖Lc′ with
1
a

+
1
b

= 1 +
1
c

·

This gives
Ij(f̃ , h̃) ≤ 2−jq(2− 1

a − 1
b )‖f̃ ‖La ‖h̃‖Lb .

Applying this for fk and h� and using Proposition 1.8 now yields

2jIj(fk, h�) ≤ 2jq( 1
q −2+ 1

a + 1
b )2k( 1

a − 1
p )2�( 1

b − 1
r′ ).

Using the condition (1.2) on (p, q, r) implies that

2jIj(fk, h�) ≤ 2(jq+k)( 1
a − 1

p )2(jq+�)( 1
b − 1

r′ ). (1.9)

Take a and b such that

1
a

def=
1
p

−2ε sg(jq+k) and
1
b

def=
1
r′ −2ε sg(jq+�) with ε

def=
1
4

(
1
p

− 1
r

)
,

where sg n = 1 if n ≥ 0, and sg n = −1 if n < 0.
As q > 1, the condition (1.2) implies that p < r. Thus, by the definitions

of ε, a, and b, we have b ≤ a′. With this choice of a and b, (1.9) then becomes,
using the triangle inequality,

2jIj(fk, h�) ≤ 2−2ε|jq+k|−2ε|jq+�|

≤ 2−ε|jq+k|−ε|jq+�|−ε|k−�|.

Using Young’s inequality for Z equipped with the counting measure, we may
now deduce that

I(f, g, h) ≤ C
∑
j,k,�

ckd�2−ε|jq+k|−ε|jq+�|−ε|k−�|

≤ C

ε

∑
k,�

ckd�2−ε|k−�|

≤ C

ε2
‖(ck)‖�p ‖ ‖(d�)‖�p′ .

The condition (1.2) implies that r′ ≤ p′ and thus

I(f, g, h) ≤ C

ε2
‖(ck)‖�p ‖ ‖(d�)‖�r′ .

The theorem is thus proved. ��
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1.1.4 A Bilinear Interpolation Theorem

The following interpolation lemma, which will be useful in Chapter 8, provides
another example of an application of atomic decomposition.

Proposition 1.10. Let (X1, μ1) and (X2, μ2) be two measure spaces. Let T
be a continuous bilinear functional on L2(X1; Lpj (X2)) × L2(X1; Lqj (X2))
for j in {0, 1}, where (pj , qj) is in [1, 2]2 and such that p0 �= p1 and q0 �=
q1. For any θ ∈ [0, 1], the bilinear functional T is then continuous on
L2(X1; Lpθ (X2)) × L2(X1; Lqθ (X2)) with

( 1
pθ

, 1
qθ

)
= (1 − θ)

( 1
p0

, 1
q0

)
+ θ
( 1

p1

, 1
q1

)
·

Proof. Let f ∈ L2(X1; Lpθ (X2)) and g ∈ L2(X1; Lqθ (X2)). As in the proof
of the refined Young’s inequality, we will use the atomic decompositions of f
and g. For any (t, x) ∈ X1 × X2, we have

f(t, x) =
∑
k∈Z

ck(t)fk(t, x) and g(t, x) =
∑
�∈Z

d�(t)g�(t, x).

Let us write that
T (f, g) =

∑
k,�

T (ckfk, d�g�).

Using the hypothesis on T and stating α
def=
( 1

p0
− 1

p1

)−1( 1
q0

− 1
q1

)
, we get

| T (ckfk, d�g�)| ≤ C min
j∈{0,1}

‖ckfk ‖L2(X1;L
pj (X2))‖d�g�‖L2(X1;L

qj (X2))

≤ C‖ck ‖L2(X1)‖d�‖L2(X1)

× min
{

2−θ
(

1
p0

− 1
p1

)
(k+α�)

, 2(1−θ)
(

1
p0

− 1
p1

)
(k+α�)
}

.

Setting ε
def=
∣∣∣ 1
p0

− 1
p1

∣∣∣× min{θ, (1 − θ)}, we deduce that

| T (ckfk, d�g�)| ≤ C‖ck ‖L2(X1)‖d�‖L2(X1)2
−ε|k+α�|.

Using a weighted Cauchy–Schwarz inequality, we then get

| T (f, g)| ≤ Cε

(∑
k

‖ck ‖2
L2(X1)

) 1
2
(∑

�

‖d�‖2
L2(X1)

) 1
2

≤ Cε

∥∥‖(ck)‖�2(Z)

∥∥
L2(X1)

∥∥‖(d�)‖�2(Z)

∥∥
L2(X1)

.

Using the fact that pθ and qθ are less than 2, we infer that

| T (f, g)| ≤ Cε

∥∥‖(ck)‖�pθ (Z)

∥∥
L2(X1)

∥∥‖(d�)‖�qθ (Z)

∥∥
L2(X1)

.

The inequality (1.7) from Proposition 1.8 then implies the proposition. ��
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1.1.5 A Linear Interpolation Result

We shall present here a basic result of linear complex interpolation theory
which will be useful, particularly in Chapter 8.

Lemma 1.11. Consider three measure spaces (Xk, μk)1≤k≤3 and two ele-
ments (pj , qj , rj)j∈{0,1} of [1, ∞]3. Further, consider an operator A which
continuously maps Lpj (X1; Lqj (X2)) into Lrj (X3) for j in {0, 1}. For any θ
in [0, 1], if

(
1
pθ

, 1
qθ

, 1
rθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

, 1
r0

)
+ θ

(
1
p1

, 1
q1

, 1
r1

)
,

then A continuously maps Lpθ (X1; Lqθ (X2)) into Lrθ (X3) and

‖A‖ L(Lpθ (X1;Lqθ (X2));Lrθ (X3)) ≤ Aθ with

Aθ
def
= ‖A‖1−θ

L(Lp0 (X1;Lq0 (X2));Lr0 (X3))
‖A‖θ

L(Lp1 (X1;Lq1 (X2));Lr1 (X3))
.

Proof. Consider f in Lpθ (X1; Lqθ (X2)) and ϕ in Lrθ (X3).4 Using Lemma 1.2,
it is enough to prove that

∫
X3

(Af)(x3)ϕ(x3)dμ3(x3) ≤ Aθ ‖f ‖Lpθ (Lqθ )‖ϕ‖
Lr′

θ
. (1.10)

Let z be a complex number in the strip S of complex numbers whose real
parts are between 0 and 1. Define

fz(x1, x2)
def=

f(x1, x2)
|f(x1, x2)|

(
|f(x1, x2)|

‖f(x1, ·)‖Lqθ

)qθ

(
1−z
q0

+ z
q1

)

‖f(x1, ·)‖
pθ

(
1−z
p0

+ z
p1

)
Lqθ

and

ϕz(x3) =
ϕ(x3)

|ϕ(x3| |ϕ(x3)|
r′

θ

(
1−z
r′
0

+ z
r′
1

)
.

Obviously, we have fθ = f and ϕθ = ϕ. It can be checked that the function
defined by

F (z) def=
∫

X3

(Afz)(x3)ϕz(x3) dμ3(x3)

is holomorphic and bounded on S and continuous on the closure of S. From
the Phragmen–Lindelhöf principle, we infer that

F (θ) ≤ M1−θ
0 Mθ

1 with Mj
def= sup

t∈R

|F (j + it)|. (1.11)

4 Throughout this proof, we write Lpθ (X1; L
qθ (X2)) simply as Lpθ (Lqθ )

and Lrθ (X3) simply as Lrθ .
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We have

|fj+it(x1, x2)| =
(

|f(x1, x2)|
‖f(x1, ·)‖Lqθ

) qθ
qj

‖f(x1, ·)‖
pθ
pj

Lqθ .

Thus, we have that fj+it belongs to Lpj (Lqj ) and

‖fj+it‖Lpj (Lqj ) = ‖f ‖
pθ
pj

Lpθ (Lqθ ).

In the same way, we get that |ϕj+it(x3)| = |ϕ(x3)|
r′

θ
r′

j . Thus, thanks to Hölder’s
inequality, we get

Mj ≤ sup
t∈R

∣∣∣∣
∫

X3

(Afj+it)(x3)ϕj+it(x3) dμ3(x3)
∣∣∣∣

≤ ‖A‖θ
L(Lpj (X1;L

qj (X2));L
rj (X3))

‖f ‖
pθ
pj

Lpθ (Lq
θ)

| ‖ϕ‖
r′

θ
r′

j

Lr′
θ (Lr′

θ )
.

Using (1.11), we then deduce (1.10) and the lemma is proved. ��

From this lemma, taking X1 = {a} and then X3 = {a}, we can infer the
following two corollaries which will be used in Chapter 8.

Corollary 1.12. Let (Xk, μk)1≤k≤2 be two measure spaces and (pj , qj)j∈{0,1}
be two elements of [1, ∞]2. Consider a linear operator A which continuously
maps Lpj (X1) into Lqj (X2) for j ∈ {0, 1}. For any θ in [0, 1], if

(
1
pθ

, 1
qθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

)
+ θ

(
1
p1

, 1
q1

)
,

then A continuously maps Lpθ (X1) into Lqθ (X2) and

‖A‖ L(Lpθ (X1);Lqθ (X2))≤ Aθ
def
= ‖A‖1−θ

L(Lp0 (X1);Lq0 (X2))
‖A‖θ

L(Lp1 (X1);Lq1 (X2))
.

Corollary 1.13. Let (X1, μ1), (X2, μ2) be two measure spaces and (p0, q0),
(p1, q1) be two elements of [1, ∞]2. Let A be a continuous linear functional
on Lpj (X1; Lqj (X2)) for j in {0, 1}. For any θ in [0, 1], if

(
1
pθ

, 1
qθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

)
+ θ

(
1
p1

, 1
q1

)
,

then A is a continuous linear functional on Lpθ (X1; Lqθ (X2)) and

‖A‖L(Lpθ (X1;L
qθ (X2));C) ≤ Aθ with

Aθ
def
= ‖A‖1−θ

L(Lp0 (X1;Lq0 (X2));C)‖A‖θ
L(Lp1 (X1;Lq1 (X2));C).
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1.1.6 The Hardy–Littlewood Maximal Function

In this subsection, we state a few elementary properties of the maximal func-
tion, which will be needed for proving Gagliardo–Nirenberg inequalities on
the Euclidean space R

d.
We first recall that the maximal function may be defined on any metric

space (X, d) endowed with a Borel measure μ. More precisely, if f : X 
→ R

is in L1
loc(X, μ), then we define

∀x ∈ X, Mf(x) def= sup
r>0

1
μ(B(x, r))

∫
B(x,r)

|f(y)| dμ(y). (1.12)

The following well-known continuity result for the maximal function is fun-
damental in harmonic analysis.

Theorem 1.14. Assume that the measure metric space (X, d, μ) has the dou-
bling property.5 There then exists a constant C, depending only on the dou-
bling constant D, such that for all 1 < p ≤ ∞ and f ∈ Lp(X, μ), we have
Mf ∈ Lp(X, μ) and

‖Mf ‖Lp ≤ p

p − 1
C

1
p ‖f ‖Lp . (1.13)

Proof. First step: M maps L∞ into L∞. Indeed, we obviously have

‖Mf ‖L∞ ≤ ‖f ‖L∞ for all f ∈ L∞(X, μ). (1.14)

Second step: M maps L1 into L1
w. We claim that there exists some constant

C1, depending only on D, such that

‖Mf ‖L1
w

≤ C1‖f ‖L1 for all f ∈ L1(X, μ). (1.15)

This is a mere consequence of the following Vitali covering lemma that we
temporarily assume to hold.

Lemma 1.15. Let (X, d) be a metric space endowed with a Borel measure μ
with the doubling property. There then exists a constant c such that for any
family (Bi)1≤i≤n of balls, there exists a subfamily (Bij )1≤j≤p of pairwise dis-
joint balls such that

μ
( p⋃

j=1

Bij

)
≥ c μ
( n⋃

i=1

Bi

)
.

Fix some f ∈ L1(X, μ) and some λ > 0. By definition of the function Mf, for

any x in the set Eλ
def= {Mf > λ}, we can find some rx > 0 such that
∫

B(x,rx)

|f | dμ > λμ(B(x, rx)). (1.16)

5 That is, there exists a positive constant D such that μ(B(x, 2r)) ≤ Dμ(B(x, r))
for all x ∈ X and r > 0.
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Therefore, if K is a compact subset of Eλ, then we can find a finite cov-
ering (Bi)1≤i≤n of K by such balls. Denoting by (Bij )1≤j≤p the subfamily
supplied by the Vitali lemma and using (1.16), we can thus write

λ |K| ≤ λ

c
μ
( p⋃

j=1

Bij

)
≤ 1

c

p∑
j=1

λμ(Bij ) ≤ 1
c

p∑
j=1

∫
Bij

|f | dμ ≤ 1
c

∫
X

|f | dμ,

which obviously leads to (1.15).
Third step: M maps Lp into Lp for all p ∈ ]1, ∞[. The proof relies on ar-
guments borrowed from real interpolation. Fix some function f in Lp and
α ∈ ]0, 1[. Since M |f | = Mf, we can assume that f ≥ 0. Now, for all λ > 0,
we may write

f = fλ + fλ with fλ def= (f − λα)1(f ≥λα).

Note that, thanks to (1.14), we have

(Mf > λ) ⊂ (Mfλ > (1 − α)λ).

Hence the equality (1.8) implies that

‖Mf ‖p
Lp ≤ p

∫ +∞

0

λp−1μ
(
Mfλ > (1 − α)λ

)
dλ.

According to the inequality (1.15), we have

μ
(
Mfλ > (1 − α)λ

)
≤ C1

(1 − α)λ
‖fλ‖L1 .

So, finally, using the definition of fλ and Fubini’s theorem, we get

‖Mf ‖p
Lp ≤ C1p

1−α

∫ +∞

0

λp−2

∫
(f ≥λα)

(
f(x) − λα

)
dμ(x)

≤ C1p

1−α

(∫
X

f(x)
∫ f(x)

α

0

λp−2 dλ dμ(x) − α

∫
X

∫ f(x)
α

0

λp−1 dλ dμ(x)
)

≤ C1

(p−1)(1−α)αp−1
‖f ‖p

Lp .

Choosing α = (p − 1)/p completes the proof of the inequality (1.13). ��

Proof of Lemma 1.15. Without loss of generality, we can assume that Bi =
B(xi, ri) with r1 ≥ · · · ≥ rn. We can now construct the desired subfamily
by induction. Indeed, for Bi1 , take the largest ball (i.e., B1). Then, assuming
that Bi1 , . . . , Bik

have been chosen, pick up the largest remaining ball which
does not intersect the balls which have been taken so far.
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Clearly, this process stops within a finite number of steps. In addition,
if i /∈ {i1, . . . , ip}, then there exists some index ij such that ij < i and Bi ∩ Bij

is not empty. Therefore, by virtue of the triangle inequality, Bi is included
in B(xij , 3rij ). This ensures that

n⋃
i=1

Bi ⊂
p⋃

j=1

B(xij , 3rij ).

As the measure μ has the doubling property, this yields the desired result. ��
The following result is of importance for proving Gagliardo–Nirenberg inequal-
ities.

Proposition 1.16. Let G be a locally compact group with neutral element e,
endowed with a distance d such that d(e, y−1 · x) = d(x, y) for all (x, y) ∈ G2

and a left-invariant Haar measure μ satisfying (1.1).
We assume, in addition, that for all r > 0 there exists a positive measure σr

on the sphere Σr
def
= {x ∈ G / d(e, x) = r} such that for any L1 function g on

G, we have ∫
G

g(z) dμ(z) =
∫ +∞

0

(∫
Σr

g(z) dσr(z)
)

dr.

For all measurable functions f and any L1 function K on G such that

∀x ∈ G, K(x) = k(d(e, x))

for some nonincreasing function k : R
+ 
→ R

+, we then have

∀x ∈ G,
∣∣K � f(x)

∣∣ ≤ ‖K‖L1(G,μ) Mf(x).

Proof. Obviously we can restrict the proof to nonnegative functions f. Arguing
by density we can also assume that k is C1 and compactly supported. Owing
to our assumptions on d and K, we have

K � f(x) =
∫

G

K(y)f(y−1 · x) dμ(y)

=
∫ +∞

0

k(r)
(∫

Σr

f(y−1 · x) dσr(y)
)

dr.

Therefore, integrating by parts with respect to r, we discover that

K � f(x) =
∫ +∞

0

(−k′(r))
(∫ r

0

∫
Σs

f(y−1 · x) dσs(y) ds

)
dr

=
∫ +∞

0

(−k′(r))
(∫

B(x,r)

f(y) dμ(y)
)

dr

≤ Mf(x)
∫ +∞

0

(−k′(r))μ(B(x, r)) dr.
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Finally, since

μ(B(x, r)) = μ(B(e, r)) =
∫ r

0

∫
Σr

1 dσr(y) dr,

performing another integration by parts, we can write that
∫ +∞

0

(−k′(r))μ(B(x, r)) dr =
∫ +∞

0

k(r)
(∫

Σr

1 dσr(y)
)

dr = ‖K‖L1(G,μ),

and the desired inequality follows. ��

Remark 1.17. All the assumptions of the above proposition are satisfied if we
take for G the group (Rd, +) endowed with the usual metric and the Lebesgue
measure, or the Heisenberg group (Hd, ·) endowed with the Heisenberg dis-
tance and the Lebesgue measure of R

2d+1.
We also note the following obvious generalization of the inequality stated

in the above proposition:

∀x ∈ G,
∣∣K � f(x)

∣∣ ≤
(∫

G

(
sup

d(e,y′)≥d(e,y)

|K(y′)|
)

dy

)
Mf(x),

which holds for any measurable function K on G. In fact, in Chapter 2 we
shall use the above inequality rather than the above proposition.

1.2 The Fourier Transform

This section is devoted to a short presentation on the Fourier transform, a key
tool in this monograph. In the first subsection we define the Fourier transform
of a smooth function with fast decay at infinity. In the second subsection we
then extend the definition (by duality) to tempered distributions. We conclude
this section with the calculation of the Fourier transforms of some functions
which play important roles in the following chapters.

1.2.1 Fourier Transforms of Functions and the Schwartz Space

The Fourier transform is defined on L1(Rd) by

F f(ξ) = f̂(ξ) =
∫

Rd

e−i(x|ξ)f(x) dx, (1.17)

where (x|ξ) denotes the inner product on R
d. It is a continuous linear map

from L1(Rd) into L∞(Rd) because, obviously, |f̂(ξ)| ≤ ‖f ‖L1 . It is also clear
that for any function φ ∈ L1 and automorphism L on R

d, we have

F (φ ◦ L) =
1

| det L| φ̂ ◦ L−1. (1.18)
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We now introduce the Schwartz space S(Rd) (also denoted by S when no
confusion is possible), which will be the basic tool for extending the Fourier
transform to a very large class of distributions over R

d. Let us first introduce
the following notation. If α is a multi-index (i.e., an element of N

d), x an
element of R

d, and f a smooth function of R
d, then the length |α| of α is

defined by |α| def= α1 + · · · +αd. We also define ∂αf
def= ∂α1

1 · · · ∂αd

d f and xα def=
xα1 · · · xαd .

Definition 1.18. The Schwartz space S(Rd) is the set of smooth functions u
on R

d such that for any k ∈ N we have

‖u‖k,S
def
= sup

|α|≤k

x∈R
d

(1 + |x|)k |∂αu(x)| < ∞.

It is an easy exercise (left to the reader) to prove that, equipped with the
family of seminorms (‖ · ‖k,S )k∈N, the set S(Rd) is a Fréchet space and that
the space D(Rd) of smooth compactly supported functions on R

d is dense
in S(Rd).

The way the Fourier transform F acts on the space S is described by the
following theorem.

Theorem 1.19. The Fourier transform continuously maps S into S: For any
integer k, there exist a constant C and an integer N such that

∀φ ∈ S , ‖φ̂‖k,S ≤ C‖φ‖N,S .

Moreover, the Fourier transform F is an automorphism of S, the inverse of
which is (2π)−dF̌ , where F̌ denotes the application f 
−→

{
ξ 
→ (F f)(−ξ)

}
.

Proof. Let k ∈ N and α ∈ N
d with length k. Using Lebesgue’s theorem and

integration by parts, we get that, for any φ in S,

(i∂)αf̂(ξ) = F (xαφ)(ξ) and (iξ)αφ̂(ξ) = F (∂αφ)(ξ). (1.19)

From this, we deduce that
∣∣∣ξβ∂αφ̂(ξ)

∣∣∣ ≤
∣∣F (∂β(xαφ))(ξ)

∣∣
≤ ‖∂β(xαφ)‖L1

≤ cd‖(1 + |x|)d+1∂β(xαφ)‖L∞ .

Hence, by the definition of the seminorms, we have ‖φ̂‖k,S ≤ C‖φ‖k+d+1,S .

We now prove the inverse formula, namely, F −1 = (2π)−dF̌ . The proof
is based on the computation of Fourier transforms of Gaussian functions.
If d = 1, we have, thanks to (1.19),
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d

dξ

(
F (e−x2

)
)

(ξ) = F (−ixe−x2
)(ξ)

= F
( i

2
d

dx
e−x2
)
(ξ)

= − ξ

2
F (e−x2

)(ξ).

As F
(
e−x2
)

(0) =
∫

e−x2
dx = π

1
2 , we get that F

(
e−x2)

(ξ) = π
1
2 e− ξ2

4 .

From this and Fubini’s theorem, we can now deduce that if d is any positive

integer, then F
(
e− |x|2
)

(ξ) = π
d
2 e− |ξ|2

4 . Using (1.18) we then infer that for
any positive real number a,

∫
Rd

e−i(x|ξ)e−a|x|2 dx =
(

π

a

) d
2

e− |ξ|2
4a . (1.20)

Let φ be a function in S(Rd) and ε any positive real number. Fubini’s theo-
rem applied to the function (2π)−dei(x−y|ξ)e−ε|ξ|2φ(y), together with (1.20),
implies that

(2π)−d

∫
Rd

ei(x|ξ)e−ε|ξ|2 φ̂(ξ) dξ =
(

1
4πε

) d
2

(e− | · |2
4ε � φ)(x).

On the one hand, owing to Lebesgue’s dominated convergence theorem, the
left-hand side tends to (2π)−dF̌ φ̂. On the other hand, the right-hand side is
the convolution of φ with an approximation of the identity. Letting ε tend
to 0 thus completes the proof of the theorem. ��

1.2.2 Tempered Distributions and the Fourier Transform

Definition 1.20. A tempered distribution on R
d is any continuous linear

functional6 on S(Rd). The set of tempered distributions is denoted by S ′(Rd).
A sequence (un)n∈N of tempered distributions is said to converge to u

in S ′(Rd) if
∀φ ∈ S(Rd) , lim

n→∞
〈un, φ〉 = 〈u, φ〉.

Remark 1.21. The link with distributions on R
d is as follows: If T is a distri-

bution on R
d such that for some integer k and positive real C we have

∀ϕ ∈ D(Rd) , | 〈T, ϕ〉| ≤ C‖ϕ‖k,S , (1.21)

then, as D(Rd) is dense in S(Rd), the linear functional T may be uniquely
extended to a continuous linear functional. Moreover, if T belongs to S ′(Rd),
6 That is, u is a tempered distribution if there exist a constant C and an integer k

such that |〈u, φ〉| ≤ C‖φ‖k,S for all φ ∈ S(Rd).
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then the restriction of T to D(Rd) defines a distribution on R
d because, for

any positive R and any function ϕ in D(B(0, R)),

| 〈T, ϕ〉| ≤ C‖ϕ‖k,S ≤ C(1 + R)k sup
|α|≤k

‖∂αϕ‖L∞ .

Thus, the set of distributions T on R
d which satisfy (1.21) may be identified

with S ′(Rd).

Example 1.22. – Let us denote by L1
M the space of locally integrable func-

tions f on R
d such that for some integer N , the function (1 + |x|)−Nf(x)

is integrable. For any f ∈ L1
M, we can then define the tempered distribu-

tion Tf by the formula

〈Tf , φ〉 =
∫

Rd

f(x)φ(x) dx.

In other words, we identify the function f with Tf .
– Any finite Borel measure may be seen as a tempered distribution. Indeed,

we may take k = 0 in (1.21).
– Any compactly supported distribution may be identified with an element

of S ′.

Let us use L. Schwartz’s idea of duality to define operators on the space of
tempered distributions. It is based on the following proposition.

Proposition 1.23. Let A be a linear continuous map from S into S.7 The
formula

〈tAu, φ〉 def
= 〈u, Aφ〉

then defines a tempered distribution. Moreover, tA is linear and continuous,
in the sense that if (un)n∈N is a sequence of distributions which converges to u
in S ′(Rd), then (tAun)n∈N converges to tAu.

Proof. By the definition of a tempered distribution, an integer k and a con-
stant C exist such that

∀θ ∈ S , | 〈u, θ〉| ≤ C‖θ‖k,S . (1.22)

The linear map A is assumed to be continuous, hence there exist a constant C ′

and an integer N such that

∀φ ∈ S , ‖Aφ‖k,S ≤ C ′ ‖φ‖N,S .

Applying (1.22) with θ = Aφ and the above inequality, we then get that tAu
is a tempered distribution. By the definition of the convergence of a sequence
of tempered distributions, we then write
7 That is, for any integer k, there exist a constant C and an integer N such that

‖Aφ‖k,S ≤ C‖φ‖N,S for all φ ∈ S(Rd).
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〈tAun, φ〉 = 〈un, Aφ〉 −→ 〈u, Aφ〉 = 〈tAu, φ〉.

The proposition is thus proved. ��

We now list a few important examples to which Proposition 1.23 applies:

– We may take for A any operator (−∂)α or xα 
→ xαu with α ∈ N
d . Indeed,

we have, for all φ in S,

‖(−∂)αφ‖k,S ≤ ‖φ‖k+|α|,S and ‖xαφ‖k,S ≤ ‖φ‖k+|α|,S .

– Let L be a linear automorphism of R
d and define

ALφ
def=

1
det L

φ ◦ L−1.

It is clear that AL satisfies the hypothesis of Proposition 1.23.
– If we denote by ΘM the space of smooth functions on R

d such that, for
any integer k, an integer N exists such that

sup
x∈Rd

(1 + |x|k)−N sup
|α|≤k

|∂αf(x)| < ∞,

then the operator Af of multiplication by f satisfies the hypothesis of the
proposition.

– If θ is a function of S, it is left as an exercise for the reader to check that,
for any φ ∈ S,

‖Aθφ‖k,S ≤ Ck ‖θ‖k+d+1,S ‖φ‖k,S with Aθφ
def= θ̌ � φ.

– Theorem 1.19 guarantees, in particular, that the Fourier transform F sat-
isfies the hypothesis of Proposition 1.23.

For all the above operators, we can apply Proposition 1.23. We now check
briefly that this is a generalization of classical operations on functions. If u is
an L1

M function which is also C1, then we have

∀φ ∈ S , 〈t(−∂j)u, φ〉 = 〈u, −∂jφ〉 =
∫

Rd

u(x)(−∂jφ)(x) dx.

An integration by parts ensures that t(−∂j)u = ∂ju, in the classical sense.
Next, we claim that tALf(y) = f(Ly) for all f ∈ L1

M. Indeed, a straight-
forward change of variables ensures that for all φ ∈ S we have

〈tALf, φ〉 =
1

| det L|

∫
Rd

f(x)φ(L−1x) dx =
∫

Rd

f(Ly)φ(y) dy.

In the particular case where Lx = λx, we denote tALf by fλ, and when λ =
−1, the distribution tALf is denoted by f̌ . In passing, let us recall that a
tempered distribution f is said to be homogeneous of degree m if
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fλ = λmf for all λ > 0.

It is obvious that the operator Af generalizes the classical multiplication of
functions by f.

Finally, for any L1 function f, we have, according to Fubini’s theorem,

〈tAθf, φ〉 = 〈f, θ̌ � φ〉

=
∫

Rd × Rd

f(x)θ(y − x)φ(y) dy dx

= 〈f � θ, φ〉.

Thus, the notion of convolution between a tempered distribution and a func-
tion of S coincides with the classical definition when the tempered distribution
is an L1 function.

In order to extend the definition of the Fourier transform to tempered
distributions, we consider an L1 function f . By Fubini’s theorem and by def-
inition of the Fourier transform on L1, we have, for all φ ∈ S,

〈tF f, φ〉 =
∫

Rd

f(x)φ̂(x) dx

=
∫

Rd × Rd

f(x)e−i(x|ξ)φ(ξ) dx dξ

= 〈f̂ , φ〉.

In other words, the operator tF restricted to L1 functions coincides with the
Fourier transform of functions. Thus, it will also be denoted by F in all that
follows.

Proposition 1.24. For any (u, θ) in S ′ × S, λ ∈ R \{0} and (a, ω) ∈ R
d × R

d,
we have8

(i∂)αû = F (xαu) , (iξ)αû = F (∂αu) , e−i(a|ξ)û = F (τaf) ,

τω f̂ = F (ei(x|ω)f) , λ−df̂(λ−1ξ) = F (f(λx)), and F (u � θ) = θ̂ û.

Proof. The first five equalities readily follow from (1.19) or direct computation
once we observe that t(AB) = tBtA. In order to prove the last identity,
it suffices to use the fact that, by definition of the Fourier transform and
convolution, we have

〈F (u � θ), φ〉 = 〈u � θ, φ̂〉 = 〈u, θ̌ � φ̂〉.

Fubini’s theorem implies that
8 Below, the notation τa stands for the translation operator τa : f 	→ f(· − a).
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(θ̌ � φ̂)(ξ) =
∫

θ̌(ξ − η)
(∫

e−i(x|η)φ(x) dx

)
dη

=
∫

e−i(x|ξ)
(∫

e−i(x|η−ξ)θ(η − ξ)dη

)
φ(x) dx

= F (θ̂φ).

We infer that 〈F (u � θ), φ〉 = 〈u, F (θ̂φ)〉 = 〈û, θ̂φ〉 = 〈θ̂û, φ〉. The proposition
is thus proved. ��

Theorem 1.25 (Fourier–Plancherel formula). The Fourier transform is
an automorphism of S ′ with inverse (2π)−dF̌ . Moreover, F is also an au-
tomorphism of L2(Rd) which satisfies, for any function f in L2, ‖f̂ ‖L2 =
(2π)

d
2 ‖f ‖L2 .

Proof. On the space S, we have F F̌ = F̌ F = (2π)d Id. Arguing by transposi-
tion, we discover that these two identities remain valid on S ′. Next, using the
fact that for any function φ in S we have F φ = F̌ (φ) and taking advantage
of the inverse Fourier formula (see Theorem 1.19), we get, for any function φ
in S,

‖F φ‖2
L2 = 〈F φ, F φ〉 = 〈φ, F F̌ φ〉 = (2π)d‖φ‖2

L2 .

Combining the Riesz representation theorem with the density of S in L2

enables us to complete the proof. ��

Finally, let us define a subspace of S ′(Rd) which will play an important role
in the following chapters.

Definition 1.26. We denote by S ′
h(Rd) the space of tempered distributions u

such that9

lim
λ→∞

‖θ(λD)u‖L∞ = 0 for any θ in D(Rd).

Remark 1.27. It is clear that whether or not a tempered distribution u belongs
to S ′

h depends only on low frequencies. As a matter of fact, it is not hard to
check that u belongs to S ′

h(Rd) if and only if one can find some smooth
compactly supported function θ satisfying the above equality and such that
θ(0) �= 0.

Examples

– If a tempered distribution u is such that its Fourier transform û is locally
integrable near 0, then u belongs to S ′

h. In particular, the space E ′ of
compactly supported distributions is included in S ′

h.
– If u is a tempered distribution such that θ(D)u ∈ Lp for some p ∈ [1, ∞[

and some function θ in D(Rd) with θ(0) �= 0, then u belongs to S ′
h.

9 We agree that if f is a measurable function on R
d with at most polynomial growth

at infinity, then the operator f(D) is defined by f(D)a
def
= F −1(f F a).



1.2 The Fourier Transform 23

– A nonzero polynomial P does not belong to S ′
h because for any θ ∈ D(Rd)

with value 1 at 0 and any λ > 0, we may write θ(λD)P = P . However,
if η is in R

d \{0}, then ei(·|η)P belongs to S ′
h because the support of its

Fourier transform is {η}. We note that this example implies that S ′
h is

not a closed subspace of S ′ for the topology of weak-� convergence, a fact
which must be kept in mind in the applications.

1.2.3 A Few Calculations of Fourier Transforms

This subsection is devoted to the computation of the Fourier transforms of
some functions which are definitely not in L1.

Proposition 1.28. Let z be a nonzero complex number with nonnegative real
part. Then,

F
(
e−z|·|2
)
(ξ) =
(π

z

) d
2
e− |ξ|2

4z

with z− d
2

def
= |z| − d

2 e−i d
2 θ if z = |z|eiθ with θ ∈ [−π/2, π/2].

Proof. Let us remark that for any ξ in R
d, the functions

z 
−→
∫

Rd

e−i(x|ξ)e−z|x|2 dx and z 
−→
(π

z

) d
2
e− |ξ|2

4z

are holomorphic on the domain D of complex numbers with positive real part.
Formula (1.20) states that these two functions coincide on the intersection of
the real line with D. Thus, they also coincide on the whole domain D. Now,
let (zn)n∈N be a sequence of elements of D which converges to it for t �= 0. For
any function φ in S, we have, by virtue of Lebesgue’s dominated convergence
theorem,

lim
n→∞

∫
Rd

e−zn |x|2φ(x) dx =
∫

Rd

e−it|x|2φ(x) dx and

lim
n→∞

∫
Rd

e− |ξ|2
4zn φ(ξ) dξ =

∫
Rd

e− |ξ|2
4it φ(ξ) dξ.

As we have

F
(
e−zn |·|2

)
=
( π

zn

) d
2
e− |ξ|2

4zn ,

passing to the limit in S ′(Rd) when n tends to ∞ gives the result, thanks to
Proposition 1.23. ��

Proposition 1.29. If σ ∈ ]0, d[, then F (| · | −σ) = cd,σ | · |σ−d for some con-
stant cd,σ depending only on d and s.
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Proof. We only treat the case d ≥ 2. The (easier) case d = 1 is left to the
reader. Defining

R
def=

d∑
j=1

xj∂j and Zj,k
def= xj∂k − xk∂j ,

we have R(| · | −σ) = −σ| · | −σ and Zj,k(| · | −σ) = 0. Then, using Proposition 1.24,
we infer that Zj,k F | · | −σ = 0 and

RF | · | −σ =
d∑

j=1

∂j

(
ξj F | · | −σ

)
− dF | · | −σ = (σ − d)F | · | −σ.

By restricting to R
d \ {0}, we then see that

R
(

| · |d−σ F | · | −σ
)

= Zj,k

(
| · |d−σ F | · | −σ

)
= 0 in D ′(Rd \{0}).

We note that for any k,

|x|2∂k =
d∑

j=1

x2
j∂k = xkR +

d∑
j=1

xjZj,k.

Therefore, ∇
(

| · |d−σ F | · | −σ
)

is supported in R
d \{0}. Because d ≥ 2, we

deduce that there exists some constant cd,σ such that | · |d−σ F | · | −σ − cd,σ is
also supported in R

d \ {0} and, owing to σ > 0, so is F | · | −σ − cd,σ | · |σ−d. The
conclusion then follows easily from the following lemma. ��
Lemma 1.30. Let T be a distribution on R

d supported in {0} and such
that RT = sT for some real number s.

– If s is not an integer less than or equal to −d, then T = 0.
– If s is an integer less than or equal to −d, then there exist some real

numbers aα such that

T =
∑

|α|=−s−d

aα∂αδ0.

Proof. We first observe that a distribution supported in {0} is of the form T =∑
|α|≤N

aα∂αδ0. We thus have

RT =
d∑

j=1

∑
|α|≤N

aαxj∂j∂
αδ0

= −
∑

|α|≤N

(d + |α|)aα∂αδ0.

As (∂αδ0)α∈Nd is a family of linearly independent distributions, the fact
that RT = sT implies that (d+|α|)aα = −saα. The lemma is thus proved. ��
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1.3 Homogeneous Sobolev Spaces

This section is concerned with homogeneous Sobolev spaces. We first establish
classical properties for these spaces, then we focus on embedding in Lebesgue,
BMO and Hölder spaces.

1.3.1 Definition and Basic Properties

Definition 1.31. Let s be in R. The homogeneous Sobolev space Ḣs(Rd) (also
denoted by Ḣs) is the space of tempered distributions u over R

d, the Fourier
transform of which belongs to L1

loc(R
d) and satisfies

‖u‖2
Ḣs

def
=
∫

Rd

|ξ|2s|û(ξ)|2 dξ < ∞.

We note that the spaces Ḣs and Ḣs′
cannot be compared for the inclusion.

Nevertheless, we have the following proposition.

Proposition 1.32. Let s0 ≤ s ≤ s1. Then, Ḣs0 ∩ Ḣs1 is included in Ḣs,
and we have

‖u‖Ḣs ≤ ‖u‖1−θ

Ḣs0
‖u‖θ

Ḣs1
with s = (1 − θ)s0 + θs1.

Proof. It suffices to apply Hölder’s inequality with p = 1/(1 − θ) and q = 1/θ
to the functions ξ 
→ |ξ|2(1−θ)s0 , ξ 
→ |ξ|2θs1 and the Borel measure |û(ξ)|2 dξ.

��

Using the Fourier–Plancherel formula, we observe that L2 = Ḣ0 and that
if s is a positive integer, then Ḣs is the subset of tempered distributions with
locally integrable Fourier transforms and such that ∂αu belongs to L2 for all α
in N

d of length s.
In the case where s is a negative integer, the Sobolev space Ḣs is described

by the following proposition.

Proposition 1.33. Let k be a positive integer. The space Ḣ−k(Rd) consists of
distributions which are the sums of derivatives of order k of L2(Rd) functions.

Proof. Let u be in Ḣ−k(Rd). Using the fact that for some integer constants
Aα, we have

|ξ|2k =
∑

1≤j1,...,jk ≤d

ξ2
j1 · · · ξ2

jk
=
∑

|α|=k

Aα(iξ)α(−iξ)α, (1.23)

we get that

û(ξ) =
∑

|α|=k

(iξ)αvα(ξ) with vα(ξ) def= Aα
(−iξ)α

|ξ|2k
û(ξ).
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As u is in Ḣ−k, the functions vα belong to L2. Defining uα
def= F −1vα, we

then obtain
u =
∑

|α|=k

∂αuα with uα ∈ L2(Rd).

This concludes the proof of the proposition. ��

Proposition 1.34. Ḣs(Rd) is a Hilbert space if and only if s <
d

2
·

Proof. We first assume that s < d/2. Let (un)n∈N be a Cauchy sequence
in Ḣs(Rd). Then, (ûn)n∈N is a Cauchy sequence in the space L2(Rd; |ξ|2s dξ).
Because |ξ|2s dξ is a measure on R

d, there exists a function f in L2(Rd; |ξ|2s dξ)
such that (ûn)n∈N converges to f in L2(Rd; |ξ|2s dξ). Because s < d/2, we have
∫

B(0,1)

|f(ξ)| dξ ≤
(∫

Rd

|ξ|2s|f(ξ)|2 dξ
) 1

2
(∫

B(0,1)

|ξ| −2s dξ
) 1

2
< ∞.

This ensures that F −1(1B(0,1)f) is a bounded function. Now, 1cB(0,1)f clearly
belongs to L2(Rd; (1 + |ξ|2)s dξ) and thus to S ′(Rd), so f is a tempered dis-

tribution. Define u
def= F −1f . It is then obvious that u belongs to Ḣs and

that lim
n→∞

un = u in the space Ḣs.

If s ≥ d/2, observe that the function

N : u 
−→ ‖û‖L1(B(0,1)) + ‖u‖Ḣs

is a norm over Ḣs(Rd) and that (Ḣs(Rd), N) is a Banach space.
Now, if Ḣs(Rd) endowed with ‖ · ‖Ḣs were also complete, then, according to

Banach’s theorem, there would exist a constant C such that N(u) ≤ C‖u‖Ḣs .
Of course, this would imply that

‖û‖L1(B(0,1)) ≤ C‖u‖Ḣs . (1.24)

This inequality is violated by the following example. Let C be an annulus
included in the unit ball B(0, 1) and such that C ∩ 2C = ∅. Define

Σn
def= F −1

n∑
q=1

2q(s+ d
2 )

q
12−q C .

We have

‖Σ̂n‖L1(B(0,1)) = C

n∑
q=1

2q(s− d
2 )

q
and ‖Σn‖2

Ḣs ≤ C

n∑
q=1

1
q2

≤ C1.

As s ≥ d/2, we deduce that ‖Σ̂n‖L1(B(0,1)) tends to infinity when n goes to
infinity. Hence, the inequality (1.24) is false. ��
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Proposition 1.35. If s < d/2, then the space S0(Rd) of functions of S(Rd),
the Fourier transform of which vanishes near the origin, is dense in Ḣs.

Proof. Consider u in Ḣs such that

∀φ ∈ S0(Rd) , (u|φ)Hs =
∫

Rd

|ξ|2sû(ξ)φ̂(ξ) dξ = 0.

This implies that the L1
loc function û vanishes on R

d \{0}. Thus, û = 0. Thanks
to Theorem 1.25, we infer that u = 0. As we are considering the case where Ḣs

is a Hilbert space, we deduce that S0(Rd) is dense in Ḣs. ��

The following proposition explains how the space Ḣ−s can be considered
as the dual space of Ḣs.

Proposition 1.36. If |s| < d/2, then the bilinear functional

B :

⎧⎨
⎩

S0 × S0 → C

(φ, ϕ) 
→
∫

Rd

φ(x)ϕ(x) dx

can be extended to a continuous bilinear functional on Ḣ−s × Ḣs. Moreover,
if L is a continuous linear functional on Ḣs, then a unique tempered distri-
bution u exists in Ḣ−s such that

∀φ ∈ Ḣs , 〈L, φ〉 = B(u, φ) and ‖L‖(Ḣs)′ = ‖u‖Ḣ−s .

Proof. Let φ and ϕ be in S0. We can write∣∣∣∣
∫

Rd

φ(x)ϕ(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Rd

(F −1φ)(ξ)(F ϕ)(ξ) dξ

∣∣∣∣
= (2π)−d

∣∣∣∣
∫

Rd

|ξ| −sφ̂(−ξ)|ξ|sϕ̂(ξ) dξ

∣∣∣∣
≤ (2π)−d‖φ‖Ḣ−s ‖ϕ‖Ḣs .

As S0 is dense in Ḣσ when |σ| < d/2, we can extend B to Ḣ−s × Ḣs. Of
course, if (u, φ) ∈ Ḣ−s × S, then B(u, φ) = 〈u, φ〉.

Let L be a linear functional on Ḣs. Consider the linear functional Ls

defined by

Ls :
{

L2(Rd) −→ C

f 
−→ 〈L, F −1(| · | −sf)〉.
It is obvious that

sup
‖f ‖L2=1

| 〈Ls, f 〉| = sup
‖f ‖L2=1

| 〈L, F −1(| · | −sf)〉 |

= sup
‖φ‖Ḣs=1

| 〈L, φ〉 |

= ‖L‖(Ḣs)′ .
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The Riesz representation theorem implies that a function g exists in L2 such
that

∀h ∈ L2 , 〈Ls, h〉 =
∫

Rd

g(ξ)h(ξ) dξ.

We obviously have | · |sg ∈ L2(Rd; |ξ| −2s dξ). Now, as |s| < d/2, this implies

that | · |sg is in S ′(Rd) and thus we can define u
def= F (| · |sg). For any φ

in S(Rd), we then have

〈u, φ〉 =
∫

Rd

g(ξ)|ξ|sφ̂(ξ) dξ = 〈Ls, | · |sφ̂〉.

By the definition of Ls, we have 〈u, φ〉 = 〈L, φ〉 and the proposition is thus
proved. ��

For s in the interval ]0, 1[, the space Ḣs can be described in terms of finite
differences.

Proposition 1.37. Let s be a real number in the interval ]0, 1[ and u be in
Ḣs(Rd). Then,

u ∈ L2
loc(R

d) and
∫

Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy < ∞.

Moreover, a constant Cs exists such that for any function u in Ḣs(Rd), we
have

‖u‖2
Ḣs = Cs

∫
Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy.

Proof. In order to see that u is in L2
loc(R

d), it suffices to write

u = F −1
(
1B(0,1)û

)
+ F −1

(
1cB(0,1)û

)
.

The rest of the proof relies on the Fourier–Plancherel formula (see Theo-
rem 1.25), which implies that

∫
Rd

|u(x + y) − u(x)|2
|y|d+2s

dx = (2π)−d

∫
Rd

|ei(y|ξ) − 1|2
|y|d+2s

|û(ξ)|2 dξ.

Therefore,
∫

Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy = (2π)−d

∫
Rd

F (ξ)|û(ξ)|2 dξ

with

F (ξ) def=
∫

Rd

|ei(y|ξ) − 1|2
|y|2s

dy

|y|d ·

It may be easily checked that F is a radial and homogeneous function of
degree 2s. This implies that the function F (ξ) is proportional to |ξ|2s and
thus completes the proof. ��
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1.3.2 Sobolev Embedding in Lebesgue Spaces

In this subsection, we investigate the embedding of Ḣs(Rd) spaces in Lp(Rd)
spaces. We begin with a classical result.

Theorem 1.38. If s is in [0, d/2[, then the space Ḣs(Rd) is continuously em-
bedded in L

2d
d−2s (Rd).

Proof. First, let us note that the critical index p = 2d/(d − 2s) may be found
by using a scaling argument. Indeed, if v is a function on R

d and vλ stands

for the function vλ(x) def= v(λx), then we have

‖vλ‖Lp = λ− d
p ‖v‖Lp and ‖vλ‖Ḣs = λ− d

2 +s‖v‖Ḣs .

If an inequality of the type ‖v‖Lp ≤ C‖v‖Ḣs is true for any smooth function v,
then it is also true for vλ for any λ. Hence, we must have p = 2d/(d − 2s).

Consider a function φ in S0(Rd). Defining φ̂s(ξ)
def= |ξ|sφ̂(ξ) and using

Propositions 1.24 and 1.29, we get that

φ =
(2π)−dcd,s

| · |d−s
� φs with ‖φs‖L2 = (2π)− d

2 ‖φ‖Ḣs .

Theorem 1.7 thus implies that ‖φ‖Lp ≤ C‖φs‖L2 . Now, according to Propo-
sition 1.35, the space S0(Rd) is dense in Ḣs. The proof is therefore complete.

��

Corollary 1.39. If p belongs to ]1, 2], then Lp(Rd) embeds continuously in

Ḣs(Rd) with s =
d

2
− d

p
·

Proof. We use the duality between Ḣs and Ḣ−s described by Proposition 1.36.
Write

‖a‖Ḣs = sup
‖ϕ‖Ḣ−s ≤1

〈a, ϕ〉.

As s = d

(
1
2

− 1
p

)
, by Theorem 1.38 we have ‖ϕ‖Lp′ ≤ C‖ϕ‖Ḣ−s and thus

‖a‖Ḣs ≤ C sup
‖ϕ‖

Lp′ ≤1

〈a, ϕ〉 ≤ C‖a‖Lp .

The corollary is thus proved. ��

According to Proposition 1.24, the Fourier transform changes dilation into
reciprocal dilation and translation into multiplication by a character ei(x|ω)

(and vice versa). Obviously, the inequality

‖u‖Lp(Rd) ≤ C‖u‖Ḣs(Rd) with p = 2d/(d − 2s)
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provided by Theorem 1.38 is invariant under translation and dilation.
We claim, however, that it is not invariant under multiplication by a char-

acter. Indeed, consider a function φ in S(Rd) such that φ̂ belongs to D(Rd).
For all positive ε, define the function

φε(x) = ei
x1
ε φ(x). (1.25)

By the definition of ‖ · ‖Ḣs , we have

‖φε‖2
Ḣs =
∫

Rd

|ξ|2s
∣∣∣φ̂
(
ξ − e1

ε

)∣∣∣2 dξ

=
∫

Rd

∣∣∣ξ +
e1

ε

∣∣∣2s

|φ̂(ξ)|2 dξ with e1
def= (1, 0, . . . , 0).

Hence, ‖φε‖Ḣs is equivalent to ε−s when ε tends to 0, while ‖φε‖Lp does not
depend on ε.

In what follows, we want to improve the estimate of Theorem 1.38 so that
it becomes also invariant if u is multiplied by any character ei(x|ω). In fact, we
shall construct a family of Banach spaces Es, the norm of which is invariant
under translation, satisfying

‖a(λ·)‖Es ∼ λs− d
2 ‖a‖Es , f ‖a(λ·)‖Es ≤ Cs,d‖a‖Ḣs ,

and, for some real number β ∈ ]0, 1[,

‖a‖Lp ≤ Cs,d‖a‖1−β

Ḣs
‖a‖β

Es
.

In order to do this, we introduce the following definition.

Definition 1.40. Let θ be a function in S(Rd) such that θ̂ is compactly sup-
ported, has value 1 near 0, and satisfies 0 ≤ θ̂ ≤ 1. For u in S ′(Rd) and σ > 0,
we set

‖u‖Ḃ−σ

def
= sup

A>0
Ad−σ ‖θ(A·) � u‖L∞ .

It is left to the reader to check that the space Ḃ−σ of tempered distributions u
such that ‖u‖Ḃ−σ is finite is a Banach space. It is also clear that changing
the function θ gives the same space with the equivalent norm. These spaces
come up in the next chapter in a more general context. We shall see that Ḃ−σ

coincides with the homogeneous Besov space Ḃ−σ
∞,∞.

For the time being, we will compare Ḃ−σ with Sobolev spaces.

Proposition 1.41. For any s less than d/2, the space Ḣs is continuously
embedded in Ḃs− d

2 and there exists a constant C, depending only on Supp θ̂
and d, such that

‖u‖
Ḃs− d

2
≤ C(

d
2 − s)

1
2

‖u‖Ḣs for all u ∈ Ḣs.
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Proof. As û is locally in L1, the function θ̂(A−1·)û is in L1. The inverse Fourier
theorem implies that

‖Adθ(A·) � u‖L∞ ≤ (2π)−d‖θ̂(A−1·)û‖L1

≤ (2π)−d

∫
Rd

θ̂(A−1ξ)|ξ| −s|ξ|s|û(ξ)| dξ.

Using the fact that θ̂ is compactly supported, the Cauchy–Schwarz inequality
implies that

‖Adθ(A·) � u‖L∞ ≤ C(
d
2 − s)

1
2
A

d
2 −s‖u‖Ḣs

and the proposition is thus proved. ��

The difference between the Ḣs norm the Ḃs− d
2 norm is emphasized by the

following proposition.

Proposition 1.42. Let σ ∈ ]0, d] and let (φε)ε>0 be defined according
to (1.25). There then exists a constant C such that ‖φε‖Ḃ−σ ≤ Cεσ for all
ε > 0.

Proof. By Hölder’s inequality, we have

Ad‖θ(A·) � φε‖L∞ ≤ ‖θ‖L1 ‖φ‖L∞ .

From this we deduce that if Aε ≥ 1, then we have

Ad−σ ‖θ(A·) � φε‖L∞ ≤ εσ ‖θ‖L1 ‖φ‖L∞ . (1.26)

If Aε ≤ 1, then we perform integration by parts. More precisely, using the
fact that

(−iε∂1)dei
x1
ε = ei

x1
ε

and the Leibniz formula, we get

Ad(θ(A·) � φε)(x) = (iAε)d

∫
Rd

∂d
y1

(θ(A(x − y))φ(y)) ei
y1
ε dy

= (iAε)d
∑
k≤d

(
d

k

)
Ak((−∂1)kθ)(A·) � (ei

y1
ε ∂d−k

1 φ)(x).

Using Hölder’s inequality, we get that

Ak
∥∥∥((−∂1)kθ)(A·) � (ei

y1
ε ∂d−k

1 φ)
∥∥∥

L∞
≤ ‖∂k

1 θ‖
L

d
k

‖∂d−k
1 φ‖

L( d
k

)′ .

Thus, we get Ad‖θ(A·) � φε‖L∞ ≤ C(Aε)d. As we are considering the case
where Aε ≤ 1, we get, for any σ ≤ d,

Ad‖θ(A·) � φε‖L∞ ≤ C(Aε)σ.

Together with (1.26), this concludes the proof of the proposition. ��
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We can now state the so-called refined Sobolev inequalities.

Theorem 1.43. Let s be in ]0, d/2[. There exists a constant C, depending
only on d and θ̂, such that

‖u‖Lp ≤ C

(p − 2)
1
p

‖u‖1− 2
p

Ḃs− d
2

‖u‖
2
p

Ḣs
with p =

2d

d − 2s
·

Proof. Without loss of generality, we can assume that ‖u‖
Ḃs− d

2
= 1. As will

be done quite often in this book, we shall decompose the function into low
and high frequencies. More precisely, we write

u = u�,A + uh,A with u�,A = F −1(θ̂(A−1·)û), (1.27)

where θ is the function from Definition 1.40. The triangle inequality implies
that (

|u| > λ
)

⊂
(

|u�,A| > λ/2
)

∪
(

|uh,A| > λ/2
)

·

By the definition of ‖ · ‖
Ḃs− d

2
we have ‖u�,A‖L∞ ≤ A

d
2 −s. From this we deduce

that

A = Aλ
def=
(λ

2

) p
d

=⇒ μ
(

|u�,A| > λ/2
)

= 0.

From the identity (1.8) we deduce that

‖u‖p
Lp ≤ p

∫ ∞

0

λp−1μ
(

|uh,Aλ
| > λ/2

)
dλ.

Using the fact that

μ
(

|uh,Aλ
| > λ/2

)
≤ 4

‖uh,Aλ
‖2

L2

λ2
,

we get

‖u‖p
Lp ≤ 4p

∫ ∞

0

λp−3‖uh,Aλ
‖2

L2 dλ.

Because the Fourier transform is (up to a constant) an isometry on L2(Rd)
and the function θ̂ has value 1 near 0, we thus get, for some c > 0 depending
only on θ̂,

‖u‖p
Lp ≤ 4p (2π)−d

∫ ∞

0

λp−3

∫
(|ξ|≥cAλ)

|û(ξ)|2 dξ dλ. (1.28)

Now, by definition of Aλ, we have

|ξ| ≥ cAλ ⇐⇒ λ ≤ Cξ
def= 2
( |ξ|

c

) d
p ·

Fubini’s theorem thus implies that
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‖u‖p
Lp ≤ 4p (2π)−d

∫
Rd

(∫ Cξ

0

λp−3dλ

)
|û(ξ)|2 dξ

≤ (2π)−d p2p

p − 2

∫
Rd

( |ξ|
c

) d(p−2)
p |û(ξ)|2 dξ.

As s = d
(1

2
− 1

p

)
, the theorem is proved. ��

Remark 1.44. Combining Proposition 1.41 and Theorem 1.43, we see that if
0 < s < d/2, then we have, for all u ∈ Ḣs,

‖u‖Lp ≤ Cd
p√

p − 2
‖u‖Ḣs with p =

2d

d − 2s
· (1.29)

Of course, since we have ‖u‖L2 = (2π)− d
2 ‖u‖Ḣ0 , we do not expect the constant

to blow up when p goes to 2. In fact, combining this latter inequality with the
inequality (1.29) (with, say, p = 4) and resorting to a complex interpolation
argument, we get

‖u‖Lp ≤ Cd
√

p ‖u‖Ḣs with p =
2d

d − 2s
· (1.30)

By taking advantage of Proposition 1.42 and the computations that fol-
low (1.25), it is not difficult to check that the inequality stated in Theorem 1.43
is indeed invariant (up to an irrelevant constant) under multiplication by a
character. We now want to consider whether our refined inequalities are sharp.
Obviously, according to Proposition 1.42, we have

lim
ε→0

‖φε‖Lp

‖φε‖β

Ḃs− d
2

‖φε‖1−β

Ḣs

= +∞ for any β > 1 − 2/p.

Therefore, the exponent 1 − 2/p cannot be improved. We claim that even
under a sign assumption, the above refined Sobolev inequalities are sharp.
More precisely, we shall exhibit a sequence (fn)n∈N of nonnegative functions
such that

lim
n→∞

‖fn‖
L

2d
d−2s

‖fn‖β

Ḃs− d
2

‖fn‖1−β

Ḣs

= +∞ for any β > 1 − 2/p. (1.31)

Constructing such a family may be done by means of an iterative process. At
each step of the process, we use a linear transform T (defined below) which
duplicates any function f into 2d copies of the same function, at the scale 1/4.

Definition 1.45. Define Q
def
= [−1/2, 1/2]d and let xJ = 3/8 J for any ele-

ment J of {−1, 1}d. We then define the transform T by
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T :

⎧⎪⎨
⎪⎩

D(Q) −→ D(Q)

f 
−→ Tf
def
= 2d

∑
J ∈ { −1,1}d

TJf with TJf(x)
def
= f(4(x − xJ )).

For B ⊂ Q, we define TJ (B)
def
= xJ + 1

4B, T (B)
def
=
⋃

J ∈ { −1,1}d

TJ (B) and

denote TJ(Q) by QJ .

Using the fact that for any f ∈ D(Q), the support of TJf is included in QJ

and the fact that if J �= J ′, then QJ ∩ QJ ′ = ∅, we immediately get

‖Tf ‖Lp = 2d(1− 1
p )‖f ‖Lp . (1.32)

For the sake of simplicity we restrict our attention here to the case where s is
an integer.10 Then, observing that

∂j(Tf)(x) = 2d
∑

J ∈ { −1,1}d

4(∂jf)(4(x − xJ )) = 4T (∂jf)(x)

and using (1.32), we get

‖Tf ‖Ḣs = 2
d
2 +2s‖f ‖Ḣs . (1.33)

The estimate of Tf in terms of the Ḃ−σ norm is described by the following
proposition.

Proposition 1.46. For σ ∈ ]0, d], a constant C exists such that

‖Tf ‖Ḃ−σ ≤ 2d−2σ ‖f ‖Ḃ−σ + C‖f ‖L1 .

Proof. Since, thanks to (1.32), we have

λd−σ ‖θ(λ·) � (Tf)‖L∞ ≤ λd−σ ‖θ‖L∞ ‖Tf ‖L1 ≤ λd−σ ‖θ‖L∞ ‖f ‖L1 ,

we get

sup
λ≤1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞ ≤ ‖θ‖L∞ ‖f ‖L1 . (1.34)

The case where λ is large (which corresponds to high frequencies) is more
intricate. We first estimate λd(θ(λ·)�(Tf))(x) when x is not too close to T (Q),

namely, x ∈ Q̃c def= {x ∈ Q / d(x, T (Q)) ≥ 1/8}. As the function θ belongs
to S(Rd), we have, for any positive integer N ,

∣∣λd(θ(λ·) � (Tf))(x)
∣∣ ≤ λd‖θ‖N,S

∫
Rd

1
λN |x − y|N |Tf(y)| dy

≤ C‖θ‖N,S λd−N ‖f ‖L1 .

10 The general case follows by interpolation.
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This gives, for sufficiently large N ,

sup
λ≥1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞(Q̃c) ≤ C‖θ‖N,S ‖f ‖L1 . (1.35)

We now investigate the case where x ∈ Q̃. By definition, an element Jx

of {−1, 1}d and a point y of QJx exist such that d(x, y) ≤ 1/8. For any J ′ �= Jx,
we have

d(x, QJ ′ ) ≥ d(y, QJ ′ ) − d(x, y) ≥ 1
2

− 1
8

≥ 3
8

·

We now write∣∣λdθ(λ·) � (Tf)
∣∣ (x) ≤ 2d

∣∣λdθ(λ·) � (TJxf)
∣∣ (x)

+
∑

J ′ ∈ { −1,1}d \ {Jx }

2d
∣∣λdθ(λ·) � (TJ ′ f)

∣∣ (x).

Again using the fact that the function θ belongs to S(Rd), we have, for any
positive integer N and any J ′ �= Jx,

∣∣λd(θ(λ·) � (TJ ′ f))(x)
∣∣ ≤ ‖θ‖N,S λd

∫
Rd

1
λN |x − y|N |TJ ′ f(y)| dy

≤ C‖θ‖N,S λd−N ‖TJ ′ f ‖L1 .

Using (1.32), we infer that, for λ ≥ 1 and N sufficiently large,∑
J ′ ∈ { −1,1}d \ {Jx }

∣∣λdθ(λ·) � (TJ ′ f)
∣∣ (x) ≤ C‖θ‖N,S

∑
J ′ ∈ { −1,1}d \ {Jx }

‖TJ ′ f ‖L1

≤ C‖θ‖N,S ‖f ‖L1 . (1.36)

For any J , we have, by definition of TJ ,

sup
λ>0

λ−σ ‖λdθ(λ·) � (TJf)‖L∞ ≤ sup
λ>0

λ−σ
∥∥∥
(λ

4

)d
θ
(λ

4
·
)

� f
∥∥∥

L∞
≤ 2−2σ ‖f ‖Ḃ−σ .

Together with (1.34), (1.35), and (1.36), this gives

sup
λ≥1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞ ≤ 2d−2σ ‖f ‖Ḃ−σ + C‖f ‖L1 .

This completes the proof. ��
We can now construct a sequence (fn)n∈N of functions satisfying (1.31). For
that purpose, we consider a smooth nonnegative function f0, supported in Q,
and define fn = Tnf0. Iterating the inequality from Proposition 1.46 yields

‖fn‖Ḃ−σ ≤ 2n(d−2σ)‖f0‖Ḃ−σ + C
(n−1∑

m=0

2m(d−2σ)
)

‖f0‖L1 .

Taking σ = d/2 − s with s ∈]0, d/2[, we deduce that

‖fn‖
Ḃs− d

2
≤ Cf02

2ns.

Using (1.32) and (1.33), we can now conclude that (1.31) is satisfied.
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1.3.3 The Limit Case Ḣ
d
2

The space Ḣ
d
2 (Rd) is not included in L∞(Rd). We give an explicit counterex-

ample in dimension two. Let the function u be defined by

u(x) = ϕ(x) log(− log |x|)
for some smooth function ϕ supported in B(0, 1) with value 1 near 0. On the
one hand, u is not bounded. On the other hand, we have, near the origin,

|∂ju(x)| ≤ C

|x| | log |x| |

so that u belongs to Ḣ1(R2).
This motivates the following definition.

Definition 1.47. The space BMO(Rd) of bounded mean oscillations is the
set of locally integrable functions f such that

‖f ‖BMO
def
= sup

B

1
|B|

∫
B

|f − fB | dx < ∞ with fB
def
=

1
|B|

∫
B

f dx.

The above supremum is taken over the set of Euclidean balls.

We point out that the seminorm ‖ · ‖BMO vanishes on constant functions.
Therefore, this is not a norm. We now state the critical theorem for Sobolev
embedding.

Theorem 1.48. The space L1
loc(R

d) ∩ Ḣ
d
2 (Rd) is included in BMO(Rd).

Moreover, there exists a constant C such that

‖u‖BMO ≤ C‖u‖
Ḣ

d
2

for all functions u ∈ L1
loc(R

d) ∩ Ḣ
d
2 (Rd).

Proof. We use the decomposition (1.27) into low and high frequencies. For
any Euclidean ball B we have∫

B

|u − uB | dx

|B| ≤ ‖u�,A − (u�,A)B ‖L2(B, dx
|B| ) +

2
|B| 1

2
‖uh,A‖L2 .

Let R be the radius of the ball B. We have

‖u�,A − (u�,A)B ‖L2(B, dx
|B| ) ≤ R‖ ∇u�,A‖L∞

≤ CR

∫
Rd

|ξ|1− d
2 |ξ| d

2 |û�,A(ξ)| dξ

≤ CRA‖u‖
Ḣ

d
2
.

We infer that
∫

B

|u − uB | dx

|B| ≤ CRA‖u‖
Ḣ

d
2

+ C(AR)− d
2

(∫
|ξ|≥A

|ξ|d|û(ξ)|2 dξ

) 1
2

.

Choosing A = R−1 then completes the proof. ��
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1.3.4 The Embedding Theorem in Hölder Spaces

Definition 1.49. Let (k, ρ) be in N ×]0, 1]. The Hölder space Ck,ρ(Rd) (or
Ck,ρ, if no confusion is possible) is the space of Ck functions u on R

d such
that

‖u‖Ck,ρ = sup
|α|≤k

(
‖∂αu‖L∞ + sup

x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ρ

)
< ∞.

Proving that the sets Ck,ρ are Banach spaces is left as an exercise. We point
out that C0,1 is the space of bounded Lipschitz functions.

Theorem 1.50. If s > d
2 and s − d

2 is not an integer, then the space Ḣs(Rd)
is included in the Hölder space of index

(k, ρ) =
([

s − d

2

]
, s − d

2
−
[
s − d

2

])
,

and we have, for all u ∈ Ḣs(Rd),

sup
|α|=k

sup
x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ρ ≤ Cd,s‖u‖Ḣs .

Proof. We prove the theorem only in the case where the integer part of s−d/2
is 0. As s is greater than d/2, writing

û = 1B(0,1)û + (1 − 1B(0,1))û,

we get that û belongs to L1(Rd), and thus u is a bounded continuous function.
We again use the decomposition (1.27) into low and high frequencies. The low-
frequency part of u is of course smooth. By Taylor’s inequality, we have

|u�,A(x) − u�,A(y)| ≤ ‖ ∇u�,A‖L∞ |x − y|.

Using the Fourier inversion formula and the Cauchy–Schwarz inequality, we
get

‖∇u�,A‖L∞ ≤ C

∫
Rd

|ξ| |û�,A(ξ)| dξ

≤ C

(∫
|ξ|≤CA

|ξ|2−2s dξ

) 1
2

‖u‖Ḣs

≤ C

(1 − ρ)
1
2
A1−ρ‖u‖Ḣs with ρ = s − d/2.

Reasoning along exactly the same lines, we also have that
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‖uh,A‖L∞ ≤
∫

Rd

|ûh,A(ξ)| dξ

≤
(∫

|ξ|≥A

|ξ| −2s dξ

) 1
2

‖u‖Ḣs

≤ C

ρ
1
2
A−ρ‖u‖Ḣs .

It is then obvious that

|u(x) − u(y)| ≤ ‖∇u�,A‖L∞ |x − y| + 2‖uh,A‖L∞

≤ Cs

(
|x − y|A1−ρ + A−ρ

)
‖u‖Ḣs .

Choosing A = |x − y| −1 then completes the proof of the theorem. ��

1.4 Nonhomogeneous Sobolev Spaces on R
d

In this section, we focus on nonhomogeneous Sobolev spaces. As in the previ-
ous section, the emphasis is on embedding properties in Lebesgue and Hölder
spaces. We also establish a trace theorem and provide an elementary proof for
a Hardy inequality.

1.4.1 Definition and Basic Properties

Definition 1.51. Let s be a real number. The Sobolev space Hs(Rd) consists
of tempered distributions u such that û ∈ L2

loc(R
d) and

‖u‖2
Hs

def
=
∫

Rd

(1 + |ξ|2)s|û(ξ)|2 dξ < ∞.

As the Fourier transform is an isometric linear operator from the space Hs(Rd)
onto the space L2(Rd; (1 + |ξ|2)s dξ), the space Hs(Rd) equipped with the
scalar product

(u | v)Hs
def=
∫

Rd

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ (1.37)

is a Hilbert space.
It is obvious that the family of Hs spaces is decreasing with respect to s.

Moreover, we have the following proposition, the proof of which is strictly
analogous to that of Proposition 1.32.

Proposition 1.52. If s0 ≤ s ≤ s1, then we have

‖u‖Hs ≤ ‖u‖1−θ
Hs0 ‖u‖θ

Hs1 with s = (1 − θ)s0 + θs1.
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When s is a nonnegative integer, the Fourier–Plancherel formula ensures that
the space Hs coincides with the set of L2 functions u such that ∂αu belongs
to L2 for any α in N

d with |α| ≤ s. In the case where s is a negative integer,
the space Hs is described by the following proposition, the proof of which is
analogous to that of Proposition 1.33.

Proposition 1.53. Let k be a positive integer. The space H−k(Rd) consists of
distributions which are sums of an L2(Rd) function and derivatives of order k
of L2(Rd) functions.

Remark 1.54. The Dirac mass δ0 belongs to H− d
2 −ε for any positive ε but

does not belong to H− d
2 . Moreover, δ0 is not in Ḣs for any s.

It is obvious that when s is nonnegative, Hs is included in Ḣs, and that the
opposite happens when s is negative. Further, Ḣs �= Hs for s �= 0. In the
following proposition, we state that the two spaces coincide for compactly
supported distributions and nonnegative s.

Proposition 1.55. Let s be a nonnegative real number and K a compact
subset of R

d. Let Hs
K(Rd) be the space of those distributions of Hs(Rd) which

are supported in K. There then exists a positive constant C such that

∀u ∈ Hs
K(Rd) ,

1
C

‖u‖Hs ≤ ‖u‖Ḣs ≤ ‖u‖Hs .

Proof. We simply have to prove that ‖u‖L2 ≤ CK ‖u‖Ḣs . Using the Fourier–
Plancherel formula and the inverse formula, we have11

|û(ξ)| ≤ ‖u‖L1 ≤
√

|K| ‖u‖L2 ≤ (2π)− d
2
√

|K| ‖û‖L2 .

For any positive ε we then get

‖û‖2
L2 ≤ (2π)−d|K| ‖û‖2

L2

∣∣B(0, ε)
∣∣+
∫

Rd \B(0,ε)

|ξ| −2s|ξ|2s|û(ξ)|2 dξ

≤ (2π)−dcdε
d |K| ‖û‖2

L2 +
1

ε2s
‖u‖2

Ḣs .

Taking ε such that (2π)−dcdε
d |K| = 1/2, we see that

‖û‖L2 ≤
√

2
(2π)s

(
2cd|K|
) s

d ‖u‖Ḣs , (1.38)

and the result follows. ��

From the above proposition, we can infer the following Poincaré-type inequal-
ity, which is relevant for functions supported in small balls.
11 From now on, we agree that |K| denotes the Lebesgue measure of the set K.
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Corollary 1.56. Let 0 ≤ t ≤ s. A constant C exists such that for any posi-
tive δ and any function u ∈ Hs(Rd) supported in a ball of radius δ, we have

‖u‖Ḣt ≤ Cδs−t‖u‖Ḣs and ‖u‖Ht ≤ Cδs−t‖u‖Hs .

Proof. Using the fact that the ‖ · ‖Hs norm is invariant under translation, we
can suppose that the ball is centered at the origin. If we set v(x) = u(δx),
then v is supported in the unit ball and obviously satisfies ‖v‖Ht ≤ C‖v‖Hs ,
hence also ‖v‖Ḣt ≤ C‖v‖Ḣs , due to the previous proposition.

Using the fact that v̂(ξ) = δ−dû
(ξ

δ

)
, we thus get ‖u‖Ḣt ≤ Cδs−t‖u‖Ḣs .

Using (1.38) we then get the inequality pertaining to nonhomogeneous norms.
��

We have the following density result, strictly analogous to Proposition 1.35.

Proposition 1.57. The space S is dense in Hs.

The duality between Hs and H−s is described by the following proposition,
the proof of which is analogous to that of Proposition 1.36.

Proposition 1.58. For any real s, the bilinear functional

B :

⎧⎨
⎩

S × S → C

(φ, ϕ) 
→
∫

Rd

φ(x)ϕ(x) dx

can be extended to a continuous bilinear functional on H−s × Hs. Moreover,
if L is a continuous linear functional on Hs, a unique tempered distribution u
exists in H−s such that

∀φ ∈ S , 〈L, φ〉 = B(u, φ).

In addition, we have ‖L‖(Hs)′ = ‖u‖H−s .

The following proposition can be very easily deduced from Proposition 1.37.

Proposition 1.59. Let s = m + σ with m ∈ N and σ ∈ ]0, 1[. We then have

Hs(Rd) =
{

u ∈ L2(Rd) / ∀α ∈ N
d / |α| ≤ m, ∂αu ∈ L2(Rd)

and, for α / |α| = m,

∫
Rd ×Rd

|∂αu(x+y) − ∂αu(x)|2
|y|d+2σ

dx dy < +∞
}

,

and there exists a constant C such that

C−1‖u‖2
Hs ≤

∑
|α|=m

∫
Rd × Rd

|∂αu(x + y) − ∂αu(x)|2
|y|d+2σ

dx dy

+
∑

|α|≤m

‖∂αu‖2
L2 ≤ C‖u‖2

Hs .
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The above characterization of Sobolev spaces is suitable for establishing invari-
ance under diffeomorphism. In what follows, it is understood that a global k-
diffeomorphism on R

d is any Ck diffeomorphism ϕ from R
d onto R

d whose
derivatives of order less than or equal to k are bounded and which satisfies,
for some constant C,

∀(x, y) ∈ R
d × R

d , |ϕ(x) − ϕ(y)| ≥ C|x − y|.

Corollary 1.60. Let ϕ be a global k-diffeomorphism on R
d, 0 ≤ s < k, and

u ∈ Hs(Rd). Then, u ◦ ϕ ∈ Hs(Rd).

Proof. By virtue of the chain rule, it is enough to consider the case where s
is in [0, 1[. The result follows easily from the identity

J(u) def=
∫

Rd × Rd

|u(ϕ(x)) − u(ϕ(y))|2
|x − y|d+2s

dx dy

=
∫

Rd × Rd

|u(x) − u(y)|2
|ψ(x) − ψ(y)|d+2s

| det(Dψ(x))| −1| det(Dψ(y))| −1 dx dy

≤ C

∫
Rd × Rd

|u(x) − u(y)|2
|x − y|d+2s

dx dy,

where it is understood that ψ = ϕ−1. This proves the corollary. ��

The following density theorem will be useful.

Theorem 1.61. For any real s, the space D(Rd) is dense in Hs(Rd).

Proof. In order to prove this theorem, we consider a distribution u in Hs(Rd)
such that for any test function ϕ in D(Rd), we have

∫
Rd

ϕ̂(ξ)(1 + |ξ|2)sû(ξ) dξ = 0.

Knowing that D(Rd) is dense in S(Rd) and that the Fourier transform is an
automorphism of S(Rd), we have, for any function f in S(Rd),

∫
Rd

f(ξ)(1 + |ξ|2)sû(ξ) dξ = 0.

This implies that (1 + | · |2)sû = 0 as a tempered distribution. Thus, û = 0,
and then u = 0. ��

The Sobolev spaces are not stable under multiplication by C∞ functions;
nevertheless, they are local. This is a consequence of the following result.

Theorem 1.62. Multiplication by a function of S(Rd) is a continuous map
from Hs(Rd) into itself.
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Proof. As we know that ϕ̂u = (2π)−dϕ̂ � û, the proof of Theorem 1.62 is
reduced to the estimate of the L2(Rd) norm of the function Us defined by

Us(ξ)
def= (1 + |ξ2|) s

2

∫
Rd

|ϕ̂(ξ − η)| × |û(η)| dη.

We will temporarily assume that

(1 + |ξ|2) s
2 ≤ 2

|s|
2 (1 + |ξ − η|2)

|s|
2 (1 + |η|2) s

2 . (1.39)

We then infer that

|Us(ξ)| ≤ 2
|s|
2

∫
Rd

(1 + |ξ − η|2)
|s|
2 |ϕ̂(ξ − η)|(1 + |η|2) s

2 |û(η)| dη.

Using Young’s inequality, we get

‖ϕu‖Hs ≤ 2
|s|
2 ‖(1 + | · |2)

|s|
2 ϕ̂‖L1 ‖u‖Hs ,

and the desired result follows.
For the sake of completeness, we now prove the inequality (1.39). Inter-

changing ξ and η, we see that it suffices to consider the case s ≥ 0. We have

(1 + |ξ|2) s
2 ≤ (1 + 2(|ξ − η|2 + |η|2)) s

2

≤ 2
s
2 (1 + |ξ − η|2) s

2 (1 + |η|2) s
2 .

This completes the proof of the theorem. ��

We will now consider the problem of trace and trace lifting operators for
the Sobolev spaces. Consider the hyperplane x1 = 0 in R

d. Because this has
measure zero, we cannot give any reasonable sense to the trace operator γ
formally defined by γu(x′) = u(0, x′) if u belongs to a Lebesgue space. For
instance, there exist elements of L2(Rd) which are continuous for x1 �= 0 and
tend to infinity when x1 goes to 0. This obviously precludes us from defining
the trace of a general L2 function.

The following theorem shows that defining γu makes sense for u ∈ Hs(Rd)
with s greater than 1/2. Extending the usual trace operator by continuity
provides us with the relevant definition.

Theorem 1.63. Let s be a real number strictly larger than 1/2. The restric-
tion map γ defined by

γ :
{

S(Rd) −→ S(Rd−1)
φ 
−→ γ(φ) : (x2, . . . , xd) 
→ φ(0, x2, . . . , xd)

can be continuously extended from Hs(Rd) onto Hs− 1
2 (Rd−1).
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Proof. We first prove the existence of γ. Arguing by density, it suffices to find
a constant C such that

∀φ ∈ S , ‖γ(φ)‖
Hs− 1

2
≤ C‖φ‖Hs . (1.40)

To achieve the above inequality, we may rewrite the trace operator in terms
of a Fourier transform:

φ(0, x′) = (2π)−d

∫
Rd

ei(x′ |ξ′)φ̂(ξ1, ξ
′) dξ1 dξ′

= (2π)1−d

∫
Rd−1

ei(x′ |ξ′)
(
(2π)−1

∫
R

φ̂(ξ1, ξ
′) dξ1

)
dξ′.

We thus have
γ̂(φ)(ξ′) = (2π)−1

∫
R

φ̂(ξ1, ξ
′) dξ1.

By multiplication and division by (1+ |ξ1|2 + |ξ′ |2) s
2 and the Cauchy–Schwarz

inequality, we have

|γ̂(φ)(ξ′)|2 ≤ 1
4π2

(∫
R

(1 + ξ2
1 + |ξ′ |2)−s dξ1

)(∫
R

(|φ̂(ξ)|2(1 + |ξ|2)s dξ1

)
.

Having s > 1
2 ensures that the first integral is finite. In order to compute it,

we make the change of variables ξ1 = (1 + |ξ′ |2) 1
2 λ. We obtain∫

(1 + ξ2
1 + |ξ′ |2)−s dξ1 = Cs(1 + |ξ′ |2)−s+ 1

2 with Cs =
∫

(1 + λ2)−sdλ.

We deduce that ‖γ(φ)‖2

Hs− 1
2

≤ Cs‖φ‖2
Hs , which completes the proof of the

first part of the theorem.
We now define the trace lifting operator. Let χ be a function in D(R) such

that χ(0) = 1. We define

Rv(x) def= (2π)−d+1

∫
Rd−1

ei(x′ |ξ′)χ(x1〈ξ′ 〉)v̂(ξ′) dξ′ with 〈ξ′ 〉 =
√

1 + |ξ′ |2.

It is clear that

F Rv(ξ) =
∫

R

e−itξ1χ(t〈ξ′ 〉)v̂(ξ′) dt

= 〈ξ′ 〉 −1χ̂
( ξ1

〈ξ′ 〉

)
v̂(ξ′).

Taking N sufficiently large, we deduce that

‖Rv‖2
Hs =
∫

Rd

(1 + |ξ1|2 + |ξ′ |2)s〈ξ′ 〉 −2
∣∣χ̂(〈ξ′ 〉 −1

ξ1

)∣∣2|v̂(ξ′)|2 dξ

≤ CN

∫
Rd−1

(∫
R

(
1 +

|ξ1|2
〈ξ′ 〉2

)s−N

〈ξ′ 〉 −1 dξ1

)
(1 + |ξ′ |2)s− 1

2 |v̂(ξ′)|2 dξ′

≤ CN ‖v‖2

Hs− 1
2
.

Of course, we have γRv = v. This completes the proof of the theorem. ��
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We infer the following corollary.

Corollary 1.64. Let s > m + 1
2 with m ∈ N . The map

Γ :

⎧⎪⎨
⎪⎩

Hs(Rd) −→
m⊕

j=0

Hs−j− 1
2 (Rd−1)

u 
−→ (γj(u))0≤j≤m

with γj(u) = γ(∂j
x1

u) is then continuous and onto.

Remark 1.65. More generally, the trace operator γΣ may be defined for any
smooth hypersurface Σ of R

d . Indeed, according to Theorem 1.62 and Corol-
lary 1.60, the spaces Hs(Rd) are local and invariant under the action of dif-
feomorphism, so localizing and straightening Σ reduces the problem to the
study of the trace operator defined in Theorem 1.63.

1.4.2 Embedding

In this subsection, we present a few properties concerning embedding in
Lebesgue spaces. First, from Theorems 1.38 and 1.50 we can easily deduce
the following result.

Theorem 1.66. The space Hs(Rd) embeds continuously in:

– the Lebesgue space Lp(Rd), if 0 ≤ s < d/2 and 2 ≤ p ≤ 2d/(d − 2s)
– the Hölder space Ck,ρ(Rd), if s ≥ d/2+k+ρ for some k ∈ N and ρ ∈ ]0, 1[.

As in the homogeneous case, the space H
d
2 fails to be embedded in L∞.

However, the following Moser–Trudinger inequality holds.

Theorem 1.67. There exist two constants, c and C, depending only on the
dimension d, such that for any function u ∈ H

d
2 (Rd), we have

∫
Rd

(
exp
(
c
( |f(x)|

‖f ‖
H

d
2

)2)
− 1
)

dx ≤ C.

Proof. As usual, arguing by density and homogeneity, it suffices to consider
the case where f is in S and satisfies ‖f ‖

H
d
2

= 1.

Now, the proof is based on the fact that, according to the inequality (1.30)
and the definition of nonhomogeneous Sobolev spaces, there exists some con-
stant Cd (depending only on the dimension d) such that

‖f ‖L2p ≤ Cd
√

p for all p ≥ 1. (1.41)

For all x ∈ R
d, we may write

exp
(
c|f(x)|2

)
− 1 =
∑
p≥1

cp

p!
|f(x)|2p.
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Integrating over R
d and using the inequality (1.41) yields∫
Rd

(
exp
(
c|f(x)|2

)
− 1
)

dx =
∑
p≥1

cpC2p
d

pp

p!
·

The theorem then follows from our choosing the constant c sufficiently small.
��

As stated before, the space Hs(Rd) is included in Ht(Rd) whenever t ≤ s. If
the inequality is strict, then the following statement ensures that the embed-
ding is locally compact.

Theorem 1.68. For t < s, multiplication by a function in S(Rd) is a compact
operator from Hs(Rd) in Ht(Rd).

Proof. Let ϕ be a function in S. We have to prove that for any sequence (un)
in Hs(Rd) satisfying supn ‖un‖Hs ≤ 1, we can extract a subsequence (unk

)
such that (ϕunk

) converges in Ht(Rd).
As Hs(Rd) is a Hilbert space, the weak compactness theorem ensures

that the sequence (un)n∈N converges weakly, up to extraction, to an ele-
ment u of Hs(Rd) with ‖u‖Hs ≤ 1. We continue to denote this subsequence
by (un)n∈N and set vn = un − u. Thanks to Theorem 1.62, supn ‖ϕvn‖Hs ≤ C.
Our task is thus reduced to proving that the sequence (ϕvn)n∈N tends to 0
in Ht(Rd). We now have, for any positive real number R,∫

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ ≤
∫

|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ

+
∫

|ξ|≥R

(1+|ξ|2)t−s(1+|ξ|2)s| F (ϕvn)(ξ)|2 dξ

≤
∫

|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ +
‖ϕvn‖2

Hs

(1+R2)s−t
·

As (ϕvn)n∈N is bounded in Hs(Rd), for a given positive real number ε, we can
choose R such that

1
(1 + R2)s−t

‖ϕvn‖2
Hs ≤ ε

2
·

On the other hand, as the function ψξ defined by

ψξ(η) def= (2π)−dF −1
(
(1 + |η|2)−sϕ̂(ξ − η)

)

belongs to S(Rd), we can write

F (ϕvn)(ξ) = (2π)−d

∫
ϕ̂(ξ − η)v̂n(η) dη

=
∫

(1 + |η|2)sψ̂ξ(η)v̂n(η) dη

= (ψξ | vn)Hs .
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As (vn)n∈N converges weakly to 0 in Hs(Rd), we can thus conclude that

∀ξ ∈ R
d , lim

n→∞
F (ϕvn)(ξ) = 0.

Let us temporarily assume that

sup
|ξ|≤R
n∈N

| F (ϕvn)(ξ)| ≤ M < ∞. (1.42)

Lebesgue’s theorem then implies that

lim
n→∞

∫
|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ = 0,

which leads to the convergence of the sequence (ϕvn)n∈N to 0 in Ht(Rd).
To complete the proof of the theorem, let us prove (1.42). It is clear that

| F (ϕvn)(ξ)| ≤ (2π)−d

∫
Rd

|ϕ̂(ξ − η)| |v̂n(η)| dη

≤ (2π)−d‖vn‖Hs

(∫
(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

) 1
2

.

Now, as ϕ̂ belongs to S(Rd), a constant C exists such that

|ϕ̂(ξ − η)| ≤ CN0

(1 + |ξ − η|2)N0
with N0 =

d

2
+ |s| + 1.

We thus obtain∫
(1 + |η|2)−s|ϕ̂(ξ −η)|2 dη ≤

∫
|η|≤2R

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

+
∫

|η|≥2R

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

≤ C

∫
|η|≤2R

(1 + |η|2)|s| dη

+CN0

∫
|η|≥2R

(1 + |η|2)|s|(1 + |ξ −η|2)−N0 dη.

Finally, since |ξ| ≤ R, we always have |ξ − η| ≥ |η|
2

in the last integral, so we
eventually get
∫

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη ≤ C(1 + R2)|s|+ d
2 + C

∫
dη

(1 + |η|2) d
2 +1

·

This yields (1.42) and completes the proof of the theorem. ��
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From the above theorem, we can deduce the following compactness result.

Theorem 1.69. For any compact subset K of R
d and s′ < s, the embedding

of Hs
K(Rd) into Hs′

K(Rd) is a compact linear operator.

Proof. It suffices to consider a function ϕ in S(Rd) which is identically equal
to 1 in a neighborhood of the compact K and then to apply Theorem 1.68. ��

1.4.3 A Density Theorem

In this subsection we investigate the density of the space D(Rd \{0}) in
Sobolev spaces. This result is useful for proving Hardy inequalities and is
related to the problem of the pointwise value of a function in Hs(Rd). Indeed,
having D(Rd \{0}) dense in Hs(Rd) precludes any reasonable definition of the
“value at 0” of an element of Hs(Rd). We now state the result.

Theorem 1.70. If s ≤ d/2 (resp., < d/2), then the space D(Rd \{0})
is dense in Hs(Rd) [resp., in Ḣs(Rd)]. If s > d/2, then the closure of
the space D(Rd \{0}) in Hs(Rd) is the set of functions u in Hs(Rd) such
that ∂αu(0) = 0 for any α ∈ N

d such that |α| < s − d/2.

Proof. As Hs(Rd) is a Hilbert space it is enough to study the orthogonal
complement of D(Rd \ {0}) in Hs(Rd). For u in Hs we define

us
def= F −1((1 + |ξ|2)sû).

If u belongs to the orthogonal complement of D(Rd \{0}), then we have
∫

Rd

ûs(ξ)ϕ̂(ξ) dξ = 〈us, ϕ〉 = 0 for any ϕ in D(Rd \{0}).

This implies that the support of us is included in {0}. We infer that a se-
quence (aα)|α|≤N exists such that

us =
∑

|α|≤N

aα∂αδ0. (1.43)

As us belongs to H−s, Remark 1.54 implies that aα = 0 for |α| ≥ s − d/2.
Thus, if s ≤ d/2, then us = u = 0 and the density is proved in that case. The
proof of the density in the homogeneous case follows the same lines and is left
to the reader as an exercise.

When s is greater than d/2, the orthogonal complement of the space
D(Rd \{0}) is exactly the finite-dimensional vector space Vs spanned by the
functions (uα)|α|≤[s−d/2] defined by

uα(x) def= (2π)−d

∫
Rd

ei(x|ξ) (iξ)α

(1 + |ξ|2)s
dξ.
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However, thanks to the relation (1.43), if the partial derivatives of order less
than or equal to s − d/2 of a function v in Hs vanish at 0, then we have

(v|uα)Hs = 〈v, ∂αδ0〉 = 0.

Thus, the function v belongs to the orthogonal complement of Vs, which is
the closure of D(Rd \ {0}). ��

Remark 1.71. If d = 1, then the above result means that the map u 
→ u(0)
cannot be extended to H

1
2 (R) functions. More generally, arguing as above,

we can prove that the restriction map γ on the hyperplane x1 = 0 cannot be
extended to H

1
2 (Rd) functions.12

1.4.4 Hardy Inequality

This brief subsection is devoted to proving a fundamental inequality with
singular weight in Sobolev spaces: the so-called Hardy inequality. More general
Hardy inequalities will be established in the next chapter (see Theorem 2.57).

Theorem 1.72. If d ≥ 3, then

(∫
Rd

|f(x)|2
|x|2 dx

) 1
2

≤ 2
d − 2

‖ ∇f ‖L2 for any f in Ḣ1(Rd). (1.44)

Proof. Arguing by density, it suffices to prove the inequality for f∈ D(Rd \{0}).

Let R be the radial vector field R =
d∑

i=1

xi∂xi . Because R|x| −2 = −2|x| −2,

integrating by parts yields
∫

Rd

|f(x)|2
|x|2 dx =

1
2

∫
Rd

2f(x)Rf(x)
|x|2 dx +

d

2

∫
Rd

|f(x)|2
|x|2 dx.

Thus, we have, by the Cauchy–Schwarz inequality,
∫

Rd

|f(x)|2
|x|2 dx =

2
2 − d

∫
Rd

f(x)Rf(x)
|x|2 dx

≤ 2
d − 2

(∫
Rd

|f(x)|2
|x|2 dx

) 1
2
(∫

Rd

| Rf(x)|2
|x|2 dx

) 1
2

,

which implies that
12 In fact, γu makes sense whenever u belongs to the smaller space

H
1
2
0,0(R

d)
def
=

{
u ∈ H

1
2 (Rd)
/ u

|x1| 1
2

∈ L2(Rd)

}
.
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(∫
Rd

|f(x)|2
|x|2 dx

) 1
2

≤ 2
d − 2

(∫
Rd

| ∇f(x)|2 dx

) 1
2

. ��

Remark 1.73. Let us note that using Lorentz spaces provides an elementary
proof of more general Hardy inequalities, namely,

∥∥∥∥ f

|x|s

∥∥∥∥
L2

≤ C‖f ‖Ḣs for 0 ≤ s <
d

2
·

Indeed, using real interpolation we can show that Ḣs not only embeds in the
space Lp with 1/p = 1/2 − s/d, but also in the Lorentz space Lp,2. Now, it
is clear that the function x 
→ | · |−s belongs to the space L

d/s
w , so applying

generalized Hölder inequalities in Lorentz spaces, we get
∥∥∥∥ f

|x|s

∥∥∥∥
L2

≤ C

∥∥∥∥ 1
| · |s

∥∥∥∥
L

d/s
w

‖f ‖Lp,2 ≤ C ′ ‖f ‖Ḣs .

1.5 References and Remarks

The Hölder and Young inequalities belong to mathematical folklore. Refined Young
inequalities are special cases of convolution inequalities in Lorentz spaces. An ex-
haustive list of such inequalities can be found in [171] or the book by P.-G. Lemarié-
Rieusset [205]. More about atomic decomposition and bilinear interpolation can be
found in the book by L. Grafakos [150].

In the present chapter, we restricted ourselves to the very basic properties of the
Fourier transform. For a more complete study of the Fourier transform of harmonic
analysis methods for partial differential equations, the reader may refer to the text-
books [40] by J.-M. Bony, [122] by L.C. Evans, [275] by E.M. Stein, [167, vol. 1] by
L. Hörmander and [282, 283] by M.E. Taylor.

The Sobolev embedding in Lebesgue spaces was first stated by S. Sobolev him-
self in [270, 271]. There is now a plethora of generalizations (W s,p spaces, metric
spaces, etc.) Basic references for Sobolev spaces may be found in the books [3] by
R. Adams and [146] by D. Gilbarg and N. Trudinger. Refined Sobolev inequalities
were discovered by P. Gérard, Y. Meyer, and F. Oru in [140]. The proof which
has been proposed here is borrowed from [77]. The fractal counterexample comes
from [22]. The study of embedding of Sobolev spaces in Hölder spaces goes back
to C. Morrey’s work in [235]. The BMO space was first introduced by F. John and
L. Nirenberg in [174].

Most of the results concerning nonhomogeneous Sobolev spaces are classical.
Hardy inequalities go back to the pioneering work by G.H. Hardy in [153, 154]. In
the next chapter, we shall state more general Hardy inequalities in Sobolev spaces
with fractional indices of regularity.

For more details on the Moser–Trudinger inequality, see the pioneering works by
J. Moser in [236] and N.S. Trudinger in [290]. For recent developments, see [2].

Note that combining the Sobolev embedding theorem with Theorem 1.68 ensures
that the embedding of Ḣs(Rd) in Lp(Rd) is locally compact whenever 2 ≤ p ≤ ∞
and s > d/2 − d/p. In contrast, due to the scaling invariance of the critical Sobolev



50 1 Basic Analysis

embedding,13 the fact that Ḣs(Rd) ↪→ Lps(Rd) when 0 ≤ s < d/2, and that fact that
ps = 2d/(d − 2s), no compactness properties may be expected in this case. Indeed,
if u ∈ Ḣs \ {0}, then for any sequence (yn) of points in R

d tending to infinity
and for any sequence (hn) of positive real numbers tending to 0 or to infinity, the
sequences (τynu) and (δhnu) converge weakly to 0 in Ḣs but are not relatively
compact in Lp since ‖τynu‖Lp = ‖u‖Lp and ‖δhnu‖Lp = ‖u‖Lp . The study of this
defect of compactness was initiated by P.-L. Lions in [212] (see also the paper by
P. Gérard [139]). In short, it has been shown that translational and scaling invariance
are the only features responsible for the defect of compactness of the embedding
of Ḣs into Lp.

13 Throughout this book, we agree that whenever X and Y are Banach spaces, the
notation X ↪→ Y means that X ⊂ Y and that the canonical injection from X to Y
is continuous.
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Littlewood–Paley Theory

In this chapter we introduce most of the Fourier analysis material which will
be needed in the next chapters. The main idea is that functions or distribu-
tions are easier to deal with if split into countable sums of smooth functions
whose Fourier transforms are compactly supported in a ball or an annulus.
Littlewood–Paley theory provides such a decomposition.

The first section is dedicated to the study of functions with compactly
supported Fourier transforms. We state Bernstein inequalities and study the
action of heat flow or of a diffeomorphism over spectrally localized functions.
The Littlewood–Paley decomposition is introduced in the second section. Sec-
tions 2.3, 2.4, and 2.5 are devoted to the definition of homogeneous Besov
spaces and the proofs of some of their properties (basic topological proper-
ties, characterizations in terms of heat flow or finite differences, embedding in
Lebesgue spaces, and Gagliardo–Nirenberg-type inequalities).

In Section 2.6 we introduce the (homogeneous) paradifferential calculus
(after J.-M. Bony in [39]) and state a few results concerning continuity of
the paraproduct. We also study the effect of left composition by a smooth
function. The next section is devoted to the definition and a few properties of
(the more classical) nonhomogeneous Besov spaces. In Section 2.8 we state a
paralinearization theorem. Compactness properties of Besov spaces are stud-
ied in Section 2.9. In Section 2.10 (which may be skipped at first reading)
we give some technical commutator estimates which will be needed in the
next chapters. In the last section, we state a few properties for the Zygmund
space B1

∞,∞ and provide some logarithmic-type interpolation inequalities.

2.1 Functions with Compactly Supported Fourier
Transforms

Littlewood–Paley theory is a localization procedure in frequency space. The
interesting feature of this localization is that the derivatives (or, more gen-
erally, Fourier multipliers) act almost as homotheties on distributions whose

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 2, c© Springer-Verlag Berlin Heidelberg 2011
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Fourier transforms are supported in a ball or an annulus. This nice property
leads to the so-called Bernstein inequalities and is investigated in the next
subsection.

2.1.1 Bernstein-Type Lemmas

Throughout, we shall call a ball any set {ξ ∈ R
d / |ξ| ≤ R} with R > 0 and

an annulus any set {ξ ∈ R
d / 0 < r1 ≤ |ξ| ≤ r2} with 0 < r1 < r2.

Lemma 2.1. Let C be an annulus and B a ball. A constant C exists such that
for any nonnegative integer k, any couple (p, q) in [1, ∞]2 with q ≥ p ≥ 1, and
any function u of Lp, we have

Supp û ⊂ λB =⇒ ‖Dku‖Lq
def
= sup

|α|=k

‖∂αu‖Lq ≤ Ck+1λk+d( 1
p − 1

q )‖u‖Lp ,

Supp û ⊂ λC =⇒ C−k−1λk ‖u‖Lp ≤ ‖Dku‖Lp ≤ Ck+1λk ‖u‖Lp .

Proof. Using a dilation of size λ, we can assume throughout the proof that
λ = 1. Let φ be a function of D(Rd) with value 1 near B. As û(ξ) = φ(ξ)û(ξ)
we have

∂αu = ∂αg � u with g = F −1φ.

Applying Young’s inequality we get

‖∂αg � u‖Lq ≤ ‖∂αg‖Lr ‖u‖Lp with
1
r

def= − 1
p

+
1
q

+ 1,

and the first assertion follows via

‖∂αg‖Lr ≤ ‖∂αg‖L∞ + ‖∂αg‖L1

≤ C‖(1 + | · |2)d∂αg‖L∞

≤ C‖(Id −Δ)d
(
(·)αφ)‖L1

≤ Ck+1.

To prove the second assertion, consider a function φ̃ ∈ D(Rd \{0}) with value 1
on a neighborhood of C. From the algebraic identity (1.23) page 25 and the
fact that û = φ̃û, we deduce that there exists a family of integers (Aα)α ∈ N

d

such that

u =
∑

|α|=k

gα � ∂αu with gα
def= AαF −1(−iξ)α|ξ| −2kφ̃(ξ),

and the result follows. 	


The following lemma describes the action of Fourier multipliers which behave
like homogeneous functions of degree m.
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Lemma 2.2. Let C be an annulus, m ∈ R, and1 k = 2[1 + d/2]. Let σ be
a k-times differentiable function on R

d \ {0} such that for any α ∈ N
d with

|α| ≤ k, there exists a constant Cα such that

∀ξ ∈ R
d, |∂ασ(ξ)| ≤ Cα|ξ|m− |α|.

There exists a constant C, depending only on the constants Cα, such that for
any p ∈ [1, ∞] and any λ > 0, we have, for any function u in Lp with Fourier
transform supported in λC,

‖σ(D)u‖Lp ≤ Cλm‖u‖Lp with σ(D)u
def
= F −1(σû).

Proof. Consider a smooth function ϕ̃ supported in an annulus and such that
ϕ̃ ≡ 1 on C. It is clear that we have

σ(D)u = λdKλ(λ·) � u with (2.1)

Kλ(x) def= (2π)−d

∫
Rd

ei(x|ξ)ϕ̃(ξ)σ(λξ) dξ.

Let M = [1 + d/2]. We have

(1 + |x|2)MKλ(x) =
∫

(Id −Δξ)M
(
ei(x|ξ)) ϕ̃(ξ)σ(λξ) dξ

=
∫

ei(x|ξ) (Id −Δξ)M
(
ϕ̃(ξ)σ(λξ)

)
dξ

=
∑

|α|+|β|≤2M

cα,βλ|β|
∫

ei(x|ξ) ∂αϕ̃(ξ) ∂βσ(λξ) dξ

for some integers cα,β (whose exact values do not matter). The integration
may be restricted to Supp ϕ̃. On this set we have |∂βσ(λξ)| ≤ Cβλm− |β|.
Thus, we get

(1 + |x|2)M |Kλ(x)| ≤ CMλm.

As 2M > d we may conclude that ‖Kλ‖L1 ≤ Cλm. Applying Young’s inequal-
ity to (2.1) then yields the desired result. 	


2.1.2 The Smoothing Effect of Heat Flow

This subsection is devoted to the study of the action of heat flow over spec-
trally supported functions. Our main result is based on Faà di Bruno’s formula,
which we recall here for the convenience of the reader.
1 Throughout this book we agree that whenever r is a real number, [r] stands for
the integer part of r.
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Lemma 2.3. Let u : R
d → R

m and F : R
m → R be smooth functions. For

each multi-index α of N
d, we have

∂α(F ◦ u) =
∑
μ,ν

Cμ,ν∂μF
∏

1≤ |β|≤|α|
1≤j≤m

(∂βuj)νβj ,

where the coefficients Cμ,ν are nonnegative integers, and the sum is taken over
those μ and ν such that 1 ≤ |μ| ≤ |α|, νβj ∈ N

∗,

∑
1≤ |β|≤|α|

νβj = μj for 1 ≤ j ≤ m, and
∑

1≤ |β|≤|α|
1≤j≤m

βνβj = α.

The following lemma describes the action of the semigroup of the heat equa-
tion on distributions with Fourier transforms supported in an annulus.

Lemma 2.4. Let C be an annulus. Positive constants c and C exist such that
for any p in [1, ∞] and any couple (t, λ) of positive real numbers, we have

Supp û ⊂ λC ⇒ ‖etΔu‖Lp ≤ Ce−ctλ2
‖u‖Lp .

Proof. We again consider a function φ in D(Rd \{0}), the value of which is
identically 1 near the annulus C. We can also assume without loss of generality
that λ = 1. We then have

etΔu = φ(D)etΔu

= F −1
(
φ(ξ)e−t|ξ|2 û(ξ)

)

= g(t, ·) � u with g(t, x) def= (2π)−d

∫
ei(x|ξ)φ(ξ)e−t|ξ|2dξ. (2.2)

The lemma is proved provided we can find positive real numbers c and C such
that

∀t > 0 , ‖g(t, ·)‖L1 ≤ Ce−ct. (2.3)

To begin, we perform integrations by parts in (2.2). We get

g(t, x) = (1 + |x|2)−d

∫
(1 + |x|2)dei(x|ξ)φ(ξ)e−t|ξ|2dξ

= (1 + |x|2)−d

∫ (
(Id −Δξ)dei(x|ξ)

)
φ(ξ)e−t|ξ|2dξ

= (1 + |x|2)−d

∫
Rd

ei(x|ξ)(Id −Δξ)d
(
φ(ξ)e−t|ξ|2

)
dξ.

Via Leibniz’s formula, we obtain
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(Id −Δξ)d
(
φ(ξ)e−t|ξ|2

)
=
∑
β≤α

|α|≤2d

Cα
β

(
∂(α−β)φ(ξ)

)(
∂βe−t|ξ|2

)
.

From Faà di Bruno’s formula (see the above lemma) and the fact that the sup-
port of φ is included in an annulus, we deduce that there exists a couple (c, C)
of positive real numbers such that for any ξ in the support of φ,∣∣∣

(
∂(α−β)φ(ξ)

)(
∂βe−t|ξ|2

)∣∣∣ ≤ C(1 + t)|β|e−t|ξ|2

≤ C(1 + t)|β|e−ct.

We have thus proven that |g(t, x))| ≤ C(1 + |x|2)−de−ct, and the inequal-
ity (2.3) follows. 	

From now on, we agree that if X is a Banach space, I is an interval of R, and p
is in [1, ∞], then Lp

I(X) stands for the set of Lebesgue measurable functions u
from I to X such that t �→ ‖u(t)‖X belongs to Lp(I). If I = [0, T ] (resp.,
I = R

+), then we alternatively use the notation Lp
T (X) [resp., Lp(X)]. We

shall often use, without justification, the fact that the space Lp
I(X) endowed

with the norm

‖u‖Lp
I (X)

def=
(∫

I

‖u(t)‖p
X dt

) 1
p

if p < ∞ and ‖u‖L∞
I (X)

def= ess sup ‖u(t)‖X

is a Banach space.
The following corollary is the key to proving a priori estimates in Besov

spaces for the heat equation (see Chapter 3).

Corollary 2.5. Let C be an annulus and λ a positive real number. Let u0

[resp., f = f(t, x)] satisfy Supp û0 ⊂ λC (resp., Supp f̂(t) ⊂ λC for all t
in [0, T ]). Consider u, a solution of

∂tu − νΔu = 0 and u|t=0 = u0,

and v, a solution of

∂tv − νΔv = f and v|t=0 = 0.

There exist positive constants c and C, depending only on C, such that for
any 1 ≤ a ≤ b ≤ ∞ and 1 ≤ p ≤ q ≤ ∞, we have

‖u‖Lq
T (Lb) ≤ C(νλ2)− 1

q λd( 1
a − 1

b )‖u0‖La ,

‖v‖Lq
T (Lb) ≤ C(νλ2)−1+( 1

p − 1
q )λd( 1

a − 1
b )‖f ‖Lp

T (La).

Proof. It suffices to use the fact that

u(t) = eνtΔu0 and v(t) =
∫ t

0

eν(t−τ)Δf(τ) dτ.

Combining Lemmas 2.1 and 2.4 with Young’s inequality now yields the result.
The details are left to the reader. 	
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2.1.3 The Action of a Diffeomorphism

Lemma 2.6. Let χ be in S(Rd). There exists a constant C such that for
any C1,1 (see Definition 1.26 page 22) global diffeomorphism ψ over R

d with
inverse φ, any u ∈ S ′(Rd) such that û is supported in λC, any p in [1, ∞], and
any (λ, μ) in ]0, ∞[2, we have

∥∥χ(μ−1D)
(
u ◦ ψ)

∥∥
Lp ≤ Cλ−1 ‖Jφ‖

1
p

L∞ ‖u‖Lp

(
‖DJφ‖L∞ ‖Jψ ‖L∞ +μ ‖Dφ‖L∞

)
,

where Jφ(z)
def
= | det Dφ(z)| and χ(μ−1D)

(
u◦ψ)

def
= F −1

(
χ(μ−1·) F (u◦ψ)

)
.

Proof. Using (2.1.1), we get, after rescaling,

u = λ−1
d∑

k=1

gk,λ � ∂ku with ‖∂αgk,λ‖L1 ≤ Cλ|α|. (2.4)

If h̃ = F −1χ, we write χ(μ−1D)(u ◦ ψ) = λ−1Uλ,μ with

Uλ,μ(x) def= μd
d∑

k=1

h̃(μ·) �
(
(gk,λ � ∂ku) ◦ ψ

)
(x)

= μd
d∑

k=1

∫
Rd

h̃(μ(x − φ(z)))∂k(gk,λ � u)(z)Jφ(z) dz.

Integrating by parts, we get Uλ,μ(x) = U1
λ,μ(x) + U2

λ,μ(x) with

U1
λ,μ(x) def= μd+1

d∑
k=1

∫
Rd

Dh̃(μ(x − φ(z))) · ∂kφ(z) (gk,λ � u)(z)Jφ(z) dz,

U2
λ,μ(x) def= μd

d∑
k=1

∫
Rd

h̃(μ(x − φ(z)))(gk,λ � u)(z)∂kJφ(z) dz.

We estimate ‖U1
λ,μ‖Lp . Setting z = ψ(x − μ−1y), we see that

U1
λ,μ(x) = μ

d∑
k=1

∫
Rd

Dh̃(y) · ∂kφ(ψ(x − μ−1y)) (gk,λ � u)(ψ(x − μ−1y)) dy.

Hence, by Hölder’s inequality,

|U1
λ,μ(x)| ≤ μ‖Dφ‖L∞

(∫
Rd

|Dh̃(y)| dy

) 1
p′

×
(∫

Rd

|Dh̃(y)| |(gk,λ � u)(ψ(x − μ−1y))|p dy

) 1
p

.
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We infer that

‖U1
λ,μ‖Lp ≤ μ‖Dφ‖L∞ ‖Dh̃‖

1
p′

L1

×
(∫

Rd ×Rd

|Dh̃(y)| |(gk,λ � u)(ψ(x − μ−1y))|p dx dy

) 1
p

.

Combining the change of variable x′ = ψ(x − μ−1y) with Fubini’s theorem,
we then get

‖U1
λ,μ‖Lp ≤ μ‖Dh̃‖L1 ‖Dφ‖L∞ ‖Jφ‖

1
p

L∞ ‖gk,λ � u‖Lp

≤ Cμ‖Dφ‖L∞ ‖Jφ‖
1
p

L∞ ‖u‖Lp .

Following the same lines, we also get

‖U2
λ,μ‖Lp ≤ C‖DJφ‖L∞ ‖Jφ‖

1
p

L∞ ‖u‖Lp .

The lemma is thus proved. 	


In the case where the diffeomorphism φ preserves the measure, we can get a
more accurate result, one which will prove useful for transport and transport-
diffusion equations (see Chapter 3).

Lemma 2.7. Let θ be a smooth function supported in an annulus of R
d . There

exists a constant C such that for any C0,1 measure-preserving global diffeomor-
phism ψ over R

d with inverse φ, any tempered distribution u with û supported
in λC, any p ∈ [1, ∞], and any (λ, μ) ∈ ]0, ∞[2, we have

∥∥θ(μ−1D)
(
u ◦ ψ)

∥∥
Lp ≤ C‖u‖Lp min

(
μ

λ
‖Dφ‖L∞ ,

λ

μ
‖Dψ‖L∞

)
.

Proof. Since Jψ = Jφ ≡ 1, the fact that

∥∥θ(μ−1D)
(
u ◦ ψ)

∥∥
Lp ≤ C

μ

λ
‖Dφ‖L∞ ‖u‖Lp

is ensured by Lemma 2.6.
In order to prove the other inequality, we use the fact that, owing to the

spectral localization of θ, there exists a family of smooth functions (θ1, . . . , θk)
with compact support such that

θ(ξ) = i

d∑
k=1

ξkθk(ξ) for all ξ ∈ R
d .

Hence,
θ(μ−1D) = μ−1

∑
k

∂kθk(μ−1D),
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so we can write

θ(μ−1D)
(
u ◦ ψ)(x) = μ−1μd

∑
k

∫
Rd

F −1θk(μ(x − y)) ∂k(u ◦ ψ)(y) dy.

From the above equality and the fact that ψ preserves the measure, we easily
deduce that

‖θ(μ−1D)
(
u ◦ ψ)‖Lp ≤ Cμ−1 ‖Dψ‖L∞ ‖Du ◦ ψ‖Lp

≤ Cμ−1 ‖Dψ‖L∞ ‖Du‖Lp .

Bernstein’s lemma yields ‖Du‖Lp ≤ λ‖u‖Lp . This completes the proof. 	


2.1.4 The Effects of Some Nonlinear Functions

The following lemma describes some properties of powers of functions with
Fourier transforms supported in an annulus.

Lemma 2.8. Let C be an annulus. A constant C exists such that for any
positive real number λ, positive integer p, and function u in Lp whose Fourier
transform is supported in λC, we have

‖up‖L2 ≤ Cλ−1‖ ∇(up)‖L2 .

Remark 2.9. This lemma is somewhat surprising. Indeed, if F u is supported
in an annulus, then F (up) is not supported in an annulus, but rather in a
ball. Despite that, the above lemma guarantees that the L2 norm of up may
be controlled by the L2 norm of its gradient.

Proof of Lemma 2.8. As usual, it suffices to consider the case λ = 1. Owing
to the spectral properties of u, we can write

u =
d∑

j=1

∂juj with uj
def= gj � u and gj

def= F −1(−iξj |ξ| −2φ̃(ξ)),

where φ̃ stands for a smooth function supported in a (suitably large) annulus
and with value 1 in a neighborhood of the annulus C.

Using the above decomposition and performing an integration by parts,
we thus infer that

∫
Rd

u2p dx =
d∑

j=1

∫
Rd

∂juju
2p−1 dx

= −(2p − 1)
d∑

j=1

∫
Rd

uju
2p−2∂ju dx

= − 2p − 1
p

d∑
j=1

∫
Rd

uj∂j(up)up−1 dx.
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Hence, by virtue of the Cauchy–Schwarz inequality,

∫
Rd

u2p dx ≤ C‖ ∇(up)‖L2

( d∑
j=1

∫
Rd

|uj |2u2(p−1) dx

) 1
2

.

We obviously have ‖uj ‖L2p ≤ C‖u‖L2p , so, by Hölder’s inequality,
∫

Rd

u2p dx ≤ C‖ ∇(up)‖L2 ‖u‖p
L2p ,

and the result is proved. 	


2.2 Dyadic Partition of Unity

We now define the dyadic partition of unity that we shall use throughout the
book.

Proposition 2.10. Let C be the annulus {ξ ∈ R
d / 3/4 ≤ |ξ| ≤ 8/3}. There

exist radial functions χ and ϕ, valued in the interval [0, 1], belonging respec-
tively to D(B(0, 4/3)) and D(C), and such that

∀ξ ∈ R
d , χ(ξ) +

∑
j≥0

ϕ(2−jξ) = 1, (2.5)

∀ξ ∈ R
d \ {0} ,

∑
j∈Z

ϕ(2−jξ) = 1, (2.6)

|j − j′ | ≥ 2 ⇒ Supp ϕ(2−j ·) ∩ Supp ϕ(2−j′
·) = ∅, (2.7)

j ≥ 1 ⇒ Supp χ ∩ Supp ϕ(2−j ·) = ∅, (2.8)

the set C̃ def
= B(0, 2/3) + C is an annulus, and we have

|j − j′ | ≥ 5 ⇒ 2j′
C̃ ∩ 2j C = ∅. (2.9)

Further, we have

∀ξ ∈ R
d ,

1
2

≤ χ2(ξ) +
∑
j≥0

ϕ2(2−jξ) ≤ 1, (2.10)

∀ξ ∈ R
d \ {0} ,

1
2

≤
∑
j∈Z

ϕ2(2−jξ) ≤ 1. (2.11)
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Proof. Take α in the interval ]1, 4/3[ and denote by C ′ the annulus with small
radius α−1 and large radius 2α. Choose a radial smooth function θ with values
in [0, 1], supported in C, and with value 1 in the neighborhood of C ′. The
important point is the following: for any couple of integers (j, j′), we have

|j − j′ | ≥ 2 ⇒ 2j′
C ∩ 2j C = ∅. (2.12)

Indeed, if 2j′ C ∩ 2j C �= ∅ and j′ ≥ j, then 2j′ × 3/4 ≤ 4 × 2j+1/3, which implies
that j′ − j ≤ 1. Now, let

S(ξ) =
∑
j∈Z

θ(2−jξ).

Thanks to (2.12), this sum is locally finite on the set R
d \{0}. Thus, the

function S is smooth on R
d \ {0}. As α is greater than 1, we have
⋃
j∈Z

2j C ′ = R
d \ {0}.

As the function θ is nonnegative and has value 1 near C ′, it follows from the
above covering property that the function S is positive.

We claim that the function ϕ
def= θ/S is suitable. Indeed, it is obvious

that ϕ belongs to D(C) and that the function 1 −
∑
j≥0

ϕ(2−j ·) is smooth

[use (2.12)]. Further, as Supp θ ⊂ C, we have

|ξ| ≥ 4
3

⇒
∑
j≥0

ϕ(2−jξ) = 1. (2.13)

Thus, setting
χ(ξ) = 1 −

∑
j≥0

ϕ(2−jξ), (2.14)

we get the identities (2.5) and (2.7). The identity (2.8) is an obvious con-
sequence of (2.12) and (2.13). We now prove (2.9), which will be useful in
Section 2.8. It is clear that the annulus C̃ has center 0, small radius 1/12, and
large radius 10/3. It then turns out that

2k C̃ ∩ 2j C �= ∅ ⇒
(3

4
× 2j ≤ 2k × 10

3
or

1
12

× 2k ≤ 2j 8
3

)
,

and (2.9) is proved. We now prove (2.10). As χ and ϕ have their values in [0, 1],
it is clear that

χ2(ξ) +
∑
j≥0

ϕ2(2−jξ) ≤ 1. (2.15)

We bound the sum of squares from below. We have
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1 = (Σ0(ξ) + Σ1(ξ))2 with

Σ0(ξ) =
∑

j even

ϕ(2−jξ) and Σ1(ξ) = χ(ξ) +
∑

j odd

ϕ(2−jξ).

Obviously, 1 ≤ 2(Σ2
0(ξ) + Σ2

1(ξ)). Now, owing to (2.7) and (2.8), we have

Σ2
0(ξ) =

∑
j even

ϕ2(2−jξ) and Σ2
1(ξ) = χ2(ξ) +

∑
j odd

ϕ2(2−jξ).

This yields (2.10). Proving (2.11) proceeds similarly. 	


From now on, we fix two functions χ and ϕ satisfying the assertions (2.5)–
(2.11) and write h = F −1ϕ and h̃ = F −1χ. The nonhomogeneous dyadic
blocks Δj are defined by

Δju = 0 if j ≤ −2, Δ−1u = χ(D)u =
∫

Rd

h̃(y)u(x − y) dy,

and Δju = ϕ(2−jD)u = 2jd

∫
Rd

h(2jy)u(x − y) dy if j ≥ 0.

The nonhomogeneous low-frequency cut-off operator Sj is defined by

Sju =
∑

j′ ≤j−1

Δj′ u.

The homogeneous dyadic blocks Δ̇j and the homogeneous low-frequency cut-
off operators Ṡj are defined for all j ∈ Z by

Δ̇ju = ϕ(2−jD)u = 2jd

∫
Rd

h(2jy)u(x − y) dy,

Ṡju = χ(2−jD)u = 2jd

∫
Rd

h̃(2jy)u(x − y) dy .

Remark 2.11. We also note that the above operators map Lp into Lp with
norms independent of j and p. This fact will be of constant use in this chapter.

Obviously, we can write the following (formal) Littlewood–Paley decomposi-
tions:

Id =
∑

j

Δj and Id =
∑

j

Δ̇j . (2.16)

In the nonhomogeneous case, the above decomposition makes sense in S ′(Rd).

Proposition 2.12. Let u be in S ′(Rd). Then,u = limj→∞ Sju in S ′(Rd).

Proof. Note that 〈u−Sju, f 〉 = 〈u, f −Sjf 〉 for all f in S(Rd) and u in S ′(Rd),
so it suffices to prove that f = limj→∞ Sjf in the space S(Rd). Because the
Fourier transform is an automorphism of S(Rd), we can alternatively prove
that χ(2−j ·)f̂ tends to f̂ in S(Rd). This is an easy exercise left to the reader.
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We now state another (somewhat related) result of convergence.

Proposition 2.13. Let (uj)j∈N be a sequence of bounded functions such that
the Fourier transform of uj is supported in 2j C̃, where C̃ is a given annulus.
Assume that, for some integer N , the sequence (2−jN ‖uj ‖L∞ )j∈N is bounded.
The series

∑
j uj then converges in S ′.

Proof. After rescaling, the relation (2.1.1) reads as follows for all integers j
and k:

uj = 2−jk
∑

|α|=k

2jdgα(2j ·) � ∂αuj .

For any test function φ in S, we then write

〈uj , φ〉 = 2−jk
∑

|α|=k

〈uj , 2jdǧα(2j ·) � (−∂)αφ〉 with ǧα(x) def= gα(−x).

We then have ∣∣〈uj , φ〉
∣∣ ≤ C2−jk

∑
|α|=k

2jN ‖∂αφ‖L1 .

Choose k > N . Then,
∑

j 〈uj , φ〉 is a convergent series, the sum of which is
less than C‖φ‖M,S for some integer M . Thus, the formula

〈u, φ〉 def= lim
j→∞

∑
j′ ≤j

〈uj′ , φ〉

defines a tempered distribution. 	


Proving the equality (2.16) for the operators Δ̇j is not so obvious, even for
smooth functions: it clearly fails for nonzero polynomials. However, it holds
true for any distribution in the set S ′

h defined on page 22. Indeed, if u belongs
to S ′

h, then Ṡju tends uniformly to 0 when j goes to −∞.

The homogeneous version of Proposition 2.13 reads as follows.

Proposition 2.14. Let (uj)j∈Z be a sequence of bounded functions such that
the support of ûj is included in 2j C̃, where C̃ is a given annulus. Assume
that, for some integer N , the sequence (2−jN ‖uj ‖L∞ )j∈N is bounded and that
the series

∑
j<0 uj converges in L∞. The series

∑
j∈Z

uj then converges to
some u in S ′, and u belongs to S ′

h.

Proof. Thanks to Proposition 2.13, the series
∑

j∈Z
uj converges to some u

in S ′. We are therefore left with proving that u belongs to S ′
h. We have, for

some integer N0,

‖Ṡju‖L∞ ≤
∥∥∥Ṡj

∑
j′ ≤j+N0

uj′

∥∥∥
L∞

≤ C
∥∥∥ ∑

j′ ≤j+N0

uj′

∥∥∥
L∞

.

As the series
∑

j<0 uj converges in L∞, the proposition is proved. 	
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2.3 Homogeneous Besov Spaces

To begin, we define homogeneous Besov spaces.

Definition 2.15. Let s be a real number and (p, r) be in [1, ∞]2. The homo-
geneous Besov space Ḃs

p,r consists of those distributions u in S ′
h such that

‖u‖Ḃs
p,r

def
=
(∑

j∈Z

2rjs‖Δ̇ju‖r
Lp

) 1
r

< ∞.

Proposition 2.16. The space Ḃs
p,r endowed with ‖ · ‖Ḃs

p,r
is a normed space.

Proof. It is obvious that ‖ · ‖Ḃs
p,r

is a seminorm. Assume that for some u in S ′
h,

we have ‖u‖Ḃs
p,r

= 0. This implies that the support of û is included in {0} and

thus that for any j ∈ Z, we have Ṡju = u. As u belongs to S ′
h, we conclude

that u = 0. 	


Remark 2.17. The definition of the Besov space Ḃs
p,r is independent of the

function ϕ used for defining the blocks Δ̇j , and changing ϕ yields an equivalent
norm. Indeed, if ϕ̃ is another dyadic partition of unity, then an integer N0

exists such that |j − j′ | ≥ N0 implies that Supp ϕ̃(2−j ·) ∩ Supp ϕ(2−j′ ·) = ∅.
Thus,

2js‖ϕ̃(2−jD)u‖Lp = 2js
∥∥∥ ∑

|j−j′ |≤N0

ϕ̃(2−jD)Δ̇j′ u
∥∥∥

Lp

≤ C2N0|s|
∑
j′

1[−N0,N0](j − j′)2j′s‖Δ̇j′ u‖Lp .

Young’s inequality implies the result.
We also note that a distribution u of S ′

h belongs to Ḃs
p,r if and only if there

exists some constant C and some nonnegative sequence (cj)j∈Z such that

∀ j ∈ Z, ‖Δ̇ju‖Lp ≤ Ccj2−js and ‖(cj)‖�r = 1.

This fact will be extensively used throughout the book.

Examples.

– Thanks to (2.11), we can deduce that the (semi)norms ‖ · ‖Ḣs and ‖ · ‖Ḃs
2,2

are equivalent. Further, it is clear that Ḣs ⊂ Ḃs
2,2 and that both spaces

coincide if s < d/2.
– If s ∈ ]0, 1[, then the Besov space Ḃs

∞,∞ coincides with the space of dis-
tributions of S ′

h which are Hölder functions with exponent s (see Theorem
2.36 below).
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Homogeneous Besov spaces have nice scaling properties. Indeed, if u is a
tempered distribution, then consider the tempered distribution uN defined

by uN
def= u(2N ·). We have the following proposition.

Proposition 2.18. Consider an integer N and a distribution u of S ′
h. Then,

‖u‖Ḃs
p,r

is finite if and only if uN is finite. Moreover, we have

‖uN ‖Ḃs
p,r

= 2N(s− d
p )‖u‖Ḃs

p,r
.

Proof. By definition of Δ̇j and by the change of variable z = 2Ny, we get

Δ̇juN (x) = 2jd

∫
h(2j(x − y))u(2Ny) dy

= 2(j−N)d

∫
h(2j−N (2Nx − z))u(z) dz

= (Δ̇j−Nu)(2Nx).

It turns out that ‖Δ̇juN ‖Lp = 2−N d
p ‖Δ̇j−Nu‖Lp . We deduce from this that

2js‖Δ̇juN ‖Lp = 2N(s− d
p )2(j−N)s‖Δ̇j−Nu‖Lp ,

and the proposition follows immediately by summation. 	


Remark 2.19. More generally, there exists a constant C, depending only on s,
such that for all positive λ, we have

C−1λs− d
p ‖u‖Ḃs

p,r
≤ ‖u(λ·)‖Ḃs

p,r
≤ Cλs− d

p ‖u‖Ḃs
p,r

.

We emphasize that having u in some homogeneous Besov space Ḃs
p,r yields

information about both low and high frequencies of u. Thus, if s1 �= s2, then
we cannot expect any inclusion between the spaces Ḃs1

p,r and Ḃs2
p,r. However,

we can state the following theorem, which may be compared with the classical
Sobolev embedding theorem (see Theorem 1.38, page 29).

Proposition 2.20. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then, for

any real number s, the space Ḃs
p1,r1

is continuously embedded in Ḃ
s−d

(
1

p1
− 1

p2

)
p2,r2 .

Proof. Lemma 2.1 yields

‖Δ̇ju‖Lp2 ≤ C2jd
(

1
p1

− 1
p2

)
‖Δ̇ju‖Lp1 .

As �r1(Z) is continuously embedded in �r2(Z), the proposition is proved. 	


In contrast with the standard function spaces (e.g., Sobolev spaces Hs or Lp

spaces with p < ∞), homogeneous Besov spaces contain nontrivial homoge-
neous functions. This is illustrated by the following proposition.
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Proposition 2.21. Let σ be in ]0, d[. For any p in [1, ∞], the function | · | −σ

belongs to Ḃ
d
p −σ
p,∞ .

Proof. Using Proposition 2.20, it is enough to prove that ρσ
def= | · | −σ belongs

to Ḃd−σ
1,∞ . In order to do so, we introduce a smooth compactly supported

function χ which is identically equal to 1 near the unit ball and we write

ρσ = ρ0 + ρ1 with ρ0(x) def= χ(x)|x| −σ and ρ1(x) def= (1 − χ(x))|x| −σ.

It is obvious that ρ0 ∈ L1 and that ρ1 ∈ Lq whenever q > d/σ. This implies
that ρσ belongs to S ′

h. The homogeneity of the function ρσ then gives

Δ̇jρσ = 2jdρσ � h(2j ·)
= 2j(d+σ)ρσ(2j ·) � h(2j ·)
= 2jσ(Δ̇0ρσ)(2j ·).

Therefore, ‖Δ̇jρσ ‖L1 = 2j(σ−d)‖Δ̇0ρσ ‖L1 , which reduces the problem to prov-
ing that the function Δ̇0ρσ is in L1. As ρ0 is in L1, Δ̇0ρ0 is also in L1, thanks
to the continuity of the operator Δ̇0 on Lebesgue spaces. Using Lemma 2.1,
we get

‖Δ̇0ρ1‖L1 ≤ Ck ‖DkΔ̇0ρ1‖L1 ≤ Ck ‖Dkρ1‖L1 .

By Leibniz’s formula, Dkρ1 − (1 − χ)Dkρσ is a smooth compactly supported
function. We then complete the proof by choosing k such that k > d − σ. 	


Proposition 2.22. A constant C exists which satisfies the following proper-
ties. If s1 and s2 are real numbers such that s1 < s2 and θ ∈ ]0, 1[, then we
have, for any (p, r) ∈ [1, ∞]2 and any u ∈ S ′

h,

‖u‖
Ḃ

θs1+(1−θ)s2
p,r

≤ ‖u‖θ
Ḃ

s1
p,r

‖u‖1−θ

Ḃ
s2
p,r

and

‖u‖
Ḃ

θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(1
θ

+
1

1 − θ

)
‖u‖θ

Ḃ
s1
p,∞

‖u‖1−θ

Ḃ
s2
p,∞

.

Proof. To prove the first inequality, it suffices to write that

2j(θs1+(1−θ)s2)‖Δ̇ju‖Lp =
(
2js1 ‖Δ̇ju‖Lp

)θ(
2js2 ‖Δ̇ju‖Lp

)1−θ

and to apply Hölder’s inequality.
To prove the second one, we shall estimate low and high frequencies of u

in a different way. More precisely, we write

‖u‖
Ḃ

θs1+(1−θ)s2
p,1

=
∑
j≤N

2j(θs1+(1−θ)s2)‖Δ̇ju‖Lp +
∑
j>N

2j(θs1+(1−θ)s2)‖Δ̇ju‖Lp .

By the definition of the Besov norms, we have
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{
2j(θs1+(1−θ)s2)‖Δ̇ju‖Lp ≤ 2j(1−θ)(s2−s1)‖u‖Ḃ

s1
p,∞

,

2j(θs1+(1−θ)s2)‖Δ̇ju‖Lp ≤ 2−jθ(s2−s1)‖u‖Ḃ
s2
p,∞

.

We thus infer that

‖u‖
Ḃ

θs1+(1−θ)s2
p,1

≤ ‖u‖Ḃ
s1
p,∞

∑
j≤N

2j(1−θ)(s2−s1) + ‖u‖Ḃ
s2
p,∞

∑
j>N

2−jθ(s2−s1)

≤ ‖u‖Ḃ
s1
p,∞

2N(1−θ)(s2−s1)

2(1−θ)(s2−s1) − 1
+ ‖u‖Ḃ

s2
p,∞

2−Nθ(s2−s1)

1 − 2−θ(s2−s1)
·

Choosing N such that

‖u‖Ḃ
s2
p,∞

‖u‖Ḃ
s1
p,∞

≤ 2N(s2−s1) < 2s2−s1
‖u‖Ḃ

s2
p,∞

‖u‖Ḃ
s1
p,∞

completes the proof. 	


The following lemma provides a useful criterion for determining whether the
sum of a series belongs to a homogeneous Besov space.

Lemma 2.23. Let C ′ be an annulus and (uj)j∈Z be a sequence of functions
such that

Supp ûj ⊂ 2j C ′ and
∥∥∥(2js‖uj ‖Lp)j∈Z

∥∥∥
�r

< ∞.

If the series
∑
j∈Z

uj converges in S ′ to some u in S ′
h, then u is in Ḃs

p,r and

‖u‖Ḃs
p,r

≤ Cs

∥∥∥(2js‖uj ‖Lp)j∈Z

∥∥∥
�r

.

Remark 2.24. The above convergence assumption concerns (uj)j<0. We note
that if (s, p, r) satisfies the condition

s <
d

p
, or s =

d

p
and r = 1, (2.17)

then, owing to Lemma 2.1, we have

lim
j→ − ∞

∑
j′<j

uj′ = 0 in L∞.

Hence,
∑

j∈Z
uj converges to some u in S ′, and Ṡju tends to 0 when j goes

to −∞. In particular, we have u ∈ S ′
h.

Proof of Lemma 2.23. It is clear that there exists some nonzero integer N0

such that Δj′ uj = 0 for |j′ − j| ≥ N0. Hence,
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‖Δ̇j′ u‖Lp =
∥∥∥ ∑

|j−j′ |<N0

Δ̇j′ uj

∥∥∥
Lp

≤ C
∑

|j−j′ |<N0

‖uj ‖Lp .

Therefore, we obtain that

2j′s‖Δ̇j′ u‖Lp ≤ C
∑

|j−j′ |≤N0

2js‖uj ‖Lp .

We deduce from this that

2js‖Δ̇ju‖Lp ≤
(
(ck)�(d�)

)
j

with ck = C1[−N0,N0](k) and d� = 2�s‖u�‖Lp .

Applying Young’s inequality (namely, Lemma 1.4 page 5 with G = Z) then
leads to

‖u‖Ḃs
p,r

≤ C
∥∥∥(2js‖uj ‖Lp)j∈Z

∥∥∥
�r

.

As u ∈ S ′
h by assumption, this proves the lemma. 	


The previous lemma will enable us to establish the following important topo-
logical properties of homogeneous Besov spaces.

Theorem 2.25. Let (s1, s2) ∈ R
2 and 1 ≤ p1, p2, r1, r2 ≤ ∞. Assume that

(s1, p1, r1) satisfies the condition (2.17). The space Ḃs1
p1,r1

∩ Ḃs2
p2,r2

endowed
with the norm ‖ · ‖Ḃ

s1
p1,r1

+ ‖ · ‖Ḃ
s2
p2,r2

is then complete and satisfies the Fatou

property: If (un)n∈N is a bounded sequence of Ḃs1
p1,r1

∩Ḃs2
p2,r2

, then an element u

of Ḃs1
p1,r1

∩ Ḃs2
p2,r2

and a subsequence uψ(n) exist such that

lim
n→∞

uψ(n) = u in S ′ and ‖u‖B
sk
pk,rk

≤ C lim inf
n→∞

‖uψ(n)‖Ḃ
sk
pk,rk

for k = 1, 2.

Proof. We first prove the Fatou property. According to Lemma 2.1, for any j ∈
Z, the sequence (Δ̇jun)n∈N is bounded in Lmin(p1,p2) ∩ L∞. Cantor’s diagonal
process thus supplies a subsequence (uψ(n))n∈N and a sequence (ũj)j∈Z of C∞

functions with Fourier transform supported in 2j C such that, for any j ∈ Z,
φ ∈ S, and k = 1, 2,

lim
n→∞

〈Δ̇juψ(n), φ〉 = 〈ũj , φ〉 and ‖ũj ‖Lpk ≤ lim inf
n→∞

‖Δ̇jun‖Lpk .

Now, the sequence
(
(2jsk ‖Δ̇juψ(n)‖Lpk )j

)
n∈N

is bounded in �rk(Z). Hence,

there exists an element (c̃k
j )j∈Z of �rk such that (up to an omitted extraction)

we have, for any sequence (dj)j∈Z of nonnegative real numbers different from 0
for only a finite number of indices j,

lim
n→∞

∑
j∈Z

2jsk ‖Δ̇juψ(n)‖Lpk dj =
∑
j∈Z

c̃k
j dj and

‖(c̃k
j )j ‖�rk ≤ lim inf

n→∞
‖uψ(n)‖Ḃ

sk
pk,rk

.
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Passing to the limit in the sum and using Lemma 1.2 page 2 with X = Z and μ
the counting measure on Z gives that (2jsk ‖ũj ‖Lpk )j belongs to �rk(Z). From
the definition of ũj , we easily deduce that F ũj is supported in the annulus 2j C
(where C has been defined in Proposition 2.10). As (s1, p1, r1) satisfies (2.17),
Lemma 2.23 thus guarantees that the series

∑
j∈Z

ũj converges to some u
in S ′

h. Given (2.7), we obviously have, for all M < N and φ ∈ S,

〈 N∑
j=M

Δ̇ju, φ
〉

=
〈 N∑

j=M

∑
|j′ −j|≤1

Δ̇j ũj′ , φ
〉
.

Hence, by the definition of ũj and, again, by (2.7), we have

N∑
j=M

Δ̇ju = lim
n→∞

N∑
j=M

Δ̇juψ(n) in S ′.

Since the condition (2.17) is satisfied by (s1, p1, r1), and (uψ(n))n∈N is bounded
in Ḃs1

p1,r1
, Lemma 2.1 ensures that ṠMuψ(n) tends uniformly to 0 when M goes

to −∞. Similarly, (Id − ṠN )uψ(n) tend uniformly to 0 in, say, Ḃs2−1
p2,r2

. Hence, u
is indeed the limit of (uψ(n))n∈N in S ′, which completes the proof of the Fatou
property.

We will now check that Ḃs1
p1,r1

∩ Ḃs2
p2,r2

is complete. Consider a Cauchy
sequence (un)n∈N. This sequence is of course bounded, so there exists some u
in Ḃs1

p1,r1
∩Ḃs2

p2,r2
and a subsequence (uψ(n))n∈N such that (uψ(n))n∈N converges

to u in S ′. Using the fact that for any positive ε, an integer nε exists such
that

n ≥ m ≥ nε =⇒ ‖uψ(m) − uψ(n)‖Ḃ
s1
p1,r1

+ ‖uψ(m) − uψ(n)‖Ḃ
s2
p2,r2

< ε,

the Fatou property for (uψ(m) − uψ(n))n∈N ensures that

∀m ≥ nε , ‖uψ(m) − u‖Ḃ
s1
p1,r1

+ ‖uψ(m) − u‖Ḃ
s2
p2,r2

≤ Cε.

Hence, (uψ(n))n∈N tends to u in Ḃs1
p1,r1

∩ Ḃs2
p2,r2

. This completes the proof. 	


Remark 2.26. If s > d/p (or s = d/p and r > 1), then Ḃs
p,r is no longer a

Banach space (Proposition 1.34 may be adapted to the framework of general
homogeneous Besov spaces). This is due to a breakdown of convergence for
low frequencies, the so-called infrared divergence.

There is a way to modify the definition of homogeneous Besov spaces so
as to obtain a Banach space, regardless of the regularity index. This is called
realizing homogeneous Besov spaces. It turns out that realizations coincide
with our definition when s < d/p, or s = d/p and r = 1. In the other cases,
however, realizations are defined up to a polynomial whose degree depends on
s − d/p and r. It goes without saying that solving partial differential equations
in such spaces is quite unpleasant.
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Proposition 2.27. If p and r are finite, then the space S0(Rd) of func-
tions in S(Rd) whose Fourier transforms are supported away from 0 is dense
in Ḃs

p,r(R
d).

Proof. Let u be in Ḃs
p,r. Because r is finite, for all ε > 0 we can find some

integer N such that

‖u − uN ‖Ḃs
p,r

< ε/2 with uN
def=

∑
|j|≤N

Δ̇ju.

Fix θ in C(B(0, 2)) with value 1 on B(0, 1). For R > 0 set θR
def= θ(·/R).

Further, fix an integer M such that M > N. We then define

uR
N,M

def=
(
Id −Ṡ−M

)(
θR uN ).

Because M > N, we have (Id −Ṡ−M )uN = uN and hence

uR
N,M − uN =

(
Id −Ṡ−M

)(
(θR − 1)uN

)
.

According to Lemma 2.1, we have, for all j ∈ N and k = max(0, [s] + 2),

2js‖Δ̇j(uR
N,M − uN )‖Lp ≤ 2−j2jk ‖Δ̇j(

(
Id −Ṡ−M

)(
(θR − 1)uN

)
‖Lp

≤ Cs2−j ‖Dk((θR − 1)uN )‖Lp .

If −M − 1 ≤ j ≤ −1, we may write

2js‖Δ̇j(uR
N,M − uN )‖Lp ≤ C2js‖(θR − 1)uN ‖Lp ,

and if j ≤ −M − 2, we have Δ̇j(uR
N,M − uN ) = 0. So, finally,

‖uR
N,M − uN ‖Ḃs

p,r
≤ C

(
‖Dk((θR − 1)uN )‖Lp +

−1∑
j=−M −1

2js‖(θR − 1)uN ‖Lp

)
.

Now, by virtue of Leibniz’s formula and Lebesgue’s dominated convergence
theorem (recall that p is finite), the right-hand side of the above inequality
tends to 0 when R goes to infinity. Therefore, a positive real number R exists
such that

‖uR
N,M − uN ‖Ḃs

p,r
≤ ε/2.

As uR
N,M is a function of S0, this completes the proof of the proposition. 	


Remark 2.28. The same arguments show that when r = ∞, the closure of S0

for the Besov norm Ḃs
p,r is the set of distributions in S ′

h such that

lim
j→ ± ∞

2js‖Δ̇ju‖Lp = 0.
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It turns out that Besov spaces have nice duality properties. Observe that
in Littlewood–Paley theory, the duality on S ′

h translates, for φ ∈ S, into

〈u, φ〉 =
∑

|j−j′ |≤1

〈Δju, Δj′ φ〉 =
∑

|j−j′ |≤1

∫
Rd

Δju(x)Δj′ φ(x) dx.

As for the Lp space, we can estimate the norm in Ḃs
p,r by duality.

Proposition 2.29. For all 1 ≤ p, r ≤ ∞ and s ∈ R,
⎧⎨
⎩

Ḃs
p,r × Ḃ−s

p′,r′ −→ R

(u, φ) �−→
∑

|j−j′ |≤1

〈Δju, Δj′ φ〉

defines a continuous bilinear functional on Ḃs
p,r × Ḃ−s

p′,r′ . Denote by Q−s
p′,r′ the

set of functions φ in S ∩ Ḃ−s
p′,r′ such that ‖φ‖Ḃ−s

p′ ,r′
≤ 1. If u is in S ′

h, then we
have

‖u‖Ḃs
p,r

≤ C sup
φ∈Q−s

p′ ,r′

〈u, φ〉.

Proof. For |j − j′ | ≤ 1, we have, thanks to Hölder’s inequality,
∣∣〈Δ̇ju, Δ̇j′ φ〉

∣∣ ≤ 2|s| 2js‖Δ̇ju‖Lp 2−j′s‖Δ̇j′ φ‖Lp′ .

Again using Hölder’s inequality, we deduce that
∣∣〈u, φ〉

∣∣ ≤ C‖u‖Ḃs
p,r

‖φ‖Ḃ−s
p′ ,r′

.

In order to prove the second part, for a positive integer N , we denote by Qr′

N

the unit ball of the space of sequences of �r′
(Z) which vanish for indices j such

that |j| > N. By definition of the Besov norm, we have

‖u‖Ḃs
p,r

= sup
N ∈N

∥∥∥
(
1|j|≤N2js‖Δ̇ju‖Lp

)
j

∥∥∥
�r

= sup
N ∈N

sup
(αj)∈Qr′

N

∑
|j|≤N

‖Δ̇ju‖Lp2jsαj .

Let ε be any positive real number. Lemma 1.2 page 2 ensures that for any j,
a function φj exists in S such that

‖Δ̇ju‖Lp ≤
∫

Rd

Δ̇ju(x)φj(x) dx +
ε2−js

(|αj | + 1)(1 + |j|2) ·

We define the function ΦN in Q−s
p′,r′ by

ΦN
def=

∑
|j|≤N

αj2jsΔ̇jφj .
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Using Lemma 2.23, we infer that ‖ΦN ‖B−s
p′ ,r′

≤ C, independently of N . We
then have, for any N ,

∥∥∥
(
1|j|≤N2js‖Δ̇ju‖Lp

)
j

∥∥∥
�r

≤ 〈u, ΦN 〉 + ε.

The proposition is thus proved. 	


Finally, we consider the way that homogeneous Fourier multipliers act on
Besov spaces.

Proposition 2.30. Let σ be a smooth function on R
d \{0} which is homoge-

neous of degree m. Then, for any (sk, pk, rk) ∈ R ×[1, ∞]2 (with k ∈ {1, 2})
such that (s1 − m, p1, r1) satisfies (2.17), the operator σ(D) continuously
maps Ḃs1

p1,r1
∩ Bs2

p2,r2
into Ḃs1−m

p1,r1
∩ Bs2−m

p2,r2
.

Proof. Lemma 2.2 guarantees that ‖σ(D)Δ̇ju‖Lp ≤ C2jm‖Δ̇ju‖Lp . The fact
that (s1 − m, p1, r1) satisfies (2.17) implies that the series (σ(D)Δ̇ju)j∈Z con-
verges in S ′ to an element of S ′

h. Lemma 2.23 then implies the proposition. 	


Remark 2.31. We note that this proof is very simple compared with the similar
result on Lp spaces when p belongs to ]1, ∞[. Moreover, as we shall see in the
next section, Fourier multipliers do not map L∞ into L∞ in general. From
this point of view Besov spaces are much easier to handle than classical Lp

spaces or Sobolev spaces modeled on Lp.

Corollary 2.32. Let (s1, p1, r1) and (s2, p2, r2) be in R ×[1, ∞]2. Assume
that (s1 + 1, p1, r1) satisfies the condition (2.17). If v is a vector field with
components in Ḃs1−1

p1,r1
∩ Ḃs2−1

p2,r2
which is curl free (i.e., ∂jv

k = ∂kvj for
any 1 ≤ j, k ≤ d), then a unique function a exists in Ḃs1

p1,r1
∩ Ḃs2

p2,r2
such

that ∇a = v and

C−1‖a‖Ḃ
sk
pk,rk

≤ ‖v‖
Ḃ

sk −1
pk,rk

≤ C‖a‖Ḃ
sk
pk,rk

for k = 1, 2

with C a positive constant independent of v.

Proof. We define the function2 a
def= −(−Δ)−1 div v. As the operator

(−Δ)−1 div is homogeneous of degree −1, Proposition 2.30 implies that a
belongs to Ḃs1

p1,r1
∩ Bs2

p2,r2
and satisfies

‖a‖Ḃ
sk
pk,rk

≤ C‖v‖
Ḃ

sk −1
pk,rk

for k = 1, 2.

As curl v = 0, the classical formula
2 From now on, if s ∈ R, then (−Δ)s denotes the Fourier multiplier with sym-
bol |ξ|2s.
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Δwi =
d∑

j=1

∂2
j wi =

d∑
j=1

∂j(∂iw
j − ∂iw

j) + ∂i div w

ensures that Δv = ∇ div v, hence ∇a = v and ‖v‖
B

sk −1
pk,rk

≤ C‖a‖Ḃ
sk
pk,rk

for
k = 1, 2. The uniqueness of a is obvious because S ′

h does not contain any
nonzero constant function. 	


In the case of negative indices of regularity, homogeneous Besov spaces may
be characterized in terms of operators Ṡj , as follows.

Proposition 2.33. Let s < 0 and 1 ≤ p, r ≤ ∞. Let u be a distribution in S ′
h.

Then, u belongs to Ḃs
p,r if and only if

(2js‖Ṡju‖Lp)j∈Z ∈ �r.

Moreover, for some constant C depending only on d, we have

C− |s|+1‖u‖Ḃs
p,r

≤
∥∥∥(2js‖Ṡju‖Lp)j

∥∥∥
�r

≤ C
(
1 +

1
|s|

)
‖u‖Ḃs

p,r
.

Proof. We write

2js‖Δ̇ju‖Lp ≤ 2js(‖Ṡj+1u‖Lp + ‖Ṡju‖Lp)

≤ 2−s2(j+1)s‖Ṡj+1u‖Lp + 2js‖Ṡju‖Lp .

The left inequality is proved. To obtain the right inequality, we write

2js‖Ṡju‖Lp ≤ 2js
∑

j′ ≤j−1

‖Δ̇j′ u‖Lp

≤
∑

j′ ≤j−1

2(j−j′)s 2j′s‖Δ̇j′ u‖Lp .

As s is negative, the result follows by convolution. 	


2.4 Characterizations of Homogeneous Besov Spaces

In this section we give characterizations of Besov norms which do not require
spectral localization. The first of these concerns negative indices and relies on
heat flow.

Theorem 2.34. Let s be a positive real number and (p, r) ∈ [1, ∞]2. A con-
stant C exists which satisfies

C−1‖u‖Ḃ−2s
p,r

≤
∥∥∥‖tsetΔu‖Lp

∥∥∥
Lr(R+, dt

t )
≤ C‖u‖Ḃ−2s

p,r
for all u ∈ S ′

h.
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Proof. According to Lemma 2.4,

‖tsΔ̇je
tΔu‖Lp ≤ Cts22jse−ct22j

2−2js‖Δ̇ju‖Lp .

Using the fact that u belongs to S ′
h and the definition of the homogeneous

Besov seminorm, we have

‖tsetΔu‖Lp ≤
∑
j∈Z

‖tsΔ̇je
tΔu‖Lp

≤ C‖u‖Ḃ−2s
p,r

∑
j∈Z

ts22jse−ct22j

cr,j ,

where (cr,j)j∈Z denotes (here and throughout this proof) a generic element of
the unit sphere of �r(Z). If r = ∞, then the inequality readily follows from
the next lemma, the proof of which is left to the reader.

Lemma 2.35. For any positive s, we have

sup
t>0

∑
j∈Z

ts22jse−ct22j

< ∞.

If r < ∞, then using Hölder’s inequality with the weight 22jse−ct22j

and the
above lemma, we obtain
∫ ∞

0

trs‖etΔu ‖r
Lp

dt

t
≤ C‖u‖r

Ḃ−2s
p,r

∫ ∞

0

(∑
j∈Z

ts22jse−ct22j

cr,j

)r
dt

t

≤ C‖u‖r
Ḃ−2s

p,r

∫ ∞

0

(∑
j∈Z

ts22jse−ct22j

)r−1(∑
j∈Z

ts22jse−ct22j

cr
r,j

)
dt

t

≤ C‖u‖r
Ḃ−2s

p,r

∫ ∞

0

∑
j∈Z

ts22jse−ct22j

cr
r,j

dt

t
·

Using Fubini’s theorem, we infer that
∫ ∞

0

trs‖etΔu‖r
Lp

dt

t
≤ C‖u‖r

Ḃ−2s
p,r

∑
j∈Z

cr
r,j

∫ ∞

0

ts22jse−ct22j dt

t

≤ CΓ (s)‖u‖r
Ḃ−2s

p,r
with Γ (s) def=

∫ ∞

0

ts−1e−t dt.

To prove the other inequality, we use the following identity (which may be
easily proven by taking the Fourier transform in x of both sides):

Δ̇ju =
∫ ∞

0

ts(−Δ)s+1etΔΔ̇ju dt/Γ (s+1). (2.18)

As etΔu = e
t
2 Δe

t
2 Δu, we can write, using Lemmas 2.1 and 2.4,
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‖Δ̇ju‖Lp ≤ C

∫ ∞

0

ts22j(s+1)e−ct22j

‖Δ̇je
t
2 Δu‖Lp dt

≤ C

∫ ∞

0

ts22j(s+1)e−ct22j

‖etΔu‖Lp dt.

If r = ∞, then we have

‖Δ̇ju‖Lp ≤ C
(
sup
t>0

ts‖etΔu‖Lp

)∫ ∞

0

22j(s+1)e−ct22j

dt

≤ C22js
(
sup
t>0

ts‖etΔu‖Lp

)
.

If r < ∞, we write

∑
j∈Z

2−2jsr ‖Δ̇ju‖r
Lp ≤ C

∑
j∈Z

22jr

(∫ ∞

0

tse−ct22j

‖etΔu‖Lp dt

)r

.

Hölder’s inequality with the weight e−ct22j

implies that

(∫ ∞

0

tse−ct22j

‖etΔu‖Lp dt

)r

≤
(∫ ∞

0

e−ct22j

dt

)r−1 ∫ ∞

0

trse−ct22j

‖etΔu‖r
Lp dt

≤ C2−2j(r−1)

∫ ∞

0

trse−ct22j

‖etΔu‖r
Lp dt.

Thanks to Lemma 2.35 and Fubini’s theorem, we get

∑
j

2−2jsr ‖Δ̇ju‖r
Lp ≤ C

∑
j∈Z

22j

∫ ∞

0

trse−ct22j

‖etΔu‖r
Lp dt

≤ C

∫ ∞

0

(∑
j∈Z

t22je−ct22j

)
trs‖etΔu‖r

Lp

dt

t

≤ C

∫ ∞

0

trs‖etΔu‖r
Lp

dt

t
·

The theorem is thus proved. 	


We will now give a characterization of Besov spaces with positive indices in
terms of finite differences. To simplify the presentation, we only consider the
case where the regularity index s is in ]0, 1[.

Theorem 2.36. Let s be in ]0, 1[ and (p, r) ∈ [1, ∞]2. A constant C exists
such that, for any u in S ′

h,

C−1‖u‖Ḃs
p,r

≤
∥∥∥‖τ−yu − u‖Lp

|y|s
∥∥∥

Lr(Rd; dy

|y|d )
≤ C‖u‖Ḃs

p,r
.



2.4 Characterizations of Homogeneous Besov Spaces 75

Proof. In order to prove the right-hand inequality, we shall bound the quan-
tity ‖τ−zΔ̇ju − Δ̇ju‖Lp . Note that according to (2.7), we have

Δ̇j =
∑

|j′ −j|≤1

Δ̇jΔ̇j′ .

Hence, using the definition of Δ̇j and Taylor’s formula, we get

τ−yΔ̇ju − Δ̇ju =
∑

|j′ −j|≤1

2jd

∫
Rd

(
h(2j(x+y −z)) − h(2j(x−z))

)
Δ̇j′ u(z) dz,

=
∑

|j′ −j|≤1

2jd
d∑

�=1

2jy�

(∫ 1

0

h�,j(2j ·, ty) dt
)

� Δ̇j′ u with

h�,j(X, Y ) def= ∂x�
h(X + 2jY ).

As ‖h�,j(·, Y )‖L1 = ‖∂x�
h‖L1 for any Y , we have

‖τ−yΔ̇ju − Δ̇ju‖Lp ≤ C2j |y|
∑

|j−j′ |≤1

‖Δ̇j′ u‖Lp

≤ Ccr,j2j(1−s)|y| ‖u‖Ḃs
p,r

,

where (cr,j)j∈Z is (as throughout the proof) an element of the unit sphere
of �r(Z). We also have

‖τ−yΔ̇ju − Δ̇ju‖Lp ≤ 2‖Δ̇ju‖Lp

≤ Ccr,j2−js‖u‖Ḃs
p,r

.

We infer that for any integer j′,

‖τ−yu − u‖Lp ≤ C‖u‖Ḃs
p,r

(
|y|
∑
j≤j′

cr,j2j(1−s) +
∑
j>j′

cr,j2−js

)
.

We now choose j′ = jy such that
1

|y| ≤ 2jy < 2
1

|y| . If r = ∞, then for any y

in R
d, we have

‖τ−yu − u‖Lp ≤ C|y|s‖u‖Ḃs
p,r

.

If r < ∞, we write
∥∥∥‖τ−yu − u‖Lp

|y|s
∥∥∥r

Lr(Rd; dy

|y|d )
≤ C2r ‖u‖r

Ḃs
p,r

(I1 + I2) with

I1
def=
∫

Rd

(∑
j≤jy

cr,j2j(1−s)

)r

|y| −d+r(1−s) dy and

I2
def=
∫

Rd

(∑
j>jy

cr,j2−js

)r

|y| −d−rs dy.
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Hölder’s inequality with the weight 2j(1−s) and the definition of jy together
imply that

(∑
j≤jy

cr,j2j(1−s)

)r

≤
(∑

j≤jy

2j(1−s)

)r−1 ∑
j≤jy

cr
r,j2

j(1−s)

≤ C|y| −(1−s)(r−1)
∑
j≤jy

cr
r,j2

j(1−s).

By Fubini’s theorem, we deduce that

I1 ≤ C
∑

j

(∫
B(0,2−j+1)

|y| −d+1−s dy
)
2j(1−s)cr

r,j ≤ C.

Estimating I2 is strictly analogous.
We will now prove the reverse inequality. As the mean value of the func-

tion h is 0, we can write

Δ̇ju(x) = 2jd

∫
Rd

h(2jy)τyu(x) dy

= 2jd

∫
h(2jy)(τyu(x) − u(x)) dy.

When r = ∞, we have

2js‖Δ̇ju‖Lp ≤ 2jd

∫
Rd

2js|h(2jy)| ‖τyu − u‖Lp dy

≤ 2jd

∫
Rd

2js|y|s|h(2jy)| dy sup
y∈Rd

‖τyu−u‖Lp

|y|s

≤ C sup
y∈Rd

‖τyu−u‖Lp

|y|s ·

When r < ∞, we write
∑

j

2jsr ‖Δ̇ju‖r
Lp ≤ 2r(Σ1 + Σ2) with

Σ1
def=
∑

j

2jsr

(∫
2j |y|≤1

2jd|h(2jy)| ‖τyu−u‖Lp dy

)r

and

Σ2
def=
∑

j

2jsr

(∫
2j |y|≥1

2jd|h(2jy)| ‖τyu−u‖Lp dy

)r

.

Hölder’s inequality implies that
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(∫
2j |y|≤1

2jd|h(2jy)| ‖τyu−u‖Lp dy

)r

≤
(∫

2j |y|≤1

2jdr′
|h(2jy)|r

′
dy

)r−1

×
∫

2j |y|≤1

‖τyu−u‖r
Lp dy

≤ C2jd

∫
2j |y|≤1

‖τyu − u‖r
Lp dy.

Using Fubini’s theorem, we get that

Σ1 ≤ C

∫
Rd

( ∑
j/2j |y|≤1

2j(rs+d)
)

‖τyu − u‖r
Lp dy

≤ C

∫
Rd

‖τyu − u‖r
Lp

|y|rs

dy

|y|d ·

Next, note that applying Hölder’s inequality with the measure |y| −d dy enables
us to bound the general term Σj

2 of Σ2 as follows:

2−jsrΣj
2 ≤ 2−jr

(∫
2j |y|≥1

|2jy|d+1|h(2jy)| ‖τyu − u‖Lp

|y|
dy

|y|d

)r

≤ 2−jr

∫
2j |y|≥1

‖τyu − u‖r
Lp

|y|r
dy

|y|d ·

Using Fubini’s theorem and the fact that s < 1, we then infer that

Σ2 ≤ C

∫
Rd

( ∑
j/2j |y|≥1

2−jr(1−s)
)‖τyu − u‖r

Lp

|y|r
dy

|y|d

≤ C

∫
Rd

‖τyu − u‖r
Lp

|y|rs

dy

|y|d ·

The theorem is thus proved. 	


In the limit case s = 1, the characterization given in Theorem 2.36 fails. We
then have to use finite differences of order two.

Theorem 2.37. Let (p, r) be in [1, ∞]2. A constant C exists such that for
any u in S ′

h,

C−1‖u‖Ḃ1
p,r

≤
∥∥∥‖τ−yu + τyu − 2u‖Lp

|y|

∥∥∥
Lr(Rd; dy

|y|d )
≤ C‖u‖Ḃ1

p,r
.

Remark 2.38. Applying the above theorem in the case where p = r = ∞ shows
that the space Ḃ1

∞,∞ coincides with the Zygmund class of functions u such
that

|u(x + y) + u(x − y) − 2u(x)| ≤ C|y|.
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Proof of Theorem 2.37. Again using the fact that Δ̇j =
∑

|j′ −j|≤1 Δ̇jΔ̇j′ , we
can write

τ−yΔ̇ju+τyΔ̇ju−2Δ̇ju = 2jd
∑

|α|=2

∑
|j′−j|≤1

22jyα
(∫ 1

0

(1−t)hα,j(2j ·, ty) dt
)
�Δj′ u

with hα,j(X, Y ) def= ∂αh(X + 2jY ).

As ‖hα,j(·, Y )‖L1 = ‖∂αh‖L1 for any Y , we have

‖τ−yΔ̇ju + τyΔ̇ju − 2Δ̇ju‖Lp ≤ C22j |y|2
∑

|j−j′ |≤1

‖Δ̇j′ u‖Lp

≤ Ccr,j2j |y|2‖u‖Ḃ1
p,r

,

where (cr,j)j∈Z stands for an element of the unit sphere of �r(Z). We also have

‖τ−yΔ̇ju + τyΔ̇ju − 2Δ̇ju‖Lp ≤ 4‖Δ̇ju‖Lp

≤ Ccr,j2−j ‖u‖Ḃ1
p,r

.

We infer that for any integer j′,

‖τ−yu + τyu − 2u‖Lp ≤ C‖u‖Ḃ1
p,r

(
|y|2

∑
j≤j′

cr,j2j +
∑
j>j′

cr,j2−j

)
.

The conclusion is strictly analogous to the case where s ∈ ]0, 1[.
We will now prove the other inequality. Because h is a radial function with

mean value 0, we can write

Δ̇ju(x) =
1
2
2jd

∫
Rd

h(2jy)(τyu + τ−yu)(x) dy

=
1
2
2jd

∫
h(2jy)(τyu(x) + τ−yu(x) − u(x)) dy,

and from this point on, we can mimic the proof of Theorem 2.36.

2.5 Besov Spaces, Lebesgue Spaces, and Refined
Inequalities

In this section, we compare homogeneous Besov spaces with Lebesgue spaces.
We start with an easy (but most useful) result pertaining to Besov spaces
with third index 1.
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Proposition 2.39. For any (p, q) in [1, ∞]2 such that p ≤ q, the space Ḃ
d
p − d

q

p,1

is continuously embedded in Lq. In addition, if p is finite, then Ḃ
d
p

p,1 is con-
tinuously embedded in the space C0 of continuous functions vanishing at in-
finity. Finally, for all q ∈ [1, ∞], the space Lq is continuously embedded in
the space Ḃ0

q,∞, and the space M of bounded measures on R
d is continuously

embedded in Ḃ0
1,∞.

Proof. Let u ∈ Ḃ
d
p − d

q

p,1 . Because Ḃ
d
p − d

q

p,1 ⊂ S ′
h, we may write

u =
∑

j

Δ̇ju.

Now, according to Bernstein’s lemma, we have

‖Δ̇ju‖Lq ≤ C2j( d
p − d

q )‖Δ̇ju‖Lp ,

so the above series converges in Lq. This yields the first part of the statement.

If p is finite, then the space S0 is dense in Ḃ
d
p

p,1. This ensures that functions

of Ḃ
d
p

p,1 decay to 0 at infinity. The last part of the statement is easy to prove: It
suffices to use the fact that, by definition, Δ̇ju = 2jdh(2j ·) ∗ u. Hence, Young’s
inequality (or Fubini’s theorem, in the case where u is a bounded measure)
gives the result. 	


We now compare homogeneous Besov spaces with regularity index 0 and third
index 2 to Lebesgue spaces.

Theorem 2.40. For any p in [2, ∞[, Ḃ0
p,2 is continuously included in Lp

and Lp′
is continuously included in Ḃ0

p′,2.

Proof. Arguing by density, we can assume with no loss of generality that u
belongs to S0 (see Proposition 2.27). Therefore, writing Fp(x) = |x|p, we can
rewrite ‖u‖p

Lp as a telescopic series:

‖u‖p
Lp =

∑
j∈Z

Fp(Ṡj+1u) − Fp(Ṡju), and hence

‖u‖p
Lp =

∑
j

〈Δ̇ju, mj 〉 with mj(x) def=
∫ 1

0

F ′
p

(
Ṡju(x) + tΔ̇ju(x)

)
dt.

Using the Fourier–Plancherel formula and denoting by Δ̃j the convolution
operator in terms of the inverse Fourier transform of ϕ̃(2−j ·), where ϕ̃ is
in D(Rd \{0}) with value 1 near the support of ϕ, we can write

〈Δ̇ju, mj 〉 = 〈Δ̇ju, Δ̃jmj 〉.
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By Lemma 2.1, we infer that

‖Δ̃jmj ‖Lp′ ≤ C2−j sup
1≤�≤d

‖∂�mj ‖Lp′ . (2.19)

The chain rule and Hölder’s inequality imply that

‖∂�mj ‖Lp′ ≤
∫ 1

0

∥∥∥∂�(Ṡju + tΔ̇ju)F ′ ′
p (Ṡj + tΔju)

∥∥∥
Lp′ dt

≤
∫ 1

0

‖∂�(Ṡju + tΔ̇ju)‖Lp ‖F ′ ′
p (Ṡju + tΔ̇ju)‖

L
p

p−2
dt.

As F ′ ′
p (x) = p(p − 1)|x|p−2, we immediately get that

∀t ∈ [0, 1] , ‖F ′ ′
p (Ṡju + tΔ̇ju)‖

L
p

p−2
≤ p(p − 1)‖Ṡju + tΔ̇ju‖p−2

Lp .

Using Lemma 2.1, we infer that for all t ∈ [0, 1],

‖F ′ ′
p (Sju + tΔju)‖

L
p

p−2
≤ Cpp(p − 1)‖u‖p−2

Lp . (2.20)

Now, by the definition of Ṡj , Lemma 2.1, and Young’s inequality for series,
we get

‖∂�(Ṡju + tΔ̇ju)‖Lp ≤
∑
k≤j

‖∂�Δ̇ku‖Lp

≤ 2j
∑
k≤j

2k−j ‖Δ̇ku‖Lp

≤ Ccj2j ‖u‖Ḃ0
p,2

with
∑

j

c2
j = 1.

Combining (2.19) and (2.20), we deduce that

‖Δ̃jmj ‖Lp′ ≤ Cpp(p − 1)cj ‖u‖p−2
Lp ‖u‖Ḃ0

p,2
with

∑
j

c2
j = 1.

As we have ‖u‖p
Lp =

∑
j

〈Δ̇ju, Δ̃jmj 〉, we infer that

‖u‖2
Lp ≤ Cpp(p − 1)‖u‖Ḃ0

p,2

∑
j

cj ‖Δ̇ju‖Lp ≤ Cpp(p − 1)‖u‖2
Ḃ0

p,2
. (2.21)

This concludes the proof that Ḃ0
p,2 ↪→ Lp. In order to prove the dual result,

consider u in Lp′
. For any φ ∈ S such that ‖φ‖Ḃ0

p,2
≤ 1, we have, thanks

to (2.21),
| 〈u, φ〉| ≤ ‖u‖Lp′ ‖φ‖Lp ≤ C‖u‖Lp′ .

Use of Proposition 2.29 then completes the proof. 	
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Theorem 2.41. For any p in [1, 2], the space Ḃ0
p,p is continuously included

in Lp, and Lp′
is continuously included in Ḃ0

p′,p′ .

Proof. We first observe that Ḃ0
1,1 is continuously included in L1, and Ḃ0

2,2 is
equal to L2. We shall then use a complex interpolation argument to prove
that for any p ∈ [1, 2], Ḃ0

p,p is continuously included in Lp. Consider f ∈ Ḃ0
p,p

and ϕ ∈ Lp′
. As in the proof of Lemma 1.11 page 11, we consider a complex

number z in the strip S of complex numbers whose real parts are between 0
and 1, and we define, for ϕ̃ ∈ D(Rd \ {0}) with value 1 near the support of ϕ,

fz
def=
∑
j∈Z

ϕ̃(2−jD)
(

Δjf

|Δjf | |Δjf |p(1−z+ z
2 )
)

,

ϕz(x) def=
ϕ

|ϕ| |ϕ| z
2 p′

and F (z) def=
∫

Rd

fz(x)ϕz(x) dx.

Note that fθ = f and ϕθ = ϕ if θ = 2/p′. It can be checked that F is
holomorphic on S and is continuous and bounded on the closure of S. From
the Phragmén–Lindelöf principle, we infer that

F (θ) ≤ M1−θ
0 Mθ

1 with Mj
def= sup

t∈R

|F (j + it)|. (2.22)

We now have, for any t ∈ R,

‖fit‖L1 ≤
∑
j∈Z

∥∥∥∥ϕ̃(2−jD)
(

Δjf

|Δjf | |Δjf |p(1−it+ it
2 )
)∥∥∥∥

L1

≤ C
∑
j∈Z

‖ |Δjf |p‖L1

≤ C
∑
j∈Z

‖Δjf
p‖p

Lp

≤ C‖f ‖p

Ḃ0
p,p

. (2.23)

In addition, using the “almost orthogonality” of the terms of the series defin-
ing fz, we infer that

‖f1+it‖2
L2 ≤ C

∑
j∈Z

‖ |Δjf |
p
2 ‖L2

≤ C
∑
j∈Z

‖Δjf ‖p
Lp

≤ C‖f ‖p

Ḃ0
p,p

. (2.24)

Moreover, |ϕit(x)| = 1 and |ϕ1+it(x)| = |ϕ(x)| p′
2 . Thus,



82 2 Littlewood–Paley Theory

M0 ≤ C‖f ‖p

Ḃ0
p,p

and M1 ≤ C‖f ‖
p
2

Ḃ0
p,p

‖ϕ‖
p′
2

Lp′ .

Using (2.22), we infer that∫
Rd

f(x)ϕ(x)dx = F (θ) ≤ C‖f ‖Ḃ0
p,p

‖ϕ‖Lp′ ,

and the first result is proved. That Lp′
embeds continuously in B0

p′,p′ follows
by duality (see Proposition 2.29). 	

We now present a generalization of the refined Sobolev embedding stated in
Theorem 1.43 page 32.

Theorem 2.42. Let 1 ≤ q < p < ∞ and α be a positive real number. A con-
stant C exists such that

‖f ‖Lp ≤ C‖f ‖1−θ

Ḃ−α
∞,∞

‖f ‖θ
Ḃβ

q,q
with β = α

(p

q
− 1
)

and θ =
q

p
·

Proof. The proof follows along the lines of that of Theorem 1.38, which turns
out to be a particular case (take q = 2 and α = d/2 − β). As usual we may
assume without loss of generality that ‖f ‖Ḃ−α

∞,∞
= 1. We write

‖f ‖p
Lp = p

∫ ∞

0

λp−1μ
(

|f | > λ
)
dλ and f = Ṡjf + (Id −Ṡj)f.

According to Proposition 2.33 we have ‖Ṡjf ‖L∞ ≤ C2jα‖f ‖Ḃ−α
∞,∞

. As
{

|f | > λ
}

⊂
{

|Ṡjf | > λ/2
}

∪
{

|(Id −Ṡj)f | > λ/2
}
,

choosing jλ in Z such that

1
2

( λ

2C

) 1
α

< 2jλ ≤
( λ

2C

) 1
α

(2.25)

guarantees that { |f | > λ} ⊂
{

|(Id −Ṡjλ
)f | > λ/2

}
. By the Bienaymé–

Chebyshev inequality, we then have

‖f ‖p
Lp ≤ p

∫ ∞

0

λp−1μ
(

|(Id −Ṡjλ
)f | > λ/2

)
dλ

≤ p

∫ ∞

0

λp−q−1‖(Id −Ṡjλ
)f ‖q

Lq dλ.

We now estimate ‖(Id −Ṡjλ
)f ‖Lq . By the definition of ‖ · ‖Ḃβ

q,q
, we have

‖(Id −Ṡjλ
)f ‖Lq ≤

∑
j≥jλ

‖Δ̇jf ‖Lq

≤
∑
j≥jλ

2−jβ2jβ ‖Δ̇jf ‖Lq

≤ C‖f ‖Ḃβ
q,q

∑
j≥jλ

2−jβcj with ‖(cj)‖�q = 1.
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We thus get

‖f ‖p
Lp ≤ C‖f ‖q

Ḃβ
q,q

∫ ∞

0

λp−q−1
(∑

j≥jλ

2−jβcj

)q

dλ.

Hölder’s inequality with the weight 2−jβ and the definition (2.25) of jλ to-
gether give

(∑
j≥jλ

2−jβcj

)q

≤
(∑

j≥jλ

2−jβ
)q−1 ∑

j≥jλ

2−jβcq
j

≤ C2−jλβ(q−1)
∑
j≥jλ

2−jβcq
j

≤ Cλ−(q−1) β
α

∑
j≥jλ

2−jβcq
j .

Hence, it turns out that

‖f ‖p
Lp ≤ C‖f ‖q

Ḃβ
q,q

∫ ∞

0

(∑
j

2−jβ1j≥jλ
cq
j

)
λp−q−(q−1) β

α −1dλ.

Using (2.25) and Fubini’s theorem, we end up with

‖f ‖p
Lp ≤ C‖f ‖q

Ḃβ
q,q

∑
j

2−jβcq
j

∫ 2C2(j+1)α

0

λp−q−(q−1) β
α −1 dλ.

Because p − q − 1 − (q − 1)β/α = p/q − 1 is positive, we thus obtain

‖f ‖p
Lp ≤ C‖f ‖q

Ḃβ
q,q

∑
j

cq
j2

j
(
α
(

p−q
q

)
−β
)
.

As β = α
(p

q
−1
)

and ‖(cj)‖�q = 1, we get ‖f ‖p
Lp ≤ C‖f ‖q

Ḃβ
q,q

, and the theorem

is proved. 	


We now state the analog of the above refined inequalities in the context of
Sobolev spaces.

Theorem 2.43. Let q be in ]1, ∞[ and s in the interval ]0, d/q[. A constant C
then exists such that

‖u‖Lp ≤ C‖u‖1− qs
d

Ḃ
1− qs

d∞,∞
‖u‖

qs
d

Ẇ s
q

with ‖u‖Ẇ s
q

def
= ‖(−Δ)

s
2 u‖Lq .
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Proof. We decompose u into low and high frequencies:

u = Ṡju + (Id −Ṡj)u.

Assume that ‖u‖
Ḃ

1− qs
d∞,∞

= 1. Using the definition of ‖u‖Ḃ∞,∞
, we see that

‖Ṡju‖L∞ ≤ C2j(dq−s). (2.26)

In order to study the high-frequency part, we note that for any smooth ho-
mogeneous function a of degree m, we have

Δ̇ja(D)u = 2jm2jdha(2j ·) � u with ha
def= F −1(ϕa).

By Proposition 1.16 page 15 and the remark that follows, we infer that a
constant (depending, of course, on a) exists such that for any j ∈ Z, we have

|Δ̇ju(x)| ≤ C2jm(Mu)(x), (2.27)

where Mu denotes the maximal function of u. Thus, we have, for any j in Z,

|(Id −Ṡj)u(x)| ≤
∑
j′ ≥j

|Δ̇j′ (−Δ)− s
2 (−Δ)

s
2 u(x)|

≤ C
(∑

j′ ≥j

2−j′s
)
(M(−Δ)

s
2 u)(x)

≤ C2−js(M(−Δ)
s
2 u)(x).

Together with (2.26), this gives, for any j ∈ Z and x ∈ R
d, that

|u(x)| ≤ C2j(dq−s) + C2−js(M(−Δ)
s
2 u)(x).

Choosing 2j ∼ (M(−Δ)
s
2 u(x))

q
d then gives

|u(x)| ≤ C(M(−Δ)
s
2 u)(x)1− sq

d .

Because the maximal operator maps Lq into Lq continuously (see Theo-
rem 1.14 page 13), the proof is complete. 	


Finally, we establish the so-called Gagliardo–Nirenberg inequalities.

Theorem 2.44. Let (q, r) be in ]1, ∞]2 and (σ, s) be in ]0, ∞[2 with σ < s.
A constant C exists such that

‖u‖Ẇ σ
p

≤ C‖u‖θ
Lq ‖u‖1−θ

Ẇ s
r

with
1
p

=
θ

q
+

1 − θ

r
and θ = 1 − σ

s
·

Proof. As usual, we decompose u into low and high frequencies:

u = Ṡju + (Id −Ṡj)u.
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For the low-frequency part, using (2.27), we may write

|Ṡj(−Δ)
σ
2 u(x)| ≤

∑
j′<j

|Δj′ (−Δ)
σ
2 u(x)|

≤ C
(∑

j′<j

2j′σ
)
(Mu)(x)

≤ C2jσ(Mu)(x). (2.28)

For the high-frequency part, again using (2.27), we get

|(Id −Ṡj)(−Δ)
σ
2 u(x)| ≤

∑
j′ ≥j

|Δ̇j′ (−Δ)
σ
2 − s

2 (−Δ)
s
2 u(x)|

≤ C
(∑

j′ ≥j

2−j′(s−σ)
)
(M(−Δ)

s
2 u)(x)

≤ C2−j(s−σ)(M(−Δ)
s
2 u)(x).

Together with (2.28), this implies that for any integer j ∈ Z and any x in R
d,

|(−Δ)
σ
2 u(x)| ≤ C2jσ(Mu)(x) + C2−j(s−σ)(M(−Δ)

s
2 u)(x).

Choosing j such that

2j ≈
(

(M(−Δ)
s
2 u)(x)

(Mu)(x)

) 1
s

,

we infer that

|(−Δ)
σ
2 u(x)| ≤ C(Mu)(x)1− σ

s (M(−Δ)
s
2 u)(x))

σ
s ,

from which it follows, by virtue of Hölder’s inequality, that

‖u‖Ẇ σ
p

≤ C‖Mu‖1− σ
s

Lq ‖M(−Δ)
s
2 u‖

σ
s

Lr .

As q > 1 and r > 1, applying Theorem 1.14 page 13 completes the proof. 	


2.6 Homogeneous Paradifferential Calculus

In this section, we study the way that the product acts on Besov spaces.

2.6.1 Homogeneous Bony Decomposition

Let u and v be tempered distributions in S ′
h. We have

u =
∑
j′

Δ̇j′ u and v =
∑

j

Δ̇jv,
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hence, at least formally,
uv =

∑
j′,j

Δ̇j′ u Δ̇jv.

Paradifferential calculus is a mathematical tool for splitting the above sum
into three parts:

– The first part concerns the indices (j′, j) for which the size of Supp F (Δ̇j′ u)
is small compared to the size of Supp F (Δ̇jv) (i.e., j′ ≤ j − N0 for some
suitable positive integer N0).

– The second part contains the indices corresponding to those frequencies
of u which are large compared with the frequencies of v (i.e., j′ ≥ j +N0).

– In the last part we keep the indices (j, j′) for which Supp F (Δ̇j′ u) and
Supp F (Δ̇ju) have comparable sizes (i.e., |j − j′ | ≤ N0).

The suitable choice for N0 depends on the assumptions made on the support
of the function ϕ used in the definition of the dyadic blocks.

In what follows, we shall always assume that ϕ has been chosen according
to Definition 2.10 so that taking N0 = 1 will be appropriate. This leads to the
following definition.

Definition 2.45. The homogeneous paraproduct of v by u is defined as fol-
lows:

Ṫuv
def
=
∑

j

Ṡj−1u Δ̇jv.

The homogeneous remainder of u and v is defined by

Ṙ(u, v) =
∑

|k−j|≤1

Δ̇ku Δ̇jv.

Remark 2.46. It can be checked that Ṫuv makes sense in S ′ whenever u and v
are in S ′

h, and that Ṫ : (u, v) �→ Ṫuv is a bilinear operator. Of course, the re-
mainder operator Ṙ : (u, v) �→ Ṙ(u, v), when restricted to sufficiently smooth
distributions, is also bilinear.

The main motivation for using the operators Ṫ and Ṙ is that, at least formally,
the following so-called Bony decomposition holds true:

uv = Ṫuv + Ṫvu + Ṙ(u, v). (2.29)

So, in order to understand how the product operates in Besov spaces, it suffices
to investigate the continuity properties of the operators Ṫ and Ṙ.

To simplify the presentation, it will be understood from now on that when-
ever the expressions Ṫuv or Ṙ(u, v) appear in the text, the series with general
terms

Ṡj−1 Δ̇jv or
∑

|ν|≤1

Δ̇ju Δ̇j−νv

converges to some tempered distribution which belongs to S ′
h.
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We can now state our main result concerning continuity of the homogeneous
paraproduct operator Ṫ.

Theorem 2.47. There exists a constant C such that for any real number s
and any (p, r) in [1, ∞]2, we have, for any (u, v) in L∞ × Ḃs

p,r,

‖Ṫuv‖Ḃs
p,r

≤ C1+|s| ‖u‖L∞ ‖v‖Ḃs
p,r

.

Moreover, for any (s, t) in R × ]− ∞, 0[ and any (p, r1, r2) in [1, ∞]3, we have,
for any (u, v) ∈ Ḃt

∞,r1
× Ḃs

p,r2
,

‖Ṫuv‖Ḃs+t
p,r

≤ C1+|s+t|

−t
‖u‖Ḃt

∞,r1
‖v‖Ḃs

p,r2
with

1
r

def
= min

{
1,

1
r1

+
1
r2

}
·

Remark 2.48. Thanks to Lemma 2.23 and the remark that follows it, the
hypothesis of convergence is satisfied whenever (s, p, r) or (s + t, p, r) sat-
isfies (2.17).

Proof of Theorem 2.47. According to (2.9), F
(
Ṡj−1uΔ̇jv

)
is supported in 2j C̃.

Therefore, we are left with proving an appropriate estimate for ‖Ṡj−1uΔ̇jv‖Lp .
Lemma 2.1 and Proposition 2.33 tell us that for any j ∈ Z and t < 0,

‖Ṡj−1u‖L∞ ≤ C‖u‖L∞ and ‖Ṡj−1u‖L∞ ≤ C

−t
cj,r12

−jt‖u‖Ḃt
∞,r1

, (2.30)

where (cj,r1)j∈Z denotes an element of the unit sphere of �r1(Z). Using
Lemma 2.23, the estimates concerning the paraproduct are proved. 	


We now examine the behavior of the remainder operator Ṙ. Here, we have to
consider terms of the type Δ̇ju Δ̇jv, the Fourier transforms of which are not
supported in annuli, but rather in balls of the type 2jB. Thus, to prove that
the remainder terms belong to certain Besov spaces, we need the following
lemma.

Lemma 2.49. Let B be a ball in R
d, s a positive real number, and (p, r) ∈

[1, ∞]2. A constant C exists which satisfies the following. Let (uj)j∈Z be a
sequence of smooth functions such that

Supp ûj ⊂ 2jB and
∥∥∥(2js‖uj ‖Lp)j∈Z

∥∥∥
�r

< ∞.

We assume that the series
∑

j∈Z
uj converges to u in S ′

h. We then have

u ∈ Ḃs
p,r and ‖u‖Ḃs

p,r
≤ C

s

∥∥∥(2js‖uj ‖Lp)j

∥∥∥
�r(Z)

.

Remark 2.50. Thanks to Lemma 2.49 and the remark that follows it, the hy-
pothesis of convergence is satisfied whenever (s, p, r) satisfies (2.17).
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Proof of Lemma 2.49. As C is an annulus and B is a ball, an integer N1 exists
such that if j′ ≥ j + N1, then 2j′ C ∩ 2jB = ∅. So, if j′ ≥ j + N1, then the
Fourier transform of Δ̇j′ uj (and thus Δj′ uj) is equal to 0. Hence, we may
write

‖Δ̇j′ u‖Lp ≤
∑

j>j′ −N1

‖Δ̇j′ uj ‖Lp

≤ C
∑

j>j′ −N1

‖uj ‖Lp .

We therefore get that

2j′s‖Δ̇j′ u‖Lp ≤ C
∑

j≥j′ −N1

2j′s‖uj ‖Lp

≤ C
∑

j≥j′ −N1

2(j′ −j)s2js‖uj ‖Lp .

As s is positive, applying Young’s inequality for series completes the proof of
the lemma. 	


Remark 2.51. The above lemma fails in the limit case s = 0. Indeed, fix a
nonzero function f ∈ Lp, spectrally supported in some ball B, and a nonneg-
ative real α such that αr > 1. Set uj = j−αf for j ≥ 1, and uj = 0 otherwise.
It is clear that

∀j ∈ Z, Supp ûj ⊂ 2jB and
∥∥∥(‖uj ‖Lp)j∈N

∥∥∥
�r

< ∞.

If r > 1, then we can additionally set α < 1 so that the series
∑

j uj diverges
in S ′. If r = 1, then the series converges to a nonzero multiple of f. As Ḃ0

p,1

is a strict subspace of Lp, the function f need not be in Ḃ0
p,1, so the lemma

also fails in this case.

We can now state a result concerning continuity of the remainder operator.

Theorem 2.52. A constant C exists which satisfies the following inequalities.
Let (s1, s2) be in R

2 and (p1, p2, r1, r2) be in [1, ∞]4. Assume that

1
p

def
=

1
p1

+
1
p2

≤ 1 and
1
r

def
=

1
r1

+
1
r2

≤ 1.

If s1 + s2 is positive, then we have, for any (u, v) in Ḃs1
p1,r1

× Ḃs2
p2,r2

,

‖Ṙ(u, v)‖
Ḃ

s1+s2
p,r

≤ C |s1+s2|+1

s1 + s2
‖u‖Ḃ

s1
p1,r1

‖v‖Ḃ
s2
p2,r2

.

When r = 1 and s1 + s2 ≥ 0, we have, for any (u, v) in Ḃs1
p1,r1

× Ḃs2
p2,r2

,

‖Ṙ(u, v)‖
Ḃ

s1+s2
p,∞

≤ C |s1+s2|+1‖u‖Ḃ
s1
p1,r1

‖v‖Ḃ
s2
p2,r2

.
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Remark 2.53. Thanks to Lemma 2.49 and the remark that follows it, the hy-
pothesis of convergence is satisfied whenever (s1 + s2, p, r) or (s1 + s2, p, ∞)
satisfies (2.17)

Proof of Theorem 2.52. By definition of the homogeneous remainder operator,

Ṙ(u, v) =
∑

j

Rj with Rj =
∑

|ν|≤1

Δ̇j−νuΔ̇jv.

Because ϕ is supported in the annulus C, the Fourier transform of Rj is sup-
ported in 2jB(0, 24). So, by construction of the dyadic partition of unity, there
exists an integer N0 such that

j′ > j + N0 ⇒ Δ̇j′ Rj = 0. (2.31)

From this, we deduce that

Δ̇j′ Ṙ(u, v) =
∑

j≥j′ −N0

Δ̇j′ Rj .

Using Hölder’s inequality, we infer that

2j′(s1+s2)‖Δ̇j′ Ṙ(u, v)‖Lp ≤ C2j′(s1+s2)
∑

|ν|≤1
j≥j′ −N0

‖Δ̇j−νuΔ̇jv‖Lp

≤ C2j′(s1+s2)
∑

|ν|≤1
j≥j′ −N0

‖Δ̇j−νu‖Lp1 ‖Δ̇jv‖Lp2

≤ C
∑

|ν|≤1
j≥j′−N0

2−(j−j′)(s1+s2)2(j−ν)s1 ‖Δ̇j−νu‖Lp1 2js2 ‖Δ̇jv‖Lp2 .

Using Hölder’s and Young’s inequalities for series, we get the theorem in the
case where s1 + s2 is positive.

In the case where r = 1 and s1 + s2 is nonnegative, we use the fact that

2j′(s1+s2)‖Δ̇j′ Ṙ(u, v)‖Lp ≤ C
∑

|ν|≤1
j≥j′ −N0

2(j−ν)s1 ‖Δ̇j−νu‖Lp1 2js2 ‖Δ̇jv‖Lp2 ,

take the supremum over j′, and use Hölder’s inequality for series. 	


By taking advantage of Bony’s decomposition (2.29), a plethora of results
on continuity may be deduced from Theorems 2.47 and 2.52. As an initial
example, we derive the following so-called tame estimates for the product of
two functions in Besov spaces.
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Corollary 2.54. If (s, p, r) ∈ ]0, ∞[×[1, ∞]2 satisfies (2.17), then L∞ ∩ Ḃs
p,r

is an algebra. Moreover, there exists a constant C, depending only on the
dimension d, such that

‖uv‖Ḃs
p,r

≤ Cs+1

s

(
‖u‖L∞ ‖v‖Ḃs

p,r
+ ‖u‖Ḃs

p,r
‖v‖L∞

)
.

Proof. Using Bony’s decomposition, we have

uv = Ṫuv + Ṫvu + Ṙ(u, v).

According to Theorem 2.47, we have

‖Ṫuv‖Ḃs
p,r

≤ Cs+1‖u‖L∞ ‖v‖Ḃs
p,r

and ‖Ṫvu‖Ḃs
p,r

≤ Cs+1‖u‖Ḃs
p,r

‖v‖L∞ .

Now, using Theorem 2.52, we get

‖Ṙ(u, v)‖Ḃs
p,r

≤ Cs+1

s
‖u‖Ḃ0

∞,∞
‖v‖Ḃs

p,r
.

Since, obviously, ‖u‖Ḃ0
∞,∞

≤ C‖u‖L∞ , we obtain the desired inequality. 	


Our second example deals with the product of two functions in homogeneous
Sobolev spaces.

Corollary 2.55. For any (s1, s2) ∈ ]−d/2, d/2[2, a constant C exists such
that if s1 + s2 is positive, then we have

‖uv‖
Ḃ

s1+s2− d
2

2,1

≤ C‖u‖Ḣs1 ‖v‖Ḣs2 .

Proof. We again use Bony’s decomposition. First, as Ḣs is continuously in-
cluded in Ḃ

s− d
2

∞,2 and s − d/2 < 0, Theorem 2.47 implies that

‖Ṫuv + Ṫvu‖
Ḃ

s1+s2− d
2

2,1

≤ C‖u‖Ḣs1 ‖v‖Ḣs2 .

Second, as s1 + s2 > 0, Theorem 2.52 guarantees that

‖Ṙ(u, v)‖
Ḃ

s1+s2
1,1

≤ C‖u‖Ḣs1 ‖v‖Ḣs2 .

As the space Ḃs1+s2
1,1 is continuously included in Ḃ

s1+s2− d
2

2,1 , the corollary is
proved. 	


Remark 2.56. The constant in Corollary 2.55 may be bounded by

C min
{ 1

d − 2s1

, 1
d − 2s2

, 1
s1 + s2

}

with C depending only on the dimension d.
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As an application of Corollary 2.55, we get the following family of Hardy
inequalities, which contains the particular case of Theorem 1.72 page 48.

Theorem 2.57. For any real s in
[
0,

d

2

[
, a constant C exists such that for

any f in Ḣs(Rd), ∫
Rd

|f(x)|2
|x|2s

dx ≤ C‖f ‖2
Ḣs . (2.32)

Proof. The case s = 0 being obvious, we assume that 0 < s < d/2. As S0

is dense in Ḣs, it suffices to prove the above inequality in the case where f
belongs to S0. We define

Is(f) def=
∫

Rd

|f(x)|2
|x|2s

dx = 〈| · | −2s, f2〉.

Using Littlewood–Paley decomposition and the fact that f2 belongs to S ′
h, we

can write

Is(f) =
∑

|j−j′ |≤2

〈Δ̇j | · | −2s, Δ̇j′ f2〉,

≤ C
∑

|j−j′ |≤2

∣∣〈2j( d
2 −2s)Δ̇j | · | −2s, 2−j′( d

2 −2s)Δ̇j′ f2〉
∣∣.

By virtue of Proposition 2.21, the function | · |−2s belongs to Ḃ
d
2 −2s
2,∞ . Corol-

lary 2.55 yields ‖f2‖
Ḃ

2s− d
2

2,1

≤ C‖f ‖2
Ḣs . Thus, Is(f) ≤ C‖f ‖2

Ḣs . 	


We conclude this section with the statement of some refined Hardy inequal-
ities, in the spirit of the refined Sobolev inequalities (see Theorem 1.43
page 32).

Theorem 2.58. Let (s, p, q) be a triplet of real numbers such that

0 < s <
d

2
and 2 ≤ q <

2d

d2s
< p ≤ ∞.

There exists a constant C such that for any function u ∈ Ḃ
s−d( 1

2 − 1
q )

q,2 , the
following inequality holds:

(∫ |u(x)|2
|x|2s

dx

)1
2

≤ C‖u‖α

Ḃ
s−d( 1

2−1
p )

p,2

‖u‖1−α

Ḃ
s−d( 1

2−1
q )

q,2

with α =
pq

p−q

(1
q

− 1
2

+
s

d

)
·

Proof. Bony’s decomposition for u2 reads

u2 = 2Ṫuu + Ṙ(u, u),
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so it suffices to prove the inequality for Ṫuu and Ṙ(u, u) instead of u2. Of
course, arguing by density, we can assume that u belongs to S0.

The term Ṫuu is easy to deal with: According to Theorem 2.47, we have

‖Ṫuu‖Ḃ2s−d
∞,1

≤ C‖u‖2

Ḃ
s− d

2
∞,2

.

Proposition 2.21 now ensures that the function | · | −2s belongs to Ḃd−2s
1,∞ , so,

according to Proposition 2.29, we have∣∣〈| · | −2s, Ṫuu〉
∣∣ ≤ C‖u‖2

Ḃ
s− d

2
∞,2

.

Since both Ḃ
s−( d

2 − d
q )

q,2 and Ḃ
s−( d

2 − d
p )

p,2 are embedded in Ḃ
s− d

2
∞,2 , we end up with

∣∣〈 | · | −2s, Ṫuu〉
∣∣ ≤ C‖u‖2α

Ḃ
s−( d

2 − d
q )

q,2

‖u‖2−2α

Ḃ
s−( d

2 − d
p )

p,2

. (2.33)

The estimate of 〈| · | −2s, Ṙ(u, u)〉 relies on the following interpolation lemma.

Lemma 2.59. Under the assumptions of Theorem 2.58, there exists a con-
stant C such that for any functions f and g in Lp ∩ Lq, we have

〈| · | −2s, fg〉 ≤ C‖f ‖α
Lp ‖g‖α

Lp ‖f ‖1−α
Lq ‖g‖1−α

Lq with α =
pq

p − q

(1
q

− 1
2

+
s

d

)
·

Proof. For any positive R, we can write 〈| · | −2s, fg〉 = I1(R) + I2(R) with

I1(R) def=
∫

|x|≤R

fg(x)
|x|2s

dx and I2(R) def=
∫

|x|≥R

fg(x)
|x|2s

dx.

The condition on p and q implies that | · | −2s is locally L
p

p−2 and is L
q

q−2

outside any compact neighborhood of 0. By Hölder’s inequality, we infer that

I1(R) ≤ ‖1(|·|≤R)| · | −2s‖
L

p
p−2

‖f ‖Lp ‖g‖Lp ,

I2(R) ≤ ‖1(|·|≥R)| · | −2s‖
L

q
q−2

‖f ‖Lq ‖g‖Lq .

Because the function | · |−2s is homogeneous of order −2s, we get

‖1(|·|≤R)| · | −2s‖
L

p
p−2

= Rd−2s− 2d
p ‖1(|·|≤1)| · | −2s‖

L
p

p−2
,

‖1(|·|≥R)| · | −2s‖
L

q
q−2

= Rd−2s− 2d
q ‖1(|·|≥1)| · | −2s‖

L
q

q−2
.

Thus, for any positive R, we have

〈 | · | −2s, fg〉 ≤ CRd−2s
(
R− 2d

p ‖f ‖Lp ‖g‖Lp + R− 2d
q ‖f ‖Lq ‖g‖Lq

)
.

Choosing the best R, namely

R =
(

‖f ‖Lq ‖g‖Lq

‖f ‖Lp ‖g‖Lp

) pq
2d(p−q)

,

completes the proof of the lemma. 	
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We now resume the proof of Theorem 2.58. By the definition of Ṙ(u, u), we
have

〈 | · | −2s, Ṙ(u, u)〉 =
∑

|�|≤1

∑
j∈Z

〈| · | −2s, Δ̇juΔ̇j−�u〉.

Lemma 2.59 implies that

∣∣〈| · | −2s, Ṙ(u, u)〉
∣∣ ≤

∑
|�|≤1

∑
j∈Z

(
22j(s−( d

2 − d
p ))‖Δ̇ju‖Lp ‖Δ̇j−�u‖Lp

)α

×
(
22j(s−( d

2 − d
q ))‖Δ̇ju‖Lq ‖Δ̇j−�u‖Lq

)1−α

.

By the definition of the Besov norms, this implies that two sequences, (cj)j∈Z

and (c′
j)j∈Z, exist in the unit sphere of �2(Z) such that

∣∣〈| · | −2s, Ṙ(u, u)〉
∣∣ ≤ C‖u‖2α

Ḃ
s−( d

2−d
q )

q,2

‖u‖2(1−α)

Ḃ
s−( d

2−d
p )

p,2

∑
|�|≤1

∑
j∈Z

(cjcj−�)α(c′
jc

′
j−�)

1−α.

From Hölder’s inequality, it follows that
∣∣〈 | · | −2s, Ṙ(u, u)〉

∣∣ ≤ C‖u‖2α

Ḃ
s−( d

2−d
p )

p,2

‖u‖2(1−α)

Ḃ
s−( d

2−d
q )

q,2

.

Together with (2.33), this gives Theorem 2.58. 	


Remark 2.60. Theorem 2.58 fails for p = qc = 2d
d−2s since, if it were true, for

any function u with Fourier transform supported in C, we would have
∫

Rd

|u(x)|2
|x|2s

dx ≤ C‖u‖2
Ḃ0

2qc,2
≤ C‖u‖2

L2qc (Rd). (2.34)

In particular, this inequality would be true whenever u ∈ S(Rd) satisfies

supp û ⊂ B(ξ0, ε) ⊂ C.

As the inequality (2.34) is invariant under oscillation (i.e., under translation
in the Fourier space), we deduce that it is true for any function u ∈ S(Rd)
such that supp û ⊂ B(0, ε). The invariance under dilation implies that it is
true for any function u ∈ S(Rd) such that supp û ⊂ B(0, R) for any R > 0.
By density, we obtain (2.34) for any function u ∈ L2qc(Rd), but this implies
that the singular weight |x| −2s belongs to L

d
2s , which is false.

2.6.2 Action of Smooth Functions

In this subsection we will consider the action of smooth functions on the
space Ḃs

p,r. More precisely, if f is a smooth function vanishing at 0, and u

is a function of Ḃs
p,r, does f ◦ u belong to Ḃs

p,r? The answer is given by the
following theorem.
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Theorem 2.61. Let f be a smooth function on R which vanishes at 0.
Let (s1, s2) be a couple of positive real numbers and (p1, p2, r1, r2) ∈ [1, ∞]2.
Assume that (s1, p1, r1) satisfies the condition (2.17).

For any real-valued function u in Ḃs1
p1,r1

∩ Ḃs2
p2,r2

∩ L∞, the function f ◦ u
belongs to the same space, and we have, for k = 1 and k = 2,

‖f ◦ u‖Ḃ
sk
pk,rk

≤ C(f ′, ‖u‖L∞ )‖u‖Ḃ
sk
pk,rk

.

Proof. As u is bounded, we can assume without loss of generality that f is
compactly supported. The proof then uses the same basic idea as in the proof
of Theorem 2.40: We introduce the telescopic series

∑
j

fj with fj
def= f(Ṡj+1u) − f(Ṡju).

The convergence of the series is ensured by the following lemma.

Lemma 2.62. Under the hypotheses of Theorem 2.61, the series
∑

j∈Z
fj con-

verges to f(u) in S ′, and we have

fj = mjΔ̇ju with mj
def
=
∫ 1

0

f ′(Ṡju + tΔ̇ju) dt. (2.35)

Proof. The identity (2.35) readily follows from the mean value theorem, so
we will concentrate on the proof of the convergence of the series. We observe
that

0∑
j=−N

fj = f(Ṡ1u) − f(Ṡ−Nu).

As u belongs to S ′
h and f(0) = 0, we have that ‖f(Ṡ−Nu)‖L∞ tends to 0

when N tends to infinity. Moreover, for all positive integers M , we have

M∑
j=1

fj = f(ṠMu) − f(Ṡ1u).

By virtue of the mean value theorem, we have

‖f(u) − f(ṠMu)‖Lp2 ≤ ‖u − ṠMu‖Lp2 ‖f ′ ‖L∞ .

Because s2 > 0, the function ṠMu tends to u in Lp2 when M goes to infinity.
Therefore, the series

∑
j∈Z

fj converges to f(u) in L∞ +Lp2 .

Next, we prove that f(u) ∈ S ′
h. It suffices to show that ‖Ṡjf(u)‖L∞ → 0

when j goes to −∞. For that, we use the decomposition

Ṡjf(u) = Ṡj

∑
j′<−N

fj′ + Ṡj

∑
j′ ≥ −N

fj′ .
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Let ε be a positive real number. As the series
∑

j<0 fj converges in L∞, we
can choose an integer Nε such that

∥∥∥Ṡj

∑
j′<−Nε

fj′

∥∥∥
L∞

≤ ε

2
·

As the fj ’s are in Lp1 and
∑

j∈N
fj is convergent in Lp1 , we then have, using

Lemma 2.1, ∥∥∥∥Ṡj

∑
j′ ≥ −Nε

fj′

∥∥∥∥
L∞

≤ Cε2
j d

p1 .

Thus, ‖Ṡjf(u)‖L∞ tends to 0 when j tends to −∞. 	


The terms mj will be handled according to the following lemma.

Lemma 2.63. Let g be a smooth function from R
2 to R. For j ∈ Z, define

mj(g)
def
= g(Ṡju, Δ̇ju).

For any bounded function u, we then have

∀α ∈ N
d , ∀j ∈ Z , ‖∂αmj(g)‖L∞ ≤ Cα(g, ‖u‖L∞ )2j|α|.

Proof. The proof relies on Lemma 2.3, which provides us with the formula

∂αmj(g) =
∑

p1,p2,ν

Cν
p1,p2

( ∏
1≤ |β|≤|α|

(
∂βṠju

)νβ1
(
∂βΔ̇ju

)νβ2

)
∂p1
1 ∂p2

2 g(Ṡju, Δ̇ju),

where the coefficients Cν
p1,p2

are nonnegative integers, and the sum is taken
other those p1, p2, and ν such that 1 ≤ p1 + p2 ≤ |α|,

∑
1≤ |β|≤|α|

νβj = pj for j = 1, 2, and
∑

1≤ |β≤ |α|
β(νβ1 + νβ2) = α.

Note that there exists a constant C such that

max
{

‖Δ̇ju‖L∞ , ‖Ṡju‖L∞
}

≤ C ‖u‖L∞ for all j ∈ Z .

Since g and all its derivatives are bounded on B(0, C ‖u‖L∞ ), Lemma 2.1 and
the above formula thus ensure that

‖∂αmj(g)‖L∞ ≤ Cα(g, ‖u‖L∞ )2j|α|.

This completes the proof of the lemma. 	


In contrast with the situation which was encountered when proving Theo-
rems 2.47 and 2.52, here, the elements fj of the approximating series

∑
fj

are not compactly supported in the Fourier space. This difficulty is overcome
by the following lemma.
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Lemma 2.64. Let s be a positive real number and (p, r) be in [1, ∞]2. A
constant Cs exists such that if (uj)j∈Z is a sequence of smooth functions
where

∑
uj converges to some u in S ′

h and

Ns((uj)j∈Z)
def
=
∥∥∥
(

sup
|α|∈{0,[s]+1}

2j(s− |α|)‖∂αuj ‖Lp

)
j

∥∥∥
�r(Z)

< ∞,

then u is in Ḃs
p,r and ‖u‖Ḃs

p,r
≤ CsNs(u).

Proof. As the series
∑

uj converges to u in S ′, we have

Δ̇ju =
∑
j′ ≤j

Δ̇juj′ +
∑
j′>j

Δ̇juj′ .

Using the fact that ‖Δ̇juj′ ‖Lp ≤ ‖uj′ ‖Lp , we get

2js
∥∥∥∑

j′>j

Δ̇juj′

∥∥∥
Lp

≤ 2js
∑
j′>j

‖uj′ ‖Lp

≤
∑
j′>j

2−(j′ −j)s2j′s‖uj′ ‖Lp . (2.36)

Using Lemma 2.1, we may then write that

‖Δ̇juj′ ‖Lp ≤ C2−j([s]+1) sup
|α|=[s]+1

‖∂αuj′ ‖Lp ,

from which it follows that

2js
∥∥∥∑

j′ ≤j

Δ̇juj′

∥∥∥
Lp

≤
∑
j′ ≤j

2(j′ −j)([s]+1−s) sup
|α|=[s]+1

2j′(s− |α|)‖∂αuj′ ‖Lp .

This inequality, combined with (2.36), implies that

2js‖Δ̇ju‖Lp ≤ (a�b)j with

⎧⎪⎨
⎪⎩

aj
def= 1N(j)2−js + 1N(j)2−j([s]+1−s),

bj
def= 2js‖uj ‖Lp + sup

|α|=[s]+1

2j(s− |α|)‖∂αuj ‖Lp .

This proves the lemma. 	


Given the above three lemmas, it is now easy to prove Theorem 2.61. Note
that, according to Lemma 2.64, it suffices to establish that

Nsk
((fj)j∈Z) < ∞. (2.37)

Now, using Leibniz’s formula, Lemma 2.1, and Lemma 2.63 with the function

g(x, y) =
∫ 1

0

f ′(x + ty) dt,
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we get that

‖∂αfj ‖Lp ≤
∑
β≤α

Cα
β 2j|β|Cβ(f ′, ‖u‖L∞ )2j(|α|−|β|)‖Δ̇ju‖Lp ,

from which it follows that, for s = s1, s2,

‖∂αfj ‖Lp ≤ Cα(f ′, ‖u‖L∞ )2j|α| ‖Δ̇ju‖Lp

≤ cjCα(f ′, ‖u‖L∞ )2−j(s− |α|)‖u‖Bs
p,r

with ‖(cj)‖�r = 1. (2.38)

This completes the proof of the theorem. 	


In the case where f belongs to the space C∞
b (R) of smooth bounded functions

with bounded derivatives of all orders and satisfies f(0) = 0, a slightly more
accurate estimate may be obtained. Indeed, we have, for |αk | ≥ 1 and any j
in Z,

max
(

‖∂αk Ṡju‖L∞ , ‖∂αkΔ̇ju‖L∞
)

≤ C2j|αk | ‖ ∇u‖Ḃ−1
∞,∞

≤ 2j|αk | ‖u‖Ḃ0
∞,∞

.

Arguing as in the proof of Lemma 2.63, we thus get

∀α ∈ N
d , ‖∂αmj ‖L∞ ≤ Cα(f, ‖u‖Ḃ0

∞,∞
)2j|α|. (2.39)

We now state the result we have just proven.

Corollary 2.65. Let f be a function in C∞
b (R) such that f(0) = 0. Let (s1, s2)

be in ]0, ∞[2 and (p1, p2, r1, r2) be in [1, ∞]4. Assume that (s1, p1, r1) satisfies
the condition (2.17).

Then, for any real-valued function u in Ḃs1
p1,r1

∩ Ḃs2
p2,r2

∩ Ḃ0
∞,∞, the func-

tion f ◦ u belongs to Ḃs1
p1,r1

∩ Ḃs2
p2,r2

, and we have

‖f ◦ u‖Ḃ
sk
pk,rk

≤ C(f, ‖u‖Ḃ0
∞,∞

)‖u‖Ḃ
sk
pk,rk

for k ∈ {1, 2}.

Finally, by combining Corollary 2.54 and Theorem 2.61 with the equality

f(v) − f(u) = (v − u)
∫ 1

0

f ′(u + τ(v − u)) dτ,

we readily obtain the following corollary.

Corollary 2.66. Let f be a smooth function such that f ′(0) = 0. Let s be a
positive real number and (p, r) in [1, ∞]2 be such that (s, p, r) satisfies (2.17).
For any couple (u, v) of functions in Ḃs

p,r ∩ L∞, the function f ◦ v − f ◦ u then
belongs to Ḃs

p,r ∩ L∞ and

‖f(v) − f(u)‖Ḃs
p,r

≤ C
(

‖v − u‖Ḃs
p,r

sup
τ ∈[0,1]

‖u+τ(v −u)‖L∞

+ ‖v − u‖L∞ sup
τ ∈[0,1]

‖u + τ(v − u)‖Ḃs
p,r

)
,

where C depends on f ′ ′, ‖u‖L∞ , and ‖v‖L∞ .
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2.6.3 Time-Space Besov Spaces

One of the fundamental ideas in this book is that nonlinear evolution par-
tial differential equations may be treated very efficiently after localization by
means of Littlewood–Paley decomposition. Indeed, it is often easier to bound
each dyadic block in Lρ([0, T ]; Lp) than to estimate directly the solution of
the whole partial differential equation in Lρ([0, T ]; Ḃs

p,r).
As a final step, we must combine the estimates for each block, then per-

form a (weighted) �r summation. In doing so, however, we do not obtain an
estimate in a space of type Lρ([0, T ]; Ḃs

p,r) since the time integration has been
performed before the summation.

This naturally leads to the following definition.

Definition 2.67. For T > 0, s ∈ R, and 1 ≤ r, ρ ≤ ∞, we set

‖u‖L̃ρ
T (Ḃs

p,r)

def
=
∥∥2js‖Δ̇ju‖Lρ

T (Lp)

∥∥
�r(Z)

.

We can then define the space L̃ρ
T (Ḃs

p,r) as the set of tempered distribu-
tions u over (0, T ) × R

d such that lim
j→ − ∞

Ṡju = 0 in Lρ([0, T ]; L∞(Rd)) and

‖u‖L̃ρ
T (Ḃs

p,r) < ∞.

The spaces L̃ρ
T (Ḃs

p,r) may be linked with the more classical spaces

Lρ
T (Ḃs

p,r)
def= Lρ([0, T ]; Ḃs

p,r) via the Minkowski inequality: We have

‖u‖L̃ρ
T (Ḃs

p,r) ≤ ‖u‖Lρ
T (Ḃs

p,r) if r ≥ ρ, ‖u‖L̃ρ
T (Ḃs

p,r) ≥ ‖u‖Lρ
T (Ḃs

p,r) if r ≤ ρ.

The general principle is that all the properties of continuity for the product,
composition, remainder, and paraproduct remain true in those spaces. The
exponent ρ just has to behave according to Hölder’s inequality for the time
variable. For instance, we have the time estimate

‖uv‖L̃ρ
T (Ḃs

p,r) ≤ C
(

‖u‖L
ρ1
T (L∞)‖v‖L̃

ρ2
T (Ḃs

p,r) + ‖v‖L
ρ3
T (L∞)‖u‖L̃

ρ4
T (Ḃs

p,r)

)

whenever s > 0, 1 ≤ p ≤ ∞, 1 ≤ ρ, ρ1, ρ2, ρ3, ρ4 ≤ ∞, and

1
ρ

=
1
ρ1

+
1
ρ2

=
1
ρ3

+
1
ρ4

·

It goes without saying that this approach also works in the nonhomogeneous
Besov spaces Bs

p,r which will be defined in the next section. This leads to
function spaces denoted by L̃ρ

T (Bs
p,r).

2.7 Nonhomogeneous Besov Spaces

This section is devoted to the study of nonhomogeneous Besov spaces. It turns
out that most properties which have been proven thus far for homogeneous
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spaces carry over to the nonhomogeneous framework. The results are basically
the same, and the proofs are often simpler since we do not have to worry about
the low frequencies. Therefore, we shall omit the proofs whenever a similar
statement has been proven in the homogeneous setting.

Definition 2.68. Let s ∈ R and 1 ≤ p, r ≤ ∞. The nonhomogeneous Besov
space Bs

p,r consists of all tempered distributions u such that

‖u‖Bs
p,r

def
=

∥∥∥(2js‖Δju‖Lp)j∈Z

∥∥∥
�r(Z)

< ∞.

Examples.

– Nonhomogeneous Besov spaces contain Sobolev spaces. Indeed, by (2.10)
and the Fourier–Plancherel formula, we find that the Besov space Bs

2,2

coincides with the Sobolev space Hs defined on page 38.
– In the case where s ∈ R

+ \ N, we can show that Bs
∞,∞ coincides with the

Hölder space C [s],s−[s] of bounded functions u whose derivatives of order
|α| ≤ [s] are bounded and satisfy

|∂αu(x) − ∂αu(y)| ≤ C|x − y|s−[s] for |x − y| ≤ 1.

We emphasize, however, that in the case s ∈ N, the space Bs
∞,∞ is strictly

larger than the space Cs (and than Cs−1,1, if s ∈ N
∗).

The first point to look at is the invariance with respect to the choice
of Littlewood–Paley decomposition. This fundamental property is based on
the following lemma, the proof of which is analogous to that of Lemma 2.23.

Lemma 2.69. Let C ′ be an annulus of R
d, s be a real number, and (p, r) ∈

[1, ∞]2. Let (uj)j∈N be a sequence of smooth functions such that

Supp ûj ⊂ 2j C ′ and
∥∥∥(2js‖uj ‖Lp)j∈N

∥∥∥
�r(N)

< ∞.

We then have

u
def
=
∑
j∈N

uj ∈ Bs
p,r and ‖u‖Bs

p,r
≤ Cs

∥∥∥(2js‖uj ‖Lp)j∈N

∥∥∥
�r(N)

.

This immediately implies the following corollary.

Corollary 2.70. The space Bs
p,r does not depend on the choice of the func-

tions χ and ϕ used in Definition 2.68.

The following result is the equivalent of the Sobolev embedding (see Theo-
rem 1.38 page 29) for nonhomogeneous Besov spaces.

Proposition 2.71. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞. Then, for

any real number s, the space Bs
p1,r1

is continuously embedded in B
s−d

(
1

p1
− 1

p2

)
p2,r2 .
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Proof. It suffices to apply Lemma 2.1, which yields

‖S0u‖Lp2 ≤ C‖S0u‖Lp1 and ‖Δju‖Lp2 ≤ C2jd( 1
p1

− 1
p2

)‖Δju‖Lp1 for all j ∈ N .

As �r1(Z) is continuously embedded in �r2(Z), the result is proved. 	


Theorem 2.72. The set Bs
p,r is a Banach space and satisfies the Fatou prop-

erty, namely, if (un)n∈N is a bounded sequence of Bs
p,r, then an element u

of Bs
p,r and a subsequence uψ(n) exist such that

lim
n→∞

uψ(n) = u in S ′ and ‖u‖Bs
p,r

≤ C lim inf
n→∞

‖uψ(n)‖Bs
p,r

.

The following result will help us to prove that the set of test functions is
densely embedded in Besov spaces Bs

p,r with finite r.

Lemma 2.73. If r is finite, then for any u in Bs
p,r, we have

lim
j→∞

‖Sju − u‖Bs
p,r

= 0.

Proof. Let u be in Bs
p,r. Because r is finite, we have

lim
j→∞

∑
j′ ≥j

2j′sr ‖Δj′ u‖r
Lp = 0.

This obviously implies that lim
j→∞

Sju = u in Bs
p,r. 	


We can now state a very useful density result.

Proposition 2.74. If p and r are finite, then D(Rd) is dense in Bs
p,r(R

d).

Proof. Assume that p and r are finite. Let ε be a positive real number. Ac-
cording to Lemma 2.73, there exists an integer N such that

‖u − SNu‖Bs
p,r

< ε/2.

Fix a smooth positive function θ supported in B(0, 2) and with value 1 on the

ball B(0, 1). For R > 0, set θR
def= θ(·/R). Let k = max(0, [s] + 2). Arguing as

in the proof of Proposition 2.27, we deduce that for all j ∈ N, we have

2js‖Δj(θRSNu − SNu)‖Lp ≤ Cs2−j ‖Dk(θRSNu − SNu)‖Lp .

From the above inequality, we get that

‖θRSNu − SNu‖Bs
p,r

≤ Cs

(
‖Dk(θRSNu − SNu)‖Lp + ‖θRSNu − SNu‖Lp

)
.

Because p is finite, combining Leibniz’s formula and Lebesgue’s dominated
convergence theorem ensures that there exists some R > 0 such that

‖θRSNu − SNu‖Bs
p,r

< ε/2.

As SNu is a C∞ function, we have proven that D is dense in Bs
p,r. 	
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Remark 2.75. When r = ∞, it is obvious that the closure of D for the Besov
norm Bs

p,r is the space of tempered distributions such that

lim
j→∞

2js‖Δju‖Lp = 0.

Nonhomogeneous Besov spaces have nice properties of duality: The space B−s
p′,r′

may be identified with the dual space of the completion Bs
p,r of D for the

norm Bs
p,r. In this book, we shall only use the following, much simpler, result,

the proof of which is similar to that of Proposition 2.29.

Proposition 2.76. For all 1 ≤ p, r ≤ ∞ and s ∈ R,
⎧⎨
⎩

Bs
p,r × B−s

p′,r′ −→ R

(u, φ) �−→
∑

|j−j′ |≤1

〈Δju, Δj′ φ〉

defines a continuous bilinear functional on Bs
p,r × B−s

p′,r′ . Denote by Q−s
p′,r′ the

set of functions φ in S such that ‖φ‖B−s
p′ ,r′

≤ 1. If u is in S ′, then we have

‖u‖Bs
p,r

≤ C sup
φ∈Q−s

p′ ,r′

〈u, φ〉.

We will now examine the way Fourier multipliers act on nonhomogeneous
Besov spaces. Before stating our result, we need to define the multipliers we
are going to consider.

Definition 2.77. A smooth function f : R
d → R is said to be an Sm-

multiplier if, for each multi-index α, there exists a constant Cα such that

∀ξ ∈ R
d, |∂αf(ξ)| ≤ Cα(1 + |ξ|)m− |α|.

Proposition 2.78. Let m ∈ R and f be a Sm-multiplier. Then, for all s ∈ R

and 1 ≤ p, r ≤ ∞, the operator f(D) is continuous from Bs
p,r to Bs−m

p,r .

Proof. According to Lemma 2.69 it suffices to prove that

∀j ≥ −1, 2j(s−m) ‖f(D)Δju‖Lp ≤ C2js ‖Δju‖Lp . (2.40)

Obviously, we can find some smooth function σ satisfying the assumptions of
Lemma 2.2 and such that

∀j ≥ 0 , Δjf(D)u = σ(D)Δju.

Hence, Lemma 2.2 guarantees that (2.40) is satisfied for j ≥ 0.
Next, introducing θ in D(Rd) such that θ ≡ 1 on Supp χ, we see that

Δ−1f(D)u = (θf)(D)Δ−1u.

As F −1(θf) is in L1, convolution inequalities yield (2.40) for j = −1. This
completes the proof. 	
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Proposition 2.79. Let s < 0, 1 ≤ p, r ≤ ∞, and u be a tempered distribution.
Then, u belongs to Bs

p,r if and only if

(2js‖Sju‖Lp)j∈N ∈ �r.

Moreover, a constant C exists such that

C− |s|+1‖u‖Bs
p,r

≤
∥∥∥(2js‖Sju‖Lp)j

∥∥∥
�r

≤ C
(
1 +

1
|s|

)
‖u‖Bs

p,r
.

The proof is very close to that proof of Proposition 2.33 and is thus omitted.

We conclude this section with the statement of interpolation inequalities.

Theorem 2.80. A constant C exists which satisfies the following properties.
If s1 and s2 are real numbers such that s1 < s2, θ ∈ ]0, 1[, and (p, r) is
in [1, ∞], then we have

‖u‖
B

θs1+(1−θ)s2
p,r

≤ ‖u‖θ
B

s1
p,r

‖u‖1−θ
B

s2
p,r

and

‖u‖
B

θs1+(1−θ)s2
p,1

≤ C

s2 − s1

(1
θ

+
1

1 − θ

)
‖u‖θ

B
s1
p,∞

‖u‖1−θ
B

s2
p,∞

.

2.8 Nonhomogeneous Paradifferential Calculus

In this section, we are going to study the way the product acts on nonhomo-
geneous Besov spaces. Our approach will follow the one that we used in the
homogeneous framework and most proofs will be omitted. Of course, we shall
now use the nonhomogeneous Littlewood–Paley decomposition constructed in
Section 2.2.

2.8.1 The Bony Decomposition

The basic idea of nonhomogeneous paradifferential calculus is the same as in
Section 2.6: Considering two tempered distributions u and v, we have

uv =
∑
j′,j

Δj′ u Δjv.

We then split the sum into three parts: The first corresponds to the low
frequencies of u multiplied by the high frequencies of v, the second is the
symmetric counterpart of the first, and the third part concerns the indices j
and j′ which are comparable. This leads to the following definition.

Definition 2.81. The nonhomogeneous paraproduct of v by u is defined by

Tuv
def
=
∑

j

Sj−1u Δjv.



2.8 Nonhomogeneous Paradifferential Calculus 103

The nonhomogeneous remainder of u and v is defined by

R(u, v) =
∑

|k−j|≤1

Δku Δjv.

At least formally, the operators T and R are bilinear, and we have the following
Bony decomposition:

uv = Tuv + Tvu + R(u, v). (2.41)

We shall sometimes also use the following simplified decomposition:

uv = Tuv + T ′
vu with T ′

vu
def=
∑

j

Sj+2v Δju. (2.42)

The main continuity properties of the paraproduct are described below.

Theorem 2.82. A constant C exists which satisfies the following inequali-
ties for any couple of real numbers (s, t) with t negative and any (p, r1, r2)
in [1, ∞]3:

‖T ‖ L(L∞ ×Bs
p,r;Bs

p,r) ≤ C |s|+1,

‖T ‖ L(Bt
∞,r1

×Bs
p,r2

;Bs+t
p,r ) ≤ C |s+t|+1

−t
with

1
r

def
= min

{
1,

1
r1

+
1
r2

}
·

The proof of this theorem is analogous to that of Theorem 2.47 and is thus
omitted.

Remark 2.83. In fact, due to Sju = 0 for j < 0 and the property (2.7), we
have

Tuv =
∑
j≥1

Sj−1u Δj

(
(Id −χ(D))v

)
.

Lemma 2.1 thus provides a slightly more accurate estimate: Under the as-
sumptions of the above theorem, we have, for all k ∈ N,

‖Tuv‖Bs
p,r

≤ C‖u‖L∞ ‖Dkv‖Bs−k
p,r

and ‖Tuv‖Bs+t
p,r

≤ C‖u‖Bt
∞,r1

‖Dkv‖Bs−k
p,r2

.

Next, we want to study the continuity properties of the remainder operator R.
As in the homogeneous case, we have to consider terms of the type ΔjuΔjv
whose Fourier transforms are not supported in annuli but in balls 2jB. We
thus need the following nonhomogeneous version of Lemma 2.49.

Lemma 2.84. Let B be a ball in R
d, s be a positive real number, and (p, r) ∈

[1, ∞]2. Let (uj)j∈N be a sequence of smooth functions such that

Supp ûj ⊂ 2jB and
∥∥∥(2js‖uj ‖Lp)j∈N

∥∥∥
�r

< ∞.

We then have

u
def
=
∑
j∈N

uj ∈ Bs
p,r and ‖u‖Bs

p,r
≤ Cs

∥∥∥(2js‖uj ‖Lp)j∈N

∥∥∥
�r

.
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Theorem 2.85. A constant C exists which satisfies the following inequalities.
Let (s1, s2) be in R

2 and (p1, p2, r1, r2) be in [1, ∞]4. Assume that

1
p

def
=

1
p1

+
1
p2

≤ 1 and
1
r

def
=

1
r1

+
1
r2

≤ 1.

If s1 + s2 > 0, then we have, for any (u, v) in Bs1
p1,r1

× Bs2
p2,r2

,

‖R(u, v)‖
B

s1+s2
p,r

≤ C |s1+s2|+1

s1 + s2
‖u‖B

s1
p1,r1

‖v‖B
s2
p2,r2

.

If r = 1 and s1 + s2 = 0, then we have, for any (u, v) in Bs1
p1,r1

× Bs2
p2,r2

,

‖R(u, v)‖B0
p,∞

≤ C |s1+s2|+1‖u‖B
s1
p1,r1

‖v‖B
s2
p2,r2

.

From this theorem, we infer the following tame estimate.

Corollary 2.86. For any positive real number s and any (p, r) in [1, ∞]2, the
space L∞ ∩ Bs

p,r is an algebra, and a constant C exists such that

‖uv‖Bs
p,r

≤ Cs+1

s

(
‖u‖L∞ ‖v‖Bs

p,r
+ ‖u‖Bs

p,r
‖v‖L∞

)
.

The proof simply involves the systematic use of Bony’s decomposition (2.41)
combined with Theorems 2.82 and 2.85.

2.8.2 The Paralinearization Theorem

In this subsection we investigate the effect of left composition by smooth
functions on Besov spaces Bs

p,r. We state an initial result.

Theorem 2.87. Let f be a smooth function vanishing at 0, s be a positive
real number, and (p, r) ∈ [1, ∞]2. If u belongs to Bs

p,r ∩ L∞, then so does f ◦ u,
and we have

‖f ◦ u‖Bs
p,r

≤ C(s, f ′, ‖u‖L∞ )‖u‖Bs
p,r

.

This theorem can be proven along the same lines as the proof of Theorem 2.61.
We note that it is based on the following lemma, the proof of which is left to
the reader.

Lemma 2.88. Let s be a positive real number and (p, r) be in [1, ∞]2. A
constant Cs exists such that if (uj)j∈N is a sequence of smooth functions which
satisfies (

sup
|α|≤[s]+1

2j(s− |α|)‖∂αuj ‖Lp

)
j

∈ �r(N),

then we have

u
def
=
∑
j∈N

uj ∈ Bs
p,r and ‖u‖Bs

p,r
≤ Cs

∥∥∥
(

sup
|α|≤[s]+1

2j(s− |α|)‖∂αuj ‖Lp

)
j

∥∥∥
�r

.



2.8 Nonhomogeneous Paradifferential Calculus 105

In the case where the function f belongs to C∞
b (R), Theorem 2.87 may be

slightly improved.

Theorem 2.89. Let f be in C∞
b (R) and satisfy f(0) = 0. Let s be positive

and (p, r) be in [1, ∞]2. If u belongs to Bs
p,r and the first derivatives of u belong

to B−1
∞,∞, then f ◦ u belongs to Bs

p,r, and we have

‖f ◦ u‖Bs
p,r

≤ C(s, f, ‖ ∇u‖B−1
∞,∞

)‖u‖Bs
p,r

.

Remark 2.90. If u belongs to the space B
d
p
p,r, then the first order derivative

of u belongs to B−1
∞,∞. Thus, the space B

d
p
p,r is stable under left composition

by functions of C∞
b vanishing at 0. This result applies in particular to the

Sobolev space H
d
2 = B

d
2
2,2.

Finally, we state the nonhomogeneous counterpart of Corollary 2.66.

Corollary 2.91. Let f be a smooth function such that f ′(0) = 0. Let s > 0
and (p, r) ∈ [1, ∞]2. For any couple (u, v) of functions in Bs

p,r ∩ L∞, the
function f ◦ v − f ◦ u then belongs to Bs

p,r ∩ L∞ and

‖f(v) − f(u)‖Bs
p,r

≤ C
(

‖v − u‖Bs
p,r

sup
τ ∈[0,1]

‖u+τ(v −u)‖L∞

+ ‖v − u‖L∞ sup
τ ∈[0,1]

‖u + τ(v − u)‖Bs
p,r

)
,

where C depends on f ′ ′, ‖u‖L∞ , and ‖v‖L∞ .

When the function u has enough regularity, we can obtain more information
on f ◦ u. In the following theorem, we state that, up to an error term which
proves to be more regular than u, f ◦ u may be written as a paraproduct
involving u and f ′ ◦ u.

Theorem 2.92. Let s and ρ be positive real numbers and f be a smooth func-
tion. Assume that ρ is not an integer. Let p, r1, and r2 be in [1, ∞] and such
that r2 ≥ r1. Let r ∈ [1, ∞] be defined by 1/r = min

(
1, 1/r1 + 1/r2

)
. For any

function u in Bs
p,r1

∩ Bρ
∞,r2

, we then have

‖f ◦ u − Tf ′ ◦uu‖Bs+ρ
p,r

≤ C(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

‖u‖Bs
p,r1

.

Proof. To prove this theorem, we again write that

f(u) =
∑

j

fj with fj
def= f(Sj+1u) − f(Sju).

According to the second order Taylor formula, we have

fj = f ′(Sju)Δju + Mj(Δju)2 with Mj
def=
∫ 1

0

(1 − t)f ′ ′(Sju + tΔju) dt.
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Applying Lemma 2.63 with g(x, y) =
∫ 1

0

(1 − t)f ′ ′(x + ty) dt gives

∀α ∈ N
d , ‖∂αMj ‖L∞ ≤ Cα(f ′ ′, ‖u‖L∞ )2j|α|. (2.43)

Using Leibniz’s formula, we can write

∂α(Mj(Δju)2) =
∑

γ≤β≤α

Cβ
αCγ

β∂α−βMj ∂β−γΔju ∂γΔju.

Using Lemma 2.1 and the inequality (2.43), we get

‖∂α−βMj ∂β−γΔju ∂γΔju‖Lp ≤ Cα(f ′ ′, ‖u‖L∞ )2j|α| ‖Δju‖L∞ ‖Δju‖Lp .

Thus, according to the definition of Besov spaces, we have, for some sequence
(cj,α)j≥ −1 satisfying ‖(cj)‖�r = 1,

2j(s+ρ−|α|)‖∂α
(
Mj(Δju)2

)
‖Lp ≤ Cα(f ′ ′, ‖u‖L∞ )cj,α‖u‖Bρ

∞,r2
‖u‖Bs

p,r1
. (2.44)

We now focus on the term f ′(Sju)Δju. Clearly, it is not the desired para-
product involving u. Therefore, we consider

μj
def= f ′(Sju) − Sj−1(f ′ ◦ u).

Obviously, we have

fj = Sj−1(f ′ ◦ u)Δju + μjΔju + Mj(Δju)2.

We temporarily assume that

2j(ρ− |α|)‖∂αμj ‖L∞ ≤ cj,αCα(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

with ‖(cj,α)‖�r2 = 1. (2.45)

Using (2.44), we then have, for some sequence (cj,α)j≥ −1 belonging to the
unit ball of �r,

2j(s+ρ−|α|)‖∂α(fj − Sj−1(f ′ ◦u)Δju)‖L∞ ≤ Cα(f ′ ′, ‖u‖L∞ )cj,α‖u‖Bρ
∞,r2

‖u‖Bs
p,r1

.

Applying Lemma 2.88 then yields the desired result.
In order to complete the proof of the theorem, we have to justify the

inequality (2.45). First, we investigate the case where |α| < ρ. We have

μj = μ
(1)
j + μ

(2)
j with

⎧⎨
⎩

μ
(1)
j

def= f ′(Sju) − f ′(u),

μ
(2)
j

def= f ′(u) − Sj−1(f ′(u)).

Using the fact that (Sju)j∈N converges to u in L∞, we get

f ′(u) − f ′(Sju) =
∑
j′ ≥j

f̃j′ with f̃j′
def= f ′(Sj′+1u) − f ′(Sj′ u). (2.46)
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Applying (2.38) yields, for some sequence (cj,α)j≥ −1 with ‖(cj,α)‖�r2 = 1,

2j′(ρ− |α|)‖∂αf̃j′ ‖L∞ ≤ cj′,αCα(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

. (2.47)

By summation, we then infer that, when |α| < ρ,

2j(ρ− |α|)‖∂α(μ(1)
j )‖L∞ ≤ cj,αCα(f ′ ′, ‖u‖L∞ )‖u‖Bρ

∞,r2
with ‖(cj,α)‖�r2 = 1.

Next, thanks to Theorem 2.87, we have

∂αf ′(u) ∈ Bρ− |α|
∞,r2

and ‖∂αf ′(u)‖
B

ρ− |α|
∞,r2

≤ Cα(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

.

Thus, we can write that

2j(ρ−|α|)‖∂αμ
(2)
j ‖L∞ ≤ 2j(ρ−|α|)

∑
j′ ≥j−1

‖Δj′ ∂αf ′(u)‖L∞

≤ Cα(f, ‖u‖L∞ )‖u‖Bρ
∞,r2

∑
j′ ≥j−1

cj′,α2(j−j′()ρ− |α|)

≤ cj,αCα(f, ‖u‖L∞ )‖u‖Bρ
∞,r2

with ‖(cj,α)‖�r2 = 1.

This completes the proof of (2.45) when |α| < ρ.

The case when |α| > ρ is treated differently.3 As ∂αf ′(u) belongs to B
ρ− |α|

∞,r2 ,
we have, using Proposition 2.79 and Theorem 2.87,

2j(ρ− |α|)‖∂αSj−1f
′(u)‖L∞ ≤ cj,αCα(f ′ ′, ‖u‖L∞ )‖u‖Bρ

∞,r2
with ‖(cj,α)‖�r2 = 1.

We now estimate ∂αf ′(Sju). Again using the fact that (Sju)j converges to u
in L∞, we can write that

f ′(Sj(u)) =
∑

j′ ≤j−1

f̃j′ with f̃j′
def= f ′(Sj′+1u) − f ′(Sj′ u).

Using (2.47), we then get

2j(ρ− |α|)‖∂αf ′(Sju)‖L∞ ≤ 2j(ρ− |α|)
∑

j′ ≤j−1

‖∂αf̃j′ ‖L∞

≤ Cα(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

∑
j′ ≤j−1

cj′,α2(j−j′)(ρ− |α|)

≤ Cα(f ′ ′, ‖u‖L∞ )‖u‖Bρ
∞,r2

cj,α with ‖(cj,α)‖�r2 = 1.

The inequality (2.45), and thus Theorem 2.92, is proved. 	

3 Recall that ρ is not an integer, so |α| �= ρ.
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2.9 Besov Spaces and Compact Embeddings

This section is devoted to the statement of (locally) compact embeddings for
Besov spaces, properties which prove to be of importance for solving certain
partial differential equations in the following chapters.

The following statement is an extension of Proposition 1.55 to general
Besov spaces.

Proposition 2.93. Let K be a compact subset of R
d . Denote by Bs

p,r(K)
[resp., Ḃs

p,r(K)] the set of distributions u in Bs
p,r (resp., Ḃs

p,r), the support
of which is included in K. If s > 0, then the spaces Bs

p,r(K) and Ḃs
p,r(K)

coincide. Moreover, a constant C exists such that for any u in Ḃs
p,r(K),

‖u‖Bs
p,r

≤ C
(
1 + |K|

) s
d ‖u‖Ḃs

p,r
.

Proof. For any j in Z, we write u = Ṡju + (Id −Ṡj)u. As u belongs to Ḃs
p,r,

the function Ṡju belongs to L∞, and (Id −Ṡj)u belongs to Lp. This implies
that Ḃs

p,r is included in Lp
loc and thus that Ḃs

p,r(K) is included in Lp. In order
to prove the inequality, we write, for any u in Ḃs

p,r(K) and j ∈ Z,

‖u‖Lp(K) ≤ ‖Ṡju‖Lp(K) + ‖(Id −Ṡju)‖Lp

≤ |K|
1
p ‖Ṡju‖L∞ + C2−js‖u‖Ḃs

p,r
.

Using Bernstein’s inequalities and, again, the fact that Supp u ⊂ K, we get

‖u‖Lp ≤ C|K|
1
p 2jd‖u‖L1 + C2−js‖u‖Ḃs

p,r

≤ C|K|2jd‖u‖Lp + C2−js‖u‖Ḃs
p,r

.

If j is chosen in Z such that 1/4 ≤ |K|2jd ≤ 1/2, then the first term of the
right-hand side may be absorbed by the left-hand side, and we can infer that

‖u‖Lp ≤ C|K| s
d ‖u‖Ḃs

p,r
.

Because s is positive, we have Bs
p,r = Ḃs

p,r ∩ Lp. This completes the proof of
the proposition. 	


Theorem 2.94. If s′ < s, then for all φ in S(Rd), multiplication by φ is a
compact operator from Bs

p,∞ to Bs′

p,1.

Proof. Let (un)n∈N be a bounded sequence of Bs
p,∞. Thanks to Theorem 2.72,

a subsequence (uψ(n))n∈N and a function u exist in Bs
p,∞ such that (uψ(n))n∈N

converges to u in S ′. Thus, we are reduced to proving that if (un)n∈N is a
bounded sequence of Bs

p,∞ which tends to 0 in S ′, then ‖φun‖Bs′
p,1

tends to 0.
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By virtue of product laws in nonhomogeneous Besov spaces (see Theo-
rems 2.82 and 2.85), the sequence (φun)n∈N is bounded in Bs

p,∞. We then
write

‖φun‖Bs′
p,1

=
∑

j

2js′
‖Δj(φun)‖Lp

≤
∑
j≤j0

2js′
‖Δj(φun)‖Lp +

∑
j>j0

2−j(s−s′)2js‖Δj(φun)‖Lp

≤
∑
j≤j0

2js′
‖Δj(φun)‖Lp + Cs,s′ 2−j0(s−s′) sup

n
‖φun‖Bs

p,∞ .

A positive ε being given, we choose j0 such that

Cs,s′ 2−j0(s−s′) sup
n

‖φun‖Bs
p,∞ ≤ ε/2.

We then simply have to prove that

lim
n→∞

‖Δj(φun)‖Lp = 0 for all j ≥ −1. (2.48)

Actually, it suffices to consider the case where p = 1. Indeed, first, since φ is
in (say) B

|s|+1
p′,∞ and (un)n∈N is bounded in Bs

p,∞, it is not difficult to check
that (φun)n∈N is bounded in Bs

1,∞ (use Theorems 2.82 and 2.85). Second,
Bernstein’s lemma guarantees that

‖Δj(φun)‖Lp ≤ C2jd/p′
‖Δj(φun)‖L1 .

We therefore assume from now on that p = 1. We only treat the case where
j ∈ N, the case j = −1 being similar. By the definition of Δj , we then have

Δj(φun)(x) = 2jd

∫
Rd

h(2j(x − y))φ(y)un(y) dy

= 2jd〈un, τ−xȟ(2j ·)φ〉.

As un tends to 0 in S ′, the above equation ensures that the function Δj(φun)
tends to 0 pointwise. Moreover, according to Proposition 2.76,

∣∣Δj(φun)(x)
∣∣ ≤ C2jd

(
sup

n
‖un‖Bs

1,∞

)
‖τ−xȟ(2j ·)φ‖B−s

∞,1
.

Hence, thanks to Lebesgue’s dominated convergence theorem, proving (2.48)
reduces to the following lemma.

Lemma 2.95. For any (f, g) in S 2 and any (σ, p, r) in R ×[1, ∞]2, the map

z �−→ ‖(τzf)g‖Bσ
p,r

belongs to L1(Rd).
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Proof. Observe that for j ≥ 0, by using a rescaled version of the rela-
tion (2.1.1) and Leibniz’s formula, we get, for any positive integer N and
some functions hα in S(Rd),

Δj(τzf g) = 2−jN
∑

|α|=N
β≤α

2jdhα(2j ·) �
(
∂α−βτzf ∂βg

)
.

Thus, using Bernstein’s inequalities, we infer that

‖Δj(τzf g)‖Lp ≤ CN2−j(N − d
p′ ) sup

|α+β|≤N

‖∂ατzf ∂βg‖L1

≤ CN2−j(N − d
p′ )(fN � gN )(z)

with fN (x) def= sup
|α|≤N

|∂αf(x)| and gN (x) def= sup|α|≤N |∂αg(x)|. Choosing N

greater than d + σ + 1, we infer that

‖τzf g‖Bσ
p,r

≤ C(fN � gN )(z).

Observing that the convolution maps L1 × L1 into L1 completes the proof of
the lemma. 	


Theorem 2.94 immediately implies the following corollary.

Corollary 2.96. For any (s′, s) in R
2 such that s′ < s and any compact set K

of R
d, the space Bs

p,∞(K) is compactly embedded in Bs′

p,1(K).

2.10 Commutator Estimates

This section is devoted to various commutator estimates which will be used
in the next chapters. The following basic lemma will be of constant use in this
section.

Lemma 2.97. Let θ be a C1 function on R
d such that (1 + | · |)θ̂ ∈ L1. There

exists a constant C such that for any Lipschitz function a with gradient in Lp

and any function b in Lq, we have, for any positive λ,

‖[θ(λ−1D), a]b‖Lr ≤ Cλ−1‖ ∇a‖Lp ‖b‖Lq with
1
p

+
1
q

=
1
r

·

Proof. In order to prove this lemma, it suffices to rewrite θ(λ−1D) as a con-
volution operator. Indeed,
(
[θ(λ−1D), a]b

)
(x) = θ(λ−1D)(ab)(x) − a(x)θ(λ−1D)b(x)

= λd

∫
Rd

k(λ(x−y))(a(y)−a(x))b(y) dy with k = F −1θ.
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Let k1(z) def= |z| |k(z)|. From the first order Taylor formula, we deduce that

∣∣([θ(λ−1D), a]b
)
(x)
∣∣ ≤ λ−1

∫
[0,1]×Rd

λd|k1(λz)| ∇a(x − τz)| |b(x − z)| dz dτ.

Now, taking the Lr norm of the above inequality, using the fact that the
norm of an integral is less than the integral of the norm, and using Hölder’s
inequality, we get

∥∥[θ(λ−1D), a]b
∥∥

Lr ≤ λ−1

∫ 1

0

∫
Rd

λdk1(λz)‖ ∇a(· − τz)‖Lp ‖b(· − z)‖Lq dτ dz.

The translation invariance of the Lebesgue measure then ensures that
∥∥[θ(λ−1D), a]b

∥∥
Lr ≤ λ−1‖k1‖L1 ‖∇a‖Lp ‖b‖Lq,

which is the desired result. 	


Remark 2.98. If we take θ = ϕ and λ = 2j , then this lemma can be interpreted
as a gain of one derivative by commutation between the operator Δj and the
multiplication by a function with gradient in Lp.

Lemma 2.99. Let f be a smooth function on R
d . Assume that f is homo-

geneous of degree m away from a neighborhood of 0. Let ρ be in ]0, 1[, s be
in R, and (p, r) be in [1, ∞]2. There exists a constant C, depending only on s,
ρ, and d, such that if (p1, p2) ∈ [1, ∞]2 satisfies 1/p = 1/p1 + 1/p2, then the
following estimate holds true:

‖[Ta, f(D)]u‖Bs−m+ρ
p,r

≤ C‖ ∇a‖Bρ−1
p1,∞

‖u‖Bs
p2,r

. (2.49)

In the limit case ρ = 1, we have

‖[Ta, f(D)]u‖Bs−m+1
p,r

≤ C‖ ∇a‖Lp1 ‖u‖Bs
p2,r

. (2.50)

Proof. We only treat the case ρ < 1. The limit case ρ = 1 stems from similar
arguments. Let ϕ̃ be a smooth function supported in an annulus and with
value 1 on a neighborhood of Supp ϕ + Supp χ(·/4). We have

[Ta, f(D)]u =
∑

j≥1 Sj−1a f(D)Δju − f(D)
(
Sj−1aΔju

)

=
∑

j≥1[Sj−1a, f(D)Δ̃j ]Δju with Δ̃j
def= ϕ̃(2−jD).

Note that the general term of the above series is spectrally supported in dyadic
annuli. Hence, according to Lemma 2.69, it suffices to prove that

∥∥∥2j(s−m+ρ)‖[Sj−1a, f(D)Δ̃j ]Δju‖Lp

∥∥∥
�r

≤ C‖∇a‖Bρ−1
p1,∞

‖u‖Bs
p2,r

. (2.51)

Owing to the homogeneity of the function f away from 0, there exists an
integer N0 such that
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∀j ≥ N0 , f(D)Δ̃j = 2jm(fϕ̃)(2−jD).

Taking advantage of Lemma 2.97, we thus infer that for any j ≥ N0,

‖[Sj−1a, f(D)Δ̃j ]Δju‖Lp ≤ C2j(m−1)‖Sj−1a‖Lp1 ‖Δju‖Lp2 .

Of course, if 1 ≤ j < N0, we can still write, according to Lemma 2.97,

‖[Sj−1a, f(D)Δ̃j ]Δju‖Lp ≤ C2−j ‖ ∇Sj−1a‖Lp1 ‖Δju‖Lp2

≤ C2N0|m|2j(m−1)‖∇Sj−1a‖Lp1 ‖Δju‖Lp2 .

Because ‖∇Sj−1a‖Lp1 ≤ C2j(1−ρ)‖ ∇a‖Bρ−1
p1,∞

if ρ < 1, we can now conclude
that (2.51) is satisfied, completing the proof. 	


The following corollary will be important in the next chapter.

Lemma 2.100. Let σ ∈ R, 1 ≤ r ≤ ∞, and 1 ≤ p ≤ p1 ≤ ∞. Let v be a
vector field over R

d . Assume that

σ > −dmin
{ 1

p1

, 1
p′

}
or σ > −1 − d min

{ 1
p1

, 1
p′

}
if div v = 0. (2.52)

Define Rj
def
= [v · ∇, Δj ]f (or Rj

def
= div([v, Δj ]f), if div v = 0). There exists

a constant C, depending continuously on p, p1, σ, and d, such that
∥∥∥
(
2jσ ‖Rj ‖Lp

)
j

∥∥∥
�r

≤ C‖ ∇v‖
B

d
p
p1,∞ ∩L∞

‖f ‖Bσ
p,r

if σ < 1 + d
p1

. (2.53)

Further, if σ > 0 (or σ > −1, if div v = 0) and 1
p2

= 1
p − 1

p1
, then

∥∥∥
(
2jσ ‖Rj ‖Lp

)
j

‖�r ≤ C
(

‖ ∇v‖L∞ ‖f ‖Bσ
p,r

+ ‖∇f ‖Lp2 ‖∇v‖Bσ−1
p1,r

)
. (2.54)

In the limit case σ = − min
(

d
p1

, d
p′

)
[or σ = −1 − min

(
d
p1

, d
p′

)
, if div v = 0],

we have
sup

j≥ −1
2jσ ‖Rj ‖Lp ≤ C‖ ∇v‖

B
d

p1
p1,1

‖f ‖Bσ
p,∞ . (2.55)

Proof. In order to show that only the gradient part of v is involved in the es-
timates, we shall split v into low and high frequencies: v = S0v+ ṽ. Obviously,
there exists a constant C such that

∀a ∈ [1, ∞], ‖S0∇v‖La ≤ C ‖ ∇v‖La and ‖∇ṽ‖La ≤ C ‖∇v‖La . (2.56)

Further, as ṽ is spectrally supported away from the origin, Lemma 2.1 ensures
that

∀a ∈ [1, ∞], ∀j ≥ −1, ‖Δj ∇ṽ‖La ≈ 2j ‖Δj ṽ‖La . (2.57)

We now have (with the summation convention over repeated indices):
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Rj = v · ∇Δjf − Δj(v · ∇f)

= [ṽk, Δj ]∂kf + [S0v
k, Δj ]∂kf.

Hence, writing Bony’s decomposition for [ṽk, Δj ]∂kf, we end up with Rj =∑8
i=1 Ri

j , where

R1
j = [Tṽk , Δj ]∂kf, R2

j = T∂kΔjf ṽk,

R3
j = −ΔjT∂kf ṽk, R4

j = ∂kR(ṽk, Δjf),

R5
j = −R(div ṽ, Δjf), R6

j = −∂kΔjR(ṽk, f),

R7
j = ΔjR(div ṽ, f), R8

j = [S0v
k, Δj ]∂kf.

In the following computations, the constant C depends continuously on σ, p,
p1, and d, and we denote by (cj)j≥ −1 a sequence such that ‖(cj)‖�r ≤ 1.

Bounds for 2jσ
∥∥R1

j

∥∥
Lp . By virtue of Proposition 2.10, we have

R1
j =

∑
|j−j′ |≤4

[Sj′ −1ṽ
k, Δj ]∂kΔj′ f.

Hence, according to Lemma 2.97 and the inequality (2.56),

2jσ
∥∥R1

j

∥∥
Lp ≤ C ‖ ∇v‖L∞

∑
|j′ −j|≤4

2j′σ ‖Δj′ f ‖Lp

≤ Ccj ‖ ∇v‖L∞ ‖f ‖Bσ
p,r

. (2.58)

Bounds for 2jσ
∥∥R2

j

∥∥
Lp . By virtue of Proposition 2.10, we have

R2
j =

∑
j′ ≥j−3

Sj′ −1∂kΔjf Δj′ ṽk.

Hence, using inequalities (2.56) and (2.57) yields

2jσ
∥∥R2

j

∥∥
Lp ≤ Ccj ‖∇v‖L∞ ‖f ‖Bσ

p,r
. (2.59)

Bounds for 2jσ
∥∥R3

j

∥∥
Lp . We proceed as follows:

R3
j = −

∑
|j′ −j|≤4

Δj

(
Sj′ −1∂kfΔj′ ṽk

)
(2.60)

= −
∑

|j′ −j|≤4
j′ ′ ≤j′ −2

Δj

(
Δj′ ′ ∂kfΔj′ ṽk

)
. (2.61)

Therefore, writing 1/p2 = 1/p − 1/p1 and using (2.56) and (2.57), we have
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2jσ
∥∥R3

j

∥∥
Lp ≤ C

∑
|j′ −j|≤4
j′ ′ ≤j′ −2

2jσ ‖Δj′ ′ ∂kf ‖Lp2

∥∥Δj′ ṽk
∥∥

Lp1

≤ C
∑

|j′ −j|≤4
j′ ′ ≤j′ −2

2(j−j′ ′)(σ−1− d
p1

)2j′ ′σ ‖Δj′ ′ f ‖Lp 2j′ d
p1 ‖Δj′ ∇v‖Lp1 .

Hence, if σ < 1 + d/p1, then

2jσ
∥∥R3

j

∥∥
Lp ≤ Ccj ‖ ∇v‖

B
d

p1
p1,∞

‖f ‖Bσ
p,r

. (2.62)

Note that, starting from (2.60), we can alternatively get

2jσ
∥∥R3

j

∥∥
Lp ≤ C

∑
|j′ −j|≤4

‖ ∇Sj′ −1f ‖Lp2 2j′(σ−1) ‖Δj′ ∇v‖Lp1 ,

from which it follows that

2jσ
∥∥R3

j

∥∥
Lp ≤ Ccj ‖ ∇f ‖Lp2 ‖∇v‖Bσ−1

p1,r
. (2.63)

Bounds for 2jσ
∥∥R4

j

∥∥
Lp and 2jσ

∥∥R5
j

∥∥
Lp . Defining Δ̃j′

def= Δj′ −1+Δj′ +Δj′+1,

we have
R4

j =
∑

|j′ −j|≤2

∂k(Δj′ ṽk ΔjΔ̃j′ f).

Hence, by virtue of (2.57), we get

2jσ
∥∥R4

j

∥∥
Lp ≤ Ccj ‖ ∇v‖L∞ ‖f ‖Bσ

p,r
. (2.64)

A similar bound holds for R5
j .

Bounds for 2jσ
∥∥R6

j

∥∥
Lp and 2jσ

∥∥R7
j

∥∥
Lp . We first consider the case where

1/p + 1/p1 ≤ 1. Let p3 satisfy 1/p3
def= 1/p + 1/p1. Then, under the condition

σ > −1 − d/p1, Proposition 2.85, combined with the embedding B
σ+ d

p1
p3,r ↪→

Bσ
p,r, yields

2jσ
∥∥R6

j

∥∥
Lp ≤ Ccj ‖ṽ‖

B
d

p1
+1

p1,∞

‖f ‖Bσ
p,r

. (2.65)

Now, if 1/p + 1/p1 > 1, then the above argument has to be applied with p′

instead of p2, and we still get (2.65), provided that σ > −1 − d
p′ . Appealing

to (2.56), we eventually get

2jσ
∥∥R6

j

∥∥
Lp ≤ Ccj ‖ ∇v‖

B
d

p1
p1,∞

‖f ‖Bσ
p,r

. (2.66)

Note that in the limit case σ = −1 − min( d
p1

, d
p′ ), Proposition 2.85 yields

sup
j

2jσ
∥∥R6

j

∥∥
Lp ≤ C‖ ∇v‖

B
d

p1
p1,1

‖f ‖Bσ
p,∞ . (2.67)
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Similar arguments lead to

2jσ
∥∥R7

j

∥∥
Lp ≤ Ccj ‖ ∇v‖

B
d

p1
p1,∞

‖f ‖Bσ
p,r

, if σ > − min( d
p1

, d
p′ ), (2.68)

2jσ
∥∥R7

j

∥∥
Lp ≤ C‖ ∇v‖

B
d

p1
p1,1

‖f ‖Bσ
p,∞ , if σ = − min( d

p1
, d

p′ ) and r = ∞. (2.69)

Finally, we stress that if σ > −1, then the standard continuity results for the
remainder, combined with the embedding L∞ ↪→ B0

∞,∞, yield

2jσ
∥∥R6

j

∥∥
Lp ≤ Ccj ‖ ∇v‖L∞ ‖f ‖Bσ

p,r
. (2.70)

Of course, the same inequality holds true for R7
j if σ > 0.

Bounds for 2jσ
∥∥R8

j

∥∥
Lp . As R8

j =
∑

|j′ −j|≤1[Δj , Δ−1v] · ∇Δj′ f, Lemma 2.97
yields

2jσ
∥∥R8

j

∥∥
Lp ≤ C

∑
|j′ −j|≤1

‖ ∇Δ−1v‖L∞ 2j′σ ‖Δj′ f ‖Lp

≤ Ccj ‖ ∇v‖L∞ ‖f ‖Bσ
p,r

. (2.71)

Combining inequalities (2.58), (2.59), (2.62) or (2.63), (2.64), (2.66) or (2.67),
(2.68), (2.69) or (2.70), and (2.71) yields (2.53), (2.54), and (2.55). 	


Remark 2.101. Assume that σ > 1 + d
p1

, or σ = 1 + d
p1

and r = 1. We note
that Bσ−1

p,r ↪→ Lp2 , so the inequality (2.54) ensures that
∥∥2jσ ‖Rj ‖Lp

∥∥
�r ≤ C‖ ∇v‖Bσ−1

p1,r
‖f ‖Bσ

p,r
.

Remark 2.102. There are a number of variations on the statement of Lem-
ma 2.100. For instance, the inequalities (2.53), (2.54), and (2.55) are also valid
in the homogeneous framework (i.e., with Δ̇j instead of Δj and with homoge-
neous Besov norms instead of nonhomogeneous ones), provided (2.17) is satis-
fied by (p, r, σ). The proof follows along the lines of the proof of Lemma 2.100.
It is simply a matter of replacing the nonhomogeneous blocks by homogeneous
ones.

Remark 2.103. In Section 3.4 of the next chapter, we shall also make use of
the fact that the inequalities (2.53), (2.54), and (2.55) are still true for the
commutator

Ṡj+N0v · ∇Δ̇jf − Δ̇j(v · ∇f),

where N0 is any fixed integer. Indeed, it suffices to note that for all j ≥ −1,
we have∥∥∥(Ṡj+N0v −v) · ∇Δ̇jf

∥∥∥
Lp

≤ C2j
∥∥∥Ṡj+N0v −v

∥∥∥
L∞

∥∥∥Δ̇jf
∥∥∥

Lp

≤ C
∑

j′ ≥j+N0

2j−j′
∥∥∥∇Δ̇j′ v

∥∥∥
L∞

∥∥∥Δ̇jf
∥∥∥

Lp

≤ C‖ ∇v‖Ḃ0
∞,∞

‖Δ̇jf ‖Lp .
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2.11 Around the Space B1
∞,∞

The space B1
∞,∞ will play an important role in Chapter 7 when dealing with

the incompressible Euler equations. This section is devoted to proving various
logarithmic interpolation inequalities involving that space. We start with the
most elementary of these.

Proposition 2.104. Let ε be in ]0, 1[. A constant C exists such that for any f
in Bε

∞,∞,

‖f ‖L∞ ≤ C

ε
‖f ‖B0

∞,∞

(
1 + log

‖f ‖Bε
∞,∞

‖f ‖B0
∞,∞

)
·

Proof. In order to prove this, we write the function f as the sum of the dyadic
blocks Δjf . For any positive integer N , we have

∑
j≥ −1

‖Δjf ‖L∞ ≤
∑

−1≤j≤N −1

‖Δjf ‖L∞ +
∑
j≥N

‖Δjf ‖L∞

≤ (N + 1)‖f ‖B0
∞,∞

+
2−(N −1)ε

2ε − 1
‖f ‖Bε

∞,∞ .

As ‖f ‖L∞ ≤
∑

j≥ −1 ‖Δjf ‖L∞ , taking

N = 1 +

[
1
ε

log2

‖f ‖Bε
∞,∞

‖f ‖B0
∞,∞

]

yields the result 	


Remark 2.105. In fact, the above proof gives the following, slightly more ac-
curate, estimate:

‖f ‖B0
∞,1

≤ C

ε
‖f ‖B0

∞,∞

(
1 + log

‖f ‖Bε
∞,∞

‖f ‖B0
∞,∞

)
·

We now define the space LL of log-Lipschitz functions.

Definition 2.106. The space LL consists of those bounded functions f such
that

‖f ‖LL
def
= sup

0<|x−x′ |≤1

|f(x) − f(x′)|
|x − x′ |(1 − log |x − x′ |) < ∞.

B1
∞,∞ is a subspace of the space LL of log-Lipschitz functions. More precisely,

we have the following.

Proposition 2.107. A constant C exists such that for any function u in B1
∞,∞

and any x, y in R
d such that |x − y| ≤ 1, we have

|u(x) − u(y)| ≤ C‖ ∇u‖B0
∞,∞

|x − y|(1 − log |x − y|).
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Proof. The proof is similar to the one above. We write that, for |x − y| ≤ 1,

u(x) − u(y) =
∑
j<N

Δju(x) − Δju(y) +
∑
j≥N

Δju(x) − Δju(y).

By combining the mean value inequality and Bernstein’s lemma, we get

|u(x) − u(y)| ≤ C|x − y|
∑
j<N

‖Δj ∇u‖L∞ + 2
∑
j≥N

2−j ‖∇Δju‖L∞ ,

from which it follows, by the definition of the space B0
∞,∞, that

|u(x) − u(y)| ≤ C‖ ∇u‖B0
∞,∞

((N + 1)|x − y| + 2−N ).

As above, choosing N = [− log2 |x − y|] + 1 completes the proof. 	


We have just established a relationship between the modulus of continuity and
the growth of L∞ norms of dyadic blocks in the special case of log-Lipschitz
functions. A similar connection may be established for a more general class of
moduli of continuity given in the following definition.

Definition 2.108. Let a be in ]0, 1]. A modulus of continuity is any nonde-
creasing nonzero continuous function μ : [0, a] → R+ such that μ(0) = 0. The
modulus of continuity μ is admissible if, in addition, the function Γ defined
for y ≥ 1/a by

Γ (y)
def
= yμ

(1
y

)

is nondecreasing and satisfies, for some constant C and all x ≥ 1/a,

(A)
∫ ∞

x

1
y2

Γ (y) dy ≤ C
Γ (x)

x
·

Examples. If α ∈ ]0, 1], then the functions μ(r) = rα, μ(r) = r(− log r)α,
and μ(r) = r(− log r)(log(− log r))α are admissible moduli of continuity.

Definition 2.109. Let μ be a modulus of continuity and (X, d) a metric space.
We denote by Cμ(X) the set of bounded, continuous, real-valued functions u
over X such that

‖u‖Cμ

def
= ‖u‖L∞(X) + sup

0<d(x,y)≤a

|u(x) − u(y)|
μ(d(x, y))

< ∞.

Examples. When μ(r) = rα for some α ∈]0, 1], the space Cμ(X) coincides
with the Hölder space Cα(X). If μ(r) = r(1 − log r), then Cμ(X) is the space
LL(X) of log-Lipschitz functions on X.

Definition 2.110. Let Γ be a nondecreasing function on [1, ∞[. We denote
by BΓ (Rd) the set of bounded real-valued continuous functions u over R

d such
that

‖u‖BΓ

def
= ‖u‖L∞ + sup

j≥0

‖ ∇Sju‖L∞

Γ (2j)
< ∞.



118 2 Littlewood–Paley Theory

Example. When Γ (y) = y1−α [hence μ(r) = rα], the space BΓ is equal
to Bα

∞,∞. This is a consequence of Proposition 2.79, which ensures that ∇u

is in Bα−1
∞,∞ if and only if supj∈N 2j(α−1)‖Sj ∇u‖L∞ is finite. Therefore, we see

that in this particular case, the spaces Cμ and BΓ coincide.
The following proposition states that this is still true in a much more

general framework.

Proposition 2.111. Let μ be an admissible modulus of continuity and let Γ
be defined as in Definition 2.109. Then, Cμ(Rd) = BΓ (Rd).

Proof. Assume that u belongs to BΓ . According to the identity (1.23) page 25,
there exists a family of functions (ϕk)1≤k≤d in D(Rd \{0}) such that

Δj =
d∑

k=1

2−jϕk(2−jD)∂kΔj .

This implies that
‖Δju‖L∞ ≤ C2−jΓ (2j)‖u‖BΓ

. (2.72)

We now write, for |x − x′ | ≤ a,

|u(x) − u(x′)| ≤ ‖∇Sju‖L∞ |x − x′ | + 2
∑
j′ ≥j

‖Δj′ u‖L∞

≤ ‖ ∇Sju‖L∞ |x − x′ | + C‖u‖BΓ

∑
j′ ≥j

2−j′
Γ (2j′

).

Using the condition (A), the fact that Γ is nondecreasing, and the definition
of ‖ · ‖BΓ

, we get

|u(x) − u(x′)| ≤ ‖u‖BΓ

(
Γ (2j)|x − x′ | + C

∫ ∞

2j

1
y2

Γ (y) dy
)

≤ ‖u‖BΓ

(
Γ (2j)|x − x′ | + C2−jΓ (2j)

)
.

Choosing j such that 2−j ≈ |x−x′ | and using the definition of Γ gives u ∈ Cμ.

Now, assume that u belongs to Cμ and let h̃ = F −1χ. By the definition

of Sj and the fact that
∫

Rd

∂kh̃(y) dy = 0, we may write

∂kSju(x) = 2jd2j

∫
Rd

∂kh̃(2j(x − y))(u(y) − u(x)) dy.

Therefore, using the definition of ‖u‖Cμ and splitting the integral into |y−x| ≤
a and |y − x| > a, we get

|∂kSju(x)| ≤ 2jd2j

(
‖u‖Cμ

∫
|y−x|≤a

∂kh̃(2j(x − y))|μ(|y − x|) dy

+ 2‖u‖L∞

∫
|y−x|>a

|∂kh̃(2j(x − y))| dy

)
.
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Setting z = 2j(x − y) and splitting the first integral into two parts yields

|∂kSju(x)| ≤ ‖u‖Cμ2j

∫
|z|≤1

|∂kh̃(z)|μ(2−j |z|) dz

+ ‖u‖Cμ

∫
1≤ |z|≤2ja

|∂kh̃(z)| |z|Γ
( 2j

|z|

)
dz + 2‖u‖L∞

∫
|z|≥2ja

|∂kh̃(z)| dz.

As μ and Γ are nondecreasing functions, we have, for any z such that |z| ≤ 1

(resp., |z| ≥ 1), μ(2−j |z|) ≤ μ(2−j) [resp., Γ
( 2j

|z|

)
≤ Γ (2j)]. Thus, we get

|∂kSju(x)| ≤ ‖u‖Cμ2jμ(2−j)
∫

|z|≤1

|∂kh̃(z)| dz

+ ‖u‖CμΓ (2j)
∫

1≤ |z|≤2ja

|∂kh̃(z)| |z| dz + C‖u‖L∞ .

As the last term may obviously be bounded by C ′Γ (2j)‖u‖L∞ for some con-
stant C ′ independent of j and u, we end up with

‖ ∇Sju‖L∞ ≤ C‖u‖CμΓ (2j), (2.73)

and the proposition is proved. 	

Example. If we take μ(r) = r(1 − log r), then we get Γ (y) = 1 + log y.
Hence, the above proposition shows that LL coincides with the set of bounded
functions u such that

sup
j∈N

‖ ∇Sju‖L∞

j + 1
< ∞.

Proposition 2.104 extends to general Cμ spaces in the following way.

Proposition 2.112. Let μ be an admissible modulus of continuity. There ex-
ists a constant C such that for any ε ∈ ]0, 1], u in C1,ε, and positive Λ, we
have

‖∇u‖L∞ ≤ C

(
‖u‖Cμ + Λ

ε
+ ‖u‖CμΓ

(( ‖∇u‖C0,ε

‖u‖Cμ + Λ

) 1
ε

))

whenever ‖u‖Cμ + Λ ≤
(a

2

)ε

‖ ∇u‖C0,ε .

Proof. Write
∇u = Sj ∇u + (Id −Sj)∇u.

By definition of C0,ε, for any j ∈ N such that 2j ≥ 1/a, we have, using (2.73),

‖∇u‖L∞ ≤ C‖u‖CμΓ (2j) + Cε−12−jε‖∇u‖C0,ε .

Choosing j such that

1
2

(
‖ ∇u‖C0,ε

‖u‖Cμ + Λ

) 1
ε

≤ 2j <

(
‖∇u‖C0,ε

‖u‖Cμ + Λ

) 1
ε

and using the fact that Γ is nondecreasing gives the result. 	
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2.12 References and Remarks

Bernstein’s inequality and the lemma that follows it belong to the mathematical folk-
lore. The statement of Lemma 2.1 is borrowed from [69]. The subsection devoted to
the action of a diffeomorphism over functions with localized Fourier transforms was
inspired by the work of M. Vishik in [296] (see also [156] and [103]). The smoothing
effect for the heat flow which is pointed out in Lemma 2.4 was first stated in [71, 72].
A proof of Faà di Bruno’s formula (Lemma 2.3) may be found in [298]. Lemma 2.8
has been stated in [90] (under slightly more restrictive assumptions over the sup-
port), then extended in [251] and [95] for any p ∈ ]1, ∞[.

Littlewood–Paley theory first appeared in the context of one-dimensional Fourier
series (see the works by J. Littlewood and R. Paley in [218, 219]). The presentation
adopted in Section 2.2 follows that of J.-Y. Chemin in [69]. We mention in passing
that a number of more sophisticated decompositions of the phase space (x, ξ) have
recently been proposed. The most celebrated of these is probably the wavelet de-
composition introduced by Y. Meyer in [230–232]. In the present book, we restrict
ourselves to the cruder Littlewood–Paley decomposition, which proves to be suffi-
cient for tackling most problems related to nonlinear partial differential equations.

Besov spaces were named after O. Besov who introduced them in [37] for the
study of the embedding and trace of functions with derivatives in Lp. The general
definition is due to J. Peetre in [249]. The characterizations in terms of finite dif-
ference or heat flow are standard. More properties for these spaces may be found
in [34, 204, 240, 250, 254, 288, 289]. There is no consensus surrounding the defini-
tion of homogeneous Besov spaces. In the above references, they are defined modulo
polynomials of arbitrary degree. In [41], G. Bourdaud showed that homogeneous
Besov spaces Ḃs

p,r may be realized, that is, embedded in some Banach space. When
s ≥ d/p (or s > d/p, if r = 1), however, that Banach space is a function space mod-
ulo polynomials of degree less than or equal to s − d/p if r > 1 (less than s − d/p, if
r = 1). We believe that the presentation adopted in this chapter is the most suitable
one for the study of partial differential equations.

The refined Sobolev inequality was discovered by P. Gérard, Y. Meyer, and
F. Oru (see [140]). The approach presented here is taken from [77]. The embedding
property Ḃ0

p,2 ↪→ Lp for 2 ≤ p < ∞ is sharp. It may actually be shown that for any
p ∈ ]1, ∞[, the Lebesgue space Lp coincides with the Triebel–Lizorkin space F 0

p,2

(see [150, 273]). The proof relies on general results for vector-valued singular integrals
which are beyond the scope of this book. Gagliardo–Nirenberg inequalities arise from
the works by E. Gagliardo in [131] and L. Nirenberg in [241].

Paradifferential calculus was invented by J.-M. Bony in [39] for proving a priori
estimates for quasilinear hyperbolic partial differential equations in nonhomoge-
neous Sobolev spaces. The discrete version of paradifferential calculus that we chose
to present here is due to P. Gérard and J. Rauch [141] (in the nonhomogeneous
framework). More results on continuity may be found in, for instance, [254] or [285].
The proof of the Hardy and refined Hardy inequalities is borrowed from [22]. More
general refined Hardy inequalities have been proved in [23, 24].

There is an extensive literature on the properties of Besov spaces with respect to
left composition (see, in particular, [42, 43], and [254]). The proof which is presented
in Section 2.6.2 is an adaptation of the so-called paralinearization Meyer method
(see [11] and [232]) to the homogeneous functional framework. The paralinearization
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theorem stated on page 105 was inspired by the work of S. Alinhac in [5] and
Y. Meyer in [232].

The compactness properties of Besov spaces presented in Section 2.9 belong to
the mathematical folklore; however, we did not find any comprehensive and self-
contained proof in the literature. Those properties are fundamental for proving the
existence for some of the nonlinear partial differential equations which will be studied
in the next chapters.

Section 2.10 provides the reader with various commutator estimates which will
be used throughout the book. Lemma 2.100 gathers different estimates which have
been proven in [69, 99], and [103] and is likely to be useful for investigating a number
of partial differential equations.

The Zygmund space (here denoted by B1
∞,∞) was introduced by A. Zygmund

in [304]. The logarithmic interpolation inequalities were discovered by H. Brézis and
T. Gallouët in [50]. They will be used in Chapters 3, 4, and 7 for proving continuation
criteria for different types of nonlinear partial differential equations.





3

Transport and Transport-Diffusion Equations

This chapter is devoted to the study of the following class of transport equa-
tions:

(T )
{

∂tf + v · ∇f + A · f = g
f|t=0 = f0,

where the functions v : R × R
d → R

d, A : R × R
d → MN (R), f0 : R

d → R
N ,

and g : R × R
d → R

N are given.
Transport equations arise in many mathematical problems and, in particu-

lar, in most partial differential equations related to fluid mechanics. Although
the velocity field v and the source term g may depend (nonlinearly) on f ,
having a good theory for linear transport equations is an important first step
for studying such partial differential equations.

The first section is devoted to the study of ordinary differential equations.
The emphasis is on generalizations of the classical Cauchy–Lipschitz theorem.
When the vector field v is Lipschitz, there is an obvious correspondence be-
tween the ordinary differential equation associated with v and the transport
equation (T ). Moreover, this study will provide an opportunity to establish
some very simple blow-up criteria for ordinary differential equations that will
act as guidelines for proving blow-up criteria in evolution partial differential
equations (see Chapters 4, 5, 7, and 10).

In the second section we focus on the transport equation (T ) in the case
where the vector field v is at least Lipschitz with respect to the space variable.
As an application of the results established, we solve the Cauchy problem for
a shallow water equation. The main focus of the third section is the proof of
estimates of propagation of regularity with loss when the vector field is not
Lipschitz. The particular case of log-Lipschitz vector fields plays an important
role in the study of two-dimensional incompressible fluids (see Chapter 7).

Finally, in the last section of this chapter, we prove a few estimates for the
solution of the transport-diffusion equation. This type of equation appears,
in particular, in the study of the problem of vortex patches with vanishing
viscosity (see Chapter 7).

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 3, c© Springer-Verlag Berlin Heidelberg 2011
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3.1 Ordinary Differential Equations

This section recalls some basic facts about ordinary differential equations.

3.1.1 The Cauchy–Lipschitz Theorem Revisited

To begin, we establish a generalization of the classical Cauchy–Lipschitz the-
orem. The underlying concept is the Osgood condition, defined below.

Definition 3.1. Let a > 0 and μ be a modulus of continuity defined on [0, a]
(see Definition 2.108). We say that μ is an Osgood modulus of continuity if

∫ a

0

dr

μ(r)
= ∞.

Examples. The function r �→ r is an Osgood modulus of continuity, as are
the functions

r �−→ r
(
log

1
r

)α

and r �−→ r log
1
r

(
log log

1
r

)α

if α ≤ 1.

The function r �→ rα with α < 1, however, is not an Osgood modulus of
continuity. Neither are the functions

r �−→ r
(
log

1
r

)α

and r �−→ r log
1
r

(
log log

1
r

)α

with α > 1.

The relevance of Definition 3.1 is illustrated by the following theorem.

Theorem 3.2. Let E be a Banach space, Ω an open subset of E, I an open
interval of R, and (t0, x0) an element of I × Ω. Let F be in L1

loc(I; Cμ(Ω; E)),
where μ is an Osgood modulus of continuity and Cμ(Ω; E) is the Banach space
introduced in Definition 2.109. There then exists an open interval J ⊂ I such
that the equation

(ODE) x(t) = x0 +
∫ t

t0

F (t′, x(t′)) dt′

has a unique continuous solution on J .

Proof. We first establish the uniqueness of the trajectories of the equation.
Let x1 and x2 be solutions of the equation (ODE) defined on a neighbor-

hood J̃ of t0 with the same initial data x0. Define δ(t) def= ‖x1(t) − x2(t)‖.
Because F ∈ L1

loc(I; Cμ(Ω; E)), we have

0 ≤ δ(t) ≤
∫ t

t0

γ(t′)μ(δ(t′)) dt′ with γ ∈ L1
loc(I) and γ ≥ 0. (3.1)

The key to uniqueness is the so-called Osgood lemma, a generalization of
the Gronwall lemma. For the reader’s convenience, we first recall the Gronwall
lemma.



3.1 Ordinary Differential Equations 125

Lemma 3.3. Let fand g be two C0 (resp., C1) nonnegative functions on [t0, T ].
Let A be a continuous function on [t0, T ]. Suppose that, for t in [t0, T ],

1
2

d

dt
g2(t) ≤ A(t) g2(t) + f(t)g(t). (3.2)

For any time t in [t0, T ] we then have

g(t) ≤ g(t0) exp
∫ t

t0

A(t′) dt′ +
∫ t

t0

f(t′) exp
(∫ t

t′
A(t′ ′) dt′ ′

)
dt′ .

Proof. Define

gA(t) def= g(t) exp
(

−
∫ t

t0

A(t′) dt′
)

and fA(t) def= f(t) exp
(

−
∫ t

t0

A(t′) dt′
)

.

Obviously, we have
1
2

d

dt
g2

A ≤ fAgA, so for any positive ε,

d

dt
(g2

A + ε)
1
2 ≤ gA

(g2
A + ε2)

1
2
fA ≤ fA.

By integration we get, for all t ∈ [t0, T ],

(g2
A(t) + ε2)

1
2 ≤ (g2

A(t0) + ε2)
1
2 +

∫ t

t0

fA(t′) dt′.

Letting ε tend to 0 then gives the result. ��

We now state the Osgood lemma.

Lemma 3.4. Let ρ be a measurable function from [t0, T ] to [0, a], γ a locally
integrable function from [t0, T ] to R

+, and μ a continuous and nondecreasing
function from [0, a] to R

+. Assume that, for some nonnegative real number c,
the function ρ satisfies

ρ(t) ≤ c +
∫ t

t0

γ(t′)μ(ρ(t′)) dt′ for a.e.1 t ∈ [t0, T ]. (3.3)

– If c is positive, then we have, for a.e. t ∈ [t0, T ],

−M(ρ(t)) + M(c) ≤
∫ t

t0

γ(t′) dt′ with M(x) =
∫ a

x

dr

μ(r)
· (3.4)

– If c = 0 and μ is an Osgood modulus of continuity, then ρ = 0 a.e.

If we assume this lemma to hold, then we get δ ≡ 0 in (3.1), from which
uniqueness follows.
1 From now on, the abbreviation “a.e.” means “almost every.”
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In order to prove existence in Theorem 3.2, we use the classical Picard
scheme:

xk+1(t) = x0 +
∫ t

t0

F (t′, xk(t′)) dt′.

We skip the fact that for J sufficiently small, the sequence (xk)k∈N is well

defined and bounded in the space Cb(J, Ω). Let ρk,n(t) def= sup
t0≤t′ ≤t

‖xk+n(t′) −

xk(t′)‖. It is obvious that

0 ≤ ρk+1,n(t) ≤
∫ t

t0

γ(t′)μ(ρk,n(t′)) dt′.

Because the function μ is nondecreasing, we deduce that ρk
def= sup

n
ρk,n sat-

isfies

0 ≤ ρk+1(t) ≤
∫ t

t0

γ(t′)μ(ρk(t′)) dt,

from which it follows that

ρ̃(t) def= lim sup
k→+∞

ρk(t) ≤
∫ t

t0

γ(t′)μ(ρ̃(t′)) dt′.

Lemma 3.4 implies that ρ̃(t) ≡ 0 near t0; in other words, (xk)k∈N is a Cauchy
sequence in Cb(J ; Ω). This completes the proof of Theorem 3.2. ��

Proof of Lemma 3.4. Arguing by density, it suffices to consider the case where
the functions γ and ρ are continuous. Now, consider the following continuous
function:

Rc(t)
def= c +

∫ t

t0

γ(t′)μ(ρ(t′)) dt′.

Because μ is nondecreasing, we have

dRc

dt
= γ(t)μ(ρ(t))

≤ γ(t)μ(Rc(t)). (3.5)

First, we assume that c is positive. As the function Rc is also positive, we
infer from the inequality (3.5) that

− d

dt
M(Rc(t)) =

1
μ(Rc(t))

dRc

dt
≤ γ(t).

Integrating, we thus get (3.4).
Finally, suppose that c = 0 and that ρ is not identically 0 near t0. As

the function μ is nondecreasing, it is possible to replace the function ρ by

the function ρ̃(t) def= supt′ ∈[t0,t] ρ(t′). A real number t1 greater than t0 exists
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such that ρ(t1) is positive. As the function ρ satisfies (3.3) with c = 0, it also
satisfies this inequality for any positive c′ less than ρ(t1). The inequality (3.4)
thus entails that

∀c′ ∈ ]0, ρ(t1)] , M(c′) ≤
∫ t1

t0

γ(t′) dt′ + M(ρ(t1)),

which implies that
∫ a

0

dr

μ(r)
< ∞. ��

The following corollary will enable us to compute the modulus of continuity
of the flow of a vector field satisfying the Osgood condition.

Corollary 3.5. Let μ be an Osgood modulus of continuity defined on [0, a]
and M the function defined by (3.4). Let ρ be a measurable function such that

ρ(t) ≤ ρ(t0) +
∫ t

t0

γ(t′)μ(ρ(t′) dt′.

If t is such that
∫ t

t0

γ(t) dt ≤ M(ρ(t0)), then we have

ρ(t) ≤ M −1

(
M(ρ(t0)) −

∫ t

t0

γ(t′) dt′
)

.

Proof. The inequality (3.4) can be written

M(ρ(t)) ≥ M(ρ(t0)) −
∫ t

t0

γ(t′) dt′.

The fact that μ satisfies the Osgood condition implies that the function M is
one-to-one from ]0, a] to [0, +∞[. Thus, as the function M is nonincreasing,
the corollary follows by applying M−1 to both sides of the above inequality.

��

Corollary 3.6. Let v be a vector field satisfying the hypothesis of Theo-
rem 3.2. Assume that

xj(t) = xj +
∫ t

t0

v(t′, xj(t′)) dt′ for j = 1, 2.

If
∫ t

t0

γ(t′) dt′ ≤ M(‖x1 − x2‖), then we have

‖x1(t) − x2(t)‖ ≤ M −1

(
M(‖x1 − x2‖) −

∫ t

t0

γ(t′) dt′
)

.
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Applying this corollary with μ(r) = r(1 − log r) [in which case we have a = 1
and M(x) = log(1 − log x)], we get the following result which will be useful
in the study of the incompressible Euler system (see Chapter 7).

Theorem 3.7. Let v be a time-dependent vector field2 in L1
loc(R

+; LL). There
exists a unique continuous map ψ from R

+ × R
d to R

d such that

ψ(t, x) = x +
∫ t

0

v(t′, ψ(t′, x)) dt′.

Moreover, for any positive time t, the function ψt : x �→ ψ(t, x) is such that

ψt − Id ∈ Cexp(−VLL(t)) with VLL(t)
def
=

∫ t

0

‖v(t′)‖LL dt′.

More precisely, if |x − y| ≤ e1−exp VLL(t), then we have

|ψ(t, x) − ψ(t, y)| ≤ |x − y|exp(−VLL(t))e1−exp(−VLL(t)).

Corollary 3.5 provides a control of ρ on a small time interval. In order to con-
trol ρ on larger time intervals, we now establish a dual version of the Osgood
lemma [involving the function Γ (y) = yμ

(
1
y

)
introduced in Definition 2.108

page 117].

Lemma 3.8. Let μ in C([0, a]; R+) be an Osgood modulus of continuity. Let ρ
be a measurable function on [t0, T ] with values in [a−1, ∞[ and γ a nonnegative
locally integrable function on [t0, T ]. Assume that

ρ(t) ≤ ρ(t0) +
∫ t

t0

γ(t′)Γ (ρ(t′))ρ(t′) dt′ for a.e. t ∈ [t0, T ].

The function G(y)
def
=

∫ y

1/a

dy′

y′Γ (y′)
then maps [a−1, +∞[ onto and one-to-one

[0, +∞[, and we have

ρ(t) ≤ G −1

(
G(ρ(t0)) +

∫ t

t0

γ(t′) dt′
)

for a.e. t ∈ [t0, T ].

Proof. The proof of this lemma is very similar to that of the previous one. The
fact that G maps [a−1, +∞[ onto and one-to-one [0, +∞[ follows immediately
from the fact that μ is an Osgood modulus of continuity. We now introduce
the function

R(t) def= ρ(t0) +
∫ t

t0

γ(t′)Γ (ρ(t′))ρ(t′) dt′.

Because the function Γ is nondecreasing, we have (assuming that ρ and γ are
continuous) that
2 See page 116 for the definition of the set LL of log-Lipschitz functions.
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dR

dt
= γ(t)Γ (ρ(t))ρ(t)

≤ γ(t)Γ (R(t))R(t),

and thus
d

dt
G(R(t)) ≤ γ(t). Integrating then completes the proof. ��

Finally, we consider the way the flow depends on its generating vector field.

Proposition 3.9. Let μ be an Osgood modulus of continuity. Let (vn)n∈N be a
bounded sequence of time-dependent vector fields in L1([0, T ]; Cμ) converging
to v in L1([0, T ]; L∞), and let ψn (resp., ψ) denote the flow of vn (resp., v).
We then have

lim
n→∞

‖ψn − ψ‖L∞([0,T ];L∞) = 0.

Proof. By the definitions of ψ and ψn, we have, for all n ∈ N,

ψn(t, x) − ψ(t, x) =
∫ t

0

(
vn(t′, ψn(t′, x)) − v(t′, ψ(t′, x))

)
dt′.

Hence, defining ρn(t) def= ‖ψn(t, x) − ψ(t, x)‖L∞ , we deduce that there exists
some integrable function γ such that for all t ∈ [0, T ], we have

ρn(t) ≤ εn +
∫ t

0

γ(t′)μ(ρn(t′)) dt′ with εn
def=

∫ T

0

‖vn(t) − v(t)‖L∞ dt.

According to the Osgood lemma, we thus have, for all t ∈ [0, T ],

ρn(t) ≤ εn or
∫ ρn(t)

εn

dr

μ(r)
≤

∫ t

0

γ(t′) dt′.

Since the Osgood condition is satisfied, we can now conclude that (ρn)n∈N

goes to zero uniformly on [0, T ] when n tends to infinity. ��

3.1.2 Estimates for the Flow

In this section, we recall a few estimates for the flow of a smooth vector field.
These estimates will be needed in the study of transport-diffusion equations
(see Section 3.4 below).

Proposition 3.10. Let v be a smooth time-dependent vector field with bounded
first order space derivatives. Let ψt satisfy

ψt(x) = x +
∫ t

0

v(t′, ψt′ (x)) dt′.

Then, for all t ∈ R
+, the flow ψt is a C1 diffeomorphism over R

d, and we
have
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∥∥Dψ±1
t

∥∥
L∞ ≤ exp V (t), (3.6)

∥∥Dψ±1
t − Id

∥∥
L∞ ≤ exp V (t) − 1, (3.7)

∥∥D2ψ±1
t

∥∥
L∞ ≤ exp V (t)

∫ t

0

∥∥D2v(t′)
∥∥

L∞ exp V (t′) dt′ (3.8)

with, as throughout this chapter, V (t)
def
=

∫ t

0

‖Dv(t′)‖L∞ dt′.

Proof. Let (t, t′, x) �→ X(t, t′, x) be (uniquely) defined by

X(t, t′, x) = x +
∫ t

t′
v
(
t′ ′, X(t′ ′, t′, x)

)
dt′ ′. (3.9)

Uniqueness for ordinary differential equations entails that

X(t, t′ ′, X(t′ ′, t′, x)) = X(t, t′, x).

Hence, ψt = X(t, 0, ·) and ψ−1
t = X(0, t, ·). Differentiating (3.9) with respect

to x, we get, by virtue of the chain rule,

∂jX
k(t, t′, x) = δj,k +

∫ t

t′
∂�v

k(t′ ′, X(t′ ′, t′, x))∂jX
�(t′ ′, t′, x) dt′ ′. (3.10)

Taking the modulus and applying the Gronwall lemma thus leads to

∣∣DX(t, t′, x)
∣∣ ≤ exp

∣∣∣
∫ t

t′
|Dv(t′ ′, X(t′ ′, t′, x))| dt′ ′

∣∣∣

≤ exp
∣∣∣
∫ t

t′
‖Dv(t′ ′)‖L∞ dt′ ′

∣∣∣,
which obviously yields (3.6).

The proof of (3.7) is similar. This is just a matter of subtracting the
identity matrix from (3.10). To prove (3.8), we differentiate (3.9) twice. This
yields (with the summation convention over repeated indices)

∂j∂kXi(t, t′, x) =
∫ t

t′
∂�v

i(t′ ′, X(t′ ′, t′, x))∂j∂kX�(t′ ′, t′, x) dt′ ′

+
∫ t

t′
∂�∂mvi(t′ ′, X(t′ ′, t′, x))∂kXm(t′ ′, t′, x)∂jX

�(t′ ′, t′, x) dt′ ′.

Taking advantage of (3.6) and the Gronwall lemma once again, we easily get,
for all nonnegative t and t′, and all x ∈ R

d,

∣∣∂j∂kXi(t, t′, x)
∣∣ ≤ e

∣∣∫ t
t′ |Dv(t′ ′,X(t′ ′,t′,x))| dt′ ′

∣∣

×
∣∣∣∣
∫ t

t′
|D2v(t′ ′, X(t′ ′, t′, x))|e

∣∣∫ t
t′ |Dv(t′ ′,X(t′ ′,s,x))| ds

∣∣
dt′ ′

∣∣∣∣ ,
which clearly entails (3.8). ��
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3.1.3 A Blow-up Criterion for Ordinary Differential Equations

We emphasize that Theorem 3.2 is only a local-in-time statement. This section
is devoted to blow-up statements for ordinary differential equations.

Proposition 3.11. Let F : R ×E → E satisfy the hypothesis of Theorem 3.2.
Assume, further, that a locally bounded function M : R

+ → R
+ and a locally

integrable function β : R → R
+ exist such that

‖F (t, u)‖ ≤ β(t)M(‖u‖). (3.11)

Let ]T�, T
�[ be the maximal interval of existence of an integral curve u of the

equation (ODE). If T� (resp., T �) is finite, then we have

lim sup
t

>→T�

‖u(t)‖ = ∞
(
resp., lim sup

t
<→T �

‖u(t)‖ = ∞
)
.

Proof. We shall only prove the result for the upper bound T ∗. Consider two
times T0 < T such that ‖u(t)‖ is bounded on [T0, T [. We deduce from (3.11)
that for any time t in [T0, T [, we have

‖F (t, u(t))‖ ≤ Cβ(t).

As the function β is integrable on the interval [T0, T ], we deduce that for any
positive ε, there exists some η > 0 such that

‖u(t) − u(t′)‖ < ε for any (t, t′) ∈ [T0, T [2 verifying |t − t′ | < η.

As E is a Banach space, we deduce that there exists some uT in E such that

lim
t→T

u(t) = uT .

Applying Theorem 3.2, we can now construct a solution ũ of (ODE) on some
interval [T − τ, T + τ ] such that ũ(T ) = uT .

By virtue of uniqueness, ũ coincides with u on [T − τ, T [ and is hence a
continuation of u beyond T. We can thus conclude that T < T ∗. ��

Corollary 3.12. With the notation and hypothesis of Proposition 3.11, let x
be a maximal integral curve of (ODE). If F satisfies

‖F (t, u)‖ ≤ M ‖u‖2

for some constant M , then for any t0 ∈ ]T�, T
�[, we have

∫ t0

T�

‖x(t)‖ dt − T� = T �+
∫ T �

t0

‖x(t)‖ dt = ∞.
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Proof. The solution satisfies

‖x(t)‖ ≤ ‖x0‖ + M
∣∣∣
∫ t

t0

‖x(t′)‖2 dt′
∣∣∣.

The Gronwall lemma implies that

‖x(t)‖ ≤ ‖x0‖ exp
(
M

∣∣∣
∫ t

t0

‖x(t′)‖ dt′
∣∣∣
)
,

which completes the proof of the corollary. ��

3.2 Transport Equations: The Lipschitz Case

This section is devoted to the study of the transport equation (T ) in the case
where the time-dependent vector field v is at least Lipschitz with respect to
the space variable. To simplify the presentation, we focus on the evolution
for nonnegative times and assume that there is no 0-order term (i.e., A ≡ 0).
Similar results may be obtained for negative times and for nonzero A (see
Remarks 3.17 and 3.20).

The basic idea is that the Lipschitz assumption should ensure that the
initial regularity is preserved by the flow. The importance of the Lipschitz
condition becomes obvious if we consider Hölder regularity. Indeed, assume
that f0 ∈ C0,ε for some ε ∈ ]0, 1] and that A ≡ 0 and g ≡ 0 (to simplify
matters). Since v is Lipschitz, the flow ψ of v is also Lipschitz, and we have,
for all (x, y) ∈ R

d × R
d and t ∈ [0, T ],

f(t, y) − f(t, x) = f0(ψ−1
t (y)) − f0(ψ−1

t (x)).

Therefore, by virtue of the first inequality of Proposition 3.10,
∣∣f(t, y) − f(t, x)

∣∣ ≤ ‖f0‖C0,ε

∣∣ψ−1
t (y) − ψ−1

t (x)
∣∣ε

≤ ‖f0‖C0,ε exp(εV (t)) |y − x|ε.

From this, we deduce that Hölder regularity is preserved during the evolution.
In this section, we seek to generalize this basic result to general Besov spaces.

3.2.1 A Priori Estimates in General Besov Spaces

Let us first explain what a solution to (T ) is.

Definition 3.13. Assume that f0 ∈ (S ′(Rd))N and g ∈ L1
(
[0, T ]; (S ′(Rd))N

)
.

A function f in C
(
[0, T ]; (S ′(Rd))N

)
is called a solution to (T ) if A · f, f ⊗ v,

and f div v are in L1
(
[0, T ]; (S ′(Rd))N

)
, and, for all φ ∈ C1

(
[0, T ]; (S(Rd))N

)
,
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∑
i

(∫ t

0

〈f i, ∂tφi〉 dt′ + 〈f i div v, φi〉 dt′
)

+
∑
i,j

∫ t

0

〈f ivj , ∂jφi〉 dt′

+
∑
i,j

∫ t

0

〈Ai
jf

j , φi〉 dt′ =
∑

i

(
〈f i(t), φi(t)〉 − 〈f i

0, φi(0)〉
)
.

This section is devoted to the proof of the following result pertaining to the
case where A ≡ 0 (a more general statement will be given in Remark 3.17).

Theorem 3.14. Let 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞. Assume that

σ ≥ −d min
(

1
p1

, 1
p′

)
or σ ≥ −1 − d min

(
1
p1

, 1
p′

)
if div v = 0 (3.12)

with strict inequality if r < ∞.

There exists a constant C, depending only on d, p, p1, r, and σ, such that
for all solutions f ∈ L∞([0, T ]; Bσ

p,r) of (T ) with A ≡ 0, initial data f0 in Bσ
p,r,

and g in L1([0, T ]; Bσ
p,r), we have, for a.e. t ∈ [0, T ],

‖f ‖L̃∞
t (Bσ

p,r) ≤
(

‖f0‖Bσ
p,r

+
∫ t

0

exp(−CVp1(t
′))‖g(t′)‖Bσ

p,r
dt′

)
exp(CVp1(t)) (3.13)

with, if the inequality is strict in (3.12),

V ′
p1

(t)
def
=

⎧⎪⎪⎨
⎪⎪⎩

‖∇v(t)‖
B

d
p1
p1,∞ ∩L∞

, if σ < 1 +
d

p1

,

‖∇v(t)‖Bσ−1
p1,r

, if σ > 1+
d

p1
or

{
σ = 1+

d

p1
and r = 1

}
,

and, if equality holds in (3.12) and r = ∞,

V ′
p1

(t)
def
= ‖ ∇v(t)‖

B
d

p1
p1,1

.

If f = v, then for all σ > 0 (σ > −1, if div v = 0), the estimate (3.13) holds
with

V ′
p1

(t) = ‖ ∇v(t)‖L∞ .

Proof. To prove this theorem, we (as quite often in this book) perform a spec-
tral localization of the equation under consideration. More precisely, applying
Δj to (T ) yields

(Tj)
{

(∂t + v · ∇)Δjf = Δjg + Rj

Δjf|t=0 = Δjf0
with Rj

def= v · ∇Δjf − Δj(v · ∇f).

Since ∇v ∈ L1([0, T ]; L∞), we readily obtain
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‖Δjf(t)‖Lp ≤ ‖Δjf0‖Lp +
∫ t

0

‖Δjg(t′)‖Lp dt′

+
∫ t

0

(
‖Rj(t′)‖Lp +

1
p

‖div v(t′)‖L∞ ‖Δjf(t′)‖Lp

)
dt′. (3.14)

This may be proven by writing an explicit formula for Δjf in terms of the flow
of v and of the data, or by multiplying both sides of (Tj) by sgn(Δjf)|Δjf |p−1

(in the scalar case) and integrating over R
d. We note that ‖Δjf(t)‖Lp may

be replaced by supt′ ∈[0,t] ‖Δjf(t′)‖Lp in the left-hand side.
According to Lemma 2.100 page 112, there exists some constant C, inde-

pendent of v and f , such that

‖Rj(t)‖Lp ≤ Ccj(t)2−jσV ′
p1

(t)‖f(t)‖Bσ
p,r

with ‖cj(t)‖�r = 1, (3.15)

where V ′
p1

is defined as in Theorem 3.14 [note that if f = v, then we can apply
the inequality (2.54) page 112 with p1 = p and p2 = ∞].

Take the �r norm in (3.14). Using (3.15) and the fact that

‖f ‖L∞
t (Bσ

p,r) ≤ ‖f ‖L̃∞
t (Bσ

p,r) and ‖g‖L̃1
t (Bσ

p,r) ≤ ‖g‖L1
t (Bσ

p,r),

we get

‖f ‖L̃∞
t (Bσ

p,r) ≤ ‖f0‖Bσ
p,r

+
∫ t

0

(
‖g(t′)‖Bσ

p,r
+ CV ′

p1
(t′)‖f ‖L̃∞

t′ (Bσ
p,r)

)
dt′. (3.16)

Applying the Gronwall lemma completes the proof of the theorem. ��

Remark 3.15. Actually, the above proof yields

‖f ‖L̃∞
t (Bσ

p,r) ≤ ‖f0‖Bσ
p,r

+ C

∫ t

0

V ′
p1

(t′)‖f ‖L̃∞
t′ (Bσ

p,r) dt′ + ‖g‖L̃1
t (Bσ

p,r),

and we thus have a slightly more accurate estimate, namely,

‖f ‖L̃∞
t (Bσ

p,r) ≤
(

‖f0‖Bσ
p,r

+ ‖g‖L̃1
t (Bσ

p,r)

)
exp(CVp1(t)). (3.17)

Remark 3.16. By taking advantage of Remark 2.102, we can extend Theo-
rem 3.14 to the homogeneous framework under the additional condition that

σ < 1 +
d

p1
or σ ≤ 1 +

d

p1
if r = 1. (3.18)

Remark 3.17. In the general case where A is nonzero and satisfies

‖(A · f)(t)‖Bσ
p,r

≤ A(t)‖f(t)‖Bσ
p,r

a.e. for some A ∈ L1([0, T ]), (3.19)

an easy variation on the proof of (3.14) leads to the inequality (3.13) with V ′
p1

replaced by V ′
p1

+ A.
Note that the inequality (3.19) is satisfied whenever A belongs to a Besov

space with a suitably large index of regularity.
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3.2.2 Refined Estimates in Besov Spaces with Index 0

If the vector field v is divergence-free, then the flow of v is measure-preserving
so that there is no exponential term involving ‖∇v‖L∞ in the estimates
of ‖f ‖Lp : We have

‖f(t)‖Lp ≤ ‖f0‖Lp +
∫ t

0

‖g(t′)‖Lp dt′ for t ≥ 0. (3.20)

As a consequence, we shall see that the exponential term may be replaced
by a linear term in the inequality (3.13). This improvement will be the cor-
nerstone of the proof of global existence for two-dimensional incompressible
Euler equations with data having critical regularity (see Chapter 7).

Below, we give a statement pertaining to nonhomogeneous Besov spaces
of index 0. It goes without saying that a similar statement holds true in the
homogeneous framework.

Theorem 3.18. Assume that v is divergence-free and that f satisfies the
transport equation (T ) with A ≡ 0. There exists a constant C, depending
only on d, such that for all 1 ≤ p, r ≤ ∞ and t ∈ [0, T ], we have

‖f ‖L̃∞
t (B0

p,r) ≤ C
(

‖f0‖B0
p,r

+ ‖g‖L̃1
t (B0

p,r)

)(
1 + V (t)

)
with

V (t)
def
=

∫ t

0

‖ ∇v(t′)‖L∞ dt′.

Proof. In order to simplify the presentation, we shall only consider the case
where r = 1. First, by virtue of the uniqueness of the transport equation (see
Theorem 3.18 below), we can write f =

∑
k≥ −1

fk with fk satisfying

{
∂tfk + v · ∇fk = Δkg

fk |t=0 = Δkf0.
(3.21)

We obviously have

‖f ‖B0
p,1

≤
∑

j,k≥ −1

‖Δjfk ‖Lp =
∑

|j−k|<N

‖Δjfk ‖Lp +
∑

|j−k|≥N

‖Δjfk ‖Lp , (3.22)

where N stands for some positive integer to be fixed hereafter.
Because div v = 0, using (3.20) yields

‖fk(t)‖Lp ≤ ‖Δkf0‖Lp +
∫ t

0

‖Δkg‖Lp dt′.

Hence,
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∑
|j−k|<N

‖Δjfk(t)‖Lp ≤ C
∑

|j−k|<N

‖fk(t)‖Lp

≤ CN
∑

k

(
‖Δkf0‖Lp + ‖Δkg‖L1

t (Lp)

)

≤ CN
(

‖f0‖B0
p,1

+ ‖g‖L1
t (B0

p,1)

)
.

The last sum in (3.22) may be dealt with by taking advantage of the estimates
in the space B±ε

p,1 (where ε is chosen in ]0, 1[) supplied by Theorem 3.14 for fk.
We thus have

‖fk(t)‖B±ε
p,1

≤
(

‖Δkf0‖B±ε
p,1

+ ‖Δkg‖L1
t (B±ε

p,1)

)
exp(CV (t)),

from which it follows, for some nonnegative sequence (aj)j≥ −1 such that∑
j≥ −1 aj = 1, that

‖Δjfk(t)‖Lp ≤ 2−ε|k−j|aj

(
‖Δkf0‖Lp + ‖Δkg‖L1

t (Lp)

)
exp(CV (t)).

From this latter inequality, we deduce that
∑

|j−k|≥N

‖Δjfk(t)‖Lp ≤ C2−Nε
(

‖f0‖B0
p,1

+ ‖g‖L1
t (B0

p,1)

)
exp(CV (t)).

Choosing N such that3 Nε log 2 ≈ 1 + CV (t) then completes the proof. ��

3.2.3 Solving the Transport Equation in Besov Spaces

We now state an existence result for the transport equation with data in Besov
spaces. To simplify the presentation, we assume here that there is no 0-order
term in (T ) (see Remark 3.20 for the general case).

Theorem 3.19. Let p, p1, r, and σ be as in the statement of Theorem 3.14
with strict inequality in 3.12. Let f0 ∈ Bσ

p,r, g ∈ L1([0, T ]; Bσ
p,r), and v be a

time-dependent vector field such that v ∈ Lρ([0, T ]; B−M
∞,∞) for some ρ > 1 and

M > 0, and

∇v ∈ L1([0, T ]; B
d

p1
p1,∞ ∩ L∞), if σ < 1 + d

p1
,

∇v ∈ L1([0, T ]; Bσ−1
p1,r ), if σ > 1+ d

p1
, or σ = 1+ d

p1
and r = 1.

The equation (T ) with A ≡ 0 then has a unique solution f in

3 From now on, the notation A ≈ B means that C−1A ≤ B ≤ CA for some
irrelevant positive constant C.
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– the space C([0, T ]; Bσ
p,r), if r < ∞,

– the space
(⋂

σ′<σ C([0, T ]; Bσ′

p,∞)
)⋂

Cw([0, T ]; Bσ
p,∞), if r = ∞.4

Moreover, the inequalities of Theorem 3.14 hold true.

Proof. Uniqueness readily follows from Theorem 3.14, so we focus on the proof
of the existence. For the sake of conciseness, we treat only the case σ < 1+ d

p1
.

We first smooth out the data and the velocity field v by setting

fn
0

def= Snf0, gn def= ρn ∗t Sng, and vn def= ρn ∗t Snv,

where ρn
def= ρn(t) stands for a sequence of mollifiers with respect to the time

variable.5

We clearly have fn
0 ∈ B∞

p,r, g ∈ C([0, T ]; B∞
p,r), vn ∈ Cb([0, T ] × R

d),

and Dvn in C([0, T ]; B∞
p,r) with B∞

p,r
def=

⋂
s∈R

Bs
p,r. Moreover, (fn

0 )n∈N is
bounded in Bσ

p,r, (gn)n∈N is bounded in L1([0, T ]; Bσ
p,r), (vn)n∈N is bounded

in Lρ([0, T ]; B−M
∞,∞), and (Dvn)n∈N is bounded in L1([0, T ]; B

d
p1
p1,∞ ∩ L∞).

The standard Cauchy–Lipschitz theorem ensures that vn has a smooth
flow ψn defined on [0, T ] × R

d . Hence, the function fn : [0, T ] × R
d → R

N

defined by

fn(t, x) = fn
0 (ψ−1

t (x)) +
∫ t

0

gn(τ, ψτ (ψ−1
t (x))) dτ

is a solution to

∂tf
n + vn · ∇fn = gn, fn

|t=0 = fn
0 .

Further, as all the functions are smooth, we have, according to Theorem 3.14,

‖fn(t)‖Bσ
p,r

≤ eC
∫ t
0 V n(t′) dt′

(
‖fn

0 ‖Bσ
p,r

+
∫ t

0

e−C
∫ t′
0 V n(t′ ′) dt′ ′

‖fn(t′)‖Bσ
p,r

dt′
)

with V n(t) def= ‖∇vn(t)‖
B

d
p1
p1,∞ ∩L∞

.

Thus, the sequence (fn)n∈N is uniformly bounded in C([0, T ]; Bσ
p,r).

In order to prove the convergence of a subsequence, we appeal to compact-
ness arguments. First, because

∂tf
n − gn = −vn · ∇fn, (3.23)

4 In what follows, if X is a Banach space with predual X∗, then we denote by
Cw([0, T ]; X) the set of measurable functions f : [0, T ] → X such that for any
φ ∈ X∗, the function t �→ 〈f(t), φ〉X×X∗ is continuous over [0, T ].
5 With no loss of generality, we can assume that v and g are defined on R × R

d.
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we can deduce that (∂tf
n − gn)n∈N is bounded in Lρ([0, T ]; B−m

p,∞) for some
sufficiently large m > 0: It suffices to use the bounds for vn and fn and to take
advantage of the results on continuity of the paraproduct and the remainder
stated in Section 2.8.

Second, introducing the functions f
n
(t) def= fn(t) −

∫ t

0
gn(t′) dt′, we thus

deduce that there exists some β > 0 such that the sequence (f
n
)n∈N is uni-

formly bounded in Cβ([0, T ]; B−m
p,∞) and hence uniformly equicontinuous with

values in B−m
p,∞. Now, if m is large enough, then Theorem 2.94 guarantees that

for all ϕ ∈ C ∞
c , the map u �→ ϕu is compact from Bσ

p,r to B−m
p,∞. Combining

Ascoli’s theorem and the Cantor diagonal process thus ensures that, up to
a subsequence, the sequence (f

n
)n∈N converges in S ′ to some distribution f

such that ϕf belongs to C([0, T ]; B−m
p,∞) for all ϕ ∈ D.

Finally, appealing once again to the uniform bounds in L∞([0, T ]; Bσ
p,r)

and the Fatou property for Besov spaces (see Theorem 2.25), we get f ∈
L∞([0, T ]; Bσ

p,r). By interpolating the above results on convergence with the
bounds in L∞([0, T ]; Bσ

p,r)0 for (f
n
)n∈N, we find that ϕf

n
tends to ϕf in

C([0, T ]; Bσ−ε
p,∞ ) for all ε > 0 and ϕ ∈ D so that we may pass to the limit

in the equation for fn, in the sense of Definition 3.13.6 That the sequences
(fn

0 )n∈N, (gn)n∈N, and (vn)n∈N converge respectively to f0, g, and v may be

easily deduced from their definitions. We conclude that the function f
def=

f +
∫ t

0
g(t′) dt′ is a solution of (T ).

We still have to prove that f ∈ C([0, T ]; Bσ
p,r) in the case where r is fi-

nite. From the equation (T ), we deduce that ∂tf ∈ L1([0, T ]; B−M ′

p,∞ ) for some
sufficiently large M ′. Hence, f belongs to C([0, T ]; B−M ′

p,∞ ). Therefore, Δjf ∈
C([0, T ]; Lp) for any j ≥ −1, from which it follows that Sjf ∈ C([0, T ]; Bσ

p,r)
for all j ∈ N .

We claim that the sequence of continuous Bσ
p,r-valued functions (Sjf)j∈N

converges uniformly on [0, T ]. Indeed, according to Proposition 2.10, we have

Δj′ (f − Sjf) =
∑

|j′ ′ −j′ |≥1
j′ ′ ≥j

Δj′ Δj′ ′ f,

from which it follows that

‖f − Sjf ‖Bσ
p,r

≤ C

( ∑
j′ ≥j−1

2j′σr ‖Δj′ f ‖r
Lp

) 1
r

. (3.24)

Using the inequalities (3.14) and (3.15) to bound the right-hand side of (3.24),
we deduce that, for some sequence (cj′ )j′ ≥ −1 such that

∑
j′ ≥ −1 cr

j′ (t) = 1 for
all t ∈ [0, T ], we have

6 In order to pass to the limit in f ivj and f i div v, we use the fact that strict
inequality has been assumed in the condition (3.12).
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‖f − Sjf ‖L∞
T (Bσ

p,r) ≤ C

(( ∑
j′ ≥j−1

(
2j′σ ‖Δj′ f0‖Lp

)r
) 1

r

+
∫ T

0

( ∑
j′ ≥j−1

(
2j′σ ‖Δj′ g(t)‖Lp

)r
) 1

r

dt

+‖f ‖L∞
T (Bσ

p,r)

∫ T

0

( ∑
j′ ≥j−1

cr
j′ (t)

) 1
r

V ′
p1

(t) dt

)
.

The first term clearly tends to zero when j goes to infinity. The terms in the
integrals also tend to zero for almost every t. Hence, by virtue of Lebesgue’s
dominated convergence theorem, ‖f − Sjf ‖L∞

T (Bσ
p,r) tends to zero when j goes

to infinity. This completes the proof that f ∈ C([0, T ]; Bσ
p,r) in the case r < ∞.

When r = ∞, we can use the embedding Bσ
p,∞ ↪→ Bσ′

p,1 for all σ′ < σ

and the previous argument applied to the space Bσ′

p,1 in order to show that f

belongs to C([0, T ]; Bσ′

p,1) for all σ′ < σ. As a matter of fact, we can also prove
that f ∈ Cw([0, T ]; Bσ

p,∞). Indeed, for fixed φ ∈ S(Rd) we write

〈f(t), φ〉 = 〈Sjf(t), φ〉 + 〈(Id − Sj)f, φ〉
= 〈Sjf(t), φ〉 + 〈f, (Id − Sj)φ〉.

Since f ∈ C([0, T ]; Bσ−1
p,∞ ), for all j ∈ N, the function t �→ 〈Sjf(t), φ〉 is con-

tinuous. Now, by duality (see Proposition 2.76), we have

| 〈f, (Id − Sj)φ〉| ≤ ‖f ‖Bσ
p,∞ ‖φ − Sjφ‖B−σ

p′ ,1
,

hence 〈f, (Id − Sj)φ〉 goes to 0 uniformly on [0, T ] when j tends to infinity. We
can thus conclude that t �→ 〈f(t), φ〉 is continuous. This completes the proof
of weak continuity in the case r = ∞. ��

Remark 3.20. Theorem 3.19 extends to the case of nonzero functions A with
sufficient regularity. Indeed, the above proof may be adapted to the case
where A may be approximated by a sequence of smooth functions An sat-
isfying the inequality (3.19). The obtained solution f is unique and satisfies
the regularity properties described in Theorem 3.19 and the inequality of Re-
mark 3.17.

The main point is that if An is smooth, then

∂tf
n + vn · ∇fn + An · fn = gn, fn

|t=0 = fn
0

has a unique smooth solution given by the formula

fn(t, x) = exp
(

−
∫ t

0

An(τ, ψτ (ψ−1
t (x))) dτ

)
·
[
fn
0 (ψ−1

t (x))

+
∫ t

0

exp
(∫ τ

0

An(τ ′, ψ′
τ (ψ−1

t (x))) dτ ′
)

· gn(τ, ψτ (ψ−1
t (x))) dτ

]
.
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3.2.4 Application to a Shallow Water Equation

The a priori estimates stated in Theorem 3.19 are a good starting point for
the study of equations of the type

∂tu + f(u) · ∇u = g(u).

As an example, we here solve a nonlinear one-dimensional shallow water equa-
tion which has recently received a lot of attention: the so-called Camassa–
Holm equation,

∂tu − ∂3
txxu + 3u ∂xu = 2∂xu ∂2

xxu + u ∂3
xxxu. (3.25)

Above, the scalar function u = u(t, x) stands for the fluid velocity at time
t ≥ 0 in the x direction. We assume that x belongs to R, but (as usual in this
book) similar results may be proven if x belongs to the circle.

We address the question of existence and uniqueness for the initial value
problem. For simplicity, we restrict ourselves to the evolution for positive
times. (We would get similar results for negative times: just change the initial
condition u0 to −u0.)

At this point, the reader may wonder which regularity assumptions are
relevant for u0 so that the initial value problem is well posed in the sense
of Hadamard [i.e., (3.25) has a unique local solution in a suitable functional
setting with continuity with respect to the initial data].

Note that applying the pseudodifferential operator (1 − ∂2
x)−1 to (3.25)

yields

(CH)
{

∂tu + u∂xu = P (D)
(
u2+ 1

2 (∂xu)2
)

u|t=0 = u0
with P (D) def= −∂x(1−∂2

x)−1.

Hence, the Camassa–Holm equation is nothing but a generalized Burgers equa-
tion with an additional nonlocal nonlinearity of order 0. In light of Proposi-
tion 3.19, we thus expect that having data in some subset E of the space C0,1

is a necessary condition for well-posedness. Moreover, as the solution u will
be in C([0, T ]; E) (a gain of regularity cannot be expected in a Burgers-like
equation), the application

G : u �→ P (D)
(
u2 + 1

2 (∂xu)2
)

should map E to E continuously.
If we restrict our attention to nonhomogeneous Besov spaces Bs

p,r, then
the condition E ⊂ C0,1 is equivalent to s > 1 + 1/p (or s ≥ 1 + 1/p, if
r = 1), and no further restrictions are needed for the continuity of the map
G (up to the endpoint r = 1, s = 1, p = ∞, which has to be avoided). We
shall see, however, that for proving uniqueness, our method requires that we
additionally have s > max(1 + 1/p, 3/2).
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Before stating our local existence result, we introduce the following func-
tion spaces:

Es
p,r(T ) def= C([0, T ]; Bs

p,r) ∩ C1([0, T ]; Bs−1
p,r ) if r < ∞,

Es
p,∞(T ) def= Cw(0, T ; Bs

p,∞) ∩ C0,1([0, T ]; Bs−1
p,∞)

with T > 0, s ∈ R, and 1 ≤ p, r ≤ ∞.

Theorem 3.21. Let 1 ≤ p, r ≤ ∞, s > max(3/2, 1 + 1/p), and u0 ∈ Bs
p,r.

There exists a time T > 0 such that (CH) has a unique solution u in Es
p,r(T ).

The proof relies heavily on the following lemma.

Lemma 3.22. Let 1 ≤ p, r ≤ ∞ and (σ1, σ2) ∈ R
2 be such that

Bσ2
p,r ↪→ C0,1, σ1 ≤ σ2, and σ1 + σ2 > 2 + max

{
0,

2
p

− 1
}

.

Then, B : (f, g) �→ P (D)
(
fg + 1

2∂xf ∂xg
)

maps Bσ1
p,r × Bσ2

p,r into Bσ1
p,r.

Proof. We note that P (D) is a multiplier of degree −1, in the sense of Propo-
sition 2.78. It hence suffices to prove that

H : (f, g) �→ fg + 1
2∂xf ∂xg

maps Bσ1
p,r × Bσ2

p,r into Bσ1−1
p,r .

The term fg is easy to handle, so we focus on the study of ∂xf∂xg. By
virtue of Bony’s decomposition, we have

∂xf∂xg = T∂xf∂xg + T∂xg∂xf + R(∂xf, ∂xg).

Proposition 2.82 ensures that the map (f, g) �→ T∂xf∂xg is continuous from
Bσ1

p,r × Bσ2
p,r to

– the space B
σ1+σ2−2− 1

p
p,r , if σ1 < 1 + 1

p ,

– the space Bσ2−1−ε
p,r for all ε > 0, if σ1 = 1 + 1

p and r > 1,

– the space Bσ2−1
p,r , if σ1 = 1 + 1

p and r = 1, or σ1 > 1 + 1
p .

According to our assumptions on σ1, σ2, p, and r, we thus can conclude
that (f, g) �→ T∂xf∂xg maps Bσ1

p,r × Bσ2
p,r into Bσ1−1

p,r . Since Bσ2−1
p,r is con-

tinuously included in L∞, Proposition 2.82 readily yields the continuity of
(f, g) �→ T∂xg∂xf from Bσ1

p,r × Bσ2
p,r to Bσ1−1

p,r . Finally, according to Proposi-

tion 2.85, the remainder term maps Bσ1
p,r × Bσ2

p,r into B
σ1+σ2−2− 1

p
p,r (and thus

to Bσ1−1
p,r ), provided that

σ1 + σ2 > 2 + max
{

0,
2
p

− 1
}
.

��
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Uniqueness in Theorem 3.21 is a straightforward corollary of the following
proposition.

Proposition 3.23. Let 1 ≤ p, r ≤ ∞ and s > max(1 + 1/p, 3/2). Suppose
that we are given

(u, v) ∈
(
L∞([0, T ]; Bs

p,r) ∩ C([0, T ]; Bs−1
p,r )

)2
,

two solutions of (CH) with initial data u0, v0 ∈ Bs
p,r. We then have, for every

t ∈ [0, T ] and some constant C, depending only on s, p, and r,

‖u(t) − v(t)‖Bs−1
p,r

≤ ‖u0 − v0‖Bs−1
p,r

exp
(
C

∫ t

0

(
‖u(t′)‖Bs

p,r
+ ‖v(t′)‖Bs

p,r

)
dt′

)
.

Proof. It is obvious that w
def= v − u solves the transport equation

∂tw + u∂xw = −w∂xv + B(w, u+v).

According to Theorem 3.14, the following inequality holds true:

‖w(t)‖Bs−1
p,r

≤ ‖w0‖Bs−1
p,r

e
C

∫ t
0 ‖∂xu‖

B
s−1
p,r

dt′ ′

+ C

∫ t

0

e
C

∫ t
t′ ‖∂xu‖

B
s−1
p,r

dt′ ′

×
(

‖w∂xv‖Bs−1
p,r

+ ‖B(w, u+v)‖Bs−1
p,r

)
dt′. (3.26)

Since s > max{ 3
2 , 1 + 1

p }, we have, according to Lemma 3.22 and the product
laws in Besov spaces,

‖B(w, u+v)‖Bs−1
p,r

≤ C‖w‖Bs−1
p,r

(
‖u‖Bs

p,r
+ ‖v‖Bs

p,r

)
.

Plugging this last inequality into (3.26) and applying the Gronwall lemma
completes the proof. ��

In order to prove the existence of a solution for (CH), we shall proceed as
follows:

– First, we construct approximate solutions of (CH) which are smooth so-
lutions of some linear transport equation.

– Second, we find a positive T for which those approximate solutions are
uniformly bounded in Es

p,r(T ).
– Third, we prove that the sequence of approximate solutions is a Cauchy

sequence in some superspace of Es
p,r(T ).

– Finally, we check that the limit is indeed a solution and has the desired
regularity.
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First Step: Constructing Approximate Solutions

Starting from u0 def= 0 we define by induction a sequence (un)n∈N of smooth
functions by solving the following linear transport equation:

(Tn)

{
(∂t + un∂x)un+1 = P (D)

(
(un)2 + 1

2 (∂xun)2
)

un+1
|t=0 = u0.

Assuming that un ∈ Es
p,r(T ) for all positive T, Lemma 3.22 guarantees that

the right-hand side of the equation (Tn) is in L∞
loc(R

+; Bs
p,r). Hence, applying

Theorem 3.19 ensures that (Tn) has a global solution un+1 which belongs to
Es

p,r(T ) for all positive T.

Second Step: Uniform Bounds

We define Un def=
∫ t

0

‖un(t′)‖Bs
p,r

dt′. According to Theorem 3.19 and Lemma

3.22, we have the following inequality for all n ∈ N:

‖un+1(t)‖Bs
p,r

≤ eCUn(t)

(
‖u0‖Bs

p,r
+ C

∫ t

0

e−CUn(t′)‖un(t′)‖2
Bs

p,r
dt′

)
. (3.27)

We fix a T > 0 such that 2C‖u0‖Bs
p,r

T < 1 and suppose that

∀t ∈ [0, T ], ‖un(t)‖Bs
p,r

≤
‖u0‖Bs

p,r

1 − 2Ct‖u0‖Bs
p,r

· (3.28)

Plugging (3.28) into (3.27) yields

‖un+1(t)‖Bs
p,r

≤ (1−2Ct‖u0‖Bs
p,r

)− 1
2

(
‖u0‖Bs

p,r

+C‖u0‖2
Bs

p,r

∫ t

0

dt′

(1−2Ct‖u0‖Bs
p,r

)
3
2

)

≤
‖u0‖Bs

p,r

1−2Ct‖u0‖Bs
p,r

·

Therefore, (un)n∈N is bounded in L∞([0, T ]; Bs
p,r). This clearly entails that

un∂xun is bounded in L∞([0, T ]; Bs−1
p,r ). As the right-hand side of (Tn) is

bounded in L∞([0, T ]; Bs
p,r), we can conclude that the sequence (un)n∈N is

bounded in Es
p,r(T ).

Third Step: Convergence

We are going to show that (un)n∈N is a Cauchy sequence in C([0, T ]; Bs−1
p,r ).

For that purpose, we note that for all (m, n) ∈ N
2, we have
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(∂t +un+m∂x)(un+m+1−un+1) = (un − un+m)∂xun+1 + B(un+m−un, un+m+un).

Applying Theorem 3.19 and Lemma 3.22, and using the fact that Bs−1
p,r is an

algebra yields, for any t in [0, T ],

‖(un+m+1 −un+1)(t)‖Bs−1
p,r

≤ CeCUn+m(t)

×
∫ t

0

e−CUn+m(t′)‖un+m − un‖Bs−1
p,r

(
‖un‖Bs

p,r
+ ‖un+1‖Bs

p,r
+ ‖un+m‖Bs

p,r

)
dt′.

Since (un)n∈N is bounded in Es
p,r(T ), we finally get a constant CT , indepen-

dent of n and m, and such that for all t in [0, T ], we have

‖(un+m+1 − un+1)(t)‖Bs−1
p,r

≤ CT

∫ t

0

‖(un+m − un)(t′)‖Bs−1
p,r

dt′.

Hence, arguing by induction, we get

‖un+m+1 − un+1‖L∞
T (Bs−1

p,r ) ≤ (TCT )n+1

(n + 1)!
‖um‖L∞

T (Bs
p,r).

As ‖um‖L∞
T (Bs

p,r) may be bounded independently of m, we can now guarantee
the existence of some new constant C ′

T such that

‖un+m − un‖L∞
T (Bs−1

p,r ) ≤ C ′
T 2−n.

Hence, (un)n∈N is a Cauchy sequence in C([0, T ]; Bs−1
p,r ) and converges to some

limit function u ∈ C([0, T ]; Bs−1
p,r ).

Final Step: Conclusion

We have to check that u belongs to Es
p,r(T ) and satisfies (CH). Since (un)n∈N

is bounded in L∞([0, T ]; Bs
p,r), the Fatou property for Besov spaces guarantees

that u also belongs to L∞([0, T ]; Bs
p,r). Now, as (un)n∈N converges to u in

C([0, T ]; Bs−1
p,r ), an interpolation argument ensures that convergence actually

holds true in C([0, T ]; Bs′

p,r) for any s′ < s. It is then easy to pass to the limit
in (Tn) and to conclude that u is indeed a solution of (CH).

Finally, because u belongs to L∞([0, T ]; Bs
p,r), the right-hand side of the

equation
∂tu + u∂xu = P (D)(u2 + 1

2 (∂xu)2)

also belongs to L∞([0, T ]; Bs
p,r). Hence, according to Theorem 3.19, the func-

tion u belongs to C([0, T ]; Bs
p,r) (resp., Cw([0, T ]; Bs

p,r)) if r < ∞ (resp.,
r = ∞). Again using the equation, we see that ∂tu is in C([0, T ]; Bs−1

p,r ) if
r is finite, and in L∞([0, T ]; Bs−1

p,r ) otherwise, so u belongs to Es
p,r(T ).
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Remark 3.24. If v0 belongs to a small neighborhood of u0 in Bs
p,r, then the

arguments above give the existence of a solution v ∈ Es
p,r(T ) of (CH) with ini-

tial data v0. Proposition 3.23, combined with an obvious interpolation, ensures
continuity with respect to the initial data in C([0, T ]; Bs′

p,r) ∩ C1([0, T ]; Bs′ −1
p,r )

for any s′ < s. In fact, continuity holds up to exponent s whenever r is finite.
This may be proven by adapting the method presented in Section 4.5.

Finally, we state a blow-up criterion for (CH). In what follows, we define the
lifespan T �

u0
of the solution u of (CH) with initial data u0 as the supremum

of positive times T such that (CH) has a solution u ∈ Es
p,r(T ) on [0, T ] × R .

We have the following result.

Theorem 3.25. Let u0 be as in Theorem 3.21 and u the corresponding solu-
tion. If T �

u0
is finite, then we have

∫ T �
u0

0

‖∂xu(t′)‖L∞ dt′ = ∞ and
∫ T �

u0

0

‖u(t′)‖B1
∞,∞

dt′ = ∞.

The proof is based on the following lemma.

Lemma 3.26. Let 1 ≤ p, r ≤ ∞ and s > 1. Let u ∈ L∞([0, T ]; Bs
p,r) solve

(CH) on [0, T [× R with u0 ∈ Bs
p,r as initial data. There exist a constant

C, depending only on s and p, and a universal constant C ′ such that for all
t ∈ [0, T [, we have

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

eC
∫ t
0 ‖u(t′)‖C0,1 dt′

, (3.29)

‖u(t)‖C0,1 ≤ ‖u0‖C0,1eC′ ∫ t
0 ‖∂xu(t′)‖

L∞ dt′
. (3.30)

Proof. Applying the last part of Theorem 3.14 to (CH) and using the fact
that P (D) is a multiplier of order −1 yields

e−C
∫ t
0 ‖∂xu‖L∞ dt′

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

+ C

∫ t

0

e−C
∫ t′
0 ‖∂xu‖L∞ dt′ ′

(
‖u2‖Bs−1

p,r
+ ‖(∂xu)2‖Bs−1

p,r

)
dt′.

As s − 1 > 0, we have

‖u2‖Bs−1
p,r

+ ‖(∂xu)2‖Bs−1
p,r

≤ C‖u‖C0,1 ‖u‖Bs
p,r

.

Therefore,

e−C
∫ t
0 ‖∂xu‖L∞ dt′

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

+ C

∫ t

0

e−C
∫ t′
0 ‖∂xu‖L∞ dt′ ′

‖u‖Bs
p,r

‖u‖C0,1 dt′.

Applying the Gronwall lemma completes the proof of (3.29).
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By differentiating equation (CH) once with respect to x and applying the
L∞ estimate for transport equations, we get

e−
∫ t
0 ‖∂xu‖L∞ dt′

‖u(t)‖C0,1 ≤ ‖u0‖C0,1

+
∫ t

0

e−
∫ t′
0 ‖∂xu‖L∞ dt′

‖P (D)
(
u2 + 1

2 (∂xu)2
)
(t′)‖C0,1 dt′.

Now, by using the fact that the operator (1−∂2
xx)−1 coincides with convolution

by the function x �→ 1
2e− |x|, it may be easily proven that for some universal

constant C ′, we have

‖P (D)
(
u2 + 1

2 (∂xu)2
)

‖C0,1 ≤ C ′ ‖u‖C0,1 ‖∂xu‖L∞ .

Hence, the Gronwall lemma gives the inequality (3.30). ��

Proof of Theorem 3.25. Let u ∈
⋂

T<T � Es
p,r(T ). We want to show that if

∫ T �

0

‖∂xu(t′)‖L∞ dt′ < ∞,

then no blow-up occurs at time T.

According to the inequality (3.30),
∫ T �

0

‖u(t′)‖C0,1 dt′ is also finite. There-

fore, the inequality (3.29) ensures that

∀t ∈ [0, T �[, ‖u(t)‖Bs
p,r

≤ MT �
def= ‖u0‖Bs

p,r
eC

∫ T �

0 ‖u(t′)‖C0,1 dt′
< ∞. (3.31)

Let ε > 0 be such that 2C2εMT � < 1, where C is the constant used in the proof
of Theorem 3.19. We then have a solution ũ ∈ Es

p,r(ε) of (CH) with initial
data u(T � −ε/2). By uniqueness, we have ũ(t) = u(t + T � − ε/2) on [0, ε/2[
so that ũ extends the solution u beyond T �. We conclude that T � < T �

u0
.

We can now conclude that if T �
u0

is finite, then we must have

∫ T �
u0

0

‖u(t′)‖B1
∞,∞

dt′ = ∞.

This simply follows from the logarithmic interpolation inequality

‖u‖C0,1 ≤ C
(
1 + ‖u‖B1

∞,∞
log

(
e + ‖u‖Bs

p,r

))
, (3.32)

which holds true whenever s > 1 + 1/p and which may be deduced from

Proposition 2.104 combined with the embedding Bs−1
p,1 ↪→ B

s−1− 1
p

∞,∞ .
Now, plugging (3.32) into (3.31), we get

‖u(t)‖Bs
p,r

≤ ‖u0‖Bs
p,r

eCt exp
(
C

∫ t

0

‖u‖B1
∞,∞

log(e + ‖u‖Bs
p,r

) dt′
)
.
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Therefore, easy calculations lead to

log
(
e+‖u(t)‖Bs

p,r

)
≤ log

(
e+‖u0‖Bs

p,r

)
+Ct+C

∫ t

0

‖u‖B1
∞,∞

log
(
e+‖u‖Bs

p,r

)
dt′.

The Gronwall lemma thus yields

log
(
e + ‖u(t)‖Bs

p,r

)
≤

(
log

(
e + ‖u0‖Bs

p,r

)
+ Ct

)
e

C
∫ t
0 ‖u‖B1∞,∞

dt′

.

Therefore,
∫ T

0

‖u‖B1
∞,∞

dt < ∞ implies that u ∈ L∞([0, T ]; Bs
p,r). Arguing as

above completes the proof of Theorem 3.25. ��

Remark 3.27. The fact that ‖∂xu‖L∞ may be replaced by the weaker norm
‖∂xu‖B0

∞,∞
is not particularly sensitive to the structure of the equation. In

fact, a similar criterion may be stated for the incompressible Euler equations
(see Chapter 7) and for quasilinear symmetric systems (see Chapter 4).

3.3 Losing Estimates for Transport Equations

In this section, we consider transport equations associated with vector fields
which are not Lipschitz with respect to the space variable. Since we still intend
to obtain regularity theorems, those vector fields cannot be too rough. The
minimal requirement seems to be that the vector field v is log-Lipschitz, in
the sense of Definition 2.106. We shall see that if v is not Lipschitz, then
loss of regularity may occur, going from linear loss of regularity to arbitrarily
small loss of regularity, depending on how far from Lipschitz v is. In order to
precisely measure the regularity of the vector field v, we shall introduce the
following notation, used throughout this section:

V ′
p1,α(t) def= sup

j≥0

2j d
p1 ‖∇Sjv(t)‖Lp1

(j + 1)α
< ∞. (3.33)

We note that if p1 = ∞, then V ′
p1,α(t) is exactly the norm ‖ · ‖BΓ

of
Definition 2.110 page 117 in the case where Γ (r) = (log r)α.

Those results have many applications in problems related to fluid mechan-
ics (see Chapter 7 and the last part of this section).

3.3.1 Linear Loss of Regularity in Besov Spaces

This section is devoted to the statement of estimates with linear loss of reg-
ularity. Recall that, according to Proposition 2.111, v is log-Lipschitz if and
only if there exists some constant C such that

‖∇Sju‖L∞ ≤ C(j + 1) for all j ≥ −1.

This motivates the following statement.
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Theorem 3.28. Let 1 ≤ p ≤ p1 ≤ ∞ and suppose that s1 ∈ R satisfies (3.12).
Let σ be in

]
s1, 1 + d

p1

[
and v be a vector field. There then exists a constant

C, depending only on p, p1, σ, s1, and d, such that for any λ > C, T > 0, and
any nonnegative integrable function W over [0, T ] such that σT ≥ s1 with

σt
def
= σ − λ

∫ t

0

(
V ′

p1,1(t
′) + W (t′)

)
dt′,

the following property holds true.
Let f0 ∈ Bσ

p,∞ and g = g1 + g2 with, for all t ∈ [0, T ], g1(t) ∈ Bσt
p,∞, and

∀j ≥ −1, ‖Δjg2(t)‖Lp ≤ 2−jσt(j + 2)W (t)‖f(t)‖B
σt
p,∞ .

Let f ∈ C([0, T ]; Bs1
p,∞) be a solution of (T ) with A ≡ 0 such that f(t) ∈ Bσt

p,∞
for all t ∈ [0, T ]. The following estimate then holds:

sup
t∈[0,T ]

‖f(t)‖B
σt
p,∞ ≤ λ

λ − C

(
‖f0‖Bσ

p,∞ +
∫ T

0

‖g1(t)‖B
σt
p,∞ dt

)
.

Proof. Applying the operator Δj to the equation (T ), we see that for all
j ≥ −1, the function Δjf is a solution of

(Tj)

{
∂tfj + Sj+1v · ∇fj = Δjg − R̃j

fj |t=0 = Δjf0

with R̃j
def= Δj(v · ∇f) − Sj+1v · ∇Δjf.

We shall now temporarily assume the following result.

Lemma 3.29. Let σ ∈ R, α ≥ 0, and 1 ≤ p ≤ p1 ≤ ∞. Assume that (3.12)
is satisfied and that σ < 1 + d

p1
. There then exists a constant C, depending

continuously on p, p1, σ, and d, such that

sup
j≥ −1

2jσ
∥∥R̃j

∥∥
Lp ≤ C(j+2)α V ′

p1,α(t) ‖f(t)‖Bσ
p,∞ .

The proof of the theorem is now easy. Indeed, as Δjf is a solution of (Tj), we
have

Δjf(t, x) = Δjf0(ψ−1
j (t, x)) +

∫ t

0

Δjg(t′, ψj(t′, ψ−1
j (t, x))) dt′

−
∫ t

0

R̃j(t′, ψj(t′, ψ−1
j (t, x))) dt′,

where we have denoted by ψj the flow of the vector field Sj+1v.
From inequality (3.6) and the Bernstein inequality, we get

sup
x∈Rd

| det Dxψj(t′, ψ−1
j (t, x))| −1 ≤ 2C(2+j)

∫ t
t′ V ′

p1,1(t
′ ′) dt′ ′

.
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We deduce that

‖Δjf(t)‖Lp ≤ ‖Δjf0‖Lp2C(2+j)Vp1,1(t)

+
∫ t

0

‖Δjg1(t′)‖Lp2C(2+j)
∫ t
t′ V ′

p1,1(t
′ ′) dt′ ′

dt′

+C

∫ t

0

(2+j)(V ′
p1,1+W )(t′)2(2+j)(C

∫ t
t′ V ′

p1,1(t
′ ′) dt′ ′ −σt′ )‖f(t′)‖

B
σ

t′
p,∞

dt′.

Next, we multiply the above inequality by 2(2+j)σt and take the �∞ norm of
both sides. As

σt = σt′ − λ

∫ t

t′
(V ′

p1,1(t
′ ′) + W )(t′ ′) dt′ ′,

we get

‖f(t)‖B
σt
p,∞ ≤ ‖f0‖Bσ

p,∞ +
∫ t

0

‖g1(t′)‖
B

σ
t′

p,∞
dt′

+C

∫ t

0

(2 + j)
(
V ′

p1,1+W
)
(t′)2(2+j)(C−λ)

∫ t
t′ (V

′
p1,1+W )(t′ ′) dt′ ′

‖f(t′)‖
B

σ
t′

p,∞
dt′.

Straightforward calculations show that the second integral in the above in-
equality is bounded by

C

(λ−C) log 2
sup

t∈[0,T ]

‖f(t)‖B
σt
p,∞ .

Therefore, changing C if necessary, we get, for any λ > C,

‖f(t)‖B
σt
p,∞ ≤ ‖f0‖Bs

p,∞ +
∫ t

0

‖g1(t′)‖
B

σ
t′

p,∞
dt′ +

C

λ − C
sup

t∈[0,T ]

‖f(t)‖B
σt
p,∞ ,

which leads to the theorem. ��

Proof of Lemma 3.29. It suffices to observe that

R̃j = [Δj , Sj+1v] · ∇f + Δj

(
(v − Sj+1v) · ∇f

)
.

Now, on the one hand, we have, according to Lemma 2.100 page 112,

sup
j≥ −1

2jσ ‖[Δj , Sj+1v] · ∇f ‖Lp ≤ C‖ ∇Sj+1v‖
B

d
p1
p1,∞ ∩L∞

‖f ‖Bσ
p,∞

≤ C(j+2)α V ′
p1,α ‖f ‖Bσ

p,∞ .

On the other hand, we have (with the summation convention)

Δj

(
(v − Sj+1v) · ∇f

)
= ΔjTvi −Sj+1vi∂if︸ ︷︷ ︸

R̃1
j

+ ∂iΔjR(vi − Sj+1v
i, f)︸ ︷︷ ︸

R̃2
j

+R(Sj+1 div v − div v, f)︸ ︷︷ ︸
R̃3

j

+T∂if (vi − Sj+1v
i)︸ ︷︷ ︸

R̃4
j

.
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Continuity results for the paraproduct (see Proposition 2.82) ensure that

2jσ ‖R̃1
j ‖Lp ≤ C2j ‖v − Sj+1v‖L∞ ‖f ‖Bσ

p,∞ for all j ≥ −1.

Now, observing that

‖v − Sj+1v‖L∞ ≤ C
∑
j′>j

2−j′
‖ ∇Δj′ v‖L∞

≤ C
∑
j′ ≥j

2−j′
2j′ d

p1 ‖∇Sj′+1v‖Lp1

≤ CV ′
p1,α

∑
j′ ≥j

2−j′
(2 + j′)α

≤ CV ′
p1,α(2 + j)α2−j ,

we get the desired inequality for R̃1
j .

Next, setting 1/p2 = 1/p + 1/p1 and Δ̃j = Δj−1 + Δj + Δj+1, we have,
if 1/p + 1/p1 ≤ 1,

2j(σ+ d
p1

)‖R̃2
j ‖Lp2 ≤ C2j(1+σ+ d

p1
)
∑
j′ ≥j

‖Δj′ (Id −Sj+1)v‖Lp1 ‖Δ̃j′ f ‖Lp

≤ C
∑
j′ ≥j

2(j−j′)(σ+1+ d
p1

) 2j′ d
p1 ‖Δj′ ∇v‖Lp1 2j′σ ‖Δ̃j′ f ‖Lp

≤ CV ′
p1,α

(
(j+2)α

∑
j′ ≥j

2(j−j′)(σ+1+ d
p1

) 2j′σ ‖Δ̃j′ f ‖Lp

+
∑
j′ ≥j

(j′ −j)α2(j−j′)(σ+1+ d
p1

) 2j′σ ‖Δ̃j′ f ‖Lp

)

≤ CV ′
p1,α(2 + j)α2−jσ ‖f ‖Bσ

p,∞ .

Hence, taking advantage of the Bernstein inequality, we get

‖R̃2
j ‖Lp ≤ C(2 + j)α2−jσV ′

p1,α‖f ‖Bσ
p,∞ if σ + 1 + d

p1
> 0. (3.34)

In the case where 1/p + 1/p1 > 1, we replace p1 with p′ in the above compu-
tations and we still get (3.34), provided σ + 1 + d

p′ > 0.

A similar bound may be proven for R̃3
j if σ > −d min( 1

p1
, 1

p′ ). Finally, we
note that

R̃4
j = −

∑
|j′ −j|≤4
j′ ′ ≤j′ −2

Δj

(
Δj′ ′ ∂ifΔj′ (vi − Sj+1v

i)
)
.

Therefore, writing 1/p3 = 1/p − 1/p1, we have

2jσ ‖R̃4
j ‖Lp ≤ C

∑
|j′ −j|≤4
j′ ′ ≤j′ −2

2jσ ‖Δj′ ′ ∂if ‖Lp3

∥∥Δj′ (vi − Sj+1v
i)
∥∥

Lp1
.
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Because, for j ≥ −1, the function F
(
v − Sj+1v

)
is supported away from 0, we

can write, thanks to Lemma 2.1,

‖v − Sj+1v‖Lp1 ≤ C
∑
j′>j

2−j′
‖ ∇Δj′ v‖Lp1

≤ CV ′
p1,α

∑
j′ ≥j

(j′ + 2)α2−j′(1+ d
p1

)

≤ CV ′
p1,α(j + 2)α2−j(1+ d

p1
).

Hence, as σ < 1 + d/p1, we conclude that

2jσ ‖R̃4
j ‖Lp ≤ CV ′

p1,α(j + 2)α‖f ‖Bσ
p,∞ .

This completes the proof of the lemma. ��

3.3.2 The Exponential Loss

In this section, we give an example of a global result with exponential loss of
regularity for transport equations. Before stating our main result, we have to
introduce some new function spaces.

Definition 3.30. Let p ∈ [1, ∞] and s ∈ ]0, 1[. We denote by F s
p the space of

functions u in Lp(Rd) such that for any couple (x, x′) ∈ R
d × R

d,

|u(x) − u(x′)|
|x − x′ |s ≤ U(x) + U(x′) (3.35)

for some function U in Lp(Rd).

Endowed with the norm

‖u‖F s
p

= ‖u‖Lp + inf
{

‖U ‖Lp , U satisfying (3.35)
}
,

the space F s
p is complete. In the case p > 1, it may be proven that F s

p belongs
to the family of so-called Triebel–Lizorkin spaces (in fact, F s

p = F s
p,∞) and

that Bs
p,1 ↪→ F s

p ↪→ Bs
p,∞.

In the present section, we shall just use the following, easy, lemma.

Lemma 3.31. For all p ∈ [1, ∞] and s ∈ ]0, 1[, the space F s
p is continuously

embedded in Bs
p,∞.

Proof. It suffices to use the characterization of Bs
p,∞ in terms of finite dif-

ferences. Indeed, since Bs
p,∞ = Lp ∩ Ḃs

p,∞, Theorem 2.36 page 74 guarantees
that

‖u‖Bs
p,∞ ≈ ‖u‖Lp + sup

0<|h|<1

|h| −s‖τhu − u‖Lp .

Now, if u belongs to F s
p , we have, for all (x, h) ∈ R

d,

|u(x − h) − u(x)| ≤
(
U(x − h) + U(x)

)
|h|s with U ∈ Lp.

This obviously ensures that sup0<|h|<1 |h| −s‖τhu − u‖Lp is finite. ��
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Theorem 3.32. Let s ∈ ]0, 1[ and let v be a divergence-free, time-dependent
vector field with coefficients in L1

loc(R
+; LL). Let

σ(s, t)
def
= s exp(−VLL(t)) with VLL(t)

def
=

∫ t

0

‖v(t′)‖LL dt′,

with ‖ · ‖LL as defined on page 116. Let f0 be in F s
p and g be such that the

function t �→ ‖g(t)‖
F

σ(s,t)
p

belongs to L1
loc(R

+).
There then exists a unique solution of (T ) with A ≡ 0 such that t �→

‖f(t)‖
F

σ(s,t)
p

belongs to L∞
loc(R

+).

Proof. We consider a sequence (vn)n∈N of smooth, bounded, divergence-free
vector fields satisfying

‖vn(t)‖LL ≤ ‖v(t)‖LL and lim
n→∞

vn = v in L1
loc

(
R

+; L∞)
.

Let fn be the solution of the equation
{

∂tfn + vn · ∇fn = g
fn|t=0 = f0.

Denoting by ψn the flow of vn, we may write

fn(t, x) = f0(ψ−1
n (t, x)) +

∫ t

0

g
(
t′, ψn(t′, ψ−1

n (t, x))
)
dt′. (3.36)

In the light of Theorem 3.7, the problem reduces to the study of how the right
composition by a C0,α measure-preserving homeomorphism operates on F s

p .
Let θ be such a homeomorphism and u be in F s

p . For |x − x′ | ≤ 1, we have,
with the notation of Definition 3.30,

|u(θ(x)) − u(θ(x′))|
|x − x′ |sα

≤ |u(θ(x)) − u(θ(x′))|
|θ(x) − θ(x′)|s

|θ(x) − θ(x′)|s
|x − x′ |sα

≤ ‖θ‖s
C0,α

(
U(θ(x)) + U(θ(x′))

)
.

As θ preserves the measure, we thus have

‖u ◦ θ‖F sα
p

≤ (1 + ‖θ‖s
C0,α)‖u‖F s

p
.

Applying the above inequality at each time to (3.36), we get, for some non-
decreasing locally bounded function A,

‖fn(t)‖
F

σ(s,t)
p

≤ A(t)
(

‖f0‖F s
p

+
∫ t

0

‖g(τ)‖
F

σ(s,τ)
p

dτ

)
. (3.37)

Therefore, the sequence (‖fn(t)‖
F

σ(s,t)
p

)n∈N is bounded in L∞
loc(R

+).
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We shall now prove that (fn)n∈N is a Cauchy sequence in some Besov space
with negative index. For that, we shall take advantage of Theorem 3.28. For
all (m, n) ∈ N

2, we have
{

∂t(fn − fm) + div((fn − fm)vn) = div
(
fm(vm − vn)

)
(fn − fm)|t=0 = 0.

Fix T > 0 and set
sT =

s

2
exp(−VLL(t)).

For sufficiently large λ, let

σt
def= sT − 1 − λVLL(t).

Applying Theorem 3.28 with s1 = sT /2, g1
def= (vm − vn) · ∇fm, and g2

def= 0,
we get, for any t such that σt ≥ s1 − 1,

‖(fn − fm)(t)‖B
σt
p,∞ ≤ CT

∫ t

0

‖
(
(vm − vn) · ∇fm

)
(t′)‖

B
σ

t′
p,∞

dt′.

However, owing to Theorems 2.82 and 2.85, we have

‖Tvi
m −vi

n
∂ifm‖

B
−1+sT
p,∞

≤ CT ‖vm − vn‖L∞ ‖fm‖B
sT
p,∞

,

‖T∂ifm(vi
m − vi

n)‖
B

−1+sT
p,∞

≤ CT ‖vm − vn‖L∞ ‖fm‖B
sT
p,∞

,

‖∂iR(vi
m − vi

n, fm)‖
B

−1+sT
p,∞

≤ CT ‖vm − vn‖L∞ ‖fm‖B
sT
p,∞

.

Because F sT
p ↪→ BsT

p,∞ and (3.37) is satisfied, we find that the sequence (fn)n∈N

belongs to the space L∞([0, T ]; BsT
p,∞). Hence, for any t ∈ [0, T ] such that

σt ≥ s1 − 1, we have

‖
(
(vm − vn) · ∇fm

)
(t′)‖

B
σ

t′
p,∞

≤ CT ‖(vn − vm)(t′)‖L∞ .

Therefore, for small enough T0, the sequence (fn)n∈N satisfies the Cauchy cri-
terion in the space C([0, T0]; B

sT /2−1
p,∞ ). This proves the theorem on the interval

[0, T0]. Note that the argument may be applied again, starting from T0. After
a finite number of steps, we finally prove convergence on [0, T ]. Since T has
been fixed arbitrarily, we end up with a global existence result. ��

3.3.3 Limited Loss of Regularity

In this section, we make the assumption that there exists some α ∈ ]0, 1[ such
that the function V ′

p1,α defined in (3.33) is locally integrable.
Recall that in the limit case α = 0 (treated in Theorem 3.14), there is no

loss of regularity and that if α = 1, then a linear loss of regularity may occur
(see Theorem 3.28). In the theorem below, we state that if α ∈ ]0, 1[, then the
loss of regularity in the estimates is arbitrarily small.
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Theorem 3.33. Let (p, p1) be in [1, ∞]2 such that 1 ≤ p ≤ p1 and suppose
that σ satisfies (3.12). Assume that σ is less than 1 + d

p1
and that V ′

p1,α is in

L1([0, T ]) for some α ∈ ]0, 1[. Let f0 be in Bσ
p,∞ and g be in L̃1

T (Bσ
p,∞). The

equation (T ) with A ≡ 0 then has a unique solution f in C([0, T ];
⋂

σ′<σ Bσ′

p,∞),
and the following estimate holds for all small enough ε:

‖f ‖L̃∞
T (Bσ−ε

p,∞) ≤ C
(

‖f0‖Bσ
p,∞ + ‖g‖L̃1

T (Bσ
p,∞)

)
exp

(
C

ε
α

1−α

(
Vp1,α(T )

) 1
1−α

)
,

where C depends only on α, p, p1, σ, and d.

Remark 3.34. Theorem 3.33 applies with α = 1 − 1/r whenever ∇v belongs

to L1
T (B

d
p1
p1,r).

Proof. We focus on the proof of the a priori estimate. Existence may be ob-
tained by arguing as in Theorem 3.32.

Fix a small enough ε and let η > 0 satisfy ε = ηVp1,α(T ). We define, for t
in [0, T ],

σt
def= σ − ηVp1,α(t).

Following the lines of the proof of Theorem 3.28, we now get

2(2+j)σt ‖Δjf(t)‖Lp ≤ 2(2+j)σ ‖Δjf0‖Lp2−η(2+j)Vp1,α(t)

+
∫ t

0

2(2+j)σt′ ‖Δjg(t′)‖Lp2−η(2+j)
∫ t
t′ V ′

p1,α(t′ ′) dt′ ′
dt′

+C

∫ t

0

(2 + j)αV ′
p1,α(t′)2−η(2+j)

∫ t
t′ V ′

p1,α(t′ ′) dt′ ′
‖f(t′)‖

B
σ

t′
p,∞

dt′.

On the one hand, if j is so large as to satisfy

2 + j ≥
(

2C

η log 2

) 1
1−α

, (3.38)

then we have

C

∫ t

0

(2 + j)αV ′
p1,α(t′)2−η(2+j)

∫ t
t′ V ′

p1,α(t′ ′) dt′ ′
dt′ ≤ 1

2
,

from which it follows that

2(2+j)σt ‖Δjf(t)‖Lp ≤ 2(2+j)σ ‖Δjf0‖Lp

+
∫ t

0

2(2+j)σt′ ‖Δjg(t′)‖Lp dt′ +
1
2

sup
t′ ∈[0,t]

‖f(t′)‖
B

σ
t′

p,∞
.

On the other hand, if (3.38) is not satisfied, then we can write
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2(2+j)σt ‖Δjf(t)‖Lp ≤ 2(2+j)σ ‖Δjf0‖Lp

+
∫ t

0

2(2+j)σt′ ‖Δjg(t′)‖Lp dt′ + C

(
2C

η log 2

) α
1−α

∫ t

0

V ′
p1,α(t′)‖f(t′)‖

B
σ

t′
p,∞

dt′.

Combining these two inequalities and using the fact that σt′ ≤ σ for t′ ∈ [0, T ],
we deduce that

sup
t′ ∈[0,t]

‖f(t′)‖
B

σ
t′

p,∞
≤ 2‖f0‖Bσ

p,∞+2‖g‖L̃1
t (Bσ

p,∞)+Cη
α

α−1

∫ t

0

V ′
p1,α(t′)‖f(t′)‖

B
σ

t′
p,∞

dt′,

from which it follows, according to the Gronwall lemma, that

sup
t′ ∈[0,t]

‖f(t′)‖
B

σ
t′

p,∞
≤ 2eCη

α
α−1

∫ t
0 V ′

p1,α(t′) dt′(
‖f0‖Bσ

p,∞ + ‖g‖L̃1
t (Bσ

p,∞)

)
.

Taking t = T and using the definition of η completes the proof. Indeed, we
obviously have σt ≥ σ − ε for all t ∈ [0, T ]. ��

Remark 3.35. The estimate stated in Theorem 3.33 may be generalized to the
case where a small loss of regularity occurs in the source term. More precisely,
if g = g1 + g2 with g1 ∈ L̃1

T (Bσ
p,∞) and if, for some integrable function W, we

have, for all t ∈ [0, T ],

∀j ≥ −1, ∀σ′ ∈ ]σ − ε, σ[, ‖Δjg2(t)‖Lp ≤ 2−jσ′
(j + 2)αW (t)‖f(t)‖Bσ′

p,r
,

then the following estimate holds:

‖f ‖L̃∞
T (Bσ−ε

p,∞) ≤ C
(

‖f0‖Bσ
p,∞ + ‖g1‖L̃1

T (Bσ
p,∞)

)

× exp
(

C

ε
α

1−α

(∫ T

0

(V ′
p1,α(t) + W )(t) dt

) 1
1−α

)
.

3.3.4 A Few Applications

Theorem 3.28 will help us to prove uniqueness for the incompressible Eu-
ler system with minimal regularity assumptions. The reader is referred to
Chapter 7 for more details. It may also be used to establish the global well-
posedness of the density-dependent incompressible Navier–Stokes equations
in the two-dimensional case (see the last section of this chapter).

In this subsection, we shall use Theorem 3.28 to obtain the following
uniqueness result for linear transport equations.

Theorem 3.36. Let v be a divergence-free vector field in L1
loc(R

+; LL(Rd)).
Consider a distribution g in L1

loc(R
+; M) and a measure7f0 of M. There

exists a unique solution of
7 Recall that M denotes the set of bounded measures on R

d.
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(T )
{

∂tf + div(fv) = g
f|t=0 = f0

in the space L∞
loc(R

+; M).

Proof. To prove existence, it suffices to smooth out the data and the vector
field v. More precisely, let (vn)n∈N be a sequence of C ∞

b vector fields with null
divergence, uniformly bounded in the space L1

loc(R
+; LL) and such that

lim
n→∞

vn = v in L1
loc(R

+, Bε
∞,∞) for all ε < 1.

Also, consider a bounded sequence of functions (f0,n)n∈N in S satisfying

lim
n→∞

f0,n = f0 in M.

Finally, take a bounded sequence (gn)n∈N in L1
loc(R

+; L1) such that

lim
n→∞

gn = g in L1
loc(R

+; M).

Let fn be the solution of {
∂tfn + vn · ∇fn = gn

fn|t=0 = f0,n.

It is clear that (fn)n∈N is a bounded sequence of L∞
loc(R

+; L1). We can then
extract a weakly convergent subsequence. The limit distribution f belongs
to L∞

loc(R
+; M). It is then obvious that fnvn tends weakly to fv. Hence, the

equation (T ) is satisfied.
Finally, as ensured by Proposition 2.39 , the space L∞

loc(R
+; M) is embed-

ded in L∞
loc(R

+; B0
1,∞). Theorem 3.28 ensures uniqueness. ��

3.4 Transport-Diffusion Equations

In a number of physical models, both convective and diffusive phenomena oc-
cur. This is particularly the case in most models coming from fluid mechanics.
At the mathematical level, it means that the corresponding partial differential
equations contain both a transport term of the type v · ∇f and a diffusion term
which, in the simplest case, reduces to νΔf for some nonnegative constant ν.

There is a profuse mathematical literature on the transport and heat equa-
tions. We must note, however, that most methods which suit transport equa-
tions fail to treat the heat equation efficiently, and vice versa. In the present
section, we consider equations of the type

(TDν)
{

∂tf + v · ∇f − νΔf = g
f|t=0 = f0,

where f0, g, and v stand for given initial data, external force, and vector field,
respectively. We aim to state a priori estimates which apply for all possible
values of ν ≥ 0 and Lipschitz vector fields v.
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3.4.1 A Priori Estimates

We focus on the study of (TDν) in the whole space R
d (although our approach

also works in the torus T
d) and, in order to simplify the presentation, we

restrict our attention to estimates in homogeneous Besov spaces.
On the one hand, if there is no convection (i.e., v ≡ 0), then (TDν) reduces

to the standard heat equation with constant diffusion so that applying Δ̇j to
the equation yields

∂tΔ̇jf − νΔΔ̇jf = Δ̇jg, Δ̇jf|t=0 = Δ̇jf0.

Since Δ̇jf0 and Δ̇jg are spectrally localized in the annulus 2j C, we have, by
virtue of Lemma 2.4 and Corollary 2.5,

‖Δ̇jf ‖Lρ
T (Lp) ≤ C

((
ν22j

)− 1
ρ ‖Δ̇jf0‖Lp +

(
ν22j

)−1+ 1
ρ1

− 1
ρ ‖Δ̇jg‖L

ρ1
T (Lp)

)

for all real numbers ρ, ρ1, p, and r such that 1 ≤ p, r ≤ ∞ and 1 ≤ ρ1 ≤
ρ ≤ ∞. Therefore, multiplying both sides by ν

1
ρ 2

2j
ρ 2js and performing an �r

summation, we get

ν
1
ρ ‖f ‖

L̃ρ
T (Ḃ

s+ 2
ρ

p,r )
≤ C

(
‖f0‖Ḃs

p,r
+ ν

1
ρ1

−1‖g‖
L̃

ρ1
T (Ḃ

s−2+ 2
ρ1

p,r )

)
(3.39)

for some universal constant C.

On the other hand, if there is convection but no diffusion in (TDν), then,
as stated in Theorem 3.14 and Remark 3.16, we have

‖f ‖
L̃∞

T (Ḃ
s+ 2

ρ
p,r )

≤ eCVp1 (T )

(
‖f0‖Ḃs

p,r
+ ‖g‖L̃1

T (Ḃs
p,r)

)

with Vp1(T ) def=
∫ T

0

‖ ∇v(t)‖
Ḃ

d
p1
p1,∞ ∩L∞

dt, subject to some restrictions on the

indices p, p1, r, and s.

This section aims to unify the above two estimates for (TDν). This is
achieved in the following theorem.

Theorem 3.37. Let 1 ≤ p ≤ p1 ≤ ∞ and 1 ≤ ρ1, r ≤ ∞. Let s ∈ R satisfy
⎧⎪⎨
⎪⎩

s < 1 +
d

p1
or s ≤ 1 +

d

p1
, if r = 1,

s > −d min
{ 1

p1
,

1
p′

}
or s > −1 − d min

{ 1
p1

,
1
p′

}
, if div v = 0.

(3.40)

There exists a constant C, depending only on d, r, s, and s − 1 − d
p1

, such that
for any smooth solution f of (TDν) with ν ≥ 0, and ρ ∈ [ρ1, ∞], we have the
following a priori estimate:
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ν
1
ρ ‖f ‖

L̃ρ
T (Ḃ

s+ 2
ρ

p,r )
≤ eCVp1 (T )

(
‖f0‖Ḃs

p,r
+ ν

1
ρ1

−1‖g‖
L̃

ρ1
T (Ḃ

s−2+ 2
ρ1

p,r )

)

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vp1(T )
def
=

∫ T

0

‖ ∇v(t)‖
Ḃ

d
p1
p1,∞ ∩L∞

dt, if s < d
p1

+ 1,

Vp1(T )
def
=

∫ T

0

‖ ∇v(t)‖
Ḃ

d
p1
p1,1

dt, if s = d
p1

+ 1.

Note that a standard energy method provides such estimates in the frame-
work of Sobolev spaces Hs (at least in the case ρ ≥ 2, where no tilde spaces
are needed). Also, note that by taking ρ = ∞ and ρ1 = 1, we find a family
of estimates which are independent of ν and coincide with those of Theo-
rem 3.14. If the vector field v is equal to 0, then Vp1 = 0, and we recover the
inequality (3.39) exactly.

The proof of Theorem 3.37 is based on a Lagrangian approach (after suit-
able localization in Fourier space) which amounts to canceling out the bad
convection term. Of course, in the Lagrangian formulation the good Laplace
operator Δ is no longer “flat”. It turns out, however, that it remains “al-
most” flat at small time so that it is still possible to take advantage of the
inequality (3.39).

Proof of Theorem 3.37. Let fj
def= Δ̇jf and fj

def= Δ̇jg. Applying Δ̇j to (TDν)
yields

∂tfj + Ṡj−1v · ∇fj − νΔfj = gj + Rj

with Rj
def=

(
Ṡj−1v − v

)
· ∇fj − [Δ̇j , v · ∇]f.

Let ψj be the flow of Ṡj−1v and φj
def= ψ−1

j . Define f̃j
def= fj ◦ ψj , g̃j

def=

gj ◦ ψj , and R̃j
def= Rj ◦ ψj . We have

∂tf̃j − νΔf̃j = g̃j + R̃j + νTj with Tj
def= Δfj ◦ ψj − Δf̃j . (3.41)

Applying Δ̇j′ to (3.41) and using Lemma 2.4, we get

‖Δ̇j′ f̃j(t)‖Lp ≤ Ce−κνt22j′
‖Δ̇j′ f0,j ‖Lp

+C

∫ t

0

e−κν(t−t′)22j′ (
‖Δ̇j′ g̃j ‖Lp+ ‖Δ̇j′ R̃j ‖Lp + ν‖Δ̇j′ Tj ‖Lp

)
dt′. (3.42)

We first focus on the term Δ̇j′ Tj . We have8

Tj = Δfj ◦ ψj − tr
(

∇ψj · D2fj ◦ ψj · Dψj

)
− Dfj ◦ ψj · Δψj

= tr
(
(Id −∇ψj) · D2fj ◦ ψj · Dψj

)
− tr

(
D2fj ◦ ψj · (Id −Dψj)

)
− Dfj ◦ ψj · Δψj .

8 Here, DF denotes the Jacobean matrix of F, and ∇F denotes the transposed

matrix of DF. If F has d components, then we define JF
def
= det DF.
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Therefore,

‖Δj′ Tj ‖Lp ≤ C
(

‖Dψj ‖L∞ + 1
)

‖Id −Dψj ‖L∞

∥∥D2fj ◦ ψj

∥∥
Lp

+ C ‖Δψj ‖L∞ ‖Dfj ◦ ψj ‖Lp .

Combining Bernstein’s inequality with an obvious change of variable when
computing the Lp norm, we infer that

‖Dfj ◦ ψj ‖Lp ≤ C2j
∥∥Jφj

∥∥ 1
p

L∞ ‖fj ‖Lp ,
∥∥D2fj ◦ ψj

∥∥
Lp ≤ C22j

∥∥Jφj

∥∥ 1
p

L∞ ‖fj ‖Lp .

Hence, appealing to Proposition 3.10, we get, for all t in [0, T ],

‖Δ̇j′ Tj(t)‖Lp ≤ C22j
(
eCV (t) − 1

)
‖fj(t)‖Lp with (3.43)

V (t) def=
∫ t

0

‖∇v(t′)‖L∞ dt′.

Next, we treat Δ̇j′ g̃j . According to Bernstein’s lemma, we have

‖Δ̇j′ g̃j ‖Lp ≈ 2−j′
‖Δ̇j′ Dg̃j ‖Lp .

We also have Dg̃j = Dgj ◦ ψj · Dψj . Hence, according to Bernstein’s inequality
and Proposition 3.10,

‖Δ̇j′ g̃j(t)‖Lp ≤ CeCV (t)2j−j′
‖gj(t)‖Lp . (3.44)

From similar arguments, we get

‖Δ̇j′ R̃j(t)‖Lp ≤ CeCV (t)2j−j′
‖Rj(t)‖Lp .

The term ‖Rj(t)‖Lp may be bounded according to Remark 2.103, and we
eventually get

‖Δ̇j′ R̃j(t)‖Lp ≤ C2j−j′
cj(t)2−jsV ′

p1
(t)eCV (t)‖f(t)‖Ḃs

p,r
(3.45)

with ‖cj(t)‖�r = 1 and V ′
p1

as defined in the statement of Theorem 3.37.
Plugging (3.43), (3.44), and (3.45) into (3.42), taking the Lρ norm over

[0, t], and multiplying by ν
1
ρ 2

2j′
ρ , we thus get

ν
1
ρ 2

2j′
ρ ‖Δ̇j′ f̃j ‖Lρ

t (Lp) ≤ C

(
‖Δ̇j′ f0,j ‖Lp + 2j−j′

ν
− 1

ρ′
1 2

− 2j′
ρ′
1 eCV (t)‖gj ‖L

ρ1
t (Lp)

+22(j−j′)ν
1
ρ 2

2j′
ρ

(
eCV (t) − 1

)
‖fj ‖Lρ

t (Lp) + 2j−j′
∫ t

0

cj2−jsV ′
p1

eCV ‖f ‖Ḃs
p,r

dt′
)

,

where ρ′
1 stands for the conjugate exponent of ρ1.
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After multiplying both sides by 2js2
2
ρ (j−j′), we obtain

ν
1
ρ 2j

(
s+ 2

ρ

)
‖Δ̇j′ f̃j ‖Lρ

t (Lp) ≤ C

(
2

2
ρ (j−j′)2js‖Δ̇j′ f0,j ‖Lp

+ν
− 1

ρ′
1 2

(
1+ 2

ρ + 2
ρ′
1

)
(j−j′)

eCV (t)2
j
(
s− 2

ρ′
1

)
‖gj ‖L

ρ1
t (Lp)

+22(j−j′)ν
1
ρ 2j

(
s+2

ρ

)(
eCV (t) −1

)
‖fj ‖Lρ

t (Lp)

+2
(
1+2

ρ

)
(j−j′)

∫ t

0

cjV
′
p1

eCV ‖f ‖Ḃs
p,r

dt′
)

. (3.46)

Let N0 ∈ N, to be fixed hereafter. Because

fj = Ṡj−N0 f̃j ◦ φj +
∑

j′ ≥j−N0

Δ̇j′ f̃j ◦ φj ,

we have, for all t ∈ [0, T ],

‖fj ‖Lρ
t (Lp) ≤ eCV (t)

(
‖Ṡj−N0 f̃j ‖Lρ

t (Lp) +
∑

j′ ≥j−N0

‖Δ̇j′ f̃j ‖Lρ
t (Lp)

)
. (3.47)

In order to bound the term ‖Ṡj−N0 f̃j ‖Lρ
t (Lp), we use Lemma 2.6 page 56

with λ = 2j and μ = 2j−N0 . This implies that for any t in [0, T ],

‖Ṡj−N0 f̃j(t)‖Lp ≤ C2−j ‖Jφj ‖L∞ ‖fj(t)‖Lp

×
(

‖DJφj ‖L∞ ‖Jψj ‖L∞ + 2j−N0 ‖Dφj ‖L∞

)
.

Thanks to Proposition 3.10, we have that ‖Jφj ‖L∞ and ‖Jψj ‖L∞ are bounded
by eCV (t). Moreover,

DJφj · h = D(det Dφj) · h =
d∑

�=1

det(Dφ1
j , . . . , D

2φ�
j · h, . . . , Dφd

j ).

Therefore, again using Proposition 3.10, we infer that

‖DJφj ‖L∞ ≤ eCV (t)

∫ t

0

‖D2Ṡj−1v(t′)‖L∞ eCV (t′) dt′

≤ CeCV (t)2j

∫ t

0

‖ ∇v(t′)‖L∞ eCV (t′) dt′

≤ CeCV (t)2j(eCV (t) − 1).

Thus, we get

‖Ṡj−N0 f̃j ‖Lρ
t (Lp) ≤ CeCV (t)

(
2−N0 + eCV (t) − 1

)
‖fj ‖Lρ

t (Lp). (3.48)
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We now bound the last term in (3.47). Using the fact that Δ̇j′ f0,j = 0 for
|j′ − j| > 1 and summing the inequality (3.46) for j′ ≥ j − N0, we obtain

∑
j′ ≥j−N0

ν
1
ρ 2j

(
s+ 2

ρ

)
‖Δ̇j′ f̃j ‖Lρ

t (Lp) ≤ C

(
2js ‖f0,j ‖Lp

+eCV (t)23N0ν
− 1

ρ′
1 2

j
(
s− 2

ρ′
1

)
‖gj ‖L

ρ1
t (Lp)

+22N0

(
eCV (t) − 1

)
ν

1
ρ 2j

(
s+2

ρ

)
‖fj ‖Lρ

t (Lp) + 23N0

∫ t

0

cjV
′
p1

eCV ‖f ‖Ḃs
p,r

dt′
)

.

Plugging this and the inequality (3.48) into (3.47), we discover that, up to a
change of C, we have

ν
1
ρ 2j

(
s+2

ρ

)
‖fj ‖Lρ

t (Lp) ≤ CeCV (t)

(
2js ‖f0,j ‖Lp + 23N0ν

− 1
ρ′
1 2

j
(
s− 2

ρ′
1

)
‖gj ‖L

ρ1
t (Lp)

+
(
2−N0 +22N0

(
eCV (t) −1

))
ν

1
ρ 2j

(
s+2

ρ

)
‖fj ‖Lρ

t (Lp)+23N0

∫ t

0

cjV
′
p1

‖f ‖Ḃs
p,r

dt′
)

.

Choose N0 to be the unique integer such that 2C2−N0 ∈ ] 18 , 1
4 ] and T1 to be

the largest real number such that

T1 ≤ T and CV (T1) ≤ ε with ε = min
{

log 2,
2−2N0

16C

}
· (3.49)

With this choice of T1 and N0, the third term of the right-hand side of the
above inequality may be absorbed by the left-hand side whenever t is in [0, T1].
This yields, for some positive constant C1,

ν
1
ρ 2j

(
s+2

ρ

)
‖fj ‖Lρ

t (Lp) ≤ C1

(
2js ‖f0,j ‖Lp

+ ν
− 1

ρ′
1 2

j
(
s− 2

ρ′
1

)
‖gj ‖L

ρ1
t (Lp) +

∫ t

0

cj(t′)V ′
p1

(t′)‖f(t′)‖Ḃs
p,r

dt′
)

.

Finally, performing an �r summation gives, for all t ∈ [0, T1] and ρ ∈ [ρ1, ∞],

ν
1
ρ ‖f ‖

L̃ρ
t (Ḃ

s+ 2
ρ

p,r )
≤ C1

(
‖f0‖Bs

p,r
+ ν

− 1
ρ′
1 ‖g‖

L̃
ρ1
t (Ḃ

s− 2
ρ′
1

p,r )

+
∫ t

0

V ′
p1

(t′)‖f(t′)‖Ḃs
p,r

dt′
)

. (3.50)

It is now easy to complete the proof. Indeed, it is only a matter of splitting
the interval [0, T ] into a finite number m of subintervals [0, T1], [T1, T2], and
so on, such that

ε

2
≤

∫ Tk+1

Tk

‖ ∇v(t)‖L∞ dt ≤ ε.
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By arguing as was done to prove (3.50), we get, for all t ∈ [Tk, Tk+1],

ν
1
ρ ‖f ‖

L̃ρ
[Tk,t](Ḃ

s+ 2
ρ

p,r )
≤ C1

(
‖f(Tk)‖Bs

p,r

+ ν
− 1

ρ′
1 ‖g‖

L̃
ρ1
[Tk,t](Ḃ

s− 2
ρ′
1

p,r )

+
∫ t

Tk

V ′
p1

(t′)‖f(t′)‖Ḃs
p,r

dt′
)

.

Note that if k = 1, then the first term on the right-hand side may be bounded
according to (3.50) with ρ = ∞ and t = T1. Hence, after an obvious induction,
we get

ν
1
ρ ‖f ‖

L̃ρ
t (Ḃ

s+ 2
ρ

p,r )
≤ Ck+1

1

(
‖f0‖Bs

p,r

+ ν
− 1

ρ′
1 ‖g‖

L̃
ρ1
t (Ḃ

s− 2
ρ′
1

p,r )

+
∫ t

0

V ′
p1

(t′)‖f(t′)‖Ḃs
p,r

dt′
)

.

Since the number of such subintervals is m ≈ CV (T )ε−1, we can readily
conclude that up to a change of C, we have, for all ρ in [ρ1, ∞],

ν
1
ρ ‖f ‖

L̃ρ
T (Ḃ

s+2
ρ

p,r )
≤ CeCV (T )

(
‖f0‖Bs

p,r
+ ν

− 1
ρ′
1 ‖g‖

L̃
ρ1
T (Ḃ

s− 2
ρ′
1

p,r )

+
∫ T

0

V ′
p1

(t)‖f(t)‖Ḃs
p,r

dt

)
. (3.51)

Taking ρ = ∞ and using the fact that V ′(t) ≤ CV ′
p1

(t), the Gronwall lemma
gives

‖f ‖L̃∞
T (Ḃs

p,r) ≤ CeCVp1 (T )
(

‖f0‖Bs
p,r

+ ν
− 1

ρ′
1 ‖g‖

L̃
ρ1
T (Ḃ

s− 2
ρ′
1

p,r )

)
.

Plugging this estimate into (3.51), we get

ν
1
ρ ‖f ‖

L̃ρ
t (Ḃ

s+ 2
ρ

p,r )
≤ C

(
‖f0‖Bs

p,r
+ ν

− 1
ρ′
1 ‖g‖

L̃
ρ1
t (Ḃ

s− 2
ρ′
1

p,r )

)

× eCVp1 (T )
(
1 + C

∫ t

0

V ′
p1

(t′)dt′
)
.

This completes the proof for general ρ ∈ [ρ1, ∞]. ��
By treating the low frequencies separately, we can state the following a priori
estimates for (TDν) in nonhomogeneous Besov spaces.

Theorem 3.38. Let 1 ≤ p1 ≤ p ≤ ∞, 1 ≤ r ≤ ∞, s ∈ R satisfy (3.12),
and Vp1 be defined as in Theorem 3.14.

There exists a constant C which depends only on d, r, s, and s − 1 − d
p1

and is such that for any smooth solution f of (TDν) and 1 ≤ ρ1 ≤ ρ ≤ ∞, we
have
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ν
1
ρ ‖f ‖

L̃ρ
T (B

s+ 2
ρ

p,r )
≤ CeC(1+νT )

1
ρ Vp1 (T )

(
(1 + νT )

1
ρ ‖f0‖Bs

p,r

+ (1 + νT )1+
1
ρ − 1

ρ1 ν
1

ρ1
−1‖g‖

L̃
ρ1
T (B

s−2+ 2
ρ 1

p,r )

)
.

Remark 3.39. If r = ∞, then both Theorems 3.37 and 3.38 hold true with

Vp1(T ) def=
∫ T

0

‖ ∇v(t)‖
Ḃ

d
p1
p1,1

dt and Vp1(T ) def=
∫ T

0

‖∇v(t)‖
B

d
p1
p1,1

dt,

respectively, in the limit case

s = −d min(1/p1, 1/p′) or s = −d min(1/p1, 1/p′) − 1 if div v = 0.

This is a consequence of the inequality (2.55) page 112 and Remark 2.102.

Finally, we point out that similar estimates may be proven for the nonsta-
tionary Stokes equation with convection:

(Sν)

{
∂tu + v · ∇u − νΔu + ∇Π = g

div u = 0, u|t=0 = u0.

Indeed, we shall see in Chapter 5 that the Leray projector on divergence-
free vector fields is a homogeneous Fourier multiplier of order 0. Thanks to
Lemma 2.2 page 53, such operators are continuous self-maps on L̃ρ

t (Ḃs
p,r).

3.4.2 Exponential Decay

In this final subsection, we study the effect of diffusion in (TDν) on compactly
supported data. Our main result is the following.

Theorem 3.40. A constant C exists which satisfies the following properties.
Let v be a divergence-free vector field which belongs to L1

loc(R
+; C0,1), f0 be a

compactly supported function in L2, and ν be a positive real number. Consider
a solution f of the equation (TDν) with right-hand side 0 and initial data f0.
We denote by ψ the flow of the vector field v and define

Ft
def
= ψ(t, Supp (f0)) ,

(Ft)c
h

def
= {x ∈ R

2 / d(x, Ft) > h} ,

(F c
t )h

def
= {x ∈ Ft / d(x, ∂Ft) > h}.

Let V (t)
def
=

∫ t

0

‖∇v(t′)‖L∞ dt′. We then have, for all (t, h) ∈ R
+ × R

+,

‖f(t)‖L2((Ft)c
h) ≤ ‖f0‖L2e− h2

4νt exp(−4V (t)). (3.52)



164 3 Transport and Transport-Diffusion Equations

Moreover, if f0 is the characteristic function of a bounded domain F0, then
we have

‖f(t)−1Ft ‖L2((F c
t )h) ≤ ‖f0‖L2 min

{
1, C

( νt

h2

) 1
2
e2V (t)− h2

32νt exp(−4V (t))
}

. (3.53)

Proof. Proving this theorem relies on energy estimates. Using regularization
arguments, we may assume that the vector field v and the function f are
smooth. We consider a smooth function Φ0, denote by ψ the flow of v, and
define

Φ(t, x) def= Φ0(ψ−1(t, x)).

It is obvious that

∂t(Φf) + v · ∇(Φf) − νΔ(Φf) = −νfΔΦ − 2ν∇Φ · ∇f.

Taking the L2 inner product with Φf and performing integrations by parts
gives

1
2

d

dt
‖Φf ‖2

L2 + ν‖ ∇(Φf)‖2
L2 = ν‖f ∇Φ‖2

L2 .

We choose Φ(t, x) = exp(φ(t, x)) with φ(t, x) = φ0(ψ−1(t, x)). From the above
relation, we get that

d

dt
‖Φf ‖2

L2 ≤ 2ν‖ ∇φ‖2
L∞ ‖Φf ‖2

L2 .

From the Gronwall lemma, we thus infer that

‖(Φf)(t)‖L2 ≤ ‖(Φf)(0)‖L2 exp
(
ν

∫ t

0

‖∇φ(t′)‖2
L∞ dt′

)
.

We define
φ0(x) def= α min

{
R, d(x, Supp (f0))

}
� χε,

where χε(x) def= ε−dχ(ε−1x) for some function χ of D(Rd) with integral 1.
Note that with this choice, the function (Φf)(0) tends to the function f0

a.e. when ε goes to 0. Using the fact that ‖ ∇φε(t)‖L∞ ≤ α exp V (t), we get,
by the Gronwall lemma, that

‖Φf(t)‖L2 ≤ ‖Φf(0)‖L2eνα2t exp(2V (t)).

Taking the limit when ε tends to 0, it turns out, by the definition of Φ, that
if 0 < η ≤ R, we have

eαη ‖f(t)‖
L2

(
ψt((F0)c

η)
) ≤ ‖f0‖L2eνα2t exp(2V (t)). (3.54)

But, obviously,
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(Ft)c
h ⊂ ψt

(
(F0)c

δ(t,h)

)
with δ(t, h) def=

h

‖∇ψt‖L∞
· (3.55)

Thus, taking η = δ(t, h) in (3.54) and assuming that δ(t, h) ≤ R, we obtain

‖f(t)‖L2((Ft)c
h) ≤ ‖f0‖L2eνα2t exp(2V (t))−αh exp(−V (t)).

As the above inequality is independent of R, it is true for any (t, h). The best
choice for α then gives the inequality (3.52).

The proof of (3.53) follows essentially the same lines. Let w(t, x) = f(t, x)−
1Ft(x) and Φ(t, x) = Φ0(ψ−1(t, x)) with Φ0 in D(F0). Then, due to

Δ
(
Φt 1Ft

)
= 1FtΔΦt and ∇φt · ∇1Ft = 0,

we have
(∂t + v · ∇ − νΔ)(Φw) = −νwΔΦ − 2ν∇Φ · ∇w.

As above, by an energy estimate, we get

1
2

d

dt
‖Φw‖2

L2 + ν‖ ∇(Φw)‖2
L2 = ν‖w∇Φ‖2

L2 .

Fix a constant C such that for any positive h0, a function χ exists in D(F0)
such that χ is identically 1 on (F c

0 )h0 and ‖ ∇χ‖L∞ ≤ Ch−1
0 . Then, choos-

ing Φ0 = χeφ0 , where φ0 is equal to (a regularization of) the function x �→
d(x, F c

0 ), we get that

1
2

d

dt
‖Φw‖2

L2 ≤ 2ν
∥∥∇ψ−1

t

∥∥2

L∞

(
‖Φw‖2

L2 ‖ ∇φ0‖2
L∞ + ‖(w ◦ ψt)eφ0 ∇χ‖2

L2

)
,

from which it follows, since ‖w ◦ ψt‖L2 ≤ 2 ‖f0‖L2 , that

d

dt
‖Φw‖2

L2 ≤ νe2V (t)
(
4α2‖Φw‖2

L2 +
Ce2αh0

h2
0

‖f0‖2
L2

)
.

Using (3.55) (with F c
t instead of Ft) and the Gronwall lemma, we get, for

any t and h such that he−V (t) ≥ h0,

‖w(t)‖2
L2((F c

t )h) ≤ C‖f0‖2
L2

e2α(h0−h exp(−V (t)))

α2h0

(
e4α2t exp(2V (t)) − 1

)
.

Now, using the fact that e−x(e
x
2 − 1) ≤ e− x

2 and choosing

h0 =
he−V (t)

2
and α =

he−3V (t)

8νt

gives the result. ��
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3.5 References and Remarks

Most of the material in Section 3.1 belongs to the mathematical folklore. It may
somewhat extended to non-smooth vector fields (see e.g. [12]). Here, we chose to
extend some of the results stated in Chapter 5 of [69].

The study of transport equations under minimal regularity assumptions on the
vector field is currently very active. See, in particular, the recent works by L. Am-
brosio and P. Bernard [13], F. Colombini and N. Lerner [83], and N. Depauw [111].
In this book, we chose to focus on the study of a priori estimates in the case where
the vector field is at least quasi-Lipschitz. The a priori estimates and existence re-
sults for the transport equation which were stated in Section 3.2 are well known
in the framework of Hölder spaces or Sobolev spaces with positive exponent. Their
extension to Hölder spaces with negative indices of regularity (i.e., in Br

∞,∞ with
−1 < r < 0) in the case where the vector field v is divergence-free has been car-
ried out in [69, Chapter 4]. The a priori estimates and the existence statement in
general Besov spaces essentially come from works by the second and third authors
(see, in particular, [102]). That estimates for (T ) improve in Besov spaces with reg-
ularity index 0 was discovered by M. Vishik in [296]. For proving Theorem 3.18,
we instead followed T. Hmidi and S. Keraani’s approach, which turns out to be
more robust. In particular, it also works (with no changes) for transport-diffusion
equations (see [158]).

The so-called Camassa–Holm equation (3.25) was derived independently by
A. Fokas and B. Fuchssteiner in [126], and by R. Camassa and D. Holm in [56].
Its systematic mathematical study was initiated in a series of papers by A. Con-
stantin and J. Escher (see, e.g., [84]). It has infinitely many conservation laws, the
most obvious ones being the conservation of the average over R and of the H1 norm
for smooth solutions with sufficient decay at infinity. By taking advantage of this
latter property, Z. Xin and P. Zhang proved that (3.25) has global weak solutions
for any data in H1 (see [301]). The results stated in Section 3.2.4 are borrowed
from [96]. Note that for proving uniqueness for data in Bs

p,r, we are led to estimate
the difference between two solutions in Bs−1

p,r . Owing to the term (∂xu)2, the addi-
tional condition s > max( 3

2
, 1 + 1

p
) is thus required. In fact, uniqueness is also in

true in B
3
2
2,1; see [96]. Further improvements were recently obtained in [108].

Losing estimates for transport equations associated with a log-Lipschitz vector
field have been stated by a number of authors. The statement of Theorem 3.28
pertaining to loss of regularity in general Besov spaces comes from [102]. The phe-
nomenon of exponential loss has been pointed out by the first two authors in [17].
Theorem 3.33 has been stated in [102], and a related result in Sobolev space has
been proven by B. Desjardins in [113]. Theorem 3.36 may be seen as a borderline
case of the results of Di Perna and Lions in [117] and of B. Desjardins in [112]. More
details concerning the proof of Theorem 3.41 may be found in [100].

We give an application of Theorem 3.33 concerning the density-dependent in-
compressible Navier–Stokes equations:

⎧⎨
⎩

∂tρ + u · ∇ρ = 0
ρ(∂tu + u · ∇u) − μΔu + ∇Π = 0
div u = 0.

(3.56)
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Theorem 3.41. Let u0 ∈ H1(R2) with div u0 = 0. Assume that ρ0 = 1/(1+a0) with
a0 ∈ H1+β(R2) for some β ∈ ]0, 1[. Further, assume that 1+a0 > 0. Then, the system
(3.56), supplemented with initial data (ρ0, u0), has a global unique solution (ρ, u)
which satisfies

a
def
=

1

ρ
− 1 ∈ C(R+; H1+β), ρ±1 ∈ L∞, and u ∈ C(R+; H1) ∩ L̃1

loc(R
+; H3).

Proof. We only sketch the proof, emphasizing how Theorem 3.33 is used. A more
detailed proof is available in [100].

On the one hand, in dimension two, under the assumptions that ρ±1
0 ∈ L∞ and

u0 ∈ H1, it is well established (see, e.g., [14]) that (3.56) has a global weak solution
(ρ, u) with ρ±1 bounded and

u ∈
(
L∞

loc(R
+; H1) ∩ L2

loc(R
+; H2)

)2

.

Now, because ∇u ∈ L1
loc(R

+; H1) and, by assumption, a0 ∈ H1+β , Theorem 3.33

with α = 1/2, p1 = p = 2 ensures that a belongs to C(R+; H1+β′
) for all β′ < β.

On the other hand, the local well-posedness theory for density-dependent Navier–
Stokes equations provides a unique local maximal solution (ã, ũ) such that

ã ∈ C([0, T ∗[; H1+β) and ũ ∈ C([0, T ∗[; H1) ∩ L̃1
loc([0, T ∗[; H3).

Since ∇a remains for all time in some Sobolev space with positive index, and, by
virtue of Sobolev embeddings, the vector field ũ belongs to L1

loc([0, T ∗[; C0,1), it is
not difficult to prove a weak-strong uniqueness statement. It is only a matter of
writing the equation satisfied by (a − ã, u − ũ) and applying Theorem 3.14 and the
inequality (3.39). Therefore, we actually have (a, u) ≡ (ã, ũ) on [0, T ∗[. Now, if one
assumes that T ∗ is finite, then we have ‖a(t)‖H1+β and ‖u(t)‖H1 uniformly bounded
on [0, T ∗[ so that the local existence theory enables us to continue (a, u) beyond T ∗.
Hence, we must have T ∗ = ∞. ��

Remark 3.42. A similar statement may be proven under the weaker assumption that
u0 ∈ Hγ(R2) for arbitrarily small γ > 0.

The proof of a priori estimates for transport-diffusion equations has a long history.
The case of Sobolev spaces Hs is classical. The extension to more general Besov
spaces was initiated in [90], then improved in [95] under the restrictions that 1 <
p < ∞ and that div v = 0. The proof was based on a slight generalization of
Lemma 2.8 page 58 (see [90, 251, 95]), which fails in the limit cases p = 1, ∞. The
extension to all p ∈ [1, ∞] in the case div v = 0 is due to T. Hmidi in [156]. This
is based on the Lagrangian approach that was used in the present chapter and on
the smoothing property of the heat equation stated in (3.39) that was first observed
in [72]. Finally, the whole statement of Theorems 3.37 and 3.38 was proven in [103].
Different types of estimates have been obtained by a number of authors (see, in
particular, the work by E. Carlen and M. Loss in [59]).

The exponential decay results for transport-diffusion equations were been proven
in [90]. Some generalizations have been obtained by J. Ben Ameur and the third
author in [32], and by T. Hmidi in [156].





4

Quasilinear Symmetric Systems

Quasilinear and linear symmetric systems appear in a number of physical
systems such as wave equations, systems of conservation laws, compressible
Euler equations, and so on (some examples are given in the first section below).

In this chapter, we state a few elementary and classical facts concerning
these systems. The first section is devoted to a short presentation on linear and
quasilinear symmetric systems. In the second section, we focus on the linear
case with suitably smooth coefficients. We demonstrate global well-posedness
in Sobolev spaces Hs for any s ≥ 0. We also establish that linear symmetric
systems have the finite propagation speed property. In Section 4.3 we focus
on quasilinear symmetric systems. We prove that they may be solved locally
in any Sobolev space embedded in the set of Lipschitz functions and exhibit
a blow-up criterion involving the L1(Lip) norm of the solution. Section 4.4
is dedicated to the study of the Cauchy problem for quasilinear symmetric
systems under minimal regularity assumptions, as well as to refined blow-up
criteria. In the last section, we investigate the regularity of the associated flow
map.

4.1 Definition and Examples

We shall begin by explaining what is meant by a linear symmetric system.
Let I be an interval of R and (Ak)0≤k≤d be a family of smooth bounded
functions from I × R

d into the space of N × N matrices with real coefficients.
Let t0 ∈ I. We want to solve the following initial boundary value problem for
any suitably smooth functions U0 : R

d → R
N and F : I × R

d → R
N :

(LS) :

⎧⎪⎨
⎪⎩

∂tU +
d∑

k=1

Ak∂kU + A0U = F

U|t=t0 = U0.

We will first explain what it means to solve (LS).

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 4, c© Springer-Verlag Berlin Heidelberg 2011
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Definition 4.1. A function U ∈ C
(
I; (S ′(Rd))N

)
is called a weak solution

of (LS) on I × R
d if:

(i) Functions
∑

j U j Ak,i,j and
∑

j U j(div A)i,j with (div A)i,j
def
=

∑
k ∂k Ak,i,j

are in L1(I; S ′(Rd)) for all i ∈ {1, . . . , N } and k ∈ {1, . . . , d}.
(ii) For all t ∈ I and ϕ ∈ C1(I; (S(Rd))N ), it holds that

∑
i

∫ t

0

〈U i, ∂tϕi〉 S ′×S dτ +
∑
i,j

∫ t

0

〈F i+U j
(
(div A)i,j − A0,i,j

)
, ϕi〉 S ′×S dτ

+
∑
i,j,k

∫ t

0

〈U j Ak,i,j , ∂kϕi〉 S ′×S dτ =
∑

i

(
〈U i(t), ϕi(t)〉 S ′×S − 〈U i

0, ϕi(0)〉S ′×S

)
.

Formally, in order to control the energy of a solution U of (LS), we can proceed
as follows. First, we take the L2(Rd; RN ) inner product of (LS) with U . We
find that

1
2

d

dt
‖U(t)‖2

L2 = −
d∑

k=1

(
Ak∂kU |U

)
L2

− (A0U |U)L2 + (F |U)L2 .

If we further assume that the first order space derivatives of the functions Ak

(1 ≤ k ≤ d) are bounded, then we can next perform an integration by parts.
This gives

−
(

Ak∂kU |U
)

L2
= −

∑
i,j

∫
Rd

Ak,i,j∂kU j U i dx

=
∑
i,j

∫
Rd

Ak,i,jU
j∂kU i dx +

∑
i,j

∫
Rd

∂k Ak,i,jU
i U j dx.

In general, due to the first term on the right-hand side, estimating the
term

(
Ak∂kU |U

)
L2 (and thus ‖U ‖L2) requires a bound on ‖∂kU ‖L2 . This

loss of one derivative precludes our closing the estimates and motivates the
following definition.

Definition 4.2. The above system (LS) is said to be symmetric if for any k
in {1, . . . , d} and any (t, x) ∈ I × R

d, the matrices Ak(t, x) are symmetric,
that is, for any i, j, and k, we have Ak,i,j(t, x) = Ak,j,i(t, x).

We now resume the above computation under the additional assumption
that (LS) is symmetric. We get

−
d∑

k=1

(
Ak∂kU |U

)
L2

=
1
2
((div A)U |U)L2 .

This implies that
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∣∣∣∣
d∑

k=1

(
Ak∂kU

∣∣U)
L2

∣∣∣∣ ≤ 1
2

‖ div A ‖L∞ ‖U ‖2
L2 .

Thus, we get that

d

dt
‖U(t)‖2

L2 ≤ a0(t)‖U(t)‖2
L2 + 2(F (t)|U(t))L2 (4.1)

with a0(t)
def= ‖ div A(t)‖L∞ +2‖ A0(t)‖L∞ , so we may now control the energy

of the solution in terms of the data by means of the Gronwall lemma.

We next define a quasilinear symmetric system. A “general” quasilinear
system is of the form

(QS) :

⎧⎪⎨
⎪⎩

∂tU +
d∑

k=1

Ak(U)∂kU + A0(U) = F

U|t=t0 = U0,

where A = (Ak)0≤k≤d is a family of d + 1 smooth functions from R
N to the

space of N × N matrices with real coefficients. Motivated by the linear case,
we define symmetric quasilinear systems as follows.

Definition 4.3. The system (QS) is said to be symmetric if for any k
in {1, . . . , d}, the function Ak is valued in the space of symmetric N × N
matrices.

As an example, we will consider the Euler system for a perfect gas in the
whole space R

d . Denoting by ρ the density of the particles of the gas and
by v the velocity field of the particles, the system to be considered is

{
∂tρ + v · ∇ρ + ρdiv v = 0

∂tv + v · ∇v + ρ−1∇p = 0 with p = Aργ .

The above system is not quasilinear symmetric. However, if we introduce the
new unknown function c defined by

c
def=

2
γ − 1

(
∂p

∂ρ

) 1
2

=
(4γA)

1
2

γ − 1
ρ

γ−1
2

and define γ̃
def= (γ − 1)/2, then the system becomes

{
∂tc + v · ∇c + γ̃c div v = 0

∂tv + v · ∇v + γ̃c ∇c = 0.

This system is symmetric. For instance, if d = 3 and we write U = (c, v), it
is of the form (QS) with
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A1(U) =

⎛
⎜⎜⎝

v1 γ̃c 0 0
γ̃c v1 0 0
0 0 v1 0
0 0 0 v1

⎞
⎟⎟⎠, A2(U) =

⎛
⎜⎜⎝

v2 0 γ̃c 0
0 v2 0 0
γ̃c 0 v2 0
0 0 0 v2

⎞
⎟⎟⎠, A3(U) =

⎛
⎜⎜⎝

v3 0 0 γ̃c
0 v3 0 0
0 0 v3 0
γ̃c 0 0 v3

⎞
⎟⎟⎠.

We shall temporarily suppose that the solution U = (c, v) is a perturbation
of order ε of the steady state (c, 0), where c is a given positive constant. By
identification of powers of ε, we get, for the first order term,

{
∂tc + γ̃ c div v = 0

∂tv + γ̃ c ∇c = 0.

This is a symmetric linear system, called an acoustic wave system. In fact, an
immediate computation shows that c satisfies the wave equation

∂2
t c − γ̃2 c2Δc = 0

so that c has a finite speed of propagation, namely γ̃c. We shall see in Sec-
tion 4.2.2 that any linear first order symmetric system has the finite propa-
gation speed property.

4.2 Linear Symmetric Systems

In this section we investigate linear symmetric systems. First, we want to solve
them and then study a few basic properties of their solutions.

In all that follows, for s in N, we define

|U(t)|2s
def=

∑
1≤j≤N
0≤ |α|≤s

‖∂α
x U j(t)‖2

L2 .

To simplify the presentation, we shall assume throughout this chapter that I =
[0, T ] and t0 = 0. Due to the time-reversibility and translational invariance of
the systems that we here consider, however, similar results are true for any
interval I and t0 in I.

4.2.1 The Well-posedness of Linear Symmetric Systems

This subsection is devoted to the proof of the following well-posedness result.

Theorem 4.4. Let (LS) be a linear symmetric system with smooth, bounded,
and Lipschitz (with respect to the space variable) coefficients and let s be an
integer. Let U0 be in Hs and F be in C(I; Hs). Then, (LS) has a unique
solution in the space C(I; Hs) ∩ C1(I; Hs−1).

Proving this theorem requires four steps:
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– First, we prove a priori estimates for sufficiently smooth solutions of the
system (LS).

– Second, we apply the Friedrichs method so as to solve a sequence of ordi-
nary differential equations which approximate (LS).

– Third, we pass to the limit in the case of sufficiently smooth initial data
and get existence in any case by smoothing out the initial data.

– Finally, we get uniqueness using existence of the adjoint system.

We begin by stating a priori estimates for smooth solutions (the symmetry
hypothesis is crucial here).

Lemma 4.5. For any nonnegative integer s, a locally bounded nonnegative
function as exists such that for any function U in C(I; Hs+1) ∩ C1(I; Hs)
and t in I, we have

|U(t)|s ≤ |U0|s exp
(

1
2

∫ t

0

as(t′) dt′
)

+
∫ t

0

|F (t′)|s exp
(

1
2

∫ t

t′
as(t′ ′) dt′ ′

)
dt′

with

F = ∂tU +
d∑

k=1

Ak∂kU + A0U .

Proof. To begin, we prove this lemma for s = 0. Consider a function U in the
space C(I; H1) ∩ C1(I; L2). By the definition of F , we have

1
2

d

dt
|U(t)|20 = (∂tU |U)0

= (F |U)0 − (A0U |U)0 −
d∑

k=1

(Ak∂kU |U)0 .

As the system (LS) is symmetric and U belongs to C(I; H1) ∩ C1(I; L2), the
computations carried out on page 171, leading to (4.1), are rigorous. Thus,
we have

d

dt
|U(t)|20 ≤ a0(t)|U(t)|20 + 2|F (t)|0|U(t)|0 (4.2)

with a0(t)
def= ‖ div A(t, ·)‖L∞ + 2‖ A0(t, ·)‖L∞ . By the Gronwall lemma, we

get

|U(t)|0 ≤ |U0|0 e
1
2

∫ t
0 a0(t

′) dt′
+

∫ t

0

|F (t′)|0 e
1
2

∫ t
t′ a0(t

′ ′) dt′ ′
dt′. (4.3)

In order to prove the lemma for any nonnegative integer, we shall proceed by
induction. Assume that Lemma 4.5 is proved for some integer s. Let U be a
function in C(I; Hs+2)∩ C1(I; Hs+1) and introduce the function [with N(d+1)
components] Ũ defined by

Ũ = (U, ∂1U, . . . , ∂dU) .
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As

F = ∂tU +
d∑

k=1

Ak∂kU + A0U,

we obtain, for any j in {1, . . . , d}, by differentiation of the equation,

∂t (∂jU) = −
d∑

k=1

Ak∂k∂jU −
d∑

k=1

(∂j Ak) · ∂kU − ∂j(A0U) + ∂jF.

Let F̃
def= (F, ∂1F, . . . , ∂dF ) and

B0Ũ
def=

(
A0U,

d∑
k=1

(∂1Ak) · ∂kU +∂1(A0U), . . . ,
d∑

k=1

(∂dAk) · ∂kU +∂d(A0U)
)

.

We may write

∂t Ũ +
d∑

k=1

Bk ∂kŨ + B0Ũ = F̃ with Bk
def=

⎛
⎜⎜⎜⎝

Ak 0 · · · 0

0
. . . . . .

...
...

. . . Ak 0
0 · · · 0 Ak

⎞
⎟⎟⎟⎠ .

The induction hypothesis then allows us to complete the proof of Lemma 4.5.
��

Remark 4.6. In the case s = 0, 1, the above computations are still valid when
the matrices A0, . . . , Ad are only continuous, bounded, and have bounded first
order space derivatives.

We should point out that proving the inequalities of Lemma 4.5 requires one
more derivative than in the statement of Theorem 4.4. Hence, existence does
not follow from basic contraction mapping arguments. This leads us to smooth
out both the system and the data. To do so, we shall use the Friedrichs method.
More precisely, we consider the system (LSn) defined by

(LSn) :

⎧⎪⎨
⎪⎩

∂tUn +
d∑

k=1

En (Ak∂kUn) + En(A0Un) = En F

En U|t=0 = En U0,

where En is the cut-off operator defined on L2 by

En u
def= F −1(1B(0,n)û). (4.4)

In other words En is the L2 orthogonal projector over the closed space L2
n

of L2 functions with Fourier transforms supported in the ball with center 0 and
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radius n. Lemma 2.1 tells us, in particular, that the operator ∂k is continuous
on L2

n. As the functions Ak are bounded, it turns out that the linear operator

V 
−→
d∑

k=1

En (Ak∂kV ) + En(A0V )

is continuous on L2
n. Thus, the system (LSn) is a linear system of ordinary

differential equations on L2
n. This implies the existence of a unique function Un

in C1(I; L2
n) which is a solution of (LSn). Of course, due to the definition of L2

n,
the function Un is also in any space C1(I; Hs) with s ∈ N .

We claim that the functions Un still satisfy the energy estimates of
Lemma 4.5. More precisely, we have the following lemma.

Lemma 4.7. For any nonnegative integer s, a locally bounded function as

exists such that for any n ∈ N and any t in I, we have,

|Un(t)|s ≤ | En U0|s exp
∫ t

0

as(t′) dt′ +
∫ t

0

| En F (t′)|s exp
(∫ t

t′
as(t′ ′) dt′ ′

)
dt′.

Proof. Taking the scalar product of (LSn) with Un in L2 and using the facts
that the operator En is self-adjoint on L2 and En Un = Un, we get

d

dt
|Un(t)|20 = −2

d∑
k=1

(Ak∂kUn|Un)0 − 2(A0Un)|Un)0 + 2(En F |Un)0.

We proceed exactly as in the proof of Lemma 4.5. As the system (LS) is
symmetric and Un belongs to C(I; H1) ∩ C1(I; L2), the computations carried
out on page 171 are rigorous. Thus, we have

d

dt
|Un(t)|20 ≤ a0(t)|Un(t)|20 + 2| En F (t)|0|Un(t)|0 (4.5)

with a0(t)
def= ‖ div A(t, ·)‖L∞ + 2‖ A0(t, ·)‖L∞ . The Gronwall lemma implies

that

|Un(t)|0 ≤ | En U0|0 e
1
2

∫ t
0 a0(t

′) dt′
+

∫ t

0

| En F (t′)|0 e
1
2

∫ t
t′ a0(t

′ ′) dt′ ′
dt′.

Proving the lemma for any integer s works exactly the same as for Lemma 4.5
and is thus omitted. ��

The third step amounts to proving the following well-posedness result.

Proposition 4.8. Let s ≥ 3. Consider the linear symmetric system (LS)
with F in C(I; Hs) and U0 in Hs. A unique solution U exists in

L∞(I; Hs) ∩ C(I; Hs−2) ∩ C1(I; Hs−3)
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which, moreover, satisfies

|U(t)|σ ≤ |U0|σ exp
∫ t

0

as(t′) dt′ +
∫ t

0

|F (t′)|σ exp
(∫ t

t′
as(t′ ′) dt′ ′

)
dt′

for all integers σ ≤ s and t ∈ I.

Proof. Consider the sequence (Un)n∈N of solutions of (LSn). We shall prove
that (Un)n∈N is a Cauchy sequence in L∞(I; Hs−2). In order to do so, we

define Vn,p
def= Un+p − Un. We have

⎧⎪⎨
⎪⎩

∂tVn,p +
d∑

k=1

En+p (Ak ∂kVn,p) + En+p(A0Vn,p) = Fn,p

Vn,p|t=0 = (En+p − En)U0

(4.6)

with

Fn,p
def= −

d∑
k=1

(En+p − En) (Ak ∂kUn) − (En+p − En)(A0Un) + (En+p − En)F.

Lemma 4.7 tells us that the sequence (Un)n∈N is bounded in L∞(I; Hs). More-
over, we have, for any real σ and any a in Hσ,

|(En+p − En)a|σ−1 ≤ C

n
|a|σ.

Thus, we have

|(En+p − En) (Ak ∂kUn(t))|s−2 ≤ C

n
sup

k
|(En+p − En) (Ak ∂kUn(t))|s−1

≤ C

n
|Un(t)|s.

The same arguments give

∣∣(En+p − En)(A0Un(t)) + (En+p − En)F (t)
∣∣
s−2

≤ C

n2
(|Un(t)|s + |F (t)|s).

(4.7)
By using the energy estimate for (4.6) and Lemma 4.7, we get

|Vn,p(t)|s−2 ≤ C

n
(1 + t) exp

∫ t

0

as(t′) dt′.

Thus, (Un)n∈N is a Cauchy sequence in L∞(I; Hs−2). Moreover, using (4.6)
and (4.7), we infer that (∂tUn)n∈N is a Cauchy sequence in L∞(I; Hs−3). We
denote by U the limit of (Un)n∈N. Of course, U belongs to the space

C(I; Hs−2) ∩ C1(I; Hs−3).
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We now check that this function U is a solution of (LS). As U0 is in Hs and F
belongs to C(I; Hs), we have that

lim
n→∞

En U0 = U0 in Hs and lim
n→∞

En F = F in L∞(I; Hs). (4.8)

As the sequence (Un)n∈N is bounded in L∞(I; Hs), we have

‖(En − Id)Ak∂kUn‖L∞(I;Hs−2) ≤ C

n
·

Thus, U is a solution of (LS). To complete the proof of Proposition 4.8, we
use the fact that (Un)n∈N is bounded in L∞(I; Hs). Hence, for all t in I, the
sequence (Un(t))n∈N weakly converges (up to extraction) in Hs. Thus, U(t)
belongs to Hs and

‖U(t)‖Hs ≤ lim inf
n→∞

‖Un(t)‖Hs .

Now, combining the uniform bounds for (Un)n∈N in L∞(I; Hs) with the above
result on convergence in L∞(I; Hs−2) and using the interpolation inequality
stated in Proposition 1.52, we get that for any s′ < s, the sequence (Un)n∈N

converges in C(I; Hs′
). Thus, U belongs to C(I; Hs′

). Using the fact that U
is a solution of (LS), we get that U belongs to C(I; Hs′

) ∩ C1(I; Hs′ −1). So,
finally, passing to the limit in Lemma 4.7, we find that

|U(t)|σ ≤ |U0|σ exp
∫ t

0

aσ(t′) dt′ +
∫ t

0

|F (t′)|σ exp
(∫ t

t′
aσ(t′ ′) dt′ ′

)
dt′

for all integers σ ≤ s. Proposition 4.8 is thus proved. ��

In order to prove the existence part of Theorem 4.4, we now have to solve (LS)
for general data U0 ∈ Hs and F ∈ C(I; Hs). We therefore consider the se-
quence (Ũn)n∈N of solutions of

⎧⎪⎨
⎪⎩

∂Ũn

∂t
+

d∑
k=1

Ak∂kŨn + A0Ũn = En F

Ũn|t=0 = En U0.

Thanks to Proposition 4.8, Ũn is well defined on I and belongs to C1(I, Hs) for

any positive real number s. Further, the function Vn,p
def= Ũn+p − Ũn satisfies

⎧⎪⎨
⎪⎩

∂tṼn,p +
d∑

k=1

Ak∂kṼn,p + A0Ṽn,p = (En+p − En)F

Ṽn,p|t=0 = (En+p − En)U0.

Lemma 4.5 implies that
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|Ṽn,p(t)|s ≤ |(En+p − En)U0|s exp
∫ t

0

as(t′) dt′

+
∫ t

0

|(En+p − En)F (t′)|s exp
(∫ t

t′
as(t′) dt′

)
dt.

As the function F is continuous from I into Hs, the sequence (En F )n∈N

converges to F in the space L∞(I; Hs). This is a consequence of Dini’s theorem
applied to the nonincreasing sequence of continuous functions t 
→ ‖(F −
En F )(t)‖s on the compact interval I.

As U0 belongs to Hs, the sequence (En U0)n∈N converges to U0 in Hs. Thus,
the sequence (Ũn)n∈N is Cauchy in L∞(I; Hs) and therefore converges to some
function U in C(I; Hs) which is, of course, a solution of the system (LS). The
fact that ∂tU belongs to C(I; Hs−1) comes immediately from the fact that U
is a solution of the system (LS).

Remark 4.9. Assume that the matrices A0, . . . , Ad are only continuous and
bounded with bounded first order space derivatives. By taking advantage of
Remark 4.6 and compactness arguments, it is possible to prove that for any
data U0 in H1 and F in L∞(I; H1), the system (LS) has a solution U in the
space L∞(I; H1) ∩ C0,1(I; L2).

Finally, uniqueness in the case s ≥ 1 is merely a consequence of Lemma 4.5.
This completes the proof of Theorem 4.4 when s ≥ 1.

Uniqueness in the case s = 0 follows from the following proposition.

Proposition 4.10. Under the assumptions of Remark 4.9, let U be a solution
in the space C(I; L2) of the symmetric system (LS) with initial data U0 = 0
and external force F = 0. Then, U ≡ 0.

Proof. In order to prove this proposition, we shall use a duality method. Let ψ
be a function in D( ]0, T [ × R

d) and consider the solution of the system

(tLS) :

⎧⎪⎨
⎪⎩

−∂tϕ −
d∑

k=1

∂k(Akϕ) + tA0ϕ = ψ

ϕ|t=T = 0.

The system (tLS) can be understood as the adjoint system of the system (LS).
As we have ∂k(Akϕ) = Ak∂kϕ + (∂k Ak)ϕ, it may be rewritten as

⎧⎪⎨
⎪⎩

−∂tϕ −
d∑

k=1

Ak∂kϕ + Ã0ϕ = ψ

ϕ|t=T = 0

with Ã0
def= tA0 − div A.
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This is obviously a linear symmetric system. Since ψ belongs, in particular,
to H1, Remark 4.9 provides a solution ϕ for (tLS) in L∞(I, H1) ∩ C0,1(I; L2).
Thus, we have

〈U, ψ〉 =
〈
U, −∂tϕ −

d∑
k=1

Ak∂kϕ + Ã0ϕ
〉

= −
∫

I

(
U(t) | ∂tϕ(t)

)
0
dt −

d∑
k=1

∫
I

(
U(t) | ∂k(Akϕ)(t)

)
0
dt

+
∫

I

(
U(t) | tA0ϕ(t)

)
0
dt.

Owing to the weak regularity of U , the integrations by parts must be justified.
Because each Ak is continuous and bounded with bounded gradient, ∂k(Akϕ)
is in L∞(I; L2). Therefore, we can write that

(
U(t) | ∂k(Akϕ)(t)

)
0

=
∑
i,j

(
U i(t) | ∂k(Ak,i,jϕ

j)(t)
)
L2

= −
∑
i,j

〈
∂kU i(t), Ak,i,jϕ

j(t)
〉

H−1×H1 .

Observe that Ak∂kU is in L∞(I; H−1). Indeed, for any smooth function V ,
we have

〈Ak∂kV, ϕ〉 = −〈V, (∂k
tAk) ϕ〉 − 〈V, tAk∂kϕ〉

≤
(

‖ Ak ‖L∞ + ‖∂k Ak ‖L∞
)

‖V ‖L2 ‖ϕ‖H1 .

Because the matrices Ak are symmetric, we therefore have, for any t in I,

−
(
U(t) | ∂k(Akϕ)(t)

)
0

=
〈

Ak∂kU(t), ϕ(t)
〉

H−1×H1 ,

from which it follows that

(U | ψ)0 = −
(
U | ∂tϕ

)
0

−
〈 d∑

k=1

Ak∂kU + A0U, ϕ
〉

H−1×H1
.

In order to justify the time integration by parts, we observe that ∂tU belongs
to L∞(I; H−1). We now use the smoothing operator En defined by (4.4). The
function En U belongs to C1(I; Hs) for any nonnegative integer s. Using this
with s greater than d/2 + 1 implies that for any x, the function

(t, x) 
−→ En U(t, x)

is C1 on I × R
d. Likewise, the function En ϕ is C1 on I × R

d . This implies
that
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−
∫

I

En U(t, x)∂t En ϕ(t, x)dt = − En U(T, x) En ϕ(T, x)

+ En U0(x) En ϕ(0, x) +
∫

I

∂t En U(t, x) En ϕ(t, x) dt.

Using the facts that U0 = 0 and ϕ(T, ·) = 0, we get that

−
∫

I

En U(t, x)∂t En ϕ(t, x) dt =
∫

I

∂t(En U)(t, x) En ϕ(t, x) dt.

Integrating with respect to the variable x and interchanging the time and
space integrations, we get that

−
∫

I

(
En U(t) | ∂t En ϕ(t)

)
0
dt =

∫
I

〈
∂t(En U)(t), En ϕ(t)

〉
H−1×H1 dt. (4.9)

As U is a function of C(I; L2) ∩ C1(I; H−1), we have

lim
n→∞

En U = U in L∞(I; L2) and lim
n→∞

En ∂tU = ∂tU in L∞(I; H−1).

Similarly, as ϕ belongs to L∞(I; H1) ∩ C0,1(I; L2), we have

lim
n→∞

En ϕ = ϕ in L∞(I; H1) and lim
n→∞

En ∂tϕ = ∂tϕ in L∞(I; L2).

Passing to the limit in (4.9) thus gives

−
∫

I

(
U(t) | ∂tϕ(t)

)
0
dt =

∫
I

〈
∂tU(t), ϕ(t)

〉
H−1×H1 dt

and thus
∫

I

(
U(t) | ψ(t)

)
0
dt =

∫
I

〈
∂tU(t) +

d∑
k=1

Ak∂kU(t) + A0U(t), ϕ(t)
〉

H−1×H1
dt.

As U is a solution of (LS) with F = 0, we conclude that U ≡ 0. ��

4.2.2 Finite Propagation Speed

Linear symmetric systems have the finite propagation speed property. This
means that there exists some positive constant C0 (the maximal speed of
propagation) such that the value of the solution U at some point (x0, t0)
determines U(t, x) only for those (t, x) such that |x − x0| ≤ C0|t − t0|.

This phenomenon is described in the following theorem.

Theorem 4.11. Let (LS) be a symmetric system. A constant C0 exists such
that for any R > 0, x0 in R

d, F in C(I; L2), and U0 ∈ L2 such that

F (t, x) = 0 for |x−x0| < R −C0t and U0(x) = 0 for |x−x0| < R, (4.10)

the unique solution U of the system (LS) in C(I; L2) with data F and U0

satisfies
U(t, x) = 0 for |x − x0| < R − C0t.
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Another form of this statement is given by the following corollary.

Corollary 4.12. If the data F and U0 satisfy

F (t, x) ≡ 0 for |x − x0| > R + C0t and U0(x) ≡ 0 for |x − x0| > R,

then the solution U satisfies

U(t, x) ≡ 0 when |x − x0| > R + C0t.

Proof. Of course, it suffices to consider the case x0 = 0. To begin, we smooth
out the data U0 and F, perturbing their support as little as possible. Let χ
be a function in D(B(0, 1)) with integral 1. For any positive ε, we define

χε(x) def=
1
εd

χ
(x

ε

)

and consider the data

U0,ε
def= χε � U0 and Fε(t, ·) def= χε � F (t, ·).

Of course, we have

Supp U0,ε ⊂ Supp U0 +B(0, ε) and Supp Fε(t, ·) ⊂ Supp F (t, ·)+B(0, ε).

Hence, the support hypothesis is satisfied for U0,ε and Fε with R + ε instead
of R, and the associated solution Uε is in C1(I; Hs) for any s ∈ N and tends
to U in C(I; L2). It is thus enough to prove Theorem 4.11 for those regular
solutions, namely, the following statement.

Theorem 4.13. Let (LS) be a symmetric system. A constant C0 exists such
that for any positive real number R and any data F in C(I; H1) and U0 in H1

such that

F (t, x) ≡ 0 for |x| < R − C0t and U0(x) ≡ 0 for |x| < R, (4.11)

the unique solution U of the system (LS) in C(I; H1) ∩ C1(I; L2) with data F
and U0 satisfies

U(t, x) ≡ 0 when |x| < R − C0t.

Proof. The key to the proof is a weighted energy estimate. More precisely,
for τ greater than 1, we introduce

Uτ (t, x) def= eτφ(t,x)U(t, x) with φ(t, x) def= −t + ψ(x).

Above, ψ stands for a smooth real-valued function on R
d which will be chosen

later. We have
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∂tUτ +
d∑

k=1

Ak ∂kUτ + BτUτ = Fτ with

Fτ (t, x) def= eτφ(t,x)F (t, x) and Bτ = A0 + τ

(
Id −

d∑
k=1

∂kψAk

)
.

Thus, a constant K > 0 exists such that for any (t, x) ∈ I ×R
d, any vector W ∈

R
N , and any positive real number τ , we have

‖∇ψ‖L∞ ≤ K ⇒ (Bτ (t, x)W |W ) ≥ (A0(t, x)W |W ).

Next, we write the energy estimate and use the above inequality and the
relation (4.1) to obtain

d

dt
|Uτ (t)|20 = −2

d∑
k=1

(Ak∂kUτ |Uτ )L2 − 2(BτUτ |Uτ )L2 + 2(Fτ |Uτ )L2

≤ a0(t)|Uτ (t)|20 + 2(Fτ (t)|Uτ (t))L2 .

Using the Gronwall lemma, we get

|Uτ (t)|0 ≤ |Uτ (0)|0e
∫ t
0 a0(t

′) dt′
+

∫ t

0

|Fτ (t′)|0e
∫ t
t′ a0(t

′ ′) dt′ ′
dt′. (4.12)

Note that the above inequality is independent of τ . We now define

C0
def=

( d∑
k=1

‖Ak ‖2
L∞

)1/2

and K
def= 1/C0,

and choose a smooth function ψ = ψ(|x|) such that

−2ε + K(R − |x|) ≤ ψ(x) ≤ −ε + K(R − |x|) and ‖∇ψ‖L∞ ≤ K. (4.13)

We then have, for any (t, x) in I × R
d,

|x| ≥ R − C0t =⇒ −t + ψ(x) ≤ −ε.

When τ tends to +∞ in the inequality (4.12), we get, for any t in I,

lim
τ →∞

∫
Rd

e2τφ(t,x)|U(t, x)|2 dx = 0.

Thus, U(t, x) ≡ 0 on the open set t < ψ(x). If (t0, x0) satisfies |x0| < R −C0t0,
then it is possible to choose a function ψ satisfying (4.13) and such that t0 <
ψ(x0). This proves the theorem. ��
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4.2.3 Further Well-posedness Results for Linear Symmetric
Systems

In this section, we are concerned with a priori estimates and existence re-
sults for (LS) in more general spaces: Sobolev spaces with noninteger indices
or Besov spaces of type Bs

2,r. These results will be needed for proving exis-

tence results in general Sobolev spaces or in B
d/2+1
2,1 for symmetric quasilinear

systems, and also for stating the continuity of the flow map.
For simplicity, we drop the 0 order term in (LS) (i.e., A0 ≡ 0 is as-

sumed). Throughout this section, r is given in [1, ∞] and (cj)j≥ −1 denotes
a generic sequence of nonnegative locally integrable functions over I such
that ‖(cj(t))‖�r = 1 for any t in I.

Lemma 4.14. Let s > 0, r ∈ [1, ∞], and V satisfy

∂tV +
d∑

k=1

Ak∂kV = F.

Let Vj
def
= ΔjV, Sj

def
= Sj if j ≥ 0, and1 Sj

def
= Δ−1 if p ∈ { −2, −1}. We have

∂tVj +
d∑

k=1

(Sj−1Ak) ∂kVj = ΔjF + Rj for all j ≥ −1,

where Rj satisfies, for all t ∈ I,

2js‖Rj(t)‖L2 ≤ Ccj(t)
d∑

k=1

(
‖∇Ak(t)‖L∞ ‖ ∇V (t)‖Bs−1

2,r

+‖ ∇V (t)‖L∞ ‖∇Ak(t)‖Bs−1
2,r

)
. (4.14)

If 0 < s < d/2 + 1, then we also have

2js‖Rj(t)‖L2 ≤ Ccj(t)‖ ∇V (t)‖Bs−1
2,r

d∑
k=1

‖∇Ak(t)‖
L∞ ∩B

d
2
2,∞

, (4.15)

and if s = d/2 + 1, then for all ε > 0,

2j( d
2 +1)‖Rj(t)‖L2 ≤ Ccj(t)‖ ∇V (t)‖

B
d
2
2,r

d∑
k=1

‖∇Ak(t)‖
B

d
2 +ε

2,∞

. (4.16)

1 This unusual choice for the low-frequency cut-off is motivated by the wish to have
only the gradient of Ak involved in the estimates of Rj . This refinement turns out
to be important in the next section for functions Ak which need not tend to 0 at
infinity.
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Proof. First, we write

∂tVj + Δj

d∑
k=1

Ak∂kV = ΔjF.

Recall that (
Ak∂kV

)i =
∑

�

Ak,i,�∂kV �.

To simplify the notation, we shall drop the indices i and � in the following
computations.

In order to better describe the commutation between the multiplication
operator and Δj , we shall use a simplified version of the Bony decomposition
defined in Section 2.8. We write

Ak∂kV = T Ak
∂kV + T

′
∂kV Ak with

T Ak
∂kV =

∑
j′ ≥ −1

Sj′ −1Ak Δj′ ∂kV and T
′
∂kV Ak =

∑
j′ ≥0

Sj′+2∂kV Δj′ Ak.

As the support of the Fourier transform of Sj′ −1AkΔj′ ∂kV is included in
an annulus of the type {ξ ∈ R

d / c12j′ ≤ |ξ| ≤ c22j′ }, and ΔjΔj′ = 0 for
|j − j′ | ≥ 2 (see Proposition 2.10), we have, for some fixed integer N1,

Δj

∑
j′

Sj′ −1Ak Δj′ ∂kV = Δj

∑
|j′ −j|≤N1

Sj′ −1Ak Δj′ ∂kV

= R1
j,k + R2

j,k + Sj−1Ak ∂kVj

with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1
j,k

def=
∑

|j′ −j|≤N1

[
Δj , Sj′ −1Ak

]
Δj′ ∂kV

R2
j,k

def=
∑

|j′ −j|≤1

(Sj′ −1Ak − Sj−1Ak)ΔjΔj′ ∂kV.

Finally, then, the commutation between the operator Δj and the equation
can be described by the following formula:

∂tVj +
d∑

k=1

Sj−1Ak ∂kVj = ΔjF +
3∑

m=1

Rm
j with (4.17)

R1
j

def=
∑

1≤k≤d

R1
j,k,

R2
j

def=
∑

1≤k≤d

R2
j,k,

R3
j

def= Δj

∑
1≤k≤d

T
′
∂kV Ak.
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Lemma 2.97 page 110 implies that

2j ‖R1
j ‖L2 ≤ C

∑
|j′ −j|≤N1

1≤k≤d

‖ ∇Sj′ −1Ak ‖L∞ ‖Δj′ ∂kV ‖L2 .

Hence, because ‖∇Sj′ −1Ak ‖L∞ ≤ C‖∇Ak ‖L∞ , we get that

2js‖R1
j ‖L2 ≤ C

∑
|j′ −j|≤N1

1≤k≤d

2(j−j′)(s−1)‖∇Ak ‖L∞ 2j′(s−1)‖Δj′ ∂kV ‖L2 .

We thus get, according to the definition of the Bs
2,r norm,

2js‖R1
j ‖L2 ≤ Ccj ‖∇A‖L∞ ‖∇V ‖Bs−1

2,r
. (4.18)

In order to estimate R2
j , we observe that, due to the fact that |j′ − j| ≤ 1,

the block Δ−1Ak does not play any role. Now, Bernstein’s inequality ensures
that

‖Δ�Ak ‖L∞ ≤ C2−�‖∇Ak ‖L∞ for � ∈ N .

This implies that

2js‖R2
j ‖L2 ≤ Ccj ‖∇A‖L∞ ‖∇V ‖Bs−1

2,r
. (4.19)

Finally, as s > 0 and Δ−1Ak is not involved in T
′
∂kV Ak either, arguing as in

Remark 2.83 page 103 enables us to get

‖T
′
∂kV Ak ‖Bs

2,r
≤ C‖ ∇V ‖L∞ ‖∇Ak ‖Bs−1

2,r

whenever s is positive, hence

2js‖R3
j ‖L2 ≤ Ccj ‖ ∇V ‖L∞ ‖∇A‖Bs−1

2,r
. (4.20)

Combining the three estimates (4.18)–(4.20), we get the inequality (4.14).
Proving the other two inequalities follows along the same lines. It is only

a matter of using appropriate continuity results for the paraproduct and re-
mainder when bounding the term R3

j (see Propositions 2.82 and 2.85). The
details are left to the reader. ��

Theorem 4.15. Let r ∈ [1, ∞], s > 0, U0 be in Bs
2,r, and F be in C(I; Bs

2,r).
Assume that the matrices Ak are symmetric and continuous with respect to
(t, x), and that

– ∇Ak ∈ C(I; Bs−1
2,r ) if s > d/2 + 1, or s = d/2 + 1 and r = 1,

– ∇Ak ∈ C(I; B
d
2 +ε
2,∞ ) for some ε > 0 if s = d/2 + 1 and r > 1,

– ∇Ak ∈ C(I; B
d
2
2,∞ ∩ L∞) if 0 < s < d/2 + 1.
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The system

(LS0) :

{
∂tU +

∑d
k=1 Ak∂kU = F

U|t=0 = U0

then has a unique solution U in the space C(I; Bs
2,r) ∩ C1(I; Bs−1

2,r ) if r > 1
and in the space L∞(I; Bs

2,r) ∩ C0,1(I; Bs−1
2,r ) if r = ∞. Moreover, for all t ∈ I

and some constant C depending only on d and s, we have

|U(t)|Bs
2,r

≤ |U0|Bs
2,r

exp
(∫ t

0

Cas(t′) dt′
)

+
∫ t

0

|f(t′)|Bs
2,r

exp
(∫ t

t′
Cas(t′ ′) dt′ ′

)
dt′ (4.21)

with |U |Bs
2,r

def
= ‖2qs|ΔjU |0‖�r and

as(t)
def
=

⎧⎪⎪⎨
⎪⎪⎩

∑
k ‖∇Ak(t)‖Bs−1

2,r
, if s > d/2 + 1, or s = d/2 + 1 and r = 1,∑

k ‖∇Ak(t)‖
B

d
2 +ε

2,∞

, if s = d/2 + 1 and r > 1,∑
k ‖∇Ak(t)‖

B
d
2
2,∞ ∩L∞

, if 0 < s < d/2 + 1.

Proof. We first prove (4.21) for smooth solutions U of (LS0). Defining Uj
def=

ΔjU, we have

∂tUj +
d∑

k=1

(Sj−1Ak) ∂kUj = ΔjF + Rj (4.22)

with, according to Lemma 4.14 and the embedding Bs−1
2,r ↪→ L∞ if s > 1+d/2

(or if s ≥ 1 + d/2 and r = 1),

‖Rj ‖L2 ≤ Ccj2−jsas|U |Bs
2,r

. (4.23)

Now, applying the usual energy method to the equation (4.22) yields

1
2

d

dt
|Uj |20 ≤ 1

2
‖div A‖L∞ |Uj |20 +

(
|Rj |0 + |ΔjF |0

)
|Uj |0.

Inserting the inequality (4.23), we get, for all positive α,

d

dt

√
|Uj |20 + α ≤ |ΔjF |0 +

1
2

‖div A ‖L∞ |Uj |0 + Ccj2−jsas|U |Bs
2,r

.

Integrating over [0, t] and letting α tend to 0, we end up with

|Uj(t)|0 ≤ |Uj(0)|0 +
∫ t

0

|ΔjF (t′)|0 dt′ + C2−js

∫ t

0

as(t′)cj(t′)|U(t′)|Bs
2,r

dt′.

Next, we multiply both sides by 2qs and take the �r norm to obtain
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|U(t)|Bs
2,r

≤ |U0|Bs
2,r

+
∫ t

0

|F (τ)|Bs
2,r

dτ + C

∫ t

0

as(τ)|U(τ)|Bs
2,r

dτ.

Applying the Gronwall lemma then leads to the inequality (4.21).
In order to prove the existence of a solution of (LS0) under the assump-

tion of Theorem 4.15, we can use exactly the same Friedrichs method as on
page 174: We consider the ordinary differential equation

⎧⎪⎨
⎪⎩

∂tU
n +

d∑
k=1

En

(
Ak ∂kUn

)
= En F

Un
|t=0 = En U0,

which admits a unique solution Un in C1(I; L2
n), thus in C1(I; Bσ

2,r) for any
r ∈ [1, ∞] and σ ∈ R, owing to the spectral localization. As E

2
n = En and

En Un = Un, the above estimates remain unchanged, so (4.21) is satisfied.
Mimicking the proof of Theorem 4.4, it is now easy to complete the proof

of existence. Note, however, that in the case r = ∞, the sequence (En U0)n∈N

does not converge to U0 in Bs
2,∞, so time continuity does not hold up to

index s.
Finally, if s > 1, then uniqueness is a consequence of Lemma 4.5. In the

case where 0 < s ≤ 1, we still have U ∈ C(I; L2), and the functions Ak are
continuous with bounded first order space derivatives. Hence, Proposition 4.10
yields uniqueness. ��

4.3 The Resolution of Quasilinear Symmetric Systems

The purpose of this section is to prove local well-posedness for the following
quasilinear symmetric system:

(S) :

⎧⎪⎨
⎪⎩

∂tU +
d∑

k=1

Ak(U)∂kU = 0

U|t=0 = U0.

For the sake of simplicity, we do not consider any 0-order term or source term
in the system. Further, we assume that the functions Ak are of the type

Ak(U) = A
(0)
k +

N∑
�=1

A�
kU �

for some constant real matrices A
(0)
k and A�

k (1 ≤ k ≤ d and 1 ≤ � ≤ N).

We aim to prove the following statement.
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Theorem 4.16. Let U0 belong to Hs for some s > d/2+1. There then exists
a positive time T such that a unique solution U of (S) exists in

C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1).

Moreover, T can be bounded from below by c‖U0‖ −1
Hs , where c depends only on

the family A = (Ak)1≤k≤d. Finally, the maximal time of existence T ∗ of such
a solution does not depend on s and satisfies

T 
 < ∞ =⇒
∫ T �

0

‖ ∇U(t, ·)‖L∞ dt = ∞.

Remark 4.17. Note that, due to Sobolev embedding (see Theorem 1.50), the
solution U is C1 and therefore it is a solution of (S) in the classical sense.

Remark 4.18. The above blow-up criterion implies that the maximum time of
existence does not depend on s.

Indeed, let U0 be in Hs for some s > 1 + d/2 and consider some s′

in ]1 + d/2, s[. Denote by Us (resp., Us′ ) the corresponding maximal Hs

(resp., Hs′
) solution given by the above theorem. Denote by T ∗

s (resp., T ∗
s′ ) the

lifespan of Us (resp., Us′ ). Because Hs ⊂ Hs′
, uniqueness entails that T ∗

s ≤ T ∗
s′

and that Us ≡ Us′ on [0, T ∗
s [. Now, if T ∗

s < T ∗
s′ , then we must have Us′

in C([0, T ∗
s ]; Hs′

) so that, due to Sobolev embedding, ∇Us′ ∈ L1([0, T ∗
s ]; L∞).

This stands in contradiction to the above blow-up criterion. Hence, T ∗
s = T ∗

s′ .

Proof of Theorem 4.16.
To prove existence, we shall use the following iterative scheme: Consider

the sequence (Un)n∈N defined by U0 = 0 and
⎧⎪⎨
⎪⎩

∂tU
n+1 +

d∑
k=1

Ak(Un)∂kUn+1 = 0

Un+1
|t=0 = Sn+1U0.

Theorem 4.4 ensures that this sequence is well defined and that Un belongs
to C1(R; Hs) for any s. The proof of Theorem 4.16 proceeds in three steps:

– First, we prove that for T sufficiently small, the sequence (Un)n∈N is
bounded in L∞([0, T ]; Hs).

– Second, we establish that for T sufficiently small, (Un)n∈N is a Cauchy
sequence in L∞([0, T ]; Hs′

) for any s′ < s.
– Finally, we check that the limit of this sequence is a solution of (S) and

that it belongs to C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1).

As we shall see, the proof relies on Littlewood–Paley theory and paradiffer-
ential calculus.
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4.3.1 Paralinearization and Energy Estimates

We aim to prove uniform estimates in Hs for the approximate solution Un.
We claim that some constant C0 can be found such that

C0T ‖U0‖Hs < 1 =⇒ ∀n ∈ N , ‖Un‖L∞([0,T ];Hs) ≤
√

2 ‖U0‖Hs . (4.24)

We shall proceed by induction. The above assertion is of course true for n = 0.
We assume that it is satisfied for some n. In order to bound Un+1, we shall
perform a paralinearization of the system satisfied by Un+1, according to
Lemma 4.14. For all j ≥ −1, we get

∂tΔjU
n+1 +

d∑
k=1

(Sj−1Ak(Un)) ∂kΔjU
n+1 = Rn

j

for some remainder term Rn
j satisfying, for all t ∈ I,

‖Rn
j (t)‖L2 ≤ Ccj(t)2−js

(
‖ ∇Un(t)‖L∞ ‖ ∇Un+1(t)‖Hs−1

+‖ ∇Un+1(t)‖L∞ ‖ ∇Un(t)‖Hs−1

)
with ‖(cn

j (t))‖�2 ≤ 1.

The L2 energy estimate (4.2) and the fact that
∥∥∇Sj−1Ak(Un)

∥∥
L∞ ≤ C ‖∇Un‖L∞

together imply that

1
2

d

dt
‖Un+1

j ‖2
L2 ≤ C‖ ∇Un‖L∞ ‖Un+1

j ‖2
L2 + C‖Rn

j ‖L2 ‖Un+1
j ‖L2 .

As s − 1 > d/2, the space Hs−1 is continuously embedded in L∞. Hence,
thanks to the induction hypothesis, for any t ∈ [0, T ], we get

d

dt
‖Un+1

j ‖2
L2 ≤ C‖U0‖Hs ‖Un+1

j ‖L2

(
‖Un+1

j ‖L2 + cj2−js‖Un+1‖Hs

)
.

By definition of the Sobolev norm, we thus get

d

dt
‖Un+1

j ‖2
L2 ≤ C‖U0‖Hsc2

j2
−2js‖Un+1‖2

Hs .

By time integration, we obtain that

‖Un+1
j ‖2

L∞
T (L2) ≤ ‖ΔjU0‖2

L2 + C‖U0‖Hs ‖Un+1‖2
L∞

T (Hs)2
−2js

∫ T

0

c2
j (t) dt.

Recall that for any t, we have
∑

j

c2
j (t) = 1. Multiplying by 22js and taking

the sum over j thus gives
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∑
j

22js‖Un+1
j ‖2

L∞
T (L2) ≤ ‖U0‖2

Hs + C‖U0‖HsT ‖Un+1‖2
L∞

T (Hs). (4.25)

Now, by virtue of Minkowski’s inequality, we have

‖Un+1‖2
L∞

T (Hs) ≤
∑

j

22js‖Un+1
j ‖2

L∞
T (L2)

so that choosing C0 ≥ 2C, where C is the constant that appears in the above
inequality, we get that

‖Un+1‖2
L∞

T (Hs) ≤ 2‖U0‖2
Hs . (4.26)

This is the conclusion of the first step of the proof.

Remark 4.19. We should point out that we have proven slightly more than
what was originally suggested. In fact, plugging (4.26) into (4.25) gives

∑
j

22js‖Un+1
j ‖2

L∞
T (L2) ≤ 2‖U0‖2

Hs . (4.27)

This will be the key to proving the continuity of the solution with values
in Hs.

4.3.2 Convergence of the Scheme

We first prove that (Un)n∈N is a Cauchy sequence in L∞(([0, T ]; L2). We have

∂t(Un+1 − Un) +
d∑

k=1

Ak(Un)∂k(Un+1 − Un)

= −
d∑

k=1

(
Ak(Un) − Ak(Un−1)

)
∂kUn.

Using the energy estimate (4.2), we then get, for any ε > 0,

d

dt

(
‖Un+1 − Un‖2

L2 + ε2
)

≤ C‖ ∇Un‖L∞ ‖Un+1 − Un‖L2

×
(

‖Un+1 − Un‖L2 + ‖Un − Un−1‖L2

)
.

Define vn
def= ‖Un − Un−1‖L∞

T (L2). From the above inequality and the fact
that for any positive x and any positive ε, we have x ≤

(
x2 + ε2)

1
2 , we deduce

that for all t ∈ [0, T ],

d

dt

(
‖(Un+1 − Un)(t)‖2

L2 + ε2
) 1

2 ≤ C‖ ∇Un(t)‖L∞ (vn+1 + vn).
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Integrating and using the estimate (4.26) together with the Sobolev embed-
ding Hs−1 ↪→ L∞ gives

(v2
n+1 + ε2)

1
2 ≤

(
‖ΔnU0‖2

L2 + ε2)
1
2 + C‖U0‖HsT (vn+1 + vn).

Passing to the limit when ε tends to 0 gives

vn+1 ≤ ‖ΔnU0‖L2 + C‖U0‖HsT (vn+1 + vn).

Assuming that 4CT ‖U0‖Hs ≤ 1, we then have

vn+1 ≤ 4
3

‖ΔnU0‖L2 +
1
3
vn.

As ‖ΔnU0‖L2 ≤ C2−ns, the series
∑

vn converges. Hence, (Un)n∈N is a
Cauchy sequence in L∞(([0, T ]; L2).

Now, using Proposition 1.52 page 38 and (4.26), we get, for any s′ in [0, s[,

‖Un+p − Un‖L∞
T (Hs′ ) ≤ C‖Un+p − Un‖1− s′

s d

L∞
T (L2)‖U0‖

s′
s

Hs ,

and hence convergence also holds true in L∞([0, T ]; Hs′
). Therefore, as the

product continuously maps Hs′ ×Hs′ −1 into Hs′ −1 when s′ is greater than d/2,
we may pass to the limit in (S). In addition, from the weak compactness prop-
erties of Sobolev spaces and the fact that the sequence (Un)n∈N is bounded
in L∞([0, T ]; Hs), we deduce that U belongs to L∞([0, T ]; Hs).

4.3.3 Completion of the Proof of Existence

To summarize, the whole existence part of Theorem 4.16 is now proved, except
for the fact that U is continuous in time with values in Hs. This may be
achieved by passing to the limit in (4.27). However, we shall proceed slightly
differently. In fact, we shall instead state a new estimate for the solution which
will be most useful for proving the continuation criterion.

We therefore consider a solution U of (S) belonging to

L∞([0, T ]; Hs) ∩ C([0, T ]; H1) ∩ C1([0, T ]; L2).

By Lemma 4.14, ΔjU satisfies
⎧⎪⎨
⎪⎩

∂tΔjU +
d∑

k=1

(Sj−1Ak(U))∂kΔjU = Rj

ΔjU |t=0 = ΔjU0

with
‖Rj(t)‖L2 ≤ Ccj(t)2−js‖ ∇U(t)‖L∞ ‖U(t)‖Hs .

By an L2 energy estimate and time integration, this leads to
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‖ΔjU(t)‖2
L2 ≤ ‖ΔjU0‖2

L2 + C2−2js

∫ t

0

c2
j (t

′)‖∇U(t′)‖L∞ ‖U(t′)‖2
Hs dt′.

After multiplication by 22js and summation in j, we find that for all t ∈ [0, T ],

∑
j

22js‖ΔjU ‖2
L∞

t (L2) ≤ ‖U0‖2
Hs + C

∫ t

0

‖∇U ‖L∞ ‖U ‖2
Hs dt′. (4.28)

Minkowski’s inequality and the Gronwall lemma then finally imply that

‖U ‖2
L∞

t (Hs) ≤
∑

j

22js‖ΔjU ‖2
L∞

t (L2) ≤ ‖U0‖2
Hsexp

(
C

∫ t

0

‖∇U ‖L∞ dt′
)
. (4.29)

Because Hs−1 is continuously embedded in L∞ and U ∈ L∞([0, T ]; Hs), we
can thus conclude that ∑

j

22js‖ΔjU ‖2
L∞

T (L2) < ∞.

We now consider any positive ε. The above inequality implies that an integer j0
exists such that ∑

j≥j0

22js‖ΔjU ‖2
L∞

T (L2) ≤ ε2

4
·

Thus, we have

‖U(t) − U(t′)‖2
Hs ≤

∑
j<j0

22js‖Δj(U(t) − U(t′))‖2
L2

+ 2
∑
j≥j0

22js‖ΔjU ‖2
L∞

T (L2)

≤
∑
j<j0

22js‖Δj(U(t) − U(t′))‖2
L2 +

ε2

2

≤ C22j0s‖U(t) − U(t′)‖2
L2 +

ε2

2
·

As U is in C([0, T ]; L2), we can now conclude that U ∈ C([0, T ]; Hs).

4.3.4 Uniqueness and Continuation Criterion

The uniqueness is an obvious consequence of the following proposition.

Proposition 4.20. Let U and V be two solutions of (S) in the space

C([0, T ]; H1) ∩ C1(([0, T ]; L2)

with continuous and bounded gradients on [0, T ] × R
d. We then have

‖U(t) − V (t)‖L2 ≤ ‖U0 − V0‖L2 exp
(
C

∫ t

0

(‖ ∇U(t′)‖L∞ + ‖∇V (t′)‖L∞ ) dt′
)
.



4.4 Data with Critical Regularity and Blow-up Criteria 193

Proof. We have

∂t(U − V ) +
d∑

k=1

Ak(U)∂k(U − V ) =
d∑

k=1

Ak(V − U)∂kV ·

Using (4.3), which is valid under the assumptions of the proposition, we get
the result. ��

In order to prove the blow-up condition, we first observe that, according
to (4.24), the maximal time of existence T 
 satisfies

T 
 ≥ c

‖U0‖Hs

·

Let Ũ be the solution of the Cauchy problem for (S) with data U(t) at time t.

By virtue of uniqueness, we must have Ũ(τ) = U(t + τ) for 0 ≤ t + τ < T 
 so
that the maximal time of existence for Ũ is T 
 − t. Thus, we have

T 
 − t ≥ c

‖U(t)‖Hs

,

which can be written
‖U(t)‖Hs ≥ C

(T 
 − t)
· (4.30)

This implies that ‖U(t)‖Hs does not remain bounded when t tends to T 
.
Now, if ∇U ∈ L1([0, T 
[; L∞), then the inequality (4.29) obviously implies

that U is in L∞(0, T 
[; Hs). Combining this with the inequality (4.30) com-
pletes the proof of the whole of Theorem 4.16. ��

4.4 Data with Critical Regularity and Blow-up Criteria

In this section we give a generalization and refinements of Theorem 4.16. This
involves two directions: First, we consider more general spaces for the initial
data, and second, we give a refined blow-up criterion.

4.4.1 Critical Besov Regularity

The following theorem can be understood as a borderline case for well-
posedness.

Theorem 4.21. Let U0 be in B
d
2 +1
2,1 . Then, (S) has a unique maximal solu-

tion U in C([0, T 
[; B
d
2 +1
2,1 ) ∩ C1([0, T 
[; B

d
2
2,1). Moreover, there exists a positive

constant c, depending only on the functions Ak, such that

T 
 ≥ c

‖U0‖
B

d
2 +1
2,1

·



194 4 Quasilinear Symmetric Systems

Finally, if T 
 is finite, then

∫ T �

0

‖ ∇U(t)‖L∞ dt = ∞.

Proof. The first step is to prove an a priori estimate in L∞([0, T ]; B
d
2 +1
2,1 ) of

any solution given by Theorem 4.16. To achieve this, we paralinearize the
system (S). Let U be a suitably smooth solution of (S) defined on some time

interval [0, T ∗[ and define Uj
def= ΔjU. We have

∂tUj +
d∑

k=1

(Sj−1Ak(U)) ∂kUj = Rj for all j ≥ −1

with, according to Lemma 4.14,

‖Rj ‖L2 ≤ Ccj2−j(1+ d
2 )‖ ∇U ‖L∞ ‖∇U ‖

B
d
2
2,1

.

Throughout this proof, we agree that ‖(cj)‖�1 = 1.
Next, applying the usual energy method to the above paralinearized system

yields, for any time t in [0, T ∗[,

d

dt
‖Uj ‖2

L2 ≤ C2−j( d
2 +1)cj ‖ ∇U ‖L∞ ‖Uj ‖L2 ‖∇U ‖

B
d
2
2,1

.

Let ε be a positive number. From the previous inequality, we infer that

d

dt

(
‖Uj ‖2

L2 + ε
) 1

2 ≤ C2−j( d
2 +1)cj ‖∇U ‖L∞ ‖∇U ‖

B
d
2
2,1

.

A time integration yields

(
‖Uj(t)‖2

L2 + ε
) 1

2 ≤
(

‖ΔjU0‖2
L2 + ε

) 1
2

+ C2−j( d
2 +1)

∫ t

0

cj(t′)‖∇U(t′)‖L∞ ‖∇U(t′)‖
B

d
2
2,1

dt′.

Taking the limit when ε tends to 0 and then summing over j, we get that

‖U ‖
L∞

T (B
d
2 +1
2,1 )

≤
∑

j

2j( d
2 +1)‖Uj ‖L∞

T (L2)

≤ ‖U0‖
B

d
2 +1
2,1

+ C

∫ T

0

‖ ∇U(t)‖L∞ ‖∇U(t)‖
B

d
2
2,1

dt. (4.31)

Using the Gronwall lemma, we get that



4.4 Data with Critical Regularity and Blow-up Criteria 195

‖U(t)‖
B

d
2 +1
2,1

≤ ‖U0‖
B

d
2 +1
2,1

exp
(
C

∫ t

0

‖∇U(t′)‖L∞ dt′
)
. (4.32)

From (4.31) and the fact that the space B
d
2
2,1 is continuously included in L∞,

we infer that

‖U(t)‖
B

d
2 +1
2,1

≤ ‖U0‖
B

d
2 +1
2,1

exp
(
C

∫ t

0

‖U(t′)‖
B

d
2 +1
2,1

dt′
)
.

Therefore, if

T < min{T 
, T0} with T0
def=

1
2C‖U0‖

B
d
2 +1
2,1

,

then
‖U ‖

L∞
T (B

d
2 +1
2,1 )

≤ 2‖U0‖
B

d
2 +1
2,1

. (4.33)

Because B
d
2
2,1 ↪→ L∞, the blow-up condition of Theorem 4.16 thus implies that

T 
 ≥ T0 =
1

2C‖U0‖
B

d
2 +1
2,1

· (4.34)

We now consider the sequence (Un)n∈N of solutions to (S) with the initial

data SnU0 for some fixed U0 in the nonhomogeneous Besov space B
d
2 +1
2,1 .

Using (4.34), we see that the lifespan of Un is bounded from below by T0.
Therefore, according to Proposition 4.20, for any time t ≤ T0, we have

‖(Un − Um)(t)‖L2 ≤ ‖SnU0 − SmU0‖L2

× exp
(
C

∫ t

0

(‖ ∇Un(t′)‖L∞ + ‖∇Um(t′)‖L∞ ) dt′
)
.

By the inequality (4.33) and thanks to the fact that B
d
2
2,1 ↪→ L∞, we get

∫ t

0

(‖∇Un(t′)‖L∞ + ‖ ∇Um(t′)‖L∞ ) dt′ ≤ Ct‖U0‖
B

d
2 +1
2,1

.

Thus, (Un)n∈N is a Cauchy sequence in L∞([0, T0]; L2) and, by interpolation
(see Theorem 2.80 page 102), in L∞([0, T0]; Bs′

2,1) for any s′ < d/2 + 1. The
limit U of (Un)n∈N is obviously a solution of (S). Using the Fatou property

for the Besov space B
d
2 +1
2,1 (see Theorem 2.72), we conclude that U belongs to

L∞([0, T0]; B
d
2 +1
2,1 ) ∩ C([0, T0]; Bs′

2,1) ∩ C1([0, T0]; Bs′ −1
2,1 ) for any s′ < d/2 + 1.

In order to prove that U belongs to C([0, T0]; B
d
2 +1
2,1 ), we pass to the limit in

the inequality (4.31) (for U (n)), thereby obtaining
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∑
j≥ −1

2j( d
2 +1)‖Uj ‖L∞

T0
(L2) ≤ 2‖U0‖

B
d
2 +1
2,1

.

We can now conclude as in the Sobolev case: consider a positive ε, then, owing
to the above inequality, we can find some integer j0 such that

∑
j≥j0

2j( d
2 +1)‖ΔjU ‖L∞

T0
(L2) ≤ ε

4
·

Therefore, we have

‖U(t) − U(t′)‖
B

d
2 +1
2,1

≤
∑
j<j0

2j( d
2 +1)‖Δj(U(t) − U(t′))‖L2

+ 2
∑
j≥j0

2j( d
2 +1)‖ΔjU ‖L∞

T0
(L2)

≤ C2j0(
d
2 +1)‖U(t) − U(t′)‖L2 +

ε

2
·

Because U is in C([0, T0]; L2), the first term on the right-hand side tends
to 0 when t′ goes to t. This implies that U is continuous in time with values
in B

d
2 +1
2,1 . ��

4.4.2 A Refined Blow-up Condition

Here, we prove a more accurate blow-up condition than the (classical) one
given in Theorem 4.16. We are going to substitute for the Lipschitz norm
any norm associated with an admissible Osgood modulus of continuity (see
Definition 2.108 page 117 and Definition 3.1 page 124).

Theorem 4.22. Let s > d/2 + 1 and U be a maximal solution of (S)
in C([0, T 
[; Hs). If T 
 is finite, then for any admissible Osgood modulus of
continuity, we have ∫ T �

0

‖U(t)‖Cμ dt = ∞.

Proof. In order to prove this theorem, we define the C1 nondecreasing func-
tion Rs as follows:

Rs(t)
def=

(
‖U0‖2

Hs + C

∫ t

0

‖ ∇U(t′)‖L∞ ‖U(t′)‖2
Hs dt′

) 1
2

.

Note that the inequality (4.28) guarantees that if the constant C has been
chosen sufficiently large, then we have Rs(t) ≥ sup

0≤t′ ≤t
‖U(t′)‖Hs . Therefore,

Rs(t) ≤ ‖U0‖Hs + C

∫ t

0

‖ ∇U(t′)‖L∞ Rs(t′) dt′.
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Let ε = min
(
1, s − d

2 − 1
)

and Γ be the function associated with the modulus
of continuity μ : [0, a] → R

+ introduced in Definition 2.108 page 117. Using
Proposition 2.112 page 119 with Λ = ‖U0‖Hs , we see that for some constant
depending only on ε and on a, we have

‖∇U ‖L∞ ≤ C
(

‖U ‖Cμ + ‖U0‖Hs

)(
1 + Γ

((
‖∇U ‖C0,ε

‖U ‖Cμ + ‖U0‖Hs

) 1
ε
))

whenever the argument of Γ is greater than or equal to 1/a.

Note that if this latter condition is not satisfied, then the above inequality
is trivially satisfied (if we agree that Γ is continued by the constant function
Γ (1/a) on the interval [0, 1/a]). Therefore, taking advantage of the continuous
embedding of Hs in C0,ε and of the fact that Γ is nondecreasing (which, in
particular, enables us to drop the exponent 1/ε), we infer that

Rs(t) ≤ ‖U0‖Hs + C

∫ t

0

γ(t′)
(

1 + Γ

((CRs(t′)
‖U0‖Hs

) 1
ε

))
Rs(t′) dt′

with γ(t) def= ‖U(t)‖Cμ + ‖U0‖Hs .

Thus, defining ρs(t)
def=

CRs(t)
‖U0‖Hs

and Γε(y) def= Γ
(
y

1
ε

)
, we get

ρs(t) ≤ C

(
1 +

∫ t

0

γ(t′)
(
1 + Γε(ρs(t′))

)
ρs(t′) dt′

)
.

Let aε
def= a

1
ε . Given that μ is an Osgood modulus of continuity, it is easy

to check that the function Gε(y) def=
∫ y

a−1
ε

dy′

y′Γε(y′)
maps [a−1

ε , +∞[ onto and

one-to-one [0, +∞[. Therefore, arguing as in Lemma 3.8 page 128, we infer
that2

ρs(t) ≤ G −1
ε

(
C + C

∫ t

0

γ(t′) dt′
)

·

By the definition of ρs, this implies that

‖U(t)‖Hs ≤ 1
C

‖U0‖Hs G −1
ε

(
C + C

∫ t

0

γ(t′) dt′
)

.

This means that if the solution U belongs to C([0, T [; Hs) ∩ L1([0, T [; Cμ)
for some finite T , then ‖U(t)‖Hs stays bounded on [0, T [. Thus, the inequal-
ity (4.30) ensures that Theorem 4.22 holds. ��

2 Note that we can assume with no loss of generality that C ≥ 1/aε.
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Example 4.23. Recall that the function r 
→ r(1 − log r) is an Osgood modu-
lus of continuity and that B1

∞,∞ is embedded in the set LL of log-Lipschitz
functions (see Proposition 2.107 page 116). Therefore, Theorem 4.22 implies
that no blow-up may occur at time T unless

∫ T

0

‖U(t)‖B1
∞,∞

dt = ∞.

4.5 Continuity of the Flow Map

Let s > 1 + d/2. According to Theorem 4.16, for any data U0 in Hs, the
system (S) has a unique solution U on some nontrivial time interval [0, T ].
Moreover, by taking advantage of the lower bound that we have stated for
the lifespan of the solution of (S) and using the inequality (4.26), we can
find some Hs-neighborhood VU0 of U0 and some positive constant K such
that for any V0 ∈ VU0 , the system (S) with data V0 has a solution V in
C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1) which satisfies

‖V ‖L∞
T (Hs) + ‖∂tV ‖L∞

T (Hs−1) ≤ K. (4.35)

In the present section, we address the question of continuity of the flow map

Φ :

{
VU0 −→ C([0, T ]; Hs) ∩ C1([0, T ]; Hs−1)

V0 
−→ V.

To begin, we observe that by combining the inequality (4.35) with the stabil-
ity result stated in Proposition 4.20, we can deduce that the flow map Φ is
continuous on VU0 , in the sense of the norm L∞([0, T ]; L2). Also, note that
by interpolating with the Hs bound given by (4.35), we find that continuity
holds for the L∞([0, T ]; Hs′

) norm whenever s′ < s.
We claim that continuity holds true up to index s. In other words, the

system (S) is locally well posed in the sense of Hadamard.

Theorem 4.24. Let U0 be any data in Hs with s > 1 + d/2. There exists a
neighborhood VU0 of U0 and a positive time T such that the flow map Φ defined
above is continuous.

Remark 4.25. A similar result holds true in the critical Besov space B
1+d/2
2,1 .

To simplify the presentation, however, we shall focus on the Sobolev case.

The following stability result for linear symmetric systems is the cornerstone
of the proof of Theorem 4.24.

Lemma 4.26. Define N
def
= N ∪{∞}. For k in {1, . . . , d}, we consider a se-

quence (An
k )n∈N

of continuous bounded functions on I × R with values in the
set of symmetric N × N matrices. Assume, in addition, that there exists a
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real number s > 1 + d/2 such that for all k in {1, . . . , d} and n ∈ N, the func-
tion ∇An

k belongs to C(I; Hs−1), that there exists a nonnegative integrable
function α over I such that

‖∇An
k (t)‖Hs−1 ≤ α(t) for all t ∈ I, k ∈ {1, . . . , d}, n ∈ N, (4.36)

and that
An

k − A ∞
k −→n→∞ 0 in L1(I; Hs−1). (4.37)

Let F ∈ C(I; Hs−1) and V0 ∈ Hs−1. For n ∈ N, denote by V n the solution of
⎧⎨
⎩

∂tV
n +

∑
k

An
k∂kV n = F

V n
|t=0 = V0.

The sequence (V n)n∈N then converges to V ∞ in C(I; Hs−1).

Proof. We first consider the smooth case: V0 ∈ Hs and F ∈ C(I; Hs).
By virtue of Theorem 4.15 and the assumption (4.36), the sequence

(V n)n∈N
is bounded in C(I; Hs). In order to prove that V n tends to V ∞

in C(I; Hs−1), we shall use the fact that

∂t

(
V n − V ∞)

+
∑

k

An
k∂k

(
V n − V ∞)

=
∑

k

(
A ∞

k − An
k

)
∂kV ∞.

Indeed, because V n(0) = V ∞(0), Theorem 4.15 and the assumption (4.36)
together yield

‖(V n − V ∞)(t)‖Hs−1 ≤
∫ t

0

eC
∫ t
τ

α(τ ′) dτ ′
‖
(

A ∞
k − An

k

)
∂kV ∞ ‖Hs−1 dτ.

Because s − 1 > d/2, the Sobolev space Hs−1 is an algebra. Therefore,

‖(V n − V ∞)(t)‖Hs−1 ≤ C

∫ t

0

eC
∫ t
τ

α(τ ′) dτ ′
‖ A ∞

k − An
k ‖Hs−1 ‖∂kV ∞ ‖Hs−1 dτ.

Taking advantage of (4.37), it is now easy to conclude that V n tends to V ∞

in C(I; Hs−1).
Consider now the rough case V0 ∈ Hs−1 and F ∈ C(I; Hs−1). For all n ∈ N

and j ∈ N, we introduce the solution V n
j to

{
∂tV

n
j +

∑
k An

k∂kV n
j = Ej F

(V n
j )|t=0 = Ej V0.

Since {
∂t(V n − V n

j ) +
∑

k An
k∂k(V n − V n

j ) = F − Ej F

V n
|t=0 = V0 − Ej V0,
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Theorem 4.15 and the assumption (4.36) guarantee that for all t ∈ I,

‖(V n − V n
j )(t)‖Hs−1 ≤ eC

∫ t
0 α(τ) dτ

(
‖V0 − Ej V0‖Hs−1

+
∫ t

0

‖F − Ej F ‖Hs−1 dτ

)
. (4.38)

We are now ready to prove that V n tends to V ∞ in C(I; Hs−1). Indeed, fix
an arbitrary ε > 0 and write

‖V n − V ∞ ‖L∞(I;Hs−1) ≤ ‖V n − V n
j ‖L∞(I;Hs−1)

+‖V n
j − V ∞

j ‖L∞(I;Hs−1) + ‖V ∞
j − V ∞ ‖L∞(I;Hs−1). (4.39)

On the one hand, because Ej V0 tends to V0 in Hs−1 and Ej F tends to F in
the space C(I; Hs−1), we can, according to (4.38), find some j ∈ N such that

‖V n − V n
j ‖L∞(I;Hs−1) ≤ ε/3 for all n ∈ N.

On the other hand, since the data Ej V0 and Ej F are smooth, we can, accord-
ing to the first part of the proof, find some integer n0 such that the second
term in the right-hand side of (4.39) is less than ε/3 for all n ≥ n0. This
completes the proof of the lemma. ��

Proof of Theorem 4.24. In the introductory part of this section, we stated the
existence of some Hs-neighborhood VU0 of U0 and some positive T such that
for all V0 ∈ VU0 , the system (S) has a unique Hs solution Φ(V0) over [0, T ]
which is bounded independently of V0 and such that Φ(V0) tends to Φ(U0) in

C(I; Hs−1) with I
def= [0, T ].

We claim that convergence holds true in C(I; Hs). To prove this fact,

consider a sequence of data Un
0 converging to U ∞

0
def= U0 in Hs. Of course,

with no loss of generality, we can assume that all the terms of the sequence
belong to VU0 . For n ∈ N, denote by Un the solution of (S) with initial
data Un

0 . Given that Un → U ∞ in C(I; Hs−1), it suffices to prove that, in

addition, V n def= ∇Un tends to V ∞ def= ∇U ∞ in C(I; Hs−1). This latter task
may be achieved by splitting Vn into Wn + Zn with (Wn, Zn) satisfying
⎧⎨
⎩

∂tW
n +

∑
k

An
k∂kWn = F ∞

Wn
|t=0 = V ∞

0

and

⎧⎨
⎩

∂tZ
n +

∑
k

An
k∂kZn = Fn − F ∞

Zn
|t=0 = V n

0 − V ∞
0

with An
k

def= Ak(Un) and Fn def= −
∑

k

∇An
k ∂kUn.

Because (Un)n∈N
is bounded in C(I; Hs), it is obvious that (∇An

k )n∈N
is

bounded in C(I; Hs−1). Further,
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An
k − A ∞

k =
N∑

j=1

Aj
k(Un − U ∞)

and therefore, owing to the fact that (Un − U ∞) goes to 0 in C(I; Hs−1),
the sequence (An

k − A ∞
k )n∈N converges to 0 in C(I; Hs−1). Lemma 4.26 thus

ensures that Wn tends to W ∞ (i.e., V ∞) in C(I; Hs−1).
Next, according to Theorem 4.15, we have, for all n ∈ N and t ∈ [0, T ],

‖Zn(t)‖Hs−1 ≤ eC
∫ t
0 ‖ ∇ An

k ‖Hs−1 dτ

(
‖V n

0 −V ∞
0 ‖Hs−1+

∫ t

0

‖Fn −F ∞ ‖Hs−1 dτ

)
.

Using the definition of An
k and the fact that Hs−1 is an algebra, we deduce

that

‖Fn −F ∞ ‖Hs−1 ≤ C
(

‖V n‖Hs−1 + ‖V ∞ ‖Hs−1

)
‖V n −V ∞ ‖Hs−1

≤ C
(

‖V n‖Hs−1 + ‖V ∞ ‖Hs−1

)(
‖Zn‖Hs−1 + ‖Wn −W ∞ ‖Hs−1

)
.

Denoting by K a bound in C(I; Hs−1) for (∇An
k )n∈N, we thus get

‖Zn(t)‖Hs−1 ≤ eCKt

(
‖V n

0 − V ∞
0 ‖Hs−1 + C

∫ t

0

(
‖V n‖Hs−1 + ‖V ∞ ‖Hs−1

)

×
(

‖Zn‖Hs−1 + ‖Wn − W ∞ ‖Hs−1 dτ

)
.

Applying the Gronwall lemma and using the facts that

– (V n)n∈N
is bounded in C([0, T ]; Hs−1),

– V n
0 tends to V ∞

0 in Hs−1,
– Wn goes to W ∞ in C([0, T ]; Hs−1),

it is now easy to conclude that Zn tends to 0 in C([0, T ]; Hs−1). ��

4.6 References and Remarks

There are a number of references concerning the study of more general linear or
quasilinear systems. Results related to the well-posedness theory in Hs and finite
propagation speed for (LS), (QS), or more general systems may be found in the
monographs by T. Kato [177], S. Alinhac and P. Gérard [11], L. Hörmander [168],
D. Serre [262], or S. Benzoni-Gavage and D. Serre [33]. For results concerning the
particular case of the compressible Euler system introduced at the end of Section 5.1,
one may refer to e.g. [63, 261]. The concept of paralinearization was introduced by
J.-M. Bony in his pioneering paper [39]. The standard blow-up criterion involving
the L1([0, T [; Lip) norm of the solution is part of mathematical folklore.

The well-posedness for data with critical regularity was first stated by D. Iftimie
in the Appendix of [172]. We mention in passing that a slightly more accurate
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lower bound for the lifespan T ∗ of the solution to (S) may be proven, namely,
T ≥ c‖ ∇U0‖ −1

Ḃ
d
2
2,1

.

To the best of our knowledge, the fact that the L1([0, T [; Lip) assumption in
Theorem 4.16 may be replaced by a slightly weaker condition goes back to the
pioneering paper [31] by J. Beale, T. Kato, and A. Majda for the incompressible
Euler equations.

The continuity of the flow map up to index s belongs to the mathematical folk-
lore. In Section 4.5 the method introduced by T. Kato in [177] (in the framework of
abstract quasilinear evolution equations) has been applied. We should mention that
an alternative method combining viscous regularization of the system and regular-
ization of the data may be used (see, e.g., [38] for the KdV equation).



5

The Incompressible Navier–Stokes System

This chapter is devoted to the mathematical study of the Navier–Stokes sys-
tem for incompressible fluids evolving in the whole space1

R
d, where d = 2 or 3.

Denoting by u ∈ R
d the velocity field, by P ∈ R the pressure function, and

by ν > 0 the kinematic viscosity, the Cauchy problem for the incompressible
Navier–Stokes system can be written as follows:

⎧⎨
⎩

∂tu + u · ∇u − νΔu = −∇P
div u = 0
u|t=0 = u0,

where

div u =
d∑

j=1

∂ju
j , u · ∇ =

d∑
j=1

uj∂j , and Δ =
d∑

j=1

∂2
j .

The first section of this chapter is devoted to the presentation of a few basic
results concerning the Navier–Stokes system. There, we introduce the weak
formulation of the system, state Leray’s theorem, and prove a fixed point
theorem which will be of constant use in the sections which follow.

In the second section, we solve a generalized Navier–Stokes system locally
in time for general data in Ḣ

d
2 −1, or globally in time for small data in Ḣ

d
2 −1.

In the third section, we present results which use the special structure of the
nonlinearity in the Navier–Stokes system. First, we prove the uniqueness of
finite energy solutions in dimension two. Next, in dimension three, we establish
a result concerning the asymptotics of possible large global solutions. As a
consequence, we show that the set of initial data which give rise to global
solutions in L4

loc(R
+; Ḣ1) is an open subset of Ḣ

1
2 .

In the fourth section, we prove local well-posedness for general data
in L3(R3) and global well-posedness for small data. This result is a by-product
of a more general result where Besov spaces embedded in Ḃ−1

∞,∞ arise natu-
rally. The next section is devoted to the study of the well-posedness issue in
1 This means that boundary effects are neglected.

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 5, c© Springer-Verlag Berlin Heidelberg 2011
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the so-called endpoint space for the Picard scheme. There, we consider data
which are scarcely better than Ḃ−1

∞,∞.
Up to this point, all results concerning the Navier–Stokes system are ob-

tained by means of elementary methods: nothing more than the classical
Sobolev embedding and Young’s and Hölder’s inequalities. The last section,
however, is more demanding. There, we present a result concerning well-
posedness in the context of Besov spaces which uses the smoothing effect
of the heat flow described by the inequality (3.39) page 157. Next, we take
advantage of that approach in order to study the problem of the existence of
a flow for the velocity field in a scaling invariant framework.

5.1 Basic Facts Concerning the Navier–Stokes System

We begin by introducing the weak formulation of the Navier–Stokes system.
From Leibniz’s formula it is clear that when the vector field u is smooth and
divergence-free, we have

u · ∇u = div(u ⊗ u), where div(u ⊗ u)j def=
d∑

k=1

∂k(ujuk) = div(uju),

so that the Navier–Stokes system may be written as

(NSν)

⎧⎨
⎩

∂tu + div(u ⊗ u) − νΔu = −∇P
div u = 0
u|t=0 = u0.

The advantage of this formulation is that it makes sense for more singular vec-
tor fields than the previous formulation, a fact which will be used extensively
in what follows.

Based on this observation, we now define a weak solution of (NS). The
following definition may be seen, in the nonlinear framework, as the analog of
Definition 3.13 page 132.

Definition 5.1. A time-dependent vector field u with components in the
space L2

loc(0, T ]×R
d) is a weak solution of (NSν) if, for any smooth, compactly

supported, time-dependent, divergence-free vector field Ψ , we have
∫

Rd

u(t, x) · Ψ(t, x) dx =
∫ t

0

∫
Rd

(
νu · ΔΨ + u ⊗ u : ∇Ψ + u · ∂tΨ

)
(t′, x) dx dt′

+
∫

Rd

u0(x) · Ψ(0, x) dx. (5.1)

We now formally2 derive the well-known energy estimate. First, taking
the (L2(Rd))d scalar product of the system with the solution u gives
2 These computations will be made rigorous in the next sections.
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1
2

d

dt
‖u‖2

L2 + (u · ∇u|u)L2 − ν(Δu|u)L2 = −(∇P |u)L2 .

Using formal integration by parts, we may write

(u · ∇u|u)L2 =
∑

1≤j,k≤d

∫
Rd

uj(∂ju
k)uk dx

=
1
2

∑
1≤j≤d

∫
Rd

uj∂j(|u|2) dx

= − 1
2

∫
Rd

(div u)|u|2 dx

= 0.

Moreover, we obviously have

−ν(Δu|u)L2 = ν‖ ∇u‖2
L2 .

Again, (formal) integration by parts yield

−(∇P |u)L2 = −
d∑

j=1

∫
Rd

uj∂jP dx

=
∫

Rd

P div u dx

= 0.

It therefore turns out that

1
2

d

dt
‖u(t)‖2

L2 + ν‖ ∇u(t)‖2
L2 = 0,

from which it follows, by time integration, that

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 . (5.2)

It follows that the natural assumption for the initial data u0 is that it is
square integrable and divergence-free. This leads to the following statement,
first proven by J. Leray in 1934.

Theorem 5.2 (Leray). Let u0 be a divergence-free vector field in L2(Rd).
Then, (NSν) has a weak solution u in the energy space

L∞(R+; L2) ∩ L2(R+; Ḣ1)

such that the energy inequality holds, namely,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ ≤ ‖u0‖2

L2 . (5.3)
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Remark 5.3. The Leray solutions satisfy the Navier–Stokes system in a stronger
sense than that of Definition 5.1: For any smooth, compactly supported, time-
dependent, divergence-free vector field Ψ, we have
∫

Rd

u(t, x) · Ψ(t, x) dx +
∫ t

0

∫
Rd

(
ν∇u : ∇Ψ − u ⊗ u : ∇Ψ − u · ∂tΨ

)
(t′, x) dx dt′

=
∫

Rd

u0(x) · Ψ(0, x) dx.

Proving Leray’s theorem relies on a compactness method analogous to that
of the first section of Chapter 6:

– First, approximate solutions with compactly supported Fourier transforms
satisfying (5.3) are built. This may be done by solving an appropriate
sequence of ordinary differential equations in L2-type spaces.

– Next, a time compactness result is derived.
– Finally, the solution is obtained by passing to the limit in the weak for-

mulation.3

In dimension two, the Leray weak solutions are unique. More precisely, we
have the following theorem, which we shall prove in Section 5.3.1.

Theorem 5.4. If d = 2, then the solutions given by the above theorem are
unique, continuous with values in L2(R2), and satisfy the energy equality

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 .

Another important feature of the Navier–Stokes system in the whole space R
d

is that there is an explicit formula giving the pressure in terms of the velocity
field. Indeed, in Fourier variables, the Leray projector P on divergence-free
vector fields is as follows:

F (P f)j(ξ) = f̂ j(ξ) − 1
|ξ|2

d∑
k=1

ξjξkf̂k(ξ)

=
d∑

k=1

(δj,k − 1)
ξjξk

|ξ|2 f̂k(ξ), (5.4)

where δjk = 1 if j = k and 0 if j �= k.

Therefore, applying the Leray projector to the Navier–Stokes system and
denoting by QNS the bilinear operator defined by

QNS(v, w) def= − 1
2

P
(
div(v ⊗ w) + (div w ⊗ v)

)
3 For the proof of Theorem 5.2, the reader is referred to the magnificent original
paper by J. Leray (see [207]). For a modern proof, see, for instance, [75] or [86].
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yields {
∂tu − νΔu = QNS(u, u)

u|t=0 = u0.

Note that the divergence-free condition is satisfied by u whenever div u0 = 0.
Hence, u satisfies the “original” system (NSν).

Throughout this chapter, we shall denote by Q any bilinear map of the
form

Qj(u, v) def=
∑

k,�,m

qj,m
k,� ∂m(ukv�),

where qj,m
k,� are Fourier multipliers of the form

qj,m
k,� a

def=
∑
n,p

αj,m,n,p
k,� F −1

(ξnξp

|ξ|2 â(ξ)
)
,

and αj,m,n,p
k,� are real numbers.

As pointed out above, the incompressible Navier–Stokes system is a par-
ticular case of the system

(GNSν) :
{

∂tu − νΔu = Q(u, u)
u|t=0 = u0

with the operator Q defined as above.
Let B(u, v) [resp., BNS(u, v)] be the solution to the heat equation

{
∂tB(u, v) − νΔB(u, v) = Q(u, v) [resp., QNS(u, v)]

B(u, v)|t=0 = 0.

Solving (GNSν) [resp., (NSν)] amounts to finding a fixed point for the map

u 	−→ eνtΔu0 + B(u, u) [resp., BNS(u, u)].

Throughout this chapter, we shall solve (GNSν) or (NSν) by means of a
contraction mapping argument in a suitable Banach space. This is based on
a classical lemma that we recall (and prove) here.

Lemma 5.5. Let E be a Banach space, B a continuous bilinear map from E ×
E to E, and α a positive real number such that

α <
1

4‖ B ‖ with ‖ B ‖ def
= sup

‖u‖,‖v‖ ≤1

‖B(u, v)‖. (5.5)

For any a in the ball B(0, α) (i.e., with center 0 and radius α) in E, a unique x
then exists in B(0, 2α) such that

x = a + B(x, x).
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Proof. The proof involves an application of the classical iterative scheme de-
fined by

x0 = a and xn+1 = a + B(xn, xn).

By induction we may prove that ‖xn‖ ≤ 2α. Indeed, using (5.5) and the
definition of xn+1, we get

‖xn+1‖ ≤ α(1 + 4α‖ B ‖) ≤ 2α.

Thus, the sequence (xn)n∈N remains in the ball B(0, 2α). Now,

xn+1 − xn = B(xn, xn) − B(xn−1, xn−1)
= B(xn − xn−1, xn) + B(xn−1, xn − xn−1).

Therefore, we obtain

‖xn+1 − xn‖ ≤ 4α‖ B ‖ ‖xn − xn−1‖.

Hence, by virtue of (5.5), (xn)n∈N is a Cauchy sequence in E, the limit of
which is a fixed point of x 	→ a+ B(x, x) in the ball B(0, 2α). This fixed point
is unique because if x and y are two such fixed points, then

‖x − y‖ ≤ ‖ B(x − y, y) + B(x, x − y)‖ ≤ 4α‖B ‖ ‖x − y‖.

The lemma is thus proved. ��

Proving the existence of global solutions for (GNSν) or (NSν) by means
of Lemma 5.5 requires a Banach space X with a norm invariant under the
transformations that preserve the set of global solutions. This set contains the
translations with respect to the space variable and, more importantly for our
purposes, the so-called scaling transformations defined by

uλ(t, x) def= λu(λ2t, λx).

The following spaces obviously meet these conditions:

L∞(R+; Ld), L∞(R+; Ḣ
d
2 −1), L4(R+; Ḣ

d−1
2 ),

L∞(R+; Ḣ
d
2 −1) ∩ L2(R+; Ḣ

d
2 ).

When d = 2, the energy space itself, L∞(R+; L2) ∩ L2(R+; Ḣ1), is scaling
invariant. This is the key to the proof of Theorem 5.4. In the case where
d = 3, however, the regularity of the energy space is below that of the scaling
invariant space Ḣ

1
2 . In other words, in dimension d = 2, demonstrating the

global existence of regular solutions of the Navier–Stokes system is a critical
problem, whereas in dimension d = 3, this can be interpreted as a supercritical
problem. This is the core of the difficulty. As we shall see, being able to use
the special structure of the equation in a scaling invariant framework is one
of the challenges involved in resolving the global well-posedness issue.
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5.2 Well-posedness in Sobolev Spaces

In this section, we investigate the local and global well-posedness issues for
the generalized Navier–Stokes system (GNSν).

5.2.1 A General Result

The main theorem of this subsection is the following one.

Theorem 5.6. Let u0 be in Ḣ
d
2 −1(Rd). There exists a positive time T such

that the system (GNSν) has a unique solution u in L4([0, T ]; Ḣ
d−1
2 ) which

also belongs to
C([0, T ]; Ḣ

d
2 −1) ∩ L2([0, T ]; Ḣ

d
2 ).

Let Tu0 denote the maximal time of existence of such a solution. Then:

– There exists a constant c such that

‖u0‖
Ḣ

d
2 −1 ≤ cν =⇒ Tu0 = ∞.

– If Tu0 is finite, then

∫ Tu0

0

‖u(t)‖4

Ḣ
d−1
2

dt = ∞. (5.6)

Moreover, the solutions are stable in the following sense: If u and v are solu-
tions, then

‖u(t) − v(t)‖2

Ḣ
d
2 −1 + ν

∫ t

0

‖u(t′) − v(t′)‖2

Ḣ
d
2

dt′ ≤ ‖u0 − v0‖2

Ḣ
d
2 −1

× exp
( C

ν3

∫ t

0

(
‖u(t′)‖4

Ḣ
d−1
2

+ ‖v(t′)‖4

Ḣ
d−1
2

)
dt′

)
.

Remark 5.7. We note that for any small data, the corresponding solution u

belongs to L4(R+; Ḣ
d−1
2 ). In fact, we shall see in Theorem 5.17 that any global

solution of (GNSν) belongs to L4(R+; Ḣ
d−1
2 ).

Remark 5.8. As a by-product of the proof, under the condition ‖u0‖
Ḣ

d
2−1 ≤ cν,

we actually get ‖u(t)‖
Ḣ

d
2 −1 ≤ 2cν for any time t.

Proof of Theorem 5.6. We shall prove that the map

u 	−→ eνtΔu0 + B(u, u)

has a unique fixed point in the space L4([0, T ]; Ḣ
d−1
2 ) for an appropriate T .

This basically relies on the following two lemmas, the first of which is simply
a variation on Sobolev embedding.
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Lemma 5.9. A constant C exists such that

‖Q(a, b)‖
Ḣ

d
2 −2 ≤ C‖a‖

Ḣ
d−1
2

‖b‖
Ḣ

d−1
2

.

Proof. We focus on the cases d = 2, 3, where the result may be proven by
elementary arguments. For d ≥ 4 the result follows from Corollary 2.55 page 90
(the proof of which requires more elaborate techniques).

Beginning with the case d = 2 we can use Sobolev embedding (see Theo-
rem 1.38 page 29) to write

‖Q(a, b)‖Ḣ−1 ≤ C‖ab‖L2

≤ C‖a‖L4 ‖b‖L4

≤ C‖a‖
Ḣ

1
2

‖b‖
Ḣ

1
2
.

Next, if d = 3, then we have, by the definition of Q,

‖Q(a, b)‖
Ḣ− 1

2
≤ C sup

k,�

(
‖ak∂b�‖

Ḣ− 1
2

+ ‖b�∂ak ‖
Ḣ− 1

2

)
.

Thanks to the dual Sobolev embedding (see Corollary 1.39 page 29) and to
the Sobolev embedding itself, we have

‖Q(a, b)‖
Ḣ− 1

2
≤ C sup

k,�

(
‖ak∂b�‖

L
3
2

+ ‖b�∂ak ‖
L

3
2

)

≤ C

(
‖a‖L6 ‖ ∇b‖L2 + ‖∇a‖L2 ‖b‖L6

)

≤ C‖a‖Ḣ1 ‖b‖Ḣ1 .

This proves the lemma. ��

The second lemma describes an aspect of the smoothing effect of the heat flow
and may be seen as a particular case of the inequality (3.39) page 157. Here, we
provide an elementary self-contained proof which does not require Littlewood–
Paley decomposition.

Lemma 5.10. Let v be the solution in C([0, T ]; S ′(Rd)) of the Cauchy problem
{

∂tv − νΔv = f
v|t=0 = v0

with f in L2([0, T ]; Ḣs−1) and v0 in Ḣs(Rd). Then,

v ∈
( ∞⋂

p=2

Lp([0, T ]; Ḣs+ 2
p )

) ⋂
C([0, T ]; Ḣs).

Moreover, we have the following estimates:
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‖v(t)‖2
Ḣs + 2ν

∫ t

0

‖ ∇v(t′)‖2
Ḣs dt′ = ‖v0‖2

Ḣs + 2
∫ t

0

〈f(t′), v(t′)〉s dt′ ,

(∫
Rd

|ξ|2s
(

sup
0≤t′ ≤t

|v̂(t′, ξ)|
)2

dξ

) 1
2

≤ ‖v0‖Ḣs +
1

(2ν)
1
2

‖f ‖L2
T (Ḣs−1),

‖v(t)‖
Lp

T (Ḣ
s+ 2

p )
≤ 1

ν
1
p

(
‖v0‖Ḣs +

1
ν

1
2

‖f ‖L2
T (Ḣs−1)

)

with 〈a, b〉s
def
=

∫
|ξ|2sâ(ξ)̂b(ξ) dξ.

Proof. The first estimate is just the energy estimate. The proof of the second
one is based around writing Duhamel’s formula in Fourier space, namely,

v̂(t, ξ) = e−νt|ξ|2 v̂0(ξ) +
∫ t

0

e−ν(t−t′)|ξ|2 f̂(t′, ξ) dt′.

The Cauchy–Schwarz inequality implies that

sup
0≤t′ ≤t

|v̂(t′, ξ)| ≤ |v̂0(ξ)| +
1√

2ν|ξ|2
‖f̂(·, ξ)‖L2([0,t]).

Taking the L2 norm with respect to |ξ|2s dξ then allows us to conclude that

V (t) def=
(∫

Rd

(
sup

0≤t′ ≤t
|v̂(t′, ξ)|

)2

|ξ|2s dξ

) 1
2

≤ ‖v0‖Ḣs +
1

(2ν)
1
2

(∫
Rd

‖f̂(·, ξ)‖2
L2([0,t])|ξ|2s−2 dξ

) 1
2

≤ ‖v0‖Ḣs +
1

(2ν)
1
2

(∫
[0,t]×Rd

|f̂(t′, ξ)|2|ξ|2s−2 dξ dt′
) 1

2

≤ ‖v0‖Ḣs +
1

(2ν)
1
2

‖f ‖L2([0,t];Ḣs−1).

Since, for almost all fixed ξ ∈ R
d, the map t 	→ v̂(t, ξ) is continuous over [0, T ],

the Lebesgue dominated convergence theorem ensures that v ∈ C([0, T ]; Ḣs).
Finally, the last inequality follows by interpolation. ��

Combining Lemmas 5.9 and 5.10, we get the following result.

Corollary 5.11. A constant C exists such that

‖B(u, v)‖
L4

T (Ḣ
d−1
2 )

≤ C

ν
3
4

‖u‖
L4

T (Ḣ
d−1
2 )

‖v‖
L4

T (Ḣ
d−1
2 )

.

Proof of Theorem 5.6 (continued). To prove the first part of Theorem 5.6, we
shall use Lemma 5.5. We know that if
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‖eνtΔu0‖
L4

T (Ḣ
d−1
2 )

≤ ν
3
4

4C0
(5.7)

with C0 > C, then there exists a unique solution of (GNSν) in the ball with

center 0 and radius ( ν
3
4

2C0
) in the space L4([0, T ]; Ḣ

d−1
2 ).

Next, we investigate when the condition (5.7) is satisfied. Applying the
last inequality of Lemma 5.10 with s = d/2 − 1 and p = 4 yields, for any
positive time T ,

‖eνtΔu0‖
L4

T (Ḣ
d−1
2 )

≤ 1
ν

1
4

‖u0‖
Ḣ

d
2 −1 . (5.8)

Thus, if ‖u0‖
Ḣ

d
2 −1 ≤ (4C0)−1ν, then the smallness condition (5.7) is satisfied

and we have a global solution.
We now consider the case of a large initial data u0 in Ḣ

d
2 −1. We shall

split u0 into a small part in Ḣ
d
2 −1 and a large part with compactly supported

Fourier transform. For that, we fix some positive real number ρu0 such that

(∫
|ξ|≥ρu0

|ξ|d−2|û0(ξ)|2 dξ
) 1

2 ≤ ν

8C0
·

Using (5.8) and defining u�
0

def= F −1(1B(0,ρu0 )û0), we get

‖eνtΔu0‖
L4

T (Ḣ
d−1
2 )

≤ ν
3
4

8C0
+ ‖eνtΔu�

0‖
L4

T (Ḣ
d−1
2 )

.

We note that

‖eνtΔu�
0‖

L4
T (Ḣ

d−1
2 )

≤ ρ
1
2
u0 ‖eνtΔu�

0‖
L4

T (Ḣ
d
2 −1)

≤ (ρ2
u0

T )
1
4 ‖u0‖

Ḣ
d
2 −1 .

Thus, if

T ≤
(

ν
3
4

8C0ρ
1
2
u0 ‖u0‖

Ḣ
d
2 −1

)4

, (5.9)

then we have the existence of a unique solution in the ball with center 0 and

radius ν
3
4

2C0
in the space L4([0, T ]; Ḣ

d−1
2 ).

Finally, we observe that if u is a solution of (GNSν) in L4([0, T ]; Ḣ
d−1
2 ),

then, by Lemma 5.9, Q(u, u) belongs to L2([0, T ]; Ḣ
d
2 −2). Hence, Lemma 5.10

implies that the solution u belongs to

C([0, T ]; Ḣ
d
2 −1) ∩ L2([0, T ]; Ḣ

d
2 ).
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In order to prove the stability estimate, consider the difference w between two
solutions u and v. We note that w satisfies{

∂tw − νΔw = Q(w, u + v)

w|t=0 = w0
def= u0 − v0.

Thus, by the energy estimate in Ḣ
d
2 −1 (see Lemma 5.10), we have

Δw(t)
def= ‖w(t)‖2

Ḣ
d
2 −1 + 2ν

∫ t

0

‖ ∇w(t′)‖2

Ḣ
d
2 −1 dt′

≤ ‖w0‖2

Ḣ
d
2 −1 + 2

∫ t

0

〈
Q(w(t′), u(t′) + v(t′)), w(t′)

〉
d
2 −1

dt′.

The nonlinear term is treated by means of the following lemma.

Lemma 5.12. A constant C exists such that

〈Q(a, b), c〉 d
2 −1 ≤ C‖a‖

Ḣ
d−1
2

‖b‖
Ḣ

d−1
2

‖∇c‖
Ḣ

d
2 −1 .

Proof. Let α = Q(a, b). By definition of the Ḣ
d
2 −1 scalar product, we have,

thanks to the Cauchy–Schwarz inequality,

〈α, c〉 d
2 −1 =

∫
α̂(ξ)ĉ(ξ)|ξ|d−2 dξ

=
∫

|ξ| d
2 −2α̂(ξ) |ξ| d

2 −1|ξ|ĉ(ξ) dξ

≤ ‖α‖
Ḣ

d
2 −2 ‖ ∇c‖

Ḣ
d
2 −1 ,

which, by virtue of Lemma 5.9, leads to the result. ��

Completion of the proof of Theorem 5.6. We now resume the proof of the
stability. We deduce from the above lemma that

Δw(t) ≤ ‖w0‖2

Ḣ
d
2 −1 + C

∫ t

0

‖w(t′)‖
Ḣ

d−1
2

N(t′)‖∇w(t′)‖
Ḣ

d
2 −1 dt′

with N(t) def= ‖u(t)‖
Ḣ

d−1
2

+ ‖v(t)‖
Ḣ

d−1
2

. By the interpolation inequality be-

tween Ḣ
d
2 −1 and Ḣ

d
2 , we infer that

Δw(t) ≤ ‖w0‖2

Ḣ
d
2 −1 + C

∫ t

0

‖w(t′)‖
1
2

Ḣ
d
2 −1

N(t′)‖∇w(t′)‖
3
2

Ḣ
d
2 −1

dt′.

Using the convexity inequality ab ≤ 1
4
a4 +

3
4
b

4
3 , we deduce that

Δw(t) ≤ ‖w0‖2

Ḣ
d
2 −1 +

C

ν3

∫ t

0

‖w(t′)‖2

Ḣ
d
2 −1N

4(t′) dt′ + ν

∫ t

0

‖∇w(t′)‖2

Ḣ
d
2 −1 dt′.
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By definition of Δw, this can be written

‖w(t)‖2

Ḣ
d
2 −1 + ν

∫ t

0

‖ ∇w(t′)‖2

Ḣ
d
2 −1 dt′

≤ ‖w0‖2

Ḣ
d
2 −1 +

C

ν3

∫ t

0

‖w(t′)‖2

Ḣ
d
2 −1N

4(t′) dt′.

Using the Gronwall lemma, we infer that

‖w(t)‖2

Ḣ
d
2 −1 + ν

∫ t

0

‖ ∇w(t′)‖2

Ḣ
d
2 −1 dt′ ≤ ‖w0‖2

Ḣ
d
2 −1 exp

( C

ν3

∫ t

0

N4(t′) dt′
)
.

The theorem is thus proved up to the blow-up criterion. Assume that we have
a solution u of (GNSν) on a time interval [0, T [ such that

∫ T

0

‖u(t)‖4

Ḣ
d−1
2

dt < ∞.

We claim that the lifespan Tu0 of u is greater than T . Indeed, thanks to
Lemmas 5.9 and 5.10, we have

∫
Rd

|ξ|d−2
(

sup
t∈[0,T [

|û(t, ξ)|
)2

dξ < ∞.

Thus, a positive number ρ exists such that

∀t ∈ [0, T [ ,
∫

|ξ|≥ρ

|ξ|d−2|û(t, ξ)|2 dξ <
cν

2
·

The condition (5.9) now implies that for any t ∈ [0, T [, the lifespan for a
solution of (GNSν) with initial data u(t) is bounded from below by a positive
real number τ which is independent of t. Thus, Tu0 > T , and the whole of
Theorem 5.6 is now proved. ��

5.2.2 The Behavior of the Ḣ
d
2 −1 Norm Near 0

In this subsection, we show that for small solutions, the Ḣ
d
2 −1 norm behaves

as a Lyapunov function near 0.

Proposition 5.13. Let u0 be in the ball with center 0 and radius cν in the
space Ḣ

d
2 −1(Rd). The function

t 	−→ ‖u(t)‖
Ḣ

d
2 −1

is then nonincreasing.
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Proof. We shall again use the fact that the function u is a solution of the
equation

∂tu − νΔu = Q(u, u) with Q(u, u) ∈ L2(R+; Ḣ
d
2 −2).

Thus, thanks to Lemma 5.10, we infer that

‖u(t)‖2

Ḣ
d
2 −1 + 2ν

∫ t

0

‖ ∇u(t′)‖2

Ḣ
d
2 −1 dt′

= ‖u0‖2

Ḣ
d
2 −1 + 2

∫ t

0

〈Q(u(t′), u(t′)), u(t′)〉 d
2 −1 dt′.

Using Lemma 5.12 and an interpolation inequality, we get, for any 0 ≤ t1 ≤ t2,

U(t1, t2)
def= ‖u(t2)‖2

Ḣ
d
2 −1 + 2ν

∫ t2

t1

‖ ∇u(t′)‖2

Ḣ
d
2 −1 dt′

≤ ‖u(t1)‖2

Ḣ
d
2 −1 + C

∫ t2

t1

‖u(t′)‖2

Ḣ
d−1
2

‖∇u(t′)‖
Ḣ

d
2 −1 dt′

≤ ‖u(t1)‖2

Ḣ
d
2 −1 + C

∫ t2

t1

‖u(t′)‖
Ḣ

d
2 −1 ‖∇u(t′)‖2

Ḣ
d
2 −1 dt′.

By Theorem 5.6, we know that u(t) remains in the ball with center 0 and
radius 2cν in the space Ḣ

d
2 −1(Rd). Thus, if c is small enough, we get that

‖u(t2)‖2

Ḣ
d
2 −1 + ν

∫ t2

t1

‖ ∇u(t′)‖2

Ḣ
d
2 −1 dt′ ≤ ‖u(t1)‖2

Ḣ
d
2 −1 .

This proves the proposition. ��

5.3 Results Related to the Structure of the System

In this section we present results which are related to the very structure of
the Navier–Stokes system. Here, the energy estimate will play a fundamental
role.

5.3.1 The Particular Case of Dimension Two

As explained above, in dimension two the energy estimate turns out to be
scaling invariant for the Navier–Stokes system. This fact will enable us to
prove that (NSν) is globally well posed for any initial data in L2(R2), as
follows.
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Theorem 5.14. Let u0 be a divergence-free vector field in L2(R2). A unique
solution then exists in the space L4(R+; Ḣ

1
2 ) which also belongs to

C(R+; L2) ∩ L∞(R+; L2) ∩ L2(R+; Ḣ1)

and satisfies the energy equality

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 .

Proof. Let u be the solution given by Theorem 5.6. Thanks to Lemma 5.9, we
know that QNS(u, u) belongs to L2

loc([0, Tu0 [; Ḣ
−1). Therefore, Lemma 5.10

implies that u is continuous with values in L2(R2) and satisfies

‖u(t)‖2
L2 +2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 +2
∫ t

0

〈
QNS(u(t′), u(t′)), u(t′)

〉
0
dt′.

We temporarily assume the following lemma.

Lemma 5.15. Let u and v be time-dependent, divergence-free vector fields
over R

d . If u and v belong to L4([0, T ]; L4) ∩ L2([0, T ]; H1), then we have
∫ t

0

〈
QNS(u(t′), v(t′)), v(t′)

〉
0
dt′ = 0.

Combining interpolation and the Sobolev embedding Ḣ
1
2 (R2) ↪→ L4(R2), we

see that u is in L4([0, T ] × R
2). Therefore, we deduce that for any t < Tu0 ,

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 .

Thanks to the above energy estimate and using an interpolation inequality
between L2 and Ḣ1, we obtain, for any T < Tu0 ,

∫ T

0

‖u(t)‖4

Ḣ
1
2

dt ≤ ‖u0‖2
L2

∫ T

0

‖∇u(t)‖2
L2 dt

≤ 1
2ν

‖u0‖4
L2 .

The blow-up condition (5.6) then implies the theorem. ��

For the sake of completeness, we now prove Lemma 5.15. We know that

Qj
NS(u, v) def= − div(vju) −

∑
1≤k,�≤d

∂j(−Δ)−1∂k∂�(ukv�).

Note that all the terms on the right-hand side are in L2([0, T ]; Ḣ−1). There-
fore,
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〈QNS(u, v), v〉 = −
∑

1≤j≤d

∫
Rd

vj div(vju) dx

+
∑

1≤j,k,�≤d

∫
Rd

vj∂j(Δ−1∂k∂�(ukv�)) dx

= − 1
2

∫
Rd

(div u)|v|2 dx

−
∑

1≤k,�≤d

∫
Rd

(div v)Δ−1∂k∂�(ukv�) dx. (5.10)

As div u = div v = 0, this completes the proof of the lemma. ��

5.3.2 The Case of Dimension Three

The case of dimension three is much more involved. The question of whether
or not (NSν) is globally well posed for large data in Ḣ

1
2 (R3) is still open.

The purpose of this section is first to prove the energy equality for solutions
of (NSν) given by Theorem 5.6 and then to show that any global solution is
stable.

Proposition 5.16. Consider an initial data u0 in H
1
2 (R3) with div u0 = 0.

If u denotes the solution given by Theorem 5.6, then u is continuous with
values in L2(R3) and satisfies the energy equality

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u(t′)‖2
L2 dt′ = ‖u0‖2

L2 .

Proof. As the solution u belongs to

L∞
loc([0, Tu0 [; Ḣ

1
2 ) ∩ L4

loc([0, Tu0 [; Ḣ
1),

the interpolation inequality between Sobolev norms (see Proposition 1.32
page 25) implies that u belongs to the space L8

loc([0, Tu0 [; Ḣ
3
4 ), which, in view

of Sobolev embedding, is a subspace of L4
loc([0, Tu0 [; L

4). Therefore, we may
apply Lemma 5.15, and the energy equality is thus satisfied. Now, because
u ∈ L4

loc([0, Tu0 [; L
4), we have QNS(u, u) ∈ L2

loc([0, Tu0 [; Ḣ
−1), so applying

Lemma 5.10 yields the desired continuity result. ��

Next, we shall investigate qualitative properties of global solutions. In fact,
any global solution is stable, even if associated with large initial data. More
precisely, we have the following statement.

Theorem 5.17. Let u be a global solution of (NSν) in L4
loc(R

+; Ḣ1). We then
have

lim
t→∞

‖u(t)‖
Ḣ

1
2

= 0 and
∫ ∞

0

‖u(t)‖4
Ḣ1 dt < ∞.
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Remark 5.18. We know that if ‖u0‖
Ḣ

1
2

satisfies the smallness condition of The-
orem 5.6, then the global solution associated with the Cauchy data u0 belongs
to the space L4(R+; Ḣ1). Hence, it suffices to prove that lim

t→∞
‖u(t)‖

Ḣ
1
2

= 0.

Remark 5.19. If u0 also belongs to L2(R3), then this theorem is an immediate
consequence of Proposition 5.16. Indeed, interpolating between L2 and Ḣ1

yields ∫
R+

‖u(t)‖4

Ḣ
1
2

dt ≤ 1
2ν

‖u0‖4
L2 ,

from which the result follows since the Ḣ
1
2 norm is a Lyapunov function

near 0.

Proof of Theorem 5.17. For fixed, given ρ > 0, we decompose the initial
data u0 as

u0 = u0,h + u0,� with u0,�
def= F −1(1B(0,ρ)û0).

Let ε be any positive real number. We can choose ρ such that

‖u0,�‖
Ḣ

1
2

≤ min
{

cν,
ε

2

}
·

Denote by u� the global solution of (NSν) given by Theorem 5.6 for the initial
data u0,�. Thanks to Proposition 5.13, we have

∀t ∈ R
+ , ‖u�(t)‖

Ḣ
1
2

≤ ε

2
· (5.11)

Define uh
def= u − u�. This satisfies

{
∂tuh − νΔuh = QNS(u, uh) + QNS(uh, u�)

uh|t=0 = u0,h.

Obviously, u0,h belongs to L2 (with an L2 norm which depends on ρ and
thus on ε). Moreover, both QNS(u, uh) and QNS(uh, u�) belong to the
space L2

loc(R
+; Ḣ−1). Applying Lemma 5.10 and Lemma 5.15, we get

‖uh(t)‖2
L2 + 2ν

∫ t

0

‖ ∇uh(t′)‖2
L2 dt′ = ‖u0,h‖2

L2

+ 2
∫ t

0

〈QNS(uh(t′), u�(t′)), uh(t′)〉Ḣ−1×Ḣ1 dt′.

From Sobolev embedding, we infer that
∣∣∣〈QNS(uh(t), u�(t)), uh(t)〉Ḣ−1×Ḣ1

∣∣∣ ≤ C‖uh(t)u�(t)‖L2 ‖∇uh(t)‖L2

≤ C‖uh(t)‖L6 ‖u�(t)‖L3 ‖∇uh(t)‖L2

≤ C‖u�(t)‖
Ḣ

1
2

‖∇uh(t)‖2
L2 .
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We then deduce that

‖uh(t)‖2
L2 + 2ν

∫ t

0

‖ ∇uh(t′)‖2
L2 dt′ ≤ ‖u0,h‖2

L2 + Cε

∫ t

0

‖∇uh(t′)‖2
L2 dt′.

Choosing ε small enough ensures that

‖uh(t)‖2
L2 + ν

∫ t

0

‖ ∇uh(t′)‖2
L2 dt′ ≤ ‖u0,h‖2

L2 .

This implies that a positive time tε exists such that ‖uh(tε)‖
Ḣ

1
2

< ε/2.
Thus, ‖u(tε)‖

Ḣ
1
2

≤ ε. Theorem 5.6 and Proposition 5.13 then allow us to
complete the proof. ��

Theorem 5.17 has the following interesting consequence.

Corollary 5.20. The set of initial data u0 such that the solution u given by
Theorem 5.6 is global is an open subset of Ḣ

1
2 .

Proof. Let u0 in Ḣ
1
2 be such that the associated solution is global. Let w0

be in Ḣ
1
2 . Denote by v the maximal local solution associated with the initial

data v0
def= u0 + w0. The function w

def= v − u is solution of
{

∂tw − νΔw = QNS(u, w) + QNS(w, u) + QNS(w, w)
w|t=0 = w0.

Lemma 5.12, together with an interpolation inequality, gives

〈QNS(u, w) + QNS(w, u), w〉
Ḣ

1
2

≤ C‖u‖Ḣ1 ‖w‖
1
2

Ḣ
1
2

‖∇w‖
3
2

Ḣ
1
2
,

〈QNS(w, w), w〉
Ḣ

1
2

≤ C‖w‖
Ḣ

1
2

‖∇w‖2

Ḣ
1
2
.

Assume that ‖w0‖
Ḣ

1
2

≤ ν

8C
and define

Tw0

def= sup
{

t / max
0≤t′ ≤t

‖w(t′)‖
Ḣ

1
2

≤ ν

4C

}
·

From Lemma 5.10 and the convexity inequality ab ≤ 1
4
a4 +

3
4
b

4
3 , we then infer

that for any t < Tw0 ,

‖w(t)‖2

Ḣ
1
2

+ ν

∫ t

0

‖∇w(t′)‖2

Ḣ
1
2

dt′ ≤ ‖w0‖2

Ḣ
1
2

+
C

ν3

∫ t

0

‖u(t′)‖4
Ḣ1 ‖w(t′)‖2

Ḣ
1
2

dt′.

The Gronwall lemma and Theorem 5.17 together imply that for any t < Tw0 ,

‖w(t)‖2

Ḣ
1
2

+ ν

∫ t

0

‖ ∇w(t′)‖2

Ḣ
1
2

dt′ ≤ ‖w0‖2

Ḣ
1
2

exp
( C

ν3

∫ t

0

‖u(t′)‖4
Ḣ1 dt′

)
.
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Now, according to Theorem 5.17, u is in L4(R+; Ḣ1). Hence, we can conclude
that if the smallness condition

‖w0‖2

Ḣ
1
2

exp
( C

ν3

∫ ∞

0

‖u(t)‖4
Ḣ1 dt

)
≤ ν2

16C2

is satisfied, then the blow-up condition for v is never satisfied. Corollary 5.20
is thus proved. ��

5.4 An Elementary Lp Approach

As announced in the introduction of this chapter, we here prove local well-
posedness for initial data in L3(R3). The main result is the following theorem.

Theorem 5.21. Let u0 be in L3(R3). A positive time T then exists such
that (GSNν) has a unique solution u in the space C([0, T ]; L3). Moreover,
there exists a positive constant c such that T can be chosen equal to infinity
if ‖u0‖L3 ≤ cν.

Proving this theorem cannot be achieved by means of a fixed point argu-
ment in the space L∞([0, T ]; L3). Indeed, as discovered by F. Oru in [243],
the bilinear functional BNS does not map L∞([0, T ]; L3) × L∞([0, T ]; L3)
into L∞([0, T ]; L3).

As in the preceding section, we shall use the smoothing effect of the heat
equation to define a space in which the fixed point method applies. This
motivates the introduction of the following Kato spaces.

Definition 5.22. If p is in [3, ∞] and T is in ]0, ∞[, then we define Kp(T )
by

Kp(T )
def
=

{
u ∈ C(]0, T ]; Lp) / ‖u‖Kp(T )

def
= sup

t∈]0,T ]

(νt)
1
2 (1− 3

p )‖u(t)‖Lp < ∞
}

.

If p ∈ [1, 3[, then we define Kp(T ) by

Kp(T )
def
=

{
u ∈ C([0, T ]; Lp) / ‖u‖Kp(T )

def
= sup

t∈]0,T ]

(νt)
1
2 (1− 3

p )‖u(t)‖Lp < ∞
}

.

We denote by Kp(∞) the space defined as above with ]0, ∞[ (resp., [0, ∞[)
instead of ]0, T ] (resp., [0, T ]).

Remark 5.23. Kato spaces are Banach spaces. Moreover, Kp(∞) is invariant
under the scaling of the Navier–Stokes system.

Remark 5.24. Consider some u0 in L3 and p ≥ 3. As

eνtΔu0 =
1

(4πνt)
3
2
e− | · |2

4νt � u0,
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we have, thanks to Young’s inequality,

‖eνtΔu0‖Lp ≤ 1
(4πνt)

3
2

∥∥e− | · |2
4νt

∥∥
Lr ‖u0‖L3 with

1
r

=
2
3

+
1
p

·

This gives ‖eνtΔu0‖Lp ≤ c(νt)− 1
2 (1− 3

p )‖u0‖L3 and thus

‖eνtΔu0‖Kp(∞) ≤ C‖u0‖L3 . (5.12)

We note that if u0 belongs to L3, then, for any positive ε, a function φ can
be found in S such that ‖u0 − φ‖L3 ≤ ε. This implies, in particular, that

‖eνtΔ(u0 − φ)‖Kp(∞) ≤ Cε.

Observing that ‖eνtΔφ‖Lp ≤ ‖φ‖Lp , we then get, for p > 3,

‖eνtΔu0‖Kp(T ) ≤ Cε + (νT )
1
2 (1− 3

p )‖φ‖Lp . (5.13)

We can thus conclude that ‖eνtΔu0‖Kp(T ) tends to 0 when T goes to 0.

Remark 5.25. We now give an example of a sequence (φn)n∈N such that the L3

norm is constant, the Ḣ
1
2 norm tends to infinity, and the Kp(∞) norm

of eνtΔφn tends to 0 for any p > 3. Consider, for some ω in the unit sphere,
the sequence

φn(x) def= ein(x|ω)φ(x),

where φ is a function in S with a compactly supported Fourier transform.
On the one hand, since φ̂n(ξ) = φ̂(ξ − nω), straightforward computations

give
lim

n→∞
n−1/2‖φn‖Ḣ1/2 = ‖φ̂‖L2 .

On the other hand, we have

eνtΔφn(x) = (2π)−3ein(x|ω)

∫
R3

ei(x|η)e−νt|η+nω|2 φ̂(η) dη.

Hence, because φ̂ is compactly supported, we find that for large enough n,

‖eνtΔφn‖L∞ ≤ Ce− ν
2 tn2

‖φ̂‖L1 and ‖eνtΔφn‖L2 ≤ Ce− ν
2 tn2

‖φ̂‖L2 ,

from which it follows, by Hölder’s inequality, that

‖eνtΔφn‖Lp ≤ C(νtn2)− 1
2 (1− 3

p ).

Thus,

‖eνtΔφn‖Kp(∞) ≤ C

n1− 3
p

,

which implies that the Kp(∞) norm of eνtΔφn tends to 0 when n goes to infin-
ity. Finally, as ‖φn‖L3 = ‖φ‖L3 , this example has the announced properties.
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Remark 5.26. We emphasize that when p > 3, ‖eνtΔu0‖Kp(∞) is equivalent to

the norm of the homogeneous Besov space Ḃ
−1+ 3

p
p,∞ (see Theorem 2.34 page 72).

In fact, Theorem 5.21 turns out to be a corollary of the following theorem.

Theorem 5.27. For any p in ]3, ∞[, a constant c exists which satisfies the
following property. Let u0 be an initial data in S ′ such that for some positive T ,

‖eνtΔu0‖Kp(T ) ≤ cν. (5.14)

A unique solution u of (GNSν) then exists in the ball with center 0 and
radius 2cν in the Banach space Kp(T ).

Remark 5.28. Thanks to the inequality (5.13), this theorem implies that for
any initial data in L3 we have a local solution. Thanks to the inequality (5.12)
this solution is global if ‖u0‖L3 is small enough.

Proof of Theorem 5.27. The proof relies on Lemma 5.5 applied in Kp(T ). It
therefore suffices to state the following result.

Lemma 5.29. Let p, q, and r be such that

0 <
1
p

+
1
q

≤ 1 and
1
r

≤ 1
p

+
1
q

<
1
3

+
1
r

·

For any positive T , the bilinear functional B maps Kp(T )×Kq(T ) into Kr(T ).
Moreover, a constant C (independent of T ) exists such that

‖B(u, v)‖Kr(T ) ≤ C

ν
‖u‖Kp(T )‖v‖Kq(T ).

Proof. This will involve writing B as a convolution operator. More precisely,
we have the following lemma.

Lemma 5.30. Define the operator Lm by
⎧⎨
⎩

∂tLmf − νΔLmf + ∇P = ∂mf
div Lmf = 0
Lmf|t=0 = 0.

We have

Lmf j(t, x) =
∑

k

∫ t

0

∫
R3

Γ j
m,k(t − t′, y) � fk(t′, x − y)

)
dt′,

where the functions Γ j
k,� belong to C(]0, ∞[; Ls) for any s in [1, ∞[ and satisfy

|Γ j
m,k(t, x)| ≤ C

(
√

νt + |x|)4
· (5.15)
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Proof. In Fourier space, we have

F Lmf j(t, ξ) = i

∫ t

0

e−ν(t−t′)|ξ|2
3∑

k=1

ξmF (Pf)j(t′, ξ) dt′.

Using the computation of the pressure (5.4), we get

F Lmf j(t, ξ) = i

∫ t

0

e−ν(t−t′)|ξ|2
3∑

k=1

αk,j
ξjξkξm

|ξ|2 f̂k(t′, ξ) dt′.

Thus, defining

Γ j
m,k(t, ·) def= iαk,j F −1

(
e−νt|ξ|2 ξjξkξm

|ξ|2

)

gives the lemma, provided that we have the pointwise estimate (5.15). Define,
for β ∈ N

3 with length 3,

Γβ(t, ·) def= iF −1

(
e−νt|ξ|2 ξβ

|ξ|2

)
·

Using the fact that

e−νt|ξ|2 |ξ| −2 = ν

∫ ∞

t

e−νt′ |ξ|2 dt′,

we get

Γβ(t, x) = (2π)−3νi

∫ ∞

t

∫
R3

ξβei(x|ξ)−νt′ |ξ|2 dt′ dξ

= −(2π)−3ν∂β

∫ ∞

t

∫
R3

ei(x|ξ)−νt′ |ξ|2 dt′ dξ.

Using the formula (1.20) page 18 for the Fourier transform of Gaussian func-
tions, we obtain

Γβ(t, x) = −ν∂β

∫ ∞

t

1
(4πνt′)

3
2
e− |x|2

4νt′ dt′

= − ν

π
3
2

∫ ∞

t

1
(4νt′)3

Ψβ

( x√
4νt′

)
dt′ with Ψβ(z) def= ∂βe− |z|2 .

The change of variable r = (4νt′)−1|x|2 leads to

|Γβ(t, x)| ≤ C

|x|4
∫ |x|2

4νt

0

rΨβ

( x

|x| r
1
2

)
dr.

This implies that
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|Γβ(t, x)| ≤ c min
{ 1

(νt)2
, 1

|x|4
}

(5.16)

and thus that
‖Γ j

k,�(t, ·)‖Ls ≤ C

(νt)2− 3
2s

·

In order to prove the continuity, we observe that there exists some δ > 0 such
that for 0 < c ≤ t1 ≤ t2, we have

|Γ j
k,�(t2, x) − Γ j

k,�(t1, x)| ≤ C

|x|4
∫ |x|2

4νt1

|x|2
4νt2

re−δr dr.

This implies that

|Γ j
k,�(t2, x) − Γ j

k,�(t1, x)| ≤ C min
{ t22 − t21

(νt1t2)2
, 1

|x|4
}

·

The lemma is thus proved. ��

Completion of the proof of Lemma 5.29. Thanks to Young’s and Hölder’s
inequalities, and to the condition

1
r

≤ 1
p

+
1
q

≤ 1,

we have, according to Lemma 5.30 with s defined by 1 +
1
r

=
1
s

+
1
p

+
1
q
,

‖B(u, v)(t)‖Lr ≤ C

∫ t

0

1√
ν(t − t′)

4−3(1+ 1
r − 1

p − 1
q )

‖u(t′)‖Lp ‖v(t′)‖Lq dt′.

By the definition of the Kp(T ) norms, we thus get that

‖B(u, v)(t)‖Lr ≤ C‖u‖Kp(T )‖v‖Kq(T )

×
∫ t

0

1√
ν(t − t′)

1−3( 1
r − 1

p − 1
q )

1
√

νt′2−3( 1
p + 1

q )
dt′

≤ C

ν

1
√

νt
1− 3

r

‖u‖Kp(T )‖v‖Kq(T ).

Lemma 5.29 is proved, and thus Lemma 5.5 implies Theorem 5.27. ��

Completion of the proof of Theorem 5.21. According to Remark 5.24 we may
apply Theorem 5.27 with p = 6 and T suitably small. Note that if the initial
data is small in L3, then the inequality (5.12) enables us to take T = ∞.
Hence, it remains only to check the following two points:
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– The solution u is continuous with values in L3.
– The solution u is unique among all continuous functions with values in L3.

These two problems are solved using a method which turns out to be impor-
tant in the study of the (generalized) Navier–Stokes system: It consists in the
consideration of the new unknown

w
def= u − eνtΔu0.

The idea is that w is smoother than u. Obviously, we have w = B(u, u).
Lemma 5.29 applied with p = q = 6 and r = 3 implies that w belongs
to C(]0, T ]; L3(R3)). The continuity of w at the origin will follow from the fact
that, still using Lemma 5.29, we have

‖w‖L∞([0,t];L3) ≤ C

ν
‖u‖2

K6(t)
.

However, the solution u given by Lemma 5.5 satisfies

‖u‖K6(t) ≤ 2‖eνtΔu0‖K6(t).

Remark 5.24 thus implies that lim
t→0

‖w‖L∞([0,t];L3) = 0. As the heat flow is

continuous with values in L3, we have proven that the solution u is continuous
with values in L3.

We will now prove that there is at most one solution in C([0, T ]; L3). Ob-
serve that by applying Lemma 5.29 with p = q = 3 and r = 2, we get

w = B(u, u) ∈ K2(T ).

In particular, w belongs to C([0, T ]; L2). Consider two solutions u1 and u2

of (GNSν) in the space C([0, T ]; L3) associated with the same initial data
and denote by u21 the difference u2 − u1. Because u21 = w2 − w1, it belongs
to C([0, T ]; L2) and satisfies

{
∂tu21 − νΔu21 = f21

u21|t=0 = 0 with

f21 = Q(eνtΔu0, u21) + Q(u21, e
νtΔu0) + Q(w2, u21) + Q(u21, w1).

Via Sobolev embeddings, we have

‖Q(a, b)‖
Ḣ− 3

2
≤ C sup

1≤k,�≤3
‖akb�‖

Ḣ− 1
2

≤ C sup
1≤k,�≤3

‖akb�‖
L

3
2

(5.17)

≤ C‖a‖L3 ‖b‖L3 . (5.18)

Thus, the external force f21 belongs to L2([0, T ]; Ḣ− 3
2 ). As u21 is the unique

solution in the space of continuous functions with values in S ′, we infer
that u21 belongs to
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L∞([0, T ]; Ḣ− 1
2 ) ∩ L2([0, T ]; Ḣ

1
2 )

and satisfies, thanks to Lemma 5.10,

U21(t)
def= ‖u21(t)‖2

Ḣ− 1
2

+ 2ν

∫ t

0

‖u21(t′)‖2

Ḣ
1
2

dt′

= 2
∫ t

0

〈f21(t′), u21(t′)〉 − 1
2

dt′

≤ 2
∫ t

0

‖f21(t′)‖
Ḣ− 3

2
‖u21(t′)‖

Ḣ
1
2

dt′. (5.19)

As the space of continuous and compactly supported functions is dense in L3,
we may decompose u0 into the sum of a small function in L3 norm and a
(possibly large) function of L6:

u0 = u�
0 + u�

0 with ‖u�
0‖L3 ≤ cν and u�

0 ∈ L6. (5.20)

Defining g21
def= f21 − Q(eνtΔu�

0, u21) − Q(u21, e
νtΔu�

0) and applying (5.18)
gives, again via Sobolev embeddings,

A21(t)
def= ‖g21(t)‖

Ḣ− 3
2

≤ C
(

‖eνtΔu�
0‖L3 + ‖w1‖K3(t) + ‖w2‖K3(t)

)
‖u21(t)‖L3

≤ C
(

‖u�
0‖L3 + ‖w1‖K3(t) + ‖w2‖K3(t)

)
‖u21(t)‖

Ḣ
1
2
.

If t is sufficiently small, and c is chosen sufficiently small in (5.20), we get

A21(t) ≤ ν

4
‖u21(t)‖

Ḣ
1
2
. (5.21)

Still using Sobolev embeddings and Hölder inequality, we can write

B21(t)
def=

∥∥∥Q(eνtΔu�
0, u21) + Q(u21, e

νtΔu�
0)

∥∥∥
Ḣ− 3

2

≤ C sup
1≤k,�≤d

‖(eνtΔu�,k
0 )u�

21‖
L

3
2

≤ C‖eνtΔu�
0‖L6 ‖u21(t)‖L2 .

Using the fact that the heat flow is a contraction over the Lp spaces and then
the interpolation inequality between Ḣ− 1

2 and Ḣ
1
2 , we get

B21(t) ≤ C‖u�
0‖L6 ‖u21(t)‖

1
2

Ḣ− 1
2

‖u21(t)‖
1
2

Ḣ
1
2
.

Using (5.19) and (5.21), we then deduce that
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‖u21(t)‖2

Ḣ− 1
2

+
3
2
ν

∫ t

0

‖u21(t′)‖2

Ḣ
1
2

dt′

≤ C‖u�
0‖L6

∫ t

0

‖u21(t′)‖
1
2

Ḣ− 1
2

‖u21(t′)‖
3
2

Ḣ
1
2

dt′.

Using the classical convexity inequality ab ≤ 1
4
a4 +

3
4
b

4
3 , we then get

‖u21(t)‖2

Ḣ− 1
2

+ ν

∫ t

0

‖u21(t′)‖2

Ḣ
1
2

dt′ ≤ C

ν3
‖u�

0‖4
L6

∫ t

0

‖u21(t′)‖2

Ḣ− 1
2

dt′.

The Gronwall lemma implies that u21 ≡ 0 on a sufficiently small time interval.
Basic connectivity arguments then yield uniqueness on [0, T ]. This completes
the proof of Theorem 5.21. ��

5.5 The Endpoint Space for Picard’s Scheme

According to Theorems 2.34 and 5.27, the generalized Navier–Stokes sys-
tem (GNSν) is globally well posed whenever the initial data u0 is small with

respect to ν in the homogeneous Besov space Ḃ
−1+ 3

p
p,∞ with 3 < p < ∞. In this

section, we seek to find the largest space for solving (GNSν) by means of an

iterative scheme. Since the spaces Ḃ
−1+ 3

p
p,∞ are increasing with p, a good candi-

date would be the space Ḃ−1
∞,∞. In fact, the following proposition guarantees

that it is pointless to go beyond that space.

Proposition 5.31. Let B be a Banach space continuously embedded in the
set S ′(R3). Assume that for any (λ, a) in R

+
� × R

3,

‖f(λ(· − a))‖B = λ−1‖f ‖B.

B is then continuously embedded in Ḃ−1
∞,∞.

Proof. As B is continuously included in S ′, we have that | 〈f, e−|·|2 〉 | ≤ C‖f ‖B.
By dilation and translation, we then deduce that

‖f ‖Ḃ−1
∞,∞

= sup
t>0

t
1
2 ‖etΔf ‖L∞ ≤ C‖f ‖B.

This proves the proposition. ��

It turns out, however, that Ḃ−1
∞,∞ is too large a space. The main reason why

is that if we want to solve the problem using an iterative scheme, then we
need etΔu0 to belong to L2

loc(R
+ × R

3) so that B(etΔu0, e
tΔu0) makes sense.

Taking into consideration the scaling and translation invariance thus leads to
the following definition.



228 5 The Incompressible Navier–Stokes System

Definition 5.32. We denote by X0 the space4 of tempered distributions u
such that

‖u‖X0

def
= ‖u‖Ḃ−1

∞,∞
+ sup

x∈R
3

R>0

R− 3
2

(∫
P (x,R)

|etΔu(y)|2 dy dt
) 1

2
< ∞,

where P ν(x, R)
def
= [0, ν−1R2] × B(x, R) and B(x, R) denotes the ball in R

3

with center x and radius R.
We denote by Xν the space of functions f on R

+
� × R

3 such that

‖f ‖Xν
def
= sup

t>0
(νt)

1
2 ‖f(t)‖L∞ + sup

x∈R
3

R>0

ν
1
2 R− 3

2

( ∫
P ν(x,R)

|f(t, y)|2 dy dt
) 1

2
< ∞.

We denote by Y ν the space of functions on R
+
� × R

3 such that

‖f ‖Y
def
= sup

t>0
νt‖f(t)‖L∞ + sup

x∈R
3

R>0

νR−3

∫
P ν(x,R)

|f(t, y)| dy dt < ∞.

Remark 5.33. The spaces X0 and X1 are related by the fact that ‖u0‖X0 is

equal to ‖etΔu0‖X1 . We also emphasize that any space Ḃ
−1+ 3

p
p,∞ with 1 ≤ p < ∞

is continuously embedded in X0. Indeed, since we can assume with no loss of
generality that p ≥ 3, it suffices to note that for any x ∈ R

3 and R > 0, we
have

∫ R2

0

∫
B(x,R)

∣∣etΔu0

∣∣2 dx dt ≤
∣∣B(x, R)

∣∣1− 2
p

∫ R2

0

(∫
B(x,R)

∣∣etΔu0

∣∣p dx

) 2
p

dt.

Now, according to Theorem 2.34, we have, for some constant C,

‖etΔu0‖2
Lp ≤ Ct−1+ 3

p ‖u0‖2

Ḃ
−1+ 3

p
p,∞

,

which obviously entails the announced embedding.

We now show that the space Y ν is stable under mollifiers.

Proposition 5.34. Let θ be in S(R3). There exists some C > 0 such that for

all t > 0, f̃θ
def
= t− 3

2 θ(t− 1
2 ·) � f(t, ·) satisfies ‖f̃θ ‖Y ν ≤ C‖f ‖Y ν .

Proof. To simplify the notation, we will just consider the case ν = 1. Observe
that for any x in the ball with center 0 and radius R, we have
4 In the original work by H. Koch and D. Tataru in [196], this space is denoted
by BMO−1.
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|f̃θ(t, x)| ≤ t− 3
2

∫
R3

∣∣∣θ
(x − y√

t

)∣∣∣1B(0,2R)(y)|f(t, y)| dy

+ Ct− 3
2

∫
R3

1(
1 + |x−y|√

t

)4

t

R2
|f(t, y)| dy

≤ t− 3
2

(
|θ(t− 1

2 ·)| � 1B(0,2R)|f(t, ·)|
)
(x) +

C

R2
sup
t>0

t‖f(t, ·)‖L∞ .

Hence,

1
R3

‖f̃θ ‖L1(P (0,R)) ≤ C

R3

∫
P (0,R)

|f(t, y)| dt dy + C sup
t>0

t‖f(t, ·)‖L∞ .

This proves the proposition. ��
The following theorem tells us that the space Xν is suitable for solving the
generalized Navier–Stokes system.

Theorem 5.35. A constant c exists such that if u0 is in X0 and ‖u0‖X0 ≤ cν,
then (GNSν) has a unique solution u in Xν such that ‖u‖Xν ≤ 2‖u0‖X0 .

Proof. Using the change of functions

u(t, x) = νv(νt, x) and u0(x) = νv0(x),

we see that it suffices to treat the case ν = 1. Indeed, we have

‖u‖Xν = ν‖v‖X1 and ‖u0‖X0 = ν‖v0‖X0 .

Therefore, we assume from now on that ν = 1 and define X
def= X1, Y

def= Y 1,

and P (x, R) def= P 1(x, R). According to Lemma 5.5, it suffices to prove that
there exists some constant C such that

‖B(u, v)‖X ≤ C‖u‖X ‖v‖X . (5.22)

Observing that ‖fg‖Y ≤ ‖f ‖X ‖g‖X , we see that the above inequality is im-
plied by the following lemma.

Lemma 5.36. If ν = 1, then the operator Lj defined in Lemma 5.30 maps Y
continuously into X.

Proof. Using Lemma 5.30, we get that

(Ljf)k(t, x) =
3∑

�=1

Γ k
j,�(t − t′, x − y)f �(t′, y) dt′ dy

with, for all positive real numbers R,

|Γ k
j,�(τ, ζ)| ≤ C

(
√

τ + |ζ|)4 ≤ C ′(Γ (1)
R (τ, ζ) + Γ

(2)
R (τ, ζ)

)

with Γ
(1)
R (τ, ζ) def= 1|ζ|≥R

1
|ζ|4 and Γ

(2)
R (τ, ζ) def= 1|ζ|≤R

1
(

√
τ + |ζ|)4 ·
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The functions Γ
(1)
R and Γ

(2)
R may be bounded according to the following

proposition.

Proposition 5.37. There exists a constant C such that, for any R > 0,

‖Γ
(1)
R � f ‖L∞([0,R2]×R3) ≤ C

R
‖f ‖Y , (5.23)

‖Γ
(2)
R � f ‖L∞([R2,∞[× R3) ≤ C

R
‖f ‖Y . (5.24)

Proof. Splitting Γ
(1)
R �f into a sum of integrals over the annuli C(0, 2pR, 2p+1R)

yields

|(Γ (1)
R � f)(t, x)| ≤

∞∑
p=0

∫ t

0

∫
C(0,2pR,2p+1R)

1
|y|4 |f(t′, x − y)| dy dt′

≤ 1
R

∞∑
p=0

2−p+3(2p+1R)−3

∫ t

0

∫
B(0,2p+1R)

|f(t′, x − y)| dy dt′.

As p is nonnegative, we have, for t ≤ R2,

|Γ (1)
R � f(t, x)| ≤ C

R

∞∑
p=0

2−p(2p+1R)−3

∫
P (x,2p+1R)

|f(t, z)| dt dz

≤ C

R

∞∑
p=0

2−p sup
R′>0

1
R′3

∫
P (x,R′)

|f(t, z)| dt dz.

By the definition of ‖ · ‖Y , the inequality (5.23) is proved.
In order to prove the second inequality, we observe that for all x ∈ R

3 and
t ≥ R2, we have

|(Γ (2)
R � f)(t, x)| ≤ Γ

(21)
R (t, x) + Γ

(22)
R (t, x) with

Γ
(21)
R (t, x) def=

∫ min(R2, t
2 )

0

∫
B(0,R)

1
(

√
t − t′ + |y|)4

|f(t′, x − y)| dy dt′,

Γ
(22)
R (t, x) def=

∫ t

min(R2, t
2 )

∫
B(0,R)

1
(

√
t − t′ + |y|)4

|f(t′, x − y)| dy dt′.

To bound Γ
(21)
R (t, x), we use the fact that t ≤ 2(t − t′). We get

Γ
(21)
R (t, x) ≤ C

R3

t2

(
1

R3

∫ R2

0

∫
B(0,R)

|f(t′, x − y)| dt′ dy

)

so that, for any t ≥ R2 and x in R
3,

Γ
(21)
R (t, x) ≤ C

t
1
2

‖f ‖Y . (5.25)
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In order to estimate Γ
(22)
R , we use the facts that t ≤ 2t′ and, for any a > 0,

∫
B(0,R)

dy

(a + |y|)4 ≤ 1
a

∫
R3

dz

(1 + |z|)4 ·

This enables us to write that

Γ
(22)
R (t, x) ≤

∫ t

min(R2, t
2 )

∫
B(0,R)

1
(

√
t − t′ + |y|)4

‖f(t′, ·)‖L∞ dy dt′

≤ C‖f ‖Y

(∫ t

t/2

1√
t − t′

dt′

t′ +
∫ t

R2

∣∣B(0, R)
∣∣

t2
dt′

t′

)

≤ C‖f ‖Y

(
1
t

1
2

+
1

R2

tR3

t2

)
.

As R ≤
√

t this completes the proof of the proposition. ��

Completion of the proof of Lemma 5.36. Note that applying the above propo-
sition with R =

√
t yields

‖(Ljf)(t, ·)‖L∞ ≤ C

t
1
2

‖f ‖Y . (5.26)

Hence, it suffices to estimate ‖Ljf ‖L2(P (x,R)) for an arbitrary x ∈ R
3. Using

translations and dilations, we can assume that x = 0 and R = 1. We write

Ljf = Lj(1cB(0,2)f) + Lj(1B(0,2)f).

Observing that for any y ∈ B(0, 1) we have

|Lj(1cB(0,2)f)(t, y)| ≤ CK
(1)
1 � (1cB(0,2)|f |)(t, y)

and using the inequality (5.23), we get

‖Lj(1cB(0,2)f)‖L∞(P (0,1)) ≤ C‖f ‖Y .

As the volume of P (0, 1) is finite we infer that

‖Lj(1cB(0,2)f)‖L2(P (0,1)) ≤ C‖f ‖Y . (5.27)

The proof of Lemma 5.36 is now reduced to the proof of the following propo-
sition.

Proposition 5.38. For any function f : [0, 1] × R
3 → R such that f(t, ·) is

supported in B(0, 2) for all t ∈ [0, 1], we have

‖(Ljf)(t, ·)‖L∞ ≤ C‖f ‖Y for all t ∈ [0, 1].
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Proof. We decompose f into low and high frequencies, in the sense of the heat
flow:

f = f � + f � with f �(t, ·) def= F −1(θ̂(t
1
2 ξ)f̂(t, ξ)),

where θ denotes a function such that θ̂ is compactly supported and with
value 1 near the origin. We write

‖f �‖2
L2([0,1];Ḣ−1)

= (2π)−3

∫
[0,1]×R3

|1 − θ̂(t
1
2 ξ)|2

t|ξ|2 t|f̂(t, ξ)|2 dt dξ

≤ C

∫
[0,1]×R3

t‖f(t, ·)‖2
L2 dt

≤ C‖f ‖L1([0,1]×R3) sup
t>0

t‖f(t, ·)‖L∞ .

Using the energy estimate for the heat equation, we thus end up with

‖Ljf
�‖L2([0,1]×R3) ≤ C‖f ‖Y . (5.28)

We now estimate ‖Ljf
�‖L2([0,1]×R3). First, observe that by the definitions of Lj

and f �, we have

Ljf
� = ∂j

∫ t

0

e(t−t′)Δf �(t′) dt′

= ∂je
tΔ

∫ t

0

f̃ �(t′) dt′ with F f̃ �(t′, ξ) def= et′ |ξ|2 θ̂(t′ |ξ|2)f̂(t, ξ).

Note that, by the definition of θ, we have

f̃ �(t, ·) = t− 3
2 θ̃

( ·√
t

)
� f(t, ·) with θ̃ ∈ S(R3). (5.29)

Thus,

Lf
def=

3∑
j=1

‖Ljf
�‖2

L2([0,1]×R3)

=
∫ 1

0

∥∥∥∇etΔ

∫ t

0

f̃ �(t′) dt′
∥∥∥2

L2
dt.

By symmetry, we have

Lf = 2
∫ 1

0

∫ t

0

∫ t′

0

(
∇etΔf̃ �(t′ ′)

∣∣∣∇etΔf̃ �(t′)
)

L2
dt′ ′ dt′ dt.

By integration by parts and because etΔ is self-adjoint on L2, we get
(

∇etΔf̃ �(t′ ′)
∣∣∣∇etΔf̃ �(t′)

)
L2

= −〈Δe2tΔf̃ �(t′ ′), f̃ �(t′)〉.
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Moreover, as 2Δe2tΔ = ∂te
2tΔ, we infer that

(
∇etΔf̃ �(t′ ′)

∣∣∣∇etΔf̃ �(t′)
)

L2
= − 1

2
d

dt
〈e2tΔf̃ �(t′ ′), f̃ �(t′)〉.

We then deduce that

Lf = −
∫ 1

0

∫ t′

0

〈(∫ 1

t′

d

dt
e2tΔ dt

)
f̃ �(t′ ′), f̃ �(t′)

〉
dt′ ′ dt′

=
∫ 1

0

〈
(e2t′Δ − e2Δ)

∫ t′

0

f̃ �(t′ ′) dt′ ′, f̃ �(t′)
〉

dt′

≤ ‖f̃ �‖L1([0,1]×R3) sup
t′ ∈[0,1]

∥∥∥(e2t′Δ − e2Δ)
∫ t′

0

f̃ �(t′ ′) dt′ ′
∥∥∥

L∞
.

First, note that using (5.29) and the fact that the operator e2Δ maps L1(R3)
into L∞(R3), we have

∥∥∥e2Δ

∫ t′

0

f̃ �(t′ ′) dt′ ′
∥∥∥

L∞
≤ C‖f ‖L1([0,1]×R3). (5.30)

Thanks to Proposition 5.34, f̃ � belongs to Y . We write
∣∣∣∣e2t′Δ

∫ t′

0

f̃ �(t′ ′, x) dt′ ′
∣∣∣∣ ≤

∑
n∈Z3

1
(4πt′)

3
2

∫
R3

∫ t′

0

e− |x−y|2
4t′ 1Bn,t′ (y)

∣∣f̃ �(t′ ′, y)
∣∣ dt′ ′dy,

where Bn,t′ denotes the ball with center n
√

t′ and radius
√

t′. Using translation
invariance, it is enough to estimate the above integral at the point x = 0. We
write, thanks to Proposition 5.34,

∣∣∣
(
e2t′Δ

∫ t′

0

f̃ �(t′ ′) dt′ ′
)
(0)

∣∣∣ ≤
∑

|n|>2

e− |n|2
4

(
1

|n|3
∫

P (n,t′)

|f̃ �(t′ ′, y)| dt′ ′dy

)

+
∑

|n|≤2

1
(4πt′)

3
2

∫
R3

∫ t′

0

e− |x−y|2
4t′ 1Bn,t′ (y)

∣∣f̃ �(t′ ′, y)
∣∣ dt′ ′dy

≤ C‖f ‖Y .

Thanks to the inequality (5.28), this completes the proof of the proposition.
��

As explained above, this completes the proof of Lemma 5.36 and thus the
proof of Theorem 5.35. ��

5.6 The Use of the L1-smoothing Effect of the Heat Flow

According to Theorem 2.34 page 72, the smallness condition (5.14) in the

case where T = ∞ satisfies the smallness condition for the Ḃ
−1+ 3

p
p,∞ norm. The
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purpose of this section is to provide another approach to Theorem 5.27, one
which relies on Littlewood–Paley theory and on the smoothing effect of the
heat flow described in Corollary 2.5 page 55.

5.6.1 The Cannone–Meyer–Planchon Theorem Revisited

We assume that u0 belongs to Ḃ
−1+ 3

p
p,∞ . We deduce from Lemma 2.4 page 54

that ‖Δ̇je
νtΔu0‖Lp ≤ Ce−cνt22j ‖Δ̇ju0‖Lp . By time integration, we get

‖Δ̇je
νtΔu0‖L1(Lp) ≤ C

ν22j
2−j(−1+ 3

p )‖u0‖
Ḃ

−1+ 3
p

p,∞
. (5.31)

This leads to the following definition.

Definition 5.39. For p in [1, ∞], we denote by Ep the space of functions u

in L∞(R+; Ḃ
−1+ 3

p
p,∞ ) such that

‖u‖Ep

def
= sup

j
2j(−1+ 3

p )‖Δ̇ju‖L∞(Lp) + sup
j

ν22j2j(−1+ 3
p )‖Δ̇ju‖L1(Lp)

is finite.

We note that the estimate (5.31) implies that

‖eνtΔu0‖Ep ≤ C‖u0‖
Ḃ

−1+ 3
p

p,∞
.

This motivates the following statement (which should be compared with the
global existence result stated in Theorem 5.27).

Theorem 5.40. Let p ∈ [1, ∞[. There exists a constant c such that the sys-
tem (GNSν) has a unique solution u in the ball with center 0 and radius 2cν
in Ep whenever ‖u0‖

Ḃ
−1+ 3

p
p,∞

≤ cν.

Proof. Since the proof relies on Lemma 5.5, it suffices to prove the following.

Lemma 5.41. There exists a constant C such that for any p in [1, ∞[,

‖B(u, v)‖Ep ≤ Cp

ν
‖u‖Ep ‖v‖Ep . (5.32)

Proof. We recall that the nonlinear term Q(u, v) can be written as

Qm(u, v) =
∑
k,�

Am
k,�(D)(ukv�),

where the Am
k,�(D) are homogeneous Fourier multipliers of degree 1. With the

notation of Chapter 2 page 61, we may write
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ukv� =
∑

j

Ṡju
kΔ̇jv

� +
∑

j

Δ̇ju
kṠj+1v

�.

As the supports of the Fourier transforms of Ṡju
kΔ̇jv

� and Δ̇ju
kṠj+1v

� are
included in 2j B for some ball B in R

3, an integer N0 exists such that if j′ is
less than j − N0, then

Δ̇jQ(Ṡj′ u, Δ̇j′ v) = Δ̇jQ(Δ̇j′ u, Ṡj′+1v) = 0. (5.33)

We now decompose B as

B(u, v) = B1(u, v) + B2(u, v) with

B1(u, v) def=
∑

j

B(Ṡju, Δ̇jv) and B2(u, v) def=
∑

j

B(Δ̇ju, Ṡj+1v).

According to (5.33) and the definition of B in Fourier space, we have

Δ̇jB1(u, v) def=
∑

j′ ≥j−N0

Δ̇jB(Ṡj′ u, Δ̇j′ v), (5.34)

Δ̇jB2(u, v) def=
∑

j′ ≥j−N0

Δ̇jB(Δ̇j′ u, Ṡj′+1v). (5.35)

We shall treat only B1 since B2 is similar. Using Lemma 2.1 page 52, we infer
that

‖Δ̇jQ(Ṡj′ u, Δ̇j′ v)‖Lp ≤ C2j sup
k,�

‖Ṡj′ ukΔ̇j′ v�‖Lp .

Hence, using Lemma 2.4 page 54, we get

‖Δ̇jB(Ṡj′ u, Δ̇j′ v)(t)‖Lp ≤ C

∫ t

0

e−cν(t−t′)22j

‖Δ̇jQ(Ṡj′ u(t′), Δ̇j′ v(t′))‖Lp dt′

≤ C2j

∫ t

0

e−cν(t−t′)22j

sup
k,�

‖Ṡj′ uk(t′)Δ̇j′ v�(t′)‖Lp dt′

≤ C2j

∫ t

0

e−cν(t−t′)22j

‖Ṡj′ u(t′)‖L∞ ‖Δ̇j′ v(t′)‖Lp dt′.

By the definitions of the operators Ṡj and of the Ep norm, we get, thanks to
Lemma 2.1,

‖Ṡj′ u(t′)‖L∞ ≤
∑

j′ ′<j′

‖Δ̇j′ ′ u(t′)‖L∞

≤
∑

j′ ′<j′

2j′ ′ 3
p ‖Δ̇j′ ′ u(t′)‖Lp

≤ C2j′
‖u‖Ep .
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Thus, we deduce that

‖Δ̇jB(Ṡj′ u, Δ̇j′ v)(t)‖Lp ≤ C‖u‖Ep2j2j′
∫ t

0

e−cν(t−t′)22j

‖Δ̇j′ v(t′)‖Lp dt′.

Using Young’s inequality for the time integral, we obtain, by the definition of
the Ep norm, that

Bj,j′ (u, v)def= ‖Δ̇jB(Ṡj′ u, Δ̇j′ v)‖L∞(Lp) + ν22j ‖Δ̇jB(Ṡj′ u, Δ̇j′ v)‖L1(Lp)

≤ C‖u‖Ep2j2j′
‖Δ̇j′ v‖L1(Lp)

≤ C

ν
‖u‖Ep ‖v‖Ep2j2−j′ 3

p .

Thanks to (5.34) and (5.35), we thus get

sup
j

2j(−1+ 3
p )

(
‖Δ̇jB1(u, v)‖L∞

T (Lp) + ν22j ‖Δ̇jB1(u, v)‖L1
T (Lp)

)

≤ C

ν
‖u‖Ep ‖v‖Ep

∑
j′ ≥j−N0

2−(j′ −j) 3
p .

The lemma, and thus Theorem 5.40, is proved. ��

Remark 5.42. For any divergence-free data u0 in Ḃ
−1+ 3

p
p,∞ (with p ∈ [1, ∞[),

we can construct a local solution which belongs to the space Ep restricted to
[0, T ].

5.6.2 The Flow of the Solutions of the Navier–Stokes System

In this final section, we seek to determine whether the solutions constructed
in the previous sections have flows. We first consider the solutions of (GNSν)
associated with initial data in the space H

d
2 −1. In what follows, we write

ωη(r) = r(− log r)1−η for η in ]0, 1[ and r in ]0, 1].

Theorem 5.43. Let u ∈ C([0, T ]; H
d
2 −1) ∩ L2([0, T ]; H

d
2 ) satisfy (GNSν) on

the time interval [0, T ]. Then, u belongs to L1([0, T ]; Cωη (Rd; Rd)) for all η

in ]0, 1/2[ and there exists a unique continuous map ψ : [0, T ] × R
d → R

d

such that

ψ(t, x) = x +
∫ t

0

u(t′, ψ(t′, x)) dt′.

Moreover, ψ belongs to L∞([0, T ]; C0,1−ε) for any positive ε.

The proof of this theorem relies on the following two lemmas.

Lemma 5.44. Under the hypotheses of Theorem 5.43, the fluctuation B(u, u)

belongs to L1([0, T ]; B
d
2 +1
2,1 ).
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Lemma 5.45. Let E be a Banach space, η ∈ ]0, 1[, and v be a vector field
with coefficients in the space L1([0, T ]; Cωη(E; E)). Let

Vη(t) =
∫ t

0

‖v(τ)‖ωη dτ and ωη,t(r) = exp
(

−
((

log 1
r

)η − ηVη(t)
) 1

η

)
.

There exists a unique continuous map ψ : [0, T ] × R
d → R

d such that

ψ(t, x) = x +
∫ t

0

v(t′, ψ(t′, x)) dt′.

Moreover, ψ is such that for any time t ∈ [0, T ], we have ψ(t, ·) ∈ Cωη,t and

t 	−→ ‖ψ(t, ·)‖ωη,t ∈ L∞([0, T ]).

In particular, ψ ∈ L∞([0, T ]; C0,1−ε) for any positive ε.

Proof of Theorem 5.43. We first introduce some notation. For T positive, s
in R, and ρ in [1, ∞], we denote by L̃ρ

T (Hs) the set of tempered distributions
u over [0, T ] × R

d such that
∑

j≥ −1

22js‖Δju‖2
Lρ

T (L2) < ∞.

Since u = etνΔu0 + B(u, u), combining Corollary 2.5 and Lemma 5.44 shows
that the solution u belongs to L̃1

T (H
d
2 +1). We claim that L̃1

T (H
d
2 +1) is em-

bedded in the space L1([0, T ]; Cωη) for all η ∈ ]0, 1
2 [. Indeed, if x, y are distinct

elements of R
d such that |x − y| ≤ 1 and t ∈ [0, T ], we may write that

∣∣u(t, y) − u(t, x)
∣∣ ≤ |x − y|

∑
j≤N

‖∇Δju(t)‖L∞ + 2
∑
j>N

‖Δju(t)‖L∞

≤ (2+N)1−η |x − y|
∑
j≤N

‖ ∇Δju(t)‖L∞

(2+j)1−η

+C
∑
j>N

2−j(2+j)1−η ‖Δj ∇u(t)‖L∞

(2+j)1−η
.

Choosing N =
[
1 − log |x − y|

]
− 2 and defining αη(t) def=

∑
j

‖∇Δju(t)‖L∞

(2 + j)1−η
,

we deduce that
∣∣u(t, y) − u(t, x)

∣∣ ≤ Cαη(t)|x−y|
(
1 − log |x−y|

)1−η
.

Bernstein’s lemma now ensures that
∫ T

0

αη(t) dt ≤ C
∑

j

(2 + j)η−1

∫ T

0

2j(1+ d
2 ) ‖Δju(t)‖L2 dt,
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from which it follows, according to the Cauchy–Schwarz inequality for series,
that ∫ T

0

αη(t) dt ≤ C‖u‖
L̃1

T (H
d
2 +1)

.

Therefore, the solution u belongs to the space L1([0, T ]; Cωη). Applying
Lemma 5.45 completes the proof of Theorem 5.43. ��

Proof of Lemma 5.44. Since u ∈ C([0, T ]; H
d
2 −1) ∩ L2([0, T ]; H

d
2 ), a straight-

forward interpolation argument ensures that u ∈ L3([0, T ]; H
d
2 − 1

3 ). By taking
advantage of Hölder’s inequality and the continuity results stated in Sec-
tion 2.8 page 102, we thus find that

Q(u, u) ∈ L
3
2 ([0, T ]; H

d
2 − 5

3 ).

Using the smoothing properties of the heat flow (namely Proposition 2.5) and
the fact that

∂tB(u, u) − νΔB(u, u) = Q(u, u), B(u, u)(0) = 0,

we deduce that
B(u, u) ∈ L̃

3
2
T (H

d
2 + 1

3 ) ∩ L̃3
T (H

d
2 − 1

3 ).

Of course, as u0 ∈ H
d
2 −1, Corollary 2.5 also ensures that etνΔu0 belongs to

the above space.
In order to complete the proof, it suffices to note that the operator

(a, b) 	−→ ab maps
(
L̃

3
2
T (H

d
2 + 1

3 ) ∩ L̃3
T (H

d
2 − 1

3 )
)2 into L1([0, T ]; B

d
2
2,1). This may

be easily proven by taking advantage of Bony’s decomposition for ab and
the continuity results for the paraproduct and remainder [generalized to the
spaces L̃ρ

T (Bs
p,r)].

The above continuity result now entails that Q(u, u) belongs to the

space L1([0, T ]; B
d
2 −1
2,1 ), so once again applying Corollary 2.5 leads to B(u, u) ∈

L1([0, T ]; B
d
2 +1
2,1 ). ��

Proof of Lemma 5.45. The fact that for any Cauchy data, we have a unique,
global, continuous integral curve follows immediately from Theorem 3.2 and
the fact that the vector field v belongs to L1([0, T ]; Cωη(E; E)).

In order to prove the regularity of the flow, consider two integral curves, γ1

and γ2, of the vector field v, coming, respectively, from x1 and x2 such
that ‖x1 − x2‖ < e−1. By the definition of the space Cωη , we have

‖γ1(t) − γ2(t)‖ ≤ ‖x1 − x2‖ +
∫ t

0

‖v(τ, γ1(τ)) − v(τ, γ2(τ))‖ dτ

≤ ‖x1 − x2‖ +
∫ t

0

‖v(τ)‖ωη × ωη(‖γ1(τ) − γ2(τ)‖) dτ.
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We now apply Lemma 3.4 with ρ(t) = ‖γ1(t) − γ2(t)‖, μ = ωη, c = ‖x1 − x2‖,
and γ(τ) = ‖v(τ)‖ωη . We find that

(− log ‖γ1(t) − γ2(t)‖)η ≥ (− log ‖x1 − x2‖)η − ηVη(t). (5.36)

Assume that 1 + ηVη(t) ≤ (− log ‖x1 − x2‖)η, which means that

‖x1 − x2‖ ≤ exp
(

−(1 + ηVη(t))1/η
)

. (5.37)

We deduce from the inequality (5.36) that if ‖x1−x2‖ ≤ exp
(

−(1 + ηVη(t))1/η
)
,

then we have

‖γ1(t) − γ2(t)‖ ≤ exp
(

−
(
(− log ‖x1 − x2‖)η − ηVη(t)

)1/η
)

.

This proves the lemma. ��
To conclude, we consider whether the solutions constructed in Theorem 5.40
have flows. In the following proposition, we establish that constructing such
flows cannot be done according to Osgood’s theorem.

Proposition 5.46. Let u0 be a nonzero homogeneous distribution of de-
gree −1 which is smooth outside the origin. Let μ be any admissible modulus
of continuity such that etΔu0 belongs to L1([0, T ]; Cμ) for some positive T .
Then, μ does not satisfy the Osgood condition.

Proof. As u0 is homogeneous of degree −1, we have ∇Ṡju0 = 22j(∇Ṡ0u0)(2j ·),
hence

‖etΔ∇Ṡju0‖L∞ = 22j ‖et22jΔ∇Ṡ0u0‖L∞ .

Let jt denote the greatest integer j such that 2−2j ≥ t. According to Def-

inition 2.108, the function Γ given by Γ (y) def= yμ
(

1
y

)
is nondecreasing.

Since (eτΔ)τ>0 is a semigroup of contractions over L∞, we deduce that

sup
j

‖etΔ∇Ṡju0‖L∞

Γ (2j)
≥ 22jt

‖et22jtΔ∇Ṡ0u0‖L∞

Γ (2jt)
≥

∥∥∥eΔ∇Ṡ0u0

∥∥∥
L∞

2tΓ
(
1/

√
t
) ·

Note that since u0 is nonzero and homogeneous of degree −1, we must
have ∇Ṡ0u0 �= 0, hence also

∥∥∥eΔ∇Ṡ0u0

∥∥∥
L∞

�= 0. Thus, if etΔu0 belongs

to L1([0, T ]; Cμ), then we have, by definition of Γ and under Proposition 2.111
page 118,

∫ √
T

0

dr

μ(r)
=

1
2

∫ T

0

dt

t Γ
(

1√
t

) ≤ c

∫ T

0

‖etΔu0‖Cμ dt.

The proposition is thus proved. ��
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Even though the Osgood lemma cannot be used, the following theorem states
that small elements of Ep have a flow.

Theorem 5.47. A constant C exists such that for any positive r, and any v
in L1([0, T ]; Ḃ−r

∞,∞) such that for some positive integer j0,

Nj0(T, v)
def
= sup

j≥j0

2j ‖Δjv‖L1
T (L∞) <

1
C

,

a unique continuous map ψ of [0, T ] × R
d to R

d exists such that

ψ(t, x) = x +
∫ t

0

v(t′, ψ(t′, x)) dt′ and ψ(t, ·) − Id ∈ C1−CNj0 (t,v).

Proof. Uniqueness is an immediate consequence of the following lemma.

Lemma 5.48. Under the hypothesis of the above theorem, if γ1 and γ2 are
continuous functions such that

γj(t) = xj +
∫ t

0

v(t′, γj(t′)) dt′ for j = 1, 2,

and if, in addition, |x1 − x2| ≤ 2−j0 , then we have, for all t0 ≤ [0, T ],

|γ1(t0) − γ2(t0)| ≤ C|x1 − x2|1−CNj0 (t0,v) exp
(
2j0(r+1)

∫ t0

0

‖v(t, ·)‖Ḃ−r
∞,∞

dt
)
.

Proof. Splitting the vector field v into low and high frequencies yields

|γ1(t) − γ2(t)| ≤ |x1 − x2| +
∫ t

0

|Ṡjv(t′, γ1(t′)) − Ṡjv(t′, γ2(t′))| dt′

+ 2
∫ t

0

∑
j′ ≥j

‖Δj′ v(t′)‖L∞ dt′

≤ |x1 − x2| +
∫ t

0

‖ ∇Ṡjv(t′)‖L∞ |γ1(t′) − γ2(t′)| dt′

+ 21−j
∑
j′ ≥j

2j−j′
2j′

∫ t

0

‖Δ̇j′ v(t′)‖L∞ dt′.

For 0 ≤ t ≤ t0 ≤ T , we define ρ(t) def= sup
t′ ≤t

|γ1(t′) − γ2(t′)| and

Dj(t)
def= |x1 − x2| + 22−jNj0(t0, v) +

∫ t

0

‖ ∇Ṡjv(t′)‖L∞ |γ1(t′) − γ2(t′)| dt′.

By the definition of Nj0(t, v), we have ρ(t) ≤ Dj(t) for any j ≥ j0. Therefore,
for any t ≤ t0,
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Dj(t) ≤ |x1 − x2| + 22−jNj0(t0, v) +
∫ t

0

‖∇Ṡjv(t′)‖L∞ Dj(t′) dt′.

The Gronwall lemma implies that, for any t ≤ t0,

Dj(t) ≤
(

|x1 − x2| + 22−jNj0(t0, v)
)

exp
(∫ t

0

‖∇Ṡjv(t′)‖L∞ dt′
)
.

Using Lemma 2.1 page 52, we deduce, for any t ≤ t0, that
∫ t

0

‖∇Ṡjv(t′)‖L∞ dt′ ≤
∫ t

0

∑
j′<j0

2j′
‖Δ̇j′ v(t′)‖L∞ dt′

+
j∑

j′=j0

∫ t

0

2j′
‖Δ̇j′ v(t′)‖L∞ dt′

≤ 2j0(r+1)

∫ t

0

‖v(t′)‖Ḃ−r
∞,∞

dt′ + jNj0(t, v). (5.38)

Thus, for any integer j ≥ j0 and any t ≤ t0, we have

Dj(t) ≤
(
(|x1 − x2| + 22−jNj0(t0, v)

)

× exp
(
2j0(r+1)

∫ t

0

‖v(t′)‖Ḃ−r
∞,∞

dt′ + jNj0(t, v)
)
.

Choose j such that 1 ≤ 2j |x1 − x2| < 2. We then infer that

ρ(t0) ≤ C|x1 − x2|1−CNj0 (t0,v) exp
(
2j0(r+1)

∫ t0

0

‖v(t′)‖Ḃ−r
∞,∞

dt′
)

and the lemma is proved. ��

In order to prove the existence, we shall establish the convergence of the
classical Picard scheme,

xk+1(t) = x0 +
∫ t

0

v(t′, xk(t′)) dt′.

We define
ρk(t) def= sup

t′ ≤t
n≥0

|xk+n(t′) − xk(t′)|.

Along the same lines as the proof of Lemma 5.48, separately treating the high
and low frequencies, we get, for any j ≥ j0,

ρk+1(t) ≤
∫ t

0

|v(t′, xk+n(t′)) − v(t′, xk(t′))| dt′

≤ 22−jNj0(T, v) +
∫ t

0

‖ ∇Ṡjv(t′)‖L∞ ρk(t′) dt′.
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Now, setting ρ(t) def= lim sup
k→∞

ρk(t) and

Dj(t)
def= 22−jNj0(T, v) +

∫ t

0

‖ ∇Ṡjv(t′)‖L∞ ρ(t′) dt′,

we obtain, passing to the limit,

Dj(t) ≤ 22−jNj0(T, v) +
∫ t

0

‖ ∇Ṡjv(t′)‖L∞ Dj(t′) dt′.

The Gronwall lemma ensures that

Dj(T ) ≤ C2−j exp
(∫ T

0

‖ ∇Ṡjv(t′)‖L∞ dt′
)
. (5.39)

Appealing to (5.38), this leads to

Dj(T ) ≤ C2−j(1−CNj0 (T,v)) exp
(
2j0(r+1)

∫ T

0

‖v(t′)‖Ḃ−r
∞,∞

dt′
)

for any j ≥ j0, which completes the proof of the theorem. ��

5.7 References and Remarks

For a much more detailed introduction to the incompressible Navier–Stokes
system, the reader can consult [57, 86, 214, 286, 299]. For a complete and
up-to-date bibliography, see [205].

The mathematical theory of the incompressible Navier–Stokes system orig-
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In dimension three, the question of global solvability for general large data
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proved in [239] that the self-similar solutions introduced by J. Leray in [207] as
models of blow-up solutions cannot have finite energy, and that, on the other
hand, solutions blowing-up in finite time have been constructed in [234] for a
Navier–Stokes like system that enters in the class (GNSν). For more results
concerning the lifespan of solutions to the three-dimensional Navier–Stokes
system, the reader may refer to [132, 143].

Theorem 5.40 was proven by M. Cannone, Y. Meyer, and F. Planchon
in [58], by a different method. A local version and various extensions of The-
orem 5.40 can be found in [72] and [198]. The endpoint case (Theorem 5.35)
was first studied by H. Koch and D. Tataru in [196].

The rest of this chapter comes essentially from [76] and [73]. We men-
tion in passing that in dimension three, the Leray solutions have a (possi-
bly nonunique) flow (see the work by C. Foias, C. Guillopé and R. Temam
in [127]).

For an extensive study of the Navier–Stokes equations by means of Fourier
analysis techniques, the reader may refer to the books [57] by M. Cannone
and [205] by P.-G. Lemarié-Rieusset.





6

Anisotropic Viscosity

The purpose of this chapter is to study a modified version of the incompressible
Navier–Stokes system in R

3, where the usual Laplace operator Δ is replaced

by the Laplace operator Δh in the horizontal variables, namely Δh
def= ∂2

1 +∂2
2 .

The system we will consider is thus of the form

(ANSν)

⎧⎨
⎩

∂tu + u · ∇u − νΔhu = −∇P
div u = 0
u|t=0 = u0.

Systems of this type appear in geophysical fluids. In fact, in order to model
turbulent diffusion, physicists often consider a diffusion term of the form
−νhΔh − ν3∂

2
3 , where νh and ν3 are empirical constants. In most applica-

tions, it turns out that ν3 is much smaller than νh.

Obviously, the system (ANSν) has the same scaling invariance as the
standard Navier–Stokes system studied in Chapter 5. That is, (u, P ) satisfies
(ANSν) with data u0 if and only if for all λ > 0,

(uλ, Pλ)(t, x) def=
(
λu(λ2t, λx), λ3P (λ2t, λx)

)

satisfies (ANSν) with data λu0(λ·).
In contrast with the system (NSν), however, the system (ANSν) is of

mixed type: parabolic in the horizontal variables and hyperbolic in the vertical
variable so that the classical approach for the Navier–Stokes system (which
strongly relies on parabolicity) is bound to fail. Nevertheless, we shall see in
this chapter that some global well-posedness results for small data in suitable
scaling invariant spaces may be proven.

This chapter is structured as follows. In order to make the basic ideas
clear, we first prove a theorem which is not optimal (i.e., not at the scaling),
but requires only elementary tools. More precisely, in Section 6.1 we prove
an existence and uniqueness result for L2 data with one vertical derivative
in L2. The rest of the chapter is devoted to the study of the well-posedness

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 6, c© Springer-Verlag Berlin Heidelberg 2011
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issue in a function space with the right scaling. Roughly speaking, we shall
consider three-dimensional data which have horizontal derivative −1

2 in L4 and
vertical derivative 1

2 in L2. The corresponding function spaces are introduced
in Section 6.2, together with some technical tools (nonisotropic paradifferential
calculus in particular). Global existence is proved in Section 6.3, and the last
section is devoted to the proof of uniqueness.

6.1 The Case of L2 Data with One Vertical Derivative
in L2

In this section, we will show that the system (ANSν) is well posed for any
divergence-free data in L2 with one vertical derivative in L2.

Since the horizontal variable xh
def= (x1, x2) does not play the same role

as the vertical variable x3, it is natural to introduce the following anisotropic
Sobolev spaces.

Definition 6.1. Let s and s′ be real numbers. We define the Banach space
Hs,s′

as the set of tempered distributions u such that û belongs to L2
loc(R

3)
and

‖u‖2
Hs,s′

def
=

∫
R3

(1 + |ξh|2)s(1 + |ξ3|2)s′
|û(ξ)|2 dξ < ∞.

Before stating the main result of this section, we shall introduce some more no-
tation. Throughout this chapter, we write R

3 = R
2
h × Rv . The components of

the three-dimensional vector field v are denoted (vh, v3), and it is understood

that ∇h
def= (∂1, ∂2) and divh v = ∂1v

1 +∂2v
2. Finally, the notation Xh (resp.,

Xv) means that Xh is a function space over R
2
h (resp., Rv). A function space

over R
3 is simply denoted by X. For instance, Lp def= Lp(R3), Lp

h
def= Lp(R2

h),

and Lp
v

def= Lp(Rv).

We can now state the main result of this section.

Theorem 6.2. Let u0 be a divergence-free vector field with coefficients in H0,1.
There exists a positive time T such that the system (ANSν) has a unique so-
lution u in the space

L∞([0, T ]; H0,1) ∩ L2([0, T ]; H1,1).

Moreover, the solution u is in C([0, T ]; L2) and satisfies the energy equality

‖u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇hu(t′)‖2
L2 dt′ = ‖u0‖2

L2 for all t ∈ [0, T ]. (6.1)

Furthermore, if we have

‖u0‖
1
2
L2 ‖∂3u0‖

1
2
L2 ≤ cν (6.2)

for some small enough constant c, then the solution is global.
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Proof. The lack of smoothing effect in the vertical variable x3 prevents us
from solving the system by a fixed point method (as in Section 5.2) and from
using compactness methods based on the L2 energy estimate. The structure
of the proof is as follows:

– First, we define a family of approximate problems with global smooth
solutions.

– Second, we prove uniform bounds for this family on some fixed time inter-
val.

– Third, we show that the sequence defined by this procedure converges to
some solution of (ANSν) with the desired properties.

– Finally, we establish a stability estimate in L2 which implies uniqueness.

Step 1: The family of approximate solutions. We shall use the Friedrichs
method introduced in Chapter 4. We wish to solve

(ANSν,n)

⎧⎪⎨
⎪⎩

∂tun − νΔhun + En(un · ∇un) + ∇Pn = 0

Pn = En

∑
j,k(−Δ)−1∂j∂k(uj

nuk
n)

un|t=0 = En u0,

where (−Δ)−1∂j∂k stands for the Fourier multiplier with symbol |ξ| −2ξjξk,
and En denotes the Fourier multiplier defined by (4.4) page 174. As in Chap-
ter 4, the system (ANSν,n) turns out to be an ordinary differential equation on
the space

L2,σ
n

def=
{

v ∈ L2(R3) / div v = 0 and Supp v̂ ⊂ B(0, n)
}

endowed with the L2 norm. Indeed, we have, thanks to Lemma 2.1, for any u
and v in L2,σ

n ,

Qn(u, v) def=
∥∥∥En(u · ∇v) + En ∇

∑
1≤j,k≤3

(−Δ)−1∂j∂k(ujvk)
∥∥∥

L2

≤ Cn
3
2+1‖u‖L2 ‖v‖L2 .

Thus, for any n, there exists a Tn > 0 such that the system (ANSν,n) has a
maximal solution un in C ∞([0, Tn[; L2,σ

n ).

Step 2: A priori bounds. Arguing as on page 205 (which is rigorous since un

is smooth), we get, for all t ∈ [0, Tn[,

‖un(t)‖2
L2 + 2ν

∫ t

0

‖ ∇hun(t′)‖2
L2 dt′ = ‖ En u0‖2

L2 ≤ ‖u0‖2
L2 . (6.3)

Thanks to the blow-up condition for ordinary differential equations given
by Corollary 3.12 page 131, this implies that for any n, the solution un

of (ANSν,n) is global and belongs to C ∞(R+; L2,σ
n ).
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Bounding un in L∞([0, T ]; H0,1) ∩ L2([0, T ]; H1,1) for some T independent
of n is more involved. We differentiate the system (ANSν,n) with respect
to ∂3. This gives, dropping the index n in order to ease notation,

‖∂3u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇h∂3u(t′)‖2
L2 dt′

= ‖∂3 En u0‖2
L2 − 2

∑
1≤k,�≤3

∫ t

0

Ik,�(t′) dt′ (6.4)

with Ik,�(t)
def=

∫
R3

∂3u
k(t, x)∂ku�(t, x)∂3u

�(t, x) dx.

We will start with the terms Ik,� where k 	= 3, namely, the terms which
contain only two vertical derivatives. The following proposition will be useful.

Proposition 6.3. A constant C exists such that
(∫

R3
a(x)b(x)c(x) dx

)2

≤ C‖a‖L∞(Rv;L2
h)‖b‖L2 ‖∇hc‖L2 ‖c‖L2

× min
{

‖a‖L∞(Rv ;L2
h)‖ ∇hb‖L2 , ‖∇ha‖L∞(Rv ;L2

h)‖b‖L2

}
.

Proof. Define

J(a, b, c) def=
∫

R3
a(x)b(x)c(x) dx

=
∫

R

dx3

∫
R2

a(xh, x3)b(xh, x3)c(xh, x3) dxh.

Hölder’s inequality implies that

J(a, b, c) ≤
∫

R

‖a(·, x3)‖L2
h

‖b(·, x3)‖L4
h

‖c(·, x3)‖L4
h

dx3

≤ ‖a‖L∞(Rv ;L2
h)‖b‖L2(Rv ;L4

h)‖c‖L2(Rv;L4
h).

Using the Sobolev embedding Ḣ
1
2
h ↪→ L4

h, the interpolation inequality be-
tween Ḣ1

h and L2
h, and the Cauchy–Schwarz inequality, we then get that

‖b‖2
L2(Rv ;L4

h) ≤ C

∫
R

‖b(x3, ·)‖2

Ḣ
1
2

h

dx3

≤ C

∫
R

‖ ∇hb(·, x3)‖L2
h

‖b(·, x3)‖L2
h

dx3

≤ C‖ ∇hb‖L2 ‖b‖L2 .

The proof of the other inequality is similar. ��

We shall also use the following corollary of Proposition 6.3.
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Corollary 6.4. A constant C exists such that
(∫

R3
a(x)b(x)c(x) dx

)2

≤ C‖∂3a‖L2 ‖a‖L2 ‖ ∇hb‖L2 ‖b‖L2 ‖∇hc‖L2 ‖c‖L2 .

Proof. According to the previous proposition, we have
(∫

R3
a(x)b(x)c(x) dx

)2

≤ C‖a‖2
L∞(Rv ;L2

h)‖ ∇hb‖L2 ‖b‖L2 ‖∇hc‖L2 ‖c‖L2 .

Noting that

‖a(·, x3)‖2
L2

h
=

∫ x3

− ∞

d

dy3

(∫
R2

|a(xh, y3)|2 dxh

)
dy3

= 2
∫ x3

− ∞

∫
R2

a(xh, y3)∂y3a(xh, y3) dxh dy3,

the Cauchy–Schwarz inequality then implies that

∀x3 ∈ R , ‖a(·, x3)‖2
L2

h
≤ 2‖∂3a‖L2 ‖a‖L2 .

The corollary is thus proved. ��

Proof of Theorem 6.2 (continued). Applying the above corollary for a =
∂ku�, b = ∂3u

k, and c = ∂3u
� gives, for k 	= 3,

Ik,�(t) ≤ C‖ ∇h∂3u(t)‖
3
2
L2 ‖∂3u(t)‖L2 ‖∇hu(t)‖

1
2
L2 .

Bounding the terms I3,� relies on the special structure of the system: We use
the fact that the nonlinear term is u · ∇u and that div u = 0. Indeed, the
divergence-free condition implies that

I3,�(t) =
∫

R3
∂3u

3(t, x) ∂3u
�(t, x) ∂3u

�(t, x) dx

= −
∫

R3
divh uh(t, x) ∂3u

�(t, x) ∂3u
�(t, x) dx.

This term is strictly analogous to the preceding ones. Thus, we have, for any k
and �, that

Ik,�(t) ≤ C‖ ∇h∂3u(t)‖
3
2
L2 ‖∂3u(t)‖L2 ‖∇hu(t)‖

1
2
L2 .

Plugging this into the energy estimate (6.4) gives

‖∂3u(t)‖2
L2 + 2ν

∫ t

0

‖ ∇h∂3u(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

+ C

∫ t

0

‖ ∇h∂3u(t′)‖
3
2
L2 ‖∂3u(t′)‖L2 ‖∇hu(t′)‖

1
2
L2 dt′.
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Using the convexity inequality ab ≤ 1
4
a4 +

3
4
b

4
3 , we obtain

‖∂3u(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3u(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

+
C

ν3

∫ t

0

‖∂3u(t′)‖4
L2 ‖∇hu(t′)‖2

L2 dt′. (6.5)

We now reintroduce the index n and define

Tn
def= sup

{
t > 0 / ‖∂3un‖2

L∞
t (L2) + ν‖ ∇h∂3un‖2

L2
t (L2) ≤ 2‖∂3u0‖2

L2

}
.

The function un is continuous with values in Hs for any s, and ‖∂3 En u0‖L2

is less than or equal to ‖∂3u0‖L2 . Thus, the time Tn is positive and, for
any t < Tn, we have

‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

×
(
1 +

C

ν3
‖∂3u0‖2

L2

∫ t

0

‖∇hun(t′)‖2
L2 dt′

)
. (6.6)

Thanks to the energy estimate (6.3), we have, for any t < Tn,

‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

(
1 +

C

ν4
‖∂3u0‖2

L2 ‖u0‖2
L2

)
.

Thus, under the smallness condition (6.2), we have that Tn = +∞ and thus

∀t ≥ 0 , ∀n ∈ N , ‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ 2‖∂3u0‖2

L2 .

We now investigate the case where the initial data does not satisfy the small-

ness condition. We write un as a perturbation of the free solution uN0,F
def=

eνtΔh EN0 u0. Let

wn
def= un − uN0,F

for some integer N0 to be chosen later. The inequality (6.6) becomes

‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

×
(

1 +
C

ν3
‖∂3u0‖2

L2

(∫ t

0

‖ ∇huN0,F (t′)‖2
L2 dt′ +

∫ t

0

‖∇hwn(t′)‖2
L2 dt′

))
.

From the definition of uN0,F , we infer that

‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

×
(

1 +
C

ν3
‖∂3u0‖2

L2

(
tN2

0 ‖u0‖2
L2 +

∫ t

0

‖∇hwn(t′)‖2
L2 dt′

))
.
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We now estimate the last integral. By the definition of wn, we have
⎧⎨
⎩

∂twn − νΔhwn + En(un · ∇wn) + En(un · ∇uN0,F ) = −∇Pn

div wn = 0
wn|t=0 = (Id − EN0) En u0.

Using the divergence-free condition, we get, by the energy estimate, that

ν

∫ t

0

‖∇hwn(t′)‖2
L2 dt′ ≤ ‖(Id−EN0)u0‖2

L2 − 2
∫ t

0

〈un(t′)· ∇uN0,F (t′), wn(t′)〉 dt′.

Note that using Lemma 2.1 page 52 and (6.3) yields

| 〈un(t′) · ∇uN0,F (t′), wn(t′)〉| ≤ ‖ ∇uN0,F (t′)‖L∞ ‖un(t′)‖L2 ‖wn(t′)‖L2

≤ C‖u0‖2
L2 ‖ ∇uN0,F (t′)‖L∞

≤ CN
5
2
0 ‖u0‖3

L2 .

Thus, for any n ∈ N,

ν

∫ t

0

‖∇hwn(t′)‖2
L2 dt′ ≤ ‖(Id − EN0)u0‖2

L2 + CtN
5
2
0 ‖u0‖3

L2 .

We infer that for all T > 0,

‖∂3un(T )‖2
L2 + ν

∫ T

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ ‖∂3u0‖2

L2

×
(

1 +
C

ν3
‖∂3u0‖2

L2

(
TN2

0 ‖u0‖2
L2 +

1
ν

‖(Id − EN0)u0‖2
L2 +

1
ν

TN
5
2
0 ‖u0‖3

L2

))
.

First choosing N0 sufficiently large and then T sufficiently small so that the
above quantity is small enough ensures that for all t ∈ [0, T ] and n ∈ N,

‖∂3un(t)‖2
L2 + ν

∫ t

0

‖ ∇h∂3un(t′)‖2
L2 dt′ ≤ 2‖∂3u0‖2

L2 . (6.7)

Step 3: Convergence. To simplify the presentation, we only consider
the case where T is finite. Since (un)n∈N is bounded in L∞([0, T ]; H0,1) ∩
L2([0, T ]; H1,1), we also have (un)n∈N bounded in L4([0, T ]; H

1
2 ,1) by interpo-

lation.1 Assume, temporarily, that

H
1
2 ,1 ↪→ L2

v(L4
h) ∩ L∞

v (L4
h). (6.8)

We then deduce that the convection and pressure terms of (ANSν,n) are
bounded in L2([0, T ]; H−1). Therefore,

1 In fact, this may be proven directly using the definition of Hs,s′
and Hölder’s

inequality.
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∂tun is bounded in L2([0, T ]; H−1). (6.9)

Since the embedding of H−1 in L2 is locally compact (see Theorem 1.68
page 45), we can now conclude, by combining Ascoli’s theorem and the Can-
tor diagonal process, that up to extraction, (un)n∈N converges to some u
in C([0, T ]; S ′). Because (un)n∈N is bounded in L∞([0, T ]; H0,1) ∩ L2([0, T ];
H1,1), we actually have u ∈ L∞([0, T ]; H0,1) ∩ L2([0, T ]; H1,1) (use the weak
compactness properties of the Hilbert spaces H0,1 and H1,1), and it is possible
to pass to the limit in (ANSν,n). Hence, u is a solution of (ANSν).

We now prove that u ∈ C([0, T ]; L2). Since u satisfies (ANS), it is not
difficult to show that ∂tu is bounded in L2([0, T ]; H−1) [just proceed as in the
proof of (6.9)]. Since, in addition, u is bounded in L2([0, T ]; H1), a classical
interpolation argument ensures that u belongs to C([0, T ]; L2).

Finally, we note that Lemma 5.15 page 216, combined with the fact that
u ∈ L4([0, T ]; L4) ∩ L2([0, T ]; H1), implies that the energy equality (6.1) is
satisfied.

For the sake of completeness, we shall justify (6.8). Note that H
1
2 ,1 is

embedded in L2
v(H

1
2
h ), and H

1
2
h is embedded in L4

h. Hence, H
1
2 ,1 ↪→ L2

v(L4
h).

In order to prove the embedding in L∞
v (L4

h), consider some function a in S.
For all x3 in Rv, we may write

4
∫

R2
h

a4(xh, x3) dxh =
∫

R2
h

(∫ x3

− ∞
(a∂3a)(xh, y3) dy3

)2

dxh.

Therefore, by virtue of the Cauchy–Schwarz inequality,

4
∫

R2
h

a4(xh, x3) dxh ≤ ‖a‖2
L4

h(L2
v)‖∂3a‖2

L4
h(L2

v).

Applying the Minkowski inequality then completes the proof of (6.8).

Step 4: Uniqueness. This is obviously implied by the following lemma.

Lemma 6.5. Let uj, j ∈ {1, 2}, be solutions of (ANSν) in the space

L∞([0, T ]; H0,1) ∩ L2([0, T ]; H1,1).

We then have

‖u2(t) − u1(t)‖2
L2 +ν

∫ t

0

‖ ∇h(u2 − u1)(t′)‖2
L2 dt′ ≤ ‖(u2 − u1)(0)‖2

L2 exp Mu1(t)

with Mu1(t)
def
=

C

ν

∫ t

0

‖∂3∇hu1(t′)‖L2 ‖∇u1(t′)‖L2 dt′.

Remark 6.6. As u1 belongs to L∞([0, T ]; H0,1) ∩ L2([0, T ]; H1,1), we have

Mu1(T ) ≤ C

ν
‖∂3∇hu1‖L2

T (L2)

(
1√
2ν

‖u1(0)‖L2 + T
1
2 ‖∂3u1‖L∞

T (L2)

)
< ∞.
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Remark 6.7. We note that this lemma is a stability result for initial data
in H0,1. We should point out that the stability is proved in L∞

t (L2)∩L2
t (H

1,0),
which corresponds to the loss of one vertical derivative with respect to the
regularity of the initial data.

Proof of Lemma 6.5. Defining u21
def= u2 − u1, we get, by an L2 energy

estimate,

‖u21(t)‖2
L2 + 2ν

∫ t

0

‖ ∇u21(t′)‖2
L2 dt′ = −2Ih(t) − 2Iv(t)

with

Ih(t) def=
∑

1≤k≤2
1≤�≤3

∫ t

0

∫
R3

uk
21(t

′, x) ∂ku�
1(t

′, x) u�
21(t

′, x) dt′ dx,

Iv(t) def=
∑

1≤�≤3

∫ t

0

∫
R3

u3
21(t

′, x) ∂3u
�
1(t

′, x) u�
21(t

′, x) dt′ dx.

Corollary 6.4 applied with a = ∂ku�
1, b = uk

21, and c = u�
21 implies that

Ih(t) ≤ C

∫ t

0

‖∂3∇hu1(t′)‖
1
2
L2 ‖ ∇hu1(t′)‖

1
2
L2 ‖ ∇hu21(t′)‖L2 ‖u21(t′)‖L2 dt′

≤ ν

2

∫ t

0

‖∇hu21(t′)‖2
L2 dt′

+
C

ν

∫ t

0

‖∂3∇hu1(t′)‖L2 ‖ ∇hu1(t′)‖L2 ‖u21(t′)‖2
L2 dt′.

Proposition 6.3 applied with a = u3
21, b = ∂3u

�
1, and c = u�

21 gives

Iv(t) ≤
∫ t

0

‖u3
21(t

′)‖L∞(Rv ;L2
h)‖∂3∇hu1(t′)‖

1
2
L2 ‖∂3u1(t′)‖

1
2
L2

× ‖∇hu21(t′)‖
1
2
L2 ‖u21(t′)‖

1
2
L2 dt′.

We shall temporarily assume the following result.

Lemma 6.8. Let v be a divergence-free vector field. We then have

‖v3‖2
L∞(Rv;L2

h) ≤ 2‖ divh vh‖L2 ‖v3‖L2 .

We now have

Iv(t) ≤
∫ t

0

‖∇hu21(t′)‖L2 ‖u21(t′)‖L2 ‖∂3∇hu1(t′)‖
1
2
L2 ‖∂3u1(t′)‖

1
2
L2 dt′

≤ ν

2

∫ t

0

‖ ∇hu21(t′)‖2
L2 dt

+
C

ν

∫ t

0

‖∂3∇hu1(t′)‖L2 ‖∂3u1(t′)‖L2 ‖u21(t′)‖2
L2 dt′.
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Applying the Gronwall lemma then completes the proof. ��

Proof of Lemma 6.8. Write

‖v3(·, x3)‖2
L2

h
= 2

∫ x3

− ∞

(∫
R2

∂3v
3(xh, y3)v3(xh, y3) dxh

)
dx3

= −2
∫ x3

− ∞

(∫
R2

divh vh(xh, y3)v3(xh, y3) dxh

)
dx3.

Applying the Cauchy–Schwarz inequality then completes the proof. ��

6.2 A Global Existence Result in Anisotropic Besov
Spaces

Theorem 6.2 asserts global well-posedness under the smallness condition (6.2).
On the one hand, this smallness condition is scaling invariant. On the other
hand, the H0,1 regularity which was needed in Theorem 6.2 is not scaling
invariant. The rest of this chapter is devoted to the proof of a global existence
statement for small data in some suitable scaling invariant function space.
Motivated by the results presented in the previous chapter, we seek a func-
tional framework in which a suitable class of highly oscillating data generates
global solutions.

6.2.1 Anisotropic Localization in Fourier Space

In order to define the spaces we shall work with, we first have to construct
an anisotropic version of the dyadic decomposition of the Fourier space intro-
duced in Proposition 2.10 page 59.

For (k, �) in Z
2, we define

Δh
ka = F −1(ϕ(2−k |ξh|)â), Δv

� a = F −1(ϕ(2−�|ξ3|)â),

Sh
k a =

∑
k′ ≤k−1

Δh
k′ a, and Sv

� a =
∑

�′ ≤�−1

Δv
�′ a, (6.10)

where â denotes the Fourier transform of the tempered distribution a over R
3,

and ϕ denotes a function in D
([

3/4, 8/3
])

such that, for any positive τ ,

∑
j∈Z

ϕ(2−jτ) = 1.

Remark 6.9. Note that if we define

χ(τ) def= 1 −
∑
j∈N

ϕ(2−jτ), (6.11)
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then we have, for all a ∈ S(R3),

F (Sh
� a)(ξ) = χ(2−�|ξh|)F a(ξ) and F (Sv

� a)(ξ) = χ(2−�|ξ3|)F a(ξ).

In what follows, we shall always consider functions a for which
∥∥Sh

� a
∥∥

L∞

and ‖Sv
� a‖L∞ converge to 0 when k goes to −∞ so that we may write Sh

� a =
χ(2−�Dh)a and Sv

� a = χ(2−�D3)a.

The following lemma can be understood as an anisotropic version of Lemma 2.1
page 52.

Lemma 6.10. Let Bh (resp., Bv) be a ball in R
2
h (resp., Rv) and Ch (resp., Cv)

be an annulus in R
2
h (resp., Rv). Let 1 ≤ p2 ≤ p1 ≤ ∞ and 1 ≤ q2 ≤ q1 ≤ ∞.

We then have the following results:

– If the support of â is included in 2k Bh, then

‖∂α
xh

a‖L
p1
h (L

q1
v ) ≤ C2k

(
|α|+2

(
1

p2
− 1

p1

))
‖a‖L

p2
h (L

q1
v ).

– If the support of â is included in 2�Bv, then

‖∂β
3 a‖L

p1
h (L

q1
v ) ≤ C2�

(
|β|+

(
1

q2
− 1

q1

))
‖a‖L

p1
h (L

q2
v ).

– If the support of â is included in 2k Ch, then

‖a‖L
p1
h (L

q1
v ) ≤ C2−kN sup

|α|=N

‖∂α
h a‖L

p1
h (L

q1
v ).

– If the support of â is included in 2�Cv, then

‖a‖L
p1
h (L

q1
v ) ≤ C2−�N ‖∂N

3 a‖L
p1
h (L

q1
v )

Proof. This is analogous to the proof of Lemma 2.1. As an example, we prove
the last inequality. As usual, using dilations, we can assume without loss of
generality that � = 0. Let ϕ̃ be a function in D(R \{0}) with value 1 near Cv.
We have

â(ξh, ξ3) =
ϕ̃(ξ3)
(iξ3)N

F (∂N
3 a). (6.12)

Defining hN
def= F −1

(
ϕ̃(ξ3)(iξ3)−N

)
, we may write

a(xh, x3) =
∫

R

hN (x3 − y3)a(xh, y3) dy3.

Young’s inequality then gives the result. ��
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6.2.2 The Functional Framework

This subsection is devoted to the presentation of the function spaces we shall
work with when globally solving the anisotropic Navier–Stokes equations.

In the following definition, we introduce two scaling invariant spaces in
which (ANSν) turns out to be well posed.

Definition 6.11. We denote by B0, 1
2 and B − 1

2 , 1
2

4 the respective completions
of S(R3) for the norms

‖a‖
B0, 1

2

def
=

∑
�∈Z

2
�
2 ‖Δv

�a‖L2(R3) and

‖a‖
B

− 1
2 , 1

2
4

def
=

∑
�∈Z

2
�
2

( ∞∑
k=�−1

2−k ‖Δh
kΔv

�a‖2
L4

h(L2
v)

) 1
2

+
∑
j∈Z

2
j
2 ‖Sh

j−1Δ
v
j a‖L2 .

Remark 6.12. The definition of B0, 1
2 is “natural”. Indeed, the functions of B0, 1

2

are L2 in the horizontal variable and have vertical derivative 1/2 in L2. The
choice of an �1 summation in the vertical variable allows us to get for free
an L2

h(L∞
v ) control which turns out to be of paramount importance for treating

the nonlinear terms. Note, in passing, that this control would not be given if
we used the (slightly smaller) H0, 1

2 norm instead.

The reason for the choice of the space B − 1
2 , 1

2
4 is probably less obvious.

Of course, it has the required scaling (roughly −1/2 horizontal derivative
in L4 and 1/2 vertical derivative in L2), and Lemma 6.10 ensures that B0, 1

2

is continuously included in B − 1
2 , 1

2
4 . Having a negative regularity index for

the horizontal variables will enable us to show global existence for highly
oscillating data in the horizontal variable. The choice of the norm is also
motivated by the following consideration: If we consider the linear equation

∂tu − νΔhu = f on R
+ × R

3,

then the terms Δh
kΔv

�u satisfy

∂t

(
Δh

kΔv
�

)
u − νΔh

(
Δh

kΔv
�

)
u = Δh

kΔv
�f.

It is now clear (from Lemma 6.10) that whenever k ≥ � − 1, the action of
the operator Δh over Δh

kΔv
�u is equivalent to that of the operator Δ [indeed,

we have |ξh|2 ≈ |ξ|2 for all ξ in the support of F
(
Δh

kΔv
� u

)
]. Therefore, those

terms will be treated by means of parabolic techniques. On the other hand, no
smoothing effect is expected on the remaining terms Sh

j−1Δ
v
j u, which should

dealt with as solutions of a hyperbolic equation.

To study the evolution of (ANSν) with initial data in B0, 1
2 (resp., B − 1

2 , 1
2

4 ), we

also need to introduce the following subspace of the space L2([0, T ]; B − 1
2 , 1

2
4 )

(resp., L2([0, T ]; B0, 1
2 )).
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Definition 6.13. We denote by B0, 1
2 (T ) and B − 1

2 , 1
2

4 (T ) the respective com-
pletions of the space C ∞([0, T ], S(R3)) for the norms

‖a‖
B0, 1

2 (T )

def
=

∑
�∈Z

2
�
2

(
‖Δv

�a‖L∞
T (L2(R3)) + ν

1
2 ‖∇hΔv

�a‖L2
T (L2(R3))

)
,

‖a‖
B

− 1
2 , 1

2
4 (T )

def
=

∑
�∈Z

2
�
2

(( ∞∑
k=�−1

2−k ‖Δh
kΔv

�a‖2
L∞

T (L4
h(L2

v))

) 1
2

+ ν
1
2

( ∞∑
k=�−1

2k ‖Δh
kΔv

�a‖2
L2

T (L4
h(L2

v))

) 1
2
)

+
∑
j∈Z

2
j
2

(
‖Sh

j−1Δ
v
j a‖L∞

T (L2(R3)) + ν
1
2 ‖∇hSh

j−1Δ
v
j a‖L2

T (L2(R3))

)
.

Lemma 6.10 obviously implies the following result.

Corollary 6.14. For all T ∈ ]0, ∞], the space B0, 1
2 (T ) is continuously embed-

ded in B − 1
2 , 1

2
4 (T ) and in L∞

T (L2
h(L∞

v )). Moreover, the norm of the embedding
is independent of T.

We shall also make use of the fact that the space B − 1
2 , 1

2
4 is embedded in the

space of distributions which are B − 1
2

4,2 in the horizontal variable and B
1
2
2,1 in

the vertical variable. More precisely, we have the following.

Corollary 6.15. There exists a constant C such that for all a ∈ B − 1
2 , 1

2
4 (T ),

we have

∑
�∈Z

2
�
2

(∑
k∈Z

2−k ‖Δh
kΔv

�a(0)‖2
L4

h(L2
v)

) 1
2

≤ C‖a(0)‖
B

− 1
2 , 1

2
4

,

∑
�∈Z

2
�
2

(∑
k∈Z

(
2−k ‖Δh

kΔv
� a‖2

L∞
T (L4

h(L2
v)) + ν2k ‖Δh

kΔv
�a‖2

L2
T (L4

h(L2
v))

)) 1
2

≤ C‖a‖
B

− 1
2 , 1

2
4 (T )

.

Proof. We only treat the first inequality, the proof of the second being similar.
Obviously, it suffices to show that

I
def=

∑
�∈Z

2
�
2

( ∑
k≤�−2

2−k ‖Δh
kΔv

�a(0)‖2
L4

h(L2
v)

) 1
2

≤ C‖a(0)‖
B

− 1
2 , 1

2
4

.

According to the second inequality of Lemma 6.10, we have

I ≤ C
∑
�∈Z

2
�
2

( ∑
k≤�−2

‖Δh
kΔv

�a(0)‖2
L2

) 1
2

.
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Now, since (horizontal) Littlewood–Paley decomposition is almost orthogonal
in L2, we get, arguing as in the proof of (2.11),

∑
k≤�−2

‖Δh
kΔv

�a‖2
L2 ≤ 2‖Sh

�−1Δ
v
� a‖2

L2 ,

from which the desired inequality follows. ��

6.2.3 Statement of the Main Result

We now explain briefly how we may proceed in order to show that the sys-
tem (ANSν) is globally well posed for small data in B − 1

2 , 1
2

4 . We shall search
for a solution of the form u = uF + w with

uF
def= eνtΔhuhh and uhh

def=
∑

k≥�−1

Δh
kΔv

�u0. (6.13)

Note that u�h
def= u0 − uhh satisfies

u�h =
∑
j∈Z

Sh
j−1Δ

v
j u0. (6.14)

It turns out that u�h is smoother than u0. Indeed,

Δv
j u�h =

∑
|j−j′ |≤1

Sh
j′ −1Δ

v
j′ Δv

j u0,

and thus
‖Δv

j u�h‖L2 ≤ C
∑

|j−j′ |≤1

‖Sh
j′ −1Δ

v
j′ u0‖L2 .

This implies that if u0 belongs to B − 1
2 , 1

2
4 , then u�h belongs to B0, 1

2 and

‖u�h‖
B0, 1

2
≤ C‖u0‖

B
− 1

2 , 1
2

4

. (6.15)

In turn, this implies that w is also more regular than the free solution uF .

We can now state the main result of this chapter.

Theorem 6.16. There exists a constant c such that for all divergence-free
initial data u0 in B − 1

2 , 1
2

4 satisfying ‖u0‖
B

− 1
2 , 1

2
4

≤ cν, the system (ANSν) has

a unique global solution u in B − 1
2 , 1

2
4 (∞). Moreover, the vector field u − uF

belongs to B0, 1
2 (∞).

The above theorem will be proven in the next two sections. For the time being,
we will show that the B − 1

2 , 1
2

4 norm may be made small by fast horizontal
oscillations.
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Proposition 6.17. Let φ be in S(R3) and define φε(x)
def
= eix1/εφ(x). A con-

stant Cφ exists such that for any positive ε,

‖φε‖
B

− 1
2 , 1

2
4

≤ Cφε
1
2 .

Proof. By definition of the norm ‖ · ‖
B

− 1
2 , 1

2
4

and because the ‖ · ‖�2 norm is

less than or equal to the ‖ · ‖�1 norm, we have

‖φε‖
B

− 1
2 , 1

2
4

≤
4∑

j=1

Φ(j)
ε with

Φ(1)
ε

def=
∑

ε2k>1
k≥�−1

2− k−�
2 ‖Δh

kΔv
�φε‖L4

h(L2
v),

Φ(2)
ε

def=
∑

ε2k ≤1
k≥�−1

2− k−�
2 ‖Δh

kΔv
�φε‖L4

h(L2
v),

Φ(3)
ε

def=
∑

ε2j>1

2
j
2 ‖Sh

j−1Δ
v
j φε‖L2 ,

Φ(4)
ε

def=
∑

ε2j ≤1

2
j
2 ‖Sh

j−1Δ
v
j φε‖L2 .

In order to estimate Φ
(1)
ε , we note that

Φ(1)
ε ≤

( ∑
ε2k>1

2− k
2

)∑
�∈Z

2
�
2 sup

k∈Z

‖Δh
kΔv

� φε‖L4
h(L2

v)

≤ ε
1
2

∑
�∈Z

2
�
2 sup

k∈Z

‖Δh
kΔv

�φε‖L4
h(L2

v).

Using Lemma 6.10 and the definition of φε, we get

sup
k∈Z

‖Δh
kΔv

�φε‖L4
h(L2

v) ≤ C‖φε‖L4
h(L2

v) ≤ C‖φ‖L4
h(L2

v)

and also

sup
k∈Z

‖Δh
kΔv

�φε‖L4
h(L2

v) ≤ C2−�‖∂3φε‖L4
h(L2

v) ≤ C2−�‖∂3φ‖L4
h(L2

v).

Thus, taking the sum over � ≤ N and � > N and choosing the best N gives

Φ(1)
ε ≤ ε

1
2

∑
�∈Z

2
�
2 sup

k∈Z

‖Δh
kΔv

�φε‖L4
h(L2

v) ≤ ε
1
2 ‖φ‖

1
2
L4

h(L2
v)

‖∂3φ‖
1
2
L4

h(L2
v)

.

Estimating Φ
(2)
ε demands the use of oscillations. Let
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φ̃2,ε
k,�(x) def= 22k2�

∫
R3

(∂1g̃)(2k(xh −yh))h̃(2�(x3 −y3))ei
y1
ε φ(y) dy

with F g̃(ξh) = ϕ̃(|ξh|) and F h̃(ξ3) = ϕ̃(ξ3). Integration by parts gives

Δh
kΔv

�φε = φ1,ε
k,�+φ2,ε

k,� with φ1,ε
k,�

def= iεΔh
kΔv

� (ei
y1
ε ∂1φ) and φ2,ε

k,�
def= −iε2kφ̃2,ε

k,�.

Using Lemma 6.10, we get

2− k
2

∑
�≤k+1

2
�
2 ‖φ1,ε

k,�‖L4
h(L2

v) ≤ Cε sup
�∈Z

‖Δh
kΔv

� (ei
y1
ε ∂1φ)‖L4

h(L2
v)

≤ Cε2
k
2 ‖∂1φ‖L2 .

Moreover, we have

2− k
2

∑
�≤k+1

2
�
2 ‖φ2,ε

k,�‖L4
h(L2

v) ≤ ε2
k
2

∑
�∈Z

2
�
2 ‖φ̃2,ε

k,�‖L4
h(L2

v).

Using Lemma 6.10, we get

‖φ̃2,ε
k,�‖L4

h(L2
v) ≤ C‖φ‖L4

h(L2
v) and ‖φ̃2,ε

k,�‖L4
h(L2

v) ≤ C2−�‖∂3φ‖L4
h(L2

v).

Again, taking the sum over � ≤ N and � > N and choosing the best N , we
get ∑

�∈Z

2
�
2 ‖φ̃2,ε

k,�‖L4
h(L2

v) ≤ C‖φ‖
1
2
L4

h(L2
v)

‖∂3φ‖
1
2
L4

h(L2
v)

.

Therefore,
Φ(2)

ε ≤ Cφε
∑

ε2k ≤1

2
k
2 ≤ Cφε

1
2 .

In order to estimate Φ
(3)
ε , we note that, thanks to Lemma 6.10, we have

Φ(3)
ε ≤ C

∑
ε2j>1

2− j
2 ‖Sh

j−1Δ
v
j ∂3φε‖L2

≤ C‖∂3φε‖L2

∑
ε2j>1

2− j
2

≤ Cε
1
2 ‖∂3φ‖L2 .

Estimating Φ
(4)
ε requires use of the oscillations. Integrating by parts, we get

Sh
j−1Δ

v
j φε = φ1,ε

j +φ2,ε
j with φ1,ε

j
def= iεSh

j−1Δ
v
j (ei

y1
ε ∂1φ) and φ2,ε

j
def= −iε2j φ̃2,ε

j

with φ̃2,ε
j (x) def= 23j

∫
(∂1g)(2j(xh − yh))h̃(2j(x3 − y3))ei

y1
ε φ(y) dy for some

function g in S(R2).
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Using Lemma 6.10, we get
∑

ε2j ≤1

2
j
2 ‖φ1,ε

j ‖L2 ≤ Cε‖∂1φ‖L2

∑
ε2j ≤1

2
j
2 ≤ Cε

1
2 ‖∂1φ‖L2 .

Using Lemma 6.10 again, we get 2j ‖φ̃2,ε
j ‖L2 ≤ ‖∂3φ‖L2 . Thus, we infer that

∑
ε2j ≤1

2
j
2 ‖φ2,ε

j ‖L2 ≤ Cε‖∂3φ‖L2

∑
ε2j ≤1

2
j
2 ≤ Cε

1
2 ‖∂3φ‖L2 .

This completes the proof of Proposition 6.17. ��

Combining Theorem 6.16 with the above result, we deduce that data with high
oscillations with respect to the horizontal variable generate global solutions
of the system (ANSν).

Corollary 6.18. For any φ in S(R3), there exists some ε0 > 0 such that for
all ε in ]0, ε0[, the system (ANSν) has a global unique solution with data

uε
0(x) = sin

(x1

ε

)
(0, −∂3φ, ∂2φ) . (6.16)

6.2.4 Some Technical Lemmas

For the remainder of this chapter, it will be understood that (ck)k∈Z [resp.,
(dj)j∈Z] denotes a generic element of the sphere of �2(Z) [resp., �1(Z)]. Fur-
thermore, (ck,�)(k,�)∈Z2 will denote a generic element of the sphere of �2(Z2)
and (dk,�)(k,�)∈Z2 a generic sequence such that

∑
�∈Z

(∑
k∈Z

d2
k,�

) 1
2

= 1.

We shall often use the following property, the proof of which is omitted.

Lemma 6.19. Let α be in ]0, ∞[ and N0 be in Z. We then have

∑
(k,�)∈Z

2

�≥j−N0

2−α(�−j)dk,�ck ≤ 2αN0

1 − 2−α
dj .

The following lemma will be of frequent use in this chapter. It describes some
estimates of dyadic parts of functions in B − 1

2 , 1
2

4 (T ).

Lemma 6.20. For any a ∈ B − 1
2 , 1

2
4 (T ), we have

‖Sh
k Δv

�a‖L∞
T (L4

h(L2
v)) + ν

1
2 ‖ ∇hSh

k Δv
�a‖L2

T (L4
h(L2

v)) ≤ Cdk,�2
k
2 2− �

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

,

‖Sh
k a‖L∞

T (L4
h(L∞

v )) + ν
1
2 ‖ ∇hSh

k a‖L2
T (L4

h(L∞
v )) ≤ Cck2

k
2 ‖a‖

B
− 1

2 , 1
2

4 (T )
.
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Proof. By definition of Sh
k , we have

Sk,�(a) def= ‖Sh
k Δv

� a‖L∞
T (L4

h(L2
v)) + ν

1
2 ‖ ∇hSh

k Δv
�a‖L2

T (L4
h(L2

v))

≤
∑

k′ ≤k−1

(
‖Δh

k′ Δv
�a‖L∞

T (L4
h(L2

v)) + ν
1
2 ‖∇hΔh

k′ Δv
� a‖L2

T (L4
h(L2

v))

)
.

Noting that

2
�
2 2− k

2 Sk,�(a) ≤ 2
�
2

∑
k′ ≤k−1

2− k−k′
2 2− k′

2

×
(

‖Δh
k′ Δv

� a‖L∞
T (L4

h(L2
v)) + ν

1
2 ‖∇hΔh

k′ Δv
�a‖L2

T (L4
h(L2

v))

)
,

we get, by applying the Cauchy–Schwarz inequality, that

2
�
2

(∑
k∈Z

2−k Sk,�(a)2
) 1

2 ≤ 2
�
2

(∑
k′ ∈Z

2−k′
(

‖Δh
k′ Δv

�a‖L∞
T (L4

h(L2
v))

+ ν
1
2 ‖ ∇hΔh

k′ Δv
�a‖L2

T (L4
h(L2

v))

)2
) 1

2

.

By Corollary 6.15, this proves the first inequality.
In order to establish the second inequality, we shall prove that for any

sequence (ck)k∈Z in the unit ball of �2(Z), we have

I(a) def=
∑
k∈Z

2− k
2 Skck ≤ C‖a‖

B
− 1

2 , 1
2

4 (T )
with (6.17)

Sk
def= ‖Sh

k a‖L∞
T (L4

h(L∞
v )) + ν

1
2 ‖ ∇hSh

k a‖L2
T (L4

h(L∞
v )). (6.18)

Again using Lemma 6.10, we have

Sk ≤ C
∑

k′ ≤k−1

∑
�∈Z

2
�
2

(
‖Δh

k′ Δv
�a‖L∞

T (L4
h(L2

v)) + ν
1
2 ‖Δh

k′ Δv
� ∇ha‖L2

T (L4
h(L2

v))

)
.

We deduce that

I(a) ≤ C
∑
�∈Z

2
�
2

∑
(k,k′)∈Z

2

k′ ≤k−1

2− k−k′
2 2− k′

2 ck

(
‖Δh

k′ Δv
� a‖L∞

T (L4
h(L2

v))

+ ν
1
2 ‖Δh

k′ Δv
� ∇ha‖L2

T (L4
h(L2

v))

)
.

From the Cauchy–Schwarz inequality with the weight 2− k−k′
2 1k′ ≤k−1, we infer

that
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I(a) ≤ C

( ∑
(k,k′)∈Z

2

k′ ≤k−1

2− k−k′
2 c2

k

) 1
2 ∑

�∈Z

2
�
2

( ∑
(k,k′)∈Z

2

k′ ≤k−1

2− k−k′
2 2−k′

×
(

‖Δh
k′ Δv

�a‖L∞
T (L4

h(L2
v)) + ν

1
2 ‖Δh

k′ Δv
� ∇ha‖L2

T (L4
h(L2

v))

)2
) 1

2

.

From this, we deduce that

I(a) ≤ C
∑
�∈Z

2
�
2

( ∑
(k,k′)∈Z

2

k′ ≤k−1

2− k−k′
2 2−k′

(
‖Δh

k′ Δv
�a‖L∞

T (L4
h(L2

v))

+ ν
1
2 ‖Δh

k′ Δv
� ∇ha‖L2

T (L4
h(L2

v))

)2
) 1

2

≤ C
∑
�∈Z

2
�
2

(∑
k′ ∈Z

2−k′
(

‖Δh
k′ Δv

� a‖L∞
T (L4

h(L2
v))

+ ν
1
2 ‖Δh

k′ Δv
� ∇ha‖L2

T (L4
h(L2

v))

)2
) 1

2

≤ C‖a‖
B

− 1
2 , 1

2
4 (T )

,

which proves (6.17) and thus the whole Lemma 6.20. ��

With Lemma 6.20 at our disposal, we will now establish a result which is very
close to Sobolev embedding and which will be of constant use in proving the
existence part of Theorem 6.16.

Lemma 6.21. The space B − 1
2 , 1

2
4 (T ) is embedded in L4

T (L4
h(L∞

v )). More pre-

cisely, for any function a in B − 1
2 , 1

2
4 (T ), we have

‖Δv
j a‖L4

T (L4
h(L2

v)) ≤ C
dj

ν
1
4
2− j

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖a‖L4
T (L4

h(L∞
v )) ≤ C

ν
1
4

‖a‖
B

− 1
2 , 1

2
4 (T )

.

Proof. First, note that

‖Δv
j a‖2

L4
T (L4

h(L2
v)) = ‖(Δv

j a)2‖L2
T (L2

h(L1
v)).

Then, according to Bony’s decomposition in the horizontal variables, we may
write

(Δv
j a)2 =

∑
k∈Z

Sh
k−1Δ

v
j a Δh

kΔv
j a +

∑
k∈Z

Sh
k+2Δ

v
j a Δh

kΔv
j a.

The two terms on the right-hand side may be estimated exactly in the same
way, so we first focus on the first term. Applying Hölder’s inequality, we get
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‖Sh
k−1Δ

v
j a Δh

kΔv
j a‖L2

T (L2
h(L1

v))

≤ 2− k
2 ‖Sh

k−1Δ
v
j a‖L∞

T (L4
h(L2

v))2
k
2 ‖Δh

kΔv
j a‖L2

T (L4
h(L2

v)).

Using the first inequality of Lemma 6.20 and Corollary 6.15, we infer that

‖Sh
k−1Δ

v
j a Δh

kΔv
j a‖L2

T (L2
h(L1

v)) ≤ C
d2

k,j

ν
1
2

2−j ‖a‖2

B
− 1

2 , 1
2

4 (T )
.

Taking the sum over k, we thus deduce that

‖(Δv
j a)2‖L2

T (L2
h(L1

v)) ≤ C
d2

j

ν
1
2
2−j ‖a‖2

B
− 1

2 , 1
2

4 (T )
,

which is exactly the first inequality of the lemma. Now, using Lemma 6.10,
we have

‖Δv
j a‖L4

T (L4
h(L∞

v )) ≤ C2
j
2 ‖Δv

j a‖L4
T (L4

h(L2
v)).

This proves the whole lemma. ��

We will now use Lemma 6.10 to study the free evolution uF of the high
horizontal frequency part of the initial data u0, as defined in (6.13). In order
to do this, we first recall a result, in the spirit of Corollary 2.5 page 55, which
describes the action of the semigroup of the heat equation on distributions
with Fourier transforms supported in a fixed annulus.

Lemma 6.22. Let u0 ∈ B − 1
2 , 1

2
4 , uF be as in (6.13), α ∈ N

3, and p ∈ [1, ∞].
Then, Δh

kΔv
� uF = 0 if k ≤ � − 3, and

‖Δh
kΔv

� uF ‖Lp
T (L4

h(L2
v)) ≤ C

dk,�

ν
1
p

2k( 1
2 − 2

p )2− �
2 ‖u0‖

B
− 1

2 , 1
2

4

if k ≥ �−2. (6.19)

Moreover, uF belongs to B − 1
2 , 1

2
4 (∞) and satisfies

‖uF ‖
B

− 1
2 , 1

2
4 (∞)

≤ C‖u0‖
B

− 1
2 , 1

2
4

. (6.20)

Proof. From the relations (2.2) and (2.3) page 54, we deduce that

Δh
kΔv

�uF (t) = 22kg(t, 2k ·)�Δh
kΔv

� u0 with ‖g(t, ·)‖L1(R2) ≤ Ce−cνt22k

. (6.21)

Here, the convolution must be understood as the convolution on R
2. Thus,

‖Δh
kΔv

�uF (t, xh, ·)‖L2
v

≤ 22k |g(t, 2k ·)| � ‖Δh
kΔv

� u0(xh, ·)‖L2
v
.

Using (6.21) and Lemma 6.10, we get

‖Δh
kΔv

�uF (t)‖L4
h(L2

v) ≤ Ce−cνt22k

‖Δh
kΔv

�u0‖L4
h(L2

v)

≤ Ce−cνt22k

dk,�2
k
2 2− �

2 ‖u0‖
B

− 1
2 , 1

2
4

.

By time integration, the lemma then follows. ��
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From Lemma 6.22, we immediately deduce the following corollary.

Corollary 6.23. For any (p, q) in [1, ∞] × [4, ∞], we have

‖Δh
kuF ‖Lp(R+;Lq

h(L∞
v )) ≤ C

1

ν
1
p

ck2−k(2( 1
p + 1

q )−1)‖u0‖
B

− 1
2 , 1

2
4

.

If, in addition,
1
p

+
1
q

>
1
2

, then we have

‖Δv
j uF ‖Lp(R+;Lq

h(L2
v)) ≤ C

1

ν
1
p

dj2−j(2( 1
p + 1

q )− 1
2 )‖u0‖

B
− 1

2 , 1
2

4

.

The following lemma corresponds to the endpoint of the second estimate of
Corollary 6.23.

Lemma 6.24. Under the assumptions of Lemma 6.22, we have

‖Δv
j uF ‖L2(R+;L∞

h (L2
v)) ≤ C

dj√
ν

2− j
2 ‖u0‖

B
− 1

2 , 1
2

4

and

‖uF ‖L2(R+;L∞) ≤ C
1√
ν

‖u0‖
B

− 1
2 , 1

2
4

.

Proof. Trivially, we have

‖Δv
j uF ‖2

L2
T (L∞

h (L2
v)) = ‖(Δv

j uF )2‖L1
T (L∞

h (L1
v)).

Using Bony’s decomposition in the horizontal variables, we obtain

(Δv
j uF )2 =

∑
k∈Z

Sh
k−1Δ

v
j uF Δh

kΔv
j uF +

∑
k∈Z

Δh
kΔv

j uF Sh
k+2Δ

v
j uF . (6.22)

Now, the idea is to take advantage of the smoothing effect on the high-
est possible horizontal frequencies of uF . Applying Hölder’s inequality and
Lemma 6.10, we get

‖Sh
k−1Δ

v
j uF Δh

kΔv
j uF ‖L1

T (L∞
h (L1

v))

≤ C2k ‖Sh
k−1Δ

v
j uF ‖L∞

T (L4
h(L2

v))‖Δh
kΔv

j uF ‖L1
T (L4

h(L2
v)).

Note that by (6.19) and the fact that Sh
k−1 =

∑
k′ ≤k−2

Δh
k′ , we have

‖Sh
k−1Δ

v
j uF ‖L∞

T (L4
h(L2

v)) ≤ C
( ∑

k′ ≤k−2

d2
k,j

) 1
2
2

k
2 2− j

2 ‖u0‖
B

− 1
2 , 1

2
4

.

Therefore, by using (6.19) once again, we arrive at

∥∥∥∑
k∈Z

Sh
k−1Δ

v
j uF Δh

kΔv
j uF

∥∥∥
L1

T (L∞
h (L1

v))
≤ C

2−j

ν

(∑
k′ ∈Z

d2
k′,j

)
‖u0‖2

B
− 1

2 , 1
2

4

.
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Estimating the other term in (6.22) follows along the same lines. Therefore,

‖Δv
j uF ‖2

L2
T (L∞

h (L2
v)) ≤ C

d2
j

ν
2−j ‖u0‖2

B
− 1

2 , 1
2

4

.

From Lemma 6.10 we then conclude that

‖Sv
j uF ‖L2

T (L∞) ≤ C
∑

j′ ≤j−1

2
j′
2 ‖Δv

j′ uF ‖L2
T (L∞

h (L2
v)) ≤ C

1√
ν

‖u0‖
B

− 1
2 , 1

2
4

.

This completes the proof of the lemma. ��

6.3 The Proof of Existence

As announced in the previous section, we seek a solution of the form

u = uF + w.

By substituting the above formula into (ANSν), we find that w must satisfy

(ÃNSν)

⎧⎪⎨
⎪⎩

∂tw + w · ∇w − νΔhw + w · ∇uF + uF · ∇w = −uF · ∇uF − ∇P
div w = 0

w|t=0 = u�h
def= u0 − uhh.

Recall that, according to (6.15), if u0 belongs to B − 1
2 , 1

2
4 , then u�h belongs

to B0, 1
2 .

As in the proof of Theorem 6.2, we shall use the Friedrichs regularization

method to construct the approximate solutions to (ÃNSν). Define uF,n
def=

(Id − En)uF . The approximate system (ÃNSν,n) we consider is of the form
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂twn − νΔhwn + En(wn · ∇wn) + En(wn · ∇uF,n) + En(uF,n · ∇wn)
= − En(uF,n · ∇uF,n) − En ∇(−Δ)−1∂j∂k

(
(uj

F,n + wj
n)(uk

F,n + wk
n)

)
div wn = 0,

wn|t=0 = En(u�h) def= En(u0 − uhh).

Arguing as in the first section of this chapter, we can prove that the sys-
tem (ÃNSν,n) is an ordinary differential equation in the space L2,σ

n . Thanks
to Theorem 3.11 page 131, this ordinary differential equation is globally well
posed because

d

dt
‖wn(t)‖2

L2 ≤ Cn‖uF,n(t)‖L∞ ‖wn‖2
L2 + Cn‖uF,n(t)‖2

L4
h(L2

v)‖wn(t)‖L2 ,

and, according to Corollary 6.23 and Lemma 6.24, the function uF,n belongs
to L2(R+; L∞ ∩ L4

h(L2
v)).
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The proof of Theorem 6.16 now reduces to the following three propositions,
which we shall assume for the time being.2

Proposition 6.25. Let u0 be in B − 1
2 , 1

2
4 and a be in B0, 1

2 (T ). Define

Ij(T )
def
=

∫ T

0

(
Δv

j (uF · ∇uF )|Δv
j a

)
dt.

Then, for any j in Z, we have

|Ij(T )| ≤ Cd2
jν

−12−j ‖u0‖2

B
− 1

2 , 1
2

4

‖a‖
B0, 1

2 (T )
.

Proposition 6.26. Let a and b be vector fields in B0, 1
2 (T ). Define

Jj(T )
def
=

∫ T

0

(
Δv

j (a · ∇uF )|Δv
j b

)
dt.

If div a = 0, then, for any j in Z,

|Jj(T )| ≤ Cd2
jν

−12−j ‖a‖
B0, 1

2 (T )
‖u0‖

B
− 1

2 , 1
2

4

‖b‖
B0, 1

2 (T )
.

Proposition 6.27. Let a be a divergence-free vector field in B − 1
2 , 1

2
4 (T ) and b

a vector field in B0, 1
2 (T ). Define

Fj(T )
def
=

∫ T

0

(
Δv

j (a · ∇b)|Δv
j b

)
dt.

Then, for any j ∈ Z, we have

|Fj(T )| ≤ Cd2
jν

−12−j ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖2

B0, 1
2 (T )

.

Completion of the proof of Theorem 6.16. Apply the operator Δv
j to (ÃNSν,n)

and take the L2 inner product of the resulting equation with Δv
j wn. Because

En wn = wn, we get

Dn(t) def=
d

dt
‖Δv

j wn(t)‖2
L2 + 2ν‖ ∇hΔv

j wn(t)‖2
L2

= −2(Δv
j (wn · ∇wn)|Δv

j wn) − 2(Δv
j (uF,n · ∇wn)|Δv

j wn)
− 2(Δv

j (wn · ∇uF,n)|Δv
j wn) − 2(Δv

j (uF,n · ∇uF,n)|Δv
j wn).

By integrating the above equation over [0, T ], we get

2j ‖Δv
j wn‖2

L∞
T (L2) + 2j+1ν‖ ∇hΔv

j wn‖2
L2

T (L2)

2 In the following three statements, we drop the index n from uF,n to simplify
notation.
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≤ 2j ‖Δv
j wn(0)‖2

L2 + 2
4∑

k=1

∣∣W k
j (T )

∣∣ (6.23)

with W 1
j (T ) def= 2j

∫ T

0

(
Δv

j (wn(t) · ∇wn(t))|Δv
j wn(t)

)
dt,

W 2
j (T ) def= 2j

∫ T

0

(
Δv

j (uF,n(t) · ∇wn(t))|Δv
j wn(t)

)
dt,

W 3
j (T ) def= 2j

∫ T

0

(
Δv

j (wn(t) · ∇uF,n(t))|Δv
j wn(t)

)
dt,

W 4
j (T ) def= 2j

∫ T

0

(
Δv

j (uF,n(t) · ∇uF,n(t))|Δv
j wn(t)

)
dt.

Applying Proposition 6.27 with a = b = wn, together with Corollary 6.14,
gives

∣∣W 1
j (T )

∣∣ ≤ Cν−1d2
j ‖wn‖3

B0, 1
2 (T )

. (6.24)

Thanks to Lemma 6.22, Proposition 6.27 applied with a = uF,n and b = wn

implies, in particular, that
∣∣W 2

j (T )
∣∣ ≤ Cν−1d2

j ‖u0‖
B

− 1
2 , 1

2
4

‖wn‖2

B0, 1
2 (T )

. (6.25)

Proposition 6.26 applied with a = b = wn yields
∣∣W 3

j (T )
∣∣ ≤ Cν−1d2

j ‖u0‖
B

− 1
2 , 1

2
4

‖wn‖2

B0, 1
2 (T )

. (6.26)

Finally, Proposition 6.25 guarantees that
∣∣W 4

j (T )
∣∣ ≤ Cν−1d2

j ‖u0‖2

B
− 1

2 , 1
2

4

‖wn‖
B0, 1

2 (T )
. (6.27)

Plugging the estimates (6.24)–(6.27) into (6.23) gives

2j
(

‖Δv
j wn‖L∞

T (L2) +
√

2ν‖ ∇hΔv
j wn‖L2

T (L2)

)2

≤ 2j ‖Δv
j wn(0)‖2

L2

+
C

ν
d2

j

(
‖wn‖2

B0, 1
2 (T )

+ ‖u0‖2

B
− 1

2 , 1
2

4

)
‖wn‖

B0, 1
2 (T )

.

Using (6.15), we get, by the definition of B0, 1
2 (T ),

‖wn‖
B0, 1

2 (T )
≤ C‖u0‖

B
− 1

2 , 1
2

4

+
C√
ν

(
‖wn‖

B0, 1
2 (T )

+ ‖u0‖
B

− 1
2 , 1

2
4

)
‖wn‖

1
2

B0, 1
2 (T )

.

Define

Tn
def= sup

{
T > 0 /‖wn‖

B0, 1
2 (T )

≤ 2C‖u0‖
B

− 1
2 , 1

2
4

}
.
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The fact that wn is continuous with values in HN for any integer N ensures
that Tn is positive. The above inequality then implies that, for any n and
any T < Tn, we have

‖wn‖
B0, 1

2 (T )
≤ C‖u0‖

B
− 1

2 , 1
2

4

+
√

2 C(2C + 1)
√

C√
ν

‖u0‖
3
2

B
− 1

2 , 1
2

4

.

Thus, if 2C(1 + 2C)2‖u0‖
B

− 1
2 , 1

2
4

< ν, then we get, for any n and any T < Tn,

‖wn‖
B0, 1

2 (T )
< 2C‖u0‖

B
− 1

2 , 1
2

4

.

Thus, Tn = +∞ for any n. Existence then follows from classical compactness
methods, the details of which are omitted. Theorem 6.16 is then proved, pro-
vided, of course, that we have proven the three propositions 6.25–6.27. ��

Proof of Propositions 6.25–6.27. We shall proceed differently for terms in-
volving a horizontal derivative and terms involving a vertical derivative. For
the former, the following two lemmas will be crucial.

Lemma 6.28. Let a be in B − 1
2 , 1

2
4 (T ) and b be in B0, 1

2 (T ). We have, for h =
1, 2,

‖Δv
j (a∂hb)‖

L
4
3
T (L

4
3
h (L2

v))
≤ C

dj

ν
3
4
2− j

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B0, 1

2 (T )
.

Lemma 6.29. Let a and b be in B − 1
2 , 1

2
4 (T ). We have

‖Δv
j (ab)‖L2

T (L2) ≤ C
dj

ν
1
2
2− j

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B

− 1
2 , 1

2
4 (T )

.

Proof of Lemma 6.28. Using Bony’s decomposition in the vertical variable
gives

Δv
j (a∂hb) =

∑
|j−j′ |≤5

Δv
j (Sv

j′ −1aΔv
j′ ∂hb) +

∑
j′ ≥j−3

Δv
j (Sv

j′+2(∂hb)Δv
j′ a).

Using Hölder’s inequality and then Lemma 6.21, we have

‖Δv
j (Sv

j′ −1aΔv
j′ ∂hb)‖

L
4
3
T (L

4
3
h (L2

v))
≤ C‖Sv

j′ −1a‖L4
T (L4

h(L∞
v ))‖Δv

j′ ∂hb‖L2
T (L2)

≤ C
dj′

ν
3
4
2− j′

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B0, 1

2 (T )
.

Similarly, we have

‖Δv
j (Sv

j′+2(∂hb)Δv
j′ a)‖

L
4
3
T (L

4
3
h (L2

v))
≤ C‖Sv

j′+2∂hb‖L2
T (L2

h(L∞
v ))‖Δv

j′ a‖L4
T (L4

h(L2
v))

≤ C
dj′

ν
3
4
2− j′

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B0, 1

2 (T )
.
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It then turns out that

2
j
2 ‖Δv

j (a∂hb)‖
L

4
3
T (L

4
3
h (L2

v))
≤ C

ν
3
4

‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B0, 1

2 (T )

∑
j′ ≥j−5

2− j′ −j
2 dj′ ,

which implies the lemma. ��

Proof of Lemma 6.29. We write

Δv
j (ab) =

∑
|j′ −j|≤5

Δv
j (Sv

j′ −1aΔv
j′ b) +

∑
j′ ≥j−3

Δv
j (Sv

j′+2bΔ
v
j′ a).

Again using Hölder’s inequality and Lemma 6.21, we get

‖Δv
j (Sv

j′ −1aΔv
j′ b)‖L2

T (L2
h(L2

v)) ≤ C‖Sv
j′ −1a‖L4

T (L4
h(L∞

v ))‖Δv
j′ b‖L4

T (L4
h(L2

v))

≤ C
dj′

ν
1
2
2− j′

2 ‖a‖
B

− 1
2 , 1

2
4 (T )

‖b‖
B

− 1
2 , 1

2
4 (T )

.

We can now conclude as in the previous lemma. ��

Proof of Proposition 6.25. Note that, thanks to the fact that uF is divergence-
free, we have

Ij(T ) =
∫ T

0

(
Δv

j (uF · ∇uF )|Δv
j a

)
dt = Ih

j (T ) + Iv
j (T ) with

Ih
j (T ) def=

∫ T

0

(
Δv

j (uh
F ⊗ uF )|Δv

j ∇ha
)

dt and

Iv
j (T ) def=

∫ T

0

(
∂3Δ

v
j (u3

F uF )|Δv
j a

)
dt.

Using Lemma 6.29 and the definition of B0, 1
2 (T ), we get

∣∣Ih
j (T )

∣∣ ≤ ‖Δv
j (uh

F ⊗ uF )‖L2
T (L2)‖Δv

j (∇ha)‖L2
T (L2)

≤ C
d2

j

ν
2−j ‖u0‖2

B
− 1

2 , 1
2

4

‖a‖
B0, 1

2 (T )
.

For the term with the vertical derivative, we write, using Lemma 6.10,
∣∣Iv

j (T )
∣∣ ≤ C2j ‖Δv

j (u3
F uF )‖L1

T (L2)‖Δv
j b‖L∞

T (L2).

Again using Bony’s decomposition in the vertical variable, we infer that

Δv
j (u3

F uF ) =
∑

|j′ −j|≤5

Δv
j (Sv

j′ −1u
3
F Δv

j′ uF ) +
∑

j′ ≥j−3

Δv
j (Δv

j′ u3
F Sv

j′+2uF ).

Using Bony’s decomposition in the horizontal variables, we get
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Sv
j′ −1uF Δv

j′ uF =
∑

k≥j′ −4

{
Sh

k−1S
v
j′ −1u

3
F Δh

kΔv
j′ uF + Δh

kSv
j′ −1u

3
F Sh

k+2Δ
v
j′ uF

}
.

The two terms in the above sum are estimated along exactly the same lines.
As in the proof of Lemma 6.24, we use the smoothing effect on the highest
possible horizontal frequencies of uF . Using Hölder’s inequality, this gives

‖Sh
k−1S

v
j′ −1u

3
F Δh

kΔv
j′ uF ‖L1

T (L2)

≤ 2− k
2 ‖Sh

k−1S
v
j′ −1uF ‖L∞

T (L4
h(L∞

v ))2
k
2 ‖Δh

kΔv
j′ uF ‖L1

T (L4
h(L2

v)).

Lemma 6.22 guarantees that

2
k
2 ‖Δh

kΔv
j′ uF ‖L1

T (L4
h(L2

v)) ≤ C

ν
dk,j2− j′

2 2−k ‖u0‖
B

− 1
2 , 1

2
4

.

Lemma 6.20 states, in particular, that

2− k
2 ‖Sh

k−1S
v
j′ −1uF ‖L∞

T (L4
h(L∞

v )) ≤ Cck ‖u0‖
B

− 1
2 , 1

2
4

.

Using Lemma 6.19, it then turns out that

‖Sv
j′ −1uF Δv

j′ uF ‖L1
T (L2) ≤ C

ν

( ∑
k≥j′ −2

ckdk,j′ 2−k
)
2− j′

2 ‖u0‖2

B
− 1

2 , 1
2

4

≤ C
dj′

ν
2− 3j′

2 ‖u0‖2

B
− 1

2 , 1
2

4

.

We deduce that

2
3j
2 ‖Δv

j (u3
F uF )‖L1

T (L2) ≤ C

ν
‖u0‖2

B
− 1

2 , 1
2

4

∑
j′ ≥j−5

dj′ 2− 3(j′ −j)
2 .

This completes the proof of Proposition 6.25. ��

Proof of Proposition 6.26. Again, we distinguish the terms with horizontal
derivatives from the terms with vertical ones, writing

Jj(T ) =
∫ T

0

(
Δv

j (a · ∇uF )|Δv
j b

)
dt = Jh

j (T ) + Jv
j (T ) with

Jh
j (T ) def=

∫ T

0

(
Δv

j (ah · ∇huF )|Δv
j b

)
dt and

Jv
j (T ) def=

∫ T

0

(
Δv

j (a3∂3uF )|Δv
j b

)
dt.

Using integration by parts gives
(
Δv

j (ah · ∇huF )|Δv
j b

)
= −

(
Δv

j (uF divh ah)|Δv
j b

)
−

(
Δv

j (ah ⊗ uF )| ∇hΔv
j b

)
.
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From Lemma 6.21 and Lemma 6.28, we have
∫ T

0

∣∣∣
(
Δv

j (uF divh ah)|Δv
j b

)∣∣∣ dt ≤ ‖Δv
j (uF divh ah)‖

L
4
3
T (L

4
3
h (L2

v))
‖Δv

j b‖L4
T (L4

h(L2
v))

≤ C
d2

j

ν
2−j ‖u0‖

B
− 1

2 , 1
2

4

‖ah‖
B0, 1

2 (T )
‖b‖

B0, 1
2 (T )

.

Lemma 6.29 gives
∫ T

0

∣∣∣
(
Δv

j (ah ⊗ uF )| ∇hΔv
j b

)∣∣∣ dt ≤ ‖Δv
j (ah ⊗ uF )‖L2

T (L2)‖Δv
j ∇hb‖L2

T (L2)

≤ C
d2

j

ν
2−j ‖u0‖

B
− 1

2 , 1
2

4

‖ah‖
B0, 1

2 (T )
‖b‖

B0, 1
2 (T )

.

Therefore,

∣∣Jh
j (T )

∣∣ ≤ C
d2

j

ν
2−j ‖u0‖

B
− 1

2 , 1
2

4

‖ah‖
B0, 1

2 (T )
‖b‖

B0, 1
2 (T )

.

On the other hand, using Bony’s decomposition in the vertical variables,
we get

Δv
j (a3∂3uF ) =

∑
|j′ −j|≤5

Δv
j (Sv

j′ −1a
3∂3Δ

v
j′ uF ) (6.28)

+
∑

j′ ≥j−3

Δv
j (Δv

j′ a3Sv
j′+2∂3uF ).

To deal with the first term, we use Hölder’s inequality to get

‖Sv
j′ −1a

3∂3Δ
v
j′ uF ‖L1

T (L2) ≤ C2j′
‖Sv

j′ −1a
3‖L∞

T (L2
h(L∞

v ))‖Δv
j′ uF ‖L1

T (L∞
h (L2

v)).

Corollary 6.14 and Corollary 6.23 applied with p = 1 and q = ∞ together
imply that

‖Sv
j′ −1a

3∂3Δ
v
j′ uF ‖L1

T (L2) ≤ C
dj′

ν
2− j′

2 ‖u0‖
B

− 1
2 , 1

2
4

‖a‖
B0, 1

2 (T )
,

from which we infer that
∑

|j′ −j|≤5

‖Δv
j (Sv

j′ −1a
3∂3Δ

v
j′ uF )‖L1

T (L2) ≤ C
dj

ν
2− j

2 ‖u0‖
B

− 1
2 , 1

2
4

‖a‖
B0, 1

2 (T )
.

We now estimate the second term of (6.28). Hölder’s inequality gives

‖Δv
j′ a3Sv

j′+2∂3uF ‖L1
T (L2) ≤ C2j′

‖Δv
j′ a3‖L2

T (L2)‖Sv
j′+2uF ‖L2

T (L∞).

From Lemma 6.10, we get
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‖Δv
j′ a3‖L2

T (L2(R3)) ≤ C2−j′
‖Δv

j′ ∂3a
3‖L2

T (L2).

Using the fact that div a = 0, we have

‖Δv
j′ a3‖L2

T (L2) ≤ C2−j′
‖Δv

j′ divh ah‖L2
T (L2) ≤ C

dj′√
ν

2− 3j′
2 ‖ah‖

B0, 1
2 (T )

.

Together with Lemma 6.24, this implies that
∑

j′ ≥j−3

‖Δv
j (Δv

j′ a3Sv
j′+2∂3uF )‖L1

T (L2) ≤ C
dj

ν
2− j

2 ‖u0‖
B

− 1
2 , 1

2
4

‖ah‖
B0, 1

2 (T )
.

This completes the proof of Proposition 6.26. ��
Proof of Proposition 6.27. We decompose Fj(T ) into

Fj(T ) =
∫ T

0

(
Δv

j (a · ∇b)|Δv
j b

)
dt = Fh

j (T ) + F v
j (T ) with

Fh
j (T ) def=

∫ T

0

(
Δv

j (ah · ∇hb)|Δv
j b

)
dt and

F v
j (T ) def=

∫ T

0

(
Δv

j (a3∂3b)|Δv
j b

)
dt.

On the one hand, according to Hölder’s inequality, we have
∣∣Fh

j (T )
∣∣ ≤ ‖Δv

j (ah · ∇hb)‖
L

4
3
T (L

4
3
h (L2

v))
‖Δv

j b‖L4
T (L4

h(L2
v)),

so combining Lemma 6.28 with Corollary 6.14 and Lemma 6.21 yields

∣∣F h
j (T )

∣∣ ≤ C
d2

j

ν
2−j ‖a‖

B
− 1

2 , 1
2

4 (T )
‖b‖2

B0, 1
2 (T )

.

On the other hand, the norms B0, 1
2 (T ) or B − 1

2 , 1
2

4 (T ) do not have any gain
of vertical derivative. This difficulty may be bypassed by taking advantage
of the fact that div a = 0. More precisely, the vertical Bony decomposition,
combined with a straightforward commutator process, enables us to write

Δv
j (a3∂3b) = Sv

j−1a
3∂3Δ

v
j b +

∑
|j−�|≤5

[Δv
j , Sv

�−1a
3]∂3Δ

v
� b

+
∑

|j−�|≤1

(Sv
�−1a

3 − Sv
j−1a

3)∂3Δ
v
j Δv

� b +
∑

�≥j−3

Δv
j (Δv

� a3∂3S
v
�+2b).

From this we may decompose F v
j (T ) into

F v
j (T ) def= F 1,v

j +F 2,v
j +F 3,v

j +F 4,v
j with F 1,v

j
def=

∫ T

0

(
Sv

j−1a
3∂3Δ

v
j b|Δv

j b
)
dt,

and obvious definitions for F 2,v
j , F 3,v

j , and F 4,v
j .
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In order to bound F 1,v
j we use the fact that

∂3a
3 = − divh ah. (6.29)

Integrating twice by parts we thus get

F 1,v
j =

1
2

∫ T

0

∫
R3

Sv
j−1divhah|Δv

j b|2 dx dt

= −
∫ T

0

∫
R3

Sv
j−1a

h · ∇hΔv
j b Δv

j b dx dt.

Applying Lemma 6.21, together with Corollary 6.14, yields

|F 1,v
j | ≤ ‖Sv

j−1a
h‖L4

T (L4
h(L∞

v ))‖ ∇hΔv
j b‖L2

T (L2)‖Δv
j b‖L4

T (L4
h(L2

v))

≤ C
d2

j

ν
2−j ‖ah‖

B
− 1

2 , 1
2

4 (T )
‖b‖2

B0, 1
2 (T )

.

To deal with the commutator in F 2,v
j , we first use Taylor’s formula. Writing

h̄(x3) = x3h(x3) and integrating by parts, we find that

F 2,v
j = −

∑
|j−�|≤5

∫ T

0

(∫
R

h̄(2j(x3 − y3))

×
(∫ 1

0

Sv
�−1∂3a

3(xh, τy3 + (1 − τ)x3) dτ

)
Δv

� b(xh, y3) dy3

∣∣∣Δv
j b

)
dt.

Next, using (6.29) and integration by parts, we rewrite F 2,v
j as

F 2,v
j =

∑
|j−�|≤5

∫ T

0

(∫
R

h̄(2j(x3 − y3))

×
∫ 1

0

Sv
�−1a

h(xh, τy3 + (1 − τ)x3) dτ · ∇hΔv
� b(xh, y3) dy3|Δv

j b

)
dt

+
∑

|j−�|≤5

∫ T

0

(∫
R

h̄(2j(x3 − y3))

×
(∫ 1

0

Sv
�−1a

h(xh, τy3 + (1 − τ)x3) dτ

)
Δv

� b(xh, y3) dy3| ∇hΔv
j b

)
dt.

Young’s inequality, together with Corollary 6.14 and Lemma 6.21, then yields

|F 2,v
j | ≤ C

∑
|j−�|≤5

‖Sv
�−1a

h‖L4
T (L4

h(L∞
v ))

(
‖ ∇hΔv

� b‖L2
T (L2)‖Δv

j b‖L4
T (L4

h(L2
v))

+ ‖Δv
� b‖L4

T (L4
h(L2

v))‖∇hΔv
j b‖L2

T (L2)

)

≤ C
d2

j

ν
2−j ‖ah‖

B
− 1

2 , 1
2

4 (T )
‖b‖2

B0, 1
2 (T )

.
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Note that

|F 3,v
j | ≤

∑
|j−�′ |≤1

|j−�|≤1

∫ T

0

∣∣(Δv
�′ a3∂3Δ

v
j Δv

� b|Δv
j b

)∣∣ dt.

To estimate F 3,v
j , we then need to gain two derivatives from Δv

�′ a3. In order
to do this, we need to use (6.12) with N = 1, which implies that

Δv
�′ a3(x) =

∫
R

gv(2�′
(x3 − y3))∂3Δ

v
�′ a3(xh, y3) dy3, (6.30)

where gv ∈ S(R) is defined via F (gv)(ξ3) =
ϕ̃(|ξ3|)

iξ3
·

Plugging (6.30) into F 3,v
j , using (6.29), and then integrating by parts in the

horizontal variables, we find that, up to an irrelevant multiplicative constant,
the quantity F 3,v

j is less than

∑
|j−�′ |≤1

|j−�|≤1

∫ T

0

∣∣∣∣
((∫

R

gv(2�′
(x3 − y3))Δv

�′ ah(xh, y3) dy3

)
· ∇h∂3Δ

v
j Δv

� b
∣∣∣Δv

j b

)∣∣∣∣ dt

+
∑

|j−�′ |≤1
|j−�|≤1

∫ T

0

∣∣∣∣
((∫

R

gv(2�′
(x3 − y3))Δv

�′ ah(xh, y3) dy3

)
∂3Δ

v
j Δv

� b
∣∣∣∇hΔv

j b

)∣∣∣∣ dt.

Together with Young’s inequality, Corollary 6.14, and Lemma 6.21, this im-
plies that

|F 3,v
j | ≤ C

∑
|j−�′ |≤1

|j−�|≤1

2�−�′
‖Δv

�′ ah‖L4
T (L4

h(L∞
v ))‖ ∇hΔv

j b‖L2
T (L2)‖Δv

j b‖L4
T (L4

h(L2
v))

≤ C
d2

j

ν
2−j ‖ah‖

B
− 1

2 , 1
2

4 (T )
‖b‖2

B0, 1
2 (T )

.

Finally, using (6.30) once again, we can write that F 4,v
j is equal to

∑
�≥j−3

(∫ T

0

(
Δv

j

(∫
R

gv(2�(x3 − y3))Δv
� ah(xh, y3) dy3 · ∇h∂3S

v
�+2b

)∣∣∣Δv
j b

)
dt

+
∫ T

0

(
Δv

j

(∫
R

gv(2�(x3 − y3))Δv
� ah(xh, y3) dy3∂3S

v
�+2b

)∣∣∣∇hΔv
j b

)
dt

)
.

From Young’s inequality, we deduce that

|F 4,v
j | ≤ C

∑
�≥j−3

‖Δv
�ah‖L4

T (L4
h(L2

v))

(
‖ ∇hSv

�+2b‖L2
T (L2

h(L∞
v ))‖Δv

j b‖L4
T (L4

h(L2
v))

+‖Sv
�+2b‖L4

T (L4
h(L∞

v ))‖∇hΔv
j b‖L2

T (L2)

)
,
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which, together with Corollary 6.14 and Lemma 6.21, implies that

|F 4,v
j | ≤ C

d2
j

ν
2−j ‖ah‖

B
− 1

2 , 1
2

4 (T )
‖b‖2

B0, 1
2 (T )

.

This completes the proof of Proposition 6.27. ��

6.4 The Proof of Uniqueness

In the previous section we showed that any small divergence-free data in B − 1
2 , 1

2
4

generates a global solution u in B − 1
2 , 1

2
4 (∞) such that, in addition, (u − uF ) ∈

B0, 1
2 (∞). In this section we want to prove uniqueness in the space B − 1

2 , 1
2

4 (∞).
As a first step we prove the following regularity theorem.

Theorem 6.30. Let u ∈ B − 1
2 , 1

2
4 (T ) be a solution of (ANSν) with initial

data u0 in B − 1
2 , 1

2
4 . We then have

w
def
= u − uF ∈ B0, 1

2 (T ).

Proof. We have already observed (at the beginning of Section 6.3) that the
vector field w is the solution of the linear system

(ÃNSν)

⎧⎨
⎩

∂tw − νΔhw = −u · ∇u − ∇P
div w = 0

w|t=0 = u�h,

where u�h is defined as in (6.14). As stated in Lemma 6.22, uF belongs to the

space B − 1
2 , 1

2
4 (T ) and thus so does w. Hence, it is only a matter of proving that

‖(Id −Sh
j−1)Δ

v
j w‖L∞

T (L2) + ν
1
2 ‖(Id −Sh

j−1)Δ
v
j ∇hw‖L2

T (L2) ≤ Cdj2− j
2 .

In order to do so, we apply the operator (Id −Sh
j−1)Δ

v
j to the system (ÃNSν)

and define
wj

def= (Id −Sh
j−1)Δ

v
j w.

This gives, by virtue of the L2 energy estimate,

‖wj(t)‖2
L2 + 2ν

∫ t

0

‖ ∇hwj(t′)‖2
L2 dt′ ≤ ‖Δv

j u�h‖2
L2

+2
∫ t

0

∣∣〈(Id −Sh
j−1)Δ

v
j (u(t′) · ∇u(t′)), wj(t′)

〉∣∣ dt′.

From the Fourier–Plancherel theorem, we then infer that
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‖wj(t)‖2
L2 + ν

∫ t

0

‖ ∇hwj(t′)‖2
L2 dt′ + cν22j

∫ t

0

‖wj(t′)‖2
L2 dt′

≤ ‖Δv
j u�h‖2

L2 + 2
∫ t

0

∣∣〈(Id −Sh
j−1)Δ

v
j (u(t′) · ∇u(t′)), wj(t′)

〉∣∣ dt′.

Observe that, thanks to the divergence-free condition, we have

u · ∇um = divh(umuh) + ∂3(umu3).

Integrating by parts, we get∣∣〈(Id −Sh
j−1)Δ

v
j divh(umuh), wj

〉∣∣ ≤
∣∣((Id −Sh

j−1)Δ
v
j (umuh), ∇hwj

)∣∣
≤ ‖Δv

j (umuh)‖L2 ‖∇hwj ‖L2

≤ ν

2
‖ ∇hwj ‖2

L2 +
C

ν
‖Δv

j (umuh)‖2
L2 ,

while, by using Lemma 6.10, we have∣∣〈(Id −Sh
j−1)Δ

v
j ∂3(umu3), wj

〉∣∣ ≤ 2j ‖Δv
j (umu3)‖L2 ‖wj ‖L2

≤ cν

2
22j ‖wj ‖2

L2 +
C

ν
‖Δv

j (umu3)‖2
L2 .

Using the inequality (6.15) and Lemma 6.29, we deduce that

‖wj ‖L∞
T (L2) +

√
ν‖ ∇hwj ‖L2

T (L2) ≤ Cdj2− j
2

(
‖u0‖

B
− 1

2 , 1
2

4

+ ν−1‖u‖2

B
− 1

2 , 1
2

4 (T )

)
.

This completes the proof of Theorem 6.30. ��
The above theorem implies that if u1 and u2 are two solutions of (ANSν) in the

space B − 1
2 , 1

2
4 (T ) associated with the same initial data, then the difference δ

def=
u2 − u1 belongs to B0, 1

2 (T ). Moreover, it satisfies the system

(ANS′
ν)

⎧⎨
⎩

∂tδ − νΔhδ = Lδ − ∇P
div δ = 0
δ|t=0 = 0,

where L is the linear operator defined as follows:

Lδ
def= −δ · ∇u1 − u2 · ∇δ.

In order to prove uniqueness, it suffices to establish that δ ≡ 0. Because ex-
istence in Theorem 6.16 is not proved by using Picard’s fixed point method,
this is not obvious. The main reason why is that the system (ANSν) is hy-
perbolic in the vertical direction. Roughly speaking, we thus expect that the
contraction argument may be realized with one less vertical derivative than
for the existence space.

Before proceeding to the heart of the proof of uniqueness, we have to

introduce more notation: Let Δvi
j

def= Δv
j , Svi

j = Sv
j if j ≥ 0, Δvi

−1
def= Svi

0 = Sv
0 ,

and Δvi
j = Svi

j+1 = 0 if j ≤ −2.
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Definition 6.31. We denote by H the space of tempered distribution such
that

‖a‖2
H

def
=

∑
j∈Z

2−j ‖Δvi
j a‖2

L2 < ∞.

The corresponding inner product is denoted by (· | ·)H.

Because the space H is nonhomogeneous, it is not true (owing to the low verti-
cal frequencies) that B0, 1

2 (T ) is embedded in L∞
T (H). Since δ satisfies (ANS′

ν),
however, we have the following result.

Lemma 6.32. The difference δ is in L∞
T (H) and satisfies ∇hδ ∈ L2

T (H).

Proof. Let Sv
0 δ be a solution (with initial value 0) of

∂tS
v
0 δ − νΔhSv

0 δ = g1 + g2 + g3 with

g1
def=

∑
λ∈Λ

Sv
0∂3(aλbλ),

g2
def=

∑
λ∈Λ

Sv
0 divh(cλ(Id −Sv

0 )δ),

g3
def=

∑
λ∈Λ

dλSv
0 divh

(
Sv

0 δ
)
,

where Λ is a finite set of indices and aλ, bλ, cλ, and dλ belong to B − 1
2 , 1

2
4 (T ).

Using Lemmas 6.10 and 6.29, we get that

‖Sv
0∂3(aλbλ)‖L2

T (L2) ≤ C
∑

j≤ −1

2j ‖Δv
j (aλbλ)‖L2

T (L2)

≤ C

ν
1
2

‖aλ‖
B

− 1
2 , 1

2
4 (T )

‖bλ‖
B

− 1
2 , 1

2
4 (T )

.

Defining C12(T ) def= ‖u1‖
B

− 1
2 , 1

2
4 (T )

+ ‖u2‖
B

− 1
2 , 1

2
4 (T )

, we thus have

‖g1‖L2
T (L2) ≤ C

ν
1
2
C2

12(T ). (6.31)

Estimating g2 relies on Lemma 6.21. We get

‖(Id −Sv
0 )δ‖L4

T (L4
h(L2

v)) ≤ Cν− 1
4 ‖δ‖

B
− 1

2 , 1
2

4 (T )
,

‖cλ‖L4
T (L4

h(L∞
v )) ≤ Cν− 1

4 ‖cλ‖
B

− 1
2 , 1

2
4 (T )

,

from which it follows that

‖cλ(Id −Sv
0 )δ‖L2

T (L2) ≤ ‖cλ‖L4
T (L4

h(L∞
v ))‖(Id −Sv

0 )δ‖L4
T (L4

h(L2
v))

≤ Cν− 1
2 ‖cλ‖

B
− 1

2 , 1
2

4 (T )
‖δ‖

B
− 1

2 , 1
2

4 (T )
.
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This gives that

g2 = divh g̃2 with ‖g̃2‖L2
T (L2) ≤ Cν− 1

2 C2
12(T ). (6.32)

The term g3 must be treated with a commutator argument based on the
following lemma.

Lemma 6.33. Let χ be a function of S(R). A constant C exists such that,
for any function a in L2

h(L∞
v ), we have

‖[χ(εx3), Sv
0 ]a‖L2 ≤ Cε

1
2 ‖a‖L2

h(L∞
v ).

Proof. The first order Taylor formula gives

Cε(a)(xh, x3)
def= [χ(εx3), Sv

0 ]a(xh, x3)

= ε

∫
R ×[0,1]

h(x3 − y3)χ′ (ε((1 − τ)x3 + τy3)) a(xh, y3) dy3 dτ.

Using the Cauchy–Schwarz inequality for the measure |h(x3 − y3)| dx3 dy3 dτ
on R

2 ×[0, 1], we may write that

‖Cε(a)(xh, ·)‖2
L2

v
≤ ε2‖a(xh, ·)‖2

L∞
v

× sup
‖ϕ‖L2(R)≤1

(∫
R2

|h(x3 − y3)|ϕ2(x3) dx3 dy3

)
(Hε

1 + Hε
2)

≤ Cε2‖a(xh, ·)‖2
L∞

v
(Hε

1 + Hε
2),

where we define Hε
1 and Hε

2 as follows:

Hε
1

def=
∫

R2 ×[0, 1
2 ]

(χ′)2 (ε((1 − τ)x3 + τy3)) |h(x3 − y3)| dx3 dy3 dτ,

Hε
2

def=
∫

R2 ×[ 12 ,1]

(χ′)2 (ε((1 − τ)x3 + τy3)) |h(x3 − y3)| dx3 dy3 dτ.

Changing variables
{

xτ = (1 − τ)x3 + τy3

yτ = y3
in Hε

1 and
{

xτ = x3

yτ = τy3 + (1 − τ)x3
in Hε

2

gives

Hε
1 =

∫
R2 ×[0, 1

2 ]

1
1 − τ

(χ′)2(εxτ )
∣∣∣h

(xτ − yτ

1 − τ

)∣∣∣ dxτ dyτ dτ,

Hε
2 =

∫
R2 ×[ 12 ,1]

1
τ

(χ′)2(εyτ )
∣∣∣h

(xτ − yτ

τ

)∣∣∣ dxτ dyτ dτ.

We immediately infer that ‖Cε(a)(xh, ·)‖L2
v

≤ Cε
1
2 ‖a(xh, ·)‖L∞

v
and the

lemma is thus proved. ��
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Completion of the proof of Lemma 6.32. Choose χ ∈ D(R) with value 1 near 0

and define Sv
0,εa

def= χ(ε·)Sv
0a. We get, via a classical L2 energy estimate and

a convexity inequality, that

‖Sv
0,εδ(t)‖2

L2 + ν

∫ t

0

‖ ∇hSv
0,εδ(t

′)‖2
L2 dt′ ≤ 2

∫ t

0

‖g1(t′)‖L2 ‖Sv
0,εδ(t

′)‖L2 dt′

+
1
ν

∫ t

0

‖g̃2(t′)‖2
L2 dt′ + 2

∫ t

0

〈χ(ε·)g3(t′), Sv
0,εδ(t

′)〉 dt′.

By the definition of g3, the integrand in the last term of the above equality is
a finite sum of terms of the type

Dλ
def= 〈χ(ε·)Sv

0 (dλSv
0 δ), ∂hSv

0,εδ〉

with h ∈ {1, 2} and dλ ∈ B − 1
2 , 1

2
4 (T ). Writing Dλ = D1

λ + D2
λ with

D1
λ

def=
〈
[χ(ε·), Sv

0 ](dλSv
0 δ), ∂hSv

0,εδ
〉

and D2
λ

def=
〈
Sv

0 (dλSv
0,εδ), ∂hSv

0,εδ
〉
,

Lemmas 6.21 and 6.33 imply that
∫ t

0

|D1
λ(t′)| dt′ ≤ Cε

1
2 C2

12(t)‖ ∇hS0,εδ‖L2
t (L2)

≤ ν

4
‖ ∇hSv

0,εδ‖2
L2

t (L2) +
C

ν
εC4

12(t).

Next, we write

|D2
λ(t)| ≤ C‖dλ(t)‖L4

h(L∞
v )‖Sv

0,εδ(t)‖
1
2
L2 ‖∇hSv

0,εδ(t)‖
3
2
L2

≤ ν

4
‖ ∇hSv

0,ε(t)‖2
L2 +

C

ν3
‖dλ(t)‖4

L4
h(L∞

v )‖Sv
0,ε(t)‖2

L2 .

Using (6.31) we get, for ε ∈ ]0, 1[,

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0

‖ ∇hSv
0,εδ(t

′)‖2
L2 dt′ ≤ C(ν−1 + ν−2)C4

12(T )

+ C

∫ t

0

(
1 +

1
ν3

(
‖u1‖4

L4
h(L∞

v ) + ‖u2‖4
L4

h(L∞
v )

))
‖Sv

0,εδ(t
′)‖2

L2 dt′.

The Gronwall lemma, together with (6.31), gives

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0

‖ ∇hSv
0,εδ(t

′)‖2
L2 dt′ ≤ C(ν−1 + ν−2)C4

12(T )

× exp
(

C

∫ t

0

(
1 +

1
ν3

(
‖u1‖4

L4
h(L∞

v ) + ‖u2‖4
L4

h(L∞
v )

))
dt′

)
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and thus, by Lemma 6.21,

‖Sv
0,εδ(t)‖2

L2 +
ν

2

∫ t

0

‖ ∇hSv
0,εδ(t

′)‖2
L2 dt′

≤ C(ν−1 + ν−2)C4
12(T ) exp

(
C

(
1 +

1
ν3

C4
12(T )

))
.

Passing to the limit when ε tends to 0 then allows us to complete the proof
of Lemma 6.32. ��

Proof of Theorem 6.16 (continued). Let us first point out the main diffi-

culty we shall encounter here. Roughly speaking, a function in B − 1
2 , 1

2
4 (T ) must

be B
1
2
2,1 in the vertical direction, while a function in H is H− 1

2 in the vertical

direction. Hence, we have to deal with products of distributions in B
1
2
2,1 ×H− 1

2 ,
which is known to be the “bad” critical case for product laws (see, e.g., The-
orem 2.52 page 88). In order to bypass this ultimate difficulty, we introduce
the seminorms

‖a‖
H0, 1

2

def=
(∑

j∈Z

2js‖Δv
j a‖2

L2

) 1
2

and ‖b‖2
Bu

def=
∑
k∈Z

j∈N

2j−k ‖Δh
kΔv

j a‖2
L4

h(L2
v).

We note that as �1(Z) is included in �2(Z), we have

‖a‖2

L∞
T (H0, 1

2 )
+ ν‖ ∇ha‖2

L2
T (H0, 1

2 )
≤ C‖a‖2

B0, 1
2 (T )

, (6.33)

‖b‖2
L∞

T (Bu) + ν‖ ∇hb‖2
L2

T (Bu) ≤ C‖b‖2

B
− 1

2 , 1
2

4 (T )
. (6.34)

The key to the proof is the following lemma, which we will temporarily assume
to hold.

Lemma 6.34. Let a and b be two divergence-free vector fields such that a
and ∇ha are in H0, 1

2 ∩ H, and b is in Bu ∩ L4
h(L∞

v ) with ∇hb ∈ Bu. We
assume, in addition, that ‖a‖2

H ≤ 2−16. We then have

|(b · ∇a|a)H | + |(a · ∇b|a)H | ≤ ν

10
‖ ∇ha‖2

H + C(a, b)μ(‖a‖2
H)

with μ(r)
def
= r(1 − log2 r) log2(1 − log2 r) and

C(a, b)
def
=

C

ν
‖b‖2

L4
h(L∞

v )

(
1 +

‖b‖2
L4

h(L∞
v )

ν2

)
+

C

ν
(1 + ‖b‖2

Bu
)

×
(
1 +

‖b‖4
Bu

ν2

) (
‖b‖2

Bu
‖ ∇hb‖2

Bu
+ ‖a‖2

H0, 1
2

‖∇ha‖2

H0, 1
2

)
.
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Thus, we have

‖δ(t)‖2
H ≤

∫ t

0

f(t′)μ(‖δ(t′)‖2
H) dt′ with f(t) def= C(u1(t), δ(t)) + C(u2(t), δ(t)).

Lemma 6.21 and assertions (6.33) and (6.34) collectively imply that f ∈
L1([0, T ]). The uniqueness then follows from Lemma 3.4 page 125. ��

Proof of Lemma 6.34. As both terms may be treated similarly, we focus
on (b · ∇a|a)H. Using a nonhomogeneous Bony decomposition in the vertical
variable, we may write

Δvi
j (b · ∇a) = T vi

b ∇a + Rvi(b, ∇a) with

T vi
b ∇a

def=
∑

�

Svi
�−1b · ∇Δvi

� a and Rvi(b, ∇a) def=
∑

�

Δvi
� b · ∇Svi

�+2a.

As usual, we shall treat the terms involving vertical derivatives in a different
way than the terms involving horizontal derivatives. This leads to

Δvi
j (T vi

b ∇a) = T h
j + T v

j with

T h
j

def= Δvi
j

∑
|j−�|≤5

Svi
�−1b

h · ∇hΔvi
� a and T v

j
def= Δvi

j

∑
|j−�|≤5

Svi
�−1b

3∂3Δ
vi
� a.

By the definition of the space H and using the anisotropic Hölder inequality,
we get

‖T h
j ‖

L
4
3
h (L2

v)
≤ C‖b‖L4

h(L∞
v )

∑
|j−�|≤5

‖∇hΔvi
� a‖L2

≤ Ccj2
j
2 ‖b‖L4

h(L∞
v )‖∇ha‖ H.

We immediately infer that

|(T h
j |Δvi

j a)L2 | ≤ Ccj2
j
2 ‖b‖L4

h(L∞
v )‖Δvi

j a‖L4
h(L2

v)‖∇ha‖ H.

As we have

‖Δvi
j a‖2

L4
h(L2

v) ≤ C‖Δvi
j a‖L2 ‖ ∇hΔvi

j a‖L2 , (6.35)

we get
∑

j

2−j |(T h
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L∞

v )‖∇ha‖
3
2

H ‖a‖
1
2

H. (6.36)

Estimating (T v
j |Δvi

j a)L2 is more involved. We write
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T v
j =

3∑
n=1

T v,n
j with

T v,1
j

def= Svi
j−1b

3∂3Δ
vi
j a,

T v,2
j

def=
∑

|j−�|≤5

[Δvi
j , Svi

�−1b
3]∂3Δ

vi
� a, and

T v,3
j

def=
∑

|j−�|≤1

(Svi
�−1b

3 − Svi
j−1b

3)∂3Δ
vi
j Δvi

� a.

In order to estimate T v,1
j , we perform an integration by parts and obtain

(T v,1
j |Δvi

j a)L2 = − 1
2

∫
R3

Svi
j−1∂3b

3
(
Δvi

j a
)2

dx.

Using the fact that ∂3b
3 = − divh bh and integrating by parts in the horizontal

variables, we get

(T v,1
j |Δvi

j a)L2 = −
∫

R3
Svi

j−1b
h · ∇hΔvi

j a Δvi
j a dx.

Now, arguing as we did in proving (6.36), we end up with

∑
j

2−j |(T v,1
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L2

v)‖∇ha‖
3
2

H ‖a‖
1
2

H. (6.37)

In order to estimate the commutator, we use Taylor’s formula. For a function f
on R

3, we define the function f̃ on R
4 by

f̃(x, y3)
def=

∫ 1

0

f(xh, x3 + τ(y3 − x3)) dτ.

Then, defining h(x3)
def= x3h(x3), we have

T v,2
j =

∑
|j−�|≤5

∫
R

h(2j(x3 − y3)) ˜(Svi
�−1∂3b3)(x, y3)∂3Δ

vi
� a(xh, y3) dy3.

Using the fact that b is divergence-free and the fact that ∇hf̃ = ∇̃hf , we infer
that

T v,2
j = −

∑
|j−�|≤5

∫
R

h(2j(x3 − y3)) divh
˜(Svi
�−1b

h)(x, y3)∂3Δ
vi
� a(xh, y3) dy3.

Integrating by parts with respect to the horizontal variable, we then get
that (T v,2

j |Δvi
j a)L2 is equal to the sum over � ∈ {j − 5, . . . , j + 5} of
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∫
R4

h(2j(x3 − y3)) ˜(Svi
�−1b

h)(x, y3)∂3∇hΔvi
� a(xh, y3)Δvi

j a(x) dx dy3

+
∫

R4
h(2j(x3 − y3)) ˜(Svi

�−1b
h)(x, y3)∂3Δ

vi
� a(xh, y3)∇hΔvi

j a(x) dx dy3.

As we have ‖b̃(xh, ·, y3)‖L∞
v

≤ ‖b(xh, ·)‖L∞
v

, we infer that
∣∣∣(T v,2

j |Δvi
j a)L2

∣∣∣ ≤ C2−j ‖b‖L4
h(L∞

v )

∑
|�−j|≤5

(
‖∂3∇hΔvi

� a‖L2 ‖Δvi
j a‖L4

h(L2
v)

+ ‖∂3Δ
vi
� a‖L4

h(L2)‖∇hΔvi
j a‖L2

)

≤ C‖b‖L4
h(L∞

v )

∑
|�−j|≤5

‖ ∇hΔvi
� a‖L2 ‖Δvi

j a‖L4
h(L2

v).

Using (6.35), we get that

∑
j

2−j |(T v,2
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L∞

v )‖∇ha‖
3
2

H ‖a‖
1
2

H. (6.38)

The estimation of T v,3
j is based on the following observation. For any diver-

gence-free vector field u, we have, from (6.30),

Δv
� u3(x) =

∫
R

gv(2�(x3 − y3))Δv
� ∂3u

3(xh, y3) dy3

= − divh

∫
R

gv(2�(x3 − y3))Δv
�uh(xh, y3) dy3

= −2−� divh Δ̃v
� uh (6.39)

with Δ̃v
�

def= ϕ̃(2−�D3) for some suitable smooth function ϕ̃ supported in an
annulus.

Note that if j ≥ 2, then the term Svi
�−1b

3 − Svi
j−1b

3 which appears in T v,3
j

reduces to just Δvi
j b3 or Δvi

j−2b
3. Thus, using (6.39) and integrating by parts

in the horizontal variable, we get

(T v,3
j |Δvi

j a)L2 =
∑

�′ ∈{j−2,j}
|�−j|≤1

2−�′
((

Δv
j

(
Δ̃v

�′ bh∇hΔv
j Δv

�∂3a
) ∣∣∣Δvi

j a
)

+
(
Δv

j

(
Δ̃v

�′ bhΔv
j Δv

�∂3a
) ∣∣∣∇hΔvi

j a
))

.

Now, following the lines of reasoning which led to (6.38), we get

∑
j≥2

2−j |(T v,3
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L∞

v )‖∇ha‖
3
2

H ‖a‖
1
2

H. (6.40)
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If j ≤ 1, we observe that

|(T v,3
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L∞

v )‖∇ha‖ H ‖a‖H.

Combining this with the inequalities (6.36)–(6.38) and (6.40), we end up with

|(T vi
b ∇a|a)H | ≤ C‖b‖L4

h(L∞
v )‖ ∇ha‖

3
2

H ‖a‖
1
2

H + ‖b‖L4
h(L∞

v )‖∇ha‖ H ‖a‖H.

From the convexity inequality

αβ ≤ θα
1
θ + (1 − θ)β

1
1−θ (6.41)

for θ = 1/4 and θ = 1/2, we infer that

|(T vi
b ∇a|a)H | ≤ ν

100
‖ ∇ha‖2

H +
C

ν
‖b‖2

L4
h(L∞

v )

(
1 +

1
ν2

‖b‖2
L4

h(L∞
v )

)
‖a‖2

H.

To bound (Rvi(b, ∇a)|a)H, we have to deal with the fact that the sum of the
indices of the vertical regularity is 0. Again, we separate the terms involving
vertical derivatives from the terms involving horizontal derivatives. This leads
to

Δvi
j Rvi(b, ∇a) = Rh

j + Rv
j + R0

j with

Rh
j

def= Δvi
j

∑
�≥(j−3)+

Δvi
� bh · ∇hSvi

�+2a,

Rv
j

def= Δvi
j

∑
�≥(j−3)+

Δvi
� b3Svi

�+2∂3a,

R0
j

def= Δvi
j (Sv

0 b · ∇Sv
2a).

We first estimate R0
j . It is obvious that if j is large enough, then R0

j ≡ 0. We
thus have

|(R0
j |Δvi

j a)L2 | ≤ C‖b‖L4
h(L∞

v )‖ ∇ha‖ H ‖a‖H

≤ ν

100
‖ ∇ha‖2

H +
C

ν
‖b‖2

L4
h(L∞

v )‖a‖2
H.

Bounding Rh
j relies on the following lemma.

Lemma 6.35. A constant C exists such that for any p ∈ [4, ∞[, we have

‖Δv
j b‖Lp

h(L2
v) ≤ Ccj

√
p 2− j

2 ‖b‖
2
p

Bu
‖ ∇hb‖1− 2

p

Bu
for all j ≥ 0.

Proof. By the definition of ‖ · ‖ Bu and using Lemma 6.10, we have, for any p
in [4, ∞[,
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2
j
2 ‖Δv

j b‖Lp
h(L2

v) ≤ C
∑
k≤N

2k(1− 2
p )2

j−k
2 ‖Δh

kΔv
j b‖L4

h(L2
v)

+ C
∑
k>N

2− 2k
p 2

j−k
2 ‖Δh

kΔv
j ∇hb‖L4

h(L2
v)

≤ C‖b‖Bu

∑
k≤N

2k(1− 2
p )ck,j + C‖∇hb‖ Bu

∑
k>N

2− 2k
p ck,j .

Using the Cauchy–Schwarz inequality, we deduce that

2
j
2 ‖Δv

j b‖Lp
h(L2

v) ≤ C
(∑

k

c2
k,j

) 1
2
(

‖b‖ Bu

(∑
k≤N

22k(1− 2
p )

) 1
2

+ ‖∇hb‖ Bu

(∑
k>N

2− 4k
p

) 1
2
)

≤ C
(∑

k

c2
k,j

) 1
2
(

‖b‖ Bu2N(1− 2
p ) + ‖∇hb‖ Bu

√
p 2− 2N

p

)

≤ Ccj

(
‖b‖ Bu2N(1− 2

p ) + ‖ ∇hb‖ Bu

√
p 2− 2N

p

)
.

Choosing 2N ≈ ‖ ∇hb‖ Bu

‖b‖ Bu

then gives the lemma. ��

We now derive a first estimate for Rh
j which takes care of the high vertical

regularity of a. Using Lemmas 6.10 and 6.35 we get3

‖Rh
j ‖

L
4
3
h (L2

v)
≤ C2

j
2

∑
�≥(j−3)+

‖Δv
� bh · ∇hSv

�+2a‖
L

4
3
h (L1

v)

≤ C2
j
2

∑
�≥(j−3)+

‖Δv
� bh‖L4

h(L2
v)‖∇hSv

�+2a‖L2

≤ C2
j
2

(∑
�

c2
�

)
‖b‖

1
2

Bu
‖ ∇hb‖

1
2

Bu
‖∇ha‖ H.

Using (6.35) we then infer that

|(Rh
j |Δvi

j a)L2 | ≤ C‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖ ∇ha‖ H 2

j
2 ‖Δvi

j a‖L4
h(L2

v)

≤ C‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖ ∇ha‖ H ‖a‖

1
2

H0, 1
2

‖∇ha‖
1
2

H0, 1
2
. (6.42)

We shall now estimate Rh
j using only the fact that a and ∇ha belong to H.

This may be done by taking advantage of Lemmas 6.10 and 6.35. For any p
in [4, ∞[ we get

3 Below, (j − 3)+ means max(0, j − 3).
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‖Rh
j ‖

L
2p

p+2
h (L2

v)
≤ C2

j
2

∑
�≥(j−3)+

‖Δv
� bh · ∇hSv

�+2a‖
L

2p
p+2
h (L1

v)

≤ C2
j
2

∑
�≥(j−3)+

‖Δv
� bh‖Lp

h(L2
v)‖∇hSv

�+2a‖L2

≤ C2
j
2

(∑
�

c2
�

)√
p ‖b‖

2
p

Bu
‖∇hb‖1− 2

p

Bu
‖∇ha‖ H.

By interpolation, a constant C exists (independent of p) such that, for any p
in [4, ∞[, we have

‖Δvi
j a‖

L
2p

p−2
h (L2

v)
≤ C‖Δvi

j a‖1− 2
p

L2 ‖Δvi
j ∇ha‖

2
p

L2 .

Thus, we get

|(Rh
j |Δvi

j a)L2 | ≤ C2
j
2

√
p ‖b‖

2
p

Bu
‖ ∇hb‖1− 2

p

Bu
‖ ∇ha‖ H ‖Δvi

j a‖1− 2
p

L2 ‖Δvi
j ∇ha‖

2
p

L2

≤ Ccj2j √
p ‖b‖

2
p

Bu
‖ ∇hb‖1− 2

p

Bu
‖a‖1− 2

p

H ‖∇ha‖1+ 2
p

H . (6.43)

Using the estimates (6.42) and (6.43), we infer that for any positive integer M
and any p in [4, ∞[,
∑

j

2−j |(Rh
j |Δvi

j a)L2 | =
∑

0≤j≤M

2−j |(Rh
j |Δvi

j a)L2 | +
∑
j>M

2−j |(Rh
j |Δvi

j a)L2 |

≤ C
( ∑

j>M

2−j
)

‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖∇ha‖ H ‖a‖

1
2

H0, 1
2

‖∇ha‖
1
2

H0, 1
2

+
( ∑

0≤j≤M

cj

)√
p ‖b‖

2
p

Bu
‖∇hb‖1− 2

p

Bu
‖a‖1− 2

p

H ‖∇ha‖1+ 2
p

H .

Using the Cauchy–Schwarz inequality, we obtain
∑

j

2−j |(Rh
j |Δvi

j a)L2 | ≤ C2−M ‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖ ∇ha‖ H ‖a‖

1
2

H0, 1
2

‖∇ha‖
1
2

H0, 1
2

+(pM)
1
2 ‖b‖

2
p

Bu
‖∇hb‖1− 2

p

Bu
‖a‖1− 2

p

H ‖∇ha‖1+ 2
p

H .

Using the convexity inequality (6.41) with θ = 1
2 and with θ = p+2

2p , we deduce
that
∑

j

2−j |(Rh
j |Δvi

j a)L2 | ≤ ν

10
‖ ∇ha‖2

H +
C

ν
p+2
p−2

(pM)
p

p−2 ‖b‖
4

p−2
Bu

‖∇hb‖2
Bu

‖a‖2
H

+
C

ν
2−2M ‖b‖ Bu ‖∇hb‖ Bu ‖∇ha‖

H0, 1
2

‖a‖
H0, 1

2
.

Assume that M ≥ 16. As p is in [4, ∞[, we can choose p = log2 M . We infer
that for any M ≥ 16, the sum

∑
j

2−j |(Rh
j |Δvi

j a)L2 | is less than
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ν

10
‖∇ha‖2

H +
C

ν
2−2M ‖b‖ Bu ‖ ∇hb‖ Bu ‖ ∇ha‖

H0, 1
2

‖a‖
H0, 1

2

+
‖b‖4

Bu

ν

(
1 +

‖b‖4
Bu

ν2

)
‖∇hb‖2

Bu
‖a‖2

HM log2 M.

If ‖a‖H ≤ 2−16, then we can choose M such that 2−M ≈ ‖a‖ H. This gives
∑

j

2−j |(Rh
j |Δvi

j a)L2 | ≤ ν

10
‖ ∇ha‖2

H + C1(a, b)μ(‖a‖2
H) (6.44)

with

C1(a, b) def=
C

ν
‖b‖ Bu ‖ ∇hb‖ Bu ‖ ∇ha‖

H0, 1
2

‖a‖
H0, 1

2

+
‖b‖4

Bu

ν

(
1 +

‖b‖4
Bu

ν2

)
‖∇hb‖2

Bu
.

We now estimate (Rv
j |Δvi

j a)L2 . First, we use (6.39). Together with integration
by parts in the horizontal variable, this gives

(Rv
j |Δvi

j a)L2 = Rv,1
j (a) + Rv,2

j (a) with

Rv,1
j (a) def=

∑
�≥(j−3)+

2−�
(
Δvi

j (Δ̃v
� bh · ∇h∂3S

v
�+2a)|Δvi

j a
)

L2
and

Rv,2
j (a) def=

∑
�≥(j−3)+

2−�
(
Δvi

j (Δ̃v
� bh∂3S

v
�+2a)| ∇hΔvi

j a
)

L2
.

Having observed that for any u ∈ H0, 1
2 ∩ H, we have

‖∂3S
v
� u‖L2 ≤ Cc�2

3�
2 ‖u‖ H and ‖∂3S

v
� u‖L2 ≤ Cc�2

�
2 ‖u‖

H0, 1
2
, (6.45)

by following exactly the lines of reasoning which led to (6.44), we find that
∑

j

2−j | Rv,1
j (a)| ≤ ν

10
‖ ∇ha‖2

H + C1(a, b)μ(‖a‖2
H). (6.46)

We now estimate Rv,2
j (a) by using the fact that a and ∇ha are in H0, 1

2 . Using
Lemma 6.10, we get

‖Δvi
j (Δ̃v

� bh∂3S
v
�+2a)‖L2 ≤ C2

j
2 ‖Δ̃v

� bh∂3S
v
�+2a‖L2

h(L1
v)

≤ C2
j
2 ‖Δ̃v

� bh‖L4
h(L2

v)‖∂3S
v
�+2a‖L4

h(L2
v).

From (6.45), we infer that

‖∂3S
v
�+2a‖L4

h(L2
v) ≤ Cc�2

�
2 ‖ ∇ha‖

1
2

H0, 1
2

‖a‖
1
2

H0, 1
2
.

Lemma 6.35 applied with p = 4 then leads to
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| Rv,2
j (a)| ≤ C2j

( ∑
�≥j−3

2−�
)

‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖a‖

1
2

H0, 1
2

‖∇ha‖
1
2

H0, 1
2
2− j

2 ‖Δvi
j ∇ha‖L2

≤ C‖b‖
1
2

Bu
‖ ∇hb‖

1
2

Bu
‖a‖

1
2

H0, 1
2

‖ ∇ha‖
1
2

H0, 1
2

‖∇ha‖ H. (6.47)

Finally, we estimate | Rv,2
j (a)| by using the fact that a and ∇ha belong to H.

Lemma 6.35, applied for any p ∈ [4, ∞[, together with (6.45), gives

‖Δvi
j (Δv

� bh∂3S
v
�+2a)‖L2 ≤ C2

j
2 ‖Δ̃v

� b‖Lp
h(L2

v)‖∂3S
v
�+2a‖

L
2p

p−2
h (L2

v)

≤ C2
j
2 d�

√
p ‖b‖

2
p

Bu
‖∇hb‖1− 2

p

Bu
‖a‖1− 2

p

H ‖∇ha‖
2
p

H.

Thus, we deduce that

| Rv,2
j (a)| ≤ Ccj2j √

p ‖b‖
2
p

Bu
‖ ∇hb‖1− 2

p

Bu
‖a‖1− 2

p

H ‖∇ha‖1+ 2
p

H .

Using (6.47) and following exactly the same lines of reasoning which led
to (6.44), we get that

∑
j

2−j |(Rv
j |Δvi

j a)L2 | ≤ ν

10
‖ ∇ha‖2

H + C1(a, b)μ(‖a‖2
H). (6.48)

This proves Lemma 6.34. ��

6.5 References and Remarks
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7

Euler System for Perfect Incompressible Fluids

This chapter is devoted to the mathematical study of the Euler system for
incompressible inviscid fluids with constant density:

(E)

⎧⎨
⎩

∂tv + v · ∇v = −∇P
div v = 0
v|t=0 = v0.

Here, v = v(t, x) is a time-dependent divergence-free vector field on R
d

(d ≥ 2). The scalar function P = P (t, x) may be interpreted as the La-
grange multiplier associated with the divergence-free constraint. From a phys-
ical viewpoint, v is the speed of a particle of the fluid located at x at time t,
and P is the pressure field.

The choice of R
d instead of the more physical case of a bounded domain

is for the purposes of simplicity (since we shall mainly use tools coming from
Fourier analysis). Of course, the results that we shall present here carry over
to the case of periodic boundary conditions.

The vorticity Ω
def= Dv − ∇v (where Dv stands for the Jacobian matrix of

v, and ∇v stands for its transposed matrix) plays a fundamental role in incom-
pressible fluid mechanics. Indeed, on the one hand, Ω satisfies the following
linear transport-like equation:

∂tΩ + v · ∇Ω + Ω · Dv + ∇v · Ω = 0. (7.1)

On the other hand, owing to the fact that div v = 0 and
∑d

j=1 ∂jΩ
i
j = Δvi,

the vector field v may be computed in terms of Ω by the formula

vi = −
∑

j

∂jEd ∗ Ωi
j ,

where Ed stands for the fundamental solution of −Δ. In other words, we have

vi(x) = cd

∑
j

∫
Rd

xj − yj

|x − y|d Ωi
j(y) dy (7.2)
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with cd
def=

Γ (1 + d/2)
d πd/2

and Γ (s) def=
∫ +∞

0

ts−1e−t dt for s > 0.

The above relation is sometimes called the Biot–Savart law. The coupling
between (7.1) and (7.2) is called the vorticity formulation of the Euler system
and is formally equivalent to (E).

In dimension three, the skew-symmetric matrix Ω may be identified with
the vector field ω = ∇ × v and the vorticity formulation becomes

∂tω + v · ∇ω = ω · ∇v with (7.3)

v(x) =
1
4π

∫
R3

(x − y) × ω(y)
|x − y|3 dy. (7.4)

In dimension two, the vorticity may be identified with the scalar function ω
def=

∂1v
2 − ∂2v

1 so that the vorticity formulation reduces to1

∂tω + v · ∇ω = 0 with v(x) =
1
2π

∫
R2

(x − y)⊥

|x − y|2 ω(y) dy. (7.5)

Due to the fact that div v = 0, this implies that all the Lp norms of the
vorticity are conserved by the flow. As we shall see below, this is the main
ingredient for proving the global existence of the two-dimensional Euler sys-
tem. In dimension d ≥ 3, however, the vorticity equation has an extra term
(the so-called stretching term) so that one cannot expect any global control
for the Lp norms of the vorticity. This is one of the reasons why, until now,
no global results have been known for general data in dimension d ≥ 3.

This chapter unfolds as follows. In the first section we prove local existence
and uniqueness for the Euler system in general nonhomogeneous Besov spaces.
Global existence in dimension two is addressed in Section 7.2. Section 7.3 is
devoted to the study of the inviscid limit for incompressible fluids. The more
specific case of vortex-patch-like structures in dimension two is postponed to
Section 7.4.

7.1 Local Well-posedness Results for Inviscid Fluids

In this section we are concerned with the initial value problem for the Euler
system in dimension d ≥ 2. Before stating our main result, we introduce the
set L∞

L of measurable functions u over R
d such that

‖u‖L∞
L

def= sup
x∈Rd

|u(x)|
1 + log〈x〉 < ∞ with 〈x〉 def=

√
1 + |x|2.

The set L∞
L endowed with the norm ‖ · ‖L∞

L
is obviously a Banach space.

1 In what follows, it is understood that z⊥ = (−z2, z1) if z = (z1, z2).
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We can now state the main result of this section.

Theorem 7.1. Let 1 ≤ p, r ≤ ∞ and s ∈ R be such that2 Bs
p,r ↪→ C0,1.

There exists a constant c, depending only on s, p, r, and d, such that for all
divergence-free data v0 ∈ Bs

p,r(R
d), there exists a time T ≥ c/‖v0‖Bs

p,r
such

that (E) has a solution (v, P ) on [−T, T ] × R
d satisfying

v, ∇P ∈ L∞([−T, T ]; Bs
p,r) and P ∈ L∞([−T, T ]; L1 + L∞

L ).

Moreover, if (ṽ, P̃ ) also satisfies (E) with the same data and belongs to the
above class, then ṽ ≡ v and ∇P̃ = ∇P.

Finally, if r < ∞ (resp., r = ∞), then v and ∇P are continuous (resp.,
weakly continuous) in time with values in Bs

p,r.

Remark 7.2. In Sections 7.1.5 and 7.1.6 we shall state a more accurate unique-
ness result and a blow-up criterion. Global results in the two-dimensional case
will be proven in the next section.

Remark 7.3. We should also point out that in the case 1 < p < ∞, we can
define the pressure P such that P ∈ L∞([−T, T ]; Bs+1

p,r ).

We shall first provide some guidance concerning the reading of this section.
As explained in the introduction, the vorticity and the way the velocity can
be computed from the vorticity (the Biot–Savart law) play a fundamental
role in the study of the Euler system. For that reason, the first part of this
section will be devoted to the Biot–Savart law. It is well known that dealing
with the pressure term is one of the main difficulties involved in solving the
Euler system. However, it turns out that for sufficiently smooth solutions with
reasonable growth at infinity, the pressure may be computed in terms of the
velocity field, leading to the study of a modified Euler system. Estimates for
the pressure will be given in the second part of this section, whereas the
modified Euler system will be solved in the fourth part. In the third part,
we give conditions under which the standard Euler system and the modified
Euler system are equivalent. The study of uniqueness is postponed to the fifth
part. In the final part, we give continuation criteria for the standard Euler
system.

7.1.1 The Biot–Savart Law

In dimension two, the vorticity is preserved along the trajectories so that the
way we can deduce information about the vector field from information about
the vorticity is obviously fundamental. In fact, even in dimension d ≥ 3 the
question of global existence of the Euler system is intimately entangled with
the control of the vorticity.
2 That is, s > 1 + d/p, or s = 1 + d/p and r = 1.
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Throughout this section, it is assumed that the divergence-free vector
field v over R

d is computed from the vorticity Ω according to the formula (7.2).
We aim to prove various estimates for the velocity in terms of the vorticity.

We begin with a straightforward estimate.

Proposition 7.4. If 1 < a < d < b < ∞, then

‖v‖L∞ ≤ C‖Ω‖La ∩Lb .

Proof. We can split R
d as {y ∈ R

d / |x − y| ≤ 1} ∪ {y ∈ R
d / |x − y| > 1} and

use convolution inequalities to bound the integral in (7.2). ��

The next estimate that we shall give is much harder to prove. It relies on
the fact that the map Ω �→ ∇v is a Calderon–Zygmund operator . As a con-
sequence, we get the following fundamental estimate that we shall assume
throughout this book.

Proposition 7.5. There exists a constant C, depending only on the dimen-
sion d, such that for any 1 < p < ∞ and any divergence-free vector field v
with gradient in Lp, we have

‖ ∇v‖Lp ≤ C
p2

p − 1
‖Ω‖Lp .

The above inequality turns out to be false in the limit cases p = 1 and p = ∞.
In particular, even in dimension two, we cannot find a constant C such that
the inequality

‖ ∇v‖L∞ ≤ C‖ω‖L1∩L∞

is true for all divergence-free vector fields v satisfying (7.2).3 However, v is
quasi-Lipschitz in the sense of Definition 2.106 page 116: For any finite a,
there exists a constant C such that

‖v‖LL ≤ C‖Ω‖La ∩L∞ . (7.6)

This is a consequence of Proposition 2.107 combined with the decomposition

∇v = Δ−1∇v +
(
Id −Δ−1

)
∇v

and the following lemma.

Lemma 7.6. For any a ∈ [1, ∞[ and b ∈ [1, ∞], we have

‖Δ−1∇v‖L∞ ≤ C1‖Ω‖La and ‖Δ−1∇v‖L∞ ≤ C2‖v‖Lb

with C1 depending only on a and d, and C2 depending only on d.

3 For example, if we take for ω the characteristic function of the square [0, 1]2, then v
is not Lipschitz. In fact, ∇v blows up as the logarithm of the distance to the corners
of the square. See [69] for more details.
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For all s ∈ R and 1 ≤ p, r ≤ ∞, there exists a constant C ′ such that

‖(Id −Δ−1)∇v‖Bs
p,r

≤ C ′ ‖Ω‖Ḃs
p,r

.

Proof. That ‖Δ−1∇v‖L∞ ≤ C‖v‖Lb follows from Bernstein’s lemma. Further,
in the case 1 < a < ∞, Proposition 7.5 yields ‖Δ−1∇v‖La ≤ C‖Δ−1Ω‖La ,
from which follows the desired bound for ‖Δ−1∇v‖L∞ , according to Bern-
stein’s lemma. In the case a = 1, we can still write

‖Δ−1∇v‖L∞ ≤ C ‖Δ−1∇v‖L2 ≤ C ‖Δ−1Ω‖L2 ≤ C ‖Ω‖L1 .

To prove the last inequality, we may write4

(Id −Δ−1)∇vi =
∑

j

Bj(D)Ωi
j with Bj(D) def= −(Id −Δ−1)|D| −2∇∂j .

Because the operator Bj(D) is an S0-multiplier, the desired inequality is a
consequence of Proposition 2.78 page 101. ��

Finally, if the vorticity has enough regularity, then v has to be Lipschitz. More
precisely, we have the following result.

Proposition 7.7. Let s ∈ R and 1 ≤ p, r ≤ ∞ satisfy s > 1 + d/p. If, in
addition, v ∈ Lb for some b ∈ [1, ∞] or Ω ∈ La for some a ∈ [1, ∞[, then
there exists a constant C such that

‖∇v‖L∞ ≤ C

(
min

(
‖v‖Lb , ‖Ω‖La

)
+ ‖Ω‖L∞ log

(
e +

‖Ω‖Bs−1
p,r

‖Ω‖L∞

))
·

Proof. We decompose ∇v into low and high frequencies:

∇v = ∇Δ−1v +
(
Id − Δ−1

)
∇v.

The first term may be bounded according to Lemma 7.6. For the second term,

we use Proposition 2.104 page 116. As ε
def= s − d/p − 1 > 0, we can write

∥∥(Id−Δ−1

)
∇v

∥∥
L∞ ≤ C‖

(
Id−Δ−1

)
∇v‖B0

∞,∞
log

(
e+

‖
(
Id − Δ−1

)
∇v‖Bε

∞,∞

‖
(
Id − Δ−1

)
∇v‖B0

∞,∞

)
·

Next, by virtue of Lemma 7.6 and the embedding L∞ ↪→ Ḃ0
∞,∞, we may write

‖
(
Id−Δ−1

)
∇v‖B0

∞,∞
≤ C ‖Ω‖L∞ and ‖

(
Id−Δ−1

)
∇v‖Bε

∞,∞ ≤ C‖Ω‖Bε
∞,∞.

Since, in addition, Bs−1
p,r ↪→ Bε

∞,∞, we get the desired estimate. ��
4 Here, |D| −2 stands for the Fourier multiplier with symbol |ξ|−2.
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7.1.2 Estimates for the Pressure

We first explain formally how the pressure may be computed from the velocity
field. First, we apply div to (E) and get, as the vector field v is divergence-free,

−ΔP = div(v · ∇v) = tr (Dv)2.

Therefore, we must have

∇P = ∇ div Ed ∗ (v · ∇v) = ∇Ed ∗
(
tr (Dv)2

)
.

This induces us to set ∇P = Π(v, v) with

Π(v, w) = Π1(v, w) + Π2(v, w) + Π3(v, w) + Π4(v, w) + Π5(v, w) (7.7)

and, denoting by θ some function of D(B(0, 2)) with value 1 on B(0, 1), we
have

Π1(v, w) = ∇|D| −2T∂ivj ∂jw
i,

Π2(v, w) = ∇|D| −2T∂jwi∂iv
j ,

Π3(v, w) = ∇|D| −2∂i∂j(Id − Δ−1)R(vi, wj),

Π4(v, w) = θEd ∗ ∇∂i∂jΔ−1R(vi, wj),

Π5(v, w) = ∇∂i∂jẼd ∗ Δ−1R(vi, wj) with Ẽd
def= (1 − θ)Ed.

In the above formulas, as in the rest of this chapter, the summation convention
over repeated indices is used.

This subsection is devoted to estimating the bilinear operator Π in various
function spaces. We first state Lp bounds.

Lemma 7.8. Let 1 < p < ∞. Assume that v is divergence-free. There exists
a constant C, depending only on d and p, such that

‖Π(v, v)‖Lp ≤ C min
(

‖v‖L∞ ‖Ω‖Lp , ‖v‖Lp ‖∇v‖L∞

)
.

Proof. It suffices to note that if div v = 0, then

Π(v, v) = ∇ div |D|−2(v · ∇v)

so that, according to the Marcinkiewicz theorem,

‖Π(v, v)‖Lp ≤ C‖v · ∇v‖Lp .

Applying Hölder’s inequality and Proposition 7.5 then completes the proof.
��

Lemma 7.9. For all s > −1 and 1 ≤ p, r ≤ ∞, there exists a constant C
such that

‖Π(v, w)‖Bs
p,r

≤ C
(

‖v‖C0,1 ‖w‖Bs
p,r

+ ‖w‖C0,1 ‖v‖Bs
p,r

)
.
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Proof. We first note that the first three terms of Π(v, w) are spectrally sup-
ported away from the origin. Hence, in the definitions of Π1, Π2, and Π3,
the operator ∇|D| −2 may be replaced by an S−1-multiplier, in the sense of
Proposition 2.78. Further, by virtue of Theorems 2.82 and 2.85, if s > −1,
then we have

‖T∂ivj ∂jw
i‖Bs−1

p,r
≤ C ‖ ∇v‖L∞ ‖∇w‖Bs−1

p,r
,

‖T∂jwi∂iv
j ‖Bs−1

p,r
≤ C ‖ ∇w‖L∞ ‖∇v‖Bs−1

p,r
,

‖R(v, w)‖Bs+1
p,r

≤ C‖v‖B1
∞,∞

‖w‖Bs
p,r

.

Hence, Π1, Π2, and Π3 satisfy the desired inequality.
Next, since Π4(v, w) and Π5(v, w) are spectrally supported in a ball, it

suffices to bound their Lp norm. Because θEd ∈ L1, we have, by virtue of
Young’s inequalities and Bernstein’s lemma page 52,

‖Π4(v, w)‖Lp ≤ ‖θEd‖L1 ‖ ∇∂i∂jΔ−1R(vi, wj)‖Lp

≤ C‖θEd‖L1 ‖Δ−1R(v, w)‖Lp

≤ C‖θEd‖L1 ‖R(v, w)‖Bs+1
p,r

≤ C‖θEd‖L1 ‖v‖B1
∞,∞

‖w‖Bs
p,r

.

As ∇∂i∂jẼd is in L1, similar computations yield the desired inequality
for Π5(v, w). ��

Lemma 7.10. Let 1 ≤ p, r ≤ ∞ and 0 < ε < 2 + d/p. We have

‖Π(v, w)‖
B

d
p

+1−ε

p,r

≤ C
(

‖v‖C0,1 ‖w‖
B

d
p

+1−ε

p,r

+ ‖w‖B1−ε
∞,∞

‖∇v‖
B

d
p
p,r

)
.

Proof. The proof is very similar to that of the previous lemma. First, owing
to the spectral properties of Πi(v, w) (i = 1, 2, 3) and the continuity results
for the paraproduct and remainder, we have, if 0 < ε < 2 + d/p,

‖Π1(v, w)‖
B

1−ε+ d
p

p,r

≤ C ‖ ∇v‖L∞ ‖∇w‖
B

d
p

−ε

p,r

,

‖Π2(v, w)‖
B

1−ε+ d
p

p,r

≤ C‖ ∇w‖B−ε
∞,∞

‖∇v‖
B

d
p
p,r

,

‖Π3(v, w)‖
B

1−ε+ d
p

p,r

≤ C‖v‖B1
∞,∞

‖w‖
B

1−ε+ d
p

p,r

.

The last terms, Π4(v, w) and Π5(v, w), may be treated by arguing as in
Lemma 7.9. ��

Lemma 7.11. Let 1 < p < ∞. There exists a constant C, depending only on
d and p, such that if div v = 0, then

‖Π(v, v)‖
B

1− d
p

∞,∞
≤ C

(
‖Ω‖L∞ + ‖v‖L∞

)
‖Ω‖Lp .
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Proof. Owing to the fact that the low frequencies of b are not involved in
the definition of the paraproduct Tab (see Remark 2.83 page 103) and that,
according to Lemma 7.6,

‖(Id−Δ−1)∇v‖B0
∞,∞

≤ C ‖Ω‖L∞ ,

applying Proposition 2.82 yields

‖Π1(v, v)‖
B

1− d
p

∞,∞
+ ‖Π2(v, v)‖

B
1− d

p
∞,∞

≤ ‖∇v‖
B

− d
p

∞,∞
‖Ω‖L∞ . (7.8)

Because
Π3(v, v) = −∇|D|−2∂i(Id − Δ−1)R(∂jv

i, vj)

and B1
p,∞ ↪→ B

1− d
p

∞,∞, we have

‖Π3(v, v)‖
B

1− d
p

∞,∞
≤ C‖Π3(v, v)‖B1

p,∞
≤ C‖v‖B1

∞,∞
‖∇v‖Lp .

Note that it is enough to bound the L∞ norm of Π4(v, v) and of Π5(v, v).
Hence, those two terms satisfy the same inequality as Π3(v, v).

Finally, Proposition 7.5 and Lemma 7.6 ensure that

‖∇v‖Lp ≤ C‖Ω‖Lp and ‖v‖B1
∞,∞

≤ C
(

‖v‖L∞ + ‖Ω‖L∞

)
. (7.9)

This completes the proof of the lemma. ��

In the case where v is divergence-free, we expect that div Π(v, v) = −tr (Dv)2.
This is a consequence of the following lemma.

Lemma 7.12. Let 1 ≤ p, r ≤ ∞ and s > 1. There exists a constant C such
that

‖ div Π(v, w) + tr(Dv Dw)‖Bs−1
p,r

≤ C
(

‖ div v‖B0
∞,∞

‖w‖Bs
p,r

+ ‖ div w‖B0
∞,∞

‖v‖Bs
p,r

)
.

In the limit case s = 1 we have

‖ div Π(v, w) + tr(Dv Dw)‖B0
p,∞

≤ C
(

‖ div v‖B0
∞,∞

‖w‖B1
p,1

+ ‖ div w‖B0
∞,∞

‖v‖B1
p,1

)
.

Proof. From the definition of Π we get

− div Π(v, w) = T∂ivj ∂jw
i + T∂jwi∂iv

j + ∂i∂jR(vj , wi).

Hence, after a few calculations we get

− div Π(v, w) = tr
(
Dv Dw) + ∂iR(div v, wi) + R(vi, ∂i div w).

The desired inequalities thus follow from continuity results for the remainder
operator (see Proposition 2.85). ��
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Note that by construction, if v and w are suitably smooth, then Π(v, w) is the
gradient of some tempered distribution. Indeed, for i = 1, 2, 3, 4 it is obvious
that Πi(v, w) = ∇Pi(v, w) with

P1(v, w) = |D| −2T∂ivj ∂jw
i, P3(v, w) = |D| −2∂i∂j(Id − Δ−1)R(vi, wj),

P2(v, w) = |D| −2T∂jwi∂iv
j , P4(v, w) = θEd ∗ ∂i∂jΔ−1R(vi, wj).

If, in addition, Δ−1R(v, w) belongs to some Lp space (which is of course the
case if, say, v ∈ Bs

p,r with s > −1 and w ∈ C0,1), then Π5(v, w) is the gradient
of some smooth function P5(v, w). Moreover, if 1 < p < ∞, as the operator of
convolution by ∂i∂jẼd is a Calderon–Zygmund operator, we may write

Π5(v, w) = ∇P5(v, w) with P5(v, w) = ∂i∂jẼd � Δ−1R(vi, wj),

and, owing to the spectral localization, we find that P5(v, w) belongs to any
space Bσ

p,r with σ ∈ R .

Since D2Ẽd is not an integrable function, however, in the case p = 1 or
∞, expressing P5(v, w) in terms of v and w requires some care. Therefore, we
set

P5(v, w) =
∑

1≤i,j≤d

3∑
m=1

Lm
ij

(
Δ−1R(vi, wj)

)
,

where the operators L1
ij , L2

ij , and L3
ij are defined by

L1
ij(u)(x) def=

∫
Rd

∂i∂jẼd(x − y)θ
(x − y

〈x〉

)
u(y) dy,

L2
ij(u)(x) def=

∫ 1

0

∫
Rd

xk∂i∂j∂kẼd(tx − y) (1 − θ)
( tx − y

〈tx〉

)
u(y) dy dt,

L3
ij(u)(x) def= −

∫ 1

0

∫
Rd

xk∂i∂jẼd(tx − y)
∂

∂xk

{
θ
( tx − y

〈tx〉

)}
u(y) dy dt.

Obviously, if u is a continuous, bounded function, then

∇
(
L1

ij(u) + L2
ij(u) + L3

ij(u)
)

= ∇∂i∂jẼd � u.

Furthermore, the operators Lm
ij are continuous from L∞ to L∞

L , as the follow-
ing result shows.

Lemma 7.13. There exists a constant C such that for m in {1, 2, 3} and (i, j)
in {1, . . . , d}2, we have, for any bounded function u,

∀x ∈ R
d ,

∣∣Lm
ij (u)(x)

∣∣ ≤ C
(
1 + log〈x〉

)
‖u‖L∞ .

Proof. We obviously have

∣∣L1
ij(u)(x)

∣∣ ≤ C‖u‖L∞

∫
1≤ |z|≤2〈x〉

|z| −d dz,

hence L1
ij(u)(x) satisfies the desired inequality.
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Next, using Fubini’s theorem and an obvious change of variables, we get

∣∣L2
ij(u)(x)

∣∣ ≤ C‖u‖L∞

∫ 1

0

∫
|tx−y|≥max(1,〈tx〉)

|x|
|tx − y|d+1

dy dt

≤ C‖u‖L∞

∫
|z|≥1

∫
t∈[0,1] / |z|≥〈tx〉

|x|
|z|d+1

dt dx

≤ C‖u‖L∞

∫
|z|≥1

(∫ min
(
1, |z|

|x|

)

0

dt

)
|x| dz

|z|d+1

≤ C‖u‖L∞
(
1 + log〈x〉

)
.

Finally, we note that due to the support properties of Ẽd and ∇θ, the in-
tegration in the definition of L3

ij(u)(x) may be restricted to those (t, y) for
which

|tx − y| ≥ 1 and 1 ≤ |tx − y|
〈tx〉 ≤ 2.

Since, for such (t, y), we have

∂

∂xk

(
tx − y

〈tx〉

)
≤ C

〈x〉 ,

the same argument as for L1
ij(u)(x) leads to the desired inequality. ��

Setting P (v, w) =
5∑

i=1

Pi(v, w) and using continuity results for the paraprod-

uct, remainder, and Lemma 7.13, we end up with the following statement.

Lemma 7.14. For any σ ∈ R, 1 ≤ p, r ≤ ∞, define

– B̃σ
p,r

def
= Bσ

p,r if 1 < p < ∞,

– B̃σ
∞,r

def
=

{
u ∈ Bσ

p,r + L∞
L / ∇u ∈ Bσ−1

p,r

}
,

– B̃σ
1,r

def
= Bσ+1

1,r +
⋂

q>1

⋂
s∈R

Bs
q,r.

There exists a bilinear operator P such that Π(v, w) = ∇P (v, w), and

– if v, w are in C0,1 ∩ Bs
p,r for some s > −1, then

‖P (v, w)‖B̃s+1
p,r

≤ C
(

‖v‖C0,1 ‖w‖Bs
p,r

+ ‖w‖C0,1 ‖v‖Bs
p,r

)
;

– if v, w are in B0
∞,∞ ∩ Bs

p,r for some s > 0, then

‖P (v, w)‖B̃s
p,r

≤ C
(

‖v‖B0
∞,∞

‖w‖Bs
p,r

+ ‖w‖B0
∞,∞

‖v‖Bs
p,r

)
.



7.1 Local Well-posedness Results for Inviscid Fluids 301

7.1.3 Another Formulation of the Euler System

In the previous subsection, we gave conditions under which the gradient of
the pressure may be computed from the velocity. This motivates our studying
the following modified Euler system:

(Ẽ) ∂tv + v · ∇v + Π(v, v) = 0.

This new formulation is easier to deal with since only the vector field v has
to be determined. Since we are ultimately interested in solving the Cauchy
problem for the true Euler system (E), however, it is important to find con-
ditions under which solving (Ẽ) does provide a solution for (E). This is the
purpose of the following proposition.

Proposition 7.15. Let (v, P ) satisfy (E) on [T1, T2] × R
d . Assume that for

some s > 0 and 1 ≤ p, r ≤ ∞, we have

v ∈ L1([T1, T2]; Bs
p,r ∩ B0

∞,∞) and P ∈ L1([T1, T2]; L1 + L∞
L ). (7.10)

Then, v satisfies (Ẽ) and ∇P = Π(v, v).

Conversely, assume that v ∈ L∞([T1, T2]; Bs
p,r) satisfies (Ẽ) on [T1, T2]

with s sufficiently large enough that Bs
p,r ↪→ C0,1. If, in addition, div v(t0) = 0

for some t0 in [T1, T2], then (v, P (v, v)) satisfies (E).

Proof. We begin by proving the first statement. Applying the operator div to
the Euler system (E), we get, for all t ∈ [T1, T2],

−ΔP (t) = div(v(t) · ∇v(t)) = −ΔP (v(t), v(t)).

Hence, P (t) − P (v(t), v(t)) is a harmonic polynomial. Note that the assump-
tion (7.10) and Lemma 7.14 guarantee that P (t) − P (v(t), v(t)) is in L1 +L∞

L

for almost every t ∈ [T1, T2]. Hence, P (t) − P (v(t), v(t)) depends only on t.
This entails that ∇P = Π(v, v).

We now prove the second part of the proposition. Because Bs
p,r is con-

tinuously included in C0,1, Lemma 7.14 ensures that Π(v, v) is the gradient
of P (v, v). In order to conclude that (v, P (v, v)) satisfies (E), however, we still
have to check that the vector field v is divergence-free. This may be achieved
by applying div to (Ẽ). We get

(∂t + v · ∇) div v = − div Π(v, v) − tr (Dv)2.

Assume for simplicity that [T1, T2] = [0, T ] and t0 = 0. If s > 1, we then
deduce from Theorem 3.14 that for all t ∈ [0, T ],

‖ div v(t)‖Bs−1
p,r

≤
∫ t

0

e
C

∫ t
t′ ‖v‖Bs

p,r
dt′ ′

‖ div Π(v, v) + tr (Dv)2‖Bs−1
p,r

dt′. (7.11)

Now, according to Lemma 7.12, we have
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‖ div Π(v, v) + tr (Dv)2‖Bs−1
p,r

≤ C ‖div v‖L∞ ‖v‖Bs
p,r

≤ C‖ div v‖Bs−1
p,r

‖v‖Bs
p,r

.

Plugging this inequality into (7.11) and using Gronwall’s inequality, we con-
clude that div v(t) = 0 in Bs−1

p,r for all t ∈ [0, T ].
In the limit case where s = 1, due to Bs

p,r ↪→ C0,1, we must have p = ∞
and r = 1. Then, using the last inequality of Lemma 7.12 and performing the
estimates for div v in the space L∞([0, T ]; B0

∞,∞), we still get div v ≡ 0. ��

7.1.4 Local Existence of Smooth Solutions

This section is devoted to the proof of the existence part of Theorem 7.1. We
first state the local existence for the modified Euler system.

Proposition 7.16. Let 1 ≤ p, r ≤ ∞ and s ∈ R be such that Bs
p,r ↪→ C0,1.

There exists a constant c, depending only on s, p, r, and d, such that for all
initial data v0 in Bs

p,r(R
d), there exists a time T ≥ c/‖v0‖Bs

p,r
such that (Ẽ)

has a solution v in L∞([−T, T ]; Bs
p,r).

If r < ∞ (resp., r = ∞), then v is continuous (resp., weakly continuous)
in time with values in Bs

p,r.

The proof relies mainly on estimates for the transport equation and on Lem-
mas 7.9 and 7.10. It is structured as follows:

– First, we inductively solve linear transport equations so as to get a se-
quence of approximate solutions.

– Second, we prove local a priori estimates in large norm.
– Third, we prove the convergence in small norm.
– Finally, we pass to the limit in the equation.

First Step: Construction of Approximate Solutions

In order to define a sequence (vn)n∈N of (global) approximate solutions to (Ẽ),
we use an iterative scheme. First, we set v0 = v0, then, assuming that vn

belongs to L∞
loc(R; Bs

p,r), we solve the following linear transport equation:

{
∂tv

n+1 + vn · ∇vn+1 = Π(vn, vn)
vn

|t=0 = v0.
(7.12)

Since vn ∈ L∞
loc(R; Bs

p,r) and Bs
p,r ↪→ C0,1, Lemma 7.9 ensures that Π(vn, vn)

belongs to L∞
loc(R; Bs

p,r). Therefore, Theorem 3.19 provides a global solu-
tion vn+1 to the equation (7.12) which belongs to L∞

loc(R; Bs
p,r).

Second Step: A Priori Estimates

Combining Lemma 7.9 with Theorem 3.19 yields, for all n ∈ N and t ∈ R
+,
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‖vn+1(t)‖Bs
p,r

≤ eCVn(t)

(
‖v0‖Bs

p,r
+ C

∫ t

0

e−CVn(t′)(V ′
n(t′))2 dt′

)

with Vn(t) def=
∫ t

0

‖vn(t′)‖Bs
p,r

dt′.

A similar inequality holds for negative times. Hence, arguing as in the proof
of the existence for the Camassa–Holm equation in Chapter 3, we deduce that
for all n ∈ N,

‖vn(t)‖Bs
p,r

≤
‖v0‖Bs

p,r

1 − 2C|t| ‖v0‖Bs
p,r

whenever 2C|t| ‖v0‖Bs
p,r

< 1. (7.13)

Third Step: Convergence of the Sequence

Let us fix some T such that 2CT ‖v0‖Bs
p,r

< 1. Let (m, n) ∈ N
2 . By taking

the difference between the equations for vn+m+1 and vn+1, we find that

(∂t + vn+m · ∇)(vn+m+1 − vn+1)
= (vn − vn+m) · ∇vn+1 + Π(vn+m − vn, vn+m + vn). (7.14)

We first consider the case where s > 1. We claim that (vn)n∈N is a Cauchy
sequence in L∞([−T, T ]; Bs−1

p,r ). Indeed, Lemma 7.10, combined with the fact
that Bs

p,r ↪→ C0,1, yields5

‖Π(vn+m − vn, vn+m + vn)‖Bs−1
p,r

≤ C‖vn+m − vn‖Bs−1
p,r

‖vn+m + vn‖Bs
p,r

.

By taking advantage of Bony’s decomposition and of continuity results for the
paraproduct and the remainder, it is not difficult to check that

‖(vn − vn+m) · ∇vn+1‖Bs−1
p,r

≤ C‖vn+m − vn‖Bs−1
p,r

‖vn+1‖Bs
p,r

.

Applying Theorem 3.14 to (7.14), we thus get, for all t ∈ [0, T ],

‖vn+m+1 − vn+1‖Bs−1
p,r

≤ CeCVn+m(t)

∫ t

0

e−CVn+m(t′)

×
(

‖vn‖Bs
p,r

+ ‖vn+1‖Bs
p,r

+ ‖vn+m‖Bs
p,r

)
‖vn+m − vn‖Bs−1

p,r
dt′

and a similar inequality for t ∈ [−T, 0].
Using (7.13), we conclude by induction that for all (n, m) ∈ N

2,

‖vn+m −vn‖L∞([−T,T ];Bs−1
p,r ) ≤ 1

n!

(
C‖v0‖Bs

p,r

1−2CT ‖v0‖Bs
p,r

)n

‖vm −v0‖L∞([−T,T ];Bs−1
p,r ).

Since (vm)m∈N is bounded in L∞([−T, T ]; Bs
p,r), this ensures that (vn)n∈N is

indeed a Cauchy sequence in L∞([−T, T ]; Bs−1
p,r ).

5 Without loss of generality, we may assume that s < 2 + d/p.
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Let us now consider the limit case s = 1. Due to the fact that Bs
p,r ↪→ C0,1,

we must have p = ∞ and r = 1. Now, on the one hand, since the vector fields
considered here need not be divergence-free, Theorem 3.14 does not provide
any control for the norm of vn+m+1 − vn+1 in B0

∞,1. On the other hand, that
theorem may be used to bound the norm in B0

∞,∞.
According to Lemma 7.10, the operator Π maps B0

∞,∞ × B1
∞,1 into B0

∞,∞,
and it is not difficult to check (by combining Bony decomposition with the
properties of continuity for the paraproduct and remainder) that

‖(vn − vn+m) · ∇vn+1‖B0
∞,∞

≤ C‖vn+m − vn‖B0
∞,∞

‖vn+1‖B1
∞,1

.

Therefore, arguing as above, we can conclude that (vn)n∈N is a Cauchy se-
quence in L∞([−T, T ]; B0

∞,∞).

Fourth Step: Passing to the Limit

Let v be the limit of the sequence (vn)n∈N. Using the uniform bounds given
by (7.13) and the Fatou property (see Theorem 2.72 page 100), we see that v
belongs to L∞([−T, T ]; Bs

p,r). Next, by interpolating with the convergence
properties stated in the previous step, we discover that (vn)n∈N tends to v in
every space L∞([−T, T ]; Bs′

p,r) with s′ < s, which suffices to pass to the limit
in (Ẽ).

Hence, v is a solution of the modified Euler system (Ẽ). Note that Π(v, v)
is in L∞([−T ; T ]; Bs

p,r), so Theorem 3.19 ensures that v satisfies the desired
properties of continuity with respect to time. This completes the proof of
Proposition 7.16. ��

Taking advantage of Proposition 7.15 and Lemma 7.14, we can now con-
clude that if, in addition, the initial vector field v0 is divergence-free, then
(v, P (v, v)) satisfies the true Euler system (E) and has the required regular-
ity. This completes the proof of the existence part of Theorem 7.1.

7.1.5 Uniqueness

Recall that LL stands for the set of log-Lipschitz functions defined on page 116
and that, according to Proposition 2.111 page 118, the (semi)norms

‖f ‖LL and sup
j∈N

‖ ∇Sjf ‖L∞

j + 1

are equivalent.
In this subsection, we establish a uniqueness result for the Euler system (E)

under the sole assumptions that v belongs to C([0, T ]; B0
∞,∞) ∩ L1([0, T ]; LL)

and that the pressure is a measurable function with at most logarithmic
growth at infinity.
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We first state a uniqueness result for the modified Euler system (Ẽ).

Theorem 7.17. Let v1 and v2 solve (Ẽ) on [0, T ]. Assume that v1 and v2

belong to
C([0, T ]; B0

∞,∞) ∩ L1([0, T ]; LL).

If, in addition, v1(0) = v2(0), then v1 ≡ v2 on [0, T ] × R
d .

Proof. The proof relies on the fact that δv
def= v2 − v1 satisfies a transport

equation associated with a log-Lipschitz vector field, namely,

∂tδv + v2 · ∇δv = Π(δv, v1) + Π(v2, δv) − δv · ∇v1. (7.15)

We claim that the bilinear operator Π satisfies the following estimate for
all ε ∈ ]0, 1[ and k ≥ −1:

‖ΔkΠ(v, w)‖L∞ ≤ C(k + 2)2kε min
(

‖v‖B−ε
∞,∞

‖w‖LL, ‖w‖B−ε
∞,∞

‖v‖LL

)
,

(7.16)

where we have used the notation ‖ · ‖LL
def= ‖ · ‖L∞ + ‖ · ‖LL.

According to (7.7), it suffices to establish this inequality for ΔkΠi(v, w)
with i ∈ {1, . . . , 5}.

We begin with ΔkΠ1(v, w). As ∇(−Δ)−1 is a homogeneous operator of
degree −1 and (

Sk−1∂iv
j Δk∂jw

i
)
k≥ −1

is spectrally supported in dyadic shells, we see that it suffices to establish that

‖Sk−1∂iv
jΔk∂jw

i‖L∞ ≤ C(k+2)2k(1+ε) min
(

‖v‖B−ε
∞,∞

‖w‖LL, ‖w‖B−ε
∞,∞

‖v‖LL

)
.

We may now write
∥∥Sk−1∂iv

jΔk∂jw
i
∥∥

L∞ ≤ ‖Sk−1∇v‖L∞ ‖Δk ∇w‖L∞ .

Note that we obviously have

‖Sk−1∇v‖L∞ ≤ C min
(
(k + 2)‖v‖LL, 2k(1+ε)‖∇v‖B−1−ε

∞,∞

)
,

‖Δk ∇w‖L∞ ≤ C min
(
(k + 2)‖w‖LL, 2k(1+ε)‖∇w‖B−1−ε

∞,∞

)
.

Therefore, ‖ΔkΠ1(v, w)‖L∞ is bounded by the right-hand side of (7.16). As
Π2(v, w) = Π1(w, v), the same inequality holds for ΔkΠ2(v, w).

As the roles of v and w may be exchanged, in order to bound the other
terms of (7.7), it suffices to establish that

‖ΔkR(v, w)‖L∞ ≤ C(k + 2)2k(ε−1)‖v‖LL‖w‖B−ε
∞,∞

.

By virtue of Proposition 2.10 page 59, we may write that
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ΔkR(vi, wj) =
∑

k′ ≥k−3

Δk(Δk′ vi Δ̃k′ wj).

Therefore,

∥∥ΔkR(vi, wj)
∥∥

L∞ ≤ C
∑

k′ ≥k−3

‖Δk′ v‖L∞

∥∥∥Δ̃k′ w
∥∥∥

L∞

≤ C
∑

k′ ≥k−3

(k′ + 2)2k′(ε−1)‖v‖LL‖w‖B−ε
∞,∞

.

As ε − 1 < 0, we get the desired inequality for ΔkR(v, w). This completes the
proof of (7.16).

We now focus on the term v · ∇w. We claim that

‖Δk(v · ∇w)‖L∞ ≤ C(k + 2)2kε‖w‖LL‖v‖B−ε
∞,∞

. (7.17)

This is, in fact, a consequence of the following Bony decomposition (where we
have used the fact that div v = 0):

v · ∇wi = Tvj ∂jw
i + ∂jR(vj , wi) + T∂jwivj .

By mimicking the computations leading to (7.16), it is easy to get (7.17). The
details are left to the reader.

We can now resume the proof of uniqueness. Combining the inequali-
ties (7.16) and (7.17), we see that (7.15) is a transport equation associated
with a vector field with coefficients in L1([0, T ]; LL) and a right-hand side δf
which satisfies, for all ε ∈ ]0, 1[,

‖Δkδf ‖L∞ ≤ C(k + 2)2kε
(

‖v1‖LL + ‖v2‖LL

)
‖δv‖B−ε

∞,∞
. (7.18)

Let εt
def= C

∫ t

0

(
‖v1‖LL + ‖v2‖LL

)
dt′. As (7.18) is satisfied, Theorem 3.28

ensures that if C is taken sufficiently large, then, for all k ≥ −1,

2−kεt ‖Δkδv(t)‖L∞ ≤ 1
2

sup
t′ ∈[0,t]

‖δv(t′)‖
B

−ε
t′

∞,∞

whenever t belongs to the time interval [0, T0] defined by

T0 = sup
{

t ∈ [0, T ], C

∫ t

0

(
‖v1‖LL + ‖v2‖LL

)
dt′ ≤ 1

2

}
·

This yields uniqueness on [0, T0].
Because v1 and v2 are in L1([0, T ]; LL) ∩ L∞([0, T ]; B0

∞,∞), the argument
may be repeated a finite number of times, yielding uniqueness on the whole
interval [0, T ]. ��
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Corollary 7.18. Let (v1, P 1) and (v2, P 2) satisfy the Euler system (E) with
the same initial data. Assume, in addition, that for i = 1, 2,

vi ∈ C([0, T ]; B0
∞,∞) ∩ L1([0, T ]; LL) and P i ∈ L1([0, T ]; L1 + L∞

L ).

We then have v1 ≡ v2 and ∇P 1 ≡ ∇P 2 on [0, T ] × R
d .

Proof. Note that the assumptions on (v1, P 1) and (v2, P 2) guarantee that v1

and v2 both solve (Ẽ) with the same data (see Proposition 7.15). Hence, the
previous theorem implies that v1 ≡ v2 and that

∇P 1 = Π(v1, v1) = Π(v2, v2) = ∇P 2.

This proves the corollary. ��

Remark 7.19. The logarithmic growth assumption on the pressure cannot be
omitted. Indeed, let v0 be a nonzero constant vector field and set
(
v1(t, x), P 1(t, x)

)
= (v0, 0) and

(
v2(t, x), P 2(t, x)

)
= (v0 cos t, (v0·x) sin t).

Then, (v1, P 2) and (v2, P 2) are two distinct smooth solutions of (E) pertaining
to the same initial vector field.

7.1.6 Continuation Criteria

In this subsection, we state various continuation criteria for smooth solutions
of the Euler system. We first explain what we mean by a smooth solution.

Definition 7.20. Let T1 < T2. Let s ∈ R and 1 ≤ p, r ≤ ∞. A divergence-
free time-dependent vector field v is called a Bs

p,r solution to the Euler sys-
tem on ]T1, T2[ if it belongs to L∞

loc(]T1, T2[; Bs
p,r) and satisfies (E) in the

space S ′(]T1, T2[× R
d) for some P ∈ L∞

loc(]T1, T2[; L1 + L∞
L ).

To simplify the presentation, we focus on continuation criteria for positive
times. Due to the time reversibility of the Euler system, however, similar
results hold for negative times. We begin with a very general statement.

Theorem 7.21. Let s ∈ R and 1 ≤ p, r ≤ ∞ satisfy Bs
p,r ↪→ C0,1. Assume

that (E) has a Bs
p,r solution over [0, T [. If

∫ T

0

‖v(t)‖C0,1 dt < ∞, (7.19)

then v may be continued beyond T to a Bs
p,r solution of (E).

If, in addition, v0 ∈ La or ∇v0 ∈ La for some finite a, then (7.19) may be
replaced by the weaker condition

∫ T

0

‖ ∇v(t)‖L∞ dt < ∞. (7.20)
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Proof. Our definition of a Bs
p,r solution guarantees that v satisfies (Ẽ).

Hence, according to Theorem 3.19 page 136 and the fact that, according to
Lemma 7.9,

‖Π(v, v)‖Bs
p,r

≤ C‖v‖C0,1 ‖v‖Bs
p,r

,

we get, for all t ∈ [0, T [,

‖v(t)‖Bs
p,r

≤ ‖v(0)‖Bs
p,r

+ C

∫ t

0

‖v(t′)‖C0,1 ‖v(t′)‖Bs
p,r

dt′. (7.21)

Hence, Gronwall’s lemma implies that

‖v(t)‖Bs
p,r

≤ ‖v(0)‖Bs
p,r

e
∫ t
0 ‖v(t′)‖C0,1 dt′

for all t ∈ [0, T [. (7.22)

This ensures that v ∈ L∞([0, T [; Bs
p,r).

Let τ
def= c/‖v‖L∞

T (Bs
p,r) (where c stands for the constant defined in Theo-

rem 7.1). The Euler system with data v(T − τ/2) then has a Bs
p,r solution ṽ

over [0, τ ]. By virtue of uniqueness, we must have

ṽ(t) = v(T − τ/2 + t) for 0 ≤ t < τ/2.

Hence, ṽ provides a continuation of v beyond T. This yields the first statement.
We now assume that v0 ∈ La for some finite a. As, of course, v0 ∈ L∞,

we can assume with no loss of generality that 1 < a < ∞. On the one hand,
according to Lemma 7.8,

‖Π(v, v)‖La ≤ C‖v‖La ‖∇v‖L∞ . (7.23)

On the other hand, because v satisfies (Ẽ), we have

‖v(t)‖La ≤ ‖v0‖La +
∫ t

0

‖Π(v, v)‖La dt′.

Inserting (7.23) into the above inequality and then using the Gronwall in-
equality, we thus conclude that v ∈ L∞([0, T [; La). Now, by splitting v into
low and high frequencies and using Bernstein’s lemma, we see that

‖v‖L∞ ≤ C
(

‖v‖La + ‖ ∇v‖L∞
)
.

Therefore, v ∈ L1([0, T [; L∞). Applying the first part of Theorem 7.21 thus
shows that v may be continued beyond T.

Finally, we treat the case where ∇v0 ∈ La for some finite a. Of course, we
can assume that a > d so that 1 − d/a > 0. Hence, by virtue of Lemma 7.11,

‖Π(v, v)‖L∞ ≤ C(‖Ω‖L∞ + ‖v‖L∞ ) ‖Ω‖La .

Plugging this into the inequality
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‖v(t)‖L∞ ≤ ‖v0‖L∞ +
∫ t

0

‖Π(v, v)‖L∞ dt′

and applying Gronwall’s lemma, we thus get

e−C
∫ t
0 ‖Ω‖La dt′

‖v(t)‖L∞ ≤ ‖v0‖L∞

+ C

∫ t

0

e−C
∫ τ
0 ‖Ω‖La dt′ ′

‖Ω‖La ‖Ω‖L∞ dt′. (7.24)

We will temporarily assume that the following lemma holds.

Lemma 7.22. For any a ∈ ]1, ∞[, there exists a constant C such that the
vorticity satisfies

∀t ∈ [0, T [ , ‖Ω(t)‖La ≤ ‖Ω0‖La exp
(
C

∫ t

0

‖Ω(t′)‖L∞ dt′
)
.

Due to the fact that ∇v ∈ L1([0, T [; L∞), we thus have Ω ∈ L1([0, T [; La ∩
L∞), so the inequality (7.24) entails that v ∈ L1([0, T [; L∞). This completes
the proof of the theorem. ��

Proof of Lemma 7.22. From equation (7.1) and Hölder’s inequality, we get

‖Ω(t)‖La ≤ ‖Ω0‖La + 2
∫ t

0

‖Ω‖L∞ ‖Dv‖La dt.

Applying Proposition 7.5 for bounding ‖Dv‖La and Gronwall’s lemma com-
pletes the proof. ��
For sufficiently smooth solutions, the above continuation criterion may be
slightly refined, as follows.

Theorem 7.23. Let s and 1 ≤ p, r ≤ ∞ be such that s > 1 + d/p. Assume
that (E) has a Bs

p,r solution v on [0, T [ for some finite T > 0. If, in addition,
there exists some admissible Osgood modulus of continuity μ such that

∫ T

0

‖v(t)‖Cμ dt < ∞,

then v may be continued beyond T to a Bs
p,r solution of (E).

Proof. The proof, based on Proposition 2.112 page 119, is the same as for
quasilinear systems (see Theorem 4.22 page 196). Indeed, let us set

R(t) def= ‖v0‖Bs
p,r

+ C

∫ t

0

‖v(t′)‖C0,1 ‖v(t′)‖Bs
p,r

dt′.

According to the inequality (7.21), if C has been chosen sufficiently large, then

‖v(t)‖Bs
p,r

≤ R(t) for all t ∈ [0, T [.
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Let ε = min
(
1, s − d

p − 1
)

and Γ : [0, a] → [0, +∞[ be the function associated
with the modulus of continuity μ.

Using Proposition 2.112 page 119 with Λ = ‖v0‖Bs
p,r

and the embedding

Bs
p,r ↪→ B

s−d/p
∞,∞ , we get

R(t) ≤ ‖v0‖Bs
p,r

+ C

∫ t

0

γ(t′)
(

1 + Γ

(( CR(t′)
‖v0‖Bs

p,r

) 1
ε

))
R(t′) dt′

with γ(t) def= ‖v(t)‖Cμ + ‖v0‖Bs
p,r

.

Mimicking the proof of Proposition 2.112, we then get, after a few computa-
tions,

‖v(t)‖Bs
p,r

≤ 1
C

‖v0‖Bs
p,r

G −1
ε

(
C + C

∫ t

0

γ(t′) dt′
)

with Gε(y) def=
∫ y

a−1
ε

dy′

y′Γ
(
(y′)

1
ε

) and aε
def= a

1
ε .

Therefore, ‖v(t)‖Bs
p,r

stays bounded on [0, T [, and the proof may be com-
pleted by arguing as in the proof of Theorem 7.21. ��
As a corollary, we get the following generalization of the celebrated Beale–
Kato–Majda continuation criterion.

Corollary 7.24. Let s > 1+d/p and v be a Bs
p,r solution of the Euler system.

Assume that ∇v0 ∈ La for some finite a. If T is finite and
∫ T

0

‖Ω(t)‖L∞ dt < ∞,

then v may be continued beyond T to a Bs
p,r solution of (E).

Proof. As pointed out in Example 4.23 page 198, the space B1
∞,∞ is contin-

uously embedded in the space Cμ, where μ stands for the admissible Osgood
modulus of continuity defined by μ(r) = r(1 − log r). Now, by virtue of the
second inequality in (7.9), we have

‖v‖B1
∞,∞

≤ C
(

‖v‖L∞ + ‖Ω‖L∞

)
.

Because Ω0 is in La, the inequality (7.24) and Lemma 7.22 imply that v
belongs to L∞([0, T [; L∞). Therefore, Theorem 7.23 applies. ��

7.2 Global Existence Results in Dimension Two

As explained in the introduction, in dimension two, the vorticity equation
reduces to

∂tω + v · ∇ω = 0. (7.25)

So, at least formally, all the La norms of the vorticity are conserved by the
flow. Based on Corollary 7.24, we thus expect the solution to be global.

In this section, we justify this heuristic in various contexts.
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7.2.1 Smooth Solutions

In this subsection, we state a global result for two-dimensional data with high
regularity in Besov spaces.

Theorem 7.25. Let v0 ∈ Bs
p,r(R

2) with div v0 = 0 and s > 1 + 2/p. Assume,
in addition,6 that ∇v0 ∈ La for some finite a. The Euler system (E) then has
a unique global Bs

p,r solution v satisfying ∇v ∈ L∞(R; La).

Proof. Local existence in Bs
p,r has already been proven, so we denote by

]T∗, T ∗[ the maximal interval of existence for v. Due to ∇v ∈ L∞
loc(]T∗, T ∗[; L∞)

and (7.25), it is clear that ω ∈ L∞(]T∗, T ∗[; L∞). If T ∗ is finite, then Corol-
lary 7.24 enables us to continue the solution beyond T ∗, which stands in
contradiction to the definition of T ∗. Hence, T ∗ = +∞. A similar argument
leads to T∗ = −∞. ��

7.2.2 The Borderline Case

Proving the global existence in the borderline case s = 1 + 2/p and r = 1
is more involved. This is because no continuation criterion is known which is
solely in terms of the vorticity (whether or not Corollary 7.24 is true in this
case is an open question). Nevertheless, as stated in the following theorem,
the global well-posedness in the borderline case is true.

Theorem 7.26. Let 1 ≤ p ≤ ∞ and v0 ∈ B
1+2/p
p,1 with div v0 = 0. Assume,

in addition, that ∇v0 ∈ La for some finite a. The Euler system then has a
unique global solution v in C(R; B1+2/p

p,1 ) with ∇v ∈ L∞(R; La).

Proof. For the sake of conciseness, we treat only the case where p = ∞, the
case where p < ∞ being easier. We therefore assume that v0 ∈ B1

∞,1 and that
∇v0 ∈ La for some finite a.

Stating global estimates for the vorticity ω in B0
∞,1 is the key to the

proof. Theorem 7.1 provides a B1
∞,1 solution v defined on some maximal time

interval ]T∗, T ∗[. Taking advantage of (7.25) and of Theorem 3.18 page 135,
we deduce that

∀t ∈ [0, T ∗[ , ‖ω(t)‖B0
∞,1

≤ ‖ω0‖B0
∞,1

(
1 + C

∫ t

0

‖∇v(t′)‖L∞ dt′
)
.

In order to bound ‖ ∇v‖L∞ , we may combine Lemma 7.6 with the continuous
embedding B0

∞,1 ↪→ L∞ to get

‖ ∇v‖L∞ ≤ C
(

‖ω‖La + ‖ω‖B0
∞,1

)
.

Because ‖ω(t)‖La = ‖ω0‖La , we thus have

6 Of course, this assumption is relevant only if p = ∞.
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∀t ∈ [0, T ∗[ , ‖ω(t)‖B0
∞,1

≤ ‖ω0‖B0
∞,1

(
1 + C‖ω0‖Lat + C

∫ t

0

‖ω‖B0
∞,1

dt′
)
,

from which it follows, by virtue of Gronwall’s lemma, that

‖ω(t)‖B0
∞,1

≤ e
Ct‖ω0‖

B0
∞,1 ‖ω0‖B0

∞,1
(1 + Ct‖ω0‖La).

Therefore, if T ∗ < ∞, then Lemma 7.6 ensures that ∇v ∈ L∞([0, T ∗[; L∞). So,
according to Corollary 7.24, the solution may be continued beyond T ∗, which
contradicts the definition of T ∗. Hence, T ∗ = +∞. Proving that T∗ = −∞
relies on similar arguments. ��

7.2.3 The Yudovich Theorem

As the vorticity is constant along the trajectories, it is natural to wonder
what happens if the initial vorticity is only bounded with no additional reg-
ularity assumption (note that in the global existence results stated thus far,
the vorticity was at least continuous).

As pointed out before, even if the vorticity is compactly supported, the
corresponding vector field need not be Lipschitz. Nevertheless, we shall prove
the following result.

Theorem 7.27. Let v0 be a divergence-free vector field in B1
∞,∞(R2) with

vorticity ω0 in La ∩ L∞ for some finite a. Then, (E) has a unique solution
(v, ∇P ) with

v ∈ L∞
loc(R; B1

∞,∞), ω ∈ L∞(R; La ∩ L∞), and P ∈ L∞
loc(R; (L1 + L∞

L )).

Moreover, v has a generalized flow ψ, in the sense of Theorem 3.7 page 128,
and there exists a constant C such that

ψ(t) − Id ∈ Cexp(−C|t|‖ω0‖La ∩L∞ ) for all t ∈ R .

Proof. Uniqueness follows from Theorem 7.17. To prove existence, we may
smooth out the data. Let vn be the (global) solution of the Euler system with
mollified initial velocity n2χ(n·) � v0 [where χ is in S(R2) and has integral 1
over R

2]. According to Theorem 7.25, vn is global and smooth. It is not difficult
to prove uniform estimates for vn and ωn in the desired spaces. Indeed, we
have

‖ωn(t)‖La ∩L∞ = n2‖χ(n·) � ω0‖La ∩L∞ ≤ ‖ω0‖La ∩L∞ for all t ∈ R, (7.26)

and hence, according to Lemma 7.6,

‖∇vn(t)‖B0
∞,∞

≤ C‖ω0‖La ∩L∞ for all t ∈ R .

Also, note that combining the inequalities (7.24) and (7.26) provides us with
uniform bounds for vn in L∞

loc(R
+; B1

∞,∞).
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Now, from the boundedness of the time derivatives in convenient function
spaces, we get some compactness, and it is then possible to pass to the limit
in the equation. This yields a solution (v, P ) with the desired regularity.

Finally, since
‖v‖LL ≤ C‖ω‖La ∩L∞ ,

we can conclude, thanks to Theorem 3.7 and Lemma 3.8, that v has a flow ψ
such that ψ(t) − Id is in Cexp(−C|t|‖ω0‖La ∩L∞ ) for all real numbers t. ��

Remark 7.28. The regularity result for the flow given in the above theorem
is essentially optimal. Indeed, it turns out that if the initial vorticity ω0 is
supported in the square [−1, 1]2, is odd with respect to the two axes, and
equal to 1 in [0, 1]2, then the corresponding flow ψ at time t > 0 does not
belong to any Cα for α > e−t.

Finally, if the vorticity has some positive regularity, then the following result
is available [see the definitions of F s

p and σ(s, t) on page 151].

Theorem 7.29. Let v0 be a divergence-free vector field, the vorticity of which
is in L∞ ∩ F s

p for some s ∈ ]0, 1[ and p ∈ [1, ∞]. Let v be a solution of the
two-dimensional incompressible Euler system with data v0.

Then, for any t > 0, the vorticity at time t belongs to the space F
σ(s,t)
p .

Proof. Note that this corollary is obvious if s > 2/p. Indeed, in this case,
due to the fact that F s

p ↪→ Bs
p,∞ ↪→ B

s−2/p
∞,∞ , the vector field v0 has Hölder

regularity greater than 1 so that the standard existence theorem for smooth
solutions applies and the initial regularity is globally preserved by the flow.

Now, in the more interesting case where s ≤ 2/p, we can apply Theo-
rem 3.32 to the vorticity equation (7.25). This yields the result. ��

7.3 The Inviscid Limit

In this section, we investigate the inviscid limit for the incompressible Navier–
Stokes system. More precisely, given some initial divergence-free vector field v0,
we want to obtain as much information as possible on the convergence of the
solution vν to the Navier–Stokes equations

(NSν)

⎧⎨
⎩

∂tvν + vν · ∇vν − νΔvν = −∇Pν

div vν = 0
(vν)|t=0 = v0

when the viscosity ν goes to 0.
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7.3.1 Regularity Results for the Navier–Stokes System

We emphasize the fact that all the existence and uniqueness results which
have been stated thus far remain true in the viscous case for positive times.
Further, all the estimates pertaining to the solutions of (NSν) for sufficiently
small ν are the same as in the case ν = 0.

This may be easily proven by taking advantage of the results of Section 3.4
(in particular, Theorem 3.38) and of the following lemma.

Lemma 7.30. Let ν ≥ 0, a ∈ [1, ∞], and T > 0. Assume that Ω satisfies the
following vorticity equation on [0, T ] × R

d:

∂tΩ + v · ∇Ω + Ω · Dv + TDv · Ω − νΔΩ = 0, Ω|t=0 = Ω0 ∈ La(Rd).

For all t ∈ [0, T ], we then have:

– ‖Ω(t)‖La ≤ ‖Ω0‖La e2
∫ t
0 ‖ ∇v‖L∞ dt′

.

– ‖Ω(t)‖La ≤ ‖Ω0‖La eC
∫ t
0 ‖Ω‖L∞ dt′

, if 1 < a < ∞.

– ‖Ω(t)‖La ≤ ‖Ω0‖La , if d = 2.

Proof. In contrast with the case ν = 0, which was treated earlier in Lemma 7.22,
we have to take care of the term −νΔΩ.

We first assume that 2 ≤ a < ∞. Arguing by density, we can assume that
Ω is smooth and decays at infinity so that, integrating by parts, we get

−
∫

R2
Ω|Ω|a−2 · ΔΩ dx = (a − 1)

∫
R2

|Ω|a−2| ∇Ω|2 dx ≥ 0.

Hence, the inequalities satisfied by ‖Ω‖La are exactly the same as if ν = 0.
This yields the result in the case 2 ≤ a < ∞. The case a = ∞ follows by
passing to the limit, and the case 1 ≤ a < 2 follows by duality. ��

7.3.2 The Smooth Case

In what follows, we shall focus on the rate of convergence of vν toward v for
the L2 norm. Of course, due to the uniform estimates which are available
in Bs

p,r, interpolating provides convergence in all intermediate spaces.
In this subsection, we shall state that for smooth solutions, the rate of

convergence (in any dimension) for ‖vν − v‖L2 is at least of order ν. Our
result will be based on the following lemma.

Lemma 7.31. Let A be a measurable function defined on [0, T ] and valued in
L(L2). Assume that for some positive integrable function K and almost every
t ∈ [0, T ], we have

∀w ∈ L2, −(A(t)w | w)L2 ≤ K(t)‖w‖2
L2 .
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Let v be a time-dependent, divergence-free vector field with coefficients
in L∞([0, T ]; C0,1), f be in L1([0, T ]; L2), and w0 be in L2. The system

{
∂tw + v · ∇w + A(t)w − νΔw = f
w|t=0 = w0

then has a unique solution w in C([0, T ]; L2) which, moreover, satisfies

‖w(t)‖L2 ≤ e
∫ t
0 K(t′) dt′

(
‖w0‖L2 +

∫ t

0

e−
∫ t′
0 K(t′ ′) dt′ ′

‖f(t′)‖L2 dt′
)

.

Proof. The proof relies on the following energy estimate:

1
2

d

dt
‖w‖2

L2 + ν‖ ∇w‖2
L2 ≤ ‖f ‖L2 ‖w‖L2 + K(t)‖w‖2

L2 . (7.27)

Following the proof of Theorem 4.4 page 172 and taking advantage of
Lemma 3.3 page 125 then yields the result. ��

Theorem 7.32. Let v (resp., vν) be a C0,1-solution of (E) [resp., (NSν)]

over [0, T ]. Assume that Δv belongs to L1([0, T ]; L2) and that wν
def
= vν − v

belongs to C([0, T ]; L2). We then have, for all t ∈ [0, T ],

‖wν(t)‖L2 ≤ eV (t)

(
‖wν(0)‖L2 + ν

∫ t

0

e−V (t′)‖Δv(t′)‖L2 dt′
)

with V (t)
def
=

∫ t

0

‖∇v(t′)‖L∞ dt′.

Proof. The equation satisfied by wν reads

∂twν + vν · ∇wν + wν · ∇v + Π(wν , v + vν) − νΔwν = νΔv.

Note that since v + vν is in L∞([0, T ]; C0,1), Lemma 7.8 ensures that

wν �−→ wν · ∇v + Π(wν , v + vν)

is a linear self-map on L1([0, T ]; L2). In addition, we have

−(wν · ∇v | wν)L2 ≤ ‖∇v‖L∞ ‖wν ‖2
L2 ,

and, because Π(wν , v + vν) is a gradient and div wν = 0,

(Π(wν , v + vν) | wν)L2 = 0.

Applying Lemma 7.31 thus yields the desired inequality. ��
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7.3.3 The Rough Case

Owing to Lemma 7.30, Theorem 7.27 also holds for the two-dimensional
Navier–Stokes equation (NSν). More precisely, we can prove the following
statement.

Theorem 7.33. Let v0 be a divergence-free vector field in B1
∞,∞(R2) with

vorticity ω0 in L2 ∩ L∞. Then, for all ν > 0, the system (NSν) with data v0

has a unique solution (vν , ∇Pν) with (uniformly with respect to ν)

vν ∈ L∞
loc(R

+; B1
∞,∞), ων ∈ L∞(R+; L2∩L∞), and Pν ∈ L∞

loc(R
+; (L1+L∞

L )).

In this subsection, we investigate the rate of convergence of (NSν) toward
(E) for (not necessarily two-dimensional) solutions having the above regu-
larity. We shall see that the rate strongly depends on the regularity of the
inviscid solution. We first establish that the rate is ν

1
2 if the inviscid solution

is Lipschitz.

Theorem 7.34. Let v (resp., vν) be a B1
∞,∞ solution of (E) [resp., (NSν)]

over [0, T ], and let wν
def
= vν − v. If, in addition,

∇v ∈ L1([0, T ]; L∞) ∩ L2([0, T ]; L2)

and wν is in C([0, T ]; L2), then we have, for any t in [0, T ],

‖wν(t)‖2
L2 +ν

∫ t

0

‖ ∇wν ‖2
L2 dt′ ≤ e2V (t)

(
‖wν(0)‖2

L2 +ν

∫ t

0

e−2V (t′)‖∇v‖2
L2 dt′

)
.

Proof. The starting point of the proof is the inequality (7.27) with K(t) =
V (t) and f = −νΔv. Now, integrating by parts and using Young’s inequality,
we note that

ν

∫
Rd

wν · Δv dx = −ν

∫
Rd

∇wν · ∇v dx ≤ ν

2
‖∇v‖2

L2 +
ν

2
‖∇wν ‖2

L2 .

Plugging this into the equality (7.27) and integrating, we thus obtain

‖wν(t)‖2
L2 + ν

∫ t

0

‖ ∇wν ‖2
L2 dt′ ≤ ‖wν(0)‖2

L2

+ 2
∫ t

0

‖ ∇v‖L∞ ‖wν ‖2
L2 dt′ + ν

∫ t

0

‖∇v‖2
L2 dt′.

Using Gronwall’s lemma then leads to the desired inequality. ��

In the case where, in addition, the limit vorticity Ω belongs to the homoge-
neous Besov space Ḃα

2,∞ for some α ∈ ]0, 1[, we get a better rate of convergence,
namely, ν

1+α
2 .
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Theorem 7.35. Under the assumptions of Theorem 7.34, assume, in addi-
tion, that Ω is in L

2
1+α ([0, T ]; Ḃα

2,∞) for some α ∈ ]0, 1[. We then have

‖wν(t)‖
2

1+α

L2 ≤ eV (t)

(
‖wν(0)‖

2
1+α

L2 + Cν

∫ t

0

e−V (t′)‖Ω‖
2

1+α

Ḃα
2,∞

dt′
)

.

Proof. The duality result stated in Proposition 2.29 page 70 ensures that

ν

∫
R2

wν · Δv dx = −ν

∫
R2

∇wν · ∇v dx

≤ Cν ‖ ∇v‖Ḃα
2,∞

‖∇wν ‖Ḃ−α
2,1

.

Using real interpolation (see Proposition 2.22 page 65) and the fact that the
map Ω → ∇v is homogeneous of degree 0, we thus get

ν

∫
R2

wν · Δv dx ≤ Cν‖Ω‖Ḃα
2,∞

‖wν ‖α
L2 ‖∇wν ‖1−α

L2

≤ Cν‖Ω‖
2

1+α

Ḃα
2,∞

‖wν ‖
2α

1+α

L2 + ν
2 ‖∇wν ‖2

L2 .

Plugging this latter inequality into the inequality (7.27) and then applying
Gronwall’s lemma completes the proof of the theorem. ��

Remark 7.36. Appealing to the characterization of Besov spaces in terms of
finite differences, it is not difficult to prove that the characteristic function of
any bounded domain Ω0 belongs to Ḃ

1
2
2,∞. In the next section, we shall state

(in the two-dimensional case) that if the initial vorticity is the characteristic
function of a C1,r domain, then the corresponding solution v is Lipschitz.
Hence, the above theorem states that the rate of convergence for the L2 norm
is of order ν

3
4 . This rate proves to be optimal in the case of a circular domain.

If the limit vector field is no longer Lipschitz, then the ν
1
2 rate of convergence

is likely to coarsen, as we see in the following result.

Theorem 7.37. Let v0 be a two-dimensional divergence-free vector field
in B1

∞,∞ with vorticity ω0 in L2 ∩ L∞. Denote by v (resp., vν) the corre-

sponding global solution of (E) [resp., (NSν)] and define wν
def
= vν − v.

Then, wν is in C(R+; L2) and satisfies, for some universal constant C,

‖wν ‖L∞
T (L2) ≤ (νT )

1
2 exp(−C‖ω0‖L2∩L∞ T )‖ω0‖L2∩L∞ e1−exp(−C‖ω0‖L2∩L∞ T )

whenever (νT )
1
2 exp(−C‖ω0‖L2∩L∞ T )e1−exp(−C‖ω0‖L2∩L∞ T ) ≤ 1.

Proof. Let us bound the right-hand side of (7.27) as in the proof of Theo-
rem 7.32. Because, in dimension two,

‖ ∇v‖2
L2 = ‖ω‖2

L2 ≤ ‖ω0‖2
L2 ,
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we get

d

dt
‖wν ‖2

L2 + ν‖ ∇wν ‖2
L2 ≤ ν‖ω0‖2

L2 +
∣∣∣∣
∫

R2

(
wν · ∇v

)
· wν dx

∣∣∣∣. (7.28)

By combining Hölder’s inequality and Proposition 7.5, we get, for all a ∈
[2, ∞[, ∣∣∣∣

∫
R2

(
wν · ∇v

)
· wν dx

∣∣∣∣ ≤ Ca‖ω‖La ‖wν ‖
2
a

L∞ ‖wν ‖2− 2
a

L2 .

Recall that ‖ω‖La ≤ ‖ω0‖La . Further, using the fact that wν = Δ−1wν +
(Id −Δ1)wν and Lemma 7.6, we easily get that

‖wν ‖L∞ ≤ C
(

‖wν ‖L2 + ‖ω0‖L∞
)
.

So, finally, for all a ∈ [2, ∞[,

d

dt
‖wν ‖2

L2 ≤ ν‖ω0‖2
L2 + Ca‖ω0‖L2∩L∞ ‖wν ‖2

L2 + Ca‖ω0‖1+ 2
a

L2∩L∞ ‖wν ‖2− 2
a

L2 .

Fix some small positive δ and define7

δν(t) def=
‖wν(t)‖2

L2

‖ω0‖2
L2∩L∞

+ δ.

Assuming that δν ≤ 1 on [0, T ], the previous inequality yields

δ′
ν(t) ≤ ν + 2Ca‖ω0‖L2∩L∞ (δν(t))1− 1

a .

So, choosing a = 2 − 2 log δν(t), after performing a time integration (up to a
change of C), we get

δν(t) ≤ νt + δ + C‖ω0‖L2∩L∞

∫ t

0

δν(t′)(2 − log δν(t′)) dt′.

We note that μ(r) def= r(2 − log r) is an Osgood modulus of continuity. Hence,
applying Lemma 3.4 page 125 and having δ tend to 0 completes the proof. ��

7.4 Viscous Vortex Patches

The original vortex patch problem has been addressed for the two-dimensional
incompressible Euler system. Assuming that the initial vorticity ω0 is a vor-
tex patch (that is the characteristic function of some bounded domain D0)
Yudovich’s theorem ensures that (E) has a global solution with bounded vor-
ticity. Since, in addition, that solution has a flow ψ, and ω satisfies (7.5), we
7 We rule out the trivial case where ω0 ≡ 0.
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may deduce that ω(t) is the characteristic function of the domain transported
by the flow:

ω(t) = 1Dt with Dt = ψt(D0).

Note that having ω bounded does not imply that v is Lipschitz, so ψ need
not be Lipschitz either. Hence, the above relation does not guarantee that the
initial smoothness of the patch is preserved by the flow. Nevertheless, we shall
see that if ∂D0 is a simple C1,r curve for some r ∈ ]0, 1[, then ∂Dt remains so
for all time.

The purpose of the present section is twofold. First, we shall study to what
extent the global persistence of vortex patches remains true for viscous flu-
ids, that is, when v solves the two-dimensional incompressible Navier–Stokes
equation (NSν). Second, we shall study the inviscid limit for vortex-patch-
like structures or, more generally, for data having striated regularity in a sense
that we shall explain below.

7.4.1 Results Related to Striated Regularity

Note that if ω = 1D, where D is a C1,r simply connected bounded domain
of R

2, then ω is “more regular” in the direction which is tangent to ∂D.
Indeed, for any smooth vector field X which is tangent to ∂D, we have

∂Xω
def= X1∂1ω + X2∂2ω = 0.

Since
div(Xω) − ∂Xω = ω div X,

we can deduce that if X is sufficiently smooth and has bounded divergence,
then div(Xω) is in L∞ (instead of being a linear combination of derivatives
of L∞ functions if ω is just bounded). This motivates the following definition.

Definition 7.38. A family (Xλ)λ∈Λ of vector fields over R
2 is said to be

nondegenerate whenever

I(X)
def
= inf

x∈Rd
sup
λ∈Λ

|Xλ(x)| > 0.

Let r ∈ ]0, 1[ and (Xλ)λ∈Λ be a nondegenerate family of Br
∞,∞ vector fields

over R
2 . A bounded function ω is said to be in the function space Cr

X if it
satisfies

‖ω‖Cr
X

def
= sup

λ∈Λ

( ‖ω‖L∞ ‖Xλ‖Br
∞,∞ + ‖ div(Xλω)‖Br−1

∞,∞

I(X)

)
< ∞.

Proving that Cr
X is a Banach space is left to the reader as an exercise.
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Assuming that the initial vorticity ω0 is in some space Cr
X0

, it seems reason-
able (at least in the inviscid case, where ω is constant along the trajectories)
that ω(t) remains in Cr

X(t), where X(t) is the family transported by the flow
of v, that is, X(t) =

(
Xλ(t)

)
λ∈Λ

with

Xλ(t) = ∂X0ψ(t) for all λ ∈ Λ.

The following theorem states that this is indeed the case (even in the viscous
case), and that properties of striated regularity are conserved in the inviscid
limit.

Theorem 7.39. Let r be in ]0, 1[ and (X0,λ)1≤λ≤m be a nondegenerate family
of Br

∞,∞ vector fields over R
2 . Let v0 be a C0,1 divergence-free vector field

with vorticity ω0 in Cr
X0

∩L2. Then, for all positive ν, the system (NSν) [resp.,
the system (E)] has a unique global solution vν (resp., v) in L∞

loc(R
+; C0,1)

with vorticity in L∞(R+; L2), and there exists a constant K depending only
on the data and a universal constant C such that for all t ≥ 0 we have

‖∇v(t)‖L∞ ≤ KeC‖ω0‖L∞ t and ‖ ∇vν(t)‖L∞ ≤ K(1 + νt)eC‖ω0‖L∞ t.

Moreover, the family (Xν,λ)1≤λ≤m [resp., (Xλ)1≤λ≤m] of time-dependent vec-
tor fields transported by the flow ψν (resp., ψ) of vν (resp., v) remains Br

∞,∞
and nondegenerate for all t ∈ R

+, and ων(t) [resp., ω(t)] belongs to Cr
Xν(t)

(resp., Cr
X(t)). In addition, for any bounded subsets I and J of [0, ∞[ and

]0, ∞[, there exists a constant C such that

sup
t∈I

‖ω(t)‖Cr
X(t)

+ sup
t∈I

sup
ν∈J

‖ων(t)‖Cr
Xν (t)

≤ C,

and the following convergence results hold true:

• vν → v and ψν − ψ → 0 in L∞
loc(R

+; B1−ε
∞,∞) for all ε > 0.

• Xλ,ν → Xλ and ∂Xλ,ν
ψν → ∂Xλ

ψ in L∞
loc(R

+; Br′

∞,∞) for all r′ < r.

• ∂Xλ,ν
ων → ∂Xλ

ω in L∞
loc(R

+; Br′ −1
∞,∞) for all r′ < r.

7.4.2 A Stationary Estimate for the Velocity Field

One of the keys to the proof of Theorem 7.39 is the following estimate, which
states that any velocity field with striated vorticity is Lipschitz and may be
bounded in terms of ‖ω‖L∞ and of the logarithm of ‖ω‖Cr

X
.

Theorem 7.40. Let r be in ]0, 1[ and (Xλ)1≤λ≤m be a nondegenerate family
of Br

∞,∞ vector fields over R
2 . Let v be a divergence-free vector field over R

2

with vorticity ω in Cr
X . Assume, in addition, that v ∈ Lq for some q ∈ [1, ∞]

or that ∇v ∈ Lp for some finite p. There then exists a constant C, depending
only on m, p, and r, and such that

‖∇v‖L∞ ≤ C

(
min

(
‖v‖Lq , ‖ω‖Lp

)
+ ‖ω‖L∞ log

(
e +

‖ω‖Cr
X

‖ω‖L∞

))
.
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Proof. We will first give a sketch of a proof in the flat case. We thus assume
that the family X reduces to the unique vector field ∂1. Having ω ∈ Cr

X then
means that ω ∈ L∞ and ∂1ω ∈ Br−1

∞,∞. This obviously entails that all the
second order derivatives of ω except ∂2

2ω are in Br−2
∞,∞. From the relation

∇v = (−Δ)−1∇∇⊥ω,

we thus discover that all the components of ∇v except ∂2v
1 are in Br

∞,∞.
Now, ∂2v

1 = ∂1v
2 − ω, so, owing to the fact that ω ∈ L∞, this last component

is bounded.

We now turn to the proof of the theorem in the general case. According
to the Biot–Savart law, we have

∇v = Δ−1∇v − Λ−2∇∇⊥ω with Λ−2 def= |D| −2(Id −Δ−1).

Bounding the first term according to Lemma 7.6, we thus get

‖∇v‖L∞ ≤ C
(
min(‖v‖Lq , ‖ω‖Lp) +

∑
i,j

∥∥∂i∂jΛ
−2ω

∥∥
L∞

)
.

We will temporarily assume that the following lemma holds.

Lemma 7.41. There exist some functions aij and bkλ
ij (1 ≤ i, j, k ≤ 2 and

1 ≤ λ ≤ m) in Br
∞,∞ and a universal constant C such that

∀(x, ξ) ∈ R
2 × R

2, ξiξj = aij(x)|ξ|2 +
∑
λ,k

bkλ
ij (x)ξk(Xλ(x) · ξ), (7.29)

‖bkλ
ij ‖r ≤ C

m2

I(X)

( supλ ‖Xλ‖Br
∞,∞

I(X)

)8

, (7.30)
∥∥bkλ

ij Xλ

∥∥
L∞ ≤ C, and ‖aij ‖L∞ ≤ 1. (7.31)

We then have, for all (x, ξ) ∈ R
2 × R

2 and 1 ≤ i, j ≤ 2,

ξiξj(1 − χ(ξ))
|ξ|2 ω̂(ξ) = aij(x)(1 − χ(ξ))ω̂(ξ)

+
∑
λ,k,�

ξkξ�(1 − χ(ξ))
|ξ|2 bkλ

ij (x)X�
λ(x)ω̂(ξ).

Evaluating the Fourier transform (with respect to x) of the above equality
in ξ and then applying the inverse Fourier transform, we thus get

∂i∂jΛ
−2ω = (Id−Δ−1)(aijω) +

∑
λ,k,�

Λ−2∂k∂�

(
bkλ
ij X�

λω
)
.

On the one hand, according to the inequality (7.31), the first term on the
right-hand side may be bounded by C ‖ω‖L∞ . On the other hand, the terms
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in the sum may be estimated by using the logarithmic interpolation inequality
stated in Proposition 2.104 page 116:

∥∥Λ−2∂k∂�

(
bkλ
ij X�

λω
)∥∥

L∞ ≤ C‖Λ−2∂k∂�

(
bkλ
ij X�

λω
)

‖B0
∞,∞

× log
(

e +
‖Λ−2∂k∂�

(
bkλ
ij X�

λω
)

‖Br
∞,∞

‖Λ−2∂k∂�

(
bkλ
ij X�

λω
)

‖B0
∞,∞

)
.

Because the operator Λ−2∂k∂� is an S0-multiplier in the sense of Proposi-
tion 2.78, we have, by virtue of (7.31),

‖Λ−2∂k∂�

(
bkλ
ij X�

λω
)

‖B0
∞,∞

≤ C
∥∥bkλ

ij X�
λω

∥∥
L∞ ≤ C ‖ω‖L∞ .

As the operator Λ−2∂k is an S−1-multiplier and for any α > 0, the function
t �→ t log(e + α/t) is increasing, we thus get

∥∥∂i∂jΛ
−2ω

∥∥
L∞ ≤ C ‖ω‖L∞

∑
λ,k,�

log
(

e +
‖∂�

(
bkλ
ij X�

λω
)

‖Br−1
∞,∞

‖ω‖L∞

)
.

We can now write that [see the definition of T ′ in (2.42) page 103]

∂�(bkλ
ij X�

λω) = ∂�T
′
X�

λωbkλ
ij + T∂�(X�

λω)b
kλ
ij + TX�

λω∂�b
kλ
ij ,

so applying Theorems 2.82 and 2.85 gives

‖∂�

(
bkλ
ij X�

λω
)

‖Br−1
∞,∞

≤ C
(

‖Xλω‖L∞ ‖bkλ
ij ‖Br

∞,∞ +‖ div(Xλω)‖Br−1
∞,∞

∥∥bkλ
ij

∥∥
L∞

)
.

As the functions bkλ
ij satisfy the inequality (7.30), we get the desired inequality.

��

Proof of Lemma 7.41. We first state a local version of the lemma pertaining
to only one of the vector fields, Xλ. For that purpose, we introduce the open
set

Uλ =
{
x ∈ R

2, |Xλ(x)| > I(X)/2
}

.

We claim that for any λ ∈ {1, . . . , m} and (i, j) ∈ {1, 2}2, there exist some
functions b̃kλ

ij which are homogeneous of degree 3 with respect to the compo-
nents of Xλ and such that for all x ∈ Uλ and ξ ∈ R

2, we have

ξiξj =
Y i

λ(x)Y j
λ (x)

|Xλ(x)|2 |ξ|2+
∑

k

b̃kλ
ij (x)

|Xλ(x)|4 ξk(Xλ(x)·ξ) with Yλ
def= X⊥

λ . (7.32)

To prove this identity, we may set, for x ∈ Uλ,

ãij(x) = |Xλ(x)| −2qij(Yλ(x)) with qij(ξ) = ξiξj .

Of course, we have qij(Yλ(x)) − ãij(x)|Xλ(x)|2 = 0, so if we introduce the
matrix Qij associated with the quadratic form qij and
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A(x) def=
1

|Xλ(x)|2

(
X1

λ(x) −X2
λ(x)

X2
λ(x) X1

λ(x)

)
,

then we discover that, owing to TA(x)A(x) = I2/|Xλ(x)|2, we have

TA(x)QijA(x) − ãij(x) TA(x)A(x) =
1

|Xλ(x)|4

(
m11(x) m12(x)

m21(x) 0

)
.

The coefficients m11(x), m12(x), and m21(x) are homogeneous of degree 2
with respect to the components of Xλ. So, applying the above equality to the
vector η = A−1(x)ξ, we find that for all x ∈ Uλ, we have

ξiξj − qij(Yλ(x))
|Xλ(x)|2 |ξ|2 =

∑
k

b̃kλ
ij (x)

|Xλ(x)|4
(
ξk

(
Xλ(x) · ξ

)

with b̃kλ
ij homogeneous of degree 3 with respect to the components of Xλ. This

yields (7.32).
In order to complete the proof of Lemma 7.41, it suffices to construct a

family of smooth functions (φλ)1≤λ≤m satisfying:

(i)
∑

1≤λ≤m

φλ ≡ 1.

(ii) Supp φλ ⊂ Uλ.

(iii) ‖φλ‖Br
∞,∞ ≤ Cm

(supλ ‖Xλ‖Br
∞,∞

I(X)

)
.

Indeed, we can set

bkλ
ij (x) =

b̃kλ
ij

|Xλ(x)|4 φλ and aij(x) =
∑

λ

qij(Yλ(x))
|Xλ(x)|2 φλ.

We therefore construct the family (φλ)1≤λ≤m. First, we introduce a fam-
ily (χε)ε>0 of mollifiers, the sets

Fλ
def= {x ∈ R

2, |Xλ(x)| ≥ I(X)} and F ε
λ

def= {x ∈ R
2, d(x, Fλ) ≤ ε},

and the functions

φε
λ

def= 1
F

ε/2
λ

� χε/2 and φλ = φε
λ

∏
j<λ

(1 − φε
j).

Because R
2 =

⋃
1≤λ≤m Fλ and

1 −
∑

1≤λ≤m

φλ =
∏

1≤λ≤m

(1 − φε
λ),



324 7 Euler System for Perfect Incompressible Fluids

it is not difficult to check that the family (φλ)1≤λ≤m satisfies (i).
Now, if we take ε = (2(I(X))−1 supλ ‖Xλ‖Br

∞,∞ )− 1
r , then the property

(iii) is also satisfied. In addition, for all x ∈ F ε
λ , we have

|Xλ|(x) ≥ I(X) − εr ‖Xi‖Br
∞,∞ ≥ I(X)/2.

Hence, Supp φλ ⊂ F ε
λ ⊂ Uλ and (ii) is verified. ��

7.4.3 Uniform Estimates for Striated Regularity

The basic idea is that the conormal regularity of the vorticity also provides
conormal regularity for the velocity. We shall make this more precise with the
following lemma.

Lemma 7.42. For any r ∈ ]0, 1[ there exists a constant C such that the fol-
lowing estimates hold true:

‖ div(Xω) − TXj ∂jω‖Br−1
∞,∞

≤ C‖X‖Br
∞,∞ ‖ω‖L∞ , (7.33)

‖∂Xv‖Br
∞,∞ ≤ C

(
‖ ∇v‖L∞ ‖X‖Br

∞,∞ + ‖ div(Xω)‖Br−1
∞,∞

)
. (7.34)

Proof. To prove the inequality (7.33) it suffices to use the fact that

div(Xω) − TXj ∂jω = div
(
T ′

ωX
)

+ [∂j , TXj ]ω

and to take advantage of continuity results stated in Chapter 2 for the para-
product and the remainder, and of Lemma 2.99 page 111.

We now turn to the proof of (7.34). The Biot–Savart law states that

∀(i, j) ∈ {1, 2}2, ∂jv
i = −(−Δ)−1∂⊥

i ∂jω with ∂⊥
1 = ∂2 and ∂⊥

2 = −∂1.

Therefore, using Bony decomposition, we get

∂Xvi = T ′
∂jviXj − (−Δ)−1∂⊥

i TXj ∂jω + [(−Δ)−1∂⊥
i , TXj ]∂jω.

Since the multiplier (−Δ)−1∂⊥
i is homogeneous of degree −1, combining

Propositions 2.82 and 2.85, the inequality (7.33), and Lemma 2.99 yields the
inequality (7.34). ��
Proposition 7.43. Let r ∈ ]0, 1[. There exists a constant C such that for
all ν ≥ 0, any smooth vector field v satisfying (NSν) on [0, T ], and any time-
dependent vector field X transported by the flow of v, we have, for all t in [0, T ],

‖ div(Xω)(t)‖Br−1
∞,∞

≤ CeCνt2‖ω0‖L∞ eCV (t)

×
(
(1 + νt) ‖ω0‖L∞ ‖X0‖Br

∞,∞ + ‖ div(X0ω0)‖Br−1
∞,∞

)
, (7.35)

‖X(t)‖Br
∞,∞ ≤ eCV (t)

(
‖X0‖Br

∞,∞ + CteCνt2‖ω0‖L∞
(

‖div(X0ω0)‖Br−1
∞,∞

+ (1 + νt) ‖ω0‖L∞ ‖X0‖Br
∞,∞

))
(7.36)

with V (t)
def
=

∫ t

0

‖∇v(t′)‖L∞ dt′.



7.4 Viscous Vortex Patches 325

Proof. We first consider the evolution equation for X. We have

DtX = ∂Xv with Dt
def= ∂t + v · ∇.

Hence, according to Proposition 3.14 page 133, we have, for some constant C
depending only on r,

‖X(t)‖Br
∞,∞ ≤ eCV (t)

(
‖X0‖Br

∞,∞ +
∫ t

0

e−CV (t′)‖∂Xv‖Br
∞,∞ dt′

)
. (7.37)

The right-hand side may be bounded by taking advantage of the inequal-
ity (7.34). Applying Gronwall’s lemma, we conclude that

‖X(t)‖Br
∞,∞ ≤ eCV (t)

(
‖X0‖Br

∞,∞ + C

∫ t

0

e−CV (t′)‖div(Xω)‖Br−1
∞,∞

dt′
)

.

(7.38)
In order to bound ‖div(Xω)‖Br−1

∞,∞
, we may write an evolution equation

for div(Xω). Since div(Xω) = ∂Xω + ω div X, we have

Dt div(Xω) = Dt∂Xω + Dtω div X + ωDt div X.

Given that

– the vector fields Dt and ∂X commute,
– due to div v = 0, we have Dt div X = 0,
– the vorticity satisfies Dtω = νΔω,

we discover, after a few computations, that

Dt div(Xω) − νΔdiv(Xω) = ν div
(
XΔω − Δ(Xω)

)
.

We write XΔω − Δ(Xω) = F + G with

F
def= [TX , Δ]ω + TΔωX − ΔT ′

ωX and G
def= R(X, Δω).

On the one hand, applying Theorem 3.38 page 162 yields, for all t ∈ [0, T ],

‖ div(Xω)‖L∞
t (Br−1

∞,∞) ≤ CeCV (t)
(

‖ div(X0ω0)‖Br−1
∞,∞

+ (1 + νt)‖F ‖L∞
t (Br−2

∞,∞) + ν‖G‖L̃1
t (Br

∞,∞)

)
(7.39)

for some constant C depending only on r. On the other hand, Propositions 2.82
and 2.85, together with Lemma 2.99 page 111, ensure that

‖F ‖L∞
t (Br−2

∞,∞) ≤ C‖ω‖L∞
t (L∞)‖X‖L∞

t (Br
∞,∞),

‖G‖L̃1
t (Br

∞,∞) ≤ C‖ω‖L̃1
t (B2

∞,∞)‖X‖L∞
t (Br

∞,∞)

for some constant depending only on r.
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As Dtω = νΔω, we have ‖ω(t)‖L∞ ≤ ‖ω0‖L∞ , according to Lemma 7.30.
Furthermore, Theorem 3.38 implies that

ν‖ω‖L̃1
t (B2

∞,∞) ≤ CeCV (t)(1 + νt) ‖ω0‖L∞ .

Therefore, plugging the above inequalities into (7.39), we end up with

‖ div(Xω)‖L∞
t (Br−1

∞,∞) ≤ CeCV (t)

×
(

‖ div(X0ω0)‖Br−1
∞,∞

+ (1 + νt) ‖ω0‖L∞ ‖X‖L∞
t (Br

∞,∞)

)
.

In order to complete the proof, it suffices to insert the inequality (7.38) into
the above inequality. We readily get

e−CV (t)‖ div(Xω)‖L∞
t (Br−1

∞,∞) ≤ C

(
‖ div(X0ω0)‖Br−1

∞,∞

+ (1 + νt) ‖ω0‖L∞

(
‖X0‖Br

∞,∞ +
∫ t

0

e−CV (t′)‖div(Xω)‖Br−1
∞,∞

dt′
))

,

and hence Gronwall’s lemma yields

e−CV (t)‖ div(Xω)‖L∞
t (Br−1

∞,∞) ≤ CeCt(1+νt)‖ω0‖L∞

×
(

‖ div(X0ω0)‖Br−1
∞,∞

+ (1 + νt) ‖ω0‖L∞ ‖X0‖Br
∞,∞

)
.

As t ‖ω0‖L∞ ≤ V (t), we get (7.35).
Finally, plugging the last inequality into (7.38), we get (7.36). This com-

pletes the proof. ��

7.4.4 A Global Convergence Result for Striated Regularity

This subsection is devoted to the proof of Theorem 7.39. Note that since the
initial vorticity is in L2 ∩ L∞, Yudovich’s theorem page 312 provides a global
solution with vorticity in L2 ∩ L∞. However, as explained before, this does
not imply that v is in C0,1. Hence, we shall proceed as follows:

– First, we smooth out the data. From the global existence theory of Sec-
tion 7.2, we thus get a global smooth solution.

– Second, we prove uniform estimates for striated norms of those smooth
solutions.

– Third, we prove convergence to a solution of (NSν) or (E) with initial
data v0.

– Finally, we let ν tend to 0.

For notational convenience, we shall drop the index ν in the first three steps
of the proof and at the same time shall solve indistinctly (NSν) or (E).
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First Step: Construction of Smooth Solutions

For all n ∈ N, the vector field Snv0 has vorticity ωn
0 in L2 and belongs to the

set C ∞
b of smooth bounded functions with bounded derivatives of all orders.

Hence, Theorem 7.25 implies that (E) and (NSν) have a unique global smooth
solution vn with vorticity in L2.

Second Step: Uniform Estimates for Striated Regularity

By definition, the time-dependent vector field Xn
λ transported by the flow ψn

of vn satisfies
Xn

λ (t) ◦ ψn(t) = ∂X0,λ
ψn(t).

Now, it is clear that

∂t∂X0,λ
ψn(t, x) = ∂X0,λ

vn(t, ψn(t, x)) = ∇vn(t, ψn(t, x))∂X0,λ
ψn(t, x),

so Gronwall’s lemma ensures that
∣∣Xn

λ (t)(ψn(t, x))
∣∣±1 ≤ |X0,λ(x)|eV n(t).

Therefore,

I(Xn(t)) ≥ e−V n(t)I(X0) with V n(t) def=
∫ t

0

‖∇vn(t′)‖L∞ dt′. (7.40)

Let Y0 be one of the vector fields of the family (X0,λ)1≤λ≤m. Since vn is
smooth, we have

∂tY
n + vn · ∇Y n = ∂Y nvn.

Hence, according to Proposition 7.43,

‖ div(Y nωn)(t)‖Br−1
∞,∞

≤ C(1 + νt)eCνt2‖ωn
0 ‖L∞ eCV n(t)

×
(

‖ωn
0 ‖L∞ ‖Y0‖Br

∞,∞ + ‖ div(Y0ω
n
0 )‖Br−1

∞,∞

)
,

‖Y n(t)‖Br
∞,∞ ≤ C(1 + νt)eCνt2‖ωn

0 ‖
L∞ eCV n(t)

×
(

‖Y0‖Br
∞,∞ + Ct

(
‖div(Y0ω

n
0 )‖Br−1

∞,∞
+ ‖ωn

0 ‖L∞ ‖Y0‖Br
∞,∞

))
.

We claim that the right-hand side of the above two inequalities may be
bounded independently of n. First, it is clear that ‖Snω0‖L∞ ≤ C ‖ω0‖L∞ .
Next, we have

‖div(Y0 Snω0)‖Br−1
∞,∞

≤ C
(

‖div(Y0ω0)‖Br−1
∞,∞

+ ‖ω0‖L∞ ‖Y0‖Br
∞,∞

)
. (7.41)

Indeed, according to the inequality (7.33),
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‖ div(Y0 Snω0) − TY j
0
∂jSnω0‖Br−1

∞,∞
≤ C‖Y0‖Br

∞,∞ ‖Snω0‖L∞ .

We can now write that

TY j
0
∂jSnω0 = SnTY j

0
∂jω0 + [TY j

0
, Sn]∂jω0.

Again using the inequality (7.33) and the fact that the operator Sn maps
Br−1

∞,∞ to itself with norm independent of n, we see that the first term satisfies

‖SnTY j
0
∂jω0‖Br−1

∞,∞
≤ C

(
‖ div(Y0ω0)‖Br−1

∞,∞
+ ‖ω0‖L∞ ‖Y0‖Br

∞,∞

)
.

Next, according to Proposition 2.10 page 59, we have, for some fixed inte-
ger N0,

[TY j
0
, Sn]∂jω0 =

∑
k≤n+N0

[Sk−1Y
j
0 , Sn]Δk∂jω0.

Resorting to Lemma 2.97 page 110, we discover that
∥∥∥[Sk−1Y

j
0 , Sn]Δk∂jω0

∥∥∥
L∞

≤ C2−n ‖ ∇Sk−1Y0‖L∞ ‖Δk∂jω0‖L∞

≤ C2k−n 2k(1−r)‖Y0‖Br
∞,∞ ‖ω0‖L∞ ,

which completes the proof of (7.41).
So, finally, we find that for any vector Xn

λ and time t ≥ 0, we have

‖ div(Xn
λ ωn)(t)‖Br−1

∞,∞
≤ C(1 + νt)eCνt2‖ωn

0 ‖L∞ eCV n(t)

×
(

‖ω0‖L∞ ‖X0,λ‖Br
∞,∞ + ‖ div(X0,λω0)‖Br−1

∞,∞

)
, (7.42)

‖Xn
λ (t)‖Br

∞,∞ ≤ (1 + νt)eCνt2‖ωn
0 ‖L∞ eCV n(t)

(
‖X0,λ‖Br

∞,∞

+ Ct
(

‖ div(X0,λω0)‖Br−1
∞,∞

+ ‖ω0‖L∞ ‖X0,λ‖Br
∞,∞

))
. (7.43)

In order to complete the proof of our claim, we have to bound V n (or,
rather, ‖∇vn‖L∞ ) independently of n. We have already proven that for any
nonnegative t, the family (Xn

λ (t))1≤λ≤m is Br
∞,∞ and nondegenerate. There-

fore, Theorem 7.40 yields

‖∇vn(t)‖L∞ ≤ C

(
‖ω0‖L2 + ‖ω0‖L∞ log

(
e +

‖ωn(t)‖Cr
Xn(t)

‖ω0‖L∞

))
.

Taking advantage of the definition of the norm ‖ · ‖Cr
Xn(t)

and of the inequal-
ities (7.42) and (7.43), we get, after a few calculations,

‖∇vn(t)‖L∞ ≤ C

(
‖ω0‖L2 + ‖ω0‖L∞ log

(
e + (1 + νt)

‖ω0‖Cr
X0

‖ω0‖L∞

))

+ C
(

‖ω0‖L∞ V n(t) + νt2 ‖ω0‖2
L∞

)
,



7.4 Viscous Vortex Patches 329

so applying Gronwall’s lemma leads to

‖∇vn(t)‖L∞ ≤ C(1+νt)
(

‖ω0‖L2∩L∞ log
(

e +
‖ω0‖Cr

X0

‖ω0‖L∞

))
eC‖ω0‖L∞ t. (7.44)

Together with the inequalities (7.42) and (7.43), this completes the proof of
the global uniform estimates for striated regularity and for ‖∇vn‖L∞ . Finally,
using the fact that

‖ωn(t)‖L2 ≤ C ‖ω0‖L2 and ‖ωn(t)‖L∞ ≤ C ‖ω0‖L∞ ,

together with the inequality (7.24) (which also holds true in the viscous case),
we deduce that (vn)n∈N is bounded in L∞

loc(R
+; L∞). Therefore, the sequence

(vn)n∈N is bounded in L∞
loc(R

+; C0,1).

Third Step: Convergence of Smooth Solutions

We claim that (vn)n∈N is a Cauchy sequence (and thus converges) in any
space L∞

loc(R
+; B−ε

∞,∞) with ε ∈ ]0, 1[. To prove this, we write the evolution
equation for vn − vm. For any (n, m) ∈ N

2 we find that
(
∂t + vn · ∇ − νΔ

)
(vn − vm) = Π(vn − vm, vn + vm) + (vm − vn) · ∇vm.

So, according to Theorem 3.14 page 133,

‖(vn − vm)(t)‖B−ε
∞,∞

≤ eCV n(t)

(
‖(Sn − Sm)v0‖B−ε

∞,∞

+
∫ t

0

e−CV n(t′)
(

‖Π(vn − vm, vn + vm)‖B−ε
∞,∞

+ ‖(vm − vn) · ∇vm‖B−ε
∞,∞

)
dt′

)
.

Now, according to Lemma 7.10 we have

‖Π(vn − vm, vn + vm)‖B−ε
∞,∞

≤ C‖vn − vm‖B−ε
∞,∞

‖vn + vm‖C0,1 ,

and using the (simplified) Bony decomposition and div(vm − vn) = 0, we get

(vm − vn) · ∇vm = T∇vm(vm − vn) + div T ′
vm −vnvm.

We also find that

‖(vm − vn) · ∇vm‖B−ε
∞,∞

≤ C‖vn − vm‖B−ε
∞,∞

‖vm‖C0,1 .

Using Gronwall’s lemma and the uniform bounds of the previous step, it is
now easy to conclude that (vn)n∈N converges to some vector field v in the
space C(R+; B−ε

∞,∞). The details are left to the reader.
As usual, the uniform bounds of the previous step enable us to state that v

satisfies (E) or (NSν), belongs to L∞
loc(R

+; C0,1), and satisfies (7.44). We
can also deduce that the family X(t) remains Br

∞,∞ and nondegenerate for
all t ≥ 0, and that ω(t) is in Cr

X(t).
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Final Step: The Inviscid Limit

On the one hand, since ∇v ∈ L∞
loc(R

+; L∞), applying Theorem 7.34 yields

vν − v → 0 in L∞
loc(R

+; L2).

Because L2(R2) is continuously included in B−1
∞,∞(R2), and vν and v both

belong to the space L∞
loc(R

+; B−1
∞,∞), we thus have

vν → v in L∞
loc(R

+; B−1
∞,∞).

On the other hand, all the bounds which have been stated in the previous
steps are independent of ν for ν going to 0. Hence, we may interpolate with
those bounds and complete the proof of Theorem 7.39. ��

7.4.5 Application to Smooth Vortex Patches

We want to apply Theorem 7.39 to the particular case of smooth vortex
patches. We therefore consider a bounded simply connected domain D0 such
that ∂D0 is a C1,r simple curve. We aim to solve (E) or (NSν) in the case

where the initial velocity v0 has vorticity ω0
def= 1D0 .

Let f0 be a C1,r compactly supported function over R
2 such that, for some

neighborhood V of ∂D0, we have

f −1
0 ({0}) ∩ V = ∂D0 and ∇f0 does not vanish on V.

Because ∇⊥f0 is Cr and has modulus bounded away from 0 on ∂D0, given
any x0 in ∂D0, solving the ordinary differential equation{

∂σγ0(σ) = ∇⊥f0(γ0(σ))
γ0(0) = x0

provides a C1,r parameterization of the curve ∂D0.

Let W be a neighborhood of ∂D0 such that W ⊂⊂ V. Introduce a smooth
function α supported in V and with value 1 on W. We set

X0,1 = ∇⊥f0, X0,2 = (1 − α)∂1, and X0,3 = (1 − α)∂2.

It is obvious that (X0,1, X0,2, X0,3) is a nondegenerate family of Br
∞,∞ vector

fields and that ω0 belongs to Cr
X0

. Therefore, Theorem 7.39 provides global
Lipschitz solutions v and vν for (E) and (NSν) with initial data v0, and
uniform bounds in terms of striated vorticity with respect to the family X(t)
[resp., Xν(t)] transported by the flow ψ of v [resp., ψν of vν ].

Defining Dt
def= ψ(t, D0) and Dt,ν

def= ψν(t, D0), we discover that γ(t) def=

ψt◦γ0 [resp., γν(t) def= ψt,ν ◦γ0] is a parameterization for ∂Dt (resp., ∂Dt,ν). Be-
cause ∂σγ(t) = X1(t, γ(t)) and ∂σγν(t) = X1,ν(t, γν(t)), we can thus conclude
that ∂Dt and ∂Dt,ν are C1,r simple curves and that ∂σγν is in L∞

loc(R
+; C0,r),

uniformly with respect to ν. So, we eventually get the following statement.
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Theorem 7.44. Let D0 be a C1,r simply connected bounded open set of R
2 .

Let ω0
def
= 1D0 and v0 be given by the Biot–Savart law (7.2).

For all ν > 0, the system (NSν) (resp., E) with data v0 then has a unique
solution vν (resp., v) in L∞

loc(R
+; C0,1) and there exists a constant C depending

only on D0 and such that for all t ∈ R
+,

‖∇vν(t)‖L∞ ≤ C(1 + νt)eCt and ‖∇v(t)‖L∞ ≤ CeCt.

Further, for all time, the domain Dt,ν (resp., Dt) transported by the flow ψν(t)
[resp., ψ(t)] of vν (resp., v) remains C1,r, and we can find C1,r parameteri-
zations γ(t) for ∂Dt and γν(t) for ∂Dt,ν such that

∂σγν → ∂σγ in L∞
loc(R

+; C0,r′
) for all r′ < r.

Remark 7.45. By taking advantage of Theorem 3.40 and of the uniform esti-
mate for ∇vν , we deduce that at time t, the vorticity is equal to the charac-
teristic function of the domain ψν(t, D0), up to an error term which decays
as e−ch2/(νt) at distance h from the boundary. More precisely, we have

‖ων(t)‖L2(d(x,Dν,t)>h) ≤ ‖ω0‖L2e− h2
4νt exp(−4(eCt −1))

and

‖ων(t) − 1Dν,t ‖L2(d(x,∂Dν,t)>h)

≤ ‖ω0‖L2 min
{
1, C

( νt

h2

) 1
2
e2(eCt −1)− h2

32νt exp(−4(eCt −1))
}

.
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8

Strichartz Estimates and Applications
to Semilinear Dispersive Equations

Dispersive phenomena often play a crucial role in the study of evolution partial
differential equations. Mathematically, exhibiting dispersion often amounts to
proving a decay estimate for the L∞ norm of the solution at time t in terms
of some (negative) power of t and of the L1 norm of the data.

In many cases, proving these estimates relies on the stationary phase the-
orem and on a (possibly approximate) explicit representation of the solution.
The basic idea is that fast oscillations induce a small average, as may be seen
by performing suitable integrations by parts. As an example, in the case of
the wave equation with constant coefficients, the geometric optics allow the
solutions to be written in terms of oscillating functions, the frequencies of
which grow linearly in time. As a consequence, a polynomial time decay may
be exhibited for suitable norms.

It is now well established that these decay estimates, combined with an
abstract functional analysis argument—the TT � argument—yield a number
of inequalities involving space-time Lebesgue norms. In the last two decades,
these inequalities—the so-called Strichartz estimates—have proven to be of
paramount importance in the study of semilinear or quasilinear Schrödinger
and wave equations.

The purpose of this chapter is to give dispersive estimates for some linear
partial differential equations and to provide a few examples of applications to
solving semilinear problems. Although we shall focus mostly on Schrödinger
and wave equations, the basic dispersive estimates that we derive apply to
a much more general framework, whenever waves propagate in a physical
medium.

The first section of this chapter is devoted to a few basic examples. First,
we study the case of the free transport equation and the Schrödinger equation
where decay inequalities may be proven by means of elementary tools. Next,
we come to the study of oscillatory integrals and (a class of) Fourier integral
operators. Oscillatory integrals arise naturally when proving dispersive esti-
mates for the wave equation, while the L2 boundedness of Fourier integral
operators will be needed in the next chapter.

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 8, c© Springer-Verlag Berlin Heidelberg 2011
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Section 8.2 is devoted to proving Strichartz inequalities for groups of oper-
ators satisfying a suitable decay inequality called a dispersive inequality. As an
application, we prove a global well-posedness result for the cubic Schrödinger
equation in R

2. In the next section, we establish Strichartz estimates for the
wave equation with data in Sobolev spaces. In the following two sections, we
apply those Strichartz estimates to the investigation of some semilinear wave
equations, namely, the quintic and cubic wave equations in R

3 . In the last
section of this chapter, we establish local well-posedness in a suitable Besov
space for a class of semilinear wave equations with quadratic nonlinearity with
respect to the first order space derivatives of the solution. This result will help
us to investigate some quasilinear wave equations in the next chapter.

8.1 Examples of Dispersive Estimates

In this section, we provide a few examples of linear equations, the solutions
of which satisfy a dispersive estimate. We shall study three examples: the
free transport equation, the Schrödinger equation, and the wave equation.
In passing, we will establish decay estimates for oscillatory integrals and the
boundedness in L2 of a class of Fourier integral operators.

8.1.1 The Dispersive Estimate for the Free Transport Equation

In this subsection, we prove basic dispersive estimates for the free transport
equation,

(T )
{

∂tf + v · ∇xf = 0
f|t=0 = f0,

which describes the evolution of the microscopic density f(t, x, v) ∈ R
+ of free

particles which, at time t ∈ R, are located at x ∈ R
d and have speed v ∈ R

d .
The dispersive estimates for (T ) follow from the explicit formula for the

solution, as the solution may be easily computed in terms of the Cauchy
data f0. It is only a matter of integrating along the characteristics.

Proposition 8.1. The solution of the free transport equation (T ) is given by

f(t, x, v) = f0(x − vt, v).

In fact, even though the total mass is preserved, the dispersive effect occurs
for the macroscopic density

ρ(t, x) def=
∫

Rd

f(t, x, v) dv,

as stated in the following proposition.
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Proposition 8.2. If f is a solution of the transport equation (T ), then we
have

‖ρ(t, ·)‖L∞ ≤ 1
|t|d ‖ sup

v′
f0(·, v′)‖L1 .

Proof. For any x, we have, thanks to Proposition 8.1,
∫

Rd

f(t, x, v) dv =
∫

Rd

f0(x − vt, v) dv.

Now, the change of variable y = x − vt leads to the inequalities
∫

Rd

f0(x − vt, v) dv ≤
∫

Rd

sup
v′

f0(x − vt, v′) dv

≤ 1
|t|d

∫
Rd

sup
v′

f0(y, v′) dy,

which means that the macroscopic density ρ decays in L∞, completing the
proof of the proposition. ��

8.1.2 The Dispersive Estimates for the Schrödinger Equation

The linear Schrödinger equation was introduced in the context of quantum
mechanics and takes the form

(S)

{
i∂tu − 1

2
Δu = 0

u|t=0 = u0,

where the unknown complex-valued function u depends on (t, x) ∈ R × R
d.

As we consider initial data (and thus solutions) which are not regular
functions, solutions have to be understood in the weak sense, as introduced in
Chapter 5. More precisely, a distribution u ∈ C(R; S ′(Rd)) is a weak solution
of (S) if it satisfies, for all ϕ in C∞(R; S(Rd)),

∫ t

0

〈
u(t′),

1
2
Δϕ(t′) + i∂tϕ(t′)

〉
dt′ =

〈
u(t), iϕ(t)

〉
−
〈
u0, iϕ(0)

〉
.

By using the Fourier transform, the solution may be expressed in terms of the
Cauchy data. More precisely, we have the following result.

Proposition 8.3. For any u0 ∈ S ′, the Schrödinger equation (S) has a unique
solution u in S(R; S ′). For t �= 0, that solution is of the form

u(t) = F −1
(
eit |ξ|2

2 û0

)
= St � u0 with St(x)

def
=

eid t
|t|

π
4

(2π|t|) d
2
e−i |x|2

2t . (8.1)
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Remark 8.4. The identity F u(t, ξ) = eit |ξ|2
2 û0(ξ) implies the conservation of

the Hs norm. Also, under this identity, it is easy to see that (U(t))t∈R, where
U(t) : u0 	−→ U(t)u0 and U(t)u0 is the solution of (S) at time t, is a one-
parameter group of unitary operators.

Remark 8.5. On the one hand, in the case where the Cauchy data u0 is the
Dirac mass δ0, we get, thanks to (8.1), for any time t �= 0,

u(t) = St,

and therefore for each fixed time t �= 0, u(t) is analytic.

On the other hand, if the Cauchy data is u0(x) def= eia|x|2 , then we get

u
( 1

2a

)
=

( π

ia

) d
2
δ0.

Hence, the support of the solution at time 1/(2a) collapses to a single point,
even though its support is equal to the whole space R

d at time 0. This phe-
nomenon is due to the infinite speed of the propagation for the Schrödinger
equation. Also, note that the regularity of the solution depends on the behav-
ior of the Cauchy data at infinity.

Proof of Proposition 8.3. Let u(t) = F −1
(
eit |ξ|2

2 û0(ξ)
)
. For ϕ ∈ C ∞(R; S),

define

Iϕ(t) def=
∫ t

0

〈
u(t′),

1
2
Δϕ(t′) + i∂tϕ(t′)

〉
dt′.

By the definition of u, we have

Iϕ(t) =
∫ t

0

〈
F −1

(
eit′ |ξ|2

2 û0(ξ)
)

,
1
2
Δϕ(t′) + i∂tϕ(t′)

〉
dt′

=
∫ t

0

〈
eit′ |ξ|2

2 û0(ξ), F −1

(
1
2
Δϕ(t′) + i∂tϕ(t′)

)〉
dt′

=
∫ t

0

(2π)−d

〈
û0(ξ), eit′ |ξ|2

2

(
− 1

2
|ξ|2ϕ̂(t′, −ξ) + i∂tϕ̂(t′, −ξ)

)〉
dt′.

Because the distribution û0 may be interchanged with the integral, we get

Iϕ(t) = (2π)−d

〈
û0,

∫ t

0

eit′ |ξ|2
2

(
− 1

2
|ξ|2ϕ̂(t′, −ξ) + i∂tϕ̂(t′, −ξ)

)
dt′

〉
.

As we have

∂t′

(
eit′ |ξ|2

2 iϕ̂(t′, −ξ)
)

= eit′ |ξ|2
2

(
− 1

2
|ξ|2ϕ̂(t′, −ξ) + i∂t′ ϕ̂(t′, −ξ)

)
,

we get that
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∫ t

0

eit′ |ξ|2
2

(
− 1

2
|ξ|2ϕ̂(t′, −ξ) + i∂t′ ϕ̂(t′, −ξ)

)
dt′ = ieit |ξ|2

2 ϕ̂(t, −ξ) − iϕ̂(0, −ξ).

Thus,

Iϕ(t) = i(2π)−d〈û0, e
it |ξ|2

2 ϕ̂(t, −ξ)〉 − i(2π)−d〈û0, ϕ̂(0, −ξ)〉

= i〈û(t), F −1ϕ(t)〉 − i〈û0, F −1ϕ(0)〉

= i〈u(t), ϕ(t)〉 − i〈u0, ϕ(0)〉.

This proves that u is a weak solution of the Schrödinger equation. Unique-
ness in C(R; S ′) may be proven by taking advantage of the duality method
introduced in Chapter 4. Since its adaptation to the Schrödinger equation is
straightforward, we leave the details to the reader.

To complete the proof, it remains to observe that, according to Proposi-
tion 1.28 page 23, we have

F −1
(
eit |ξ|2

2

)
(x) =

1

(−2iπt)
d
2
e−i |x|2

2t ,

from which follows the desired formula for St. ��
From the above proposition and convolution inequalities, we readily get the
following proposition.

Proposition 8.6. If u is a solution of the linear Schrödinger equation (S),
then we have, for t �= 0,

‖u(t)‖L∞ ≤ 1

(2π|t|) d
2

‖u0‖L1 .

Remark 8.7. Proposition 8.3, together with the conservation of the L2 norm
and the interpolation between Lp spaces (see Corollary 1.13 page 12), implies
that

∀t ∈ R \{0} , ∀p ∈ [2, ∞] , ‖u(t)‖Lp ≤ 1

(2π|t|)d( 1
2 − 1

p )
‖u0‖Lp′ .

8.1.3 Integral of Oscillating Functions

Proving dispersive estimates for the wave equation requires more elaborate
techniques that we will now introduce. As we will see in the next subsection,
we shall have to estimate integrals of the form

Iψ(τ) =
∫

Rd

eiτΦ(ξ)ψ(ξ) dξ,

where τ must be understood as a large parameter.
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Notation. Throughout this section, ψ will denote a function in D(Rd) and Φ a
real-valued smooth function on a neighborhood of the support of ψ. Moreover,
the constants which will appear will be generically denoted by C and will
depend on a finite number of derivatives of ψ and on a finite number of
derivatives of order greater than or equal to 2 of the phase function Φ.

We shall distinguish the case where ∇Φ does not vanish (the nonstationary
phase case) from the case where it may vanish (the stationary phase case).

Theorem 8.8. Consider a compact set K of R
d and assume that a con-

stant c0 ∈ ]0, 1] exists such that

∀ξ ∈ K , | ∇Φ(ξ)| ≥ c0.

Then, for any integer N and any function ψ in the set DK of smooth functions
supported in K, a constant C exists such that

∣∣Iψ(τ)
∣∣ ≤ CN

(c0τ)N
·

Proof. Note that changing Φ to Φ/c0 and τ to c0τ reduces the proof to the
case c0 = 1 (we leave the reader to check that after this change of function,
the dependence with respect to c0 is harmless since c0 ≤ 1). Assume, then,
that c0 = 1. It is then simply a matter of using the oscillations to produce
decay. This will be achieved by means of suitable integrations by parts. In-
deed, consider the following first order differential operator, defined for any
function a in DK :

La
def= −i

d∑
j=1

∂jΦ

| ∇Φ|2 ∂ja.

This operator obviously satisfies

LeiτΦ = τeiτΦ,

hence, by repeated integrations by parts, we get that

Iψ(τ) =
1

τN

∫
Rd

eiτΦ((tL)Nψ)(ξ) dξ.

We now compute tL for a ∈ DK . We have

tLa = −La + i
ΔΦ

| ∇Φ|2 a − 2i
∑

1≤j,k≤d

∂jΦ ∂kΦ ∂j∂kΦ

| ∇Φ|4 a.

Thus, it is obvious that

(tLψ)(ξ) = f1,1(ξ, ∇Φ(ξ)) + f1,2(ξ, ∇Φ(ξ)),

where the function f1,j(ξ, θ) belongs to D(K × R
d \{0}), is homogeneous of

degree −j with respect to θ, and satisfies
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∀(α, β) ∈ (Nd)2 , sup
(ξ,θ)∈K×Sd−1

∣∣∣∂α
ξ ∂β

θ f1,j(ξ, θ)
∣∣∣ ≤ Cj,α,β .

As the coefficients of the differential operator L and all their derivatives are
bounded on K, an obvious (and omitted) induction implies that

(tL)Nψ(ξ) =
N∑

j=0

fN,j(ξ, ∇Φ(ξ)),

where the function fN,j(ξ, θ) belongs to D(K × R
d \{0}), is homogeneous of

degree −N − j in θ, and satisfies

∀(α, β) ∈ (Nd)2 , sup
(ξ,θ)∈K×Sd−1

∣∣∣∂α
ξ ∂β

θ fN,j(ξ, θ)
∣∣∣ ≤ CN,j,α,β .

This proves the theorem. ��

We will now consider the case where the gradient of the phase function may
vanish.

Theorem 8.9. Consider a compact K of R
d and assume that a constant c0 ∈

]0, 1] exists such that
∀ξ ∈ K , | ∇Φ(ξ)| ≤ c0.

Then, for any integer N and any function ψ in DK , there exists a constant CN

such that ∣∣Iψ(τ)
∣∣ ≤ CN

∫
K

dξ

(1 + c0τ | ∇Φ(ξ)|2)N
·

Proof. As in the preceding theorem, it suffices to consider the case c0 = 1,
and we may perform suitable integrations by parts to pinpoint the decay with
respect to τ. Consider the first order differential operator

Lτ
def=

1
1 + τ | ∇Φ|2 (Id −i∇Φ · ∂) with ∇Φ · ∂ =

d∑
j=1

∂jΦ ∂j . (8.2)

This operator obviously satisfies

LτeiτΦ = eiτΦ.

Now, by integration by parts, we get that

Iψ(τ) =
∫

Rd

eiτΦ(tLτ )Nψ(ξ) dξ.

Hence, to complete the proof of the theorem, it suffices to demonstrate that
for any integer N , a constant C exists such that

∣∣∣(tLτ )Nψ(ξ)
∣∣∣ ≤ C

(1 + τ | ∇Φ(ξ)|2)N
· (8.3)

In order to do this, we define the following class of functions.
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Definition 8.10. Given an integer N , we denote by SN the set of smooth
functions on K × R

d such that

∀(α, β) ∈ N
d × N

d , ∃C / ∀(ξ, θ) ∈ K × R
d , |∂α

ξ ∂β
θ f(ξ, θ)| ≤ C(1 + |θ|2)

N − |β|
2 .

It is obvious that the space SN is increasing with N and that the product of
a function in SN1 by a function in SN2 is a function in SN1+N2 . Moreover, we
have ∂β

θ (SN ) ⊂ SN − |β|.
It is clear that the following lemma implies the inequality (8.3).

Lemma 8.11. For any N in N, a function fN exists in S−2N such that

(tLτ )Nψ(ξ) = fN

(
ξ, τ

1
2 ∇Φ(ξ)

)
for all ξ ∈ K.

Proof. By noting that S0 contains the space DK and by an immediate induc-
tion, it is enough to prove that if f belongs to SM , then

tLτ

(
f(ξ, τ

1
2 ∇Φ(ξ))

)
= g(ξ, τ

1
2 ∇Φ(ξ)) with g ∈ SM −2. (8.4)

For any a ∈ DK , we have

tLτa(ξ) = i
∇Φ(ξ) · ∇a(ξ)
1 + τ | ∇Φ(ξ)|2 + σ

(
ξ, τ

1
2 ∇Φ(ξ)

)
a(ξ) (8.5)

with σ(ξ, θ) =
iΔΦ(ξ) + 1

1 + |θ|2 − 2i
D2Φ(θ, θ)
(1 + |θ|2)2 ,

where, from now on, we agree that

D2Φ(θ1, θ2)
def=

∑
j,k

θj
1θ

k
2∂2

jkΦ.

It is obvious that σ ∈ S−2. By using the chain rule, we get

∇Φ · ∇f(ξ, τ
1
2 ∇Φ(ξ)) =

(
∇Φ · ∇ξf + D2Φ(θ, ∇θf)

)
(ξ, τ

1
2 ∇Φ(ξ)).

Thus, we have the relation (8.4) with

g(ξ, θ) =
i

1 + |θ|2
(

∇Φ(ξ) · ∇ξf(ξ, θ)+D2Φ(θ, ∇θf(ξ, θ))
)

+(σf)(ξ, θ). (8.6)

The lemma is proved and thus so is Theorem 8.9. ��

Combining the above two theorems, we get the following statement.

Theorem 8.12. Let ψ be in D(Rd) and Φ be a real-valued smooth function
defined on a neighborhood of the support of ψ. Fix some positive real num-
ber c0 ∈ ]0, 1]. Then, for any couple (N, N ′) of positive real numbers, there
exist two constants, CN and CN ′ , such that



8.1 Examples of Dispersive Estimates 343

∣∣Iψ(τ)
∣∣ ≤ CN

(c0τ)N
+ CN ′

∫ 1{ξ∈Rd , |∇Φ(ξ)|≤c0}

(1 + c0τ | ∇Φ|2)N ′ dξ.

Further, the constants CN and CN ′ depend only on N, N ′, a finite number of
derivatives of ψ, and a finite number of derivatives of order greater than or
equal to 2 of Φ.

Proof. Let χ be a smooth function supported in the unit ball and with value 1
for |x| ≤ 1/2. We may write

Iψ(τ) = I1(τ) + I2(τ) with

⎧⎪⎪⎨
⎪⎪⎩

I1(τ) =
∫

eiτΦ(ξ)

(
1 − χ

(∇Φ(ξ)
c0

))
ψ(ξ) dξ

I2(τ) =
∫

eiτΦ(ξ)χ
(∇Φ(ξ)

c0

)
ψ(ξ) dξ.

Applying Theorem 8.8 to I1 and Theorem 8.9 to I2 gives the result. ��

In the one-dimensional case, we can prove more accurate estimates. More
precisely, we have the following theorem.

Theorem 8.13. Let a be a function in the closure of a smooth compactly
supported function of one real variable with respect to the norm ‖a′ ‖L1(R).
Let Φ be a C2 function on R such that a positive constant c0 exists, where

∀x ∈ Supp a , Φ′ ′(x) ≥ c0.

The integral defined by

I(t)
def
=

∫
R

eitΦ(x)a(x)dx

then satisfies

|I(t)| ≤ C0

t
1
2

‖a′ ‖L1 with C0
def
=

1
2

+
π

2

( 1
c0

+ 3
)
.

Proof. Using integration by parts with respect to the first order differential
operator

(Ltb)(x) def=
1

1 + t(Φ′(x))2
(
b(x) − iΦ′(x)b′(x)

)
,

we get

I(t) = I1(t) + I2(t) with

I1(t)
def=

∫
R

eitΦ(x) iΦ′(x)
1 + t(Φ′(x))2

a′(x) dx and

I2(t)
def=

∫
R

eitΦ(x)

1 + t(Φ′(x))2
(
1 + iΦ′ ′(x) − 2i

t(Φ′(x))2Φ′ ′(x)
1 + t(Φ′(x))2

)
a(x) dx.
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As
∣∣∣ iΦ′(x)
1 + t(Φ′(x))2

∣∣∣≤ 1
2t

1
2

, we get

I1(t) ≤ 1
2t

1
2

‖a′ ‖L1(R). (8.7)

We now bound I2. As Φ′ ′(x) ≥ c0, we have

1
1 + t(Φ′(x))2

≤ 1
c0

Φ′ ′(x)
1 + t(Φ′(x))2

·

Thus,

|I2(t)| ≤
( 1

c0
+ 3

)∫
R

Φ′ ′(x)
1 + t(Φ′(x))2

|a(x)| dx.

For any positive ε, we have |a(x)| ≤
(
a(x)2 + ε2

) 1
2 . We infer that

|I2(t)| ≤
( 1

c0
+ 3

)∫
R

Φ′ ′(x)
1 + t(Φ′(x))2

(
a(x)2 + ε2

) 1
2 dx.

By integration by parts, we deduce that

|I2(t)| ≤
( 1

c0
+ 3

) 1
t

1
2

∫
R

arctan
(
t

1
2 Φ′(x)

)
a′(x)

a(x)
(a(x)2 + ε2)

1
2

dx

≤ C0 − 1
t

1
2

∫
R

|a′(x)| dx

≤ C0 − 1
t

1
2

‖a′ ‖L1(R).

Together with (8.7), this completes the proof of the theorem.

8.1.4 Dispersive Estimates for the Wave Equation

The wave equation is a simplified model for the propagation of waves in a
physical medium. In this subsection, we shall only consider the case of an
isotropic medium so that the corresponding system reduces (after suitable
normalization) to

(W )

{
�u = 0

(u, ∂tu)|t=0 = (u0, u1).

Here, � denotes the wave operator ∂2
t − Δ. The unknown function u = u(t, x)

is real-valued and depends only on (t, x) ∈ R × R
d .

In the one-dimensional case d = 1, it may be easily shown that the solution
of (W ) is given (in the smooth case) by d’Alembert’s formula,

u(t, x) =
1
2

(
u0(x + t) + u0(x − t) +

∫ x+t

x−t

u1(y) dy

)
,

so we cannot expect the wave operator to have any (global) dispersive property
or smoothing effect.
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In the case of dimension d ≥ 2 that we are going to study in the rest of this
section, the situation is rather different. Easy computations in Fourier vari-
ables (similar to those which were carried out in the proof of Proposition 8.3)
show that we have the following result.

Proposition 8.14. If u0 and u1 are tempered distributions, then the unique
solution of the linear wave equation (W ) in C(R; S ′) is of the form

u(t) = U+(t)γ+ + U −(t)γ− with

F
(
U ±(t)f

)
(ξ)

def
= e±it|ξ|f̂(ξ) and γ̂±(ξ)

def
=

1
2

(
û0(ξ) ± 1

i|ξ| û1(ξ)
)
.

Combining the above formula with Theorem 8.12 will enable us to prove the
following dispersive estimate.

Proposition 8.15. Assume that d ≥ 2. Let C def
= {ξ ∈ R

d r ≤ |ξ| ≤ R} for
some positive r and R such that r < R. A constant C then exists such that
if û0 and û1 are supported in the annulus C, then u, the associate solution of
the wave equation (W ), satisfies

‖u(t)‖L∞ ≤ C

|t| d−1
2

(‖u0‖L1 + ‖u1‖L1) for all t �= 0.

Remark 8.16. As the support of the Fourier transform is preserved by the flow
of the constant coefficients wave equation (a property which is no longer true
in the case of variable coefficients), the Fourier transform of the solution u is,
at each time t, supported in the annulus C.

Proof of Proposition 8.15. Due to the time reversibility of the wave equa-
tion, it suffices to prove the result for positive times. Let ϕ be a function
in D(Rd \{0}) with value 1 near C. According to Proposition 8.14, we then
have

u(t) = K+(t, ·) � γ̃+ + K−(t, ·) � γ̃− with

γ̃± def= F −1(ϕγ̂±) and K±(t, x) def=
∫

Rd

ei(x|ξ)e±it|ξ|ϕ(ξ) dξ.

We will temporarily assume the inequality

‖K±(t, ·)‖L∞ ≤ C

t
d−1
2

for t > 0. (8.8)

We then immediately get

‖u(t)‖L∞ ≤ C

t
d−1
2

(
‖γ̃+‖L1 + ‖γ̃− ‖L1

)
.

Now, because
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γ̃± =
1
2
(u0 ∓ ih � u1),

where the L1 function h stands for the inverse Fourier transform of | · |−1ϕ,
we get the desired inequality for ‖u(t)‖L∞ .

In order to complete the proof, we establish the inequality (8.8). As the L∞

norm is invariant under dilation, it suffices to estimate ‖K(t, t · )‖L∞ . Now,
Theorem 8.12 implies that

|K±(t, tx)| ≤ C

t
d−1
2

+ C

∫
Cx

(
1 + t

∣∣∣x ± ξ

|ξ|

∣∣∣2
)−d

dξ, where

Cx
def=

{
ξ, ∈ C /

∣∣∣x ± ξ

|ξ|

∣∣∣ ≤ 1
2

}
.

If Cx is not empty, then x �= 0. Hence, we can write the following orthogonal
decomposition for any ξ ∈ Cx:

ξ = ζ1 + ζ ′ with ζ1 =
(
ξ
∣∣∣ x

|x|

) x

|x| and ζ ′ = ξ −
(
ξ
∣∣∣ x

|x|

) x

|x| ·

Knowing that ζ ′ is orthogonal to the vector x, we infer that
∣∣∣∣x ± ξ

|ξ|

∣∣∣∣ ≥ |ζ ′ |
|ξ| ·

Therefore, using the fact that r ≤ |ξ| ≤ R for any ξ ∈ C, we get

|K±(t, tx)| ≤ C

t
d−1
2

+ C

∫
C

1

(1 + t|ζ ′ |2)d
dζ ′ dζ1.

The change of variables ζ̃ = t
1
2 ζ ′ gives (8.8). This completes the proof of the

proposition. ��

8.1.5 The L2 Boundedness of Some Fourier Integral Operators

In this subsection, we prove the L2 boundedness of a particular case of Fourier
integral operators. The proof relies on the techniques of Section 8.1.3 and will
be useful in Chapter 9.

Consider a real-valued smooth function Φ over a neighborhood of R
d ×A,

where A is a compact subset of R
d such that for any ξ in A,

x 	−→ ∂ξΦ(x, ξ)

is a global 1-diffeomorphism of R
d, in the sense given on page 41 (with a

constant C independent of ξ), and is such that for any � ≥ 2,

N�(Φ) def= sup
(x,ξ)∈R

d ×A
|α|≤�

|∂α
ξ Φ(x, ξ)| < ∞.



8.1 Examples of Dispersive Estimates 347

Theorem 8.17. Let Φ be a phase function satisfying the above hypotheses.
Let σ be a smooth function supported in R

d ×A. Consider the operator I
defined on S(Rd) by

I(ψ)(x)
def
=

∫
A

eiΦ(x,ξ)σ(x, ξ)ψ̂(ξ) dξ.

Then, I extends to a bounded linear operator on L2, and there exists a con-
stant C, depending only on N�(Φ) and the supremum of a certain number of
derivatives of σ, such that

‖ I(ψ)‖L2 ≤ C‖ψ‖L2 for all ψ ∈ L2. (8.9)

Proof. Arguing by density, it suffices to prove that (8.9) holds true for all ψ
in S. In that case we may write that

I(ψ)(x) =
∫

Rd

K(x, y)ψ(y) dy with K(x, y) def=
∫

A

ei(Φ(x,ξ)−(y|ξ))σ(x, ξ) dξ.

We now define the first order differential operator L by

La
def=

a − i(∂ξΦ(x, ξ) − y) · ∂ξa

1 + |∂ξΦ(x, ξ) − y|2 ·

As Lei(Φ(x,ξ)−(y|ξ)) = ei(Φ(x,ξ)−(y|ξ)) we have, for any integer M ,

|K(x, y)| =
∣∣∣
∫

ei(Φ(x,ξ)−(y|ξ))(tLMσ)(x, y, ξ) dξ
∣∣∣

≤
∫ ∣∣(tLMσ)(x, y, ξ)

∣∣ dξ.

We will temporarily assume the following inequality:

∣∣(tLMσ)(x, y, ξ)
∣∣ ≤ CM (Φ, σ)

1

(1 + |∂ξΦ(x, ξ) − y|2)M
2

(8.10)

with CM (Φ, σ) def= CMNM (Φ) sup
|α|≤M

‖∂α
ξ σ‖L∞(Rd ×A).

Take M = d + 1 and define CΦ,σ
def= Cd+1(Φ, σ). For any ϕ in L2(Rd) we

then have

∣∣(I(ψ)|ϕ(x)
)∣∣ ≤

∫
Rd ×Rd

|K(x, y)| |ψ(y)| |ϕ(x)| dx dy

≤ CΦ,σ

∫
Rd ×Rd ×A

1

(1 + |∂ξΦ(x, ξ) − y|2) d+1
2

|ψ(y)| |ϕ(x)| dx dy dξ.

Applying the Cauchy–Schwarz inequality for the measure
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(1 + |∂ξΦ(x, ξ) − y|2)−( d+1
2 )dx dy dξ

gives

∣∣∣(I(ψ)|ϕ(x)
)∣∣∣2 ≤ C2

Φ,σ

(∫ |ϕ(x)|2

(1 + |∂ξΦ(x, ξ) − y|2) d+1
2

dx dy dξ

)

×
(∫ |ψ(y)|2

(1 + |∂ξΦ(x, ξ) − y|2) d+1
2

dx dy dξ

)
.

Integrating with respect to (y, ξ) (recall that integration with respect to ξ is
performed over the compact set A) and then in x in the first integral gives

∣∣∣(I(ψ)|ϕ(x)
)∣∣∣2 ≤ C2

Φ,σ ‖ϕ‖2
L2

(∫ |ψ(y)|2

(1 + |∂ξΦ(x, ξ) − y|2) d+1
2

dx dy dξ

)
.

Making the change of variable x′ = Φ̃(x, ξ) def= ∂ξΦ(x, ξ) and integrating first
in x′, we conclude that the last integral may be bounded by C‖ψ‖2

L2 , which
completes the proof of the theorem.

In order to prove the inequality (8.10), we may argue by induction. We
claim that

(AM )
(tLMσ)(x, y, ξ) = fM (x, ξ, ∂xΦ(x, ξ − y)) with

|∂α
ξ ∂β

θ fM (x, ξ, θ)| ≤ NM+|α|(Φ) sup|α|≤M+|α| ‖∂α
ξ σ‖L∞(Rd ×A).

We begin by proving (A1). We have

tLa =
a + i(∂ξΦ(x, ξ) − y) · ∂ξa

1 + |∂ξΦ(x, ξ) − y|2 − a div L. (8.11)

This implies that

(tLσ)(x, y, ξ) = f1(x, ξ, ∂ξΦ(x, ξ) − y) with

f1(x, ξ, θ) def=
1 + iθ · ∂ξσ

1 + |θ|2 − σ dL and

dL
def= i

ΔξΦ

1 + |θ|2 − 2i
D2Φ(θ, θ)
(1 + |θ|2)2 ·

Now, assume (AM ). Observing that div L(x, y, ξ) = dL(x, ξ, ∂ξΦ(x, ξ) − y) and
using (8.11), we get

(tLM+1)σ(x, y, ξ) =
1 + i(∂xΦ(x, ξ) − y) · ∂ξ

(
fM (x, ξ, ∂ξΦ(x, ξ) − y)

)
1 + |∂ξΦ(x, ξ) − y|2

+ (fMdL)(x, ξ, ∂ξΦ(x, ξ) − y).

Leibniz’s formula then implies that
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(tLM+1)σ(x, y, ξ) =
1 + i(∂xΦ(x, ξ) − y) · (∂ξfM )(x, ξ, ∂ξΦ(x, ξ) − y)

1 + |∂ξΦ(x, ξ) − y|2

+
∑
j,k

1 + i(∂ξj Φ(x, ξ) − yj)∂ξj ∂ξk
Φ(∂θk

fM )(x, ξ, ∂xΦ(x, ξ) − y)
1 + |∂ξΦ(x, ξ) − y|2

+ (fMdL)(x, ξ, ∂ξΦ(x, ξ) − y).

Thus, (AM ) is satisfied with

fM+1(x, ξ, θ) =
1 + iθ · ∂ξfM

1 + |θ|2 +
∑
j,k

∂ξj ∂ξk
θj∂θkfM

1 + |θ|2 − dLfM .

This completes the proof of the theorem. ��

8.2 Bilinear Methods

This section describes the so-called TT � argument, which is the standard
method for converting the dispersive estimates (presented in the previous
section) into inequalities involving suitable space-time Lebesgue norms of the
solution. At the end of this section, those inequalities—the so-called Strichartz
estimates—will be used to solve the cubic semilinear Schrödinger equation in
dimension two. More applications will be given at the end of the chapter and
in Chapter 10.

Throughout this section, we agree that the notation ‖ · ‖Lq(Lr) stands for
the norm in Lq(R; Lr(Rd)). We now state the “abstract” Strichartz estimates.

Theorem 8.18. Let (U(t))t∈R be a bounded family of continuous operators
on L2(Rd) such that for some positive real numbers σ and C0, we have

‖U(t)U�(t′)f ‖L∞ ≤ C0

|t − t′ |σ ‖f ‖L1 . (8.12)

Then, for any (q, r) ∈ [2, ∞]2 such that

1
q

+
σ

r
=

σ

2
and (q, r, σ) �= (2, ∞, 1) , (8.13)

we have, for some positive constant C,

‖U(t)u0‖Lq(Lr) ≤ C‖u0‖L2 , (8.14)∥∥∥
∫

R

U�(t)f(t) dt
∥∥∥

L2
≤ C‖f ‖Lq′ (Lr′ ). (8.15)

Moreover, for any (q1, r1) and (q2, r2) satisfying (8.13), we have
∥∥∥
∫

R

U(t)U�(t′)f(t′) dt′
∥∥∥

Lq1 (Lr1 )
≤ C‖f ‖

Lq′
2 (Lr′

2 )
, (8.16)

∥∥∥
∫

t′<t

U(t)U�(t′)f(t′) dt′
∥∥∥

Lq1 (Lr1 )
≤ C‖f ‖

Lq′
2 (Lr′

2 )
. (8.17)
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8.2.1 The Duality Method and the TT � Argument

The proof of Theorem 8.18 is based on a duality argument and on the Hardy–
Littlewood–Sobolev inequality stated in Theorem 1.7 page 6.

We first note that

‖U(t)u0‖Lq
t (Lr

x) = sup
ϕ∈Bq,r

∣∣∣∣
∫

R × Rd

U(t)u0(x)ϕ(t, x) dt dx

∣∣∣∣
= sup

ϕ∈Bq,r

∣∣∣∣
∫

R

(U(t)u0|ϕ(t))L2 dt

∣∣∣∣,
where

Bq,r
def=

{
ϕ ∈ D(R1+d; C) / ‖ϕ‖Lq′ (Lr′ ) ≤ 1

}
.

By the definition of the adjoint operator, we have

‖U(t)u0‖Lq
t (Lr

x) = sup
ϕ∈Bq,r

∣∣∣∣
(
u0

∣∣∣
∫

R

U�(t)ϕ(t) dt
)

L2

∣∣∣∣.
By virtue of the Cauchy–Schwarz inequality, we deduce that

‖U(t)u0‖Lq
t (Lr

x) ≤ ‖u0‖L2 sup
ϕ∈Bq,r

∥∥∥
∫

R

U�(t)ϕ(t) dt
∥∥∥

L2
. (8.18)

Therefore, the inequality (8.15) implies the inequality (8.14). In order to
prove (8.15), we write that

∥∥∥
∫

R

U�(t)ϕ(t) dt
∥∥∥2

L2
=

∫
R2

(
U�(t′)ϕ(t′)

∣∣U�(t)ϕ(t)
)
L2 dt′ dt

=
∫

R2

(
U(t)U�(t′)ϕ(t′)

∣∣ϕ(t)
)
L2 dt′ dt

=
∫

R2

〈
U(t)U�(t′)ϕ(t′), ϕ(t)

〉
dt′ dt. (8.19)

Observe that if we denote by T the solution operator

T : u0 	−→
[
t 	→ U(t)u0

]
,

then
T � : ϕ 	−→

∫
U�(t)ϕ(t) dt.

Moreover, TT ∗ coincides with the operator

ϕ 	−→
[
t 	→

∫
R

U(t)U�(t′)ϕ(t′) dt′
]
.

The so-called TT � argument is the observation that the inequality (8.15) [and
thus (8.14)] is a consequence of the inequality (8.16): This is just a matter of
taking (q1, r1) = (q2, r2) = (q, r).
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In fact, in order to prove both inequalities (8.16) and (8.17), it will be
convenient to introduce the bilinear operator

Tχ(f, g) def=
∫

R2
χ(t, t′)〈U(t)U�(t′)f(t′), g(t)〉 dt′ dt, (8.20)

where χ is a measurable function on R
2 with values in the unit disc of C.

In effect, taking appropriate functions χ and arguing by duality, we see
that those two inequalities are consequences of the bilinear estimate

|Tχ(f, g)| ≤ C‖f ‖
Lq′

1 (Lr′
1 )

‖g‖
Lq′

2 (Lr′
2 )

(8.21)

for all couples (qj , rj) in [2, ∞]2 satisfying the relation (8.13). The rest of the
this section is devoted to the proof of the inequality (8.21).

8.2.2 Strichartz Estimates: The Case q > 2

We first consider the case where (q1, r1) = (q2, r2) and q1 > 2. As (U(t))t∈R

is a bounded family of operators on L2, we get, thanks to the dispersive
estimate (8.12) and the linear interpolation result of Corollary 1.13 page 12,

∀p ∈ [2, ∞] , ‖U(t)U�(t′)f ‖Lp ≤ C

|t − t′ |σ(1− 2
p )

‖f ‖Lp′ . (8.22)

Therefore, taking p = r1, using relation (8.13), and applying the Hölder in-
equality gives

|Tχ(f, g)| ≤ C

∫
R2

1

|t − t′ |
2

q1

‖f(t′)‖
Lr′

1
‖g(t)‖

Lr′
1
dt′ dt.

Because q1 > 2, the Hardy–Littlewood–Sobolev inequality page 6 gives

|Tχ(f, g)| ≤ C‖f ‖
Lq′

1 (Lr′
1 )

‖g‖
Lq′

1 (Lr′
1 )

, (8.23)

which is the inequality (8.21) in the case where (q1, r1) = (q2, r2) and q1 > 2.
As pointed out above, this is enough to conclude that (8.15) holds in the case
q > 2.

Next, writing that

Tχ(f, g) =
∫

R2
χ(t, t′) (U�(t′)f(t′)|U�(t)g(t))L2 dt′ dt

=
∫

R

(∫
R

U�(t′)ft(t′) dt′
∣∣∣U�(t)g(t)

)
L2

dt,

where ft(t′) def= χ(t, t′)f(t′), we get, according to the Cauchy–Schwarz in-
equality and the fact that U�(t) is uniformly bounded on L2,
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|Tχ(f, g)| ≤
(

sup
t

∥∥∥
∫

R

U�(t′)ft(t′) dt′
∥∥∥

L2

)∫
R

‖g(t)‖L2 dt. (8.24)

From (8.15), we infer that for any admissible couple (q1, r1) with q1 > 2,

|Tχ(f, g)| ≤ C‖f ‖
Lq′

1 (Lr′
1 )

‖g‖L1(L2).

Interpolating between the above inequality and the inequality (8.23) [i.e.,
applying Corollary 1.13 page 12 with (q′

1, r
′
1) and (1, 2)], we get the inequal-

ity (8.21) for any pair of admissible couples (qj , rj) such that 2 < q1 ≤ q2.
Now, in the above computations, it is clear that the roles of f and g may
be exchanged. Hence, by the same token, we get the inequality in the case
2 < q2 ≤ q1.

8.2.3 Strichartz Estimates: The Endpoint Case q = 2

It suffices to prove that if σ > 1, then we have
∥∥∥
∫

R

U�(t)ϕ(t) dt
∥∥∥2

L2
≤ C‖ϕ‖2

L2(Lr′ )
with r =

2σ

σ − 1
· (8.25)

Indeed, the above inequality clearly implies the inequality (8.15) [and
thus (8.14)]. Next, again using the inequality (8.24) and arguing exactly as in
the case q > 2, it is easy to get the inequalities (8.16) and (8.17).

To prove the inequality (8.25), we shall show that the operator Tχ in-
troduced in (8.20) is continuous on

(
L2(R; Lr′

(Rd))
)2. This result may be

achieved by proceeding along the lines of the method that we used to prove
the Hardy–Littlewood–Sobolev inequality. Indeed, let us decompose the bilin-
ear functional Tχ into

Tχ(f, g) =
∑
j∈Z

Tj(f, g) with

Tj(f, g) def=
∫

R2
χj(t, t′)〈U(t)U�(t′)f(t), g(t′)〉 dt dt′

and χj(t, t′) def= 12j ≤ |t−t′ |<2j+1(t)χ(t, t′).
The key to the proof is the following lemma.

Lemma 8.19. There exists a neighborhood V of (r, r) such that for any (a, b)
in V and any integer j ∈ Z, we have

|Tj(f, g)| ≤ C2−jβ(a,b)‖f ‖L2(La′ )‖g‖L2(Lb′ ) with β(a, b) = σ − 1 − σ

a
− σ

b
·

Proof. Using a dilation of size 2j reduces the proof to the case j = 0. It thus
suffices to show that
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|T0(f, g)| ≤ C‖f ‖L2(La′ )‖g‖L2(Lb′ ). (8.26)

First, using (8.22), for any a ≥ 2, we get

|T0(f, g)| ≤ C

∫
1≤ |t−t′ |≤2

‖U(t)U�(t′)f(t′)‖La ‖g(t)‖La′ dt′ dt

≤ C

∫
1≤ |t−t′ |≤2

‖f(t′)‖La′ ‖g(t)‖La′ dt′ dt,

which implies, thanks to Young’s inequality (in time), that for any a ≥ 2,

|T0(f, g)| ≤ C‖f ‖L2(La′ )‖g‖L2(La′ ). (8.27)

We now prove that for any a ∈ [2, r[, the following estimate holds:

|T0(f, g)| ≤ C‖f ‖L2(La′ )‖g‖L2(L2). (8.28)

Let ft(t′) def= 11≤ |t−t′ |<2(t′)χ(t, t′)f(t′). By the definition of T0, we have

T0(f, g) =
∫

R

(∫
R

U�(t′)ft(t′) dt′
∣∣∣U�(t)g(t)

)
L2

dt.

From the Cauchy–Schwarz inequality, we then infer that

|T0(f, g)| ≤ C

∫
R

∥∥∥∥
∫

R

U�(t′)ft(t′) dt′
∥∥∥∥

L2

‖g(t)‖L2 dt.

Applying the estimate (8.15) with q(a) and a ∈ [2, r[ satisfying (8.13)1 leads
to

|T0(f, g)| ≤ C

∫
R

‖ft‖Lq(a)′ (La′ )‖g(t)‖L2 dt.

We define Fa′ (t) def= ‖f(t)‖La′ . Because χ ≤ 1, we get, by the definition of ft,

|T0(f, g)| ≤ C

∫
R

(∫
1≤ |t−t′ |<2

Fa′ (t′)q(a)′
dt′

) 1
q(a)′

‖g(t)‖L2 dt

≤ C

∫
R

(
1{1≤ |τ |<2} � F

q(a)′

a′

) 1
q(a)′

(t)‖g(t)‖L2 dt.

Thus, by the Cauchy–Schwarz inequality, we get

|T0(f, g)| ≤ C
∥∥∥1{1≤ |τ |<2} � F

q(a)′

a′

∥∥∥
1

q(a)′

L

2
q(a)′
t

‖g‖L2(L2).

1 Note that this implies that q(a) is greater than 2, which is the case proved in
Section 8.2.2.
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As q(a)′ < 2 and 1{1≤ |τ |<2} ∈ L1, Young’s inequality implies that
∥∥∥1{1≤ |τ |<2} � F

q(a)′

a′

∥∥∥
L

2
q(a)′
t

≤ C‖Fa′ ‖q(a)′

L2
t

.

Thus, the inequality (8.28) is proved. Of course, as f and g play a symmetric
role, similar arguments lead to

|T0(f, g)| ≤ C‖f ‖L2(L2)‖g‖L2(Lb′ ) for any b ∈ [2, r[. (8.29)

Taking advantage of the bilinear interpolation result stated in Proposition 1.10
page 10, we conclude that

|T0(f, g)| ≤ C‖f ‖L2(La′ )‖g‖L2(Lb′ )

whenever (1/a′, 1/b′) is in the convex hull of
([

1
2
,

1
r′

[
×
{

1
2

})⋃({
1
2

}
×
[
1
2
,

1
r′

[)⋃{
(γ, γ) / γ ∈

[
1
2
, 1
]}

,

which is obviously a neighborhood of (1/r′, 1/r′). Lemma 8.19 is thus proved.
��

Completion of the proof of Theorem 8.18. We shall use the atomic decompo-
sition of f(t) and g(t) defined in Section 1.1.2 page 7. Writing

f(t, x) =
∑
k∈Z

ck(t)fk(t, x) and g(t′, x) =
∑
�∈Z

d�(t′)g�(t′, x),

and knowing that

σ − 1 =
2σ

r
,

we infer that for any (a, b) in V ,

|Tj(ckfk, d�g�)| ≤ C‖ck ‖L2(R)‖d�‖L2(R)2−jβ(a,b)2−k( 1
r′ − 1

a′ )2−�( 1
r′ − 1

b′ )

≤ C‖ck ‖L2(R)‖d�‖L2(R)2
(−jσ+k)( 1

r − 1
a )2(−jσ+�)( 1

r − 1
b ).

Choosing a and b such that
∣∣∣∣1r − 1

a

∣∣∣∣ =
∣∣∣∣1r − 1

b

∣∣∣∣ = 2ε,

(−jσ + k)
(

1
r

− 1
a

)
< 0, and (−jσ + �)

(
1
r

− 1
b

)
< 0

for some suitably small ε, we then get

|Tj(fk, g�)| ≤ C‖ck ‖L2(R)‖d�‖L2(R)2−2ε|jσ−k|2−2ε|jσ−�|

≤ C‖ck ‖L2(R)‖d�‖L2(R)2−ε|jσ−k|2−ε|k−�|.
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This gives

|T (f, g)| ≤ C
∑
j,k,�

‖ck ‖L2(R)‖d�‖L2(R)2−ε|jσ−k|2−ε|k−�|

≤ C
∑
k,�

‖ck ‖L2(R)‖d�‖L2(R)2−ε|k−�|.

Using Young’s inequality for series, we deduce that

|T (f, g)| ≤ C
(∑

k

‖ck ‖2
L2(R)

) 1
2
(∑

�

‖d�‖2
L2(R)

) 1
2

≤ C
(∫

R

‖(ck(t))k ‖2
�2 dt

) 1
2
(∫

R

‖(d�(t))�‖2
�2 dt

) 1
2
.

The fact that r′ < 2 implies that ‖(ck(t))k ‖�2 ≤ ‖(ck(t))k ‖�r′ . Owing to the
properties of the atomic decomposition, we thus get

|T (f, g)| ≤ C
(∫

R

‖(ck(t))k ‖2
�r′ dt

) 1
2
(∫

R

‖(d�(t))k ‖2
�r′ dt

) 1
2

≤ C‖f ‖L2(Lr′ )‖g‖L2(Lr′ ). (8.30)

Taking f = g = ϕ, we get the inequality (8.25), from which follows Theo-
rem 8.18 in the endpoint case.

8.2.4 Application to the Cubic Semilinear Schrödinger Equation

As an application of the results of the previous section, we here solve the
initial boundary value problem for the cubic semilinear Schrödinger equation
in R

2:

(NLS3)

{
i∂tu − 1

2
Δu = P3(u, u)

u|t=0 = u0,

where P3 is some given homogeneous polynomial of degree 3.

Theorem 8.20. There exists a constant c such that for any initial data u0

in L2(R2) satisfying ‖u0‖L2 ≤ c, the system (NLS3) has a unique solution u
in the space L∞(R; L2(R2)) ∩ L3(R; L6(R2)).

Remark 8.21. We will first look at the scaling properties of the equation

(NLS3). If u is a solution of (NLS3), then uλ(t, x) def= λu(λ2t, λx) is also
a solution of the same equation. In the family of Sobolev spaces, L2(R2) is
the only invariant space.

Proof of Theorem 8.20. Let Q be the nonlinear functional defined by
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{
i∂tQ(u) − 1

2
ΔQ(u) = P3(u, u)

Q(u)|t=0 = 0.

According to Theorem 8.18 and Proposition 8.6, this functional continuously
maps L3(R; L6(R2)) into L∞(R; L2(R2)) ∩ L3(R; L6(R2)). Indeed, using the
fact that the group (U(t))t∈R defined in Remark 8.4 is unitary, together with
Duhamel’s formula, we may write

Q(u)(t) =
∫ t

0

U(t − t′)P3(u(t′), u(t′)) dt′.

The inequality (8.17) leads to

‖Q(u)‖L3(R;L6(R2)) ≤ C‖P3(u, u)‖L1(R;L2(R2))

≤ C‖u‖3
L3(R;L6(R2)).

As Q(u) − Q(v) satisfies
(
i∂t +

1
2
Δ
)
(Q(u) − Q(v)) = P3(u, u) − P3(v, v),

we get, again using the inequality (8.17),

‖Q(u) − Q(v)‖L∞(R;L2(R2))∩L3(R;L6(R2)) ≤ C‖u − v‖L3(R;L6(R2))

×
(

‖u‖2
L3(R;L6(R2)) + ‖v‖2

L3(R;L6(R2))

)
. (8.31)

It is now obvious that u is a solution of (NLS3) if and only if it is a fixed
point of the map

F (u) def= U(t)u0 + Q(u).

Applying Theorem 8.18 and the estimate (8.31) with v = 0, we get that

‖F (u)‖L3(R;L6) ≤ C‖u0‖L2 + C‖u‖3
L3(R;L6).

Thus, if 8C2‖u0‖2
L2 ≤ 1, then the ball B(0, 2C‖u0‖L2) with center 0 and

radius 2C‖u0‖L2 in the Banach space L3(R; L6(R2)) is invariant with respect
to the map F . Again using the inequality (8.31), we get, for any u and v
in B(0, 2C‖u0‖L2),

‖F (u) − F (v)‖L3(R;L6) ≤ 8C3‖u0‖2
L2 ‖u − v‖L3(R;L6).

Thus, if, in addition,

8C3‖u0‖2
L2 ≤ 1

2
,

then Picard’s fixed point theorem implies that a unique solution u exists in
some neighborhood of 0 in L3(R; L6). Clearly, the inequality (8.31) (local-
ized on a sufficiently small time interval) implies that uniqueness holds true
in L3(R; L6) without any smallness condition.
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Finally, the energy estimate entails that this solution belongs to L∞(R; L2).
Indeed, multiplying the equation (NLS3) by u, integrating over R

2, and then
taking the real part, we discover that

1
2

d

dt
‖u‖2

L2 = Im

∫
uP3(u, u) dx,

from which it follows, for all t ∈ R, that

‖u(t)‖L2 ≤ ‖u0‖L2 + C

∣∣∣∣
∫ t

0

‖u‖3
L6 dτ

∣∣∣∣.
This completes the proof of the theorem. ��
We end this subsection with a contraction mapping lemma, a generalization
of the one stated on page 207.

Lemma 8.22. Let X and Y be two Banach spaces such that Y is continuously
included in X, and let L be a continuous linear map from X to X which also
continuously maps Y into Y and satisfies

‖L‖L(X) < 1 and ‖L‖ L(Y ) < 1.

Consider a finite, increasing family of integers (mj)1≤j≤N such that m1 ≥ 2
and a family (Bj)1≤j≤N of operators from Xmj into X which also map Y mj

into Y and are such that for all � ∈ {1, . . . , mj },
{

X −→ X
x 	−→ Bj(x1, . . . , x�−1, x, x�+1, . . . , xmj )

is linear or antilinear. Assume, in addition, that for any j ∈ {1, . . . , N },

‖Bj(x1, . . . , xmj )‖X ≤ cj

mj∏
m=1

‖xm‖X and

‖Bj(y1, . . . , ymj )‖Y ≤ cj min
1≤m≤mj

‖ym‖Y

∏
m′ 	=m

‖ym′ ‖X .

If x0 belongs to Y and satisfies ‖x0‖Y ≤ α0 with

α0
def
= min

1≤j≤N

(
1 − max{ ‖L‖ L(X), ‖L‖ L(Y )}

4(N + 1)mjAmj −1cj

) 1
mj −1

and

A
def
=

N + 1
1 − max{ ‖L‖L(X), ‖L‖ L(Y )}

,

then the equation

x = x0 + Lx +
N∑

j=1

Bj(x, . . . , x)

has a unique solution in the ball with center 0 and radius 2α0 in X, which
also belongs to Y .
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Proof. Consider the classical iterative scheme

xn+1 = x0 + L(xn) +
N∑

j=1

Bj(xn, . . . , xn).

We have

‖xn+1‖X ≤ ‖x0‖X + ‖L‖L(X)‖xn‖X +
N∑

j=1

cj ‖xn‖mj

X .

Assume that for any n′ ≤ n, we have ‖xn′ ‖X ≤ A‖x0‖X . Then,

‖xn+1‖X ≤ ‖x0‖X

(
1 + A‖L‖L(X) + A

N∑
j=1

Amj −1cj ‖x0‖mj −1
X

)
.

Thus, if ‖x0‖X ≤ α with

α
def= min

1≤j≤N

(
(1 − ‖L‖ L(X))

cj(N + 1)Amj −1

) 1
mj −1

,

then ‖xn+1‖X ≤ A‖x0‖X . We will now prove that if ‖x0‖X is sufficiently
small, then (xn)n∈N is a Cauchy sequence in both X and Y . We have

xn+1 − xn = L(xn) − L(xn−1) +
N∑

j=1

Bj(xn, . . . , xn) − Bj(xn−1, . . . , xn−1).

For each j, the difference Bj(xn, . . . , xn) − Bj(xn−1, . . . , xn−1) is the sum
of mj terms of the form Bj(xn, . . . , xn, xn − xn−1, . . . , xn−1, . . . , xn−1). This
gives

‖xn+1 − xn‖X ≤ ‖xn − xn−1‖X

(
‖L‖L(X) +

N∑
j=1

cjmjA
mj −1‖x0‖mj −1

X

)
.

Thus, if

‖x0‖X ≤ α′ def= min
1≤j≤N

(
(1 − ‖L‖ L(X))

(N + 1)mjAmj −1cj

) 1
mj −1

,

then (xn)n∈N is a Cauchy sequence in X. Now, using the estimate involving
the space Y , we get that if

‖x0‖Y ≤ α0
def= min

1≤j≤N

(
(1 − max{ ‖L‖ L(X)), ‖L‖L(Y )})

(N + 1)mj2mj −1cj

) 1
mj −1

,

then (xn)n∈N is also a Cauchy sequence in Y . The uniqueness is then obvious
and the lemma is proved. ��
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8.3 Strichartz Estimates for the Wave Equation

We now come to some applications and refinements of the Strichartz estimates
for the linear wave equation. Those estimates turn out to be of particular im-
portance for the study of semilinear wave equations (see Sections 8.4 and 8.5).
For simplicity, we shall focus on inequalities pertaining to the interval [0, T [
for some given T in ]0, ∞]. It goes without saying that similar results may be
proven for any time interval since the generic constant C that we shall use
below does not depend on T.

In the rest of this chapter and in Chapter 9, we adopt the notation

∂
def= (∂x1 , . . . , ∂xd

), ∇ def= (∂t, ∂x1 , . . . , ∂xd
), and ∂0

def= ∂t,

which is commonly used for semilinear and quasilinear wave equations (and,
in particular, for the Einstein equations in relativity theory). Note that, here,
the meaning of the operator ∇ is different from in the other parts of this book
as it also involves the first order time derivative.

8.3.1 The Basic Strichartz Estimate

We first introduce the following definition.

Definition 8.23. We will say that a pair (q, r) in [2, ∞]2 is wave admissible
if there exists some r̃ in [2, r] such that

2
q

+
d − 1

r̃
=

d − 1
2

with (q, r̃, d) �= (2, ∞, 3). (8.32)

The main result of this subsection is the following.

Theorem 8.24. Assume that the space dimension d is greater than or equal
to 2. For any wave admissible pairs (q1, r1) and (q2, r2), a constant C exists
such that for any j in Z,

‖∇Δ̇ju‖L
q1
T (Lr1 ) ≤ C2jμ1 ‖Δ̇j ∇u(0)‖L2 + C2jμ12 ‖Δ̇j�u‖

L
q′
2

T (Lr′
2 )

(8.33)

with

μ1
def
= d

(
1
2

− 1
r1

)
− 1

q1
and μ12 = d

(
1 − 1

r1
− 1

r2

)
− 1

q1
− 1

q2
· (8.34)

Proof. The solution u of the linear Cauchy problem (W ) can be written as u =
v + w, where v is the solution of the homogeneous wave equation

{
∂2

t v − Δv = 0

(v, ∂tv)|t=0 = (u0, u1),

and w is the solution of the nonhomogeneous wave equation
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{
∂2

t w − Δw = f
def= �u

(w, ∂tw)|t=0 = (0, 0).

Using the notation introduced in Proposition 8.14 and Duhamel’s principle,
we can write, for all t ∈ [0, T ],

v(t) = U+(t)γ+ + U −(t)γ−,

w(t) =
∫ t

0

(
U+(t − t′)f+(t′) + U −(t − t′)f−(t′)

)
dt′

with f̂±(t′, ξ) = ± 1
2i|ξ| f̂(t′, ξ).

From Bernstein’s inequality, Proposition 8.15, and Theorem 8.18, we infer
that for any couple (qj , r̃j) satisfying (8.32), we have

‖Δ̇0∇u‖L
q1
T (Lr̃1 ) ≤ C

(
‖Δ̇0∇u(0)‖L2 + ‖Δ̇0f ‖

L
q′
2

T (Lr̃′
2 )

)
.

Since r1 ≥ r̃1 and r′
2 ≤ r̃′

2, we deduce, using Bernstein’s inequality, that

‖Δ̇0∇u‖L
q1
T (Lr1 ) ≤ C

(
‖Δ̇0∇u(0)‖L2 + ‖Δ̇0f ‖

L
q′
2

T (Lr′
2 )

)
.

This gives the result for j = 0. The result for all j ∈ Z follows by means of an
obvious rescaling. ��

The two simple corollaries that we state next will prove to be very useful in
the next sections.

Corollary 8.25. For any wave admissible pairs (qj , rj) and any real σ, a
constant C exists such that, using the notation of Theorem 8.24,

‖∇u‖L
q1
T (Ḃσ

r1,2)
≤ C

(
‖ ∇u(0)‖Ḣσ+μ1 + ‖�u‖

L
q′
2

T (Ḃ
σ+μ12
r′
2,2

)

)
. (8.35)

Proof. Thanks to Theorem 8.24, we have, for any j in Z,

2jσ ‖Δ̇j ∇u‖L
q1
T (Lr1 ) ≤ C2j(σ+μ1)‖Δ̇j ∇u(0)‖L2 + C2j(σ+μ12)‖Δ̇j�u‖

L
q′
2

T (Lr′
2 )

.

Taking the �2(Z) norm of both sides, we get

(∑
j∈Z

22jσ ‖Δ̇j ∇u‖2
L

q1
T (Lr1 )

) 1
2

≤ C

(
‖ ∇u(0)‖Ḣσ+μ1

+
(∑

j∈Z

22j(σ+μ12)‖Δ̇j�u‖2

L
q′
2

T (Lr′
2 )

) 1
2
)

.

As q1 ≥ 2 and q′
2 ≤ 2, the Minkowski inequality implies the theorem. ��
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Remark 8.26. Note that the “natural” norms which appear are the ones which
were introduced in Definition 2.67 page 98. For instance, as a by-product of
the proof of Corollary 8.25, we have the (slightly more accurate) inequality

‖∇u‖L̃
q1
T (Ḃσ

r1,2)
≤ C

(
‖ ∇u(0)‖Ḣσ+μ1 + ‖�u‖

L̃
q′
2

T (Ḃ
σ+μ12
r′
2,2

)

)
(8.36)

whenever (q1, r1) and (q2, r2) are wave admissible pairs.

The following corollary is particularly useful.

Corollary 8.27. For any wave admissible pair (q, r), a constant C exists such
that

‖u‖Lq
T (Lr) ≤ C

(
‖∇u(0)‖Ḣμ−1 + ‖�u‖L1

T (Ḣμ−1)

)
with μ = d

(1
2

− 1
r

)
− 1

q
·

Proof. Applying Corollary 8.25 with (q2, r2) = (∞, 2) and σ = −1, we get

‖u‖Lq
T (Ḃ0

r,2)
≤ C

(
‖ ∇u(0)‖Ḣμ−1 + ‖�u‖L1

T (Ḣμ−1)

)
.

Theorem 2.40 page 79 implies the result. ��

Remark 8.28. The term 1/q in the definition of the index μ may be interpreted
as a gain of 1/q derivative compared with the Sobolev embedding.

Corollary 8.29. For any wave admissible pairs (q1, r1) and (q2, r2), and
any μ such that

μ = d
(1

2
− 1

r1

)
− 1

q1
and d

(
1 − 1

r1
− 1

r2

)
= 1 +

1
q1

+
1
q2

,

a constant C exists such that

‖u‖L
q1
T (Lr1 ) ≤ C

(
‖ ∇u(0)‖Ḣμ−1 + ‖�u‖

L
q′
2

T (Lr′
2 )

)
. (8.37)

Proof. Applying Corollary 8.25 with σ = −1, we get that

‖u‖L
q1
T (Ḃ0

r1,2)
≤ C

(
‖ ∇u(0)‖Ḣμ−1 + ‖�u‖

L
q′
2

T (Ḃ0
r′
2,2

)

)
.

Theorem 2.40 page 79 implies the result. ��

In dimension three, the endpoint estimate [i.e., the control of the L2(L∞)
norm] for solutions of the Cauchy problem (W ) turns out to be false. However,
the following logarithmic estimate is available.

Theorem 8.30. Assume that the dimension d is equal to 3. Let C be an an-
nulus. There exists a constant C such that for any positive real numbers λ and
T, and any function u such that for any t, the support of F u(t, ·) is included
in λC, we have

‖u‖L2
T (L∞) ≤ C (log(e + λT ))

1
2

(
‖ ∇u(0)‖L2 + ‖�u‖L1

T (L2)

)
. (8.38)
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Proof. The proof relies on the TT � argument in a rather simple way, starting

as in the proof of Theorem 8.18. Defining U(t)γ def= F −1(eit|ξ|)γ̂(ξ), we have

‖U(t)γ‖L2([0,T ];L∞) ≤ ‖γ‖L2 sup
∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥

L2
,

where the supremum is taken over the functions ϕ with ‖ϕ‖L2
T (L1) ≤ 1 and

such that for each t, the support of F ϕ(t, ·) is included in λC. Using a dilation
of size λ, we then observe that it is enough to prove the inequality in the
case where λ = 1. As previously, we write, using the fact that U is a unitary
operator,

∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥2

L2
=

(∫ T

0

U(t′)ϕ(t′) dt′
∣∣∣
∫ T

0

U(t)ϕ(t) dt
)

L2

=
∫

[0,T ]2

(
U(t − t′)ϕ(t′)

∣∣ϕ(t)
)
L2 dt′ dt.

Thanks to Proposition 8.15 and because Supp ϕ̂(t, ·) ⊂ C, we have

‖U(t − t′)ϕ(t)‖L∞ ≤ C

|t − t′ | ‖ϕ(t)‖L1 ,

‖U(t − t′)ϕ(t)‖L∞ ≤ C‖U(t − t′)ϕ(t)‖L2 = C‖ϕ(t)‖L2 ≤ C ′ ‖ϕ(t)‖L1 .

Therefore,

∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥2

L2
≤ C

∫
[0,T ]2

1
1 + |t − t′ | ‖ϕ(t)‖L1 ‖ϕ(t′)‖L1 dt′ dt

≤ C log(e + T )‖ϕ‖2
L2([0,T ];L1).

Thus, Theorem 8.30 is proved. ��

8.3.2 The Refined Strichartz Estimate

In some situations (which we shall encounter later in the study of nonlin-
ear dispersive equations), the standard Strichartz estimates are not accurate
enough to control the nonlinearity. In this subsection, we will give some refined
Strichartz inequalities.

Theorem 8.31. Let u be a function on R × R
d such that for any t, the support

of the Fourier transform of u(t, ·) is included in some ball B(ξj , h) with |ξj | ∈
[2j−2, 2j+2] and h ≤ |ξj |/2. Then, for any wave admissible couple (q, r), we
have

‖∇u‖Lq(Lr) ≤ C2jμh
1
q (‖ ∇u(0)‖L2 + ‖�u‖L1(L2)) with μ = d

(1
2

− 1
r

)
− 1

q
·
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Proof. By virtue of Theorem 8.18 page 349, dilation arguments, and Duhamel’s
principle, the theorem reduces to the following proposition. ��

Proposition 8.32. Let ξ0 in R
d be such that |ξ0| ∈ [1/4, 4]. A constant C

exists such that for any h ∈ ]0, |ξ0|/2] and any γ ∈ L1, the Fourier transform
of which is supported in the ball with center ξ0 and radius h, we have

∀t > 0 , ‖ F −1
(
e±it|ξ|γ̂

)
‖L∞ ≤ C min

{ h

t
d−1
2

,hd
}

‖γ‖L1 .

Proof. We shall follow the idea of the proof of Proposition 8.15. It is obvious
that under the hypothesis of Proposition 8.32, we can write

u(t) =
∑

±
K±(t, h, ·) � γ̃± with

γ̃± def= F −1(ϕ(ξ)γ̂±(ξ)) and

K±(t, h, x) def=
∫

Rd

ei(x|ξ)±t|ξ|ψ
(ξ − ξ0

h

)
dξ,

where ϕ ∈ D(Rd \ {0}) has value 1 near the annulus {ξ ∈ R
d / 1/4 ≤ |ξ| ≤ 4},

and ψ is a function in D(Rd) with value 1 near the unit ball.
First, we note that we obviously have

‖K±(t, h, ·)‖L∞ ≤ Chd. (8.39)

Therefore, along the same lines as the proof of Proposition 8.15, it is enough
to prove that the kernel K± satisfies

‖K±(t, h, ·)‖L∞ ≤ Ch

t
d−1
2

· (8.40)

Note that the inequality (8.39) implies that

‖K±(t, h, ·)‖L∞ ≤ Ch

t
d−1
2

for th2 ≤ 1. (8.41)

In the case where th2 ≥ 1, we shall proceed as in the proof of Theorem 8.12,
except that we will have to control the dependency with respect to h. In order
to do so, we introduce the following definition.

Definition 8.33. Let Ω be an open subset of R
d × R

� such that

∀h ∈ ]0, 1],
∣∣Ωh

∣∣ ≤ 1 with Ωh
def
= {ξ ∈ R

d / (ξ, h) ∈ Ω}.

Let D̃(Ω) be the set of functions ψ from Ω to C such that for any h ∈ ΠR�(Ω),
where ΠR� denotes the projection of Ω on R

�, the map

ξ 	−→ ψ(ξ, h)
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belongs to D(Ωh) and satisfies, for all k ∈ N,

‖ψ‖k,D̃(Ω)

def
= sup

|α|≤k
h∈]0,1]

‖(h∂ξ)αψ(ξ, h)‖L∞(Ω) < ∞.

We first consider the nonstationary part of the integral which is described by
the following lemma.

Lemma 8.34. Assume that

∀(ξ, h) ∈ Ω , | ∇Φ(ξ)| ≥ c0h with c0 > 0.

Then, for any integer N , an integer k and a constant C exist such that
∣∣∣
∫

Rd

eitΦ(ξ)ψ(ξ, h) dξ
∣∣∣ ≤ C

(|t|h2)N
‖ψ‖k,D̃(Ω)

∣∣Ωh

∣∣

for any t �= 0 and positive h.

Proof. Exactly as in the proof of Theorem 8.8 page 340, we shall consider the
first order differential operator

L def= −i

d∑
j=1

∂jΦ

| ∇Φ|2 ∂j ,

which obviously satisfies
L
(
eitΦ

)
= t LeitΦ.

From repeated integration by parts, we then infer that

I(t, h) def=
∫

Rd

eitΦ(ξ)ψ(ξ, h) dξ

=
1
tN

∫
Rd

eitΦ(ξ)((tL)Nψ)(ξ, h) dξ.

We now observe that

tLa = −La − (div L)a with div L def= −i
ΔΦ

| ∇Φ|2 + 2i
D2Φ(∇Φ, ∇Φ)

| ∇Φ|4 ·

For any ψ ∈ D̃(Ω), we write

tLψ = − 1
h2

(
d∑

j=1

h−1∂jΦ h∂jψ

|h−1∇Φ|2 − iψ

(
ΔΦ

|h−1∇Φ|2 − 2D2Φ(h−1∇Φ, h−1∇Φ)
|h−1∇Φ|4

))
·

Recall that on the support of ψ, we have |h−1∇Φ| ≥ c0. Hence, for any
integer k′, there exist an integer k and a constant C such that
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‖tLψ‖�,D̃(Ω) ≤
C‖ψ‖k,D̃(Ω)

h2
·

An obvious (and omitted) induction then implies that

‖(tL)Nψ‖L∞(Ω) ≤ C

h2N
·

This proves the lemma. ��

In the case where | ∇Φ| ≤ c0h, we use the method of the proof of Theorem 8.9
page 341.

Lemma 8.35. Assume that

∀(ξ, h) ∈ Ω , | ∇Φ(ξ)| ≤ c0h.

Then, for any integer N , a constant C and an integer k exist such that

∀ψ ∈ D̃(Ω) ,
∣∣∣
∫

Rd

eitΦ(ξ)ψ(ξ, h) dξ
∣∣∣ ≤ C‖ψ‖k,D̃(Ω)

∫
Ωh

1
(1 + t| ∇Φ(ξ)|2)N

dξ.

Proof. We use the differential operator Lt introduced in (8.2) page 341:

Lta =
a

1 + t| ∇Φ|2 − i

d∑
j=1

∂jΦ∂ja

1 + t| ∇Φ|2 ·

It is clear that Lt(eitΦ) = eitΦ. Using repeated integration by parts, we get
∫

Rd

eitΦ(ξ)ψ(ξ, h) dξ =
∫

Rd

eitΦ(ξ)(tLt)Nψ(ξ, h) dξ.

We now state the equivalent of Definition 8.10 page 342 in the present context.

Definition 8.36. Let Ω be a domain of R
d × R

� and N a real number.
We denote by SN

sc the set of smooth functions f on Ω × R
d such that for

any (α, β) ∈ N
d × N

d, a constant C exists such that

sup
(ξ,h)∈Ω

|(h∂ξ)α∂β
θ f(ξ, h, θ)| ≤ C(1 + |θ|2)

N − |β|
2 .

We shall now prove that if f is in SM
sc , then

tLt

(
f(ξ, h, t

1
2 ∇Φ(ξ))

)
= g(ξ, h, t

1
2 ∇Φ(ξ)) with g ∈ SM −2

sc . (8.42)

In order to do this, we recall the formula (8.5) page 342:

tLta = i
∇Φ(ξ) · ∇a(ξ)

1 + t| ∇Φ|2 + σ(ξ, t
1
2 ∇Φ)a(ξ) with

σ(ξ, θ) =
iΔΦ(ξ) + 1

1 + |θ|2 − 2iD2Φξ(θ, θ)
(1 + |θ|2)2 ·
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The main point to check here is that if f ∈ SM , then

∂ξj Φ(ξ)∂ξj f(ξ, h, θ)
1 + |θ|2 ∈ SM −2. (8.43)

Leibniz’s formula implies that

(h∂ξ)α∂β
θ

(
∂ξj Φ(ξ)∂ξj f(ξ, h, θ)

1 + |θ|2

)
=

∑
α′ ≤α
β′ ≤β

Cα′

α Cβ′

β (h∂ξ)α′
∂ξj Φ(ξ)

× (h∂ξ)α−α′
∂ξj ∂

β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)
·

Because we have | ∇Φ(ξ)| ≤ c0h for any (ξ, h) ∈ Ω, we get
∣∣∣∣∂ξj Φ(ξ)(h∂ξ)α∂ξj ∂

β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)∣∣∣∣
≤ Ch

∣∣∣∣(h∂ξ)α∂ξj ∂
β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)∣∣∣∣·

Thus,
∣∣∣∣∂ξj Φ(ξ)(h∂ξ)α∂ξj ∂

β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)∣∣∣∣ ≤ C(1 + |θ|2)
M −2− |β|

2 .

If α′ �= 0, then
∣∣∣∣(h∂ξ)α′

∂ξj Φ(ξ)(h∂ξ)α−α′
∂ξj ∂

β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)∣∣∣∣
≤ Ch

(
sup

2≤ |α′ ′ |≤|α|+1

‖∂α′ ′

ξ Φ‖L∞

)∣∣∣∣(h∂ξ)α−α′
∂ξj ∂

β′

θ f(ξ, h, θ)∂β−β′

θ

(
1

1 + |θ|2

)∣∣∣∣·

This completes the proof of the assertion (8.42) and thus of Lemma 8.35. ��

We can now give an analog of Theorem 8.12.

Lemma 8.37. Let ψ ∈ D̃(Ω) and

I(t, h) =
∫

eitΦ(ξ)ψ(ξ, h) dξ.

Then, for any couple (N, N ′) of positive real numbers, there exist two positive
constants, CN and CN ′ , such that

|I(t, h)| ≤ CN

(th2)N

∣∣Ωh

∣∣ +
∫

Ωh,Φ

CN ′

(1 + t| ∇Φ(ξ)|2)N ′ dξ,

where Ωh,Φ denotes the set of points ξ ∈ Ωh such that | ∇Φ(ξ)| ≤ c0h.
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Proof. It is only a matter of decomposing I(t, h) into

I(t, h) =
∫

eitΦ(ξ)(1 − χ)
(∇Φ(ξ)

h

)
ψ(ξ, h) dξ +

∫
eitΦ(ξ)χ

(∇Φ(ξ)
h

)
ψ(ξ, h) dξ,

where χ is a function in D(Rd) with value 1 near the unit ball, and applying
Lemmas 8.34 and 8.35. ��

Completion of the proof of Theorem 8.31. Applying Lemma 8.37 with

Φ(ξ) = x ± ξ

|ξ|
,

we get

|K±(t, h, tx)| ≤ C

(th2)
d−1
2

hd +
∫

Ωh,Φ

C ′
N

(1 + t| ∇Φ(ξ)|2)N
dξ ·

As in the proof of Proposition 8.15, we decompose ξ into

ξ = ζ1 + ζ ′ with ζ1 =
(
ξ
∣∣∣ x

|x|

) x

|x| and ζ ′ = ξ −
(
ξ
∣∣∣ x

|x|

) x

|x| ·

As Ωh,Φ ⊂ B(ξ0, h), ζ1 varies in an interval Ih of length 2h. Thus,
∫

Ωh,Φ

1
(1 + t| ∇Φ(ξ)|2)N

dξ ≤
∫

Ih

(∫
Rd−1

dζ ′

1 + t|ζ ′ |2

)
dζ1

≤ Ch

t
d−1
2

·

This amounts to proving Theorem 8.31. ��

This refined Strichartz estimate leads to the following endpoint logarithmic
Strichartz estimate in dimension d ≥ 3.

Theorem 8.38. A constant C exists such that for any T , any h ≤ 1, and any
function u such that for any time t, the support of û(t, ·) is included in a ball
with radius h and in the annulus C, we have

‖u‖L2
T (L∞) ≤ C

(
hd−2 log(e + T )

) 1
2
(

‖ ∇u(0)‖L2 + ‖�u‖L1
T (L2)

)
. (8.44)

Proof. The proof is very close to that of Theorem 8.30. Indeed, if we de-

fine U(t)γ def= F −1(eit|ξ|)γ̂(ξ), then

‖U(t)γ‖L2([0,T ];L∞) = ‖γ‖L2 sup
∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥

L2
,

where the supremum is taken over the functions ϕ with ‖ϕ‖L2
T (L1) ≤ 1 and

such that for each t, the support of F ϕ(t, ·) is included in a ball of radius h
and in the annulus C. As U is unitary, we have
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∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥2

L2
=

(∫ T

0

U(t)ϕ(t) dt
∣∣∣
∫ T

0

U(t′)ϕ(t′) dt′
)

L2

=
∫

[0,T ]2
(U(t − t′)ϕ(t)|ϕ(t′))L2 dt′ dt.

From Proposition 8.32, we can easily prove that

‖U(t − t′)φ(t)‖L∞ ≤ C
hd−2

1 + |t − t′ | ·

Therefore,

∥∥∥
∫ T

0

U(t)ϕ(t) dt
∥∥∥2

L2
≤ Chd−2

∫
[0,T ]2

1
1 + |t − t′ | ‖ϕ(t)‖L1 ‖ϕ(t′)‖L1 dt′ dt

≤ Chd−2 log(e + T )‖ϕ‖2
L2([0,T ];L1).

Thus, Theorem 8.38 is proved. ��

8.4 The Quintic Wave Equation in R
3

In this section, we investigate the quintic wave equation in R
3:

(W ±
5 )

{
�u ± u5 = 0

(u, ∂tu)|t=0 = (u0, u1).

We shall prove that the equation (W ±
5 ) is locally well posed in the scaling

invariant space C([0, T ]; L2) ∩ L5([0, T ]; L10).

Theorem 8.39. If γ
def
= ∇u|t=0 belongs to L2, then a positive time T exists

such that the Cauchy problem (W5) has a unique solution u in

ET
def
=

{
u ∈ L5([0, T ]; L10) / ∇u ∈ C([0, T ]; L2)

}
.

In addition, u satisfies the following continuation criterion. If T � denotes the
maximal time of existence of u in ET , then:

– There exists a constant c such that if ‖γ‖L2 ≤ c, then T � = +∞ and the
solution belongs to

L∞(R+; Ḣ1) ∩ L5(R+; L10).

– If T � is finite, then ∫ T �

0

‖u(t)‖5
L10 dt = +∞.
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Proof. Denote by B(u1, . . . , u5) the solution of the wave equation{
�B(u1, . . . , u5) = −

∏5
j=1 uj

B(u1, . . . , u5)|t=0 = ∂tB(u1, . . . , u5)|t=0 = 0,

and by uF , the solution of the free wave equation �u = 0 satisfying uF (0) = u0

and ∂tuF (0) = u1. A solution of (W5) is a fixed point of the map

u 	−→ uF + B(u, . . . , u).

The energy equality, Corollary 8.29, and Hölder’s inequality together imply
that for any T ,

‖∇B(u1, . . . , u5)‖L∞
T (L2) + ‖B(u1, . . . , u5)‖L5

T (L10) ≤ C

5∏
j=1

‖uj ‖L5
T (L10).

Provided that ‖uF ‖L5
T (L10) is sufficiently small, Lemma 8.22 page 357 ensures

the existence of a solution with the desired properties on the interval [0, T ].
More precisely, in the case where ‖γ‖L2 is small, we readily get global

existence because, owing to Corollary 8.27,

‖uF ‖L5(L10) ≤ C‖γ‖L2 .

Now, if ‖γ‖L2 is not small, we may decompose γ (as we often do in this book)
into its high-frequency part and its low-frequency part, as follows:

γ = SJγ + (Id −SJ )γ.

Denote by u�
F,J and uh

F,J the respective solutions of the free wave equa-
tion �u = 0 associated with SJγ and (Id −SJ )γ. As we know that

lim
j→∞

‖(Id −Sj)γ‖L2 = 0,

according to Corollary 8.27, for all positive ε there exists some J ∈ Z such
that

‖uh
F,J ‖L5(L10) ≤ ε. (8.45)

For the low-frequency part we use Hölder’s and Bernstein’s inequalities, which
imply that

‖u�
F,J ‖L5

T (L10) ≤ T
1
5 ‖u�

F,J ‖L∞
T (L10)

≤ CT
1
5 2

J
5 ‖u�

F,J ‖L∞
T (L6).

Using Sobolev’s inequality and the energy equality thus yields that

‖u�
F,J ‖L5

T (L10) ≤ C2
J
5 T

1
5 ‖γ‖L2 .

Together with (8.45), this gives that

lim
T →0

‖uF ‖L5
T (L10) = 0,

which leads to local well-posedness for any data in L2.
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Finally, we prove the blow-up criterion. Consider a solution u of (W ±
5 ) on

the interval [0, T [ such that
∫ T

0

‖u(t)‖5
L10 dt < ∞.

Using the energy estimate between t′ and t (with t′ ≤ t) gives

‖ ∇u(t) − ∇u(t′)‖L2 ≤
∫ t

t′
‖u(t′ ′)‖5

L10 dt′ ′.

Thus, a function uT exists in Ḣ1 such that

lim
t→T

u(t) = uT in Ḣ1.

The local well-posedness part of the theorem then implies that u can be con-
tinued beyond T . This completes the proof of Theorem 8.39. ��

8.5 The Cubic Wave Equation in R
3

The cubic wave equation was introduced in the context of field theory and is
of the form

(W ±
3 )

{
�u ± u3 = 0

(u, ∂tu)|t=0 = (u0, u1),

where the unknown function u has real values and depends on (t, x) in R × R
3 .

8.5.1 Solutions in Ḣ1

First, we shall prove that the equation (W ±
3 ) is locally well posed for initial

data (u0, u1) in Ḣ1 × L2.

Proposition 8.40. Assume that γ
def
= ∇u(0) belongs to L2. There exists

a positive time T such that (W ±
3 ) has a unique solution u, where ∇u be-

longs to C([−T, T ]; L2). Moreover, if ]T �
−, T �

+[ denotes the maximal inter-
val of existence of the solution, then there exists some constant c such that
|T �

± | ≥ c‖γ‖−2
L2 .

Proof. Define the trilinear operator B±(a1, a2, a3) as the solution of
{

�B±(a1, a2, a3) = ∓a1a2a3

B±(a1, a2, a3)|t=0 = ∂tB±(a1, a2, a3)|t=0 = 0.

Thanks to the energy estimate and the Sobolev embeddings (see Theorem 1.38
page 29), we get
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‖∇B±(a1, a2, a3)‖L∞([−T,T ];L2) ≤ ‖a1a2a3‖L1([−T,T ];L2)

≤ T

3∏
�=1

‖a�‖L∞([−T,T ];L6)

≤ T

3∏
�=1

‖a�‖L∞([−T,T ];Ḣ1).

Now, the solution uF of the free wave equation with data (u0, u1) satisfies

‖ ∇uF ‖L∞([−T,T ];L2) ≤ ‖γ‖L2 .

Hence, Lemma 8.22 yields the desired result. ��

In the defocusing case [namely, the case (W+
3 )], the equation is globally well

posed, as stated by the following result.

Theorem 8.41. If the initial data u0 is in L4 and such that γ belongs to L2,
then there exists a unique global solution u of (W+

3 ) such that ∇u belongs
to C(R; L2). Moreover, this solution belongs to L∞(R; L4), and satisfies

1
2

‖∇u(t)‖2
L2 +

1
4

‖u(t)‖4
L4 ≤ 1

2
‖γ‖2

L2 +
1
4

‖u(0)‖4
L4 for all t ∈ R .

Proof. Formally, this follows easily from the energy estimate. However, we
have to justify that u(t) belongs to L4. Therefore, we consider a solution
of (W+

3 ) such that ∇u belongs to C([−T, T ]; L2) and u(0) belongs to L4,
and a sequence (un)n∈N of functions which are C1 in time, and smooth and
compactly supported in the space variable, such that

lim
n→∞

∇un = ∇u in C([−T, T ]; L2).

We can write that

1
4

∫
R3

u4
n(t, x) dx =

1
4

∫
R3

u4
n(0, x) dx +

∫ t

0

∫
R3

u3
n(t′, x)∂tun(t′, x) dt′ dx.

Thanks to Sobolev embeddings, we have

lim
n→∞

∫ t

0

∫
R3

u3
n(t′, x)∂tun(t′, x) dt′ dx =

∫ t

0

∫
R3

u3(t′, x)∂tu(t′, x) dt′ dx.

This gives that u(t) is in L4 for any t and that

1
4

‖u(t)‖4
L4 ≤ 1

4

∫
R3

u4
0(x) dx +

∫ t

0

∫
R3

u3(t′, x)∂tu(t′, x) dt′ dx.

As u3 = −�u, we have
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1
4

‖u(t)‖4
L4 ≤ 1

4

∫
R3

u4
0(x) dx −

∫ t

0

∫
R3

�u(t′, x)∂tu(t′, x) dt′ dx.

Using an omitted density argument, we can write that
∫ t

0

∫
R3

�u(t′, x)∂tu(t′, x) dx dt′ = − 1
2

‖∇u(t, ·)‖2
L2 +

1
2

‖γ‖2
L2 .

This gives

1
4

‖u(t)‖4
L4 ≤ 1

4

∫
R3

u4
0(x) dx − 1

2
‖ ∇u(t)‖2

L2 +
1
2

‖γ‖2
L2 .

Proposition 8.40 implies, in particular, that if, say, T �
+ is finite, then the

norm ‖∇u(t)‖L2 goes to infinity when t tends to T �
+. From the above in-

equality, we can thus deduce that the solution is global. ��

8.5.2 Local and Global Well-posedness for Rough Data

We first show that both equations (W+
3 ) and (W −

3 ) are locally well posed for
data in the scaling invariant space Ḣ

1
2 × Ḣ− 1

2 .

Theorem 8.42. If γ belongs to Ḣ− 1
2 , then a positive time T exists such that

a unique solution u exists in L4([−T, T ] × R
3) which is, in addition, such

that ∇u is in C([−T, T ]; Ḣ− 1
2 ). Moreover, there exist two positive constants, c

and C, such that if ‖γ‖
Ḣ− 1

2
≤ c, then the solution u is global and satisfies

‖ ∇u‖
L∞(R;Ḣ− 1

2 )
+ ‖u‖L4(R1+3) ≤ C‖γ‖

Ḣ− 1
2
. (8.46)

Proof. By Hölder’s inequality and a Strichartz estimate (Corollary 8.29), we
get

‖B(a1, a2, a3)‖L4([−T,T ]×R3) ≤ C‖a1a2a3‖
L

4
3 ([−T,T ]×R3)

≤ C
3∏

�=1

‖a�‖L4([−T,T ]×R3) (8.47)

and
‖uF ‖L4(R1+3) ≤ C‖γ‖

Ḣ− 1
2
.

Decomposing γ into

γ = γ1,R + γ2,R with γ1,R
def= F −1(1B(0,R)γ̂),

we then get, by virtue of the Sobolev embedding Ḣ
3
4 ↪→ L4,

‖uF ‖L4([−T,T ]×R3) ≤ CT
1
4 R

1
4 ‖γ‖

Ḣ− 1
2

+ ‖γ2,R‖
Ḣ− 1

2
.

As lim
R→∞

‖γ2,R‖
Ḣ− 1

2
= 0, the whole theorem is proved using Lemma 8.22. ��
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It turns out that the equation (W ±
3 ) is also well posed in Ḣs × Ḣs−1 for

any s ∈ ]1/2, 1]. Note that this result is not an obvious consequence of the
previous local well-posedness statement since Ḣ

1
2 and Ḣs are not included in

one another.

Proposition 8.43. Let s be in ]1/2, 1] and consider an initial data in Ḣs ×
Ḣs−1. Define the wave admissible couple (q1, r1) by

( 1
q1

, 1
r1

)
def
=

(1 − s

2
,2 − s

6

)
·

A positive time T then exists such that a unique solution u of (W ±
3 ) exists in

the space Lq1([−T, T ]; Lr1(R3)) which is, in addition, such that ∇u belongs to
the space C([−T, T ]; Ḣs−1). Moreover, if ]T �

−, T �
+[ denotes the maximal time

interval of existence, then |T �
± | is greater than c‖γ‖− 2

2s−1

Ḣs−1 .

Proof. We introduce the wave admissible couple
( 1

q2

, 1
r2

)
def=

(1 − s

2
,s
2

)
·

From Corollary 8.29, we infer that

‖uF ‖Lq1 (R;Lr1 (R3)) ≤ C‖γ‖Ḣs−1 ,

‖B(a1, a2, a3)‖Lq1 ([−T,T ];Lr1 (R3)) ≤ ‖a1a2a3‖
Lq′

2 ([−T,T ];Lr′
2 (R3))

.

Noting that
r1

3
= r′

2 and
1
q′
2

− 3
q1

= 2s − 1,

we get

‖B(a1, a2, a3)‖Lq1 ([−T,T ];Lr1 (R3)) ≤ C

3∏
�=1

‖a�‖
L3q′

2 ([−T,T ];Lr1 (R3))

≤ T 2s−1
3∏

�=1

‖a�‖Lq1 ([−T,T ];Lr1 (R3)).

Applying Lemma 8.22 then allows us to complete the proof. ��

We now give a technical statement which will be useful in the next subsection.

Lemma 8.44. Let s be in ]1/2, 1[ and consider an initial data such that γ

belongs to Ḣs−1 ∩ Ḣ− 1
2 . Let u be the solution given by Theorem 8.42. There

exists a constant C such that for any couple (q, r) �= (2, ∞) satisfying (8.32),
we have

‖u‖
Lq([−T,T ];Ḃ

s− 2
q

r,2 (R3))
≤ C‖γ‖Ḣs−1 . (8.48)
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Proof. Observe that, according to Corollary 8.25 and Theorem 2.40 page 79,

‖∇B(a1, a2, a3)‖
Lq([−T,T ];Ḃ

s−1−2
q

r,2 )
≤ C‖a1a2a3‖

L
2

s+1 ([−T,T ];L
2

2−s )

≤ C

2∏
�=1

‖a�‖L4([−T,T ]×R3)‖a3‖
L

2
s ([−T,T ];L

2
1−s )

. (8.49)

We first take (q, r) = (2/s, 2/(1 − s)). Also using (8.47), Lemma 8.22 implies
that u belongs to L

2
s ([−T, T ]; L

2
1−s ) ∩ L4([−T, T ]; L4) and satisfies

‖u‖
L

2
s ([−T,T ];L

2
1−s )

≤ C‖γ‖Ḣs−1 .

Applying (8.49) and Corollary 8.29, we then get (8.48), and the lemma is
proved. ��

8.5.3 The Nonlinear Interpolation Method

In this subsection, we want to prove that in the defocusing case, the cubic wave
equation is globally well posed for (u0, u1) ∈ Ḣ

3
4 × H− 1

4 , that is, at a level
of regularity which is less than 1. For this, the very structure of the equation
(namely, the defocusing assumption) has to be used, combined with an inter-
polation method between Ḣ1 and Ḣ

1
2 (i.e., between spaces for which global

well-posedness and local well-posedness, respectively, has been established).
We now state the main result of this subsection.

Theorem 8.45. Assume that γ ∈ Ḣ− 1
4 . A unique global solution of (W+

3 )
then exists in L4

loc(R; L6) which is, in addition, such that ∇u is in C(R; Ḣ− 1
4 ).

Proof. The proof relies on a nonlinear interpolation method: For any integer j,
we decompose the initial data as

γ�
j

def= (∂Ṡju0, Ṡju1) and γh
j

def= (∂(Id −Ṡj)u0, (Id −Ṡj)u1).

On the one hand, as (u0, u1) belongs to Ḣ
3
4 × Ḣ− 1

4 , the high-frequency part
will be small in Ḣ

1
2 × Ḣ− 1

2 , giving rise to a global solution, according to
Theorem 8.42. On the other hand, the low-frequency part satisfies a modified
cubic wave equation for which the basic Ḣ1 energy estimate makes sense. For
arbitrarily large time T, it will then be possible to choose j so that the solution
exists on [−T, T ].

We will now be more specific. Denote by vj the (global) solution of (W+
3 )

associated with the Cauchy data γh
j given by Theorem 8.42, which exists

provided we choose j such that

‖γh
j ‖

Ḣ− 1
2

≤ 2− j
4 ‖γ‖

Ḣ− 1
4

≤ c. (8.50)

As γh
j obviously belongs to Ḣ− 1

3 , applying Lemma 8.44 with s = 2/3 implies
that vj ∈ L3(R; L6).
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Next, we decompose the desired solution u into uj + vj , where uj is the
solution of the modified cubic equation

(W3,v)
{

�w + w3 + 3w2v + 3wv2 = 0
(∇w)|t=0 = γ

with γ = γ�
j and v = vj . Note that γ�

j obviously belongs to L2 ∩ Ḣ− 1
4 .

The properties of the equation (W3,v) are described by the following
lemma.

Lemma 8.46. Let v ∈ L3(R; L6) and γ ∈ L2 ∩ Ḣ− 1
4 . There exists a pos-

itive time T such that (W3,v) has a unique solution w, where ∇w belongs
to C([−T, T ]; L2). Moreover, T can be chosen greater than

c
(

‖γ‖L2 + ‖v‖L3(R;L6)

)−2
,

and ∇w belongs to C([−T, T ]; Ḣ− 1
4 ).

Proof. Combining the Hölder inequality, the embedding Ḣ1 ↪→ L6, and the
energy estimate yields

‖∇B(a1, a2, a3)‖L∞([−T,T ];L2) ≤ T

3∏
�=1

‖ ∇a�‖L∞([−T,T ];L2),

‖∇B(v, a2, a3)‖L∞([−T,T ];L2) ≤ T
2
3 ‖v‖L3(R;L6

2∏
�=1

‖∇a�‖L∞([−T,T ];L2),

‖∇B(v, v, a)‖L∞([−T,T ];L2) ≤ T
1
3 ‖v‖2

L3(R;L6 ‖∇a‖L∞([−T,T ];L2).

Lemma 8.22 then implies the first part of the lemma. In order to prove that ∇w
belongs to C([−T, T ]; Ḣ− 1

4 ), we can use the fact that, owing to the Sobolev
embedding L

12
7 (R3) ↪→ Ḣ− 1

4 (R3) (see Corollary 1.39 page 29), we have

‖∇w‖
L∞([−T,T ];Ḣ− 1

4 )
≤ ‖∇w(0)‖

Ḣ− 1
4

+ C‖w3 + 3w2v + 3wv2‖
L1([−T,T ];L

12
7 )

.

Now, using Hölder’s inequality and the Sobolev embeddings Ḣ
3
4 (R3) ↪→

L4(R3) and Ḣ1(R3) ↪→ L6(R3) (see Theorem 1.38), we can write

‖w3‖
L1([−T,T ];L

12
7 )

≤ T ‖ ∇w‖2
L∞([−T,T ];L2)‖ ∇w‖

L∞([−T,T ];Ḣ− 1
4 )

,

‖vw2‖
L1([−T,T ];L

12
7 )

≤ T
2
3 ‖ ∇w‖

L∞([−T,T ];Ḣ− 1
4)

‖ ∇w‖L∞([−T,T ];L2)‖v‖L3([−T,T ];L6),

‖v2w‖
L1([−T,T ];L

12
7 )

≤ T
1
3 ‖ ∇w‖

L∞([−T,T ];Ḣ− 1
4 )

‖v‖2
L3([−T,T ];L6).

The lemma is thus proved. ��

Proof of Theorem 8.45 (continued). If we now denote by T �
j the maximum

time of existence of (W3,vj ), the matter is reduced to proving that
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lim sup
j→+∞

T �
j = +∞. (8.51)

The last part of this section is devoted to the proof of (8.51). Because of Lem-
ma 8.46, it suffices to prove an a priori bound on the energy of the solution uj .
This will be achieved via the energy inequality, provided that we can control
the nonhomogeneous terms by the energy of uj .

We introduce the notation

Hj
def=

1
2

‖γ�
j ‖2

L2 +
1
4

‖uj(0)‖4
L4 .

It will be useful to note that if j is nonnegative, then

H
1
2
j ≤ Cγcj2

j
4 , (8.52)

where, from now on, (cj)j∈N denotes a generic element of the unit sphere
of �2(N) and Cγ = f(‖γ‖

Ḣ− 1
4
) for some locally bounded function f on R

+. In
fact, the quantity ‖uj(0)‖4

L4 is negligible compared to the energy of the initial
data ‖γ�

j ‖2
L2 .

We now define Tj by

Tj
def= sup

{
t < T �

j /
1
2

‖ ∇uj ‖2
L∞

t (L2) ≤ 2Hj

}

and fix some T > 0 and j0 ∈ N
∗ .

We seek to prove that there exists some integer j > j0 such that Tj is
greater than T . As pointed out earlier, the key point is the control of the
energy of uj . Multiplying the equation by ∂tuj and integrating over x and t,
we get, for any T less than or equal to T �

j ,

1
2

‖∇uj ‖2
L∞

T (L2) ≤ Hj + 3
∣∣∣∣
∫ T

0

∫
R3

v2
j uj∂tuj dx dt +

∫ T

0

∫
R3

vju
2
j∂tuj dx dt

∣∣∣∣.
From now on, we denote by aj a sequence such that

lim inf
j→∞

aj = 0.

Here, we easily see that the whole theorem is proved, provided that we can
find some positive real number α such that
∣∣∣∣
∫ T

0

∫
R3

v2
j uj∂tuj dx dt +

∫ T

0

∫
R3

vju
2
j∂tuj dx dt

∣∣∣∣ ≤ Tαaj ‖∇uj ‖2
L∞

T (L2). (8.53)

By Hölder’s inequality and Sobolev embedding, we have
∣∣∣∣
∫ T

0

∫
R3

v2
j uj∂tuj dx dt

∣∣∣∣ ≤
∫ T

0

‖vj(t)‖2
L6 ‖uj(t)‖L6 ‖∂tuj(t)‖L2 dt

≤ C‖ ∇uj ‖2
L∞

T (L2)

∫ T

0

‖vj(t)‖2
L6 dt.
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Finally, using Lemma 8.44, we can write, for all k ≥ −2,

‖vj ‖2
L2

T (L6) ≤ CT
1
3 ‖vj ‖2

L3
T (L6)

≤ CT
1
3 ‖γh

j ‖2

Ḣ− 1
2 + 1

6
.

We deduce that∣∣∣∣
∫ T

0

∫
R3

v2
j uj∂tuj dx dt

∣∣∣∣ ≤ CT
1
3 ‖ ∇uj ‖2

L∞
T (L2)‖γh

j ‖2

Ḣ− 1
2 + 1

6

≤ CT
1
3 2− j

6 ‖γ‖2

Ḣ− 1
4

‖∇uj ‖2
L∞

T (L2).

Hence, the first term of (8.53) satisfies the desired inequality.
To handle the second term, we write (with obvious notation)

vj = vj,F + B(vj , vj , vj).

Using Hölder’s inequality and Corollary 8.29 with (q1, r1) = (3, 6) and
(q2, r2) = (6, 3), we get

‖B(vj , vj , vj)‖L3
T (L6) ≤ C‖vj ‖2

L4([0,T ]×R3)‖vj ‖L3
T (L6).

Using Lemma 8.44, we then get

‖B(vj , vj , vj)‖L3
T (L6) ≤ C‖γh

j ‖2

Ḣ− 1
2

‖γh
j ‖

Ḣ− 1
2 + 1

6
.

We will focus on the term
∫ T

0

∫
R3

B(vj , vj , vj) u2
j∂tuj dx dt,

which turns out to be the easiest one.
Again, thanks to Hölder’s inequality and Sobolev embedding, we get

∣∣∣∣
∫ T

0

∫
R3

B(vj , vj , vj) u2
j∂tuj dx dt

∣∣∣∣ ≤ CT
2
3 ‖ ∇uj ‖3

L∞
T (L2)‖γh

j ‖2

Ḣ− 1
2

‖γh
j ‖

Ḣ− 1
2 + 1

6

≤ CT
2
3 2− 2j

3 ‖γ‖3

Ḣ− 1
4

‖∇uj ‖3
L∞

T (L2).

Hence, this term is also bounded by the right-hand side of (8.53).
The term involving vj,F is more demanding and requires paradifferential

calculus. Using Bony’s decomposition, we can write

vj,F u2
j = T ′

vj,F
u2

j + Tu2
j
vj,F with T ′

ab
def=

∑
k≥ −2

Ṡk+2a Δ̇kb.

As the support of the Fourier transform is preserved by the flow of the constant
coefficients wave equation, the function vj,F has no low frequencies, and we
can restrict the summation to those k such that k ≥ j − 2.
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Now, for any k ≥ j − 2, we can write that

‖Ṡk+2(vj,F )Δ̇k(u2
j )‖L1

T (L2) ≤ CT
1
2 ‖Ṡk+2(vj,F )‖L2

T (L∞)‖Δ̇k(u2
j )‖L∞

T (L2).

Note that, according to Bernstein’s inequality, we may write

‖Δ̇k(u2
j )‖L2 ≤ C2−k ‖Δ̇k∂(u2

j )‖L2

≤ C2−k ‖Δ̇kuj ‖L4 ‖∂Δ̇kuj ‖L4

≤ C2− k
2 ‖∂Δ̇kuj ‖L2 .

Therefore,

‖Ṡk+2(vj,F )Δ̇k(u2
j )‖L1

T (L2) ≤ CT
1
2 ‖Ṡk+2(vj,F )‖L2

T (L∞)2
− k

2 ‖∇uj ‖2
L∞

T (L2).

According to logarithmic Strichartz estimates (8.38), we have

‖Ṡk+2(vj,F )‖L2
T (L∞) ≤

∑
�≤k+1

‖Δ̇�(vj,F )‖L2
T (L∞)

≤ C
∑

�≤k+1

(
log(e + 2�T )

) 1
2 ‖Δ̇�γ

h
j ‖L2 .

We deduce that for any σ < 1,

‖Ṡk+2(vj,F )‖L2
T (L∞) ≤

∑
�≤k+1

(
log(e + 2�T )

) 1
2
2�(1−σ)‖γh

j ‖Ḣσ−1

≤ C
(
log(e + 2kT )

) 1
2
2k(1−σ)‖γh

j ‖Ḣσ−1 .

Finally, for any 1
2 < σ < 1,

‖T ′
vj,F

u2
j ‖L1

T (L2) ≤ CT
1
2 ‖γh

j ‖Ḣσ−1 ‖ ∇uj ‖2
L∞

T (L2)

×
∑

k≥j−2

2k( 1
2 −σ)

(
log(e + 2kT )

) 1
2
.

Note that we can assume with no loss of generality that T ≤ 2j . Hence,

‖T ′
vj,F

u2
j ‖L1

T (L2) ≤ CT
1
2 ‖γh

j ‖Ḣσ−1 ‖ ∇uj ‖2
L∞

T (L2)

×
∑

k≥j−2

2k( 1
2 −σ)

(
log(e + 22k)

) 1
2

≤ CT
1
2 ‖γh

j ‖Ḣσ−1 ‖ ∇uj ‖2
L∞

T (L2)

∑
k≥j−2

2k( 1
2 −σ)k

1
2 .

Observing that, since j ≥ 2,
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∑
k≥j−2

2k( 1
2 −σ)k

1
2 = 2j( 1

2 −σ)j
1
2

∑
k≥j−2

2(k−j)( 1
2 −σ)

(k

j

) 1
2

≤ 2j( 1
2 −σ)j

1
2

∑
k≥j−2

2(k−j)( 1
2 −σ)(k − j + 1)

1
2 ,

we deduce that

‖T ′
vj,F

u2
j ‖L1

T (L2) ≤ CT
1
2 ‖γh

j ‖Ḣσ−1 ‖ ∇uj ‖2
L∞

T (L2)2
j( 1

2 −σ)j
1
2 .

Finally, taking σ = 3
4 , we get, thanks to the inequality (8.52),

∣∣∣∣
∫ T

0

∫
R3

T ′
vj,F

u2
j∂tuj dx dt

∣∣∣∣ ≤ CT
1
2 ‖γh

j ‖
Ḣ− 1

4
j

1
2 cj ‖∇uj ‖2

L∞
T (L2).

Note that (cj) ∈ �2 implies that lim infj→∞ j
1
2 cj = 0. Hence, this term also

satisfies (8.53).
The last term, Tu2

j
vj,F , is the most delicate to treat. We write that2

∫ T

0

∫
R3

Tu2
j
vj,F ∂tuj dx dt =

∑
k≥j−2

∫ T

0

∫
R3

Ṡk−1(u2
j )Δ̇k(vj,F )Δ̃k(∂tuj) dx dt

=
∑

k≥j−2

∑
�≤k−2

∫ T

0

∫
R3

Δ̇�(u2
j )

× Δ̃�(Δ̇k(vj,F )Δ̃k(∂tuj)) dx dt,

Δ̃k being the convolution operator by the inverse Fourier transform of ϕ̃(2−k ·),
where ϕ̃ is a function in D(Rd \ {0}) with value 1 near the support of ϕ
[see (2.5)].

According to the standard Strichartz estimates, the function vj,F fails to
be controlled in L2

T (Ḃ0
∞,2), whereas ∂tuj belongs to L∞

T (L2). Therefore, the
series with general term Δ̇kvj,F Δ̃k∂tuj does not converge in any reasonable
sense. In order to overcome this difficulty, we may use the logarithmic refined
Strichartz estimate given by Theorem 8.38. For that purpose, we introduce
a covering of 2k C by a family of balls of radius 2� centered at (ξk,�

ν )ν∈Λk,�
.

Let χ ∈ D(B(0, 1)) be such that for all ξ ∈ 2k C,

∑
ν∈Λk,�

χ

(
ξ − ξk,�

ν

2�

)
= 1 and

1
C0

≤
∑

ν∈Λk,�

χ2

(
ξ − ξk,�

ν

2�

)
≤ C0. (8.54)

We write that
2 As before, owing to the spectral properties of vj,F , the summation may be re-
stricted to those k ∈ Z such that k ≥ j − 2.
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Ik,�(∂tuj)
def= Δ̃�(Δ̇k(vj,F )Δ̃k(∂tuj))

= Δ̃�

∑
ν∈Λk,�

Δν
k,�(vj,F )Δ̃k(∂tuj) with

Δν
k,�a

def= F −1
((

ϕ(2−kξ)χ(2−�(ξ − ξk,�
ν ))

)
â(ξ)

)
.

As the support of the Fourier transform of a product is included in the sum
of the support of each Fourier transform, we obtain
∫ T

0

∫
R3

Tu2
j
vj,F ∂tuj dx dt

=
∑

k≥j−2

∑
�≤k−2

∫ T

0

∫
R3

∑
ν∈Λk,�

Δ̇�(u2
j )Δ̃�(Δν

k,�(vj,F )Δ̃ν
k,�(∂tuj)) dx dt

with Δ̃ν
k,�a

def= F −1
(
ϕ̃(2−kξ)1B(−ξk,�

ν ,C2−�)â(ξ)
)

.

We deduce that∫ T

0

∫
R3

Tu2vj,F ∂tuj dx dt ≤ Bj ‖ ∇uj ‖2
L∞

T (L2), where

Bj =
∑

k≥j−2
�≤k−2

∫ T

0

∑
ν∈Λk,�

2− �
2 c�,j(t)‖Δν

k,�(vj,F (t))‖L∞ ‖Δ̃ν
k,�(∂tuj(t))‖L2 dt,

and (c�,j(t))�∈Z denotes, as in all that follows, a generic element of the unit
sphere of �2(Z) such that c�,j(t) = 0 for � ≤ −2.

For fixed k and �, applying the Cauchy–Schwarz inequality with respect
to ν and dt gives

Bj ≤
∑

k≥j−2
�≤k−2

2− �
2

(∫ T

0

∑
ν∈Λk,�

‖Δν
k,�(vj,F (t))‖2

L∞ dt
) 1

2

×
(∫ T

0

c2
�,j(t)

∑
ν∈Λk,�

‖Δ̃ν
k,�(∂tuj(t))‖2

L2 dt
) 1

2
.

Applying the logarithmic refined Strichartz estimate (8.44), and using the
quasi-orthogonality property stated in (8.54) and the fact that T ≤ 2k+2

for k ≥ j − 2, we get
∫ T

0

∑
ν∈Λk,�

‖Δν
k,�(vj,F (t))‖2

L∞ dt ≤ C
∑

ν∈Λk,�

log(e + 2k)2�−k ‖Δν
k,�γ

h
j ‖2

L2

≤ Ck2�−k
∑

ν∈Λk,�

‖Δν
k,�γ

h
j ‖2

L2

≤ Ck2�−k ‖Δ̇kγh
j ‖2

L2 .
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Therefore,

Bj ≤ C
∑

k≥j−2

k
1
2 2− k

2 ‖Δ̇kγh
j ‖L2

∑
�≤k−2

(∫ T

0

c2
�,j(t)

∑
ν∈Λk,�

‖Δ̃ν
k,�∂tuj(t)‖2

L2 dt

) 1
2

.

Using the Cauchy–Schwarz inequality with respect to �, the quasi-orthogona-
lity properties, and the fact that the sequence (c�,j(t))�∈Z is an element of the
unit sphere of �2(Z), we obtain

∑
�≤k−2

(∫ T

0

c2
�,j

∑
ν∈Λk,�

‖Δ̃ν
k,�∂tuj ‖2

L2 dt
) 1

2 ≤ C‖ ∇uj ‖L∞
T (L2)

∑
�≤k

(∫ T

0

c2
�,j dt

) 1
2

≤ CT
1
2 k

1
2 ‖∇uj ‖L∞

T (L2).

This yields, for some sequence (c′
k)k∈N such that ‖(c′

k)‖�2 ≤ 1,

Bj ≤ CT
1
2

∑
k≥j−2

k2− k
2 ‖Δkγh

j ‖L2 ‖ ∇uj ‖L∞
T (L2)

≤ CT
1
2 ‖ ∇uj ‖L∞

T (L2)‖γh
j ‖Ḣσ−1

∑
k≥j−2

c′
kk2− k

2 2−k(σ−1).

Choosing σ = 3/4 and taking advantage of (8.52), we conclude that

Bj ≤ CT
1
2 cj2

j
4 ‖γ‖

Ḣ− 1
4

∑
k≥j−2

c′
kk2− k

4

≤ CT
1
2 jcj ‖γ‖

Ḣ− 1
4

∑
k≥j−2

c′
k(k − j + 1)2− (k−j)

4

≤ CT
1
2 jc2

j ‖γ‖
Ḣ− 1

4
.

Hence, the inequality (8.53) is satisfied, which completes the proof of the
theorem. ��

8.6 Application to a Class of Semilinear Wave Equations

This section is devoted to the study of a class of semilinear wave equations
with quadratic nonlinearity with respect to ∇u. This type of nonlinearity
arises naturally in different fields of mathematics and mathematical physics,
and, in particular, for the so-called wave maps equations.

Here, we consider the semilinear wave equation

(SW )
{

�u = Q(t, u)(∇u, ∇u)
(u, ∂tu)|t=0 = (u0, u1),

where Q stands for a smooth function from R
2 to the space of symmetric

matrices on R
1+d, which is bounded, as are all of its derivatives.
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To simplify the presentation, we focus on the evolution for positive times
and on the case d ≥ 4. We now give the main statement of this section.

Theorem 8.47. Assume that d ≥ 4 and that γ
def
= (∂u0, u1) belongs to Ḃ

d
2 −1
2,1 ∩

Ḃ
d
2 − 1

2
2,1 . There then exists a maximal positive time T � such that (SW ) has a

unique solution u on [0, T �[ satisfying

∇u ∈ C
(
[0, T �[; Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 − 1

2
2,1

)
.

Moreover, there exists a nonincreasing positive function c on R
+ such that

T � ≥ c
(

‖γ‖
Ḃ

d
2 −1
2,1

)
‖γ‖−2

Ḃ
d
2 − 1

2
2,1

. (8.55)

If T � is finite, then

lim sup
T

<→T �

(
‖u(T )‖L∞ +

∫ T

0

‖ ∇u(t)‖L∞ dt
)

= ∞.

Proof. For a sufficiently regular function u, we introduce the solution F (u) of
the following linear wave equation:

�F (u) = Q(t, u)(∇u, ∇u) with (F (u))|t=0 = 0 and (∂tF (u))|t=0 = 0.

Observe that, by virtue of Duhamel’s formula, u is a solution of (SW ) if and
only if u = uF + F (u) with

�uF = 0, uF |t=0 = u0, and ∂tuF |t=0 = u1.

Therefore, the first part of Theorem 8.47 is a consequence of the following
proposition and the Picard fixed point theorem.

Proposition 8.48. For any positive T , define the norms

‖a‖T
def
= ‖ ∇a‖

L∞
T (Ḃ

d
2 −1
2,1 )

+ T
1
2 ‖a‖1,T with

‖a‖1,T
def
= ‖ ∇a‖

L∞
T (Ḃ

d
2 − 1

2
2,1 )

+ ‖ ∇a‖L2
T (L∞).

Given a couple of positive real numbers (M, r), define the set XM,r
T of func-

tions a such that

‖ ∇a‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ M and ‖a‖1,T ≤ r.

There exists a positive constant Cd, depending only on d, and a nondecreasing
continuous function C : R

+ → R
+ such that if
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M = 2‖γ‖
Ḃ

d
2 −1
2,1

, r = Cd‖γ‖
Ḃ

d
2 − 1

2
2,1

, and rT
1
2 C(M) ≤ 1,

then u 	−→ uF + F (u) maps XM,r
T into XM,r

T , and for any u and v in XM,r
T ,

we have
‖F (u) − F (v)‖T ≤ 1

2
‖u − v‖T . (8.56)

Proof. We first establish (8.56). For u and v in XM,r
T , we may write3

Q(u)(∇u, ∇u) − Q(v)(∇v, ∇v) = Q1(u, v) + Q2(u, v) with

Q1(u, v) def= (Q(u) − Q(v))(∇u, ∇u) and

Q2(u, v) def= Q(v)(∇u + ∇v, ∇u − ∇v).

Hence, F (u) − F (v) satisfies
{

�(F (u) − F (v)) = Q1(u, v) + Q2(u, v)

(F (u) − F (v))|t=0 = 0 and (∂t(F (u) − F (v)))|t=0 = 0.

On the one hand, applying the localization operator Δ̇j to the above equation
and then using the basic energy estimate to bound each block Δ̇j(F (u)−F (v)),
we get, for α ∈ {1/2, 1},

‖∇(F (u) − F (v))‖
L∞

T (Ḃ
d
2 −α

2,1 )
≤ ‖Q1(u, v) + Q2(u, v)‖

L1
T (Ḃ

d
2 −α

2,1 )
. (8.57)

On the other hand, according to the Strichartz estimate stated in Corol-
lary 8.27, we may write

‖∇(F (u) − F (v))‖L2
T (L∞) ≤ ‖Q1(u, v) + Q2(u, v)‖

L1
T (Ḃ

d
2 − 1

2
2,1 )

. (8.58)

So, in order to prove (8.56), it is only a matter of exhibiting suitable bounds

for Q1(u, v) and Q2(u, v) in L1
T (Ḃ

d
2 −1
2,1 ) and in L1

T (Ḃ
d
2 − 1

2
2,1 ).

We first establish bounds in the space L1
T (Ḃ

d
2 −1
2,1 ). Taking advantage of the

product laws in Besov spaces (use Corollary 2.54 page 90) and Corollary 2.66
page 97, we get, for all u and v in XM,r

T ,

‖Q1(u, v)‖
Ḃ

d
2 −1
2,1

≤ ‖ ∇u ⊗ ∇u‖
Ḃ

d
2 −1
2,1

‖Q(u) − Q(v)‖
Ḃ

d
2
2,1

≤ C(M)‖ ∇u‖L∞ ‖ ∇u‖
Ḃ

d
2 −1
2,1

‖∇u − ∇v‖
Ḃ

d
2 −1
2,1

,

where C is a nondecreasing continuous function of M .
3 For expository purposes, we omit the time dependency of the function Q.
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Along the same lines, we get

‖Q2(u, v)‖
Ḃ

d
2 −1
2,1

≤
(

|Q(0)|+‖Q(v)−Q(0)‖
Ḃ

d
2
2,1

)
‖(∇u+∇v) ⊗ (∇u− ∇v)‖

Ḃ
d
2 −1
2,1

≤ C(M)‖ ∇u + ∇v‖
Ḃ

d
2 − 1

2
2,1

‖ ∇u − ∇v‖
Ḃ

d
2 − 1

2
2,1

.

Plugging these inequalities into the inequality (8.57) with α = 1, we thus get

‖∇F (u) − ∇F (v)‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ C(M)
(
T

1
2 ‖ ∇u‖L2

T (L∞)‖∇u‖
L∞

T (Ḃ
d
2 −1
2,1 )

×‖∇u − ∇v‖
L∞

T (Ḃ
d
2 −1
2,1 )

+T ‖ ∇u − ∇v‖
L∞

T (Ḃ
d
2−1

2
2,1 )

‖∇u+∇v‖
L∞

T (Ḃ
d
2−1

2
2,1 )

)
, (8.59)

from which it follows, as u and v are in XM,r
T , that

‖∇F (u) − ∇F (v)‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ C(M)T
1
2 r‖u − v‖T . (8.60)

Next, again using the product laws in Besov spaces and Corollary 2.66, we
may write

‖Q1(u, v)‖
Ḃ

d
2 − 1

2
2,1

≤ ‖Q(u) − Q(v)‖
Ḃ

d
2
2,1

‖ ∇u ⊗ ∇u‖
Ḃ

d
2 − 1

2
2,1

≤ C(M)‖ ∇(u − v)‖
Ḃ

d
2 −1
2,1

‖∇u‖L∞ ‖∇u‖
Ḃ

d
2 − 1

2
2,1

. (8.61)

Along the same lines, we have

‖Q2(u, v)‖
Ḃ

d
2 − 1

2
2,1

≤
(

|Q(0)|+‖Q(v)−Q(0)‖
Ḃ

d
2
2,1

)
‖(∇u+∇v)⊗(∇u− ∇v)‖

Ḃ
d
2 − 1

2
2,1

≤ C(M)
(

‖ ∇(u − v)‖L∞ ‖ ∇(u + v)‖
Ḃ

d
2 − 1

2
2,1

+ ‖ ∇(u − v)‖
Ḃ

d
2 − 1

2
2,1

‖∇(u + v)‖L∞
)
.

Putting those inequalities together with the energy estimate (8.57) with α =
1/2 and the Strichartz estimate (8.58), we thus get

‖F (u) − F (v)‖1,T ≤ C(M)
(
T

1
2 ‖ ∇(u − v)‖L2

T (L∞)‖∇(u + v)‖
L∞

T (Ḃ
d
2 − 1

2
2,1 )

+T
1
2 ‖ ∇(u − v)‖

L∞
T (Ḃ

d
2 − 1

2
2,1 )

‖ ∇(u + v)‖L2
T (L∞)

+T
1
2 ‖ ∇(u − v)‖

L∞
T (Ḃ

d
2 −1
2,1 )

‖ ∇u‖L2
T (L∞)‖∇u‖

L∞
T (Ḃ

d
2 − 1

2
2,1 )

)
, (8.62)

from which it follows that

‖F (u) − F (v)‖1,T ≤ C(M)r(1 + rT
1
2 )‖u − v‖T .

Combining this inequality with (8.60), we conclude that
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‖F (u) − F (v)‖T ≤ C(M)rT
1
2 (1 + rT

1
2 )‖u − v‖T . (8.63)

Of course, we may assume with no loss of generality that 4C(M) ≥ 1. So,
choosing T such that

4C(M)rT
1
2 ≤ 1,

we see that rT
1
2 ≤ 1. Hence, the inequality (8.63) implies that

‖F (u) − F (v)‖T ≤ 1
2

‖u − v‖T .

We now establish that for an appropriate choice of r, M, and T, if u belongs
to XM,r

T , then so does uF + F (u).
First, we note that, thanks to the energy and Strichartz estimates, there

exists some constant Cd, depending only on d, such that for all j ∈ Z and
t ∈ R

+, we have

‖Δ̇j ∇uF (t)‖L2 = ‖Δ̇jγ‖L2 and ‖Δ̇j ∇uF ‖L2
t (L∞) ≤ Cd2j( d

2 − 1
2 )‖Δ̇jγ‖L2 .

By summation over j, we thus get

‖∇uF ‖
L∞

T (Ḃ
d
2 −1
2,1 )

= ‖γ‖
Ḃ

d
2 −1
2,1

and ‖uF ‖1,T ≤ Cd‖γ‖
Ḃ

d
2 − 1

2
2,1

.

Second, applying the inequalities (8.59) and (8.62) with v = 0, we get, for all
u ∈ XM,r

T [up to a harmless change of C(M)],

‖∇F (u)‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ C(M)T
1
2 r and ‖F (u)‖1,T ≤ C(M)T

1
2 r2.

Taking M = 2‖γ‖
Ḃ

d
2 −1
2,1

and r = 2Cd‖γ‖
Ḃ

d
2 − 1

2
2,1

, we thus see that the above

inequalities imply that uF + F (u) is in XM,r
T whenever T has been chosen

sufficiently small so as to satisfy

2C(M)rT
1
2 ≤ 1.

This completes the proof of the proposition and thus of the existence of a
solution of (SW ). ��

The uniqueness is an easy consequence of the above computations. Indeed,
if we consider two solutions, u and v, of (SW ), then v − u = F (v) − F (u).
Hence, the inequality (8.63) reads

‖u − v‖T ≤ C(M)rT
1
2 (1 + rT

1
2 )‖u − v‖T

with r = max(‖u‖1,T , ‖v‖1,T ) and M = max
(

‖ ∇u‖
L∞

T (Ḃ
d
2 −1
2,1 )

, ‖∇v‖
L∞

T (Ḃ
d
2 −1
2,1 )

)
.

This implies uniqueness on a sufficiently small time interval [0, T0]. Re-
peating the argument then yields uniqueness on [T0, 2T0] and [2T0, 3T0], and
so on, until the whole interval [0, T ] is exhausted.
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To prove the blow-up criterion, the starting point is the following energy
estimate for α ∈ {1/2, 1}:

‖∇u‖
L∞

T (Ḃ
d
2 −α

2,1 )
≤ ‖γ‖

Ḃ
d
2 −α

2,1

+ ‖Q(u)(∇u, ∇u)‖
L1

T (Ḃ
d
2 −α

2,1 )
. (8.64)

The term Q(u)(∇u, ∇u) is a linear combination of terms of the type

Qij(u)∂iu∂ju, 0 ≤ i, j ≤ d.

Now, according to the (simplified) Bony decomposition, we have

Qij(u)∂iu∂ju = T ′
Qij(u)∂iu

∂ju + T∂juQij(u)∂iu.

Since, for some smooth function Qij we have Qij(u)∂iu = ∂i(Qij(u)), the
composition lemma, together with the paraproduct estimates, enables us to
conclude that

‖Q(u)(∇u, ∇u)‖
Ḃ

d
2 −α

2,1

≤ C(‖u‖L∞ )‖∇u‖L∞ ‖∇u‖
Ḃ

d
2 −α

2,1

.

Plugging this inequality into (8.64), we end up with

‖∇u‖
L∞

T (Ḃ
d
2 −α

2,1 )
≤ ‖γ‖

Ḃ
d
2 −α

2,1

+ C
(

‖u‖L∞
T (L∞)

) ∫ T

0

‖∇u‖L∞ ‖∇u‖
Ḃ

d
2 −α

2,1

dt.

Now, if u is in L∞([0, T �[; L∞) and ∇u is in L1([0, T �[; L∞), then the Gronwall

lemma ensures that ∇u is in L∞([0, T �[; Ḃ
d
2 − 1

2
2,1 ∩ Ḃ

d
2 −1
2,1 ). From this, it is easy

to conclude that the solution may be continued beyond T �. This is simply a
matter of following the method that was used in the proof of Theorem 7.21
page 307. ��

8.7 References and Remarks

The study of the dispersive properties of linear equations has a long history. However,
the idea of using them to achieve some gain of regularity (compared with Sobolev
embedding) is rather recent. More general stationary or nonstationary phase ar-
guments than the ones we used to prove the basic dispersive inequality for the
wave equation (Proposition 8.15) may be found in, for example, the book [167] by
L. Hörmander. The one-dimensional estimate may be found in [150] and [274].

The first global Lq(Lr) estimate was stated in 1977 by R. Strichartz in [276] for
the wave equation (see also the works by P. Brenner in [46, 47], and by H. Pecher
in [246, 247]). The extension to the whole set of admissible indices was achieved by
J. Ginibre and G. Velo in [147] for the Schrödinger equation, and in [149] for the wave
equation, except for the endpoint case q = 2, r = 2σ/(σ − 1) with σ > 1, which was
established later by M. Keel and T. Tao in [180]. Let us emphasize that global Lq(Lr)
estimates are often the key to proving well-posedness results for semilinear wave of
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Schrödinger equations (see for instance [26, 27, 60, 263, 264]). Such estimates are
also available for other types of partial differential equations (see e.g. the works [48]
and [148] concerning the Klein–Gordon equation).

The set of indices for which we proved the Strichartz inequality (8.14) is sharp.
The so-called Knapp wave provides counterexamples away from the endpoint (see,
e.g., [128]). On the one hand, it is also known that (8.14) fails for (q, r, σ) = (2, ∞, 1)
(see, e.g., [233] for the case of the wave or Schrödinger equations). On the other hand,
it holds true for radial functions (see [278]).

Refined Strichartz inequalities were introduced by S. Klainerman and D. Tataru
in [194] in order to prove a sharp result concerning the Yang–Mills equations. There is
a huge literature concerning applications of Strichartz-type inequalities to nonlinear
equations (see, e.g., [60] for the case of the Schrödinger equation and [253] for the
semilinear wave equation).

Finally, that the defocusing cubic wave equation is globally well posed in the
space (Ḣs ∩ L4)(R3) × Ḣs−1(R3) for s ∈ ]3/4, 1[ was first proven by C. Kenig,
G. Ponce, and L. Vega in [181], then by I. Gallagher and F. Planchon in [135] (see
also [21]). The former proof follows the method introduced by J. Bourgain in [44],
which amounts to first solving the equation for the low-frequency part of the data,
then a modified cubic wave equation, while the latter work is based on a strategy
introduced in the context of the Navier–Stokes equations by C. Calderón in [55]:
The authors first solve the equation for the high-frequency part of the data. In this
chapter, we adopted the latter approach. To the best our knowledge, our global

well-posedness result in Ḣ
3
4 (R3) is new. We should point out that since Ḣ

3
4 (R3) is

continuously embedded in L4(R3), we do not have any supplementary condition on
the Cauchy data, in contrast with [181] and [135]. We also note out that in [209,
210], H. Lindblad and C. Sogge proved that the Cauchy problem for (W ±

3 ) in Ḣs is
ill posed below s = 1

2
.

The local well-posedness result for the class of semilinear wave equations with
quadratic nonlinearity considered in Section 8.6 is essentially contained in the work
by G. Ponce and T. Sideris [253] (see also [267]). Here, we strived for a scaling
invariant functional framework in which to apply the Picard fixed point theorem.
Finally, we emphasize that if the nonlinearity satisfies the so-called null condition,
then the best index of regularity for which local well-posedness holds true falls to
s = d

2
(see, in particular, the works by S. Klainerman and S. Selberg in [193], and

by D. Tataru in [279], dedicated to the wave maps equations).
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Smoothing Effect in Quasilinear Wave
Equations

This chapter is devoted to the local well-posedness issue for a class of quasi-
linear wave equations. The equations which we consider here may be seen as
toy models for the Einstein equations in relativity theory. We shall see that
the energy method presented in Chapter 4 allows to establish a local-in-time
existence theorem for data in any Hs space embedded in the set of Lipschitz
functions, or in the Besov space B

d
2 +1
2,1 . In this chapter, we aim to go beyond

such classical results.
To be more specific, we now present the model that we are going to study

here. As in the preceding chapter, we define

∂0
def= ∂t, ∂

def= (∂x1 , . . . , ∂xd
), and ∇ def= (∂t, ∂x1 , . . . , ∂xd

).

Throughout the chapter, G will denote a smooth function, bounded on R
2

(along with all of its derivatives) and valued in a compact subset K of the space
of symmetric d-dimensional matrices. We assume, in addition, that Id +K is
included in the cone of positive definite matrices, a condition which ensures
the ellipticity of the operator

Δ + ∂ · (G(·, u)∂·) with ∂ · (G(·, u) · ∂v) def=
∑

1≤j,k≤d

∂j(Gj,k(·, u)∂kv).

Let Q be a smooth function from R
2 to the set of quadratic forms on R

d+1,
which is bounded as are all of its derivatives.

The quasilinear wave equations that we are going to consider in this chap-
ter are of the form

(QW )
{

∂2
t u − Δu − ∂ · (G(t, u) · ∂u) = Q(t, u)(∇u, ∇u)

∇u|t=0 = γ.

We point out that if G ≡ 0, then the equation (QW ) reduces to the equa-
tion (SW ) studied in Section 8.6. More generally, if G and Q are time-
independent, then it still has the following scaling invariance property: u is

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
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DOI 10.1007/978-3-642-16830-7 9, c© Springer-Verlag Berlin Heidelberg 2011
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a solution of (QW ) on [−T, T ] × R
d if and only if uλ(t, x) def= u(λt, λx) is a

solution of (QW ) on [−λ−1T, λ−1T ] × R
d [provided the second line of (QW )

has been modified accordingly, of course]. Obviously, the Besov space Ḃs
2,1 has

the required invariance property if and only if s = d/2 or, in other words, if

and only if γ belongs to Ḃ
d
2 −1
2,1 . Therefore, we expect the quantity ‖γ‖

Ḃ
d
2 −1
2,1

to

play a decisive role in the study of (QW ).
This chapter is structured as follows. The first section is devoted to the

proof of the classical well-posedness result for initial data such that

γ ∈ Bd def= Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2
2,1. (9.1)

We stress that this assumption is the weakest one (in the framework of Besov
spaces related to L2) for which (∂u0, u1) is bounded. Therefore, this space
is somewhat critical, inasmuch as it is the largest one for which local well-
posedness may be achieved by means of a basic energy method (which works in
any dimension d ≥ 1 as it is not related to any dispersive properties of the wave
equation). In this section, we pay special attention to the scaling invariance
of all the estimates as this will be important in the following sections.

The rest of the chapter is devoted to going weakening assumption (9.1).
More precisely, in the second section of this chapter, we give our main state-
ment, Theorem 9.5, and explain the strategy of its proof. As this will be based
on geometrical optics, we need to regularize the metric G(·, u) both in time
and space. As regards the time regularization, it turns out to be convenient to
introduce a time cut-off so as to transform the initial quasilinear wave equa-
tion (QW ) into a “truncated” linear wave equation (QWT ) with constant
coefficients away from the time interval [−T, T ]. If T is chosen suitably small,
this will enable us to manipulate globally defined solutions only.

Still motivated by geometrical optics, in the third section, we introduce a
refined paralinearization of the system (QWT ). This means that after localiza-
tion about frequencies of size λj = 2j , we regularize (in space-time variables)
the metric GT (·, u) by spectral truncation at frequency λδ

j with δ less than 1
(instead of the λj used in the classical paralinearization procedure, such as
in, e.g., Lemma 4.14 page 183). This refined procedure makes the method of
geometrical optics more efficient. The price to be paid is that the remainder
term is less regular (i.e., larger after frequency localization).

In the fourth section, we explain how to derive Theorem 9.5 from suitable
microlocal Strichartz estimates (i.e., Strichartz estimates on small intervals,
the lengths of which depend on the size of the frequency we are looking at).
The key idea is to split the interval [0, T ] into sufficiently small intervals so that
we may apply these microlocal estimates. Combining all these estimates leads
to a Strichartz estimate with a loss, compared to the linear wave equation
with constant coefficients.

The final section is devoted to the proof of rather general microlocal
Strichartz estimates for a class of variable coefficients linear wave equations.
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After suitable rescaling, we shall see that the general statement yields the esti-
mates we are interested in for solving (QWT ). Our proof relies on the use of a
geometrical optics method so as to build a sufficiently accurate approximation
of the solution to the linear wave equation, and on the TT � method.

9.1 A Well-posedness Result Based on an Energy
Method

This section is devoted to the proof of a general local existence result for the
quasilinear wave equation in R

d (d ≥ 1) with suitably smooth initial data.
To begin, we recall some very basic facts about the variable coefficients wave
equation. We fix some time-dependent metric g = (gj,k)1≤j,k≤d on R

d, that
is, a function from I × R

d (where I is a time interval) to the set S +
d (R) of

symmetric positive definite matrices on R
d . Assume, in addition, that there

exists some positive real number A0 such that

A−1
0 |η|2 ≤

∑
j,k

gj,k(t, x) ηjηk ≤ A0|η|2 for all (t, x, η) ∈ I × R
d × R

d . (9.2)

Define
∂ · (g · ∂u) def=

∑
j,k

∂j

(
gj,k∂ku

)
.

We have the following lemma.

Lemma 9.1. Consider a continuous function φ such that

φ(t) ≥ A0‖∂tg(t, ·)‖L∞ .

For any function u such that ∇u is C1 in time with values in L2, and f
def
=

∂2
t u − ∂ · (g · ∂u) is L1 in time with values in L2, we then have

exp
(

− 1
2

∫ t

0

φ(t′) dt′
)

‖ ∇u(t)‖L2 ≤ A0‖ ∇u(0)‖L2

+ A
1
2
0

∫ t

0

exp
(

− 1
2

∫ t′

0

φ(t′ ′) dt′ ′
)

‖f(t′)‖L2 dt′.

Proof. Taking the L2 inner product of ∂2
t u − ∂ · (g · ∂u) with ∂tu, we get

1
2

d

dt
‖∂tu‖2

L2 = (f |∂tu)L2 +
∑
j,k

∫
Rd

∂j

(
gj,k∂ku

)
∂tu dx.

We now integrate by parts in the last term. As gj,k = gk,j for all 1 ≤ j, k ≤ d,
we get
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∑
j,k

∫
Rd

∂j

(
gj,k∂ku

)
∂tu dx = − 1

2

∫
Rd

gj,k ∂

∂t

(
∂ju∂ku

)
dx.

Hence, we may conclude that

1
2

d

dt
‖∇u(t)‖2

L2
g(t)

= (f(t)|∂tu(t))L2 +
1
2

∑
j,k

∫
Rd

∂tg
j,k(t, x)∂ju(t, x)∂ku(t, x) dx

with

‖∇u(t)‖2
L2

g(t)

def= ‖∂tu(t)‖2
L2 +

∑
j,k

∫
Rd

gj,k(t, x)∂ju(t, x) ∂ku(t, x) dx.

As ‖∂tu‖L2 ≤ ‖∇u‖L2
g(t)

and

A−1
0 ‖ ∇u(t)‖2

L2 ≤ ‖∇u(t)‖2
L2

g(t)
≤ A0‖∇u(t)‖2

L2 , (9.3)

this gives

1
2

d

dt
‖∇u(t)‖2

L2
g(t)

≤ ‖f(t)‖L2 ‖∂tu(t)‖L2 +
1
2
A0‖∂tg(t)‖L∞ ‖∇u(t)‖2

L2
g(t)

≤ ‖f(t)‖L2 ‖ ∇u(t)‖L2
g(t)

+
1
2
A0‖∂tg(t)‖L∞ ‖∇u(t)‖2

L2
g(t)

.

As φ(t) ≥ A0‖∂tg(t, ·)‖L∞ , Gronwall’s lemma (see Lemma 3.3 page 125) thus
gives

exp
(

− 1
2

∫ t

0

φ(t′) dt′
)

‖ ∇u(t)‖L2
g(t)

≤ ‖∇u(0)‖L2
g(0)

+
∫ t

0

‖f(t′)‖L2 exp
(

− 1
2

∫ t′

0

φ(t′ ′) dt′ ′
)

dt′. (9.4)

In order to conclude, we simply use the condition (9.2). 	


Before stating the basic existence result for the quasilinear wave equa-
tion (QW ), we introduce an item of notation that will be used throughout
this chapter.
Notation. We denote by Cγ a generic expression of the type f(‖γ‖

Ḃ
d
2 −1
2,1

),

where f : R
+ → R

+ is a nondecreasing continuous function.

Theorem 9.2. Assume that the metric Id + G satisfies the condition (9.2).

If the initial data (u0, u1) is such that γ
def
= (∂u0, u1) belongs to Bd def

= Ḃ
d
2
2,1 ∩

Ḃ
d
2 −1
2,1 , then there exist two maximal positive times, T� and T �, satisfying

Cγ min{T�, T
�} ‖γ‖

Ḃ
d
2
2,1

≥ 1

and such that (QW ) has a unique solution u in the space C(]−T�, T
�[; Bd).
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Moreover, if T� (resp., T �) is finite, then

lim sup
t→T

(
‖u(t)‖L∞ +

∫ t

0

‖ ∇u(t′)‖L∞ dt′
)

= ∞

with T = −T� (resp., T = T �).
Finally, if the initial data is such that γ belongs to Ḃs−1

2,r for some positive s
and r ∈ [1, ∞], then ∇u is continuous (or weakly continuous, if r = ∞) with
values in the space Ḃs−1

2,r .

Proof. As the equation (QW ) is time-reversible, we shall focus (as in the
whole of this chapter) on the proof for positive times. The proof has much
in common with those of Theorems 4.16 page 188 and 4.21 page 193. Indeed,
Section 4.2.1 can be effectively reproduced in the framework of linear wave
equations with variable coefficients. Here, we define the sequence (un)n∈N of
approximate solutions by means of the following induction:

– The function u0 is the solution of

∂2
t u0 − Δu0 = 0 with ∇u0(0) = S0γ.

– Once un has been defined, un+1 is the solution of1

{
∂2

t un+1 − Δun+1 − ∂ · (G(t, un) · ∂un+1) = Q(t, un)(∇un, ∇un)

∇un+1(0) = Sn+1γ.

In order to prove that the iterative scheme converges in Bd, the following
commutator lemma (in the spirit of Lemma 2.100 page 112) will be useful.

Lemma 9.3. Let L be a compact subset of ]0, +∞[. A constant C exists such
that for any s in L and any Lipschitz functions a and v which, in addition,
belong to Ḃs

2,r for some r ∈ [1, ∞], we have, for all k ∈ {1, . . . , d},

2j(s−1)‖Δ̇j(v∂ka) − v∂kΔ̇ja‖Ḣ1 ≤ cjC
(

‖v‖Ḃs
2,r

‖∂a‖L∞ + ‖a‖Ḃs
2,r

‖∂v‖L∞
)
,

and also

2j(s−1)‖Δ̇j(v∂ka) − v∂kΔ̇ja‖Ḣ1 ≤ cjC
(

‖v‖Ḃs+1
2,r

‖a‖L∞ + ‖a‖Ḃs
2,r

‖∂v‖L∞
)
,

where (cj)j∈Z denotes an element of the unit sphere of 	r(Z) which depends
on v and a.

Proof. We have to prove that for all k ∈ {1, . . . , d},

Rj(v, a) def= Δ̇j(v∂ka) − v∂kΔ̇ja

1 Recall that Sn is the low-frequency truncation operator defined on page 61.
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satisfies the above estimate. We write that

v∂ka =
∑
j′

Δ̇j′ v ∂kṠj′+2a +
∑
j′

Ṡj′ −1v ∂kΔ̇j′ a

and then, by virtue of the localization properties of the Littlewood–Paley
decomposition, that

Rj(v, a) =
3∑

�=1

R
(�)
j (v, a) with

R
(1)
j (v, a) def=

∑
j′ ≥j−3

Δ̇j(Δ̇j′ v ∂kṠj′+2a) ,

R
(2)
j (v, a) def=

∑
|j′ −j|≤4

[Δ̇j , Ṡj′ −1v]∂kΔ̇j′ a, and

R
(3)
j (v, a) def=

∑
|j′ −j|≤1

(Ṡj′ −1 − Id)v ∂kΔ̇jΔ̇j′ a.

We now estimate each term. As ‖∂kṠj′+2a‖L∞ ≤ C‖∂a‖L∞ , we have

‖R
(1)
j (v, a)‖Ḣ1 ≤ C2j ‖R

(1)
j (v, a)‖L2

≤ C2j
∑

j′ ≥j−3

‖∂a‖L∞ ‖Δ̇j′ v‖L2 .

Using Young’s inequality for series, we get, for any positive s,

2j(s−1)‖R
(1)
j (v, a)‖Ḣ1 ≤ C2js‖R

(1)
j (v, a)‖L2

≤ C‖∂a‖L∞

∑
j′ ≥j−3

2−(j′ −j)s2j′s‖Δ̇j′ v‖L2

≤ Ccj ‖∂a‖L∞ ‖v‖Ḃs
2,r

. (9.5)

As ‖∂kṠj′+2a‖L∞ ≤ C2j′ ‖a‖L∞ , we also have

2j(s−1)‖R
(1)
j (v, a)‖Ḣ1 ≤ C‖a‖L∞

∑
j′ ≥j−3

2−(j′ −j)s2j′(s+1)‖Δ̇j′ v‖L2

≤ Ccj ‖a‖L∞ ‖v‖Ḃs+1
2,1

. (9.6)

We now estimate ‖R
(2)
j (v, a)‖Ḣ1 . Using Lemma 2.97 page 110, we can write

2j(s−1)‖R
(2)
j (v, a)‖Ḣ1 ≤ C2js‖R

(2)
j (v, a)‖L2

≤ C2js‖∂v‖L∞

∑
|j−j′ |≤4

2j′ −j ‖Δ̇j′ a‖L2

≤ C‖∂v‖L∞

∑
|j−j′ |≤4

2(j−j′)(s−1)2j′s‖Δ̇j′ a‖L2 .
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Using the definition of the norm in Ḃs
2,r, we thus get, for any s,

2j(s−1)‖R
(2)
j (v, a)‖Ḣ1 ≤ Ccj ‖∂v‖L∞ ‖a‖Ḃs

2,r
. (9.7)

Finally, we estimate ‖R
(3)
j (v, a)‖Ḣ1 . We use the fact that, according to Leib-

niz’s formula, we have

‖R
(3)
j (v, a)‖Ḣ1 ≤ ‖R

(3)
j (v, ∂a)‖L2 + ‖R

(3)
j (∂v, a)‖L2 .

From Lemma 2.1 page 52, we infer that a constant C exists such that for any
integer j′, we have

‖(Ṡj′ −1 − Id)v‖L∞ ≤ C
∑

j′ ′ ≥j′ −1

2−j′ ′
‖∂v‖L∞ ≤ C2−j′

‖∂v‖L∞ .

Thus, we deduce that for any s,

2j(s−1)‖R
(3)
j (v, ∂a)‖L2 ≤ Ccj ‖∂v‖L∞ ‖a‖Ḃs

2,r
. (9.8)

Next, because ‖Sj′ −1∂v‖L∞ ≤ C‖∂v‖L∞ , we have

2j(s−1)‖R
(3)
j (∂v, a)‖L2 ≤ Ccj ‖∂v‖L∞ ‖a‖Ḃs

2,r
. (9.9)

Combining (9.8) and (9.9) gives

2j(s−1)‖R
(3)
j (v, a)‖Ḣ1 ≤ Ccj ‖∂v‖L∞ ‖a‖Ḃs

2,r
. (9.10)

Combining the three estimates (9.5) [resp., (9.6)], (9.7), and (9.10) gives the
first (resp., second) inequality. 	


Corollary 9.4. Let s be a positive real number. There exists a continuous
nondecreasing function Cs : R

+ → R
+ which vanishes at 0 and satisfies the

following properties. Consider a couple of functions (u, v), the space deriva-
tives of which are locally integrable in time, with values in L∞ and such
that v(t) is also locally integrable in time with values in L∞. Assume, in
addition, that u and v are locally integrable in time with values in Ḃs

2,r. If

∂2
t u − Δu − ∂ · (G(t, v) · ∂u) = f

with f in L1
loc(Ḃ

s−1
2,1 ), then we have, for any integer j,

∂2
t Δ̇ju − ΔΔ̇ju − ∂ · (G(t, v) · ∂Δ̇ju) = Δ̇jf + Rj(u, v),

where the operator Rj is such that, for any t, there exists a sequence (cj(t))j∈Z

in the unit sphere of 	r(Z) such that

2j(s−1)‖Rj(u, v)(t)‖L2 ≤ cj(t)C(‖v(t)‖L∞ )
×

(
‖u(t)‖Ḃs

2,r
‖∂v(t)‖L∞ + ‖v(t)‖Ḃs

2,r
‖∂u(t)‖L∞

)
(9.11)
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and

2j(s−1)‖Rj(u, v)(t)‖L2 ≤ cj(t)C(‖v(t)‖L∞ )
×

(
‖u(t)‖Ḃs

2,r
‖∂v(t)‖L∞ + ‖v(t)‖Ḃs+1

2,r
‖u(t)‖L∞

)
. (9.12)

Proof. Note that

Rj(u, v) def= ∂ ·
(
Δ̇j(G(t, v) · ∂u) − G(t, v) · Δ̇j∂u

)

satisfies

‖Rj(u, v)‖L2 ≤ ‖Δ̇j(G(t, v) · ∂u) − G(t, v) · Δ̇j∂u‖Ḣ1 .

The result is therefore a straightforward consequence of the previous lemma
combined with Theorem 2.61 page 94. 	


We now resume the proof of Theorem 9.2.

First Step: Uniform Bounds in Large Norm

We want to prove by induction that a positive constant B0 and a positive
time T exist such that for any n,

(Pn,T ) ‖∇un‖L∞
T

(Ḃs−1
2,1 ) ≤ B0‖γ‖Ḃs−1

2,1
for s =

d

2
,
d

2
+ 1.

Choosing B0 ≥ 1 makes the property (P0,T ) obvious for all T > 0.
Assume that (Pn,T ) is satisfied. Corollary 9.4 with u = un+1, r = 1, and s

in {d/2, d/2+1}, hypothesis (Pn,T ), and the embedding Ḃ
d
2
2,1 ↪→ L∞ together

give

∂2
t Δ̇jun+1 − ΔΔ̇jun+1 − ∂ · (G(t, un) · ∂Δ̇jun+1)

= Δ̇j

(
Q(t, un)(∇un, ∇un)

)
+ Rj(un+1, un)

with, for s in {d/2, d/2 + 1},

2j(s−1)‖Rj(un+1, un)(t)‖L2 ≤ cj(t)B0Cγ ‖γ‖
Ḃ

d
2
2,1

‖∂un+1(t)‖Ḃs−1
2,1

.

More precisely, the case s = d/2+1 follows from the inequality (9.11), whereas
the case s = d/2 is a consequence of the inequality (9.12).

Assume that

B0 = 2A0 exp(A0A1) with
∫ T

0

‖∂tG(t, ·)‖L∞ dt ≤ A1. (9.13)

Under the condition (Pn,T ), we then have, owing to the chain rule and the

embedding Ḃ
d
2
2,1 ↪→ L∞,
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A0

∫ T

0

‖∂t

(
G(t, un(t))

)
‖L∞ dt ≤ A0

(
A1 + ‖∂uG‖L∞(R2)

∫ T

0

‖∂tun(t)‖L∞ dt
)

≤ A0

(
A1+CB0‖∂uG‖L∞(R2)T ‖γ‖

Ḃ
d
2
2,1

)
.

Assume that

T ≤ A1

(
CB0‖∂uG‖L∞(R2)‖γ‖

Ḃ
d
2
2,1

)−1
. (9.14)

We then get

A0

∫ T

0

‖∂t(G(t, un(t, ·))‖L∞ dt ≤ 2A0A1. (9.15)

From Lemma 9.1 and the above inequalities, we infer that for any t ≤ T and j
in Z, we have

2j(s−1)‖∇un+1‖L∞
t (L2) ≤ eA0A1

(
A02j(s−1)‖γ‖L2

+A
1
2
0 B0Cγ ‖γ‖

Ḃ
d
2
2,1

∫ t

0

cj(t′)‖∂un+1(t′)‖Ḃs−1
2,1 ) dt′

)
.

Hence, by summation over j, we get

‖∇un+1‖L̃∞
t (Ḃs−1

2,1 ) ≤ eA0A1

(
A0‖γ‖Ḃs−1

2,1
+ A

1
2
0 B0Cγ ‖γ‖

Ḃ
d
2
2,1

‖∇un+1‖L1
t (Ḃs−1

2,1 )

)
.

Choosing T such that

A
1
2
0 B0e

A0A1TCγ ‖γ‖
Ḃ

d
2
2,1

≤ 1
2

implies that

‖∇un+1‖L̃∞
T (Ḃs−1

2,1 ) ≤ 2A0e
A0A1 ‖γ‖Ḃs−1

2,1
for s ∈ {d/2, d/2 + 1}.

Together with (9.13), this gives (Pn+1,T ).

Second Step: Convergence of the Approximate Sequence

We claim that if T0 is sufficiently small, then (∇un)n∈N is a Cauchy sequence

in L∞
T0

(Ḃ
d
2 −1
2,1 ). Indeed, the difference ũn

def= un+1 − un satisfies

(QWn) ∂2
t ũn − Δũn − ∂ · (G(t, un) · ∂ũn) = fn

with
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fn
def= (Q(t, un) − Q(t, un−1))(∇un, ∇un)

+Q(t, un−1)(∇ũn−1, ∇un + ∇un−1) + ∂ · ((G(t, un) − G(t, un−1)) · ∂un).

Applying Corollary 9.4 with s = d/2, r = 1, u = ũn, and v = un gives

∂2
t Δ̇j ũn − ΔΔ̇ju − ∂ · (G(t, un) · ∂Δ̇j ũn) = Δ̇jfn + Rj(ũn, un).

To bound fn, we may take advantage of the product laws (Corollary 2.54
page 90) and the composition estimates (Corollary 2.66 page 97). We deduce
that for any t ≤ T ,

2j( d
2 −1)‖Δ̇jfn(t)‖L2 ≤ cj(t)Cγ ‖γ‖

Ḃ
d
2
2,1

‖∇ũn−1(t)‖
Ḃ

d
2 −1
2,1

.

Observe that ∇ũn(0) = Δ̇nγ. Hence, using Lemma 9.1, multiplying by 2j( d
2 −1),

and summing over j, we get, for any T ≤ T ,

‖∇ũn‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ B0

(
2−n‖γ‖

Ḃ
d
2
2,1

+TCγ ‖γ‖
Ḃ

d
2
2,1

‖∇ũn−1‖
L∞

T (Ḃ
d
2 −1
2,1 )

)
.

Choosing T ≤ T such that

B0TCγ ‖γ‖
Ḃ

d
2
2,1

≤ 1
2

,

we then infer that

‖∇ũn‖
L∞

T (Ḃ
d
2 −1
2,1 )

≤ B02−n‖γ‖
Ḃ

d
2
2,1

+
1
2

‖∇ũn−1‖
L∞

T (Ḃ
d
2 −1
2,1 )

.

This readily implies that (∇un)n∈N is a Cauchy sequence in C([0, T ]; Ḃ
d
2 −1
2,1 ).

Hence, there exists some function u such that (∇un)n∈N converges to ∇u

in C([0, T ]; Ḃ
d
2 −1
2,1 ). Moreover, (∇un)n∈N is a bounded sequence in L̃∞

T (Ḃ
d
2
2,1)

and hence, by virtue of the Fatou property for Besov spaces (see Theorem 2.25
page 67), we have

∇u ∈ C([0, T ]; Ḃ
d
2 −1
2,1 ) ∩ L̃∞

T (Ḃ
d
2
2,1)

and may check that u is indeed a solution of (QW ) on the time interval [0, T ].

Third Step: Time Continuity of the Solution

We must now check that ∇u belongs to C([0, T ]; Ḃ
d
2
2,1). The argument of Sec-

tion 4.3.2 page 190 can be repeated here. Indeed, if ε is a positive real number,
then we have, for any integer j and (t, t′) ∈ [0, T ]2,
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‖∇u(t) − ∇u(t′)‖
Ḃ

d
2
2,1

=
∑

j

2j d
2 ‖Δ̇j′ (∇u(t) − ∇u(t′))‖L2

≤ 2j
∑
j′ ≤j

2j′( d
2 −1)‖Δ̇j′ (∇u(t) − ∇u(t′))‖L2

+ 2
∑
j′>j

2j′ d
2 ‖Δ̇j′ ∇u‖L∞

T (L2)

≤ 2j ‖ ∇u(t) − ∇u(t′)‖
Ḃ

d
2−1
2,1

+ 2
∑
j′>j

2j′ d
2 ‖Δ̇j′ ∇u‖L∞

T (L2).

As (2j d
2 ‖Δ̇j ∇u‖L∞

T (L2))j∈Z is in 	1(Z), an integer jε exists such that

∑
j′>jε

2j d
2 ‖Δ̇j′ ∇u‖L∞

T (L2) <
ε

4
·

Thus, for all (t, t′) ∈ [0, T ]2,

‖∇u(t) − ∇u(t′)‖
Ḃ

d
2
2,1

≤ 2jε ‖ ∇u(t) − ∇u(t′)‖
Ḃ

d
2 −1
2,1

+
ε

2
·

As ∇u is continuous from [0, T ] to Ḃ
d
2 −1
2,1 , the solution u is such that ∇u is

also continuous from [0, T ] to Ḃ
d
2
2,1.

Fourth Step: Uniqueness

This is a simple variation on the proof of the convergence of (un)n∈N. As in the

previous step, it follows from stability estimates in the space C([0, T ]; Ḃ
d
2 −1
2,1 ).

Fifth Step: The Blow-up Criterion

We argue by contraposition. Let u be a solution of (QW ) on [0, T [ such that ∇u
belongs to C[0, T [; Bd). Assume, in addition, that

sup
t∈[0,T [

(
‖u(t)‖L∞ +

∫ t

0

‖ ∇u(t′)‖L∞ dt′
)

< ∞. (9.16)

We want to show that u may be continued beyond T to a solution of (QW ).
We temporarily fix some s > 0. Applying Corollary 9.4 with r = 1 and u =

v then gives

∂2
t Δ̇ju − ΔΔ̇ju − ∂ · (G(t, u) · ∂Δ̇ju) = Δ̇j

(
Q(t, u)(∇u, ∇u)

)
+ Rj(u, u)

with

2j(s−1)‖Rj(u, u)(t)‖L2 ≤ cj(t)Cs(‖u(t)‖L∞ )‖∂u(t)‖L∞ ‖∂u(t)‖Ḃs−1
2,1

.
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Thanks to the product laws in Besov spaces, we have

2j(s−1)‖Δ̇j

(
Q(t, u)(∇u, ∇u)

)
‖L2 ≤ cj(t)C(‖u(t)‖L∞ )‖∇u(t)‖L∞ ‖∂u(t)‖Ḃs−1

2,1
.

We now define

φ(t) def= ‖∂t(G(t, u(t)))‖L∞ and

Us(T ) def=
∑

j

sup
t≤T

exp
(

− 1
2

∫ t

0

φ(t′) dt′
)
2j(s−1)‖Δ̇j ∇u(t)‖L2 .

Using Lemma (9.1), we get, after multiplying by 2j(s−1),

exp
(

− 1
2

∫ t

0

φ dt′
)
2j(s−1)‖Δ̇j ∇u(t)‖L2 ≤ A0‖Δ̇jγ‖L2

+A
1
2
0

∫ t

0

cjC(‖u(t′)‖L∞ )‖ ∇u‖L∞ exp
(

− 1
2

∫ t′

0

φ dt′ ′
)

‖∇u‖Ḃs−1
2,1

dt′.

Noting that for any t′ ≤ t,

exp
(

− 1
2

∫ t′

0

φ(t′ ′) dt′ ′
)

‖ ∇u(t′)‖Ḃs−1
2,1

≤ Us(t),

we deduce, after summation over j, that

Us(t) ≤ A0‖γ‖Ḃs−1
2,1

+ A
1
2
0

∫ t

0

C(‖u(t′)‖L∞ )‖∇u(t′)‖L∞ Us(t′) dt′.

Gronwall’s lemma then implies that

Us(t) ≤ A2
0‖γ‖Ḃs−1

2,1
exp

(
A0

∫ t

0

C(‖u(t′)‖L∞ )‖∇u(t′)‖L∞ dt′
)
.

Hence, by the definition of Us, we have

‖∇u‖L̃∞
t (Ḃs−1

2,1 ) ≤ A0‖γ‖Ḃs−1
2,1

× exp
(∫ t

0

(
‖∂t(G(t′, u(t′)))‖L∞ + A

1
2
0 C(‖u(t′)‖L∞ )‖∇u(t′)‖L∞

)
dt′

)
. (9.17)

Under the hypothesis (9.16), this ensures that ‖∇u‖L̃∞
T (Ḃs−1

2,1 ) is finite. Taking
s = d/2, s = d/2 + 1 and using the lower bounds that were previously estab-
lished for the lifespan, we can conclude that the solution may be continued
beyond T .

Final Step: Additional Regularity

We have to establish that if, in addition, γ belongs to Ḃσ−1
2,r for some σ > 0,

then the solution u is such that ∇u belongs to C([0, T ]; Ḃσ−1
2,r ). This follows

from the fact that Corollary 9.4 holds for any positive index of regularity. As
we may proceed exactly as in the first step, the details are left to the reader.
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9.2 The Main Statement and the Strategy of its Proof

In this section, we state the main result of this chapter—local well-posedness
of (QW ) with initial data which are not Lipschitz functions—and give an
insight into the construction of its proof.

For expository purposes, we introduce the following notation:

‖a‖σ
def= ‖a‖Ḃσ

2,1
and ‖b‖T,σ

def= ‖b‖L̃∞
T (Ḃσ

2,1)
. (9.18)

Theorem 9.5. Assume that the metric Id + G satisfies the condition (9.2)
and that the initial data (u0, u1) are such that

γ ∈ Ḃ
d
2 − 1

4
2,1 ∩ Ḃ

d
2 − 5

4
2,1 , if d ≥ 4,

γ ∈ Ḃ
5
4+ε
2,1 ∩ Ḃ

1
4+ε
2,1 , for some positive ε if d = 3,

γ ∈ Ḃ
7
8
2,1 ∩ Ḃ

− 1
8

2,1 , if d = 2.

There then exist two maximal positive times, T� and T �, such that (QW ) has
a unique solution u with ∇u ∈ L2

loc(]−T�; T �[; L∞) and

∇u ∈ C
(
]−T�, T

�[; Ḃ
d
2 − 1

4
2,1 ∩ Ḃ

d
2 − 5

4
2,1

)
, if d ≥ 4,

∇u ∈ C
(
]−T�, T

�[; Ḃ
5
4+ε
2,1 ∩ Ḃ

1
4+ε
2,1

)
, if d = 3,

∇u ∈ C
(
]−T�, T

�[; Ḃ
7
8
2,1 ∩ Ḃ

− 1
8

2,1

)
, if d = 2.

Moreover, we have (using the notation of page 392),

Cγ min{T�, T
�} 3

4 ‖γ‖
Ḃ

d
2 − 1

4
2,1

≥ 1, if d ≥ 4,

Cγ,ε min{T�, T
�} 3

4+ε‖γ‖
Ḃ

5
4 +ε

2,1

≥ 1, if d = 3,

Cγ min{T�, T
�} 7

8 ‖γ‖
Ḃ

7
8
2,1

≥ 1, if d = 2.

If T� or T � is finite, then

lim sup
t→T

(
‖u(t)‖L∞ +

∫ t

0

‖ ∇u(t′)‖L∞ dt′
)

= ∞

with T = −T� or T = T �. Moreover, if the initial data is such that γ be-
longs to Ḃs−1

2,r for some positive s, then ∇u is continuous with values in the
space Ḃs−1

2,r .

As pointed out in the introduction, we shall instead solve a truncated quasilin-
ear wave equation. More precisely, we fix some smooth function θ, compactly
supported in [−1, 1] and with value 1 near [−1/2, 1/2]. For any fixed positive
time T , we then introduce the following equation:

(QWT )
{

∂2
t u − Δu − ∂ · (GT (t, u) · ∂u) = QT (t, u)(∇u, ∇u)

∇u|t=0 = γ

with GT (t, u) def= θ
( t

T

)
G(t, u) and QT (t, u) def= θ

( t

T

)
Q(t, u).
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A quick glance at the definitions of A0 and A1 [see (9.2) and (9.13)] shows
that the energy estimates of the preceding section may be made uniform with
respect to the truncation parameter T, and that the value of the constant
Cγ appearing in the forthcoming Theorem 9.12 may be made independent
of T. As a consequence, the lifespan of (QWT ) may be bounded from below
independently of T . Thus, if T is sufficiently small that the support of the
function θ(·T −1) is included in the interval of existence, then the solution
is global. Indeed, (QWT ) reduces to the free linear wave equation with con-
stant coefficients away from [−T, T ]. Moreover, as the function θ has value 1
near [−1/2, 1/2], the original problem (QW ) is solved on [−T/2, T/2].

Having global solutions greatly facilitates the implementation of the geo-
metrical optics method which will be proposed in Section 9.5.2. In fact, this
method requires the metric to be smooth with respect to both the space and
time variables. Smoothness in the space variable can be achieved classically
by spectral truncation. A similar method would work for the time variable;
however, as it is nonlocal, this becomes quite unpleasant when solving an evo-
lution equation. Now, if we deal only with functions with compact support in
time (namely, GT and QT ), then using a cut-off function in the Fourier space
for the time variable is quite harmless.

To simplify the presentation, we shall focus on the proof of the above
theorem in dimension d ≥ 4 and simply indicate what has to be changed for
the case of dimension d = 2, 3. The proof of the theorem relies on an iterative
method which is very much analogous to that of the first section. We define
the sequence (un)n∈N as follows. Start with the solution u0 of

∂tu0 − Δu0 = 0 with ∇u0(0) = S0γ.

Once un has been constructed, we then define un+1 as the solution of
{

∂tun+1 − Δun+1 − ∂ · (GT (t, un) · ∂un+1) = QT (t, un)(∇un, ∇un)
∇un+1(0) = Sn+1γ.

Let L
def= [d/2 − 1/4, d/2+3/4]. We first want to prove that if T is sufficiently

small, then we have the property

(An,T )

{
‖ ∇un‖T,s−1 ≤ B0‖γ‖s−1 for all s ∈ L

‖ ∇un‖L2
T (L∞) ≤ Cγ ‖γ‖ d

2 − 1
4
T

1
4 .

Once this has been proven, the rest of the proof will be more classical.
The property (An,T ) will be established by induction. As a first step, we

show that our problem reduces to the proof of the L2
T (L∞) estimate for high

frequencies, namely, for frequencies which are large with respect to T −1. This
reduction is the purpose of the next section.
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9.3 Refined Paralinearization of the Wave Equation

In order to prove Strichartz estimates, we shall use geometrical optics. This
method requires the smoothing out of the metric GT . This may be achieved
by means of a paralinearization procedure with respect to both the time and
space variables. Here, we need a refinement of this procedure so as to get
even better regularity of the coefficients involved in the paralinearization.
Consequently, the remainders will be worse, as usual.

We now introduce the following definition.

Definition 9.6. For δ in the interval [0, 1], j in Z, N0 in N, and T > 0, we
set

jδ
def
=

[
jδ − (1 − δ) log2 T

]
− N0 and Sδ

j

def
= Ṡ

(1+d)
jδ

,

where Ṡ
(1+d)
k denotes the Littlewood–Paley low-frequency cut-off in R

1+d which
was defined in Chapter 2.

The key result of this section is the following lemma.

Lemma 9.7. Let L be a compact subinterval of ]0, ∞[. Let u and v be two
functions with space-time gradient in

L1
T (L∞) ∩ L∞

T (Ḃs−1
2,1 ) for some s ∈ L.

If
∂2

t u − Δu − ∂ · (GT (t, v) · ∂u) = f,

then

∂2
t Δ̇ju − ΔΔ̇ju − ∂ · (Sδ

j (GT (t, v) · ∂Δ̇ju) = Δ̇jf + Rδ
j (u, v)

with, if 2jT is greater than 1,

2j(s−1)‖Rδ
j(u, v)‖L1

T (L2) ≤ cjC(‖v‖L∞([0,T ]×Rd))(2
jT )1−δ2N0 (9.19)

×
(

‖∂u‖L1
T (L∞)‖∂v‖T,s−1 + (1 + ‖∇v‖L1

T (L∞))‖∂u‖T,s−1

)

and

2j(s−1)‖Rδ
j(u, v)‖L1

T (L2) ≤ cjC(‖v‖L∞([0,T ]×Rd))(2
jT )1−δ2N0 (9.20)

× (‖u‖L1
T (L∞)‖∂v‖T,s + (1 + ‖∇v‖L1

T (L∞))‖∂u‖T,s−1

)
,

where C denotes a nondecreasing function from R
+ to R

+, dependent on L.

Proof. A straightforward modification of Corollary 9.4 implies that

∂2
t Δ̇ju − ΔΔ̇ju − ∂ · (GT (t, v) · ∂Δ̇ju) = Δ̇jf + Rj(u, v),

where the operator Rj is such that, for any t, there exists a sequence (cj)j∈Z

in the unit sphere of 	1(Z), where
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2j(s−1)‖Rj(u, v)‖L1
T (L2) ≤ cjC(‖v‖L∞([0,T ]×Rd))

×
(

‖u‖T,s‖∂v‖L1
T (L∞) + ‖v‖T,s‖∂u‖L1

T (L∞)

)
(9.21)

and

2j(s−1)‖Rj(u, v)‖L1
T (L2) ≤ cjC(‖v‖L∞([0,T ]×Rd))

×
(

‖u‖T,s‖∂v‖L1
T (L∞) + ‖v‖T,s+1‖u‖L1

T (L∞)

)
. (9.22)

Noting that

Rδ
j(u, v) = Rj(u, v) + ∂ ·

(
((Id −Sδ

j )GT (t, v)) · ∂Δ̇ju
)
,

we see that we have to bound ‖(Id −Sδ
j )GT (·, v)‖L1

T (L∞). Now, the identity on
page 52 (after an obvious rescaling) guarantees that there exist d+1 functions
gk in L1(R1+d) such that for any j′ ∈ Z,

Δ̇
(1+d)
j′ a =

d∑
k=0

2−j′
2j′dgk(2j′

·) � ∂ka.

From the anisotropic Young inequality, we thus infer that

‖Δ̇
(1+d)
j′ a‖L1(R;L∞) ≤ C2−j′

‖ ∇a‖L1(R;L∞).

Thus, by summation over j ≥ jδ, we get

‖(Id −Sδ
j )a‖L1(R;L∞) ≤ C2−j(2jT )1−δ2N0 ‖∇a‖L1(R;L∞). (9.23)

We want to apply the above inequality with a = GT (·, v). By definition of GT ,
we have

∂tGT (t, v) =
1
T

θ′
( t

T

)
G(t, v(t)) + θ

( t

T

)(
∂uG(t, v(t))∂tv(t) + ∂tG(t, v(t))

)
.

As the time cut-off commutes with the space derivative, we thus get

‖∇GT (t, v)‖L1(R,L∞)

≤ C
(

‖ ∇v‖L1
T (L∞)‖∂uG‖L∞ + ‖θ′ ‖L1 ‖G‖L∞ + ‖∂tG‖L1

T (L∞)

)
.

Taking advantage of (9.23), we can then deduce that

‖(Id −Sδ
j )GT (t, v)‖L1(R;L∞) ≤ C2−j(2jT )1−δ2N0

×
(

‖ ∇v‖L1
T (L∞)‖∂uG‖L∞ + ‖θ′ ‖L1 ‖G‖L∞ + ‖∂tG‖L1

T (L∞)

)
.

Therefore,

2j(s−1)‖Rδ
j(u, v)‖L1

T (L2) ≤ cjC(‖v‖L∞([0,T ]×Rd))
((

‖u‖T,s‖∂v‖L1
T (L∞)

+‖v‖T,s‖∂u‖L1
T (L∞)

)
+ 2j(s−1)(2jT )1−δ2N0 ‖∂u‖T,s−1

(
‖∇v‖L1

T (L∞)‖∂uG‖L∞

+‖θ′ ‖L1 ‖G‖L∞ + ‖∂tG‖L1
T (L∞)

))
.

The proof of the second inequality in Proposition 9.7 is similar. 	
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Proposition 9.8. If (An,T ) is satisfied and Cγ ‖γ‖ d
2 − 1

4
T

3
4 is sufficiently small,

then for any s ∈ L, we have

‖∇un+1‖T,s−1 ≤ B0

2
‖γ‖s−1

(
1 + CγT

1
2 ‖∇un+1‖L2

T (L∞)

)
.

Proof. We apply the inequality (9.11) of Corollary 9.4 and Lemma 9.7 under
assumption (An,T ). By virtue of Lemma 9.1, this gives

‖Δ̇j ∇un+1‖L∞
T (L2) ≤ 2−j(s−1)Kj(T )eI(T ) with (9.24)

I(T ) def= A0

∫ T

0

‖∂t(GT (t, un(t, ·)))‖L∞ dt and

Kj(T ) def= A02j(s−1)‖Δ̇jγ‖L2 + Cγ ‖γ‖s−1

∫ T

0

cj(t)‖∂un+1(t)‖L∞ dt

+ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖∇un+1‖T,s−1.

By definition of GT , we have, thanks to (An,T ),

I(T ) ≤ A0

∫ T

0

‖∂t(θ(tT −1)G(t, un(t, ·)))‖L∞ dt

≤ A0

(
‖θ′ ‖L1 ‖G‖L∞ + ‖∂uG‖L∞ ‖∂tun‖L1

T (L∞) + ‖∂tG‖L1
T (L∞)

)

≤ A0

(
‖θ′ ‖L1 ‖G‖L∞ + ‖∂tG‖L1

T (L∞) + ‖∂uG‖L∞ Cγ ‖γ‖ d
2 − 1

4
T

3
4

)
.

Assume that

‖θ′ ‖L1 ‖G‖L∞ + ‖∂tG‖L1
T (L∞) + ‖∂uG‖L∞ Cγ ‖γ‖ d

2 − 1
4
T

3
4 ≤ A1

and define
B0

def= 4A0 exp(A0A1).
By summation over j in (9.24), we get

‖∇un+1‖T,s−1 ≤ Cγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ ∇un+1‖T,s−1

+
B0

4
‖γ‖s−1

(
1 + Cγ ‖∇un+1‖L1

T (L∞)

)
.

Taking Cγ ‖γ‖ d
2 − 1

4
T

3
4 sufficiently small gives the result. 	


Remark 9.9. Taking s = d/2+3/4 and using Bernstein’s and Hölder’s inequal-
ities, we immediately deduce from Proposition 9.8 that for any integer j,

‖Ṡj ∇un+1‖L2
T (L∞) ≤ (2jT )

1
4 Cγ ‖γ‖ d

2 − 1
4
T

1
4
(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

)
.

From Proposition 9.8 and Lemma 9.7, we easily deduce the following corollary,
which will be needed in the next section.
Corollary 9.10. Under the hypothesis (An,T ), if Cγ ‖γ‖ d

2 − 1
4
T

3
4 is sufficiently

small, then we have, for any s ∈ L,

∂2
t Δ̇jun+1 − ΔΔ̇jun+1 − ∂ · (Sδ

j GT (t, un) · ∂Δ̇jun+1) = Rδ
j(n) with

2j(s−1)‖Rδ
j(n)‖L1

T (L2) ≤ cjCγ ‖γ‖s−1(2jT )1−δ2N0
(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

)
.
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9.4 Reduction to a Microlocal Strichartz Estimate

In this section, we complete the proof of Theorem 9.5. In view of what was
proven in the preceding section, we first have to establish the second inequal-
ity of (An+1,T ). This will be based on the following quasilinear Strichartz
estimates that we will temporarily assume to hold.

Theorem 9.11. Let uj be the solution of

∂2
t uj − Δuj − ∂ ·

(
Sδ

j GT (·, v) · ∂uj

)
= fj

on the time interval [0, T ]. We suppose that for any t, the support of the
Fourier transform of uj(t, ·) is supported in an annulus 2j C̃. If 2jT is suffi-
ciently large, then it follows that:

– If d ≥ 4, then

‖∇uj ‖L2
T (L∞) ≤ C(‖GT ‖L∞ )2j( d

2 − 1
2 )

×
(
(2jT )

δ
2 ‖ ∇uj ‖L∞

T (L2) + (2jT )− δ
2 ‖fj ‖L1

T (L2)

)
.

– If d = 3, then for all sufficiently small ε > 0,

‖∇uj ‖L2
T (L∞) ≤ Cε(‖GT ‖L∞ )2j(2jT )

ε
2

×
(
(2jT )

δ
2 ‖ ∇uj ‖L∞

T (L2) + (2jT )− δ
2 ‖fj ‖L1

T (L2)

)
.

– If d = 2, then

‖∇uj ‖L4
T (L∞) ≤ C(‖GT ‖L∞ )2

3
4 j

(
(2jT )

δ
2 ‖ ∇uj ‖L∞

T (L2)+(2jT )− δ
2 ‖fj ‖L1

T (L2)

)
.

Proof of the second inequality of (An+1,T ). For expository purposes, we restrict
ourselves to the case d ≥ 4. Applying Theorem 9.11 with uj = Δ̇jun+1 and
fj = Rδ

j(n) then gives

‖∇Δ̇jun+1‖L2
T (L∞) ≤ Cγ2j( d

2 − 1
2 )

×
(
(2jT )

δ
2 ‖ ∇Δ̇jun+1‖L∞

T (L2) + (2jT )− δ
2 ‖Rδ

j(n)‖L1
T (L2)

)
.

Combining the assumption (An,T ), Corollary 9.10, and Proposition 9.8 with
s = d/2 + 3/4, we get, for 2jT sufficiently large,

‖∇Δ̇jun+1‖L2
T (L∞) ≤ cjCγ2j( d

2 − 1
2 )

(
(2jT )

δ
2 2−j( d

2 − 1
4 )‖γ‖ d

2 − 1
4

+(2jT )− δ
2 2−j( d

2 − 1
4 )‖γ‖ d

2 − 1
4
(2jT )1−δ2N0

(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

))
.

Therefore,
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‖∇Δ̇jun+1‖L2
T (L∞) ≤ T

1
4 cjCγ(2jT )− 1

4 ‖γ‖ d
2 − 1

4

(
(2jT )

δ
2

+(2jT )1− 3
2 δ

(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

))
.

The “best” choice for δ here corresponds to δ/2 = 1 − 3δ/2, namely, δ = 1/2.
By summation over j, this gives, if 2jT is sufficiently large,

‖(Id −Ṡj)∇un+1‖L2
T (L∞) ≤ Cγ ‖γ‖ d

2 − 1
4
T

1
4

(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

)
.

Remark 9.9 now ensures that for all j ∈ Z, we have

‖Ṡj ∇un+1‖L2
T (L∞) ≤ (2jT )

1
4 Cγ ‖γ‖ d

2 − 1
4
T

1
4

(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

)
.

Combining these two inequalities and taking 2jT sufficiently large, we end up
with

‖∇un+1‖L2
T (L∞) ≤ Cγ ‖γ‖ d

2 − 1
4
T

1
4
(
1 + T

1
2 ‖∇un+1‖L2

T (L∞)

)
.

So, finally, choosing T such that

Cγ ‖γ‖ d
2 − 1

4
T

3
4 is sufficiently small (9.25)

ensures that the assertion (An+1,T ) is fulfilled.
We can now proceed to the proof of existence in Theorem 9.5. We assume

from now on that the condition (9.25) is satisfied. From the above estimates,

we deduce that if, in addition, the data are such that γ belongs to Ḃ
d
2 −1
2,1 ∩

Ḃ
d
2
2,1, then the sequence (∇un)n∈N is bounded in L2

T (L∞). Therefore, we may
proceed as in the first section of this chapter to prove the following result.

Theorem 9.12. Under the hypothesis of Theorem 9.2, the maximal time of
existence T � satisfies

T � 3
4 Cγ ‖γ‖ d

2 − 1
4

≥ 1.

We will now prove that (un)n∈N is a Cauchy sequence in a suitable space. As
already encountered in Chapters 4 and 7, and in the preceding section (and
also in Chapter 6 for a more subtle case), owing to hyperbolicity, we lose one
space derivative in the stability estimates. Here, we shall prove that (un)n∈N

is a Cauchy sequence for the norm

‖v‖T
def= ‖ ∇v‖T, d

2 − 5
4
T

1
4 + ‖v‖L2

T (L∞).

Proposition 9.13. Let ũn
def
= un+1 − un. If Cγ ‖γ‖ d

2 − 1
4
T

3
4 is sufficiently

small, then we have

T
1
4 ‖∇ũn‖T, d

2 − 5
4

≤ C2−n‖γ‖ d
2 − 1

4
T

1
4 + Cγ ‖γ‖ d

2 − 1
4
T

3
4 (‖ũn−1‖T + ‖ũn‖T ).
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Proof. As in Section 9.1, we write that ũn and ũn−1 satisfy

(QWn) ∂2
t ũn − Δũn − ∂(GT (·, un) · ∂ũn) = fn

def=
3∑

k=1

fk,n

with

⎧⎪⎪⎨
⎪⎪⎩

f1,n
def=

(
QT (·, un) − QT (·, un−1)

)
(∇un, ∇un)

f2,n
def= QT (·, un−1)(∇ũn−1, ∇un + ∇un−1)

f3,n
def= ∂ ·

(
(GT (·, un) − GT (·, un−1)) · ∂un

)
.

Taking advantage of the law of products, we obtain that

‖f1,n‖ d
2 − 5

4
≤ ‖QT (un) − QT (un−1)‖ d

2 − 1
4

‖(∇un, ∇un)‖ d
2 −1.

Corollary 2.66 page 97 thus implies that

T
1
4 ‖f1,n‖ d

2 − 5
4

≤ CγT
1
4 ‖ũn−1‖ d

2 − 1
4

‖ ∇un‖L∞ ‖∇un‖ d
2 −1

≤ Cγ ‖ũn−1‖T ‖ ∇un‖L∞ ‖∇un‖ d
2 −1.

By virtue of (An,T ), the above inequality may be rewritten as

T
1
4 2j( d

2 − 5
4 )‖Δ̇jf1,n‖L1

T (L2) ≤ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ũn−1‖T . (9.26)

We shall now estimate f2,n. From the usual product laws, we deduce that

‖∇ũn−1(∇un + ∇un−1)‖ d
2 − 5

4
≤ C

(
(‖ ∇un‖L∞ + ‖∇un−1‖L∞ )‖∇ũn−1‖ d

2 − 5
4

+‖ũn−1‖L∞
(

‖∇un‖ d
2 − 1

4
+ ‖∇un−1‖ d

2 − 1
4

))
.

As QT (t, un(t)) − QT (t, 0) is bounded in Ḃ
d
2
2,1, we thus have

T
1
4 ‖f2,n‖ d

2 − 5
4

≤ Cγ

(
‖ ∇un‖L∞ + ‖ ∇un−1‖L∞

)
‖ũn−1‖T

+ Cγ ‖γ‖ d
2 − 1

4
‖ũn−1‖L∞ T

1
4 .

Hence, according to (An,T ),

T
1
4 2j( d

2 − 5
4 )‖Δ̇jf2,n‖L1

T (L2) ≤ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ũn−1‖T . (9.27)

Finally, the laws of product and composition lead to

‖f3,n(t)‖ d
2 − 5

4
≤ ‖(GT (t, un(t)) − GT (t, un−1(t))) · ∂un(t)‖ d

2 − 1
4

≤ C‖ũn−1(t)‖L∞ ‖∂un(t)‖ d
2 − 1

4

+ Cγ ‖∂un(t)‖L∞ ‖∇ũn−1(t)‖ d
2 − 5

4
.

Therefore,
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T
1
4 2j( d

2 − 5
4 )‖Δ̇jf3,n‖L1

T (L2) ≤ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ũn−1‖T .

Together with (9.26) and (9.27), this gives

T
1
4 2j( d

2 − 5
4 )‖Δ̇jfn‖L1

T (L2) ≤ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ũn−1‖T . (9.28)

Now, according to the second part of Corollary 9.4, we have

∂2
t Δ̇j ũn − ΔΔ̇j ũn − ∂ · (GT (·, un) · ∂Δ̇j ũn) = Δ̇jfn + Rj(ũn, un)

with

2j( d
2 − 5

4 )‖Rj(ũn, un)(t)‖L2 ≤ cj(t)C(‖un(t)‖L∞ )
×

(
‖∂ũn(t)‖ d

2 − 5
4

‖∂un(t)‖L∞ + ‖∂un(t)‖ d
2 − 1

4
‖ũn(t)‖L∞

)
.

Thus, taking the L1 norm in time of the above inequality and multiplying
by T

1
4 , we deduce that

T
1
4 2j( d

2 − 5
4 )‖Rj(ũn, un)‖L1

T (L2) ≤ cjCγ ‖γ‖ d
2 − 1

4
T

3
4 ‖ũn‖T . (9.29)

Taking advantage of the energy estimate stated in Lemma 9.1, it is now easy
to complete the proof of the proposition. 	


Remark 9.14. From Bernstein’s and Hölder’s inequalities, we may deduce that
for any integer j,

‖Ṡj ũn‖L2
T (L∞) ≤ C(2jT )

1
4

∑
j′<j

T
1
4 ‖Δ̇j′ ∇ũn‖L∞

T (L2)2j′( d
2 − 5

4 ).

Therefore, Proposition 9.13 yields

‖Ṡj ũn‖L2
T (L∞) ≤ C(2jT )

1
4

(
2−n‖γ‖ d

2 − 1
4
T

1
4 +Cγ ‖γ‖ d

2 − 1
4
T

3
4 (‖ũn−1 + ‖ũn‖T )

)
.

This will be used to complete the proof of the theorem.

We now resume the proof of convergence of the sequence (un)n∈N. Applying
the second inequality of Lemma 9.7 with δ = 1/2 and s = d/2 − 1/4, we get

∂2
t Δ̇j ũn − ΔΔ̇j ũn − ∂ · (S

1
2
j (GT (·, un) · ∂Δ̇j ũn) = Δ̇jfn + R

1
2
j (n)

with, if 2jT is greater than or equal to 1,

2j( d
2 − 5

4 )‖R
1
2
j (n)‖L1

T (L∞) ≤ cjC(‖un‖L∞([0,T ]×Rd))(2
jT )

1
2 2N0

×
((

1 + ‖∇un‖L1
T (L∞)

)
‖ ∇ũn‖T, d

2 − 5
4

+ ‖ũn‖L1
T (L∞)‖∇un‖T, d

2 − 1
4

)
.

Thanks to Proposition 9.13, we obtain
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T
1
4 2j( d

2 − 5
4 )‖R

1
2
j (n)‖L1

T (L∞) ≤ cjCγ(2jT )
1
2 2N0 ‖γ‖ d

2 − 1
4

×
(
CT

1
4 2−n + T

3
4 (‖ũn‖T + ‖ũn−1‖T )

)
. (9.30)

Bernstein’s inequality and Theorem 9.11 give, for sufficiently large 2jT ,

‖Δ̇j ũn‖L2
T (L∞) ≤ 2−j ‖Δ̇j ∇ũn‖L2

T (L∞)

≤ 2j( d
2 − 3

2 )
(
(2jT )

1
4 ‖ ∇Δ̇j ũn‖L∞

T (L2)

+ (2jT )− 1
4
(

‖Δ̇jfn‖L1
T (L2) + ‖R

1
2
j (n)‖L1

T (L2)

))
.

From (9.28) and (9.30), we infer that, for sufficiently large 2jT ,

‖Δ̇j ũn‖L2
T (L∞) ≤ cj

(
2−n‖γ‖ d

2 − 1
4
T

1
4 + T

1
4 ‖ ∇ũn‖T, d

2 − 5
4

+ Cγ ‖γ‖ d
2 − 1

4
T

3
4 (‖ũn‖T + ‖ũn−1‖T )

)
.

Note that the second term on the right-hand side may be bounded according
to Proposition 9.13. Hence, if 2jT is large enough, then

‖Δ̇j ũn‖L2
T (L∞) ≤ cj

(
2−n‖γ‖ d

2 − 1
4
T

1
4 + Cγ ‖γ‖ d

2 − 1
4
T

3
4 (‖ũn‖T + ‖ũn−1‖T )

)
.

By summation, we thus infer that there exists some M > 0 such that if
2jT ≥ M, and Cγ ‖γ‖ d

2 − 1
4
T

3
4 is sufficiently small, then

‖(Id −Ṡj)ũn‖L2
T (L∞) ≤ 2−n‖γ‖ d

2 − 1
4
T

1
4 + Cγ ‖γ‖ d

2 − 1
4
T

3
4 (‖ũn‖T + ‖ũn−1‖T ).

Using Proposition 9.13 and Remark 9.14, we deduce that

‖ũn‖T ≤ T
1
4 ‖ ∇ũn‖T, d

2 − 5
4

+ ‖Ṡj ũn‖L2
T (L∞) + ‖(Id −Ṡj)ũn‖L2

T (L∞)

≤ C
(
1 + (2jT )

1
4
)(

2−n‖γ‖ d
2 − 1

4
T

1
4

+ Cγ ‖γ‖ d
2 − 1

4
T

3
4 (‖ũn‖T + ‖ũn−1‖T )

)
.

We now choose T such that (1 + M
1
4 )Cγ ‖γ‖ d

2 − 1
4
T

3
4 is sufficiently small,

then j ∈ N such that M ≤ 2jT < 2M. The above inequality then ensures
that (un)n∈N is a Cauchy sequence in L∞

T (Ḃ
d
2 − 1

4
2,1 ) ∩ L2

T (L∞). This completes
the proof of the existence part of Theorem 9.5.

To conclude, we shall say a few words about the proof of uniqueness.
Unsurprisingly, we proceed as for the proof that (un)n∈N is a Cauchy sequence.
So, consider two solutions, u and v, of (QW ) with the same initial data γ and
defined on some interval [0, T �]. The difference w = v − u between these two
solutions satisfies
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∂2
t w − Δw − ∂ · (G(·, v) · ∂w) = Q(·, v)(∇w, ∇u + ∇v)

− (Q(·, u) − Q(·, v))(∇u, ∇u) − ∂ · (G(·, u) − G(·, v))∂u).

We now introduce a cut-off function θ supported in [0, 1] and with value 1
near [0, 1/2[. Let T be a positive time less than T �. If

GT (t, v) def= θ̃
( t

T

)
G(t, v),

then w satisfies

∂2
t w − Δw − ∂(GT (·, v) · ∂w) = Q(·, v)(∇w, ∇u + ∇v)

− (Q(·, u) − Q(·, v))(∇u, ∇u) − ∂ · (G(·, u) − G(·, v)) · ∂u)

on the interval [0, T/2].
Mimicking the proof of the convergence of (un)n∈N then shows that w ≡ 0

on [0, T/2] if T is sufficiently small. The usual connectivity argument yields
uniqueness on the whole interval [0, T �]. The continuation criterion is based
on the inequality (9.17), as in the smooth case.

So, up to Theorem 9.11 (which we assumed), this completes the proof
of Theorem 9.5. The proof of Theorem 9.11 rests on the following microlocal
Strichartz estimates that will be established in the next section of this chapter.
This theorem is “microlocal”, inasmuch as it holds true on a time interval,
the length of which depends on the size of the frequency we are working with.

Theorem 9.15. Let uj satisfy

∂2
t uj − Δuj − ∂ ·

(
Sδ

j GT (·, v) · ∂uj

)
= fj on [0, T ] × R

d .

Assume that for any t in [0, T ], the support of the Fourier transform of uj(t, ·)
is supported in the annulus 2j C̃. Let I = [I−, I+] be a subinterval of [0, T ] such
that for some sufficiently small ε0,

|I| ≤ ε0T (2jT )−δ. (9.31)

We then have, for sufficiently large 2jT (and all sufficiently small positive ε,
if d = 3),

‖∇uj ‖L2(I;L∞) ≤ C2j( d
2 − 1

2 )(‖ ∇uj(I−)‖L2 + ‖fj ‖L1(I;L2)), if d ≥ 4,

‖∇uj ‖L2(I;L∞) ≤ Cε2j(2jT )ε(‖ ∇uj(I−)‖L2 + ‖fj ‖L1(I;L2)), if d = 3,

‖∇uj ‖L4(I;L∞) ≤ C2j 3
4 (‖ ∇uj(I−)‖L2 + ‖fj ‖L1(I;L2)), if d = 2.

Proof of Theorem 9.11. This consists in splitting the original interval [0, T ]
into subintervals Ij,k on which the microlocal Strichartz estimates apply. Com-
puting the total number of these subintervals is the key to the proof. In order
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to do this, we introduce a small parameter λ, the value of which will be chosen
later. We want that, for each interval Ij,k,

|Ij,k | ≤ ε0T (2jT )−δ and ‖fj ‖L1(Ij,k;L2) ≤ λ‖fj ‖L1
T (L2). (9.32)

This is satisfied whenever

(2jT )δ 1
ε0T

∫
Ij,k

dt +
1

λ‖fj ‖L1
T (L2)

∫
Ij,k

‖fj(t)‖L2 dt ≤ 1. (9.33)

We shall prove by induction that such a finite decomposition exists and then
control the number of intervals. Assume that we have constructed an increas-
ing family (t�)0≤�≤k of times in [0, T ] such that t0 = 0, t� < T, and, for
any 	 ≤ k − 1,

(2jT )δ 1
ε0T

(t�+1 − t�) +
1

λ‖fj ‖L1
T (L2)

∫ t�+1

t�

‖fj(t)‖L2 dt = 1.

Define

Fk(t) def= (2jT )δ 1
ε0T

(t − tk) +
1

λ‖fj ‖L1
T (L2)

∫ t

tk

‖fj(t′)‖L2 dt′.

This function is increasing and continuous. As Fk(tk) = 0, either a unique tk+1

exists in ]tk, T [ such that Fk(tk+1) = 1, or else the interval [tk, T ] satisfies the
condition (9.33), in which case we set tk+1 = T, and the procedure stops.
This defines a sequence (t�)0≤�≤k. As long as tk is less than T , we have, by
summation,

k = (2jT )δ 1
ε0T

tk+1 +
1

λ‖fj ‖L1
T (L2)

∫ tk+1

0

‖fj(t)‖L2 dt ≤ (2jT )δ 1
ε0

+
1
λ

·

Thus, the number Nj of intervals is finite and

Nj ≤ (2jT )δ

ε0
+

1
λ

·

Taking λ = (2jT )−δ and applying Theorem 9.15 in the case d ≥ 4 gives, for
any interval Ij,�,

‖∇uj ‖L2(Ij,�;L∞) ≤ C2j( d
2 − 1

2 )
(

‖ ∇uj ‖L∞
T (L2) + ‖fj ‖L1(Ij,�;L2)

)
≤ C2j( d

2 − 1
2 )

(
‖ ∇uj ‖L∞

T (L2) + (2jT )−δ ‖fj ‖L1
T (L2)

)
.

We now write that

‖∇uj ‖2
L2

T (L∞) =
Nj −1∑
�=0

‖ ∇uj ‖2
L2(Ij,�;L∞)

≤ C2j(d−1)Nj

(
‖ ∇uj ‖2

L∞
T (L2) + (2jT )−2δ ‖fj ‖2

L1
T (L2)

)
.

As Nj ≤ C(2jT )δ, we get the desired inequality for d ≥ 4.
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The case d = 2, 3 follows from similar arguments. It is only a matter of
multiplying the above right-hand side by (2jT )ε if d = 3 and of changing
2j(d−1) to 2

3
4 j if d = 2. In the latter case, we must also replace the L2 time

integration by an L4 time integration. 	


9.5 Microlocal Strichartz Estimates

This section is dedicated to the proof of the microlocal Strichartz estimates
in Theorem 9.15. These will arise as a consequence of a much more general
statement pertaining to a class of smooth variable coefficients linear wave
equations (see Theorem 9.16 below) which are of independent interest.

9.5.1 A Rather General Statement

In order to define the class of linear wave equations that we shall consider,
we first introduce a family (GΛ)Λ≥Λ0 of smooth functions from R

1+d to the
space of symmetric matrices on R

d such that for some positive constant c0,
we have Id+GΛ ≥ c0 for all Λ ≥ Λ0, and

∀k ∈ N, Gk
def= sup

Λ≥Λ0

Λk ‖ ∇kGΛ‖L∞(R1+d) < ∞. (9.34)

Note that in the particular case where the support of the space-time Fourier
transform of GΛ is included in Λ−1B, where B stands for some fixed ball
of R

1+d, we have

Gk ≤ Ck+1G0. (9.35)

Theorem 9.16. Consider an external force f and initial data (u0, u1) such

that f̂(t, ·), û0, and û1 are supported in some annulus C. Define γ
def
= (u1, ∂u0),

and let (uΛ)Λ≥Λ0 denote the family of solutions to

(LWΛ)
{

�Λu = f
∇u|t=0 = γ

with �Λu
def
= ∂2

t u − Δu −
∑

1≤k,�≤d

∂k(Gk,�
Λ ∂�u).

Let IΛ
def
= [0, ε0Λ]. If d ≥ 4, then we have, for all Λ ≥ Λ0,

‖uΛ‖L2
IΛ

(L∞) ≤ C(‖γ‖L2 + ‖f ‖L1
IΛ

(L2)).

If d = 3, then we have, for all Λ ≥ Λ0,

‖uΛ‖L2
IΛ

(L∞) ≤ C(log Λ)
1
2 (‖γ‖L2 + ‖f ‖L1

IΛ
(L2)).

If d = 2, then we have, for all Λ ≥ Λ0,

‖uΛ‖L4
IΛ

(L∞) ≤ C(‖γ‖L2 + ‖f ‖L1
IΛ

(L2)).
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In order to show that the above theorem implies Theorem 9.15, we have to
perform a convenient rescaling in the family (Sδ

j GT ). We consider

(Sδ
j GT )res(τ, y) def= Sδ

j GT (2−jτ, 2−jy).

Obviously, we have

‖∇k
τ,y(Sδ

j GT )res‖L∞(R1+d) = 2−jk ‖ ∇k
t,xSδ

j GT ‖L∞(R1+d),

and, hence, according to the localization properties of the operator Sδ
j and

Bernstein’s inequality, there exists some positive constant C such that for all
k ∈ N,

‖Λk ∇k(Sδ
j GT )res‖L∞(R1+d) ≤ Ck with Λ

def= (2jT )1−δ.

Hence, the inequality (9.34) holds true for this family.

Now, defining uj,res
def= uj(2−j ·, 2−j ·) and fj,res

def= fj(2−j ·, 2−j ·), we note
that

∂2
τuj,res − Δyuj,res − ∂y ·

(
(Sδ

j GT )res · ∂yuj,res

)
= 2−2jfj,res.

So, applying Theorem 9.16 to the family (uj,res) (with j sufficiently large)
and performing suitable changes of variable in the integrals involved in the
inequalities, we readily get Theorem 9.15. 	


The rest of this chapter is devoted to proving Theorem 9.16. Compared to the
case of the constant coefficients wave equation investigated in the previous
chapter, the main difficulty is that here, we do not have any explicit represen-
tation of the solution. The naive idea consists in writing out an approximate
representation by means of the geometrical optics method which is presented
in the next subsection.

9.5.2 Geometrical Optics

In this section, we explain how geometrical optics may be used to approximate
a solution of the variable coefficients linear wave equation

(Wg)
{

�gu = 0
(u, ∂tu)|t=0 = (u0, u1)

with �gu
def= ∂2

t −
∑

1≤k,�≤d

∂k(gk,�∂�u),

in the case where g is a smooth function of the variables t and x with values
in S +

d (R).
For g = Id, we saw in Chapter 8 that the solution can be computed

explicitly, namely,
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u(t, x) =
1

(2π)d

∑
±

∫
ei(x|ξ)±it|ξ|γ̂±(ξ) dξ with

γ̂± def=
1
2

(
û0(ξ) ± 1

i|ξ| û1(ξ)
)
.

In the variable coefficients case, we look for an approximation of the solution
of the form

u(t, x) =
1∑

�=0

∑
±

I(Φ±, σ±,�, u�) with

I(Φ, σ, a) def=
∫

eiΦ(t,x,ξ)σ(t, x, ξ)â(ξ) dξ. (9.36)

Of course, initially, the phase functions Φ± have to satisfy Φ±(0, x, ξ) = (x|ξ),
while the modulus functions σ±,� have to be chosen so that

σ±,0(0, x, ξ) =
1
2
(2π)−d and σ+,1(0, x, ξ) + σ−,1(0, x, ξ) = 0.

The action of �g on such quantities is described by the following lemma,
which is an obvious consequence of the chain rule.

Lemma 9.17. We have

e−iΦ�g(eiΦσ) =
(

−(∂tΦ)2 + g(∂xΦ, ∂xΦ)
)
σ + 2iLΦσ − σ�gΦ + R(Φ, σ)

with

LΦ
def
= ∂tΦ ∂t −

∑
1≤k,�≤d

gk,�∂kΦ∂� and R(Φ, σ)
def
= �gσ. (9.37)

Taking for granted that the remainder R(Φ, σ) is of lower order (in some sense
that will be specified later), we are left with solving the eikonal equation

(EE)
{

(∂tΦ)2 = g(∂xΦ, ∂xΦ)
Φ(0, x, ξ) = (x|ξ)

and the cascade of transport equations

2iLΦσ0 − σ0�gΦ = 0 and 2iLΦσn+1 − σn+1�gΦ + R(Φ, σn) = 0. (9.38)

9.5.3 The Solution of the Eikonal Equation

In all that follows, we fix two annuli, C and C̃, with C ⊂ C̃ and d(∂C, ∂C̃) > 0,
and consider the following family of eikonal equations:

(H̃J
±
Λ )

{
∂tΦ

±
Λ(t, x, ξ) = F ±

Λ

(
t, x, ∂xΦ±

Λ (t, x, ξ)
)

Φ±
Λ (0, x, ξ) = (x|ξ),

where the family (F ±
Λ )Λ≥Λ0 satisfies

‖Λk ∇k
t,x∂�

pFΛ‖L∞(R1+d × C̃) ≤ Ck,�. (9.39)
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Proposition 9.18. There exists a constant ε0 such that for any ξ ∈ C there
exists a unique smooth solution Φ±

Λ(·, ·, ξ) of the equation (H̃J
±
Λ) on the in-

terval IΛ.

Moreover, ∂xΦ±
Λ is valued in C̃, and for any integer k there exists a

nondecreasing function Ck from R
+ into itself such that the family of so-

lutions (Φ±
Λ )Λ≥Λ0 satisfies

sup
Λ≥Λ0

‖∇k
Λ∇t,xΦ±

Λ ‖L∞(IΛ ×Rd × C) ≤ Ck with ∇Λ
def
= (Λ∇t,x, ∂ξ). (9.40)

Proof. From the classical theory of Hamilton–Jacobi equations (see, e.g., [15]),

we infer that the equation (H̃J
±
Λ) has a unique maximal smooth solution on

some nontrivial time interval [0, T ±,�
Λ [. In addition, if T ±,�

Λ is finite, then we
have

lim sup
t→T ±,�

Λ

‖∂2
xΦ±

Λ (t, ·)‖L∞(Rd × C) = +∞. (9.41)

To simplify notation, we omit the index ± in the rest of the proof. Let TΛ

denote the supremum of times T < min(T �
Λ, ε0Λ) such that

‖∂2
xΦΛ‖L∞([0,T ]×Rd × C) ≤ Λ−1 and ∂xΦΛ([0, T ] × R

d ×C) ⊂ C̃.

We note that differentiating the equation with respect to the variable x and

setting ZΛ
def= −∂pFΛ · ∂x gives

{
∂t∂xΦΛ + ZΛ · ∂xΦΛ = ∂xFΛ(t, x, ∂xΦΛ)

∂xΦΛ(0, x, ξ) = ξ.
(9.42)

Hence, using (9.39) and integration, we get that for any t < TΛ,

|∂xΦΛ(t, x, ξ) − ξ| ≤ C1ε0. (9.43)

As ξ is in C, taking ε0 sufficiently small obviously ensures that ∂xΦΛ is valued
in C̃.

Differentiating the equation once more with respect to the variable x and
multiplying by Λ gives

{
∂tΛ∂2

xΦΛ + ZΛ · Λ∂2
xΦΛ = RΛ

Λ∂2
xΦΛ(0, x, ξ) = 0

(9.44)

with RΛ
def= Λ∂2

xFΛ + 2Λ∂x∂pFΛ∂2
xΦΛ + Λ∂2

pFΛ(∂2
xΦΛ, ∂2

xΦΛ).
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By the estimate (9.39) and the definition of TΛ, for any T < TΛ we get

‖RΛ‖L∞([0,T ]×Rd × C) ≤ C2Λ
−1.

By integration, this gives

Λ‖∂2
xΦΛ‖L∞([0,T ]×Rd × C) ≤ C2 for all T < TΛ.

The blow-up criterion (9.41) implies that T �
Λ ≥ ε0Λ. Moreover, from the equa-

tion (9.42) we readily get

‖∂t∂xΦΛ‖L∞(IΛ ×Rd × C) ≤ C2Λ
−1. (9.45)

We now differentiate (9.42) with respect to the variable ξ. This gives
{

∂t∂x∂ξΦΛ + ZΛ · ∂x∂ξΦΛ = R̃Λ

∂x∂ξΦΛ(0, x, ξ) = Id

with R̃Λ
def= ∂2

pFΛ(∂2
xΦΛ, ∂x∂ξΦΛ) + ∂x∂pFΛ · ∂x∂ξΦΛ.

Now, by virtue of (9.39) we have

‖R̃Λ(t, ·)‖L∞(Rd × C) ≤ C2Λ
−1‖∂x∂ξΦΛ(t, ·)‖L∞(Rd × C).

Therefore,

‖∂x∂ξΦΛ(t, ·)‖L∞(IΛ ×Rd × C) ≤ C2. (9.46)

Combining (9.44), (9.45), and (9.46), we may thus conclude that (9.40) is
satisfied for k = 1.

In order to prove the estimate (9.40) for all k, we proceed by induction.
For the sake of simplicity we do not consider time derivatives as they may be
recovered from the equation (9.42). We define

DΛ
def= (Λ∂x, ∂ξ).

Note that as the function FΛ does not depend on ξ, the inequalities (9.39)
can be written as

‖Dk
Λ∂�

pFΛ‖L∞(IΛ ×Rd × C) ≤ Ck,�. (9.47)

We shall now prove by induction that for any k ∈ N,

qk
def= sup

Λ
‖Dk

Λ∂xΦΛ‖L∞(IΛ ×Rd × C) ≤ Ck+1. (9.48)

We know that the inequality (9.48) holds true for k = 1. Assume that the
property holds for 1 ≤ j ≤ k. Now, applying the operator Dk+1

Λ to (9.42)
gives
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∂tD
k+1
Λ ∂xΦΛ + ZΛ · ∂xDk+1

Λ ΦΛ =
3∑

�=0

R�
Λ (9.49)

with, for some suitable nonnegative integers Ak
k1,...,kr

and Bk
k1,...,kr

,

R0
Λ

def= Λk+1∂k+2
x FΛ,

R1
Λ

def=
∑

k1+···+kr ≤k
kj ≥1

Ak
k1,...,kr

Dk+1−k1−···−kr

Λ ∂x∂r
pFΛ

(
Dk1

Λ ∂xΦΛ, . . . , Dkr

Λ ∂xΦΛ

)
,

R2
Λ

def=
∑

k0+k1+···+kr ≤k
kj ≥1, k0<k

Bk
k0,k1,...,kr

× Dk+1−k1−···−kr

Λ ∂r+1
p FΛ

(
Dk0

Λ ∂2
xΦΛ, Dk1

Λ ∂xΦΛ, . . . , Dkr

Λ ∂xΦΛ

)
,

R3
Λ

def= ∂x∂pFΛDk+1
Λ ∂xΦΛ + DΛ∂pFΛ · Dk

Λ∂2
xΦΛ + ∂2

pFΛ(∂2
xΦΛ, Dk+1

Λ ∂xΦΛ).

The inequality (9.39) readily implies that

‖R0
Λ‖L∞(IΛ ×Rd × C) ≤ Ck+1Λ

−1.

Using the induction hypothesis and (9.39), we have
∥∥Dk+1−k1−···−kr

Λ ∂x∂r
pFΛ

(
Dk1

Λ ∂xΦΛ, . . . , Dkr

Λ ∂xΦΛ

)
‖L∞(IΛ ×Rd × C) ≤ Ck+1Λ

−1,∥∥Dk+1−k1−··· −kr

Λ ∂r+1
p FΛ

(
Dk0

Λ ∂2
xΦΛ, Dk1

Λ ∂xΦΛ, . . . , Dkr

Λ ∂xΦΛ

)
‖L∞(IΛ ×Rd × C)

≤ Ck+1Λ
−1.

Thus,
‖R1

Λ‖L∞(IΛ ×Rd × C) + ‖R2
Λ‖L∞(IΛ ×Rd × C) ≤ Ck+1Λ

−1.

From the property (9.40) with rank k = 1 and the inequality (9.39), we also
infer that

‖R3
Λ‖L∞(IΛ ×Rd × C) ≤ Ck+1Λ

−1‖Dk+1
Λ ∂xΦΛ‖L∞(IΛ ×Rd × C).

Gronwall’s lemma allows us to complete the proof of the inequality (9.48) with
rank k + 1. This completes the proof of the proposition. 	


In order to prove Theorem 9.16, we shall consider the following Hamilton–
Jacobi equations:

(EE±
Λ )

⎧⎪⎨
⎪⎩

∂tΦ
±
Λ = ±

( ∑
1≤j,k≤d

(δk,� + Gj,k
Λ )∂xj Φ

±
Λ ∂xk

Φ±
Λ

) 1
2

Φ±
Λ(0, y, η) = (y|η).

Observe that if we consider some family (GΛ)Λ≥Λ0 such that (9.34) holds true,
then these equations become part of the class of eikonal equations that have
been considered in this subsection: It is only a matter of setting
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F ±
Λ (t, x, p) def= ±

(
|p|2 + GΛ(t, x)(p, p)

) 1
2 for (t, x, p) ∈ R × R

d × R
d . (9.50)

Indeed, as we only have to consider those ξ’s which belong to some annu-
lus C̃, we can substitute for the square root in the above formula a convenient
smooth function defined everywhere. Hence, the inequality (9.34) implies the
inequality (9.39) and Proposition 9.18 applies.

9.5.4 The Transport Equation

Proving suitable a priori estimates for the transport equations considered in
the geometrical optics method is the next step. More precisely, setting

L ±
Λ

def= ∂tΦ
±
Λ ∂t −

∑
k,�

(δk,� + Gj,k
Λ )∂xj Φ

±
Λ ∂xk

and (9.51)

A ±
Λ

def= �ΛΦ±, (9.52)

we wish to consider the following transport equations:

(T ±
Λ )

{
L ±

Λ · ∇σ±
Λ + A ±

Λσ±
Λ = ρΛ

σΛ
±
|t=0 = σ

(0)
Λ .

Before going into further detail, we need to define a class of symbols.

Definition 9.19. For any real number m, we denote by Sm the set of fam-
ilies σ = (σΛ)Λ≥Λ0 of smooth functions from IΛ × R

d ×C to C such that for
any integer k,

‖σ‖k,Sm
def
= sup

Λ≥Λ0

Λ−m‖ ∇k
ΛσΛ‖L∞(IΛ ×Rd × C) < ∞ with ∇Λ

def
= (Λ∇t,x, ∂ξ).

Remark 9.20. The inequality (9.40) implies that (∇t,xΦ±
Λ ) belongs to S0.

Remark 9.21. The above quantities define seminorms which endow Sm with
the structure of a Fréchet space. Moreover, it is obvious that the operator ∇k

Λ

continuously maps Sm into Sm. This implies that ∇t,x maps Sm into Sm−1.
We also emphasize that the (numerical) product continuously maps Sm1 ×Sm2

into Sm1+m2 and that if φ is a function of the Schwartz class S, then φ(D)
continuously maps S0 into S0. Finally, if f is a function of D and σ ∈ S0,

then f ◦ σ
def= (f(σΛ))Λ≥Λ0 ∈ S0. More precisely, for any integer k there exists

a locally bounded function C such that C(0) = 0 and

‖(f ◦ σ)‖k,S0 ≤ C
(
k, sup

j≤k
‖σ‖j,S0

)
.

Remark 9.22. The families L ±,j
Λ (0 ≤ j ≤ d) of coefficients of the vector field

L ±
Λ defined in (9.51) are in S0. We also emphasize that (AΛ) belongs to S−1.
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From now on, we denote by Ck a generic increasing function depending
on supj≤k Gj . The following lemma pertaining to the class of transport equa-
tions considered in (9.38) will help us to construct approximate solutions of
the variable coefficients wave equation.

Lemma 9.23. Let m be a real number. Consider (ρΛ), a family in Sm−1. If
the initial family (σ(0)

Λ )Λ≥Λ0 satisfies

sup
Λ≥Λ0

Λ−m‖Dk
Λσ

(0)
Λ ‖L∞(Rd × C) < ∞,

then the corresponding family (σ±
Λ )Λ≥Λ0 of solutions of (T ±

Λ ) belongs to Sm,

and the map (σ(0)
Λ ) �→ (σ±

Λ ) is continuous.

Proof. Recall that the family of symbols (L ±,0
Λ ) belongs to S0. In addition,

applying the inequality (9.40) with k = 1 to the Hamilton–Jacobi equa-
tion (EE±

Λ ), we discover that there exists some positive real number c such
that

1
c

≥ | L ±,0
Λ | ≥ c for all Λ ≥ Λ0.

Hence, Remark 9.21 entails that the family (L ±,0
Λ )−1 belongs to S0 and the

equation (T ±
Λ ) can be rewritten as

(T̃ ±
Λ )

{
∂tσ

±
Λ + L̃ ±

Λ · ∂σ±
Λ + Ã ±

Λσ±
Λ = ρ̃Λ

σ±
Λ |t=0 = σ

(0)
Λ

with L̃ ±,j
Λ

def=
L ±,j

Λ

L ±,0
Λ

, Ã±
Λ

def=
A ±

Λ

L ±,0
Λ

, and ρ̃±
Λ

def=
ρΛ

L ±,0
Λ

·

According to Remarks 9.20–9.22, we have

(L̃ ±,j
Λ ) ∈ S0 , (Ã ±

Λ ) ∈ S−1, and (ρ̃±
Λ ) ∈ Sm−1.

Thus, Gronwall’s lemma implies that

‖σ±
Λ ‖L∞(IΛ ×Rd × C) ≤ CΛm.

Now, to estimate ∇k
Λσ±

Λ we proceed as in the preceding subsection. We do not
have to worry about time derivatives since they may be computed from the
equation (T̃ ±

Λ ). Assume that for any j ≤ k

qj
def= sup

Λ
Λ−m‖Dj

Λσ±
Λ ‖L∞(IΛ ×Rd × C) is finite.

Applying the operator Dk+1
Λ to the equation (T̃ ±

Λ ) then gives

∂tD
k+1
Λ σ±

Λ + L̃ ±
Λ · ∂Dk+1

Λ σ±
Λ + Ã ±

ΛDk+1
Λ σ±

Λ = Dk+1
Λ ρ̃±

Λ +
3∑

�=1

R�
Λ
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with, for some suitable integer values Ak
k1,k2

and Bk
k1,k2

,

R1
Λ

def= Λ−1
∑

k1+k2=k
k2<k

Ak
k1,k2

Dk1
Λ L̃ ±

ΛΛ∂xDk2
Λ σ±

Λ ,

R2
Λ

def=
∑

k1+k2=k+1
k2≤k

Bk1,k2D
k1
Λ Ã±

Λ Dk2
Λ σ±

Λ ,

R3
Λ

def= Λ−1DΛL ±
ΛΛ∂xDk

Λσ±
Λ .

The induction hypothesis implies that for 	 ∈ {1, 2} we have

Λm‖R�
Λ‖L∞(IΛ ×Rd × C) ≤ C

(
sup
j≤k

q
j

)
Λ−1.

Moreover, we have

‖R3
Λ(t, ·)‖L∞(Rd × C) ≤ CkΛ−1‖Dk+1

Λ σ±
Λ (t, ·)‖L∞(Rd × C).

Gronwall’s lemma then allows us to complete the proof. 	


9.5.5 The Approximation Theorem

We can now return to the initial problem of approximating the solutions of a
family of variable coefficients wave equations. We consider the family of wave
equations

(LWΛ)
{

�Λu = 0
(u, ∂tu)|t=0 = (u0, u1),

where u0 and u1 are L2 functions with Fourier transforms supported in C.

The following statement ensures the existence of an arbitrarily accurate
approximate solution. We shall see in the next subsection that keeping only
the main order term suffices to prove the microlocal Strichartz estimates we
are interested in.

Theorem 9.24. There exist four families of sequences of symbols (σ±,�
n,Λ)n∈N

(with 	 in {0, 1}) such that σ±,�
n,Λ belongs to S−n and that, for any (k, N) ∈ N

2,
a constant C exists such that

∥∥∂k
x(uΛ − uapp,N,Λ)

∥∥
L∞

IΛ
(L2)

≤ CΛ−N −1‖(u0, u1)‖L2 with

uapp,N,Λ
def
=

∑
�,±

N∑
n=0

I(Φ±
Λ , σ±,�

n,Λ, u�),

where the function I is defined by the formula (9.36), and Φ±
Λ is the solution

of (EE±
Λ ).
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Proof. Note that the equation (EE±
Λ ) implies that

∂tΦ
±
Λ |t=0 = ±|ξ|Λ with |ξ|Λ

def=
(

|ξ|2 + GΛ(0, x)(ξ, ξ)
) 1

2 .

Bearing in mind that we want the true solution uΛ of (LWΛ) to satisfy the
initial conditions uΛ|t=0 = u0 and ∂tuΛ|t=0 = u1, we define the sequence σ±,�

n,Λ

by means of the following induction:

– The function σ±,�
0,Λ is the solution of

2L ±
Λ · ∇σ±,�

0,Λ + iσ±,�
0,Λ�ΛΦ±

Λ = 0 with

σ±,0
0,Λ |t=0

=
1

2(2π)d
and σ±,1

0,Λ |t=0
= ± 1

2i|ξ|Λ(2π)d
.

– Once the function σ±,�
n,Λ has been defined, we set σ±,�

n+1,Λ to be the solution
of

2L ±
Λ · ∇σ±,�

n+1,Λ + iσ±,�
n+1,Λ�ΛΦ±

Λ = i�Λσ±,�
n,Λ with

σ±,�
n+1,Λ|t=0

= ∓ 1
2i|ξ|Λ

∂tσ
±,�
n,Λ|t=0

.

Using Lemma 9.23 and performing an omitted induction, we observe that the
family (σ±,�

n ) belongs to S−n. Further, as we have

∇I(Φ±
Λ , σΛ, a) = I

(
Φ±

Λ , iσ∇Φ±
Λ + ∇σΛ, a) (9.53)

for any family of symbols (σΛ), we discover that

uapp,N,Λ|t=0 = u0 and ∂tuapp,N,Λ|t=0 = u1 +
(∑

�,±
I(Φ±

Λ , σ±,�
N+1,Λ, u�)

)
|t=0

.

Using Lemma 9.17, we then infer from the definition of the symbols σ±,�
n that

�Λ(uΛ − uapp,N,Λ) = fN,Λ
def= i

∑
�,±

I(Φ±
Λ , �Λσ±,�

N,λ, u�) with

∇(uΛ − uapp,N,Λ)|t=0 = γN,Λ
def=

((∑
�,±

I(Φ±
Λ , σ±,�

N+1,Λ, u�)
)

|t=0

, 0

)
.

Using Proposition 8.17 and the relation (9.53), we get, for any k in N, that

Λ‖∂k
xfN,Λ‖L∞

IΛ
(L2) + ‖∂k

xγN,Λ‖L2 ≤ CNΛ−N −1‖γ‖L2 · (9.54)

Performing an Hk energy estimate for the wave operator �Λ (in the spirit of,
e.g., the one used to prove Lemma 4.5 page 173) then allows us complete the
proof of the theorem. The details are left to the reader. 	
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9.5.6 The Proof of Theorem 9.16

This final subsection is devoted to the proof of the general microlocal Strichartz
estimates stated in Theorem 9.16. Recall that we consider the solution uΛ

of (LWΛ) in the case where the external force f and the initial data (u0, u1)
are such that f̂(t, ·), û0, and û1 are supported in some annulus C̃.

For the time being, we will assume that f ≡ 0. Applying Theorem 9.24
with N = 0 ensures that four families of symbols σ = (σ±,�

Λ ) exist in S0 such
that for any integer k, there exists a constant Ck such that for any Λ ≥ Λ0,
the solution uΛ satisfies

∥∥∥∂k
x

(
uΛ −

∑
±,�

I(Φ±
Λ , σ±,�

Λ , u�)
)∥∥∥

L∞
IΛ

(L2)
≤ CΛ−1‖γ‖L2 ,

where Φ±
Λ is the solution of (EE±

Λ ). As

uΛ =
(
uΛ −

∑
±,�

I(Φ±
Λ , σ±,�

Λ , u�)
)

+
∑

±,�

I(Φ±
Λ , σ±,�

Λ , u�),

taking the L2
IΛ

(L∞) norm of both sides and using Sobolev embedding and the
fact that the length of the interval IΛ is less than ε0Λ implies that

‖uΛ‖L2
IΛ

(L∞) ≤ C‖γ‖L2 +
∑

±,�

‖ I(Φ±
Λ , σ±,�

Λ , u�)‖L2
IΛ

(L∞). (9.55)

For notational simplicity, we omit the exponent ± in what follows. We first
use the “TT � duality argument” presented in Section 8.2. We write that

‖I(ΦΛ, σΛ, u�)‖L2
IΛ

(L∞) = sup
ψ∈BΛ

∫
I(ΦΛ, σΛ, u�)(t, x)ψ(t, x) dt dx,

where BΛ denotes the set of functions ψ such that ‖ψ‖L2
IΛ

(L1) ≤ 1. By the
definition of I(ΦΛ, σΛ, u�), we have

JΛ(ψ) def=
∫

I(ΦΛ, σΛ, u�)(t, x) ψ(t, x) dt dx

=
∫

û�(ξ)
(∫

eiΦΛ(t,x,ξ)σΛ(t, x, ξ)ψ(t, x) dt dx

)
dξ.

Using the Cauchy–Schwarz inequality, we get

JΛ(ψ) ≤ ‖γ̂‖L2

∥∥∥∥
∫

eiΦΛ(t,x,·)σΛ(t, x, ·)ψ(t, x) dt dx

∥∥∥∥
L2(Rd;dξ)

.

By the definition of the L2 norm, we have
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∥∥∥∥
∫

eiΦΛ(t,x,·)σΛ(t, x, ·)ψ(t, x) dt dx

∥∥∥∥
2

L2(Rd;dξ)

=
∫

KΛ(t, t′, x, y)ψ(t, x)ψ(t′, y) dt dt′ dx dy

with

KΛ(t, t′, x, y) def=
∫

C
eiΦΛ(t,x,ξ)−iΦΛ(t′,y,ξ)σΛ(t, x, ξ)σΛ(t′, y, ξ) dξ.

If we prove that

∀(t, t′, x, y) ∈ I2
Λ × R

2d , |KΛ(t, t′, x, y)| ≤ C

|t − t′ | d−1
2

, (9.56)

then Theorems 8.18 and 8.30 imply that for 	 = 0, 1,

‖ I(ΦΛ, σΛ, u�)‖L2
IΛ

(L∞) ≤ C‖γ‖L2 , if d ≥ 4, (9.57)

‖I(ΦΛ, σΛ, u�)‖L2
IΛ

(L∞) ≤ C(log Λ)
1
2 ‖γ‖L2 , if d = 3, (9.58)

‖ I(ΦΛ, σΛ, u�)‖L4
IΛ

(L∞) ≤ C‖γ‖L2 , if d = 2. (9.59)

Now, according to the mean value formula, we have

ΦΛ(t, x, ξ) − ΦΛ(t′, y, ξ) =
(
x − y|θΛ(t, t′, x, y, ξ)

)
+ (t − t′)ΨΛ(t, t′, x, y, ξ)

with

θΛ(t, t′, x, y, ξ) def=
∫ 1

0

∂xΦΛ(t′ + s(t − t′), y + s(x − y), ξ) ds and

ΨΛ(t, t′, x, y, ξ) def=
∫ 1

0

∂tΦΛ(t′ + s(t − t′), y + s(x − y), ξ) ds .

As ∂xΦΛ|t=0 = ξ, we can write that θΛ(t, t′, x, y, ξ) = ξ + θ̃Λ(t, t′, x, y, ξ) with

θ̃Λ(t, t′, x, y, ξ) def=
∫ 1

0

∫ 1

0

(t′ + s(t − t′))

× ∂t∂xΦΛ(vt′ + sv(t − t′), y + s(x − y), ξ) ds dv.

Thanks to the inequality (9.40), we have, for all Λ ≥ Λ0,

‖∂ξ θ̃Λ‖L∞(I2
Λ ×R2d × C) ≤ C2

|IΛ|
Λ

≤ C2ε0, (9.60)

‖∂k
ξ θ̃Λ‖L∞(I2

Λ ×R2d × C) ≤ ≤ Ck+1ε0Λ
1−k
0 if k ≥ 2. (9.61)

Assuming ε0 to be sufficiently small, this implies that (up to an omitted finite
decomposition of C) the map



9.5 Microlocal Strichartz Estimates 425

ξ �−→ ξ̃
def= θΛ(t, t′, x, y, ξ)

is a smooth diffeomorphism from C onto its range, denoted by CΛ(t, t′, x, y).
We denote by θ−1

Λ the inverse diffeomorphism. Note that CΛ(t, t′, x, y) is in-
cluded in some fixed annulus C̃. Performing the above change of variable, we
eventually get

KΛ(t, t′, x, y) =
∫

CΛ(t,t′,x,y)

ei(t−t′)
(
(z|ξ̃)+Ψ̃Λ(t,t′,x,y,ξ̃)

)
σ̃Λ(t, t′, x, y, ξ̃) dξ̃

with z
def=

x − y

t − t′
,

Ψ̃Λ(t, t′, x, y, ξ̃) def= ΨΛ

(
t, t′, x, y, θ−1

Λ (t, t′, x, y, ξ̃)
)
,

σ̃Λ(t, t′, x, y, ξ̃) def= σΛ

(
t, x, θ−1

Λ (t, t′, x, y, ξ̃)
)
σΛ

(
t′, y, θ−1

Λ (t, t′, x, y, ξ̃)
)

× JΛ

(
t, t′, x, y, θ−1

Λ (t, t′, x, y, ξ̃)
)
.

Above, JΛ stands for the Jacobian of the diffeomorphism θ−1
Λ .

Now, the inequalities (9.40), (9.60), and (9.61) imply that for all (k, 	) ∈ N
2,

sup
Λ≥Λ0

sup
ξ̃∈CΛ(t,t′,x,y)

(t,t′,x,y)∈I2
Λ ×R

2d

|∂�
ξ̃
σ̃Λ(t, t′, x, y, ξ̃)| < ∞ and (9.62)

sup
Λ≥Λ0

Λk sup
ξ̃∈CΛ(t,t′,x,y)

(t,t′,x,y)∈I2
Λ ×R

2d

|∂�
ξ̃

∇k
t,t′,x,yΨ̃Λ(t, t′, x, y, ξ̃)| ≤ Ck,�. (9.63)

Theorem 8.12 page 342 and the estimates (9.40) imply that a constant C
exists such that for all (t, t′, x, y) in I2

Λ × R
2d,

|KΛ(t, t′, x, y)| ≤ C

|t − t′ | d−1
2

+
∫

C̃Λ(t,t′,x,y)

dξ̃(
1 + |t − t′ | |z + ∂ξ̃Ψ̃Λ(t, t′, x, y, ξ̃)|2

)d
,

where C̃Λ(t, t′, x, y) denotes the set of ξ̃ ∈ CΛ(t, t′, x, y) such that
∣∣∣ x − y

|t − t′ | + ∂ξ̃ΨΛ(t, t′, x, y, ξ̃)
∣∣∣ ≤ 1.

Hence, the inequality (9.56) reduces to proving that the Hessian of Ψ̃Λ is at
least of rank d − 1, uniformly in (t, t′, x, y), and in ξ̃ ∈ CΛ(t, t′, x, y). The
equation (H̃JΛ) and Proposition 9.18 now imply that

sup
Λ≥Λ0

sup
ξ̃∈CΛ(t,t′,x,y)

(t,t′,x,y)∈I2
Λ ×R

2d

|∂ξ̃Ψ̃Λ(t, t′, x, y, ξ̃)| = C0 < ∞.
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We thus have, for any (t, t′, x, y, ξ) such that ξ̃ ∈ C̃Λ(t, t′, x, y),

|x − y|
|t − t′ | ≤

∣∣∣ x − y

|t − t′ | + ∂ξ̃Ψ̃Λ(t, t′, x, y, ξ̃)
∣∣∣ + C0 ≤ C0 + 1.

In particular, we have |x − y| ≤ (C0 + 1)|IΛ|. Therefore, the estimate (9.63)
and Taylor’s inequality give

Ψ̃Λ(t, t′, x, y, ξ̃) = ∂tΦΛ(0, y, ξ̃) + RΛ(t, t′, x, y, ξ̃) with
sup

Λ≥Λ0

sup
ξ̃∈C̃Λ(t,t′,x,y)

(t,t′,x,y)∈I2
Λ ×R

2d

|∂�
ξ̃
RΛ(t, t′, x, y)| ≤ C�ε0 for all 	 ∈ N . (9.64)

Using (H̃JΛ), we have (dropping the tilde in what follows)

∂tΦΛ(0, y, ξ) = (GΛ(0, y)(ξ, ξ))
1
2 .

For any positive quadratic form q, we have

D2
ξ(q(ξ, ξ))

1
2 (h1, h2) =

1
(q(ξ, ξ))

1
2

(
(h1|h2)q − (h1|ξ)q(h2|ξ)q

q(ξ, ξ)

)
,

where (· | ·)q stands for the bilinear form associated with q.

This implies that D2
ξ(q(ξ, ξ))

1
2 restricted to the orthogonal set V of ξ (in

the sense of q) is a positive quadratic form. More precisely,

D2
ξ(q(ξ, ξ))

1
2

|V ×V =
1

(q(ξ, ξ))
1
2
q|V ×V .

As there exists a constant c0 such that, on the orthogonal set Vy of ξ
for GΛ(0, y),

inf
Λ≥Λ0

inf
y∈Rd

(Id +GΛ(0, y))(ξ, ξ) ≥ c0|ξ|2,

we have, for any h ∈ Vy,

D2
ξ∂tΦΛ(0, y, ξ)(h, h) ≥ c0|h|2.

If we take ε0 to be sufficiently small, the estimate (9.64) thus implies that

D2Ψ̃Λ(0, y, ξ)(h, h) ≥ c0

2
|h|2 for any h ∈ Vy.

Thus, the inequality (9.56) is proved: It is only a matter of reproducing the
end of the proof of Proposition 8.15.

In order to conclude, we denote by AΛ(t′) the operator defined by

�Λ(AΛ(t′)vΛ) = 0,
(AΛ(t′)vΛ, ∂tAΛ(t′)vΛ)|t=t′ = (0, vΛ).
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The solution of
�ΛvΛ = fΛ and ∇vΛ|t=0 = 0

is of the form

vΛ(t, y) =
∫ t

0

(AΛ(t′)fΛ(t′))(t, y) dt′.

Therefore, for all t ∈ IΛ, we have

‖vΛ(t, ·)‖L∞ ≤
∫ t

0

‖(AΛ(t′)fΛ(t′))(t, ·)‖L∞ dt′

≤
∫

IΛ

‖(AΛ(t′)fΛ(t′))(t, ·)‖L∞ dt′.

Taking the L2 norm on IΛ and using (9.55) and (9.57), we end up with

‖vΛ‖L2
IΛ

(L∞) ≤
∫

IΛ

‖AΛ(t′)fΛ(t′)‖L2
IΛ

(L∞) dt′

≤
∫

IΛ

‖fΛ(t′)‖L2 dt′.

The cases d = 2 and d = 3 can be treated along the same lines. The details
are left to the reader. This completes the proof of Theorem 9.16. 	


9.6 References and Remarks

Motivated by the study of the Einstein equations in relativity theory, there are a
number of works dedicated to the local well-posedness issue for the quasilinear wave
equation. The first papers on this equation were mainly devoted to the study of
the lifespan for solutions generated by smooth, compactly supported, small initial
data (see, in particular, the pioneering work by S. Klainerman in [182], the book
by L. Hörmander [168], and the more recent papers by S. Alinhac in [7–10] and by
Klainerman and Rodnianski [185, 188]).

In this chapter we focused on the question of the lowest regularity for which
local well-posedness holds true. One of the motivations for this study is that in the
low-dimensional case, we may hope to achieve the level of regularity corresponding
to a conserved quantity (such as, e.g., the energy) and thus get global existence.

The results of the first section belong to the mathematical folklore (at least in
the framework of Sobolev spaces). The main novelty here is that we strive to find
scaling invariant estimates. The other sections rely on ideas introduced by the first
two authors in [18, 19], where Theorem 9.5 is proved. The lowest index for which
local well-posedness holds true in dimension d ≥ 4 was improved to d/2 + 1/2 + 1/6
by D. Tataru in [281] (compared with d/2+1/2+1/4 in this chapter). We emphasize
that in the simpler case of the semilinear wave equation (i.e., G ≡ 0) with quadratic
nonlinearity Q, the best index of regularity for which local well-posedness holds true
is d/2 + 1/2 if d ≥ 3 and 7/4 if d = 2 (see the work by G. Ponce and T. Sideris
in [253]). Actually, even in the semilinear case there is no hope of going below d/2+
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1/2 for general quadratic nonlinearities Q (see the counterexample by H. Lindblad
in [209]).

We should also mention that combining the method presented in this chapter
with the refined Strichartz estimate proved by S. Klainerman and D. Tataru in [194]
is relevant to the study of the quasilinear wave equation in the case where the metric
G(u) satisfies the equation ΔG(u) = Q(∇u, ∇u) for some quadratic form Q. In this
framework, it was shown in [20] by the first two authors that the level of regularity
of γ for which the equation may be solved locally falls to d/2 − 1 + 1/6.

Proving Strichartz estimates for the wave equation with variable coefficients is
one of the main ingredients of Theorem 9.5. This question has been addressed by
L. Kapitanski [175] in the smooth case and by H. Smith in [268] for coefficients
in C1,1. Alternatively, Strichartz estimates for the wave equation may be obtained
by the method of commuting vector fields which was introduced by S. Klainer-
man in [182] for proving global existence results for small smooth initial data. This
method was also used in [183, 184] by S. Klainerman for the smooth variable coef-
ficients wave equation. This idea is the basis of the major work by S. Klainerman
and I. Rodnianski, who proved in [189–192] that the Einstein equations are well
posed for initial data in the Sobolev space H2+ε(R3) for some arbitrarily small ε.
Other methods have proven to be efficient for solving (QW ): For an approach based
on the Fourier–Bros–Iagolnitzer transform, see the work [280] by D. Tataru; for an
approach based on wave packets, see the work [269] by H. Smith and D. Tataru.

The idea of performing a refined paralinearization to study (QW ) is borrowed
from the work by G. Lebeau in [203]. Finally, we mention that cutting the time
interval into small intervals, the lengths of which depend on the frequency, has been
used recently by N. Burq, P. Gérard, and N. Tzvetkov to prove Strichartz estimates
in the context of the Schrödinger equation on compact manifolds (see [51]).

The use of high-frequency approximation of solutions of hyperbolic partial differ-
ential equations has a long history, beginning with the construction of the so-called
Lax parametrix (see [202]). The reader may refer to the book by M. Taylor [284] for
an exposition on this method in the (more general) framework of pseudodifferential
operators.
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The Compressible Navier–Stokes System

In this chapter, we show the benefits that may be gained from Fourier analysis
methods when investigating fluid mechanics models more complex than those
which have been hitherto considered in this book. We will present the so-called
isentropic compressible Navier–Stokes system, which contains more physics
than the incompressible models we have seen thus far but is still not too
cumbersome.

The content of this chapter is twofold. First, we present a few results con-
cerning local or global solvability in the spirit of the theorem of Fujita and
Kato which was presented in Chapter 5. It turns out that scaling invariance
still allows the appropriate functional framework to be found. Next, we show
that when the Mach number (i.e., the ratio of the sound speed to the char-
acteristic speed of the velocity) is sufficiently small, the solution of the com-
pressible model tends to that of the incompressible Navier–Stokes equations.
In all the results that we obtain, the use of Besov spaces and Littlewood–Paley
decomposition turns out to be fundamental.

The chapter unfolds as follows. The first section is devoted to a short
presentation of the model of viscous compressible flows that we shall consider.
In the next section we prove a local well-posedness statement for data with
critical regularity in the case where the density is a small perturbation of a
positive constant. In Section 10.3, we consider slightly more regular data in
order to remove the small perturbation assumption. Section 10.4 is dedicated
to the proof of global well-posedness for small perturbations of an initial stable
state (ρ, 0) with constant density. In the final section, we study the extent to
which the incompressible Navier–Stokes equations are a good approximation
for slightly compressible fluids.

10.1 About the Model

In this introductory section we briefly explain how the system of equations
for the flow of a compressible fluid may be derived from basic physics. More

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7 10, c© Springer-Verlag Berlin Heidelberg 2011
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details may be found in physics books such as, for example, [29], or in the
introduction of [213].

10.1.1 General Overview

We assume that the fluid fills the whole space (i.e., boundary effects are ne-
glected), and that it may be described at every material point x in R

d and
time t ∈ R by:

– its velocity field u
def= u(t, x),

– its density ρ
def= ρ(t, x),

– its internal energy e
def= e(t, x),

– its entropy by unit mass s
def= s(t, x).

To any subdomain Ω of R
d, we may associate:

– the mass M(Ω) def=
∫

Ω

ρ dx,

– the momentum P (Ω) def=
∫

Ω

ρu dx,

– the energy E(Ω) def=
∫

Ω

(1
2
ρ|u|2 + ρe

)
dx,

– the entropy S(Ω) def=
∫

Ω

ρs dx.

Let ψt be the flow of u (see Chapter 3) and Ωt
def= ψt(Ω). Assuming that there

is neither production nor loss of mass, the mass conservation translates as

d

dt
M(Ωt) =

d

dt

∫
Ωt

ρ dx = 0. (10.1)

For the momentum, we have

d

dt
P (Ωt) =

d

dt

∫
Ωt

ρu dx =
∫

Ωt

ρf dx +
∫

∂Ωt

(σ · n) dΣ, (10.2)

where the first term on the right-hand side represents external body forces
with density f (such as, e.g., gravity), and the second term represents surface
forces. In the absence of mass couples, the angular momentum

∫
Ωt

x ∧ (ρu)(t, x) dx

is also conserved. This can be shown to entail that σ is a symmetric tensor
(see, e.g., [29]).
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Next, the energy conservation can be written as

d

dt
E(Ωt) =

d

dt

∫
Ωt

ρ
(
e +

|u|2
2

)
dx,

=
∫

Ωt

ρf · u dx +
∫

∂Ωt

(σ · n) · ndΣ −
∫

∂Ωt

q · ndΣ, (10.3)

where the last integral represents the amount of heat lost across the boundary,
and q is the so-called heat flux vector.

Finally, introducing the temperature T, the entropy balance can be written

d

dt
S(Ωt) =

d

dt

∫
Ωt

ρs dx ≥ −
∫

∂Ωt

(q · n

T

)
dΣ. (10.4)

We assume from now on that the fluid is Newtonian, that is:

– The tensor σ is a linear function of Du, invariant under rigid transforms.
– The fluid is isotropic [in other words, the physical quantities depend only

on (t, x)].

As a consequence, it may be shown (see, e.g., [29]) that σ can be written as

σ = τ − p Id with τ
def= λ div u Id +2μD(u).

The scalar function p = p(t, x) is called the pressure and τ = τ(t, x) is called
the viscous stress tensor. The real numbers λ and μ are the viscosity coeffi-

cients and D(u) def= 1
2 (Du + tDu) is the deformation tensor.

From the global conservation laws (10.1)–(10.4), we may obtain a system
of partial differential equations involving ρ, u, e, and s. This is a consequence
of the following classical (formal) lemma.

Lemma 10.1. Let Ω be an open subdomain of D, ψ the flow of u, and Ωt
def
=

ψt(Ω). Let b be a scalar function. We then have

d

dt

∫
Ωt

b dx =
∫

Ωt

(
∂tb + div(bu)

)
dx =

∫
Ωt

∂tb dx +
∫

∂Ωt

(b u · n) dΣ.

If we assume for simplicity that the Fourier law q = −k∇T is satisfied and
that the coefficients k, λ, and μ are constant real numbers, then Lemma 10.1
implies that

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) − μΔu − (λ + μ)∇ div u + ∇p = ρf,

∂t

(
ρ
(
e + |u|2

2

))
+ div

(
ρ
(
e + |u|2

2

)
u
)

+ div pu − kΔT

= ρf · u + div(τ · u) − div q,

∂t(ρs) + div(ρsu) ≥ k div
(

∇T
T

)
.
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If we assume, in addition, that the so-called Gibbs relation

Tds = de + p d
(1

ρ

)

is satisfied, then combining the mass, momentum, and energy equations, we
get

∂t(ρs) + div(ρsu) = k div
( ∇T

T

)
+

τ : D(u)
T

+ k
| ∇T |2

T 2
· (10.5)

Hence, according to the entropy inequality, we must have

τ : D(u) + k
| ∇T |2

T
≥ 0.

As, obviously,
τ : D(u) = λ(div u)2 + 2μTr (D(u))2

and, owing to the Cauchy–Schwarz inequality,
(
Tr D(u)

)2 ≤ d Tr (D(u))2,

this yields the following constraints on λ, μ, and k:

k ≥ 0, μ ≥ 0, and 2μ + dλ ≥ 0.

We give a few examples:

– Monoatomic gases in dimension d = 3 satisfy 2μ + 3λ = 0.
– Inviscid fluids are such that μ = λ = 0.
– Nonconducting fluids satisfy k = 0.

In order to solve the system, another two state equations involving p, ρ, e, s,
and T are needed. We can assume that p = P (ρ, T ) and e = ε(ρ, T ) for some
given functions P and ε depending on the nature of the fluid.

10.1.2 The Barotropic Navier–Stokes Equations

In what follows, we focus on a simplified model for compressible fluids, the
so-called barotropic Navier–Stokes equations,

{
∂tρ + div(ρu) = 0

∂t(ρu) + div(ρu ⊗ u) − μΔu − (λ + μ)∇ div u + ∇p = ρf,

where it is assumed that p
def= P (ρ) for some given smooth function P.

The above system may be derived from the general model under the as-
sumptions that s is a constant and k = 0. Note that in the viscous case (which
we will consider in the next sections), the assumption of constant entropy is
somewhat inconsistent with (10.5) for the term τ : D(u) may be positive. From
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a mathematical viewpoint, however, the barotropic (or isentropic) model re-
tains many features of the full model.

In this chapter, we restrict our study to fluids with positive density tending
to some positive constant at infinity (say 1, to simplify the notation). Letting
a = ρ − 1, the barotropic system for sufficiently smooth solutions reduces to

(NSC)

{
∂ta + u · ∇a = −(1 + a) div u

∂tu − (1+a)−1Au + u · ∇u + ∇g = f,

where A def= μΔ+(λ+μ)∇ div is the viscosity operator, and g
def= G(a) stands

for the chemical potential expressed in terms of a. The function G is assumed
to be conveniently smooth and, with no loss of generality, to vanish at 0.

The modified viscosity coefficients

ν
def= λ + 2μ , ν

def= min(μ, λ + 2μ), and ν
def= μ + |λ + μ|

will also play an important role.
Throughout this chapter, we consider only viscous fluids, those for which

μ > 0 and ν > 0. This implies that the coefficients ν and ν are also positive.

10.2 Local Theory for Data with Critical Regularity

In Chapter 5 we proved global well-posedness for the incompressible Navier–
Stokes equations with small initial data and local well-posedness for large
initial data (see Theorem 5.6 page 209, Theorem 5.27 page 222, Theorem 5.35
page 229, and Theorem 5.40 page 234). In this section and the two which
follow, we seek to establish similar results for compressible flows.

10.2.1 Scaling Invariance and Statement of the Main Result

As in Chapter 5, scaling invariance is the main thread for finding an appropri-
ate functional framework. More precisely, we note that for all 
 > 0, (NSC)
is invariant with respect to the rescaling (a, u) �→ (a�, u�) defined by

a�(t, x) = a(
2t, 
x) and u�(t, x) = 
u(
2t, 
x), (10.6)

provided that the chemical potential g has been changed to 
2g.

Hence, it may be appropriate to solve the system (NSC) in a function
space whose norm is invariant for all 
 (up to an irrelevant constant) with
respect to the transform (10.6). Therefore, if we consider homogeneous Besov

spaces, the data (a0, u0) have to be taken in Ḃ
d

p1
p1,r1 ×

(
Ḃ

d
p2

−1
p2,r2

)d

for some
p1, p2, r1, r2 ≥ 1. In order to guarantee that the density is positive, however,
an L∞ control on a is needed. Hence, we have to assume that r1 = 1 so that
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Ḃ
d

p1
p1,r1 ↪→ L∞ (see Proposition 2.39 page 79). Next, owing to the smoothing

properties of the heat flow, we expect ∇u to be in L̃1
T (Ḃ

d
p2
p2,r2) [see the inequal-

ity (3.39) page 157]. Now, as a satisfies a transport equation, preserving its
Besov regularity requires that ∇u ∈ L1

T (L∞) (see Theorem 3.14 page 133).
Hence, we must also take r2 = 1. Finally, owing to the coupling between the
equations for a and for u, it is also natural to assume that p1 = p2.

For simplicity, we shall only consider the case p1 = p2 = 2. We thus wish
to solve (NSC) in the function space

ET
def=

{
(a, u) ∈ C̃T (Ḃ

d
2
2,1) ×

(
C̃T (Ḃ

d
2 −1
2,1 ) ∩ L1

T (Ḃ
d
2 +1
2,1 )

)d}
,

where we agree that from now on, C̃T (Ḃs
2,1)

def= C([0, T ]; Ḃs
2,1) ∩ L̃∞

T (Ḃs
2,1).

For the time being, we focus on small perturbations of a constant density
state. For such data, our main local well-posedness result reads as follows.

Theorem 10.2. If d ≥ 2, then there exists a positive constant η such that for
all u0 in Ḃ

d
2 −1
2,1 , f in L1

loc(R
+; Ḃ

d
2 −1
2,1 ), and a0 ∈ Ḃ

d
2
2,1 with

‖a0‖
Ḃ

d
2
2,1

≤ ην/ν, (10.7)

there exists a positive time T such that (NSC) has a solution (a, u) on [0, T ]×
R

d which belongs to ET .
Moreover, uniqueness holds true in ET whenever

‖a‖
L∞

T (Ḃ
d
2
2,1)

≤ ην/ν, if d ≥ 3, and ‖a‖L̃∞
T (Ḃ1

2,1)
≤ ην/ν, if d = 2.

(10.8)

The rest of this section is devoted to proving Theorem 10.2. Before explaining
how we shall proceed, we should point out that, in contrast with the incom-
pressible Navier–Stokes equations, owing to the hyperbolic nature of the mass
conservation equation, the system (NSC) cannot be solved by means of the
Picard fixed point theorem. In fact, although a priori estimates for (NSC)
may be proven directly in the space ET , the term u · ∇a in the mass equation
induces a loss of one derivative in the stability estimates. For that reason,
we shall instead use a Friedrichs method similar to that of Chapter 4 for
hyperbolic quasilinear systems. Indeed, if T is taken to be sufficiently small,
then it turns out to be possible to prove uniform estimates in ET for the
corresponding sequence (an, un)n∈N of approximate solutions.

At this point, it would be natural to prove that (an, un)n∈N is a Cauchy
sequence for a weaker norm than that of ET . This method would work in di-
mension d ≥ 3, but is bound to fail in dimension 2, owing to the low regularity
of the functions we work with. Therefore, we shall instead use compactness
arguments (based on compact embeddings in Besov spaces and Ascoli’s theo-
rem) to show the convergence of (an, un)n∈N up to extraction. This will enable
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us to prove the existence part of the above statement. Uniqueness will be ob-
tained later by independent arguments (here, again, the case d = 2 turns out
to be more tricky). In the last part of this section, we shall state a continuation
criterion which will be useful for proving global existence in Section 10.4.

10.2.2 A Priori Estimates

For the time being, as we focus on local results, the gradient of the pressure
may be considered as a lower order term. Therefore, the coupling between the
mass and momentum equations is not so important, and the two equations
may be treated (almost) separately. More precisely, in order to get a priori es-
timates for (NSC), it suffices to combine estimates for the transport equation
(as stated in Theorem 3.14) and for the following heat system with convection
terms:1

∂tu + v · ∇u + u · ∇w − Au = f. (10.9)

For this latter system, we have the following result.

Proposition 10.3. Let s ∈ ]− d
2 , d

2 ]. There exists a universal constant κ, and
a constant C depending only on d and s, such that

‖u‖L̃∞
t (Ḃs

2,1)
+ κν‖u‖L1

t (Ḃs+2
2,1 ) ≤

(
‖u0‖Ḃs

2,1
+ ‖f ‖L1

t (Ḃs
2,1)

)

× exp
(

C

∫ t

0

(
‖∇v‖

Ḃ
d
2
2,1

+ ‖∇w‖
Ḃ

d
2
2,1

)
dt′

)
.

If v and w depend linearly on u, then the following inequality is true for all
positive s:

‖u‖L̃∞
t (Ḃs

2,1)
+κν‖u‖L1

t (Ḃs+2
2,1 ) ≤

(
‖u0‖Ḃs

2,1
+‖f ‖L1

t (Ḃs
2,1)

)
exp

(
C

∫ t

0

‖∇u‖L∞ dt′
)

·

Proof. As usual, the desired estimate will be obtained after localizing the
equation (10.9) by means of the homogeneous Littlewood–Paley decomposi-
tion. More precisely, applying Δ̇j to (10.9) yields

∂tuj + v · ∇uj − Auj = fj − Δ̇j(u · ∇w) + Rj

with uj
def= Δ̇ju, fj

def= Δ̇jf, and Rj
def=

∑
k[vk, Δ̇j ]∂ku.

1 In fact, if we are only interested in proving well-posedness for (NSC), the con-
vection terms may be included in the source term f. The main interest in keeping
them on the left is that we get a more accurate estimate (note that the right-hand
side in the Proposition 10.3 does not depend on the viscosity) which will be used to
state a continuation criterion at the end of this section.
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Taking the L2 inner product of the above equation with uj , we easily get

1
2

d

dt
‖uj ‖2

L2 − 1
2

∫
|uj |2 div v dx +

∫ (
μ| ∇uj |2 + (λ + μ)| div uj |2

)
dx

≤
∥∥uj

∥∥
L2

(∥∥fj

∥∥
L2 +

∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2

)
.

Note that we have∫ (
μ| ∇uj |2 + (λ + μ)| div uj |2

)
dx ≥ ν

∫
| ∇uj |2 dx.

Indeed, the above inequality is obvious if λ+μ ≥ 0. Otherwise, it follows from
the following chain of inequalities based on integration by parts:∫

(div uj)2 dx =
∑
i,k

∫
∂iu

i
j ∂kuk

j =
∑
i,k

∫
∂kui

j ∂iu
k
j ≤

∫
| ∇uj |2 dx.

Hence, according to Bernstein’s inequality, we get, for some universal con-
stant κ,

1
2

d

dt
‖uj ‖2

L2 + 2κν22j ‖uj ‖2
L2

≤
∥∥uj

∥∥
L2

(∥∥fj

∥∥
L2 +

∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2 +

1
2

‖div v‖L∞ ‖uj ‖L2

)
.

According to Theorems 2.82 and 2.85 page 104, and to Lemma 2.100 page 112,
we have the following estimates for Δ̇j(u · ∇w) and Rj :∥∥Δ̇j(u · ∇w)

∥∥
L2 ≤ Ccj2−js‖ ∇w‖

Ḃ
d
2
2,1

‖u‖Ḃs
2,1

, if − d/2 < s ≤ d/2, (10.10)

‖Rj ‖L2 ≤ Ccj2−js‖ ∇v‖
Ḃ

d
2
2,1

‖u‖Ḃs
2,1

, if − d/2 < s ≤ d/2 + 1, (10.11)

where (cj)j∈Z denotes a positive sequence such that
∑

j cj = 1.

Formally2 dividing both sides of the inequality by ‖uj ‖L2 and integrating
over [0, t] thus yields

‖uj(t)‖L2 + 2κν22j

∫ t

0

‖uj ‖L2 dt′ ≤ ‖uj(0)‖L2 +
∫ t

0

‖fj ‖L2 dt′

+C2−js

∫ t

0

cj

(
‖ ∇v‖

Ḃ
d
2
2,1

+ ‖∇w‖
Ḃ

d
2
2,1

)
‖u‖Ḃs

2,1
dt′.

Now, multiplying both sides by 2js and summing over j, we end up with

‖u‖L̃∞
t (Ḃs

2,1)
+ κν‖u‖L1

t (Ḃs+2
2,1 ) ≤ ‖u0‖Ḃs

2,1
+ ‖f ‖L1

t (Ḃs
2,1)

+ C

∫ t

0

(
‖ ∇v‖

Ḃ
d
2
2,1

+ ‖∇w‖
Ḃ

d
2
2,1

)
‖u‖Ḃs

2,1
dt′

2 Here, we may proceed exactly as in the proof of (4.31) page 194.
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for some constant C depending only on d and s. Applying Gronwall’s lemma
then completes the proof.

If, in addition, we assume that v and w depend linearly on u, then we may
take w ≡ 0 (with no loss of generality) and use the inequality (2.54) page 112
to bound Rj . We then easily get the last part of the statement. 
�

Combining the above estimates with Theorem 3.14 page 133 will enable us to
prove the following result for smooth solutions of (NSC).

Corollary 10.4. Let (a, u) satisfy (NSC) on [0, T ] × R
d . Suppose that a ∈

C1([0, T ]; Ḃ
d
2
2,1) and u ∈ C1

(
[0, T ]; Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 +1
2,1

)d
. Assume, in addition, that

there exists a function uL ∈ C1
(
[0, T ]; Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 +1
2,1

)d such that

∂tuL − AuL = f, uL|t=0 = u0. (10.12)

Let U(t)
def
= ‖u‖

L̃∞
t (Ḃ

d
2 −1
2,1 )

+ ν‖u‖
L1

t (Ḃ
d
2 +1
2,1 )

with u
def
= u − uL and U0(t)

def
=

‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1

t (Ḃ
d
2 −1
2,1 )

.

There exist two constants, η and G, depending only on d and G, respec-
tively, such that if

ν‖a0‖
Ḃ

d
2
2,1

≤ ην and C

((
ν +

νU0(T )
ν

)
‖uL‖

L1
T (Ḃ

d
2+1
2,1 )

+ T

)
≤ ν, (10.13)

then we have, for all t ∈ [0, T ],

‖a‖
L̃∞

t (Ḃ
d
2
2,1)

≤ 2‖a0‖
Ḃ

d
2
2,1

+ ην/ν, ‖a‖L∞([0,t]×Rd) ≤ 3/4,

U(t) ≤ C
((

U0(t) + νη
)

‖uL‖
L1

t (Ḃ
d
2 +1
2,1 )

+ ηtν/ν
)
.

(10.14)

Proof. Defining I(a) def= a/(1 + a), we see that (a, u) satisfies
⎧⎪⎨
⎪⎩

∂ta + u · ∇a + (1 + a) div u = 0

∂tu + u · ∇u + u · ∇uL − Au = −uL · ∇uL − I(a)Au − ∇(G(a))

a|t=0 = a0, u|t=0 = 0.

Theorem 3.14 and Remark 3.16 page 134 enable us to bound a: We get

‖a‖
L̃∞

t (Ḃ
d
2
2,1)

≤ exp
(
C

∫ t

0

‖u‖
Ḃ

d
2 +1
2,1

dt′
)

×
(

‖a0‖
Ḃ

d
2
2,1

+
∫ t

0

exp
(

−C

∫ t′

0

‖u‖
Ḃ

d
2 +1
2,1

dt′ ′
)

‖(1 + a) div u‖
Ḃ

d
2
2,1

dt′
)

.

Now, since Ḃ
d
2
2,1 is an algebra (see Corollary 2.54 page 90), we may write
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‖(1 + a) div u‖
Ḃ

d
2
2,1

≤ C
(
1 + ‖a‖

Ḃ
d
2
2,1

)
‖div u‖

Ḃ
d
2
2,1

so that, combining the previous inequality with Gronwall’s lemma yields (for
some larger constant C)

‖a‖
L̃∞

t (Ḃ
d
2
2,1)

≤ ‖a0‖
Ḃ

d
2
2,1

exp
(
C

∫ t

0

‖u‖
Ḃ

d
2+1
2,1

dt′
)

+ exp
(
C

∫ t

0

‖u‖
Ḃ

d
2+1
2,1

dt′
)

− 1.

Let C0 be the norm of the embedding Ḃ
d
2
2,1 ↪→ L∞. From the previous inequal-

ity, we see that if we assume that

‖a0‖
Ḃ

d
2
2,1

≤ 1
4C0

(10.15)

and if we have ∫ T

0

(
‖u‖

Ḃ
d
2 +1
2,1

+ ‖uL‖
Ḃ

d
2 +1
2,1

)
dt ≤ ην

2ν
(10.16)

for some sufficiently small η, then (10.14)1 is satisfied.
In order to bound u, we may apply Proposition 10.3. We get

U(t) ≤ C exp
(
C

∫ t

0

(
‖uL‖

Ḃ
d
2+1
2,1

+ ‖u‖
Ḃ

d
2+1
2,1

)
dt′

)

×
∫ t

0

(
‖uL · ∇uL‖

Ḃ
d
2 −1
2,1

+ ‖I(a)Au‖
Ḃ

d
2 −1
2,1

+ ‖∇(G(a))‖
Ḃ

d
2 −1
2,1

)
dt′.

The right-hand side may be bounded by resorting to the product and compo-
sition estimates proved in Chapter 2. We get

‖uL · ∇uL‖
Ḃ

d
2 −1
2,1

≤ C‖uL‖
Ḃ

d
2 −1
2,1

‖∇uL‖
Ḃ

d
2
2,1

,

‖I(a)Au‖
Ḃ

d
2 −1
2,1

≤ C‖a‖
Ḃ

d
2
2,1

‖Au‖
Ḃ

d
2 −1
2,1

,

‖ ∇(G(a))‖
Ḃ

d
2 −1
2,1

≤ C‖a‖
Ḃ

d
2
2,1

.

Therefore, under the hypothesis (10.16) we have, by virtue of (10.14),

U(t) ≤ C
(

‖uL‖
L∞

t (Ḃ
d
2 −1
2,1 )

‖uL‖
L1

t (Ḃ
d
2 +1
2,1 )

+ν(‖a0‖
Ḃ

d
2
2,1

+ην/ν)
(
ν−1U(t) + ‖uL‖

L1
t (Ḃ

d
2 +1
2,1 )

)
+ (‖a0‖

Ḃ
d
2
2,1

+ην/ν)t
)
.

Now, from Proposition 10.3 we have

‖uL‖
L∞

t (Ḃ
d
2 −1
2,1 )

≤ U0(t), (10.17)

so if we assume
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ν‖a0‖
Ḃ

d
2
2,1

≤ νη (10.18)

on a0 with η = min(1/(2C), 1/(4C0)) [note that this implies the condi-
tion (10.15)], then we get

U(t) ≤ C
((

U0(t) + νη
)

‖uL‖
L1

t (Ḃ
d
2 +1
2,1 )

+ ηνt/ν
)
.

Completing the proof of the corollary follows from a standard bootstrap ar-
gument: Let

I
def=

{
t ∈ [0, T ] / (10.16) is satisfied on [0, t]

}
.

By using the time continuity of the solution, we see that I is a nonempty
closed subset of [0, T ]. Now, if T ∗ ∈ I and we assume that T has been chosen
such that

4C

((
1 +

U0(T )
ν

)
‖uL‖

L1
T (Ḃ

d
2 +1
2,1 )

+
ηT

ν

)
≤ ην/ν,

then the inequality (10.16) is strict at time T ∗. Again using the time continuity
of the solution, we see that this entails that I is also an open subset of [0, T ].
Hence, T ∗ = T. 
�

Finally, we prove an a priori estimate for the nonstationary Stokes equation
with convection terms,3

∂tu + P(v · ∇u) + P(u · ∇w) − μΔu = f. (10.19)

That estimate will be needed in the last section of this chapter, where we
investigate the incompressible limit.

Proposition 10.5. Let s ∈ ]− d
2 , d

2 ] and let u be a solution of (10.19) with
divergence-free data u0 in Ḃs

2,1 and f ∈ L1([0, T ]; Ḃs
2,1). There exists a uni-

versal constant κ, and a constant C depending only on d and s, such that

‖u‖L̃∞
t (Ḃs

2,1)
+ κμ‖u‖L1

t (Ḃs+2
2,1 ) ≤

(
‖u0‖Ḃs

2,1
+ ‖f ‖L1

t (Ḃs
2,1)

)

× exp
(
C

∫ t

0

(
‖∇v‖

Ḃ
d
2
2,1

+ ‖∇w‖
Ḃ

d
2
2,1

)
dt′

)
.

If v and w are multiples of u, then for all positive s, the argument of the

exponential term may be replaced with C

∫ t

0

‖ ∇u‖L∞ dt′.

3 Recall that P stands for the Leray projector over divergence-free vector fields
defined in (5.4) page 206.
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Proof. The proof works in almost the same way as that of Proposition 10.3.

The evolution equation for uj
def= Δ̇ju now reads

∂tuj + P(v · ∇uj) − μΔuj = fj − Δ̇j P(u · ∇w) + P Rj .

Taking the L2 inner product with uj is the next step. Since div uj = 0
and P

2 = P, the operator P may be “omitted” in the computations so that by
proceeding along the lines of the proof of Proposition 10.3, we get the desired
inequality. 
�

10.2.3 Existence of a Local Solution

In order to prove the existence part of Theorem 10.2, we proceed as follows:

– First, we approximate (NSC) by a sequence of ordinary differential equa-
tions, by means of the Friedrichs method.

– Second, we prove uniform a priori estimates in ET (for suitably small T )
for those solutions.

– Third, we establish further boundedness properties involving Hölder reg-
ularity with respect to time for the approximate solutions.

– Fourth, we use the previous steps to show compactness, hence convergence
up to extraction.

– Finally, we show that the limit is indeed a solution of (NSC), and that it
belongs to ET .

First Step: Friedrichs Approximation

Let L̇2
n be the set of L2 functions spectrally supported in the annulus Cn

def={
ξ ∈ R

d / n−1 ≤ |ξ| ≤ n
}

and let Ωn be the set of functions (a, u) of (L̇2
n)d+1

such that infx∈Rd a > −1. The linear space L̇2
n is endowed with the standard

L2 topology. Note that, owing to the Bernstein inequality, the L∞ topology
on L̇2

n is weaker than the L2 topology, so Ωn is an open set of
(
L̇2

n

)d+1
.

Let Ėn : L2 −→ L̇2
n be the Friedrichs projector, defined by

F Ėn U(ξ) def= 1Cn(ξ)F U(ξ) for all ξ ∈ R
d .

We aim to solve the system of ordinary differential equations

(NSCn)
d

dt

(
a
u

)
=

(
Fn(a, u)
Gn(a, u)

)
,

(
a
u

)
|t=0

=
(

Ėn a0

0

)

in (L̇2
n)d+1 with

Fn(a, u) def= − Ėn div
(
(1 + a)u

)
,

Gn(a, u) def= Ėn Au − Ėn

(
u · ∇u

)
− Ėn

(
I(a) Au

)
− Ėn ∇

(
G(a)

)
.



10.2 Local Theory for Data with Critical Regularity 441

Above, we agree that u = u + uL, where uL is the solution of (10.12).4

Note that if ‖a0‖
Ḃ

d
2
2,1

is small, then 1 + Ėn a0 > 0 for large n. Hence, the

initial data of (NSCn) are in Ωn. Therefore, to solve the system it suffices to
check that the map

(a, u) �→
(
Fn(a, u), Gn(a, u)

)

is in C(R+ ×Ωn; (L̇2
n)d+1) and is locally Lipschitz with respect to the variable

(a, u). The proof of that is left to the reader. The main two points are that

un
L

def= Ėn uL is in C ∞(R+; H∞), so the time dependency is smooth, and that,
owing to the low-frequency cut-off Ėn, all the Sobolev norms are equivalent.
Hence, if we restrict ourselves to nonnegative times, then the above system
has a unique maximal solution (an, un) in the space C1([0, T ∗

n [; Ωn).

Second Step: Uniform Estimates

We claim that T ∗
n may be bounded from below by the supremum T of all the

times satisfying (10.13), and that (an, un)n≥1 is bounded in ET .

The key point is that since Ėn is an L2 orthogonal projector, it has no effect
on the energy estimates which were used in the proof of Corollary 10.4. Hence,
the corollary applies to our approximate solution (an, un). Note, also, that the
dependence on n in the condition (10.13) and in the inequalities (10.14) may be
omitted. Now, as (an, un) is spectrally supported in Cn, the inequalities (10.14)
ensure that it is bounded in L∞([0, T ]; L̇2

n). So, finally, the standard contin-
uation criterion for ordinary differential equations implies that T ∗

n is greater
than any time T satisfying (10.13) and that we have, for all n ≥ 1,

‖an‖
L̃∞

T (Ḃ
d
2
2,1)

≤ 3ην/ν, ‖an‖L∞([0,T ]×Rd) ≤ 3/4,

‖un‖
L̃∞

T (Ḃ
d
2 −1
2,1 )

+ ν‖un‖
L1

T (Ḃ
d
2 +1
2,1 )

≤ C
(
ηνT/ν

+
(

‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1

T (Ḃ
d
2 −1
2,1 )

+ νη
)

‖uL‖
L1

T (Ḃ
d
2 +1
2,1 )

)
.

(10.20)

Of course, because un
L = Ėn uL, the sequence (un

L)n∈N is uniformly bounded

in C̃T (Ḃ
d
2 −1
2,1 ) ∩ L1

T (Ḃ
d
2 +1
2,1 ). We further note that, using interpolation, the

inequality (10.20) implies that (un)n∈N is bounded in L̃r
T (Ḃ

d
2 −1+ 2

r
2,1 ) for all

r ∈ [1, ∞], a property which will be used several times in the next steps. The
same holds for un

L.

4 Proving the existence of uL involves the same arguments as for the ordinary heat
equation.
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Third Step: Time Derivatives

The following lemma will supply the compactness property needed to pass to
the limit in (NSCn).

Lemma 10.6. Let an def
= an − Ėn a0. Then, the sequence (an)n≥1 is bounded

in
C([0, T ]; Ḃ

d
2
2,1) ∩ C 1

2 ([0, T ]; Ḃ
d
2 −1
2,1 ),

and the sequence (un)n≥1 is bounded in

C([0, T ]; Ḃ
d
2 −1
2,1 ) ∩ C 1

4 ([0, T ]; Ḃ
d
2 −1
2,1 + Ḃ

d
2 − 3

2
2,1 ).

Proof. The result for (an)n≥1 follows from the fact that an(0) = 0 and

∂ta
n = − Ėn div

(
un(1 + an)

)
.

Indeed, as Ḃ
d
2
2,1 is an algebra, and as un and an are bounded in L2

T (Ḃ
d
2
2,1)

and L∞
T (Ḃ

d
2
2,1), respectively, the right-hand side is bounded in L2

T (Ḃ
d
2 −1
2,1 ).

As regards (un)n≥1, it suffices to prove that (∂tu
n)n≥1 is bounded in

L
4
3 ([0, T ]; Ḃ

d
2 −1
2,1 + Ḃ

d
2 − 3

2
2,1 ). This follows from the fact that

∂tu
n = − Ėn

(
un · ∇un + I(an)Aun − Aun + ∇(G(an))

)
.

Indeed, by using the fact that (un)n≥1 and (un)n≥1 are bounded in L
4
3
T (Ḃ

d
2 + 1

2
2,1 )∩

L∞
T (Ḃ

d
2 −1
2,1 ), and that (an)n≥1 is bounded in L∞

T (Ḃ
d
2
2,1), we easily deduce that

the first three terms on the right-hand side are in L
4
3
T (Ḃ

d
2 − 3

2
2,1 ), and that the last

one is in L∞
T (Ḃ

d
2 −1
2,1 ), uniformly. This is a simple consequence of the product

and composition laws for homogeneous Besov spaces, as stated in Chapter 2.

�

Remark 10.7. If d ≥ 3, we can also prove that (∂tu
n)n∈N is bounded in

L2([0, T ]; Ḃ
d
2 −1
2,1 + Ḃ

d
2 −2
2,1 ).

Fourth Step: Compactness and Convergence

We introduce a sequence (φp)p∈N of smooth functions with values in [0, 1], sup-
ported in the ball B(0, p+1) and equal to 1 on B(0, p). Recall that, according
to the previous lemma and step 2,

(an)n≥1 is bounded in C 1
2 ([0, T ]; Ḃ

d
2 −1
2,1 ) ∩ C([0, T ]; Ḃ

d
2
2,1).
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Therefore, by virtue of Proposition 2.93 page 108,5

(φpa
n)n≥1 is bounded in C 1

2 ([0, T ]; B
d
2 −1
2,1 ) ∩ C([0, T ]; B

d
2
2,1) for all p ∈ N .

Now, according to Theorem 2.94, the map z �−→ φpz is compact from B
d
2
2,1

to B
d
2 −1
2,1 . Therefore, Ascoli’s theorem ensures that there exists some function

ap such that, up to extraction, (φpa
n)n≥1 converges to ap in C([0, T ]; B

d
2 −1
2,1 ).

Using the Cantor diagonal process, we can then find a subsequence of (an)n≥1

[still denoted by (an)n≥1] such that for all p ∈ N, φpa
n converges to ap in

C([0, T ]; B
d
2 −1
2,1 ). As φpφp+1 = φp, we have, in addition, ap = φpap+1. From

that, we can easily deduce that there exists some function a such that for all
φ ∈ D, φan tends to φa in C([0, T ]; B

d
2 −1
2,1 ).

A similar argument, based on the bounds stated in step 2 for the velocity
and on the second part of Lemma 10.6, allows us to show that there exists
a vector field u such that, up to extraction, for any function φ ∈ D, we have
φun −→ φu in C([0, T ]; B

d
2 − 3

2
2,1 ).

Final Step: Completion of the Proof

Combining the uniform bounds that we proved in the second step and the
Fatou property for Besov spaces (see Theorem 2.25), we readily get

(a, u) ∈ L̃∞
T (Ḃ

d
2
2,1) ×

(
L̃∞

T (Ḃ
d
2 −1
2,1 )

)d

.

Proving that u also belongs to L1
T (Ḃ

d
2 +1
2,1 ) requires some attention. Indeed,

having (un)n∈N bounded in L1
T (Ḃ

d
2 +1
2,1 ) only ensures that u belongs to the set

MT (Ḃ
d
2 +1
2,1 ) of bounded measures on [0, T ] with values in the space Ḃ

d
2 +1
2,1 , and

that ∫ T

0

d‖u(t)‖
Ḃ

d
2 +1
2,1

≤ CT ,

where CT stands for the right-hand side of (10.20).
It is now clear that the same inequality holds for Ėn u, for all n ≥ 1. In

addition, as u ∈ L∞
T (Ḃ

d
2 −1
2,1 ), we obviously have Ėn u ∈ L1

T (Ḃ
d
2 +1
2,1 ). Finally,

then, we may write
∫ T

0

‖ Ėn u‖
Ḃ

d
2 +1
2,1

dt ≤ CT for all n ≥ 1.

Using the definition of the norm in Ḃ
d
2 +1
2,1 , the above inequality implies that

5 In the case d = 2, as d/2 − 1 = 0, we also use the fact that Ḃ0
2,1 ↪→ B0

2,1.
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lim
N →∞

∑
|j|≤N

2j( d
2 +1)

∫ T

0

‖Δ̇ju‖L2 dt ≤ CT .

Therefore, u ∈ L1
T (Ḃ

d
2 +1
2,1 ).

Let (a, u) def= (a0 + a, uL + u). By interpolating between the convergence
results that we have obtained so far and the uniform bounds of step 2, we
get better convergence results for (an, un) so that we may pass to the limit in
(NSCn). As an example, we explain how the nonlinear term Ėn

(
I(an)Aun

)
may be handled. Fix some φ ∈ D(Rd) and some p ≥ 1 sufficiently large so as
to satisfy φp ≡ 1 in a neighborhood of Supp φ. Using the symmetry of Ėn

and the support properties of φ and φp, we may write
〈

Ėn

(
I(an)Aun

)
− I(a)Au, φ

〉
=

〈
I(an)Aun, ( Ėn −Id)φ

〉
+
〈
I(φpa

n)A(φpu
n) − I(φpa)A(φpu), φ

〉
.

Combining the bounds of step 2 and product laws in Besov spaces, we see that
(I(an)Aun)n≥1 is bounded in L1

T (Ḃ
d
2 −1
2,1 ). Hence, we can deduce from duality

properties (see Proposition 2.29) and the smoothness of φ that the first term
of the above equality tends to 0.

For the second term, it suffices to use the fact that for any ε > 0,

– φpa
n −→ φpa in L∞

T (B
d
2 −ε
2,1 ),

– A(φpa
n) −→ A(φpu) in L1

T (B
d
2 +1−ε
2,1 ),

which, in view of the product properties in Besov spaces, suffices to show the
convergence. Treating the other terms in (NSCn) is left to the reader.

Finally, then, we have constructed a solution (a, u) of (NSC) with data
(a0, u0), which satisfies

(a, u) ∈ L̃∞
T (Ḃ

d
2
2,1) ×

(
L̃∞

T (Ḃ
d
2 −1
2,1 ) ∩ L1

T (Ḃ
d
2 +1
2,1 )

)d

,

and the bounds of step 2 are satisfied.
In order to establish the properties of continuity with respect to time, it

suffices to observe that

(∂t + u · ∇)a ∈ L1
T (Ḃ

d
2
2,1) and ∂tu ∈ L1

T (Ḃ
d
2 −1
2,1 ).

The second property obviously ensures that u ∈ C([0, T ]; Ḃ
d
2 −1
2,1 ), while accord-

ing to Theorem 3.19, the first one guarantees that a ∈ C([0, T ]; Ḃ
d
2
2,1).

Remark 10.8. Combining (10.13) with Lemma 2.4 page 54, we may deduce a

lower bound for the lifespan T ∗ of the solution. Defining uj(T ) def=
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2j( d
2 −1)

(
‖Δ̇ju0‖L2 + ‖Δ̇jf ‖L1

T (L2)

)
, we find that there exists some constant η,

depending only on d and on G, such that

T ∗ ≥ sup
{

T ∈
]
0, ην

] / ∑
j∈Z

(
1−e−νT22j

)
uj(T ) ≤ ην2

ν + νU0(T )/ν

}
·

10.2.4 Uniqueness

Assume that we are given (a1, u1) and (a2, u2), two solutions of (NSC) (with
the same data) satisfying the regularity assumptions of Theorem 10.2. In
order to show that these two solutions coincide, we shall give estimates for

(δa, δu) def= (a2−a1, u2−u1). These estimates will be based on Proposition 10.3
and Theorem 3.14 applied to the following system satisfied by (δa, δu):

{
∂tδa + u2 · ∇δa +

∑3
i=1 δFi = 0

∂tδu + u2 · ∇δu + δu · ∇u1 − Aδu =
∑3

i=1 δGi

(10.21)

with δF1
def= δu · ∇a1, δF2

def= δa div u2, δF3
def= (1 + a1) div δu,

δG1
def=

(
I(a1)−I(a2)

)
Au2, δG2

def= −I(a1) Aδu, δG3
def= −∇(G(a2)−G(a1)).

Note that, owing to the hyperbolic nature of the mass equation, we could
not avoid a loss of one derivative in the stability estimates (because the term

δF1 in the first equation of (10.21) cannot be better than L∞([0, T ]; Ḃ
d
2 −1
2,1 ),

for we only know that ∇a1 ∈ L∞([0, T ]; Ḃ
d
2 −1
2,1 )). In addition, because of the

coupling between the equations for δa and δu, this loss of one derivative also
induces a loss of one derivative when bounding δu. Hence, we expect to prove
uniqueness in the function space

FT
def= C([0, T ]; Ḃ

d
2 −1
2,1 ) ×

(
C([0, T ]; Ḃ

d
2 −2
2,1 ) ∩ L1

T (Ḃ
d
2
2,1)

)d
.

We first consider the case d ≥ 3, which is easier to deal with. We have to
check that (δa, δu) belongs to FT , a fact which is not entirely obvious since
homogeneous Besov spaces are involved. We note that both ∂ta

1 and ∂ta
2 are

in L2
T (Ḃ

d
2 −1
2,1 ) (just follow the proof of Lemma 10.6). As a1(0) = a2(0), we

thus have δa ∈ C([0, T ]; Ḃ
d
2 −1
2,1 ), as desired.

In order to show that δu ∈ C([0, T ]; Ḃ
d
2 −2
2,1 ), we introduce ui def= ui − uL,

where uL is the solution of

∂tuL − AuL = f − ∇(G(a0)), uL|t=0 = u0. (10.22)

We obviously have ūi(0) = 0 and



446 10 The Compressible Navier–Stokes System

∂tu
i = Aui − I(ai) Aui − ui · ∇ui − ∇

(
G(ai) − G(a0)

)
.

Since ai ∈ L∞
T (Ḃ

d
2 −1
2,1 ) and (ai, ui) ∈ ET , the right-hand side belongs

to L2
T (Ḃ

d
2 −2
2,1 ) (use Section 2.6). Hence, ui belongs to C([0, T ]; Ḃ

d
2 −2
2,1 ), and

we can now conclude that (δa, δu) ∈ FT .

In order to get an estimate for δa, we apply Theorem 3.14 to the first
equation of (10.21). For T̄ ≤ T we get

‖δa‖
L∞

T̄
(Ḃ

d
2 −1
2,1 )

≤ e
C‖u2‖

L1
T̄

(Ḃ

d
2 +1
2,1 )

3∑
i=1

‖δFi‖
L1

T̄
(Ḃ

d
2 −1
2,1 )

.

Easy computations based on Theorems 2.47 and 2.52 page 88 yield

‖δF1‖
Ḃ

d
2 −1
2,1

≤ C‖δu‖
Ḃ

d
2
2,1

‖ ∇a1‖
Ḃ

d
2 −1
2,1

,

‖δF2‖
Ḃ

d
2 −1
2,1

≤ C‖div u2‖
Ḃ

d
2
2,1

‖δa‖
Ḃ

d
2 −1
2,1

,

‖δF3‖
Ḃ

d
2 −1
2,1

≤ C
(
1 + ‖a1‖

Ḃ
d
2
2,1

)
‖δu‖

Ḃ
d
2
2,1

.

Hence, using Gronwall’s lemma and interpolation, we discover that there exists
some constant CT , independent of T̄, such that

‖δa‖
L∞

T̄
(Ḃ

d
2 −1
2,1 )

≤ CT

(
‖δu‖

L1
T̄

(Ḃ
d
2
2,1)

+ ‖δu‖
L∞

T̄
(Ḃ

d
2 −2
2,1 )

)
. (10.23)

Next, applying Proposition 10.3 to the second equation of (10.21) yields

‖δu‖
L∞

T̄
(Ḃ

d
2 −2
2,1 )

+ ‖δu‖
L1

T̄
(Ḃ

d
2
2,1)

≤ Ce
C

∫ T̄
0 (‖u1‖

Ḃ

d
2 +1
2,1

+‖u2‖
Ḃ

d
2 +1
2,1

) dt 3∑
i=1

‖δGi‖
L1

T̄
(Ḃ

d
2 −2
2,1 )

.

Because Ḃ
d
2
2,1(R

d) ↪→ C(Rd), we have ai ∈ C([0, T ]×R
d). Hence, for sufficiently

small T̄,

‖ai‖L∞([0,T̄ ]×Rd) ≤ 1
2

for i = 1, 2. (10.24)

Therefore, applying Theorems 2.47, 2.52, 2.61 and Corollary 2.66 yields

‖δG1‖
Ḃ

d
2 −2
2,1

≤ Cν
(
1 + ‖a1‖

Ḃ
d
2
2,1

+ ‖a2‖
Ḃ

d
2
2,1

)
‖δa‖

Ḃ
d
2 −1
2,1

‖u1‖
Ḃ

d
2 +1
2,1

,

‖δG2‖
Ḃ

d
2 −2
2,1

≤ Cν‖a1‖
Ḃ

d
2
2,1

‖δu‖
Ḃ

d
2
2,1

,

‖δG3‖
Ḃ

d
2 −2
2,1

≤ C(1+‖a1‖
Ḃ

d
2
2,1

+ ‖a2‖
Ḃ

d
2
2,1

)‖δa‖
Ḃ

d
2 −1
2,1

.

If η has been chosen to be sufficiently small in the condition (10.8), then δG2

may be absorbed by the left-hand side of the inequality for δu. Therefore, we
can conclude that there exists a constant CT , independent of T̄ , such that
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‖δu‖
L∞

T̄
(Ḃ

d
2 −2
2,1 )

+ ‖δu‖
L1

T̄
(Ḃ

d
2
2,1)

≤ CT

(
T̄ + ‖u1‖

L1
T̄

(Ḃ
d
2
2,1)

)
‖δa‖

L∞
T̄

(Ḃ
d
2 −1
2,1 )

.

Note that the factor T̄ + ‖u1‖
L1

T̄
(Ḃ

d
2
2,1)

decays to 0 when T̄ goes to zero.

Hence, plugging the inequality (10.23) into the above inequality, we conclude
that (δa, δu) ≡ 0 on a nontrivial time interval [0, T̄ ]. In order to show that we
may take T̄ = T, we introduce the set

I
def=

{
t ∈ [0, T ] / (a2, u2) ≡ (a1, u1) on [0, t]

}
.

Obviously, I is a nonempty closed subset of [0, T ]. In addition, the above
arguments may be carried over to any t ∈ I ∩ [0, T [, which ensures that I is
an open subset of [0, T ]. Therefore, I ≡ [0, T ], and the proof is complete in
the case d ≥ 3.

In the two-dimensional case, the above proof fails because, when estimating
some terms on the right-hand side of the equation for δu (such as, e.g., δG3),
the sum of the indices of regularity is zero. Hence, we must use the endpoint
inequalities of Proposition 2.52 [adapted to L̃ρ

T (Ḃs
2,r) spaces], but we then

obtain a bound in the larger space L̃1
T (Ḃ−1

2,∞), instead of L1
T (Ḃ−1

2,1). At this
point, we may be tempted to estimate (δa, δu) in

FT
def= L∞

T (Ḃ0
2,∞) ×

(
L∞

T (Ḃ−1
2,∞) ∩ L̃1

T (Ḃ1
2,∞)

)2

,

but we then have to face the lack of control on δu in L1
T (L∞) (because, in

contrast to Ḃ1
2,1, the space Ḃ1

2,∞ is not embedded in L∞) so that we run into
trouble when estimating δF1. In order to bypass this difficulty, we shall use
the logarithmic interpolation inequality

‖w‖L1
T (Ḃ1

2,1)
≤ C‖w‖L̃1

T (Ḃ1
2,∞) log

(
e +

‖w‖L̃1
T (Ḃ0

2,∞)+‖w‖L̃1
T (Ḃ2

2,∞)

‖w‖L̃1
T (Ḃ1

2,∞)

)
, (10.25)

the proof of which is similar to that of (2.104), except that we now have to
split w into three parts,

w =
∑

j<−M

Δ̇jw +
N∑

j=−M

Δ̇jw +
∑
j>N

Δ̇jw,

and choose the “best” nonnegative integers M and N . At this stage, it will be
possible to conclude that we have uniqueness by taking advantage of Osgood’s
lemma.

We now give some more details. We omit the proof that (δa, δu) is indeed
in FT̄ as it is only a matter of repeating the arguments that were used for d ≥
3. Next, bounding δa may be achieved by combining Theorem 3.14 page 133
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with Propositions 2.47 page 87 and 2.52 page 88, and by using the embedding
Ḃ1

2,1 ↪→ Ḃ1
2,∞ ∩ L∞. After a few computations, we get

‖δa‖L∞
t (Ḃ0

2,∞) ≤ C exp
(
C

∫ t

0

‖u2‖Ḃ2
2,1

dt′
)

×
∫ t

0

(
‖δa‖Ḃ0

2,∞
‖divu2‖Ḃ1

2,1
+‖δu‖Ḃ1

2,1

(
1+‖a1‖Ḃ1

2,1

))
dt′,

from which it follows, according to Gronwall’s inequality, that

‖δa‖L∞
t (Ḃ0

2,∞) ≤ C exp
(
C

∫ t

0

‖u2‖Ḃ2
2,1

dt′
)(

1 + ‖a1‖L∞
t (Ḃ1

2,1)

)
‖δu‖L1

t (Ḃ1
2,1)

.

Making use of the inequality (10.25) with w = δu, we end up with

‖δa‖L∞
t (Ḃ0

2,∞) ≤ CT ‖δu‖L̃1
t (Ḃ1

2,∞) log
(

e +
‖δu‖L̃1

t (Ḃ0
2,∞)+‖δu‖L̃1

t (Ḃ2
2,∞)

‖δu‖L̃1
t (Ḃ1

2,∞)

)

for some constant CT depending only on the bounds of the solutions in ET .

Note that since L̃∞
t (Ḃ0

2,1) ↪→ L1
t (Ḃ

0
2,1) for finite t, we have

∀t ∈ [0, T ], ‖δu‖L̃1
t (Ḃ0

2,∞)+‖δu‖L̃1
t (Ḃ2

2,∞) ≤ V (t) def= V1(t) + V2(t) < ∞

with
V ′

i (t) def= ‖ui(t)‖Ḃ0
2,1

+ ‖ui(t)‖Ḃ2
2,1

∈ L1([0, T ]).

Therefore, V is in L∞([0, T ]) and

‖δa‖L∞
t (Ḃ0

2,∞) ≤ CT ‖δu‖L̃1
t (Ḃ1

2,∞) log
(

e +
V (t)

‖δu‖L̃1
t (Ḃ1

2,∞)

)
. (10.26)

We now bound δu. Making use of (an obvious generalization of) the inequal-
ity (3.39) page 157, we get

‖δu‖L∞
T̄

(Ḃ−1
2,∞) + ν‖δu‖L̃1

T̄
(Ḃ1

2,∞)

≤ C

(
‖u2 · ∇δu‖L̃1

T̄
(Ḃ−1

2,∞) + ‖δu · ∇u1‖L̃1
T̄

(Ḃ−1
2,∞) +

3∑
i=1

‖δGi‖L̃1
T̄

(Ḃ−1
2,∞)

)
.

In order to bound the terms on the right-hand side,we may exploit Proposi-
tions 2.47, 2.52 and Corollary 2.66 page 97 [recall that (10.24) is satisfied],
adapted to the spaces L̃1

t (Ḃs
p,r). Since L1

t (Ḃ
−1
2,∞) ↪→ L̃1

t (Ḃ
−1
2,∞), we get, for all

t ≤ T̄,
‖u2 · ∇δu‖L̃1

t (Ḃ−1
2,∞) ≤ C‖u2‖L̃2

t (Ḃ1
2,1)

‖∇δu‖L̃2
t (Ḃ−1

2,∞),

‖δu · ∇u1‖L̃1
t (Ḃ−1

2,∞) ≤ C

∫ t

0

‖ ∇u1‖Ḃ1
2,1

‖δu‖Ḃ−1
2,∞

dt′,

‖δG2‖L̃1
t (Ḃ−1

2,∞) ≤ Cν‖a1‖L̃∞
t (Ḃ1

2,1)
‖∇2δu‖L̃1

t (Ḃ−1
2,∞).



10.2 Local Theory for Data with Critical Regularity 449

In order to bound the terms δG1 and δG2, we need to generalize Corollary 2.66
to the case of regularity index 0. For this, it suffices to note that for any
sufficiently smooth function H, we have

H(a2) − H(a1) =
(

H ′(0) +
∫ 1

0

(
H ′(a1 + τδa) − H ′(0)

)
dτ

)
δa.

Hence, combining the product laws in Besov spaces and Theorem 2.61, we
have

‖H(a2) − H(a1)‖Ḃ0
2,∞

≤ C‖δa‖Ḃ0
2,∞

(
|H ′(0)| + ‖a1‖Ḃ1

2,1
+ ‖a2‖Ḃ1

2,1

)
.

So, finally, we get

‖δG1‖L̃1
t (Ḃ−1

2,∞) ≤ C ν

∫ t

0

(
1 + ‖a1‖Ḃ1

2,1
+ ‖a2‖Ḃ1

2,1

)
‖∇2u2‖Ḃ0

2,1
‖δa‖Ḃ0

2,∞
dt′,

‖δG3‖L̃1
t (Ḃ−1

2,∞) ≤ C

∫ t

0

(
1+‖a1‖Ḃ1

2,1
+‖a2‖Ḃ1

2,1

)
‖δa‖Ḃ0

2,∞
dt′

and can conclude that

‖δu‖L∞
t (Ḃ−1

2,∞)+ν‖δu‖L̃1
t (Ḃ1

2,∞) ≤ C‖u2‖L̃2
t (Ḃ1

2,1)
‖δu‖L̃2

t (Ḃ0
2,∞)

+ν‖δu‖L̃1
t (Ḃ1

2,∞)‖a1‖L̃∞
t (Ḃ1

2,1)
+

∫ t

0

[
‖u1‖Ḃ2

2,1
‖δu‖Ḃ−1

2,∞

+
(
1+‖a1‖Ḃ1

2,1
+‖a2‖Ḃ1

2,1

)(
1+ν‖u2‖Ḃ2

2,1

)
‖δa‖Ḃ0

2,∞

]
dt′.

Now, if we take a sufficiently small constant η in the inequality (10.8), then
the second term on the right-hand side may be absorbed by the left-hand side.
Next, we note that by virtue of the Lebesgue dominated convergence theorem,
‖u2‖L̃2

t (Ḃ1
2,1)

tends to 0 when t goes to 0, and hence there exists a positive T̄

such that the first term on the right-hand side may also be absorbed6 for all
t ∈ [0, T̄ ]. We end up with the following inequality:

‖δu‖L∞
t (Ḃ−1

2,∞) + ν‖δu‖L̃1
t (Ḃ1

2,∞)

≤ C

∫ t

0

(
‖u1‖Ḃ2

2,1
‖δu‖Ḃ−1

2,∞
+(1+ν‖u2‖Ḃ2

2,1
)‖δa‖Ḃ0

2,∞

)
dt′.

We plug (10.26) into this inequality. Defining X(t) def= ‖δu‖L∞
t (Ḃ−1

2,∞) +
‖δu‖L̃1

t (Ḃ1
2,∞), we get, for any t in [0, T ] and some constant CT depending

only on ν, ν, and the norms of the solutions (a1, u1) and (a2, u2) in ET ,

6 By interpolation, we easily get ‖δu‖L̃2
t (Ḃ0

2,∞) ≤ ‖δu‖
1
2
L̃1

t (Ḃ1
2,∞)

‖δu‖
1
2

L̃∞
t (Ḃ−1

2,∞)
.
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X(t) ≤ CT

∫ t

0

(1+V ′(t′))X(t′) log
(

e+
V (T )
X(t′)

)
dt′.

As

V ′ ∈ L1([0, T ]) and
∫ 1

0

dr

r log
(
e +

V (T )
r

) = ∞,

Osgood’s lemma entails that X ≡ 0 on [0, T̄ ]. This means that (a1, u1) and
(a2, u2) coincide on [0, T̄ ]. Appealing to the connectivity argument used in the
case d ≥ 3 then completes the proof. 
�

Remark 10.9. Having a tilde in the condition (10.8) in the critical case d = 2
is necessary for conveniently bounding the term δG4.

10.2.5 A Continuation Criterion

This section is devoted to the proof of the following continuation criterion.

Proposition 10.10. Under the hypotheses of Theorem 10.2, assume that the
system (NSC) has a solution (a, u) on [0, T [× R

d which belongs to ET ′ for all
T ′ < T and satisfies

∫ T

0

‖∇u‖L∞ dt < ∞ and

{ ‖a‖
L∞

T (Ḃ
d
2
2,1)

≤ ην/ν, if d ≥ 3,

‖a‖L̃∞
T (Ḃ1

2,1)
≤ ην/ν, if d = 2.

There exists some T ∗ > T such that (a, u) may be continued on [0, T ∗] × R
d

to a solution of (NSC) which belongs to ET ∗ .

Proof. Note that u satisfies

∂tu + u · ∇u − Au = f − ∇(G(a)) − I(a)Au, u|t=0 = u0.

Hence, applying Proposition 10.3 and taking advantage of the smallness of a
to absorb the term I(a)Au, we get, for some constant C, depending only on
d, and for all t < T,

‖u‖
L̃∞

t (Ḃ
d
2 −1
2,1 )

≤ CeC
∫ t
0 ‖ ∇u‖L∞ dt′

×
(

‖u0‖
Ḃ

d
2−1
2,1

+ ‖f ‖
L1

t (Ḃ
d
2−1
2,1 )

+ t‖a‖
L∞

t (Ḃ
d
2
2,1)

)
.

Hence, u belongs to L̃∞
T (Ḃ

d
2 −1
2,1 ). Now, replacing ‖Δ̇ju0‖L2 by ‖Δ̇ju‖L∞

T (L2)

and ‖Δ̇jf ‖L1
T (L2) by ‖Δ̇jf ‖L1+T (L2) in Remark 10.8, we get some ε > 0 such

that for any T ′ ∈ [0, T [, the system (NSC) with data a(T ′), u(T ′), and
f( · + T ′) has a solution on [0, ε]. Taking T ′ = T − ε/2 and using the fact
that the solution (a, u) is unique on [0, T [, we thus get a continuation of (a, u)
beyond T. 
�



10.3 Local Theory for Data Bounded Away from the Vacuum 451

10.3 Local Theory for Data Bounded Away
from the Vacuum

We next consider initial data (ρ0, u0) which do not satisfy the smallness con-
dition (10.7), that is, the density need not be almost a constant function.
Since having strict parabolicity in the momentum equation is fundamental,
however, we shall always assume that ρ0 is bounded away from 0, an assump-
tion which will be shown to be conserved for sufficiently small times. In order
to simplify the presentation, we assume that the data are more regular than
needed according to our scaling considerations.

We now state the main result of this section.

Theorem 10.11. Assume that the space dimension is d ≥ 2 and that the data
(a0, u0, f) satisfy, for some α ∈ ]0, 1],

a0 ∈ Ḃ
d
2
2,1∩Ḃ

d
2+α
2,1 , u0 ∈ Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α
2,1 , and f ∈ L1

loc(R
+; Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α
2,1 ).

If, in addition, infx a0(x) > −1, then there exists a positive time T such that
(NSC) has a unique solution (a, u) on [0, T ] × R

d which belongs to

Eα
T

def
= C̃T (Ḃ

d
2
2,1 ∩Ḃ

d
2 +α
2,1 )×

(
C̃T (Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α
2,1 )∩L1([0, T ]; Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 +1+α
2,1 )

)d

and satisfies inf
t,x

a(t, x) > −1.

10.3.1 A Priori Estimates for the Linearized Momentum Equation

As in the previous section, since we are only interested in local results, at
the linear level, the mass and momentum equations may be treated sepa-
rately. For the mass equation, using Theorem 3.14 page 133 turns out to be
still appropriate. As for the momentum equation, we now have to consider a
linearization which allows for nonconstant coefficients, namely,

∂tu + v · ∇u + u · ∇w − bAu = f, (10.27)

where b is a given positive function depending on (t, x) and tending to (say) 1
when x goes to infinity.

In this subsection, we shall prove that the estimates of Proposition 10.3
may be adapted to this new framework, provided that b − 1 is in L∞

T (Ḃ
d
2 +α
2,1 )

for some positive α.

Proposition 10.12. Let α ∈ ]0, 1] and s ∈ ]− d
2 , d

2 ]. Assume that b = 1 + c

with c ∈ L∞
T (Ḃ

d
2 +α
2,1 ) and that

b∗ := inf
(t,x)∈[0,T ]×Rd

b(t, x) > 0. (10.28)

There exists a universal constant κ, and a constant C depending only on d,
α, and s, such that for all t ∈ [0, T ],
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‖u‖L̃∞
t (Ḃs

2,1)
+ κb∗ ν‖u‖L1

t (Ḃs+2
2,1 ) ≤

(
‖u0‖Ḃs

2,1
+ ‖f ‖L1

t (Ḃs
2,1)

)

× exp
(

C

∫ t

0

(
‖v‖

Ḃ
d
2 +1
2,1

+ ‖w‖
Ḃ

d
2 +1
2,1

+ b∗ ν
( ν

b∗ν

) 2
α ‖c‖

2
α

Ḃ
d
2 +α

2,1

)
dt′

)
.

If v and w depend linearly on u, then the above inequality is true for all
s ∈ ]0, d

2 + α], and the argument of the exponential term may be replaced with

C

∫ t

0

(
‖ ∇u‖L∞ + b∗ ν

( ν

b∗ν

) 2
α ‖c‖

2
α

Ḃ
d
2 +α

2,1

)
dt′.

Proof. We first consider the case λ + μ ≥ 0. Applying the spectral cut-off
operator Δ̇j to (10.27) then yields

∂tuj + v · ∇uj − μdiv(b∇uj) − (λ+μ)∇(b div uj) = fj + Δ̇j(u · ∇w)+Rj + R̃j

with uj
def= Δ̇ju, fj

def= Δ̇jf, Rj
def= [vi, Δ̇j ]∂iu, and

R̃j
def= μ

(
Δ̇j(cΔu) − div(c∇Δ̇ju)

)
+ (λ + μ)

(
Δ̇j(c∇ div u) − ∇(c div Δ̇ju)

)
.

Taking the L2 inner product of the above equation with uj , we get, after a
few calculations and integrations by parts,

1
2

d

dt
‖uj ‖2

L2 − 1
2

∫
|uj |2 div v dx +

∫
b
(
μ| ∇uj |2 + (λ + μ)| div uj |2

)
dx

≤
∥∥uj

∥∥
L2

(∥∥fj

∥∥
L2 +

∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2 +

∥∥R̃j

∥∥
L2

)
.

Under the assumption that λ + μ ≥ 0, the term (λ + μ)| div uj |2 may be
omitted. Therefore, by virtue of Bernstein’s inequality and (10.28), the above
inequality entails that

‖uj(t)‖L2 +2κb∗ μ22j

∫ t

0

‖uj ‖L2 dt′ ≤ ‖uj(0)‖L2 +
∫ t

0

‖fj ‖L2 dt′

+
∫ t

0

(∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2 +

∥∥R̃j

∥∥
L2 +

1
2

‖div v‖L∞ ‖uj ‖L2

)
dt (10.29)

for some universal constant κ.

We will temporarily assume that R̃j satisfies

‖R̃j ‖L2 ≤ Ccjν2−js‖c‖
Ḃ

d
2 +α

2,1

‖ ∇u‖Ḃs+1−α
2,1

for − d/2 < s ≤ d/2 + α, (10.30)

where (cj)j∈Z denotes a positive sequence such that
∑

j cj = 1. Then, using
the inequalities (10.10) and (10.11), multiplying both sides of (10.29) by 2js,
and summing over j, we end up with
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‖u‖L̃∞
t (Ḃs

2,1)
+2κb∗ μ‖u‖L1

t (Ḃs+2
2,1 ) ≤ ‖u0‖Ḃs

2,1
+ ‖f ‖L1

t (Ḃs
2,1)

+C

∫ t

0

(
‖v‖

Ḃ
d
2 +1
2,1

+ ‖w‖
Ḃ

d
2 +1
2,1

)
‖u‖Ḃs

2,1
dt′

+Cν

∫ t

0

‖c‖
Ḃ

d
2 +α

2,1

‖u‖Ḃs+2−α
2,1

dt′ (10.31)

for a constant C depending only on α, d, and s.
Next, by combining interpolation and Young’s inequality, we easily get

Cν‖c‖
Ḃ

d
2 +α

2,1

‖u‖Ḃs+2−α
2,1

≤ κb∗ μ‖u‖Ḃs+2
2,1

+ C
2
α ν

2
α (κb∗ μ)1− 2

α ‖c‖
2
α

Ḃ
d
2 +α

2,1

‖u‖Ḃs
2,1

.

Plugging this into (10.31) and making use of Gronwall’s inequality completes
the proof of the first inequality of Proposition 10.12 in the case where λ+μ ≥ 0.
The case where v and w depend linearly on u follows from a slight modification
of (10.11) [see the inequality (2.54) page 112].

The case λ + μ < 0 works in almost the same way. We just have to write
the equation for uj in a slightly different way, namely, for all i ∈ {1, . . . , d}
(with the summation convention),

∂tu
i
j + v · ∇ui

j − μdiv(b∇ui
j) − (λ+μ)∂k(b∂iu

k
j ) = f i

j + Δ̇j(u · ∇wi)+Ri
j + Ři

j

with

Ři
j

def= μ
(
Δ̇j(cΔui) − div(c∇Δ̇ju

i)
)

+ (λ + μ)
(
Δ̇j(c∂i div u) − ∂k(c∂iΔ̇ju

k)
)
.

Taking the L2 inner product of the above equation with uj , we get, after a
few calculations and integrations by parts,

1
2

d

dt
‖uj ‖2

L2 − 1
2

∫
|uj |2 div v dx +

∫
b
(
μ| ∇uj |2 + (λ + μ)∇uj : ∇uj

)
dx

≤
∥∥uj

∥∥
L2

(∥∥fj

∥∥
L2 +

∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2 +

∥∥Řj

∥∥
L2

)
.

Note that, according to the Cauchy–Schwarz inequality,

∇uj : ∇uj ≤ | ∇uj |2.

As we have λ + μ < 0 and λ + 2μ > 0, we thus get

‖uj(t)‖L2 + 2κb∗ ν22j

∫ t

0

‖uj ‖L2 dt′ ≤ ‖uj(0)‖L2 +
∫ t

0

‖fj ‖L2 dt′

+
∫ t

0

(∥∥Δ̇j(u · ∇w)
∥∥

L2 +
∥∥Rj

∥∥
L2 +

∥∥Řj

∥∥
L2 +

1
2

‖div v‖L∞ ‖uj ‖L2

)
dt′.

Now, by virtue of Lemma 10.13 below, the new commutator Řj also satis-
fies (10.30). Hence, the proof may be completed exactly as in the case λ+μ ≥ 0.


�
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For the sake of completeness, we now prove the inequality (10.30). This readily
follows from the following lemma.

Lemma 10.13. Let α ∈ ]1− d
2 , 1] and σ ∈ ]− d

2 , d
2 + α[. Define

Rk
j

def
= Δ̇j(c∂kw)−∂k(cΔ̇jw) for k ∈ {1, . . . , d}.

There exists some C = C(α, d, σ) such that
∑

j

2jσ ‖ Rk
j ‖L2 ≤ C‖c‖

Ḃ
d
2+α

2,1

‖∇w‖Ḃσ−α
2,1

. (10.32)

Proof. The proof is based on Bony’s decomposition: We split Rk
j as

Rk
j = ∂k[Δ̇j , Tc]w︸ ︷︷ ︸

Rk,1
j

− Δ̇jT∂kcw︸ ︷︷ ︸
Rk,2

j

+ Δ̇jT∂kwc︸ ︷︷ ︸
Rk,3

j

+ Δ̇jR(∂kw, c)︸ ︷︷ ︸
Rk,4

j

− ∂kT ′
Δ̇jw

c︸ ︷︷ ︸
Rk,5

j

.

Using the fact that, owing to Proposition 2.10 page 59, we have

Rk,1
j =

j+4∑
j′=j−4

∂k[Δ̇j , Ṡj′ −1c]Δ̇j′ w,

Bernstein’s inequality and Lemma 2.97 page 110 entail (under the hypothesis
that α ≤ 1) that

∑
j

2jσ ‖ Rk,1
j ‖L2 ≤ C‖ ∇c‖Ḃα−1

∞,1
‖∇w‖Ḃσ−α

2,1
. (10.33)

Continuity results for the paraproduct (see Proposition 2.82) ensure that Rk,2
j

satisfies (10.33) if α ≤ 1, and that

∑
j

2jσ ‖Rk,3
j ‖L2 ≤ C‖ ∇w‖

Ḃ
σ−α−d

2
∞,1

‖c‖
Ḃ

d
2 +α

2,1

if σ − α − d

2
≤ 0. (10.34)

Next, Proposition 2.85 guarantees that under the hypothesis σ > − d
2 , we have

∑
j

2jσ ‖ Rk,4
j ‖L2 ≤ C‖ ∇w‖Ḃσ−α

2,1
‖c‖

Ḃ
d
2 +α

2,1

. (10.35)

To bound Rk,5
j , we use the decomposition

Rk,5
j =

∑
j′ ≥j−3

∂k

(
Ṡj′+2Δ̇jw Δ̇j′ c

)
,

which leads (after a suitable use of Bernstein and Hölder inequalities) to
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2jσ
∥∥∥Rk,5

j

∥∥∥
L2

≤ C
∑

j′ ≥j−3

2(j−j′)(α+ d
2 −1) 2j(σ−α)‖Δ̇j ∇w‖L2 2j′( d

2+α)‖Δ̇j′ c‖L2 .

Hence, since α + d
2 − 1 > 0, we have
∑

j

2jσ ‖ Rk,5
j ‖L2 ≤ C‖c‖

Ḃ
d
2 +α

2,1

‖∇w‖Ḃσ−α
2,1

.

Combining the last inequality with (10.33), (10.34), and (10.35) and using

the embedding Ḃr
2,1 ↪→ Ḃ

r− d
2

∞,1 for r = d
2 +α−1 and σ −α completes the proof

of (10.32). 
�

Corollary 10.14. Let (a, u) satisfy (NSC) on [0, T ] × R
d . Assume that there

exist two positive constants, b∗ and b∗, such that

b∗ ≤ 1 + a0 ≤ b∗, (10.36)

and that a ∈ C1([0, T ]; Ḃ
d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) and u ∈ C1

(
[0, T ]; Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 +1+α
2,1

)d
.

Also, suppose that (10.12) has a solution uL in C1
(
[0, T ]; Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 +1+α
2,1

)d
.

We introduce the following notation:

Aα
0

def
= ‖a0‖

Ḃ
d
2
2,1∩B

d
2 +α

2,1

, Aα(t)
def
= ‖a‖

L∞
t (Ḃ

d
2
2,1∩Ḃ

d
2 +α

2,1 )
,

Uα
0 (t)

def
= ‖u0‖

Ḃ
d
2 −1
2,1 ∩Ḃ

d
2 −1+α

2,1

+ ‖f ‖
L1

t (Ḃ
d
2 −1
2,1 ∩Ḃ

d
2 −1+α

2,1 )
,

Uα
L (t)

def
= ‖uL‖

L1
t (Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 +α+1
2,1 )

,

U
α
(t)

def
= ‖u‖

L̃∞
t (Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α

2,1 )
+b∗ν‖u‖

L1
t (Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 +1+α

2,1 )
with u

def
= u − uL.

There exist two constants, η and C, depending only on d, α, and G, such that
if ⎧⎨

⎩
b∗ ν

(
ν

b∗ν

) 2
α

T
(
Aα

0 + 1
) 2

α ≤ η

Uα
0 (T )Uα

L (T ) + (Aα
0 + 1)(T + νUα

L (T )) ≤ ηb∗ ν,
(10.37)

then we have

b∗/2 ≤ 1 + a(t, x) ≤ 2b∗ for all (t, x) ∈ [0, T ] × R
d, (10.38)

Aα(T ) ≤ 2Aα
0+1, U

α
(T ) ≤ C

(
(Aα

0+1)(T+νUα
L (T ))+Uα

0 (T )Uα
L (T )

)
. (10.39)

Proof. We may write the system satisfied by (a, u) as follows:
⎧⎪⎨
⎪⎩

∂ta + u · ∇a + (1 + a) div u = 0

∂tu + u · ∇u + u · ∇uL − 1
1+a Au = −uL · ∇uL − I(a)AuL − ∇(G(a))

(a, u)|t=0 = (a0, 0).
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We first bound a. Applying the product laws in Besov spaces (see Corol-
lary 2.86 page 104), we get

‖(1 + a) div u‖
Ḃ

d
2
2,1∩Ḃ

d
2 +α

2,1

≤ C
(
1 + ‖a‖

Ḃ
d
2
2,1∩Ḃ

d
2 +α

2,1

)
‖div u‖

Ḃ
d
2
2,1∩Ḃ

d
2 +α

2,1

.

Hence, Theorem 3.14 (adapted to the homogeneous framework, see page 134)
combined with Gronwall’s lemma yields, for all t ∈ [0, T ],

Aα(t) ≤ Aα
0 exp

(
C

∫ t

0

‖ ∇u‖
Ḃ

d
2
2,1∩Ḃ

d
2 +α

2,1

dt′
)

+exp
(
C

∫ t

0

‖ ∇u‖
Ḃ

d
2
2,1∩Ḃ

d
2 +α

2,1

dt′
)

− 1. (10.40)

In order to ensure that the condition (10.38) is satisfied, we may use the fact
that (

∂t + u · ∇
)
(1 + a)±1 ± (1 + a)±1 div u = 0.

Hence, taking advantage of Gronwall’s lemma, we get

∥∥(1 + a)±1(t)
∥∥

L∞ ≤
∥∥(1 + a0)±1

∥∥
L∞ exp

(∫ t

0

‖div u‖L∞ dt′
)
.

Therefore, the condition (10.38) is satisfied on [0, t] whenever

∫ t

0

‖div u‖L∞ dt′ ≤ log 2. (10.41)

In order to bound u, we use Proposition 10.12 with c = −I(a). As, according
to Theorems 2.47, 2.52, and 2.61 page 94, we have, for all β ∈ [0, α],

‖uL · ∇uL‖
Ḃ

d
2 −1+β

2,1

≤ C‖ ∇uL‖
Ḃ

d
2 −1+β

2,1

‖uL‖
Ḃ

d
2
2,1

,

‖∇G(a)‖
Ḃ

d
2 −1+β

2,1

≤ C‖a‖
Ḃ

d
2 +β

2,1

,

‖I(a) AuL‖
Ḃ

d
2 −1+β

2,1

≤ Cν‖I(a)‖
Ḃ

d
2+β

2,1 ∩L∞
‖∇2uL‖

Ḃ
d
2 −1+β

2,1

,

‖I(a)‖
Ḃ

d
2+β

2,1 ∩L∞
≤ C‖a‖

Ḃ
d
2+β

2,1 ∩L∞
,

we get

U
α
(T ) ≤ Ce

C
∫ T
0

(
‖u‖

Ḃ

d
2+1
2,1

+‖uL ‖
Ḃ

d
2+1
2,1

+b∗ ν
(

ν
b∗ ν

) 2
α ‖a‖

2
α

Ḃ

d
2+α

2,1

)
dt′

×
(

‖uL‖
L1

T (Ḃ
d
2+1
2,1 )

‖uL‖
L∞

T (Ḃ
d
2−1
2,1 ∩Ḃ

d
2+α−1
2,1 )

+‖a‖
L∞

T (Ḃ
d
2
2,1∩B

d
2 +α

2,1 )

(
T + ν‖uL‖

L1
T (Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 +α+1
2,1 )

))
.
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Note that Proposition 10.3 implies that

‖uL‖
L∞

T (Ḃ
d
2−1
2,1 ∩Ḃ

d
2+α−1
2,1 )

≤ CUα
0 (T ).

So, finally, defining

Uα
L (T ) def= ‖uL‖

L1
T (Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 +α+1
2,1 )

and Aα(T ) def= ‖a‖
L∞

T (Ḃ
d
2
2,1∩Ḃ

d
2 +α

2,1 )
,

we conclude that

Aα(T ) ≤ Aα
0 exp

(
C

(
Uα

L (T ) +
U

α
(T )

b∗ ν

))
+ exp

(
C

(
Uα

L (T ) +
U

α
(T )

b∗ ν

))
− 1,

U
α
(T ) ≤ C

(
Uα

0 (T )Uα
L (T ) + Aα(T )(T + νUα

L (T ))
)

exp
(

C

(
Uα

L (T ) +
U

α
(T )

b∗ ν
+ b∗ ν

( ν

b∗ν

) 2
α T (Aα(T ))

2
α

))
.

Now, if T is sufficiently small so as to satisfy exp
(
CUα

L (T )
)

≤
√

2,

exp
(
C

U
α
(T )

b∗ν

)
≤

√
2, and exp

(
Cb∗ ν

( ν

b∗ν

) 2
α T (Aα(T ))

2
α

)
≤ 2,

then we have (10.39) and (10.41).
So, if we choose T such that (10.37) is satisfied for some sufficiently small

constant η, then both (10.39) and the above conditions are satisfied with a
strict inequality. It is now easy to complete the proof by means of a bootstrap
argument similar to that of Corollary 10.4.

10.3.2 Existence of a Local Solution

The main steps of the proof of the existence are exactly the same as in the
critical case.

First Step: Friedrichs Approximation

Using the notation introduced on page 440, we aim to solve the following
system of ordinary differential equations:

(ÑSCn)
d

dt

(
a
u

)
=

(
Fn(a, u)
Gn(a, u)

)
,

(
a
u

)
|t=0

=
(

Ėn a0

0

)

with Fn(a, u) def= − Ėn div
(
(1 + a)u

)
, u

def= u + uL, and

Gn(a, u) def= Ėn

(
(1 + a)−1Au

)
− Ėn

(
u · ∇u

)
− Ėn

(
I(a) AuL

)
− Ėn ∇

(
G(a)

)
.
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Note that if 1 + a0 is bounded away from zero, then so is 1 + Ėn a0 for
sufficiently large n, hence the data are in Ωn, and it is not difficult to check
that the map

(a, u) �→
(
Fn(a, u), Gn(a, u)

)

is in C(R+ ×Ωn; (L̇2
n)d+1) and is locally Lipschitz with respect to the variable

(a, u). Hence, the system (ÑSCn) has a unique maximal solution (an, un) in
the space C1([0, T ∗

n [; Ωn).

Second Step: Uniform Estimates

We note that (an, un) satisfies
{

∂ta
n + Ėn

(
un · ∇an

)
+ Ėn

(
(1 + an) div un

)
= 0

∂tu
n − Ėn

(
(1 + an)−1Aun

)
+ Ėn

(
un · ∇un

)
+ ∇ Ėn

(
G(an)

)
= 0

with initial data an
|t=0 = Ėn a0 and un

|t=0 = 0, and where un def= un
L + un.

For the reasons already mentioned when treating the critical case on
page 441, the results of Corollary 10.14 remain true for the approximate solu-
tion (an, un). Therefore, T ∗

n may be bounded from below by any time T sat-
isfying (10.37), and the inequalities (10.38), (10.39) are satisfied by (an, un).
In particular, (an, un)n∈N is bounded in Eα

T .

Third Step: Time Derivatives

The following lemma will supply the compactness needed to pass to the limit
in (NSCn).

Lemma 10.15. Let an def
= an − Ėn a0. The sequence (an)n≥1 is then bounded

in
C([0, T ]; Ḃ

d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) ∩ C 1

2 ([0, T ]; Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ),

and the sequence (un)n≥1 is bounded in

C([0, T ]; Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ) ∩ C 1

2 ([0, T ]; Ḃ
d
2 −1
2,1 + Ḃ

d
2 −2+α
2,1 ).

Proof. To get the result for (an)n≥1, it suffices to check whether (∂ta
n)n≥1 is

bounded in L2([0, T ]; Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ). As

∂ta
n = − Ėn div

(
un(1 + an)

)
,

this is a mere consequence of the bounds from step 2 and of the product laws
in Besov spaces stated in Section 2.6.



10.3 Local Theory for Data Bounded Away from the Vacuum 459

As regards (un)n≥1, it suffices to prove that (∂tu
n)n≥1 is bounded in

L2([0, T ]; Ḃ
d
2 −1+β
2,1 + Ḃ

d
2 −2+β
2,1 ) for β ∈ {0, α}. This follows from the fact that

∂tu
n = − Ėn

(
un·∇un

)
+ Ėn

(
(1+an)−1Aun

)
− ∇ Ėn

(
G(an)

)
− Ėn

(
I(an)Aun

L

)
.

Indeed, as (un)n≥1 and (un)n≥1 are bounded in L2
T (Ḃ

d
2
2,1 ∩Ḃ

d
2 +α
2,1 )∩L∞

T (Ḃ
d
2 −1
2,1 ∩

Ḃ
d
2 −1+α
2,1 ) and (an)n≥1 is bounded in L∞

T (Ḃ
d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ), we deduce that the

first three terms on the right-hand side belong to L2
T (Ḃ

d
2 −2
2,1 ∩ Ḃ

d
2 −2+α
2,1 ) and

that the last one is in L∞
T (Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ), uniformly. 
�

Fourth Step: Compactness and Convergence

According to the previous lemma, the sequence (an)n≥1 is bounded in the

space C 1
2 ([0, T ]; Ḃ

d
2−1
2,1 ∩ Ḃ

d
2−1+α
2,1 ). By combining Proposition 2.93 and Theo-

rem 2.94 page 108, it is easy to check that for all φ ∈ D, the map u �→ φu is
compact from Ḃ

d
2 +α
2,1 ∩ Ḃ

d
2 −1+α
2,1 to B

d
2 −1+α
2,1 . Therefore, arguing as in the proof

of existence for Theorem 10.2, we deduce that there exists some function a
such that for all φ ∈ D, the sequence (φan)n≥1 converges (up to a subsequence

independent of φ) to φa in C 1
2 ([0, T ]; B

d
2 −1+α
2,1 ).

Likewise, since the map u �→ φu is compact from Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 to

B
d
2 −2+α
2,1 , there exists a vector field u such that (up to extraction), for all

φ ∈ D, the sequence (φun)n≥1 converges to φu in C 1
2 ([0, T ]; B

d
2 −2+α
2,1 ).

Next, the uniform bounds supplied by the second step and the Fatou
property together ensure that, in addition, 1 + a is positive and

(a, u) ∈ L̃∞
T (Ḃ

d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) ×

(
L̃∞

T (Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ) ∩ L1

T (Ḃ
d
2 +1
2,1 ∩ Ḃ

d
2 +1+α
2,1 )

)d

.

The proof is similar to that of the critical case and is thus left to the
reader. Interpolating with the above convergence results, we may get bet-
ter convergence results for (an, un) and pass to the limit in (ÑSCn). Defin-

ing (a, u) def= (a0 + a, uL + u), we thus get a solution (a, u) of (NSC) with
data (a0, u0). Using the equation and the product laws, we also have

(∂t + u · ∇)a ∈ L1
T (Ḃ

d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) and ∂tu ∈ L1

T (Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ).

Theorem 3.19 therefore guarantees that a ∈ C̃T (Ḃ
d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) and, obviously,

u ∈ C̃T (Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 +α−1
2,1 ).

Remark 10.16. Combining (10.13) with the properties of the heat semigroup
described in Lemma 2.4 yields a rather explicit lower bound on the lifespan
T ∗ of the solution. Indeed, using the fact that
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1 − e−νT22j

≤ (νT )
α
2 2jα,

we may find some constant c, depending only on d, b∗, b∗, α, λ, and μ, and
such that

T ∗ ≥ sup
{

T ∈
]
0,

c

(Aα
0 )

2
α + 1

[ /
(νT )

α
2 Uα

0 (T ) ≤ c

1 + (Aα
0 )

2
α + Uα

0 (T )

}
.

10.3.3 Uniqueness

Let (a1, u1) and (a2, u2) be two solutions in Eα
T of (NSC) with the same

data. We can assume, without loss of generality, that (a2, u2) is the solution
constructed in the previous subsection so that

1 + inf
(t,x)∈[0,T ]×Rd

a2(t, x) > 0.

We want to prove that (a2, u2) ≡ (a1, u1) on [0, T ] × R
d . For this, we shall

estimate (δa, δu) def= (a2 −a1, u2 −u1) with respect to a suitable norm, having
noted that
{

∂tδa + u2 · ∇δa + δF = 0

∂tδu + u2 · ∇δu + δu · ∇u1 − (1 + a2)−1Aδu = δG1 + δG2

(10.42)

with δF
def= δu · ∇a1 + δa div u2 + (1 + a1) div δu,

δG1
def=

(
I(a1) − I(a2)

)
Au1, δG2

def= ∇(G(a1) − G(a2)).

For the same reasons as in the critical case, the uniqueness is going to be
proven in a larger function space, namely,

Fα
T

def= C([0, T ]; Ḃ
d
2 −1+α
2,1 ) ×

(
C([0, T ]; Ḃ

d
2 −2+α
2,1 ) ∩ L1

T (Ḃ
d
2 +α
2,1 )

)d
.

Of course, we first have to establish that (δa, δu) belongs to Fα
T . For δa, this is

easy because, arguing as in Lemma 10.15, we get ai −a0 ∈ C 1
2 ([0, T ]; Ḃ

d
2 −1+α
2,1 ).

To deal with δu, we again introduce ui def= ui − uL, where uL is the solution
of (10.22). We obviously have ūi(0) = 0 and

∂tu
i = Aui − I(ai) Aui − ui · ∇ui − ∇

(
G(ai) − G(a0)

)
.

Since ai ∈ L∞
T (Ḃ

d
2 −1+α
2,1 ) and (ai, ui) ∈ Eα

T , the right-hand side belongs

to L2
T (Ḃ

d
2 −2+α
2,1 ). Hence, ui belongs to C([0, T ]; Ḃ

d
2 −2+α
2,1 ), and we can now

conclude that (δa, δu) ∈ Fα
T .
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Next, applying Theorem 3.14 to the first equation of (10.42), we get

‖δa‖
L∞

T̄
(Ḃ

d
2 −1+α

2,1 )
≤ exp

(
C‖u2‖

L1
T̄

(Ḃ
d
2 +1
2,1 )

)
‖δF ‖

L1
T̄

(Ḃ
d
2 −1+α

2,1 )
for all T̄ ∈ [0, T ].

Easy computations based on Theorems 2.47 and 2.52 yield

‖δF ‖
Ḃ

d
2 −1+α

2,1

≤ C‖δu‖
Ḃ

d
2
2,1

‖ ∇a1‖
Ḃ

d
2 −1+α

2,1

+‖div u2‖
Ḃ

d
2
2,1

‖δa‖
Ḃ

d
2 −1+α

2,1

+
(
1 + ‖a1‖

Ḃ
d
2
2,1

)
‖δu‖

Ḃ
d
2 +α

2,1

.

Hence, using Gronwall’s lemma and interpolation, we discover that there exists
some constant CT , independent of T̄ , such that

‖δa‖
L∞

T̄
(Ḃ

d
2−1+α

2,1 )
≤ CT

(
‖δu‖

L1
T̄

(Ḃ
d
2 +α

2,1 )
+ ‖δu‖

L∞
T̄

(Ḃ
d
2 −2+α

2,1 )

)
. (10.43)

Next, applying Proposition 10.12 to the second equation of (10.42) yields, for
some constant C depending only on d, λ, μ, and α,

‖δu‖
L∞

T̄
(Ḃ

d
2−2+α

2,1 )
+ ‖δu‖

L1
T̄

(Ḃ
d
2+α

2,1 )

≤ Ce

C
∫ T̄
0 (‖u1‖

Ḃ

d
2 +1
2,1

+‖u2‖
Ḃ

d
2 +1
2,1

+‖a2‖
2
α

Ḃ

d
2 +α

2,1

) dt 2∑
i=1

‖δGi‖
L1

T̄
(Ḃ

d
2 −2+α

2,1 )
.

Because Ḃ
d
2
2,1(R

d) ↪→ C(Rd), we have a1 ∈ C([0, T ]×R
d). Hence, for sufficiently

small T̄, a1 also satisfies (10.38). Therefore, applying Theorems 2.47, 2.52 and
Corollary 2.66 page 97 yields

‖δG1‖
L1

T̄
(Ḃ

d
2 −2+α

2,1 )
≤ C

(
1 + ‖a1‖

L∞
T̄

(Ḃ
d
2
2,1)

+ ‖a2‖
L∞

T̄
(Ḃ

d
2
2,1)

)

×‖δa‖
L∞

T̄
(Ḃ

d
2 −1+α

2,1 )
‖u1‖

L1
T̄

(Ḃ
d
2 +α+1
2,1 )

,

‖δG2‖
L1

T̄
(Ḃ

d
2 −2+α

2,1 )
≤ C T̄ (1+‖a1‖

L∞
T̄

(Ḃ
d
2
2,1)

+‖a2‖
L∞

T̄
(Ḃ

d
2
2,1)

)‖δa‖
L∞

T̄
(Ḃ

d
2 −1+α

2,1 )
.

Hence, for some constant CT independent of T̄, we have

‖δu‖
L∞

T̄
(Ḃ

d
2 −2+α

2,1 )
+ ‖δu‖

L1
T̄

(Ḃ
d
2 +α

2,1 )
≤ CT

(
T̄ + ‖u1‖

L1
T̄

(Ḃ
d
2
2,1)

)
‖δa‖

L∞
T̄

(Ḃ
d
2 −1+α

2,1 )
.

Note that the factor T̄ + ‖u1‖
L1

T̄
(Ḃ

d
2
2,1)

decays to 0 when T̄ goes to zero. Hence,

plugging the inequality (10.43) into the above inequality, we conclude that
(δa, δu) ≡ 0 on a small time interval [0, T̄ ]. The same connectivity arguments as
those used in the proof of uniqueness in the critical case then yield uniqueness
on the whole interval [0, T ]. This completes the proof of Theorem 10.11. 
�
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10.3.4 A Continuation Criterion

Proposition 10.17. Under the hypotheses of Theorem 10.11, assume that the
system (NSC) has a solution (a, u) on [0, T [ × R

d which belongs to Eα
T ′ for

all T ′ < T and satisfies

a ∈ L∞
T (Ḃ

d
2+α
2,1 ∩Ḃ

d
2
2,1), 1+ inf

(t,x)∈[0,T [×Rd
a(t, x) > 0,

∫ T

0

‖∇u‖L∞ dt < ∞.

There then exists some T ∗ > T such that (a, u) may be continued on [0, T ∗] ×
R

d to a solution of (NSC) which belongs to Eα
T ∗ .

Proof. Note that u satisfies

∂tu + u · ∇u − (1 + a)−1Au = f − ∇(G(a)), u|t=0 = u0.

Hence, applying Proposition 10.12, we get, for all β ∈ [0, α] and T ′ < T,

‖u‖
L̃∞

T ′ (Ḃ
d
2 −1+β

2,1 )
+ ν‖u‖

L1
T ′ (Ḃ

d
2 +1+β

2,1 )
≤ Ce

C
∫ T ′
0

(
‖ ∇u‖L∞ +‖a‖

2
α

Ḃ

d
2 +α

2,1

)
dt

×
(

‖u0‖
Ḃ

d
2−1+β

2,1

+ ‖f ‖
L1

T ′ (Ḃ
d
2−1+β

2,1 )
+

∫ T ′

0

‖a‖
Ḃ

d
2 +β

2,1

dt
)

for some constant C depending only on d, α, and the viscosity coefficients.
Hence, u is bounded in L̃∞

T (Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ). Replacing ‖Δ̇ju0‖L2 by

‖Δ̇ju‖L∞
T (L2), and ‖Δ̇jf ‖L1

T (L2) by (say) ‖Δ̇jf ‖L1
1+T (L2) in Remark 10.16, we

get some ε > 0 such that for any T ′ ∈ [0, T [, the system (NSC) with data
a(T ′), u(T ′), and f( · + T ′) has a solution on [0, ε]. Taking T ′ = T − ε/2
and using the fact that the solution (a, u) is unique on [0, T [, we thus get a
continuation of (a, u) beyond T. 
�

10.4 Global Existence for Small Data

Thus far, the gradient of the pressure has been considered as a lower order
source term in the a priori estimates. This rough analysis entails a linear
growth in time in the bounds for the solution, thus hindering the global closure
of the estimates and any attempt to get a global existence result.

In this section, we shall see that including the main order part of the
pressure term in the linearized equations (under the physically relevant as-
sumption that the pressure law is an increasing function of the density) leads
to a global existence statement in the same spirit as the theorem of Fujita
and Kato (see Theorem 5.6 page 209).
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10.4.1 Statement of the Results

For reasons which will become clear after our analysis of the linearized com-
pressible Navier–Stokes equation (see Section 10.4.2), we introduce the fol-
lowing family of hybrid Besov spaces with different indices of regularity for
low and high frequencies.

Definition 10.18. For α > 0, r ∈ [1, ∞], and s ∈ R, define

‖u‖B̃s,r
α

def
=

∑
j∈Z

2js max
{
α, 2−j

}1−2/r ‖Δ̇ju‖L2 .

Remark 10.19. We point out that here, the index r has nothing to do with
the third index of classical Besov spaces. Hybrid Besov spaces carry differ-
ent information for low and high frequencies, and the index r controls this
difference: The low frequencies have the Ḃ

s−1+ 2
r

2,1 regularity, while the high
frequencies belong to Ḃs

2,1. In particular,

1
2
(‖u‖Ḃs−1

2,1
+ α‖u‖Ḃs

2,1
) ≤ ‖u‖B̃s,∞

α
≤ ‖u‖Ḃs−1

2,1
+ α‖u‖Ḃs

2,1
,

1
2

min(1, α)‖u‖Ḃs
2,1+Ḃs+1

2,1
≤ ‖u‖B̃s,1

α
≤ min

(
1
α

‖u‖Ḃs
2,1

, ‖u‖Ḃs+1
2,1

)
·

Of course, we have B̃s,2
α = Ḃs

2,1.

We now define the space in which the solution is going to be constructed.
From now on, we agree that if I is an interval of R, and X is a Banach
space, then the notation Cb(I; X) designates the set of bounded and continuous
functions on I with values in X.

Definition 10.20. The space Es
α is the set of functions (b, v) in

(
L1(R+; B̃s,1

α ) ∩ Cb(R+; B̃s,∞
α )

)
×

(
L1(R+; Ḃs+1

2,1 ) ∩ Cb(R+; Ḃs−1
2,1 )

)d

endowed with the norm7

‖(b, v)‖Es
α

def
= ‖b‖L∞(B̃s,∞

α ) + ‖v‖L∞(Ḃs−1
2,1 ) + ν‖b‖L1(B̃s,1

α ) + ν‖v‖L1(Ḃs+1
2,1 ).

We denote by Es
T,α the space Es

α restricted to functions over [0, T ] × R
d .

We can now state our main global well-posedness result for small data with
critical regularity.
7 For notational simplicity, we omit the dependence on the viscosity coefficients.
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Theorem 10.21. Assume that ν > 0 and P ′(1) > 0. There exist two positive
constants, η and M, depending only on d and on the function G, such that if
a0 belongs to Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2
2,1, u0 belongs to Ḃ

d
2 −1
2,1 , f belongs to L1(R+; Ḃ

d
2 −1
2,1 ),

and

‖a0‖
Ḃ

d
2 −1
2,1

+ ν‖a0‖
Ḃ

d
2
2,1

+ ‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1(Ḃ

d
2 −1
2,1 )

≤ η νν/ν ,

then the system (NSC) has a unique global solution (a, u) in E
d
2
ν which sat-

isfies

‖(a, u)‖
E

d
2

ν

≤ M
(

‖a0‖
Ḃ

d
2 −1
2,1

+ ν‖a0‖
Ḃ

d
2
2,1

+ ‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1(Ḃ

d
2 −1
2,1 )

)
.

10.4.2 A Spectral Analysis of the Linearized Equation

In what follows, we shall assume (with no loss of generality) that P ′(1) = 1.
Let P (resp., P

⊥) be the L2 projector over divergence-free (resp., poten-
tial) vector fields. Applying P and P

⊥ to the momentum equation, the sys-
tem (NSC) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

∂ta + div P
⊥u = − div(u a)

∂tP
⊥u − νΔP

⊥u + ∇a = P
⊥
(
f − u · ∇u − I(a)Au + K(a)∇a

)

∂tPu − μΔPu = P

(
f − u · ∇u − I(a)Au

)
.

(10.44)

The function K is smooth, vanishes at 0, and may be explicitly computed in
terms of the function G.

On the one hand, up to nonlinear terms, the last equation reduces to the
standard heat equation, which is well understood. On the other hand, there
is a linear hyperbolic/parabolic coupling between the first two equations that
we have to investigate further.

Introducing the function υ
def= |D| −1 div u, the linear part of the first two

equations reduces to the 2 × 2 system
{

∂ta + |D|υ = F
∂tυ − νΔυ − |D|a = G.

(10.45)

According to Duhamel’s formula, the solution of (10.45) is of the form
(

a(t)
υ(t)

)
= eA(D)t

(
a0

υ0

)
+

∫ t

0

eA(D)(t−t′)

(
F (t′)
G(t′)

)
dt′, (10.46)

where A(D) stands for the matrix-valued pseudodifferential operator
(

0 −|D|
|D| −ν|D|2

)
.
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In the low-frequency regime ν|ξ| < 2, the eigenvalues of A(ξ) are

λ±(ξ) = − ν

2
|ξ|2

(
1 ± i

√
4

ν2|ξ|2 − 1

)
,

so a parabolic damping for low frequencies of a and υ is expected.

For high frequencies (i.e., ν|ξ| > 2), the eigenvalues are of the form

λ±(ξ) = − ν

2
|ξ|2

(
1 ±

√
1 − 4

ν2|ξ|2

)
,

so a parabolic mode and a damped mode coexist. More precisely, performing
the change of functions

υ̂−(ξ) =
ν|ξ|
2

(
1 +

√
1 − 4

ν2|ξ|2

)
â(ξ) − υ̂(ξ),

υ̂+(ξ) =
ν|ξ|
2

(
1 +

√
1 − 4

ν2|ξ|2

)
υ̂(ξ) − â(ξ),

we get
υ̂±(t, ξ) = eλ±(ξ)t υ̂±(0, ξ).

In the asymptotics |ξ| going to infinity, υ− (resp., υ+) tends to be collinear
with a (resp., u), and we have

λ−(ξ) ∼ −1/ν and λ+(ξ) ∼ −ν|ξ|2.

Hence, the mode υ− is damped, whereas υ+ has parabolic behavior.
In short, according to the above analysis, we may expect a parabolic

smoothing for the velocity u to (NSC), whereas a should be damped for
high frequencies and exhibit a parabolic behavior for low frequencies.

In fact, solving (10.45) explicitly yields the following estimates [which have
to be compared to those for the heat equation stated in (3.39) page 157].

Proposition 10.22. Let (a, υ) be a solution of (10.45) on [0, T ] × R
d . There

exists a constant C, depending only on d, such that for all r in [1, ∞] and s
in R, we have

‖a‖Lr
T (B̃s,r

ν ) + ‖υ‖
Lr

T (Ḃ
s−1+ 2

r
2,1 )

≤ C
(

‖a0‖B̃s,∞
ν

+ ‖υ0‖Ḃs−1
2,1

+ ‖F ‖L1
T (B̃s,∞

ν ) + ‖G‖L1
T (Ḃs−1

2,1 )

)
.

According to Remark 10.19, we have

‖ · ‖B̃s,∞
ν

≈ ‖ · ‖Ḃs−1
2,1

+ ν‖ · ‖Ḃs
2,1

and ‖ · ‖B̃s,2
ν

= ‖ · ‖Ḃs
2,1

(10.47)
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so that if a0 ∈ Ḃ
d
2
2,1 ∩ Ḃ

d
2 −1
2,1 , υ0 ∈ Ḃ

d
2 −1
2,1 , F ∈ L1([0, T ]; Ḃ

d
2
2,1 ∩ Ḃ

d
2 −1
2,1 ), and

G ∈ L1([0, T ]; Ḃ
d
2 −1
2,1 ), then the above proposition provides us with estimates

for a in L∞([0, T ]; Ḃ
d
2
2,1 ∩Ḃ

d
2 −1
2,1 ) and also in L2([0, T ]; Ḃ

d
2
2,1). The latter estimate

is the key to getting a global control on the term K(a)∇a.
At the nonlinear level, however, the above estimates cannot be used for

the compressible Navier–Stokes equation because no matter how smooth u is,
the convection term u · ∇a is one derivative less regular than a. Hence, we
first have to adapt the statement of Proposition 10.22 to the following, more
general, linear system:

{
∂ta + v · ∇a + div u = F

∂tu + v · ∇u − Au + ∇a = G.
(10.48)

10.4.3 A Priori Estimates for the Linearized Equation

For technical reasons, we shall instead consider a paralinearized version of
the system (10.48) and introduce a (small) parameter ε, the so-called Mach
number that will play an important role in the last section of this chapter.

Finally, then, the system we want to study in this section is of the form
⎧⎪⎨
⎪⎩

∂ta + div
(
Tva

)
+

div u

ε
= F

∂tu + Tv · ∇u − Au +
∇a

ε
= G

(LPHε)

with div
(
Tva

) def= ∂i

(
Tvia

)
and Tv · ∇u

def= Tvi∂iu.

Proposition 10.23. Let ε > 0, s ∈ R, 1 ≤ p, r < ∞, and (a, u) be a solution
of (LPHε). There then exists a constant C, depending only on d, p, r, and s,
and such that the following estimate holds:

‖a(t)‖B̃s,∞
εν

+ ‖u(t)‖Ḃs−1
2,1

+
∫ t

0

(
ν‖a‖B̃s,1

εν
+ ν‖u‖Ḃs+1

2,1

)
dt′ ≤ CeCV p,r

ε (t)

×
(

‖a0‖B̃s,∞
εν

+ ‖u0‖Ḃs−1
2,1

+
∫ t

0

e−CV p,r
ε (t′)

(
‖F ‖B̃s,∞

εν
+ ‖G‖Ḃs−1

2,1

)
dt′

)
,

where V p,r
ε (t)

def
=

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

(
ν1−p‖ ∇v‖p

Ḃ
2
p

−2
∞,∞

+ (ε2ν)r−1 ‖∇v‖r
L∞

)
dt′, if p > 1,

∫ t

0

(
‖∇v‖L∞ + (ε2ν)r−1 ‖ ∇v‖r

L∞

)
dt′, if p = 1.

Remark 10.24. Only the case where ε = 1 and p = r = 1 is of interest for
proving Theorem 10.21. The other cases will be needed in the last section of
this chapter when investigating the low Mach number limit for large data.
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Proof. Setting

ã(t, x) def= εa(ε2t, εx), ũ(t, x) def= εu(ε2t, εx),

F̃ (t, x) def= ε3F (ε2t, εx), G̃(t, x) def= ε3G(ε2t, εx)

reduces the study to the case ε = 1. It is left to the reader to demonstrate
that the change of variables has the desired effect on the norms involved in
the inequality we want to establish (this may be argued as in Proposition 2.18
page 64).

So, we assume that ε = 1. To avoid a tedious distinction between the cases
p > 1 and p = 1, it will be intended throughout that ‖∇u‖

Ḃ
2
p

−2
∞,∞

stands for

‖∇u‖L∞ if p = 1. We shall also denote by p′ the conjugate exponent of p. We

now find that (aj , uj)
def= (Δ̇ja, Δ̇ju) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂taj + div(vj aj) + div P
⊥uj = fj

∂tP
⊥uj + vj · ∇P

⊥uj − νΔP
⊥uj + ∇aj = g⊥

j

∂t P uj + vj · ∇ P uj − μΔ P uj = gj ,

(LPHj)

where vj
def= Ṡj−1v,

fj
def= Fj + div

(
vj aj − Δ̇jTva

)
with Fj

def= Δ̇jF,

g⊥
j

def= G⊥
j + vj · ∇Δ̇jP

⊥u − P
⊥Δ̇jTv · ∇u with G⊥

j
def= P

⊥Δ̇jG,

gj
def= Gj + vj · ∇Δ̇j P u − P Δ̇jTv · ∇u with Gj

def= P Δ̇jG.

First Step: The Incompressible Part

We first consider the equation for P uj , which is easier to handle. Taking the
L2 inner product of the last equation of (LPHj) with P uj and integrating by
parts, we get

1
2

d

dt
‖P uj ‖2

L2 + μ ‖ ∇ P uj ‖2
L2 =

1
2

∫
div vj

∣∣P uj

∣∣2 dx +
∫

gj · P uj dx.

The commutator in gj may be bounded according to Lemma 10.25 below. We
find that

1
2

d

dt
‖P uj ‖2

L2 + μ ‖ ∇ P uj ‖2
L2

≤ ‖P uj ‖L2

(
‖Gj ‖L2 + C

∑
|j′ −j|≤4

2
2
p′ j′

‖∇v‖
Ḃ

− 2
p′

∞,∞

‖uj′ ‖L2

)
.

Now, using the Young inequality
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2
2
p′ j′

‖∇v‖
Ḃ

− 2
p′

∞,∞

≤ 1
p

(
K1

ν

)p−1

‖ ∇v‖p

Ḃ
− 2

p′
∞,∞

+
ν

p′K1
22j′

and integrating in time, we get, for some universal constant κ > 0 and all
K1 > 0,

‖P uj(t)‖L2 + κμ22j

∫ t

0

‖P uj ‖L2 dt′ ≤ ‖P uj(0)‖L2 +
∫ t

0

‖Gj ‖L2 dt′

+C
∑

|j′−j|≤4

∫ t

0

(
ν

K1p′ 22j′
+ 1

p

(
K1
ν

)p−1

‖ ∇v‖p

Ḃ
− 2

p′
∞,∞

)
‖uj′ ‖L2 dt′. (10.49)

Second Step: The Compressible Part

We now want to establish a similar inequality for the “compressible” mode
(a, P⊥u). According to the analysis in the previous section, we must bound
the quantity 2j(s−1)kj with

kj =

{
‖aj ‖L2 +

∥∥P
⊥uj

∥∥
L2 , if ν2j ≤ 1,

ν ‖ ∇aj ‖L2 +
∥∥P

⊥uj

∥∥
L2 , if ν2j > 1.

Owing to the fact that the linear operator associated with (LPH) may not
be diagonalized in a basis independent of ξ, however, bounding kj cannot be
achieved by means of basic energy arguments. We could introduce a convenient
symmetrizer, whose definition depends on |ξ|. Here, though, we shall instead
consider the following quantity (for some suitable α > 0, to be chosen later):

Yj
def=

⎧⎪⎨
⎪⎩

√
‖aj ‖2

L2 + ‖P⊥uj ‖2
L2 + αν(∇aj |uj) , for j ≤ j0 − 1,√

‖ν∇aj ‖2
L2 + 2 ‖P⊥uj ‖2

L2 + 2(ν∇aj |uj) , for j ≥ j0,

where j0 is the unique integer such that

2 ≤ cν2j0 < 4, (10.50)

and c stands for a constant (e.g., c = 3
4 ) such that

c2j ‖Δ̇jz‖L2 ≤ ‖∇Δ̇jz‖L2 ≤ 2c−12j ‖Δ̇jz‖L2 . (10.51)

We point out that if α < c, then this choice ensures that kj ≈ Yj .

We first derive an a priori estimate for the low frequencies of (a, P⊥u).
Take the L2 inner product of the first equation of (LPHj) with aj and of the
second one with uj , integrate by parts, and add the two equalities together.
Using the fact that the contributions of the skew-symmetric first order terms
cancel out, we obtain
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1
2

d

dt

(
‖aj ‖2

L2+
∥∥P

⊥uj

∥∥2

L2

)
+ ν

∥∥∇P
⊥uj

∥∥2

L2

=
∫ (

fjaj + g⊥
j · P

⊥uj +
1
2
(

|P⊥uj |2 − a2
j

)
div vj

)
dx. (10.52)

In order to determine the low-frequency parabolic behavior of a, we now write
an equality involving the quantity (∇aj |uj). We have

d

dt
(∇aj |uj) −

∥∥∇P
⊥uj

∥∥2

L2 + ‖∇aj ‖2
L2 − ν(ΔP

⊥uj | ∇aj)

= (∇fj |uj) + (g⊥
j | ∇aj) +

∫
aj ∇vj : ∇uj dx. (10.53)

Now, if we assume that j < j0, then the term ν(ΔP
⊥uj | ∇aj) is of lower order

because, due to (10.50), (10.51), and Young’s inequality, we have

ν(ΔP
⊥uj | ∇aj) ≤ 1

2
‖ ∇aj ‖2

L2 +
ν2

2
‖Δ P

⊥uj ‖2
L2 ≤ 1

2
‖∇aj ‖2

L2 +
8
c4

‖∇P
⊥uj ‖2

L2 .

Hence, adding the equality (10.53) times α/2 to the equality (10.52) and using
Lemma 10.25, we find that if α < c, then

1
2

d

dt
Y 2

j +
αν

4
‖∇aj ‖2

L2 + ν
(
1 − α

2
− 4α

c4

)
‖ ∇P

⊥uj ‖2
L2

≤ CYj

(
‖Fj ‖L2 +

∥∥G⊥
j

∥∥
L2 +

∑
|j′−j|≤4

2j′ 2
p′ ‖∇v‖

Ḃ
− 2

p′
∞,∞

Xj′

)

with C depending only on d and p, and X2
j

def= ‖P uj ‖2
L2 + Y 2

j .

Take α = c4/(c4+8). From the previous inequality, Bernstein’s lemma, and
the fact that kj ≈ Yj , we then deduce that there exists a universal constant
κ such that

1
2

d

dt
Y 2

j + κν22jY 2
j ≤ CYj

(
‖Fj ‖L2 +

∥∥G⊥
j

∥∥
L2

+
∑

|j′−j|≤4

2j′ 2
p′ ‖∇v‖

Ḃ
− 2

p′
∞,∞

Xj′

)
. (10.54)

We now aim to bound Yj for j ≥ j0. For this, we may combine the three
equalities

1
2

d

dt
‖∇aj ‖2

L2 + (Δuj | ∇aj)

= (∇fj | ∇aj) +
∫

ajD
2aj : ∇vj dx − 1

2

∫
| ∇aj |2 div vj dx,
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1
2

d

dt

∥∥P
⊥uj

∥∥2

L2 +(∇aj |uj)+ν
∥∥∇P

⊥uj

∥∥2

L2 = (g⊥
j |P⊥uj)+

1
2

∫
| P

⊥uj |2 div vj dx,

d

dt

(
∇aj |uj) −

∥∥∇P
⊥uj

∥∥2

L2 + ‖ ∇aj ‖2
L2 − ν

(
ΔP

⊥uj | ∇aj

)

= (g⊥
j | ∇aj) + (∇fj |uj) −

∫
aj ∇vj : ∇uj dx

and get

1
2

d

dt
Y 2

j + ν ‖∇aj ‖2
L2 + ν

∥∥∇P
⊥uj

∥∥2

L2 + 2(∇aj |uj)

= ν2 (∇fj | ∇aj) + 2(P⊥uj |g⊥
j ) + ν(g⊥

j | ∇aj) + ν(∇fj |uj)

+
∫

ajD
2aj : ∇vj dx+

∫ (
|P⊥uj |2 − ν2

2
| ∇aj |2

)
div vj dx −

∫
aj ∇vj : ∇uj dx.

As (∇aj | P uj) = 0, we get, according to the definition of j0 and Bernstein’s
inequality, for all j ≥ j0,

2
∣∣(∇aj |uj)

∣∣ ≤ ν

2
‖ ∇aj ‖2

L2 + 2c−22−2j0ν−2
(
ν
∥∥∇P

⊥uj

∥∥2

L2

)

≤ ν

2
‖ ∇aj ‖2

L2 +
ν

2

∥∥∇P
⊥uj

∥∥2

L2 .

Next, we note that for j ≥ j0, we also have

ν
∥∥∇P

⊥uj

∥∥2

L2 ≥ κν−1
∥∥P

⊥uj

∥∥2

L2 .

Therefore, for all j ≥ j0, by virtue of Lemma 10.25, we get

1
2

d

dt
Y 2

j +
κ

ν
Y 2

j ≤ CYj

(
ν ‖ ∇Fj ‖L2 +

∥∥G⊥
j

∥∥
L2 +‖ ∇v‖L∞

∑
|j′−j|≤4

Xj′

)
. (10.55)

Finally, inserting the following Young’s inequalities (with K2 > 0 and K3 > 0)

2
2
p′ j′

‖ ∇v‖
Ḃ

− 2
p′

∞,∞

≤ 1
p

(
K2

ν

)p−1

‖ ∇v‖p

Ḃ
− 2

p′
∞,∞

+
ν

p′K2
22j ,

‖ ∇v‖L∞ ≤ 1
r

(K3ν)r−1 ‖∇v‖r
L∞ +

1
r′νK3

,

into (10.54), (10.55) and performing a time integration, we get, for some uni-
versal positive constant κ and all positive K2 and K3,

Yj(t) + κν min(22j , ν−2)
∫ t

0

Yj dt′ ≤ Yj(0) + C

(
max(1, 2jν)

∫ t

0

‖Fj ‖L2 dt′

+
∫ t

0

∥∥G⊥
j

∥∥
L2 dt′ + ν max

(
1

K2
,

1
K3

)
min(22j , ν−2)

∑
|j′−j|≤4

∫ t

0

Xj′ dt′

+
∑

|j′−j|≤4

∫ t

0

[(
K2

ν

)p−1

‖ ∇v‖p

Ḃ
− 2

p′
∞,∞

+ (νK3)
r−1 ‖∇v‖r

L∞

]
Xj′ dt′

)
.
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Third Step: Global A Priori Estimates

Bounding ‖a(t)‖B̃s,∞
ν

+ ‖u(t)‖Ḃs−1
2,1

and exhibiting a time decay for a and the
low frequencies of u is our next task. To achieve this, we may add (10.49) to
the above inequality. We get

Xj(t) + κ

∫ t

0

(
ν min(22j , ν−2)Yj + μ22j ‖P uj ‖L2

)
dt′ ≤ Xj(0)

+C

∫ t

0

(
max(1, 2jν)‖Δ̇jF ‖L2 + ‖Δ̇jG‖L2

)
dt′

+Cν max
(

1
K2

,
1

K3

)
min(22j , ν−2)

∑
|j′ −j|≤4

∫ t

0

Xj′ dt′

+
Cν

K1

∑
|j′ −j|≤4

∫ t

0

22j′
‖P uj′ ‖L2 dt′

+C

∫ t

0

[((
K1

ν

)p−1

+
(

K2

ν

)p−1
)

‖ ∇v‖p

Ḃ
− 2

p′
∞,∞

+ (νK3)
r−1 ‖∇v‖r

L∞

]
Xj′ dt′.

Let u� def=
∑

j≤j0
Δ̇ju. Multiply both sides of the above inequality by 2j(s−1)

and sum over Z . Using the fact that Xj ≈ ‖uj ‖L2 + max(1, ν2j) ‖aj ‖L2 and
choosing K1, K2, and K3 to be sufficiently large, we infer that there exists
some constant C, depending only on s, p, r, and d, such that

‖a(t)‖B̃s,∞
ν

+‖u(t)‖Ḃs−1
2,1

+ν

∫ t

0

‖a‖B̃s,1
ν

dt′ +ν

∫ t

0

‖u�‖Ḃs+1
2,1

dt′

≤ C

(
‖a0‖B̃s,∞

ν
+‖u0‖Ḃs−1

2,1
+
∫ t

0

(
‖F ‖B̃s,∞

ν
+‖G‖Ḃs−1

2,1

)
dt′

+
∫ t

0

(V p,r
1 )′(t′)

(
‖a‖B̃s,∞

ν
+‖u‖Ḃs−1

2,1

)
dt′

)
.

Thanks to Gronwall’s inequality, we conclude that

‖a(t)‖B̃s,∞
ν

+ ‖u(t)‖Ḃs−1
2,1

+ ν

∫ t

0

‖a‖B̃s,1
ν

dt′ +ν

∫ t

0

‖u�‖Ḃs+1
2,1

dt′ ≤ CeCV p,r
1 (t)

×
(

‖a0‖B̃s,∞
ν

+ ‖u0‖Ḃs−1
2,1

+
∫ t

0

e−CV p,r
1 (t′)

(
‖F ‖B̃s,∞

ν
+ ‖G‖Ḃs−1

2,1

)
dt′

)
. (10.56)

Fourth Step: The Parabolic Behavior of u

To complete the proof of Proposition 10.23, we still have to determine the
parabolic gain of regularity for the high-frequency part of u. This is the aim
of the present step.



472 10 The Compressible Navier–Stokes System

Applying Δ̇j to the second equation of (LPH1) yields

∂tuj + vj · ∇uj − Auj + ∇aj = Gj +
(
vj · ∇uj − Δ̇j

(
Tv · ∇u

))
.

Taking the L2 inner product with uj , we easily get

1
2

d

dt
‖uj ‖2

L2 − 1
2

∫
|uj |2 div vj dx + μ ‖ ∇uj ‖2

L2 + (λ + μ) ‖div uj ‖2
L2

=
∫ (

Gj − ∇aj

)
· uj dx +

∫ (
vj · ∇uj − Δ̇j

(
Tv · ∇u

))
· uj dx.

The last integral may be bounded, thanks to Lemma 10.25. After a few cal-
culations, we get, for all positive K,

‖uj(t)‖L2 + κν22j

∫ t

0

‖uj ‖L2 dt′ ≤ ‖uj(0)‖L2

+
∫ t

0

(
‖Gj ‖L2 + c−12j ‖aj ‖L2

)
dt′ +

Cν

p′K

∑
|j′ −j|≤4

22j′
∫ t

0

‖uj′ ‖L2 dt′

+
1
p

(
K

Cν

)p−1 ∑
|j′ −j|≤4

∫ t

0

‖∇v‖p

Ḃ
− 2

p′
∞,∞

‖uj′ ‖L2 dt′.

We may now multiply both sides of the above inequality by 2j(s−1) and sum
over j ≥ j0. Choosing K to be suitably large, we eventually get

‖uh(t)‖Ḃs−1
2,1

+ ν

∫ t

0

‖uh‖Ḃs+1
2,1

dt′ ≤ C‖uh(0)‖Ḃs−1
2,1

+
∫ t

0

ν1−p‖ ∇u‖p

Ḃ
− 2

p′
∞,∞

‖u‖Ḃs−1
2,1

dt′ +
∫ t

0

(
‖ah‖Ḃs

2,1
+‖Gh‖Ḃs−1

2,1

)
dt′

with uh =
∑

j≥j0
Δ̇ju, ah =

∑
j≥j0

Δ̇ja, and Gh =
∑

j≥j0
Δ̇jG.

Finally, using the fact that ‖ah‖Ḃs
2,1

≤ Cν‖a‖B̃s,1
ν

and plugging (10.56)
into the above inequality completes the proof of the proposition. 
�

Lemma 10.25. Let m ∈ R and α ≥ 0. Let A(D) be a smooth homogeneous
multiplier of degree m, in the sense of Proposition 2.30. There exists a constant
C, depending only on α, m, A, and d, such that for all p ∈ [1, ∞] the following
inequality holds true:

∥∥∥A(D)Δ̇jTab−Ṡj−1a Δ̇jA(D)b
∥∥∥

Lp

≤ C2j(m+α−1)

( ∑
|j′−j|≤4

‖Δ̇j′ b‖Lp

)
×

{
‖∇a‖L∞ , if α = 0,

‖∇a‖Ḃ−α
∞,∞

, if α > 0.
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Proof. This is based on the following relation, the proof of which is similar to
that of the equality (4.17):

A(D)Δ̇jTab − Ṡj−1aΔ̇jA(D)b

=
∑

|j′ −j|≤4

(
A(D)Δ̇j

((
Ṡj′ −1 − Ṡj−1

)
a Δ̇j′ b

)
+

[
Δ̇jA(D), Ṡj−1a

]
Δ̇j′ b

)
.

By taking advantage of Bernstein’s inequality and Lemma 2.97 page 110 to
bound the last commutator, we get, from the above formula, that∥∥∥A(D)Δ̇jTab − Ṡj−1aΔ̇jA(D)b

∥∥∥
Lp

≤ C2j(m−1)
∑

j−4≤j′,j′ ′ ≤j+4

(
‖ ∇Δ̇j′ ′ a‖L∞ + ‖∇Ṡj−1a‖L∞

)
‖Δ̇j′ b‖Lp ,

which obviously entails the desired inequality. 
�

10.4.4 Proof of Global Existence

We first note that if η has been chosen to be sufficiently small in the statement
of Theorem 10.21, then Theorem 10.2 supplies a local solution (a, u) with

a ∈ C̃T (Ḃ
d
2
2,1) and u ∈ C̃T (Ḃ

d
2 −1
2,1 ) ∩ L1

T (Ḃ
d
2 +1
2,1 ).

As we have assumed, in addition, that a0 ∈ Ḃ
d
2 −1
2,1 , we easily deduce that a is

also in C([0, T ]; Ḃ
d
2 −1
2,1 ) (use Theorem 3.19). So, finally, we have (a, u) ∈ E

d
2
T,ν

for some positive T.
Let T ∗ be the lifespan of the solution (a, u). We want to show that T ∗ = ∞.

For this, we shall use Proposition 10.23 and the fact that (a, u) verifies{
∂ta + div Tua + div u = − div T ′

au

∂tu + Tu · ∇u − Au + ∇a = K(a)∇a −
∑

j T ′
∂juuj − I(a)Au + f

for some smooth function K vanishing at 0.

We now introduce the notation

X(t) def= ‖a(t)‖
B̃

d
2 ,∞

ν

+ ‖u(t)‖
Ḃ

d
2 −1
2,1

+
∫ t

0

(
ν‖a‖

B̃
d
2 ,1

ν

+ ν‖u‖
Ḃ

d
2 +1
2,1

)
dt′

X0(t)
def= ‖a0‖

B̃
d
2 ,∞

ν

+ ‖u0‖
Ḃ

d
2 −1
2,1

+
∫ t

0

‖f ‖
Ḃ

d
2 −1
2,1

dt′.

Applying Proposition 10.23 with ε = 1 and p = r = 1 yields

X(t) ≤ CeC
∫ t
0 ‖∇u‖L∞ dt′

(
X0(t) +

∫ t

0

(
‖div T ′

au‖
B̃

d
2 ,∞

ν

+‖K(a)∇a‖
Ḃ

d
2 −1
2,1

+
∑

j

‖T ′
∂juuj ‖

Ḃ
d
2 −1
2,1

+ ‖I(a)Au‖
Ḃ

d
2 −1
2,1

)
dt′

)
. (10.57)
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Remark 10.19, combined with the standard product laws for the remainder
and the paraproduct (see Chapter 2), now yields

‖div T ′
au‖

B̃
d
2 ,∞

ν

≤ C‖a‖
B̃

d
2 ,∞
ν

‖u‖
Ḃ

d
2 +1
2,1

. (10.58)

Next, assuming that
‖a‖

L̃∞
T (Ḃ

d
2
2,1)

≤ ην/ν, (10.59)

where η stands for the constant appearing in Proposition 10.10, we get the
following inequalities:

‖K(a)∇a‖
Ḃ

d
2 −1
2,1

≤ C ‖a‖2

Ḃ
d
2
2,1

,

‖T ′
∂juuj ‖

Ḃ
d
2 −1
2,1

≤ C ‖u‖
Ḃ

d
2 −1
2,1

‖u‖
Ḃ

d
2 +1
2,1

,

‖I(a) Au‖
Ḃ

d
2 −1
2,1

≤ C ν−1ν‖a‖
B̃

d
2 ,∞

ν

‖u‖
Ḃ

d
2 +1
2,1

.

By making use of interpolation, we see that
∫ t

0

‖a‖2

Ḃ
d
2
2,1

dt′ ≤ ‖a‖
L∞

t (B̃
d
2 ,∞

ν )
‖a‖

L1
t (B̃

d
2 ,1

ν )
.

Hence, inserting the above inequalities into (10.57), we get

X(t) ≤ C
(
X0(t) +

ν

νν
X2(t)

)
exp

(
C

∫ t

0

‖∇u(t′)‖L∞ dt′
)
.

Now, if we assume, in addition, that

C

∫ T

0

‖ ∇u(t)‖L∞ dt ≤ log 2, (10.60)

then we get

X(t) ≤ 4CX0(t) whenever 4CνX(t) ≤ νν.

Because we have Ḃ
d
2
2,1 ↪→ L∞, a standard bootstrap argument ensures that

the conditions (10.59), (10.60), and X(T ∗) ≤ 4CX0(T ∗) are satisfied, provided
that

X0(∞) ≤ cνν/ν

for some sufficiently small constant c.
Applying the continuation criterion stated in Proposition 10.10 completes

the proof of global existence. 
�



10.5 The Incompressible Limit 475

10.5 The Incompressible Limit

It is common sense that slightly compressible flows should not differ much from
incompressible flows. In fact, the incompressible Navier–Stokes equations

(NSI)

⎧⎨
⎩

∂tv + v · ∇v − μΔv + ∇Π = g
div v = 0
v|t=0 = v0

are often considered to be relevant for describing compressible barotropic flu-
ids in the low Mach number regime.

This may be justified formally by rescaling the time variable by tε = εt
(where ε denotes the Mach number) and performing the change of unknown
(ρ, u)(t, x) = (ρε, εuε)(tε, x). The system for (ρε, uε) is of the form

⎧⎨
⎩

∂tρ
ε + div ρεuε = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε) − μΔuε − (λ+μ)∇ div uε +
∇P ε

ε2
= fε,

where P ε def= P (ρε) stands for the pressure.
At the formal level, it is clear that if (ρε, uε) tends to some function (ρ, v),

then we must have ∇P ε → 0 when ε goes to 0. Hence, if P ′ does not vanish,
the limit density has to be a constant. Now, passing to the limit in the mass
equation, we discover that v is divergence-free. Returning to the momentum
equation, we can now conclude that v must satisfy (NSI) for some suitable
data v0 and g.

We aim to rigorously justify the above heuristic. If we assume that the data
are well prepared (i.e., “almost incompressible”), then performing appropriate
asymptotic expansions yields the result. In this section, we focus on the case of
ill prepared data so that acoustic waves have to be considered. More precisely,

we assume that the data (ρε
0

def= 1+εbε, uε
0, f

ε) are bounded and that (uε
0, P fε)

tends to some (v0, g) in a sense which will be made clear later.

10.5.1 Main Results

Writing ρε = 1 + εbε, it can be seen that (bε, uε) satisfies

(NSCε)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tb
ε +

div uε

ε
= − div(bεuε)

∂tu
ε + uε · ∇uε − Auε

1 + εbε
+

P ′(1 + εbε)
1 + εbε

∇bε

ε
= fε

(bε, uε)|t=0 = (bε
0, u

ε
0).

The main difficulty that is encountered when studying the asymptotics
for ε going to 0 is that we have to face the propagation of acoustic waves
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with the speed ε−1, a phenomenon that does not occur in the case of “well
prepared” data. Nevertheless, in this section we prove that satisfactory results
may be obtained for quite general data. More precisely, we shall get two types
of results concerning the low Mach number limit:

– A global-in-time result for small data with critical regularity.
– A local-in-time result for large data with some extra regularity.

Before stating our first result, we introduce the following function space:

F s def= Cb(R+; Ḃs−1
2,1 ) ∩ L1(R+; Ḃs+1

2,1 ). (10.61)

We denote by F s
T the set of functions of F s restricted to [0, T ].

Theorem 10.26. There exist two positive constants, η and M (depending
only on the dimension d and the function G), such that if

‖b0‖
B̃

d
2 ,∞

εν

+ ‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1(Ḃ

d
2 −1
2,1 )

≤ η νν/ν, (10.62)

then the system (NSCε) with data (b0, u0, f) and the system (NSI) with
data (Pu0, Pf) have respective unique global solutions (bε, uε) and v in the

spaces E
d
2
εν and F

d
2 , respectively, and

‖(bε, uε)‖
E

d
2

εν

≤ M
(

‖b0‖
B̃

d
2 ,∞

εν

+ ‖u0‖
Ḃ

d
2 −1
2,1

+ ‖f ‖
L1(Ḃ

d
2 −1
2,1 )

)
,

‖v‖
F

d
2

≤ M
(

‖ Pu0‖
Ḃ

d
2 −1
2,1

+ ‖ Pf ‖
L1(Ḃ

d
2 −1
2,1 )

)
.

Moreover, there exists a Banach space E ⊂ S ′(Rd) and an exponent p ∈ [2, ∞[
(both depending on the dimension d) such that P uε tends to v, and (bε, P⊥uε)
tends to 0 in Lp(R+; E).

A more accurate statement for slightly more general data will be given in the
forthcoming Theorem 10.29. There, a rate of convergence involving explicit
norms will be obtained.

We now give a (simplified) statement concerning the case of large data
with more regularity.

Theorem 10.27. Assume that b0 ∈ Ḃ
d
2 −1
2,1 ∩Ḃ

d
2 +α
2,1 , u0 ∈ Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α
2,1 , and

f ∈ L1
loc(R

+; Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ) for some sufficiently small positive α. Suppose

that the incompressible system (NSI) with initial datum Pu0 and external

force Pf has a solution v ∈ F
d
2

T0
∩ F

d
2 +α

T0
on the time interval [0, T0[ for some

finite or infinite T0.
Then, for all sufficiently small ε > 0, the system (NSCε) has a unique

solution (bε, uε) in E
d
2
εν,T0

∩E
d
2 +α

εν,T0
(with bounds independent of ε). In addition,

P uε tends to v in F
d
2

T0
∩ F

d
2 +α

T0
, and there exist an exponent p ∈ [2, ∞[ and a

Banach space E such that (bε, P⊥uε) tends to 0 in Lp(R+; E).
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Remark 10.28. Here, the exponents p and function space E may also be de-
termined explicitly. In addition, an upper bound may be given for the rate of
convergence. For more details, the reader is referred to Theorem 10.31.

We also point out that in the case d = 2, the above statement implies
that the solution of (NSCε) is globally defined for all sufficiently small ε.
This is a simple consequence of the fact that the corresponding solution of
the two-dimensional Navier–Stokes equations is global.

10.5.2 The Case of Small Data with Critical Regularity

We now explain the basic ideas of the proof of Theorem 10.26. First, an
appropriate change of variables enables us to apply Theorem 10.21. Under the
smallness assumption (10.62), we get a global solution (bε, uε) with uniform

bounds in E
d
2
εν . The existence of a global solution for the limit system (NSI)

follows from classical arguments, similar to those in Chapter 5, and will thus
be omitted.

While, up to this point, our method also works in the periodic setting, our
proof of strong convergence is specific to R

d. In effect, it relies on the dispersive
properties of the acoustic wave operator in the whole space. To make our
discussion more accurate, we resume the spectral analysis of Section 10.4.2.
The linear system we now have to deal with is

⎧⎪⎨
⎪⎩

∂tb +
div u

ε
= f

∂tu − Au +
∇b

ε
= g.

(10.63)

As in the case ε = 1, the incompressible part of the velocity satisfies an ordi-

nary heat equation with constant diffusion μ. As for (b, υ def= |D| −1 div P
⊥u),

we have

d

dt

(
b
υ

)
=

(
F
G

)
+ Aε(D)

(
b
υ

)
with Aε(D) def=

(
0 −ε−1|D|

ε−1|D| −ν|D|2
)

.

The low-frequency regime corresponds to those ξ’s which satisfy νε|ξ| < 2.
The corresponding eigenvalues are

λ±
ε (ξ) = − ν|ξ|2

2

(
1 ± i

√
4

ε2ν2|ξ|2 − 1

)

so that in the limit where νε|ξ| goes to 0, we expect the system to behave like
the linear operator

d

dt
− ν

2
Δ ± i

ε
|D|.

In other words, the low frequencies of (b, υ) behave as if they were solutions
to a heat equation plus a half-wave equation with propagation speed ε−1.
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In the high-frequency regime νε|ξ| > 2, we have

λ±
ε (ξ) = − ν|ξ|2

2

(
1 ±

√
1 − 4

ε2ν2|ξ|2

)
,

which means that a parabolic mode and a damped mode coexist.
In the analysis which has been presented thus far for the case ε = 1, we

have made extensive use of the parabolic properties of the system but have
not taken advantage of its dispersive properties in low frequencies. In effect,
using an L2 approach precludes us from using the skew-symmetry of the first
order terms. It turns out that in the “whole space” case we are interested
in, the proof of convergence for ε going to 0 is intimately entangled with the
dispersive properties of the system (10.63) (see Proposition 10.30 below).

We now give the full statement of our convergence result for small data.

Theorem 10.29. There exist two positive constants, η and M, depending only
on d and G, such that if

Cεν
0

def
= ‖bε

0‖
Ḃ

d
2−1
2,1

+εν‖bε
0‖

Ḃ
d
2
2,1

+‖uε
0‖

Ḃ
d
2−1
2,1

+‖fε‖
L1(Ḃ

d
2−1
2,1 )

≤ ηνν/ν,

C0
def
= ‖v0‖

Ḃ
d
2−1
2,1

+‖g‖
L1(Ḃ

d
2−1
2,1 )

≤ ημ with div v0 = div g = 0,
(10.64)

then the following results hold:

(i) Existence:

(a) The system (NSCε) has a unique global solution (bε, uε) in E
d
2
εν such

that
‖(bε, uε)‖

E
d
2

εν

≤ MCεν
0 .

(b) The incompressible Navier–Stokes equations (NSI) with data v0 and g

have a unique solution v in F
d
2 such that

μ‖v‖
L1(Ḃ

d
2+1
2,1 )

+ ‖v‖
L∞(Ḃ

d
2−1
2,1 )

≤ MC0.

(ii) Convergence: For any α ∈ ]0, 1/2] if d ≥ 4, α ∈ ]0, 1/2[ if d = 3, and
α ∈ ]0, 1/6] if d = 2, P uε tends to v in C(R+; Ḃ−1−α

∞,1 ) when ε goes to 0.
Moreover:
(a) Case d ≥ 4 : For all p ∈ [pd, ∞] with pd

def
= 2(d−1)/(d−3), we have

‖ P
⊥ uε‖

L̃2(Ḃ
d
p

−1
2

p,1 )
+ ‖bε‖

L̃2(Ḃ
d
p

−1
2

p,1 )
≤ M(1 + ν/ν)Cεν

0 ε
1
2 ,

‖ P uε −v‖
L1(Ḃ

d
p
+1

2
p,1 )

+ ‖ P uε −v‖
L∞(Ḃ

d
p

−3
2

p,1 )

≤ M
(
Cεν

0 ε
1
2 + ‖P uε

0 −v0‖
Ḃ

d
p

−3
2

p,1

+ ‖ P fε −g‖
L1(Ḃ

d
p

−3
2

p,1 )

)
.



10.5 The Incompressible Limit 479

(b) Case d = 3: For all p ∈ [2, ∞[, we have

‖ P
⊥ uε‖

L̃
2p
p−2 (Ḃ

2
p

−1
2

p,1 )
+ ‖bε‖

L̃
2p
p−2 (Ḃ

2
p

−1
2

p,1 )
≤ M(1 + ν/ν)Cεν

0 ε
1
2−1

p ,

‖ P uε −v‖
L1(Ḃ

4
p
+1

2
p,1 )

+ ‖ P uε −v‖
L∞(Ḃ

4
p

−3
2

p,1 )

≤ M
(
Cεν

0 ε
1
2−1

p + ‖P uε
0 −v0‖

Ḃ
4
p

−3
2

p,1

+ ‖ P fε −g‖
L1(Ḃ

4
p

−3
2

p,1 )

)
.

(c) Case d = 2: For all p ∈ [2, 6], we have

‖ P
⊥ uε‖

L̃
4p

p−2 (Ḃ
3
2p

−3
4

p,1 )
+ ‖bε‖

L̃
4p

p−2 (Ḃ
3
2p

−3
4

p,1 )
≤ M(1 + ν/ν)Cεν

0 ε
1
4− 1

2p ,

‖ P uε −v‖
L1(Ḃ

5
2p

+3
4

p,1 )
+ ‖ P uε −v‖

L∞(Ḃ
5
2p

−5
4

p,1 )

≤ M
(
Cεν

0 ε
1
4− 1

2p + ‖P uε
0 −v0‖

Ḃ
5
2p

−5
4

p,1

+ ‖ P fε −g‖
L1(Ḃ

5
2p

−5
4

p,1 )

)
.

Proof. We shall proceed as follows:

– First, we prove that the system (NSCε) has a unique global solution which
satisfies uniform estimates.

– Second, we combine those estimates with the dispersive properties of (10.63)
to prove that (bε, P⊥uε) converges to zero in some suitable function space.

– Third, we use the fact that Puε − v satisfies a heat equation with source
terms which are small because they depend, at least linearly, on (bε, P⊥ uε).
This yields Puε → v in some function space.

Step 1. Proof of Global Existence with Uniform Estimates

Making the changes of function

cε(t, x) def= εbε(ε2t, εx), vε(t, x) def= εuε(ε2t, εx), and hε(t, x) def= ε3fε(ε2t, εx),

we note that (bε, uε) solves (NSCε) if and only if (cε, vε) solves (NSC) with
rescaled data εbε

0(ε·), εuε
0(ε·), and hε. Hence, Theorem 10.21 ensures global

existence: There exist two positive constants, η and M, depending only on d

and G, and such that (NSC) has a solution (cε, vε) in E
d
2
ν whenever

‖εbε
0(ε·)‖

B̃
d
2 ,∞

ν

+ ‖εuε
0(ε·)‖

Ḃ
d
2 −1
2,1

+ ‖hε‖
L1(Ḃ

d
2 −1
2,1 )

≤ ηνν/ν.

Furthermore,

‖(cε, vε)‖
E

d
2

ν

≤ M

(
‖εbε

0(ε·)‖
B̃

d
2 ,∞

ν

+ ‖εuε
0(ε·)‖

Ḃ
d
2 −1
2,1

+ ‖hε‖
L1(Ḃ

d
2 −1
2,1 )

)
.

Now, arguing as in Proposition 2.18 page 64, we may check that
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‖(cε, vε)‖
E

d
2

ν

≈ ‖(bε, uε)‖
E

d
2

εν

and that

‖εbε
0(ε·)‖

B̃
d
2 ,∞

ν

+ ‖εuε
0(ε·)‖

Ḃ
d
2 −1
2,1

+ ‖hε‖
L1(Ḃ

d
2 −1
2,1 )

≈ ‖bε
0‖

B̃
d
2 ,∞

εν

+ ‖uε
0‖

Ḃ
d
2 −1
2,1

+ ‖fε‖
L1(Ḃ

d
2 −1
2,1 )

,

which yields the first part of Theorem 10.29.

Step 2. Convergence to Zero of the Compressible Modes

The proof relies on dispersive inequalities for the following (reduced) system
of acoustics:

(Wε)

⎧⎨
⎩

∂tb + ε−1|D|υ = F
∂tυ − ε−1|D|b = G
(b, υ)|t=0 = (b0, υ0).

Proposition 10.30. Let (b, υ) be a solution of (Wε). Then, for any s ∈ R

and positive T (possibly infinite), the following estimate holds:

‖(b, υ)‖
L̃r

T (Ḃ
s+d( 1

p
−1

2 )+ 1
r

p,1 )
≤ Cε

1
r ‖(b0, υ0)‖Ḃs

2,1
+ε1+1

r − 1
r̄′ ‖(F, G)‖

L̃r̄′
T (B

s+d( 1
p̄′ −1

2 )+ 1
r̄′

p̄′ ,1 )

with p ≥ 2,
2
r

≤ min(1, γ(p)), (r, p, d) �= (2, ∞, 3),

p̄ ≥ 2,
2
r̄

≤ min(1, γ(p̄)), (r̄, p̄, d) �= (2, ∞, 3),

where γ(q)
def
= (d − 1)

(
1
2

− 1
q

)
,

1
p̄

+
1
p̄′ = 1, and

1
r̄

+
1
r̄′ = 1.

Proof. Define Φ
def= t(c, υ) and H

def= t(F, G). Setting Ψ(t, x) = Φ(εt, x)
and H(t, x) = εH(εt, x), we easily check that Ψ solves (W1) with the ex-
ternal force H. Hence, the general case ε > 0 follows from the particular case
ε = 1. Let U(t) be the group associated with the system (W1). We have, in
Fourier variables,

F (U(t)Φ) (ξ) =
(

cos(|ξ|t) − sin(|ξ|t)
sin(|ξ|t) cos(|ξ|t)

)
F Φ(ξ).

Exactly as for the wave equation (see Proposition 8.15), we deduce that for
any function Φ ∈ L1(Rd; R2) with F Φ supported in the annulus C,

‖U(t)Φ‖L2 ≤ ‖Φ‖L2 ,

‖U(s)U�(t)Φ‖L∞ ≤ C (1 + |t − s|)− d−1
2 ‖Φ‖L1 .

Applying Theorem 8.18 page 349 yields Proposition 10.30 in the special case
where the spectrum of the data is supported in the annulus C.
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More generally, for all j ∈ Z, we have

2j(d( 1
p − 1

2 )+ 1
r )‖Δ̇jΦ‖Lr

T (Lp) ≤ C‖Δ̇jΦ0‖L2 + 2j
(
d
(

1
p̄′ − 1

2

)
+ 1

r̄′

)
‖Δ̇jH‖Lr̄′

T (Lp̄′ ).

This may be deduced from the case j = 0 (where the spectrum is supported
in the annulus C) after implementing a suitable change of variable. So, finally,
multiplying both sides of the above inequality by 2js and performing a sum-
mation over Z completes the proof. 
�

In order to prove the convergence to 0 for (bε, P⊥uε), we may use the fact that
{

∂tb
ε + ε−1 div P

⊥uε = F ε

∂tP
⊥uε + ε−1∇bε = Gε

(10.65)

with F ε def= − div(bεuε) and

Gε def= −P
⊥div

(
uε · ∇uε +

1
1+εbε

Auε +
K(εbε)∇bε

ε
+ fε

)
.

Obviously, the dispersive estimates stated in Proposition 10.30 are also true

for the system (10.65) since bε and υε def= |D| −1 div P
⊥uε satisfy (Wε) with

source terms F ε and |D| −1 div Gε, and |D| −1 div is a homogeneous multiplier
of degree 0. Hence, taking p = 2, r = ∞, and

– s = d/2−1 and r = 2, if d ≥ 4,
– 2 ≤ p < ∞ and r = 2p/(p−2), if d = 3,
– 2 ≤ p ≤ ∞ and r = 4p/(p−2), if d = 2,

we see that it is enough to prove that

‖(F ε, Gε)‖
L1(Ḃ

d
2 −1
2,1 )

≤ C(1 + ν/ν)Cεν
0 .

This inequality follows from the uniform estimates of step one. Indeed, com-
bining Hölder’s inequality with the usual product and composition laws in
Besov spaces yields

‖F ε‖
L1(Ḃ

d
2 −1
2,1 )

≤ C‖bε‖
L2(Ḃ

d
2
2,1)

‖uε‖
L2(Ḃ

d
2
2,1)

≤ CCεν
0 ,

‖uε · ∇uε‖
L1(Ḃ

d
2 −1
2,1 )

≤ C‖uε‖
L2(Ḃ

d
2
2,1)

‖ ∇uε‖
L2(Ḃ

d
2 −1
2,1 )

≤ CCεν
0 ,

‖ 1
1 + εbε

Auε‖
L1(Ḃ

d
2 −1
2,1 )

≤ C
(
1 + ε‖bε‖

L∞(Ḃ
d
2
2,1)

)
‖Auε‖

L1(Ḃ
d
2 −1
2,1 )

≤ C ν
(
1 + ν−1‖bε‖

L∞(B̃
d
2 ,∞

εν )

)
‖uε‖

L1(Ḃ
d
2 +1
2,1 )

≤ C νν−1Cεν
0

‖K(εbε)∇bε‖
L1(Ḃ

d
2 −1
2,1 )

≤ Cε‖bε‖
L2(Ḃ

d
2
2,1)

‖ ∇bε‖
L2(Ḃ

d
2 −1
2,1 )

≤ CεCεν
0 .
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Step 3. Convergence of the Incompressible Part

Let wε def= Puε − v. Applying Leray’s projector to the second equation of
(NSCε) and subtracting (NSI) from it yields the following equation for wε:

{
∂tw

ε − μΔwε = Hε + hε

wε
|t=0 = wε

0
(10.66)

with wε
0

def= P uε
0 − v0, hε def= P fε − g, and

Hε def= −P(wε·∇v)−P(uε·∇wε)−P(P⊥uε · ∇v)−P(uε · ∇P
⊥uε)−P (I(εbε)Auε) .

We will just treat the case d ≥ 4, which is easier to handle. Let

Yp
def= ‖wε‖

L1(Ḃ
d
p

+ 1
2

p,1 )
+ ‖wε‖

L∞(Ḃ
d
p

− 3
2

p,1 )
.

We claim that for all p ∈ [pd, ∞], we have

Yp ≤ C
(
Cεν

0 ε
1
2 + ‖wε

0‖
Ḃ

d
p

− 3
2

p,1

+ ‖hε‖
L1(Ḃ

d
p

− 3
2

p,1 )

)
. (10.67)

Indeed, by virtue of the inequality (3.39) page 157, we have

Yp ≤ C
(

‖wε
0‖

Ḃ
d
p

− 3
2

p,1

+ ‖hε‖
L1(Ḃ

d
p

− 3
2

p,1 )
+ ‖Hε‖

L1(Ḃ
d
p

− 3
2

p,1 )

)
. (10.68)

From Proposition 2.54, the previous step, and (10.64), we deduce that

‖P(wε · ∇v)‖
L1(Ḃ

d
p

− 3
2

p,1 )
≤ C ‖ ∇v‖

L2(Ḃ
d
2 −1
2,1 )

‖wε‖
L2(Ḃ

d
p

− 1
2

p,1 )

≤ C η‖wε‖
L2(Ḃ

d
p

− 1
2

p,1 )
,

‖P(uε · ∇wε)‖
L1(Ḃ

d
p

− 3
2

p,1 )
≤ C ‖uε‖

L2(Ḃ
d
2
2,1)

‖∇wε‖
L2(Ḃ

d
p

− 3
2

p,1 )

≤ C η‖wε‖
L2(Ḃ

d
p

− 1
2

p,1 )
,

‖P(P⊥uε · ∇v)‖
L1(Ḃ

d
p

− 3
2

p,1 )
≤ C ‖ ∇v‖

L2(Ḃ
d
2 −1
2,1 )

‖ P
⊥uε‖

L2(Ḃ
d
p

− 1
2

p,1 )

≤ C η2ε
1
2 ,

‖P(uε · ∇ P
⊥uε)‖

L1(Ḃ
d
p

− 3
2

p,1 )
≤ C ‖uε‖

L2(Ḃ
d
2
2,1)

‖∇ P
⊥uε‖

L2(Ḃ
d
p

− 3
2

2,1 )

≤ C η2ε
1
2 .

Note that all the above product estimates are justified since d/2 + d/p − 3/2
is always positive for any p ≤ ∞ when d ≥ 4. Thanks to the embedding

Ḃ
d
2 − 3

2
2,1 ↪→ Ḃ

d
p − 3

2
p,1 and the definition of hybrid Besov norms, we also have
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‖P (I(εbε)Auε) ‖
L1(Ḃ

d
p

− 3
2

p,1 )
≤ C ‖I(εbε)Auε‖

L1(Ḃ
d
2 − 3

2
2,1 )

≤ C ‖εb‖
L4(Ḃ

d
2
2,1)

‖Auε‖
L

4
3 (Ḃ

d
2 − 3

2
2,1 )

≤ C νε
1
2 ‖bε‖

L4(B̃
d
2 ,4

εν )
‖uε‖

L
4
3 (Ḃ

d
2 + 1

2
2,1 )

≤ C η2ε
1
2 .

Plugging all the above estimates into (10.68), we end up with

Yp ≤ C
(
η2ε

1
2 + ‖wε

0‖
Ḃ

d
p

− 3
2

p,1

+ ‖hε‖
L1(Ḃ

d
p

− 3
2

p,1 )
+ ηYp

)
,

so that we can conclude that (10.67) holds, provided that the constant η has
been chosen to be sufficiently small.

In dimension d = 2, 3, the dispersive properties given in Proposition 10.30
are not as good as in dimension d ≥ 4. Hence, we cannot get uniform esti-

mates for ε− 1
2 P

⊥uε in L2(R+; Ḃ
d
p − 1

2
p,1 ). However, we can interpolate the uni-

form estimates for uε in L1(R+; Ḃ
d
2 +1
2,1 ), given by step one, with the dispersive

inequalities proved in the second step. This still gives some decay in ε. The
reader is referred to [97] for more details. 
�

10.5.3 The Case of Large Data with More Regularity

In the case of large data, the problem of global existence in dimension d ≥ 3
for the incompressible Navier–Stokes system (NSI) [which is expected to be
the limit system for (NSCε)] is open. Therefore, there are few chances to get
a global result for the system (NSCε), which is more complicated.

In this subsection, we want to establish that the system (NSCε) with
suitably small ε has a strong solution on the time interval I (possibly infinite)
whenever the limit system (NSI) has a strong solution on I. This result is
of particular interest in dimension d = 2 since the limit system is globally
well-posed for any divergence-free data in L2.

Theorem 10.31. Let b0 ∈ Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 +α
2,1 , u0 ∈ Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 , and f ∈

L1
loc(R

+; Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 ) with α ∈ ]0, 1/2] if d ≥ 4, α ∈ ]0, 1/2[ if d = 3,

and α ∈ ]0, 1/6] if d = 2. Let T0 ∈ ]0, ∞]. Suppose that the incompressible
system (NSI) with initial datum Pu0 and external force Pf has a solution

v ∈ F
d
2

T0
∩ F

d
2 +α

T0
. Let V

def
= ‖v‖

F
d
2

T0
∩F

d
2+α

T0

and

X0
def
= ‖b0‖

Ḃ
d
2−1
2,1 ∩Ḃ

d
2+α

2,1

+‖P
⊥u0‖

Ḃ
d
2−1
2,1 ∩Ḃ

d
2−1+α

2,1

+‖P
⊥f ‖

L1
T0

(Ḃ
d
2−1
2,1 ∩Ḃ

d
2−1+α

2,1 )
.

There exist two positive constants, ε0 and C, depending only on d, α, λ, μ, P ,
V, and X0, and such that the following results hold true:
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(i) For all 0 < ε ≤ ε0, the system (NSCε) has a unique solution (bε, uε) in

E
d
2
εν,T0

∩ E
d
2 +α

εν,T0
such that

‖(bε, uε)‖
E

d
2

εν,T0
∩E

d
2 +α

εν,T0

≤ C.

(ii) The vector field P uε tends to v in F
d
2

T0
∩ F

d
2 +α

T0
and

‖P uε − v‖
F

d
2

T0
∩F

d
2 +α

T0

≤ Cε
2α

2+d+2α .

(iii) The couple (bε, P⊥uε) tends to 0, in the following sense:

‖(bε, P⊥uε)‖
L2

T (Ḃ
α− 1

2
∞,1 )

≤ Cε
1
2 , if d ≥ 4,

‖(bε, P⊥uε)‖
Lp

T (Ḃ
α−1+ 1

p
∞,1 )

≤ Cε
1
p , if d = 3 and p > 2,

‖(bε, P⊥uε)‖
L4

T (Ḃ
α− 3

4
∞,1 )

≤ Cε
1
4 , if d = 2.

Remark 10.32. For simplicity, we have assumed that the data do not depend
on ε. It goes without saying that more general data may be considered.

Proof. Unsurprisingly, owing to the fact that less dispersive inequalities are
available, the proof in dimension two or three is more technical. Here, to
simplify the presentation, we shall prove the theorem only in the case d ≥ 4.
The reader is referred to [97] for the cases d = 2, 3.

The existence of a solution of (NSCε) on a small time interval (which
may depend on ε) is ensured by Theorem 10.11, regardless of the size of the
data: The only assumption that we need is that 1+εb0 is bounded away from
zero. Since b0 ∈ Ḃ

d
2
2,1 and Ḃ

d
2
2,1 ↪→ L∞, this is certainly true for sufficiently

small ε. We therefore assume that we are given two times, T and T0 (possibly
infinite), such that 0 < T ≤ T0 and a solution (bε, uε) of (NSCε) belonging

to ET
def= E

d
2
εν,T ∩ E

d
2 +α

εν,T for some α ∈ ]0, 1/2] and satisfying ‖εbε‖L∞ ≤ 3/4.
We shall likewise assume that the corresponding incompressible solution v
is defined on [0, T0] if T0 < ∞ (on R

+ if T = ∞) and that it belongs to

F
d
2

T0
∩ F

d
2+α

T0
.

In the first step of the proof, we take advantage of Proposition 10.30 to
bound a suitable norm of (bε, P⊥uε) by the norm of (bε, uε) in ET times
some positive power of ε. In the second step, we derive a priori bounds
for ε−β(P uε − v) (for a suitable β > 0) in terms of ‖(bε, uε)‖ET

and ‖v‖FT
.

These bounds may be obtained by combining estimates for the nonstation-
ary Stokes equation with first order terms (see Proposition 10.5) and using
paradifferential calculus. The third step is devoted to proving uniform bounds
for ‖(bε, uε)‖ET

in terms of v and the initial data. The key to this step is
Proposition 10.23.
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At this stage, we may use a bootstrap argument (fourth step) to close
the estimates of the first three steps, and a continuity argument (last step)
completes the proof.

Throughout, we shall use the following notation:

Xβ(T ) def= ‖bε‖
L1

T (B̃
d
2 +β,1

εν )
+ ‖P

⊥uε‖
L1

T (Ḃ
d
2 +1+β

2,1 )

+‖bε‖
L∞

T (B̃
d
2 +β,∞

εν )
+ ‖P

⊥uε‖
L∞

T (Ḃ
d
2 −1+β

2,1 )
,

Vβ(T ) def= ‖v‖
L1

T (Ḃ
d
2 +1+β

2,1 )
+ ‖v‖

L∞
T (Ḃ

d
2 −1+β

2,1 )
,

Wβ(T ) def= ‖wε‖
L1

T (Ḃ
d
2 +1+β

2,1 )
+ ‖wε‖

L∞
T (Ḃ

d
2 −1+β

2,1 )
with wε def= Puε − v,

Yβ(T ) def= ‖bε‖
L2

T (Ḃ
β− 1

2
∞,1 )

+ ‖P
⊥uε‖

L2
T (Ḃ

β− 1
2

∞,1 )
.

We shall also use the notation Pβ(T ) = Vβ(T ) + Wβ(T ) and

X0
β

def= ‖b0‖
B̃

d
2 +β,∞

εν

+ ‖ P
⊥u0‖

Ḃ
d
2 −1+β

2,1

+ ‖P
⊥f ‖

L1
T0+1(Ḃ

d
2 −1+β

2,1 )
.

The argument T will sometimes be omitted, and β will always stand for 0
or α.

First Step: Dispersive Estimates for (bε, P
⊥uε)

Applying Proposition 10.30 to the system (10.65), we get, for d ≥ 4,

Yα ≤ Cε
1
2

(
‖(b0, P

⊥u0)‖
Ḃ

d
2 −1+α

2,1

+ ‖ P
⊥f ‖

L1
T (Ḃ

d
2 −1+α

2,1 )

+‖ div(bεuε)‖
L1

T (Ḃ
d
2 −1+α

2,1 )
+ ‖G‖

L1
T (Ḃ

d
2 −1+α

2,1 )

)
. (10.69)

From Corollary 2.54, Theorem 2.61, and (10.19), we easily deduce that

‖ div(bεuε)‖
L1

T (Ḃ
d
2 −1+α

2,1 )
≤ C

(
‖bε‖

L2
T (Ḃ

d
2
2,1)

‖uε‖
L2

T (Ḃ
d
2 +α

2,1 )

+‖uε‖
L2

T (Ḃ
d
2
2,1)

‖bε‖
L2

T (Ḃ
d
2 +α

2,1 )

)

≤ C
(
X0(Xα + Pα) + Xα(X0 + P0)

)
,

‖ P
⊥(uε · ∇uε) ‖

L1
T (Ḃ

d
2 −1+α

2,1 )
≤ ‖uε‖

L2
T (Ḃ

d
2
2,1)

‖∇uε‖
L2

T (Ḃ
d
2 −1+α

2,1 )

≤ C(X0 + P0)(Xα + Pα),

‖ P
⊥(I(bε)Auε) ‖

L1
T (Ḃ

d
2 −1+α

2,1 )
≤ Cε‖bε‖

L∞
T (Ḃ

d
2
2,1)

‖Auε‖
L1

T (Ḃ
d
2 −1+α

2,1 )

≤ CX0(Xα + Pα),
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‖K(εbε)∇bε‖
L1

T (Ḃ
d
2 −1+α

2,1 )
≤ C ‖εbε‖

L2
T (Ḃ

d
2
2,1)

‖∇bε‖
L2

T (Ḃ
d
2 −1+α

2,1 )

≤ C εX0Xα.

Plugging the above inequalities into (10.69), we conclude that

Yα ≤ Cε
1
2
(
X0

α + Xα + (X0 + P0)(Xα + Pα)
)
. (10.70)

Second Step: Estimates for wε

From the momentum equation of (NSCε) and (NSI), we get

∂tw
ε + P (Aε · ∇wε) + P (wε · ∇Aε) − μΔwε = PF ε

with Aε def= P
⊥uε + v and

F ε def= −
(
P

⊥uε · ∇v + v · ∇P
⊥uε + wε · ∇wε + I(εbε)Auε

)
.

Applying Proposition 10.5 with s = d/2 − 1 + β yields

Wβ ≤ CeC(V0+X0)‖F ε‖
L1

T (Ḃ
d
2 −1+β

2,1 )
. (10.71)

We now bound F ε. We readily have

‖wε · ∇wε‖
L1

T (Ḃ
d
2−1+β

2,1 )
≤ C‖wε‖

L2
T (Ḃ

d
2
2,1)

‖ ∇wε‖
L2

T (Ḃ
d
2−1+β

2,1 )
≤ CW0Wβ . (10.72)

Next, by interpolation and according to (10.19), we have

‖bε‖
Ḃ

d
2
2,1

≤ ‖bε‖α

Ḃ
d
2 +α−1
2,1

‖bε‖1−α

Ḃ
d
2 +α

2,1

≤ (εν)α−1‖bε‖
B̃

d
2 +α,∞

εν

. (10.73)

From this we deduce that

‖I(εbε)‖
L1

T (Ḃ
d
2 −1+β

2,1 )
≤ C ε‖bε‖

L∞
T (Ḃ

d
2
2,1)

‖ Auε‖
L1

T (Ḃ
d
2 −1+β

2,1 )

≤ C εα‖bε‖
L∞

T (B̃
d
2 +α,∞

εν )
‖uε‖

L1
T (Ḃ

d
2 +1+β

2,1 )

≤ C εαXα(Vβ + Wβ + Xβ). (10.74)

According to step one, P
⊥uε is small in L2([0, T ]; Ḃ0

∞,1). Indeed, using inter-
polation and embeddings, we have

‖P
⊥uε‖L2

T (Ḃ0
∞,1)

≤ ‖P
⊥uε‖2α

L2
T (Ḃ

α− 1
2

∞,1 )
‖P

⊥uε‖1−2α

L2
T (Ḃα

∞,1)

≤ Cεα

(
ε− 1

2 ‖P
⊥uε‖

L2
T (Ḃ

α− 1
2

∞,1 )

)2α

‖P
⊥uε‖1−2α

L2
T (Ḃ

d
2 +α

2,1 )

≤ Cεα(Xα + ε− 1
2 Yα). (10.75)
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A judicious use of paradifferential calculus will enable us to guarantee some
smallness for P

⊥uε · ∇v and v · ∇P
⊥uε. For P

⊥uε · ∇v, we may use the following
modified Bony decomposition for η ∈ ]0, 1[:

P
⊥uε · ∇v =

∑
j∈Z

Δ̇jP
⊥uε · Ṡj−1+[log2 η]∇v

︸ ︷︷ ︸
T1

+
∑
j∈Z

Ṡj+2−[log2 η]P
⊥uε · Δ̇j ∇v

︸ ︷︷ ︸
T2

.

Recall that for any k ∈ Z, we have

‖Ṡk ∇v‖L∞ ≤ C22k ‖ ∇v‖Ḃ−2
∞,1

.

Therefore,
∥∥∥Δ̇jP

⊥uε ·Ṡj−1+[log2 η]∇v
∥∥∥

L2
≤ C

∥∥∥Ṡj−1+[log2 η]∇v
∥∥∥

L∞

∥∥∥Δ̇jP
⊥uε

∥∥∥
L2

≤ Cη22−j( d
2+β−1)‖ ∇v‖Ḃ−2

∞,1

(
2j( d

2+β+1)
∥∥∥Δ̇jP

⊥uε
∥∥∥

L2

)
.

As the functions Δ̇jP
⊥uε · Ṡj−1+[log2 η]∇v are spectrally supported in dyadic

annuli 2jC(0, R1, R2) with R1 and R2 independent of η, Lemma 2.23 yields

‖T1‖
Ḃ

d
2 −1+β

2,1

≤ Cη2‖ ∇v‖
Ḃ

d
2 −2
2,1

‖P
⊥uε‖

B
d
2 +1+β

2,1

. (10.76)

Next, according to Proposition 2.10, we have, for all k ∈ Z,

Δ̇kT2 =
∑

j≥k−2+[log2 η]

Δ̇k

(
Ṡj+2−[log2 η] P

⊥uε · Δ̇j ∇v
)
.

Therefore,

2k( d
2+β−1)‖Δ̇kT2‖L2 ≤ C

∥∥P
⊥uε

∥∥
L∞

∑
j≥k−2+[log2 η]

2(k−j)( d
2+β−1) 2j( d

2+β−1)‖Δ̇j ∇v‖L2

≤ Cη1−β− d
2
∥∥P

⊥uε
∥∥

L∞ ‖ ∇v‖
Ḃ

d
2 +β−1
2,1

,

from which it follows that

‖T2‖
Ḃ

d
2 +β−1
2,1

≤ Cη1−β− d
2 ‖v‖

Ḃ
d
2 +β

2,1

∥∥P
⊥uε

∥∥
L∞ . (10.77)

From (10.76), (10.77), and Hölder’s inequality, we thus get

‖P
⊥uε · ∇v‖

L1
T (Ḃ

d
2 −1+β

2,1 )
≤ C

(
η2‖v‖

L∞
T (Ḃ

d
2 −1
2,1 )

‖P
⊥uε‖

L1
T (Ḃ

d
2 +1+β

2,1 )

+η1−β− d
2 ‖v‖

L2
T (Ḃ

d
2 +β

2,1 )
‖P

⊥uε‖L2
T (L∞)

)
.
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Since Ḃ0
∞,1 ↪→ L∞, by choosing η = ε

2α
2+d+2β and using (10.75), we can now

conclude that

‖P
⊥uε · ∇v‖

L1
T (Ḃ

d
2−1+β

2,1 )
≤ Cε

4α
2+d+2β

(
V0Xβ + Vβ(Xα + ε− 1

2 Yα)
)

. (10.78)

The term v · ∇P
⊥uε may be treated similarly. Indeed, we have

v · ∇P
⊥uε =

∑
j∈Z

Ṡj−1+[log2 η]v · Δ̇j ∇P
⊥uε

︸ ︷︷ ︸
T̃1

+
∑
j∈Z

Δ̇jv · Ṡj+2−[log2 η]∇P
⊥uε

︸ ︷︷ ︸
T̃2

.

Now, following the proof of (10.76) and (10.77), we readily get that

‖T̃1‖
L1

T (Ḃ
d
2 −1+β

2,1 )
≤ C η‖v‖

L∞
T (Ḃ

d
2 −1
2,1 )

‖ ∇P
⊥uε‖

L1
T (Ḃ

d
2 +β

2,1 )
,

‖T̃2‖
L1

T (Ḃ
d
2 −1+β

2,1 )
≤ C η− d

2 −β ‖v‖
L2

T (Ḃ
d
2 −1
2,1 )

‖∇P
⊥uε‖L2

T (Ḃ−1
∞,1)

.

Choosing η = ε
2α

2+d+2β , we conclude that

‖v · ∇P
⊥uε‖

L1
T (Ḃ

d
2 −1+β

2,1 )
≤ Cε

2α
2+d+2β

(
V0Xβ + Vβ(Xα + ε− 1

2 Yα)
)

. (10.79)

Plugging the inequalities (10.72), (10.74), (10.78), and (10.79) into (10.71),
we eventually get

Wβ ≤ CeC(V0+X0)
(
W0Wβ+εαXα(Vβ+Xβ +Wβ)

+ε
2α

2+d+2β (V0Xβ+Vβ(Xα+ε− 1
2 Yα))

)
. (10.80)

Third Step: Estimates for (bε, uε) in E
d
2+β

εν,T

We use the fact that (bε, uε) satisfies
⎧⎪⎨
⎪⎩

∂tb
ε + div Tuεbε +

div uε

ε
= F ε

∂tu
ε + Tuε · ∇uε − Auε +

∇bε

ε
= f + Gε

with

F ε def= − div
(
T ′

bεuε
)

and Gε def= K(εbε)
∇bε

ε
− I(εbε)Auε − T ′

∂juε(uε)j .

According to Proposition 10.23, we have, for any p, r > 1,

Xβ(T ) ≤ CeUp,r
ε (T )

(
‖b0‖

B̃
d
2 +β,∞

εν

+ ‖u0‖
Ḃ

d
2 −1+β

2,1
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+‖f ‖
L1

T (Ḃ
d
2 −1+β

2,1 )
+ ‖F ε‖

L1
T (B̃

d
2 +β,∞

εν )
+ ‖Gε‖

L1
T (Ḃ

d
2 −1+β

2,1 )

)
(10.81)

with

Up,r
ε (t) def=

∫ t

0

(
ν1−p‖ ∇uε‖p

Ḃ
2
p

−2

∞,1

+ (ε2ν)r−1 ‖∇uε‖r
L∞

)
dt′. (10.82)

We first bound F ε. According to (10.19), we have

‖F ε‖
L1

T (B̃
d
2 +β,∞

εν )
≤ C

(
‖F ε‖

L1
T (Ḃ

d
2 −1+β

2,1 )
+ εν‖F ε‖

L1
T (Ḃ

d
2 +β

2,1 )

)
. (10.83)

From Theorems 2.47 and 2.52, we have

‖F ε‖
L1

T (Ḃ
d
2 −1+β

2,1 )
≤ C ‖T ′

bεuε‖
L1

T (Ḃ
d
2 −1+β

2,1 )

≤ C ‖bε‖L2
T (Ḃ0

∞,1)
‖uε‖

L2
T (Ḃ

d
2 +β

2,1 )
.

However, replacing P
⊥uε by bε in the proof of (10.75), we also get

‖bε‖L2
T (Ḃ0

∞,1)
≤ Cεα(Xα + ε− 1

2 Yα) (10.84)

so that

‖F ε‖
L1

T (B̃
d
2 +β,∞

εν )
≤ Cεα(Xβ + Pβ)(Xα + ε− 1

2 Yα). (10.85)

We now bound Gε. First, by virtue of Theorems 2.47, 2.52, 2.61 and the
inequality (10.84), we may write

‖K(εbε)∇bε‖
L1

T (Ḃ
d
2−1+β

2,1 )
≤ C

(
‖εbε‖L2

T (L∞)‖ ∇bε‖
L2

T (Ḃ
d
2 −1+β

2,1 )

+‖ ∇bε‖L2
T (Ḃ−1

∞,1)
‖εbε‖

L2
T (Ḃ

d
2 +β

2,1 )

)

≤ Cε1+αXβ(Xα + ε− 1
2 Yα).

Next, we decompose T ′
∂juε(uε)j as

T ′
∂juε(uε)j = T ′

∂jP⊥uε(uε)j + T ′
∂j P uε(P uε)j + T ′

∂j P uε(P⊥uε)j .

According to the inequality (10.84), we have

‖T ′
∂jP⊥uε(uε)j ‖

L1
T (Ḃ

d
2−1+β

2,1 )
≤ C ‖ ∇ P

⊥uε‖L2
T (Ḃ−1

∞,1)
‖uε‖

L2
T (Ḃ

d
2 +β

2,1 )

≤ C εα
(
Xα + ε− 1

2 Yα

)
(Xβ + Pβ).

For the next term, we simply write
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‖T ′
∂j Puε(Puε)j ‖

L1
T (Ḃ

d
2−1+β

2,1 )
≤ C‖ Puε‖

L2
T (Ḃ

d
2
2,1)

‖ Puε‖
L2

T (Ḃ
d
2 +β

2,1 )
≤ CP0Pβ .

Arguing as for the bounding of T1 in step 2 (with v replaced by P uε), we get

‖T ′
∂jPuε(P⊥uε)j ‖

L1
T (Ḃ

d
2−1+β

2,1 )
≤ Cε

4α
2+d+2β

(
P0Xβ + Pβ(Xα + ε− 1

2 Yα)
)

.

So, finally, we have

‖Gε‖
L1

T (Ḃ
d
2−1+β

2,1 )
≤ C

(
P0Pβ + εαXβ(Xα + ε− 1

2 Yα)

+ε
4α

2+d+2β

(
P0Xβ + Pβ(Xα + ε− 1

2 Yα)
))

. (10.86)

Now, we take p = 1/α and r = 2/(2 − α) in (10.81). Using interpolation and
embeddings, we have

‖∇uε‖
L

1
α
T (Ḃ2α−2

∞,1 )
≤ C‖ ∇P

⊥uε‖2α

L2
T (Ḃ

α−3
2

∞,1 )
‖ ∇P

⊥uε‖1−2α

L∞
T (Ḃα−2

∞,1)
+‖∇Pu‖

L
1
α
T (Ḃ

d
2+2α−2
2,1 )

≤ C
(
εα(Xα + ε− 1

2 Yα) + P0

)

and
‖ ∇uε‖

L
2

2−α
T (L∞)

≤ C ‖uε‖
L

2
2−α
T (Ḃ

d
2 +1
2,1 )

≤ C
(
Pα + Xα

)
.

According to (10.82), we thus have

U
1
α , 2

2−α
ε ≤ C

(
P

1
α
0 + ε(Xα + ε− 1

2 Yα)
1
α + (εα(Pα + Xα))

2
2−α

)
. (10.87)

Plugging this inequality, (10.85), and (10.86) into (10.81), we eventually get

Xβ ≤ Ce
C

(
P

1
α
0 +ε(Xα+ε− 1

2 Yα)
1
α +(εα(Pα+Xα))

2
2−α

)(
X0

β + P0Pβ

+ε2αd

(
P0Xβ + (Xβ + Pβ)(Xα + ε− 1

2 Yα)
))

(10.88)

with αd
def= 2α/(2 + d + 2α).

Fourth Step: Bootstrap

Let X
def= X0 + Xα, V

def= V0 + Vα , W
def= W0 + Wα, and X0 def= X0

0 + X0
α.

Combining estimates (10.70), (10.80), and (10.88) yields

W ≤ CeC(V+X)
(
εαd

(
X2+V (X0+X+X2+V 2)

)
+ W 2(1+εαdV )

)
, (10.89)
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X ≤ CeC
(
ε(X+X2)

1
α +(εαX)

2
2−α

)
eC

(
(V+W )

1
α +ε(X0+(V+W )2)

1
α +ε

2α
2−α (V+W )

2
2−α

)
×
(
X0+(V +W )(V +W +εαd(X0+V 2+W 2))

+εαdX(X0+V +W +X+X2)
)
. (10.90)

A bootstrap argument will enable us to get a bound for (bε, uε) from the two
estimates above. More precisely, we have the following lemma.

Lemma 10.33. Suppose that v ∈ F
d
2

T0
∩ F

d
2 +α

T0
for some finite or infinite T0.

There then exists an ε0 > 0, depending only on α, d, V (T0), and the norm of
(b0, P

⊥u0, P
⊥f) in

Ḃ
d
2 −1
2,1 ∩ Ḃ

d
2 +α
2,1 × (Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 )d × L1(R+; (Ḃ

d
2 −1
2,1 ∩ Ḃ

d
2 −1+α
2,1 )d)

and such that if ε ≤ ε0, (bε, uε) ∈ E
d
2
εν,T ∩ E

d
2+α

εν,T , and ε|bε| ≤ 3/4 for some T ≤
T0, then the following estimates hold with the constant C = C(d, μ, λ, P, α)
appearing in (10.89) and (10.90):

X(T ) ≤ XM
def
= 16CeCV

1
α (T0)

(
X0 + V 2(T0)

)
,

ε−αdW (T ) ≤ WM
def
= 4CeC(V (T0)+XM )

×
(
X2

M + V (T0)(X0 + XM + X2
M + V 2(T0))

)
.

Proof. Let I
def=

{
t ≤ T | X(t) ≤ XM and W (t) ≤ εαdWM

}
. Obviously, X

and W are continuous nondecreasing functions so that if, say, C ≥ 1, then I
is a closed interval of R

+ with lower bound 0.
Let T � def= sup I. Choose ε sufficiently small so that the following condi-

tions are fulfilled:
CeC(V (T0)+XM )εαdWM (1 + εαdV (T0)) ≤ 1/2,

e
C

(
ε(XM+X2

M )
1
α +(εαXM )

2
2−α

)
≤ 2,

e
C

(
(V (T0)+εαd WM )

1
α +ε(X0+(V (T0)+εαdWM )2)

1
α +ε

2α
2−α (V (T0)+εαd WM )

2
2−α

)

≤ 2eCV
1
α (T0),

X0+(V (T0)+εαdWM )(V (T0)+εαdWM +εαd(X0+V 2(T0)+ε2αdW 2
M ))

≤ 2(X0+V 2(T0)),

CeCV
1
α (T0)εαd(X0 + V (T0) + εαdWM + XM + X2

M ) ≤ 1/12.

From the inequalities (10.89) and (10.90), we get

X(T �) ≤ 12CeCV
1
α (T0)

(
X0 + V 2(T )

)
,

W (T �) ≤ 2εαdCeC(V (T0)+XM )
(
X2

M + V (T0)(X0 + XM + X2
M + V 2(T0))

)
.

In other words, at time T � the desired inequalities are strict. Hence, we must
have T � = T . 
�
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Last Step: Continuation Argument

First, we have to establish the existence of a local solution in E
d
2
εν,T ∩ E

d
2 +α

εν,T .
Making the change of function aε = εbε, we see that it suffices to apply
Theorem 10.11. We readily get a local solution (bε, uε) on [0, T ] × R

d which
belongs to

C([0, T ]; Ḃ
d
2
2,1∩Ḃ

d
2 +α
2,1 )×

(
C([0, T ]; Ḃ

d
2 −1
2,1 ∩Ḃ

d
2 −1+α
2,1 )∩L1([0, T ]; Ḃ

d
2 +1
2,1 ∩Ḃ

d
2 ++α
2,1 )

)d

and satisfies 1 + ε inft,x bε(t, x) > 0.

Since, in addition, b0 belongs to Ḃ
d
2−1
2,1 and ∂tb

ε+uε· ∇bε is in L1([0, T ]; Ḃ
d
2−1
2,1 ),

we deduce that bε ∈ C([0, T ]; Ḃ
d
2 −1
2,1 ). Therefore, (bε, uε) ∈ E

d
2
εν,T ∩ E

d
2 +α

εν,T .

Now, suppose that we have v ∈ F
d
2

T0
∩ F

d
2 +α

T0
for some T0 ∈ ]0, +∞]. We

will show that the lifespan Tε, defined as the supremum of the set
{

T ∈ R
+ /(bε, uε) ∈ E

d
2
εν,T ∩E

d
2+α

εν,T and ∀(t, x) ∈ [0, T ]×R
d, |εbε(t, x)| ≤ 3/4

}
,

satisfies Tε ≥ T0 if ε is sufficiently small.
We assume (with the aim of arriving at a contradiction) that Tε is finite

and satisfies Tε ≤ T0. According to Lemma 10.33, we have, for any T < Tε

and ε ≤ ε0,
X(T ) ≤ XM and W (T ) ≤ εαdWM .

From the first inequality and (10.73), we deduce that

ε‖bε‖
L∞

T (Ḃ
d
2
2,1)

≤ εανα−1XM .

Obviously, changing ε0 once more if necessary, this entails that

1 + ε inf
(t,x)∈([0,T ]ε ×Rd)

|bε(t, x)| > 0.

As bε ∈ L∞([0, Tε[; Ḃ
d
2
2,1 ∩ Ḃ

d
2 +α
2,1 ) and ∇uε ∈ L1([0, Tε[; L∞), the continuation

criterion stated in Proposition 10.17 ensures that (bε, uε) may be continued
beyond Tε. This stands in contradiction to the definition of Tε. Therefore,
Tε ≥ T0 for ε ≤ ε0. 
�

10.6 References and Remarks

There is a huge literature devoted to the one-dimensional compressible Navier–
Stokes equations. Since the usual methods are quite far from our own, we will not
elaborate on what is known in this case. However, we should mention the pioneering
work by A. Kazhikhov and V. Shelukhin in [179] and the recent paper by A. Mellet
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and A. Vasseur [227] wherein the existence of global strong solutions is established
for a large class of initial data bounded away from the vacuum.

In the multidimensional case, to the best of our knowledge, the first mathematical
work devoted to the Cauchy problem for the full compressible Navier–Stokes system
is the paper by J. Nash [238] in 1962. There, the existence of local-in-time classical
solutions is proved. By using an Lp approach based on parabolic maximal regularity,
in [272], V. Solonnikov has stated local well-posedness results in the case of a smooth
bounded domain. An extensive study of the compressible Navier–Stokes equations
in two-dimensional domains with corners has been undertaken by J.R. Kweon (see,
e.g., [200]).

Global existence for small smooth perturbations of a stable equilibrium was
stated in 1980 by A. Matsumura and T. Nishida in [225] in the R

3 framework and
extended to the half-space, exterior, or bounded smooth domains with Dirichlet
conditions in [226] (see also [125, 293] and the more recent work by P. Mucha and
W. Zaja̧czkowski [237] for another approach). More general boundary conditions
have been considered in, for example, [294].

The work by P.-L. Lions concerning weak solutions of the isentropic compress-
ible Navier–Stokes system had a great impact on the subject and may be seen as
the natural continuation of the seminal work by J. Leray in [207] (see Chapter 5)
for incompressible viscous fluids. The construction of weak solutions relies on the
following formal energy identity (here, we take f ≡ 0 in order to simplify matters):

‖(
√

ρu)(t)‖2
L2 +

∫
π(t, x) dx + 2

∫ t

0

(
μ ‖ ∇u‖2

L2 + (λ+μ) ‖div u‖2
L2

)
dt′

=
∥∥√

ρ
0
u0

∥∥2

L2 +

∫
π0(x) dx, (10.91)

where π stands for the free energy per unit volume.8 This suggests proving the
existence of global solutions for data (ρ0, u0) such that the right-hand side of (10.91)
is finite. However, both constructing approximate solutions satisfying the energy
inequality and passing to the limit is much more involved than in the incompressible
case (see the original work by P.-L. Lions in [215] for more details). More regular
weak solutions have been constructed by B. Desjardins in [114]. For the presentation
of a few recent improvements, the reader is referred to the review paper by E. Feireisl
in [123] and the book by A. Novotný and I. Straškraba [242]. We should also mention
that, following some ideas from Lions’ book, E. Feireisl has developed a complete
theory of so-called variational weak solutions for the full Navier–Stokes equations
(see [124]).

The results presented in this chapter concerning local and global well-posedness
are borrowed from recent works by the third author (see [93, 95], and [101]). We
point out that for critical data, the smallness condition (10.7) is not needed (i.e. the
statement of Theorem 10.11 is true for α = 0). This was proven recently in [104]
by the third author (see also [79] for another approach). We should also stress that
local existence results in the spirit of Theorems 10.2 and 10.11 may be established
for polytropic heat-conductive fluids and extended to the Lp framework (see [95, 79,
155]). In this case, the scaling invariant space for (a0, u0, θ0) (where θ0 stands for
the discrepancy from a reference temperature) is

8 Recall that if P (ρ) = aργ , then we have π = a

(
ργ − 1 − γ(ρ − 1)

γ(γ − 1)

)
·
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Ḃ
d
p

p,1 ×
(
Ḃ

d
p

−1

p,1

)d × Ḃ
d
p

−2

p,1 .

In addition, still in the critical framework, for polytropic fluids, a global well-
posedness result in the spirit of Theorem 10.21 for small perturbations of a stable
equilibrium has been proven in [94]. Theorem 10.21 has recently been extended to
the Lp framework by F. Charve and the third author in [61]. In particular, as for the
incompressible Navier–Stokes equations, the smallness condition for global existence
involves Besov norms with a negative index of regularity. Hence, highly oscillating
initial velocities with possibly large moduli give rise to global solutions. Finally, we
point out that a similar approach works for fluids endowed with internal capillarity
(see [107]).

Until now, even in the barotropic case, the question of weak-strong uniqueness
for the compressible Navier–Stokes equations has remained open. More precisely, for
sufficiently smooth data (ρ0, u0) bounded away from the vacuum, we can construct
both a (unique) local smooth solution and, according to Lions’ results, a global
weak solution with finite energy. However, in contrast to what is known in the
incompressible case, there is no evidence that the weak and strong solutions coincide,
even for small time. One of the main difficulties that has to be faced is that Lions’
theorem does not give any information on the possible appearance of vacuum, and
such a control seems crucial to get uniqueness. We should mention here that in [80],
Y. Cho, H.J. Choe, and H. Kim have obtained a result involving the existence and
uniqueness of a special class of initial data where vacuum is not excluded (see also
a promising recent result by P. Germain in [142] and the work [220] by T.-P. Liu
and T. Yang concerning the inviscid case). For a particular class of barotropic fluids,
D. Bresch and B. Desjardins have constructed “stronger” weak solutions with an
additional H1 control on the density (see [49]). Knowing that in dimension two,
Theorem 10.2 provides strong solutions for data having almost the same regularity
[i.e., u0 ∈ Ḃ0

2,1 and (ρ0 − 1) ∈ Ḃ1
2,1], it may be tempting to study whether we can

bridge the gap between weak and strong solutions. Other types of weak solutions
with possibly discontinuous data (including jumps across a hypersurface for the
density) have been constructed by D. Hoff in [159, 162, 163].

It turns out that for smooth perturbations of a stable constant state, very accu-
rate information may be obtained concerning the asymptotics of the global solution.
Roughly, the time decay properties of the solution are the same as for the linearized
system about the constant reference state. There is an important literature devoted
to this subject (see, in particular, [164] and [195]).

A number of papers have been devoted to the study of the incompressible limit
for the compressible Navier–Stokes equations. The earliest mathematical works are
concerned with the case where ρε − 1 = O(ε2) and div uε = O(ε). In that case, ∂tρ

ε

and ∂tu
ε are uniformly bounded so that time oscillations cannot occur. Starting

from this simple consideration, different authors have studied (ÑSCε) with data
of the type ρε

0 = 1 + ε2ρε
0,1 and uε

0 = u0 + εuε
0,1 with div u0 = 0 and (ρε

0,1, u
ε
0,1)

uniformly bounded in a suitable function space (here, we take fε ≡ 0 in order to
simplify matters). In the usual partial differential equations terminology, such data
are referred to as well prepared. Indeed, they are well prepared in the sense that they
belong (up to lower order terms) to the kernel of the singular operator appearing in

(ÑSCε). Hence, they are unlikely to produce highly oscillating terms.
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For such data, it is possible to calculate an asymptotic expansion for (ρε, uε)
in terms of powers of ε. This approach has been adopted by a number of authors:
S. Klainerman and A. Majda in [186, 187], H.-O. Kreiss, J. Lorenz, and M. Naughton
in [199], and D. Hoff in [160, 161], among others.

As explained at the beginning of Section 10.5, in this chapter we considered ill
prepared data (i.e., ρε

0 = 1 + εbε
0 and with no particular assumption on uε

0) so that
strong time oscillations have to be considered. Solving the problem of the low Mach
number limit in this framework is rather recent. The first result is due to P.-L. Lions
in his book [215] and deals with global weak solutions. The basic idea is that the
energy equality associated with (NSCε) is of the form

∥∥(
√

ρεuε)(t)
∥∥2

L2 +

∫
πε(t, x) dx + 2

∫ t

0

(
μ ‖ ∇uε‖2

L2 + (λ+μ) ‖div uε‖2
L2

)
dτ

=
∥∥√

ρε
0
uε

0

∥∥2

L2 +

∫
πε

0(x) dx + 2

∫ t

0

∫
ρεfε · uε(τ, x) dx dτ,

where πε = a
(ρε)γ − 1 − γ(ρε − 1)

ε2γ(γ − 1)
if P (ρ) = aργ .

Taking advantage of the uniform estimates provided by the above equality, it is
possible to pass to the limit when ε goes to 0. However, the mathematical justifica-
tion strongly depends on the boundary conditions. The reader may refer to [216] for
the case of periodic boundary conditions, to [115] for the whole space, and to [116]
for the case of bounded domain with homogeneous Dirichlet conditions. In a more
general context, P.-L. Lions and N. Masmoudi have also proven local weak conver-
gence results in [217]. We emphasize that, to the best of our knowledge, [115] is the
first paper devoted to the incompressible limit where Strichartz estimates have been
used.

As regards the study of the incompressible limit in the framework of strong
solutions, we mention the works by S. Ukai [291], S. Schochet [257], G. Métivier and
S. Schochet [228, 229] in the inviscid case, and the papers by I. Gallagher [133] and
T. Hagström and J. Lorenz [152] in the viscous case. The two results on convergence
presented here (namely, Theorems 10.29 and 10.31) are borrowed from [97].

We conclude this section with a few words on the case of periodic boundary
conditions, which turns out to be quite different (the reader is referred to [98] for
more details). Indeed, there is no dispersion whatsoever, so acoustic waves may
interact. It turns out, however, that resonances are not so frequent, so it is possible
to pass to the limit anyway. The mathematical study of the incompressible limit may
be undertaken by means of the filtering method introduced by S. Schochet in [257].
More precisely, if P ′(1) = 1, then the system (NSCε) can be rewritten as

d

dt

(
bε

uε

)
+

L

ε

(
bε

uε

)
=

(
− div(bεuε)

f − uε · ∇uε − bε ∇bε − K̃(εbε)bε ∇bε − I(εbε)Auε

)
,

where the function K̃ vanishes at 0 and the skew-symmetric operator L is defined
by

L

(
b
u

)
def
=

(
div u
∇b

)
.

The operator L generates a unitary group eτL such that eτL

(
0

Pu

)
=

(
0

Pu

)
.
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Defining V ε def
= e

t
ε

L

(
bε

P
⊥uε

)
, we deduce from the above system that

∂tV
ε + Qε

1(Puε, V ε)+Qε
2(V

ε, V ε) − νAε
2(D)V ε

= e
t
ε

L

(
0

P
⊥(f − Puε · ∇ Puε)

)
+ o(1),

(10.92)

where Aε
2(D)B is a linear operator, and Qε

1 and Qε
2 are bilinear operators which may

be computed explicitly in terms of Fourier series. It may be shown that Aε
2(D)B

tends formally to −ΔB/2 and that the operators Qε
1 and Qε

2 tend to some first order
bilinear operators Q1 and Q2, respectively.

If Puε tends to some limit v, then the stationary phase theorem ensures that the
right-hand side of (10.92) tends to 0 in the sense of distributions. We can thus expect
(Puε, V ε) to tend to some limit (v, V ), where v is a solution of the incompressible
Navier–Stokes equation

(NSI)

{
∂tv + P(v · ∇v) − μΔv = Pf

v|t=0 = Pu0,

and V satisfies

(LS)

{
∂tV + Q1(v, V ) + Q2(V, V ) − ν

2
ΔV = 0

V|t=0 = (b0, P
⊥u0).

Up to the term Q1(v, V ) (which is linear with respect to v), the system (LS) has
the same structure as (NSI). However, it was observed by N. Masmoudi in [223]
that the term Q2(V, V ) is so sparse that the diffusion − ν

2
ΔV dominates in any

dimension. Hence, V exists as long as v is defined.

In [98], it was shown that for any data b0 ∈ H
d
2 +α with zero average, u0 ∈

H
d
2 +α−1, and f ∈ L1(R+; H

d
2 −1+α) with div f = 0, the solution of (LS) is defined

as long as the solution v of (NSI) is defined. Moreover, if v is defined on [0, T ] or
on R

+, then the same holds for (bε, uε) for sufficiently small ε, and

(bε, uε) = (0, v) + e− t
ε

LV + o(1) in L̃∞
T (H

d
2 +α′

) ∩ L2
T (H

d
2 +α′+1) for all α′ < α.

Owing to the appearance of small divisors when proving the convergence of V ε,
the exact meaning of o(1) strongly depends on the quotients of the lengths of the
periodic box T

N
a in which (NSCε) is solved. For special values of (a1, . . . , an), the

convergence may be slower than any power of ε.

For polytropic fluids, the study of the low Mach number limit turns out to be
even richer. For more details, the reader may refer to the recent work by T. Alazard
in [4].
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72. J.-Y. Chemin: Théorèmes d’unicité pour le système de Navier–Stokes
tridimensionnel, Journal d’Analyse Mathématique, 77, 1999, pages 27–
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pages 487–497.
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Supérieure, 32, 1999, pages 769–812.

298. A. Vol’pert and S. Hudjaev: On the Cauchy problem for composite
systems of nonlinear differential equations, Mathematics of the USSR-
Sbornik, 16, 1972, pages 517–544.

299. W. von Wahl: The Equations of Navier–Stokes and Abstract Parabolic
Equations, Aspect der Mathematik, Vieweg & Sohn, Wiesbaden, 1985.
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