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Preface

Since the 1980s, Fourier analysis methods have become of ever greater interest
in the study of linear and nonlinear partial differential equations. In partic-
ular, techniques based on Littlewood—Paley decomposition have proven to be
very efficient in the study of evolution equations. Littlewood—Paley decom-
position originates with Littlewood and Paley’s works in the early 1930s and
provides an elementary device for splitting a (possibly rough) function into a
sequence of spectrally well localized smooth functions. In particular, differen-
tiation acts almost as a multiplication on each term of the sequence. However,
its systematic use for nonlinear partial differential equations is rather recent.
In this context, the main breakthrough was achieved after J.-M. Bony intro-
duced the paradifferential calculus in his pioneering 1981 paper (see [39]) and
its avatar, the paraproduct.

Surprisingly, despite the growing number of authors who now use such
techniques, to the best of our knowledge, there is no textbook presenting
Fourier analysis tools in such a way that they may be directly used for solving
nonlinear partial differential equations.

The aim of this book is threefold. First, we want to give a detailed presen-
tation of harmonic analysis tools that are of constant use for solving nonlinear
partial differential equations. Second, we want to convince the reader that the
rough frequency splitting supplied by Littlewood—Paley decomposition (which
turns out to be much simpler than, e.g., Calderon—Zygmund decomposition
or wavelet theory) may still provide elementary and elegant proofs of some
classical inequalities (such as Sobolev embedding and Gagliardo—Nirenberg or
Hardy inequalities). Third, we give a few examples of how to use these basic
Fourier analysis tools to solve linear or nonlinear evolution partial differential
equations. We have chosen to present the most popular evolution equations,
namely, transport and heat equations, (linear or quasilinear) symmetric hy-
perbolic systems, (linear, semilinear, or quasilinear) wave equations, and the
(linear or semilinear) Schrodinger equation. We place a special emphasis on
models coming from fluid mechanics (in particular, on the incompressible
Navier—Stokes and Euler equations) for which, historically, the Littlewood-
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viii Preface

Paley decomposition was first used. It goes without saying that our methods
are also relevant for solving a variety of other equations. In fact, there has been
a plethora of recent papers dedicated to more complicated nonlinear partial
differential equations in which Littlewood—Paley decomposition proves to be
a crucial tool.

This book is almost self-contained, inasmuch as having an undergraduate
level understanding of analysis is the only prerequisite. There are rare excep-
tions where we have had to admit nontrivial mathematical results, in which
case references are given. Apart from these, we have postponed references,
historical background, and discussion of possible future developments to the
end of each chapter. The book does not contain any definitively new results.
However, we have tried to provide an exhaustivity that cannot be found in any
single paper. Also, we have provided new proofs for some well-known results.

We have also decided not to discuss the theory of wavelets, even though this
would be the natural extension of Littlewood—Paley decomposition. Indeed, it
turns out that, to the best of our knowledge, there are almost no theoretical
results for nonlinear partial differential equations in which wavelets cannot be
replaced by a simple Littlewood—Paley decomposition.

When writing this book, we tried as much as possible to make a distinction
between what may be proven by means of classical analysis tools and what
really does require Littlewood—Paley decomposition (and the paraproduct).
In fact, with only a few exceptions, all the material concerning Littlewood—
Paley decomposition is contained in Chapter 2 so that the reader who is not
accustomed to (or who is afraid of) those techniques may still read a great deal
of the book. In fact, the whole of Chapter 1, the first section of Chapter 3, the
first half of Chapter 4, Chapter 5 (except for the last section), the first section
of Chapter 6, and the first two sections of Chapter 8 may be read completely
independently of Chapter 2. In most of the other parts of the book, Chapter 2
may be used freely as a “black box” that does not need to be opened.

Roughly speaking, the book may be divided into two principal parts: Tools
are developed in the first two chapters, then applied to a variety of linear and
nonlinear partial differential equations (Chapters 3—-10). A detailed plan of
the book is as follows.

Chapter 1 is devoted to a self-contained elementary presentation of clas-
sical Fourier analysis results. Even though none of the results are new, some
of the proofs that we present are not the standard ones and are likely to be
useful in other contexts. We also pay attention to the construction of explicit
examples which illustrate the optimality of some refined estimates.

In Chapter 2 we give a detailed presentation on Littlewood—Paley de-
composition and define homogeneous and nonhomogeneous Besov spaces. We
should emphasize that we have replaced the usual definition of homogeneous
spaces (which are quotient distribution spaces modulo polynomials) by some-
thing better adapted to the study of partial differential equations (indeed,
dealing with distributions modulo polynomials is not appropriate in this con-
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text). We also establish technical results (commutator estimates and func-
tional inequalities, in particular) which will be used in the following chapters.

In Chapter 3 we give a very complete theory of strong solutions for trans-
port and transport-diffusion equations. In particular, we provide a priori es-
timates which are the key to solving nonlinear systems coming from fluid
mechanics. Chapter 4 is devoted to solving linear and quasilinear symmetric
systems with data in Sobolev spaces. Blow-up criteria and results concerning
the continuity of the flow map are also given. The case of data with critical
regularity (in a Besov space) is also investigated.

In Chapter 5 we take advantage of the tools introduced in the previous
chapters to establish most of the classical results concerning the well-posedness
of the incompressible Navier—Stokes system for data with critical regularity.
In order to emphasize the robustness of the tools that have been introduced
hitherto in this book, we present in Chapter 6 a nonlinear system of partial
differential equations with degenerate parabolicity. In fact, we show that some
of the classical results for the Navier—Stokes system may be extended to the
case where there is no vertical diffusion. Most of the results of this chapter
are based on the use of an anisotropic Littlewood—Paley decomposition.

Chapter 7 is the natural continuation of the previous chapter: The diffu-
sion term is removed, leading to the study of the Euler system for inviscid
incompressible fluids. Here, we state local (in dimension d > 3) and global
(in dimension two) well-posedness results for data in general Besov spaces.
In particular, we study the case where the data belong to Besov spaces for
which the embedding in the set of Lipschitz functions is critical. In the two-
dimensional case, we also give results concerning the inviscid limit. We stress
the case of data with (generalized) vortex patch structure.

Chapter 8 is devoted to Strichartz estimates for dispersive equations with a
focus on Schréodinger and wave equations. After proving a dispersive inequality
(i-e., decay in time of the L® norm in space) for these equations, we present,
in a self-contained way, the celebrated TT* argument based on a duality
method and on bilinear estimates. Some examples of applications to semilinear
Schrédinger and wave equations are given at the end of the chapter.

Chapter 9 is devoted to the study of a class of quasilinear wave equations
which can be seen as a toy model for the Einstein equations. First, by taking
advantage of energy methods in the spirit of those of Chapter 4, we establish
local well-posedness for “smooth” initial data (i.e., for data in Sobolev spaces
embedded in the set of Lipschitz functions). Next, we weaken our regularity
assumptions by taking advantage of the dispersive nature of the wave equa-
tion. The key to that improvement is a quasilinear Strichartz estimate and a
refinement of the paradifferential calculus. To prove the quasilinear Strichartz
estimate, we use a microlocal decomposition of the time interval (i.e., a de-
composition in some interval, the length of which depends on the size of the
frequency) and geometrical optics.

In Chapter 10 we present a more complicated system of partial differential
equations coming from fluid mechanics, the so-called barotropic compressible
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Navier—Stokes equations. Those equations are of mixed hyperbolic-parabolic
type. We show how we may take advantage of the results of Chapter 3 and the
techniques introduced in Chapter 2 so as to obtain local (or global) unique
solutions with critical regularity. The last part of this chapter is dedicated
to the study of the low Mach number limit for this system. It is shown that
under appropriate assumptions on the data, the limit solution satisfies the
incompressible Navier—Stokes system studied in Chapter 5.

In writing this book, we had help from many colleagues. We are particu-
larly indebted to F. Charve, B. Ducomet, C. Fermanian-Kammerer, F. Sueur,
B. Texier, and to the anonymous referees for pointing out numerous mistakes
and giving suggestions and advice. In addition to J.-M. Bony, our work was in-
spired by many collaborators and great mathematicians, among them B. Des-
jardins, 1. Gallagher, P. Gérard, E. Grenier, T. Hmidi, D. Iftimie, H. Koch,
S. Klainerman, Y. Meyer, M. Paicu, D. Tataru, F. Vigneron, C.J. Xu, and
P. Zhang. We would like to express our gratitude to all of them.

Paris Hajer Bahouri
Jean-Yves Chemin
Raphaél Danchin
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1

Basic Analysis

This chapter is devoted to the presentation of a few basic tools which will
be used throughout this book. In the first section we state the Holder and
Minkowski inequalities. Next, we prove convolution inequalities in the general
context of locally compact groups equipped with left-invariant Haar measures.
The adoption of this rather general framework is motivated by the fact that
these inequalities may be used not only in the R? and Z¢ cases, but also
in other groups such as the Heisenberg group H?. Both Lebesgue and weak
Lebesgue spaces are used. In the latter case, we introduce an atomic decompo-
sition which will help us to establish a bilinear interpolation-type inequality.
Finally, we give a few properties of the Hardy—Littlewood maximal operator.

The second section is devoted to a short presentation on the Fourier trans-
form in R%. The third section is dedicated to homogeneous Sobolev spaces
in R%. There, we state basic topological properties, consider embedding in
Lebesgue, bounded mean oscillation, and Holder spaces, and prove refined
Sobolev inequalities. The classical Sobolev inequalities are of course invariant
by translation and dilation. The refined versions of the Sobolev inequalities
which we prove are, in addition, invariant by translation in the Fourier space.
We also present some classes of examples to show that these inequalities are in
some sense optimal. In the last section of this chapter, we focus on nonhomo-
geneous Sobolev spaces, with a special emphasis on trace theorems, compact
embedding, and Moser-Trudinger and Hardy inequalities.

1.1 Basic Real Analysis

1.1.1 Ho6lder and Convolution Inequalities

We begin by recalling the classical Holder inequality.

Proposition 1.1. Let (X, i) be a measure space and (p,q,r) in [1,00]® be
such that
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1

+ —

q r

X, i), then fg belongs to L™ (X, 1) and

1fglle < W[ fllzellgllze-

Proof. The cases where p = 1 or p = oo being trivial, we assume from now
on that p is a real number greater than 1. The concavity of the logarithm
function entails that for any positive real numbers a and b and any 6 in [0, 1],

Bloga+ (1 —0)logb < log(fa + (1 — 6)b),

hSE R

If (f,g) belongs to LP(X, u) x LY

—

which obviously implies that
a®v' =% < a + (1 - 0)b.

Hence, assuming that || f||z> = ||g]lre = 1, we can write
/ vgrdu=:/‘uﬂ%%<gw>%d
X

(/\deu+-‘/ 1919 dp
o

p q
The proposition is thus proved. a

The following lemma states that Holder’s inequality is in some sense optimal.

Lemma 1.2. Let (X, u) be a measure space and p € [1,00]. Let f be a mea-
surable function. If

/“| )| dy(z) < oo
ug||m/<1

then f belongs to LP and*
Il = swp_ [ f@)gle) dute).
loll, <1 Jx

Proof. Note that if f is in LP, then Hélder’s inequality ensures that

IF H <1/ Ut (@) < I fllce

so that only the reverse inequality has to be proven.

! Here, and throughout the book, p’ denotes the conjugate exponent of p, defined
by

1 . 1

+ — =1, with the rule that — =0.

D 00

D=
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We start with the case p = oco. Let A be a positive real number such

that p(|f| = A) > 0. Writing E) def (If| = A), we consider a nonnegative
function gg in L', supported in E) with integral 1. If we define

f(x)
/()]

then g is in L! so that fg is integrable by assumption, and we have

/X fgdu(z) = /X Flgo du(z) > A /X go dulz) = A

g(z) =

The lemma is proved in this case. We now assume that p € |1, co[ and consider
a nondecreasing sequence (E,,),en of subsets of finite measure of X, the union
of which is X. Let?

fn (@) fn(@)[P~
| fa (@) 1Fall £

It is obvious that f, belongs to L' N L™ and thus to LP for any p. Moreover,
we have

In(®) =1p, Af<n)f and gn(x) =

p’ (p 1) 5% —
lonll = T [ @105 d(a) = 1.

The definitions of the functions f, and g, ensure that

/f M E,A(1f|<n)In(T) du(z /fn ) gn () dp()

= ([ 1m @ au)) 15,057

= [[fallzr-
Thus, we have

Ifulle < sup / F(@)g(x) dpz).

gl pr <1/ X
The monotone convergence theorem immediately implies that

1flee < sup / F(@)g(x) dpz).

gl <1JX

Finally, in order to treat the case where p = 1, we may consider the se-
quence (gn)nen defined by

b

2 Throughout this book, the notation 14, where A stands for any subset of X,
denotes the characteristic function of A.
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We obviously have ||gn ||~ = 1 and

/f ) gn(x) du(x /Ifn )| dp(z).

Using the monotone convergence theorem, we get that

[ 1@ldute) <00 and [ (7@l due) = i [ 17 (o)] dute),
X X n—oo Jx
which completes the proof of the proposition. a

We now state Minkowski’s inequality.

Proposition 1.3. Let (X1, 1) and (X2, p2) be two measure spaces and [ a
nonnegative measurable function over X; X Xa. For all 1 < p < g < o0, we
have

([ECES] e < |15 Yz

L1(X2,p2) LP(X1,p1)

Proof. The result is obvious if ¢ = oco. If ¢ is finite, then, using Fubini’s

theorem and r def (¢/p)’, we have

q

L9(X2,p2) B </X2 ( X, UNCIREE dM1($1)) pdﬂ2(x2)>

1
13

17C,22) 205y

= ( sup /XIXX2 fP(z1,2)g(w2) dpa (1) duz($2)>

lgllor(xq,u0)=1
>0

gz
< (/ ( sup fp($1,332)g(332)dﬂz($2)>dul($1)>
X1 HQHLT();%W):l Xo
gz

Using Holder’s inequality we may then infer that

L9(Xa,12) < (/Xl( - fq(l‘l,xz)dm(m))qdm(aq)) p7

and the desired inequality follows. a

[[ECE e

The convolution between two functions will be used in various contexts in
this book. The reader is reminded that convolution makes sense for real- or
complex-valued measurable functions defined on some locally compact topo-
logical group G equipped with a left-invariant Haar measure® u. The (formal)
definition of convolution between two such functions f and g is as follows:

3 This means that p is a Borel measure on G such that for any Borel set A and
element a of G, we have p(a- A) = pu(A).
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Frat@) = [ 1ot ) duty).

We can now state Young’s inequality for the convolution of two functions.

Lemma 1.4. Let G be a locally compact topological group endowed with a
left-invariant Haar measure p. If 1 satisfies

w(A™Y) = pu(A) for any Borel set A, (1.1)

then for all (p,q,r) in [1,00)® such that

1 1 1

S =14-= (1.2)
p q r

and any (f,g) in LP(G, p) x LG, ), we have

frgeL™(G,pu) and |fxglloraw < Ifllze@wllgllLae, -

Proof. We first note that, owing to the left invariance and (1.1), for all z € G
and any measurable function ~ on G, we have

| ) = [ 1 a) duto)

Therefore, the case » = oo reduces to the Holder inequality which was proven
above.

We now consider the case r < co. Obviously, one can assume without loss
of generality that f and g are nonnegative and nonzero. We write

(f*g)a /fﬁ+1 Vo () £ () g7 (1) dpy).

1 1
(_ + _> = 1, Holder’s inequality

Observing that (1.2) can be written r
r p q

implies that

(f*9)(x (/f” )g" ( ‘-w)du(y))m </Gf%(y)gq(y‘1-x)du(y)>m-

Applying Holder’s inequality with o = rq/p (resp., B = rp/q) and the mea-

sure fP(y) du(y) [resp., g?2(y~* z) du(y)], and using the invariance of the mea-
sure u by the transform y — y~! -z, we get

) eg) o ()
o) < ([ £oe o) LA gz

Hence, raising the above inequality to the power r yields
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P N\ W)
’(fllm * ||g|Lq)<””> < (IIfI’ip * Tl )@

Since the left invariance of the measure p combined with Fubini’s theorem
obviously implies that the convolution maps L!(G, p) x LY(G, ) into L (G, p)
with norm 1, this yields the desired result in the case r < occ. O

We now state a refined version of Young’s inequality.

Theorem 1.5. Let (G, u) satisfy the same assumptions as in Lemma 1.4.
Let (p,q,7) be in]1,00[> and satisfy (1.2). A constant C exists such that, for
any f € LP(G, ) and any measurable function g on G where

def
l9123 () = sup A illg] > A) < 00,
>

the function f g belongs to L" (G, p), and

If*gllrp < CllfllizeawllgllLe G -

Remark 1.6. One can define the weak L7 space as the space of measurable
functions g on G such that ||g|[1g (¢, is finite. We note that since

Ml > N < [ gl du@) < ol (1.3)
(lgl>X)

the above theorem leads back to the standard Young inequality (up to a
multiplicative constant).

We also that the weak L? space belongs to the family of Lorentz spaces
L%7"(G, i), which may be defined by means of real interpolation:

Lo (G, p) = [L®(G, p), L' (G, p)]1/qr forall 1<g<oo and 1<7 < oo.

It turns out that the weak L? space coincides with L% (G, ). From general
real interpolation theory, we can therefore deduce a plethora of Holder and
convolution inequalities for Lorentz spaces (including, of course, the one which
was proven above).

We also stress that the above theorem implies the well-known Hardy-Little-
wood—Sobolev inequality on R?, given as follows.

Theorem 1.7. Let o in |0,d[ and (p,7) in ]1,00[? satisfy
o

1
1+ —- 1.4
d + r (1.4)

1
-+

p
A constant C then exists such that
- 17%* fllor@ey < Cllflle@ey-

Our proof of Theorem 1.5 relies on the atomic decomposition that we intro-
duce in the next subsection.
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1.1.2 The Atomic Decomposition

The atomic decomposition of an LP function is described by the following
proposition, which is valid for any measure space.

Proposition 1.8. Let (X, p) be a measure space and p be in [1,00[. Let f be
a nonnegative function in LP. A sequence of positive real numbers (cy)rez and
a sequence of nonnegative functions (fr)kez (the atoms) then exist such that

f=> cxfe,

kEZ

where the supports of the functions fr are pairwise disjoint and

p(Supp fi) < 281, (1.5)
I frll <277, (1.6)
1
I <Dk <20 fI7s- (1.7)
kEZ

Remark 1.9. As implied by the definition given below, the sequence (cx fx)kez
is independent of p and depends only on f.

Proof of Proposition 1.8. Define

def

M e O Juf > N <29 e ok, and f O

-1
Ck ]{Ak+1<fﬁkk)f'

It is obvious that || fx||L~ < 27, Moreover, (Ag)kez is a decreasing se-
quence which, owing to the fact that f is a nonnegative function in LP, con-
verges to 0 when k tends to infinity.

By the definition of \j, we have u(f > A\;) < 2* and thus u(Supp f) <
2k+1 This gives

Zcz = ZQ’“AZ

kEZ kEZ

:pz/ 2130 5, (M)A
0

kezZ
Using Fubini’s theorem, we get
Sc=o[ ¥ X )
kEZ 0 E/Ae>A

By the definition of the sequence (Ax)rez, A < Ap implies that u(f > \) > 2F.
We thus infer that
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Saso[ (X 2)a
keZ 0 k) 2E<p(f>)

< 2p/ N U(f > ) dA
0

The right-hand inequality in (1.7) now follows from the fact that, by Fubini’s
theorem, we have

\vasz XL | > A) dA, (1.8)

In order to complete the proof of (1.7) it suffices to note that, because the
supports of the functions (fx)kez are pairwise disjoint, we may write

A A

kEZ

Taking advantage of inequalities (1.5) and (1.6), we find that
Ifellb, <2 forall keZ.

This yields the desired inequality. a

1.1.3 Proof of Refined Young Inequality

Let f and g be nonnegative measurable functions on (G, p1). Consider a non-
negative function h in L™ and define

I(f,g.h def/f - 2)h(z) dp(x) dp(y).

Arguing by homogeneity, we can assume that ||f]|z» = ||g]

Stating C’ {y €G, 2 <g(y) <29t} we can write

g = llhllpr = 1.

I(f.g,h) < 2 2'I;(f,h) with
JEZ

. f)h(@)1e, (y= " z) du(x) dp(y).

1, h) &

Because ||g]|zs, = 1, we have ||1¢,||r= < 277% for all s € [1,00]. Thus, if we
directly apply Young’s inequality with p, ¢, and r, we find that [;(f,h) <277,
so the series Y 2771 [;(f, h) has no reason to converge. In order to bypass this
difficulty, we may introduce the atomic decompositions of f and h, as given
by Proposition 1.8. We then write

h) = chdzfj(fkahé)'

k¢
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Using Young’s inequality, for any (a,b) € [1,00]? such that b < a’ and for
any (f,h) € L® x L’ we get
1

=14+
Cc

L) < fllze Bl lte; e with = +

Q|+
S| =

This gives
U
L(f ) < 27992 D) | o | o

Applying this for fr and h, and using Proposition 1.8 now yields

1

X T;(fi, he) < 20920 +5) k(G =5) 2t (=),
Using the condition (1.2) on (p, g, r) implies that
99 I(fi, he) < 209+ (E=3)glia+0(3 =) (1.9)
Take a and b such that

1 dert
a

1 1/1 1
5—2€Sg(jq—|—k) and d:EfP—2ssg(jq+€) with ggd:ef(_)7

1
b 4\p r

where sgn =11ifn >0, and sgn = —1if n < 0.
As g > 1, the condition (1.2) implies that p < r. Thus, by the definitions

of g, a, and b, we have b < a’. With this choice of a and b, (1.9) then becomes,
using the triangle inequality,

j —2¢e|jq+k|—2¢|7q+¢
XL (fr, he) < 2 |[ja+k|—2¢|jq+€]
< 9—eligtk|—eljgte|—elk—¢|

Using Young’s inequality for Z equipped with the counting measure, we may
now deduce that

I(f,g,h) < C Z cpdp2cliatkl—eligtt|—elk—{|
J.k.2

C
< = —elk—4|
=2 chde
k.t
C
< ler)llen [l ()l
The condition (1.2) implies that ' < p’ and thus

C
I(£,9,h) < Sll(er)ler lll (de)ll -

The theorem is thus proved. a
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1.1.4 A Bilinear Interpolation Theorem

The following interpolation lemma, which will be useful in Chapter 8, provides
another example of an application of atomic decomposition.

Proposition 1.10. Let (X1, 1) and (Xa, p2) be two measure spaces. Let T
be a continuous bilinear functional on L?*(X1;LPi(Xs)) x L*(Xy; L% (X3))
for j in {0,1}, where (p;,q;) is in [1,2]* and such that py # p1 and qo #
q1. For any 0 € [0,1], the bilinear functional T is then conlinuous on
LQ(Xl;Lps (XQ)) X LQ(Xl;qu (XQ)) with

Gz = 0= 0Goa) +2Gor)

Proof. Let f € L*(X1;LP?(X3)) and g € L?(Xy;L9%(X5)). As in the proof
of the refined Young’s inequality, we will use the atomic decompositions of f
and g. For any (¢,z) € X; x Xa, we have

flt,2) =Y er()fa(t,x) and g(t,x) =Y de(t)ge(t,z).

keZ LET

Let us write that

T(f,9) = Z T (ck fr,dege).
ol
1 1 1 1

-1
Using the hypothesis on 7 and stating « def (— — —) (— — —), we get
Po D1 q q1

|7 (ck fr, dege)| < Cjél{l(i)nl} ek fill 2 (x15075 (x2)) 1degell L2 (x93 (x2))
< Cllexllpzxlldell L2 x,)

x min{z‘e(%‘%)(““‘f), 2“‘“(%‘%)(““)},

1 1
— — —| x min{6, (1 — )}, we deduce that

bPo D1

|7 (ck fr> dege)| < CllerllLz(x,) ldell 2 (x2St

Setting ¢ def

Using a weighted Cauchy—Schwarz inequality, we then get

1 1
3 3
IT(F.9)] < Co(D NlenlFexny) (D0 Ielfax, )
k ¢
< O @2 L sy o)l -
Using the fact that py and gg are less than 2, we infer that
7(f,9) < Ce[[lem)llers @l 2,y 1) lese @) 2, -

The inequality (1.7) from Proposition 1.8 then implies the proposition. a
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1.1.5 A Linear Interpolation Result

We shall present here a basic result of linear complex interpolation theory
which will be useful, particularly in Chapter 8.

Lemma 1.11. Consider three measure spaces (X, pr)i<k<s and two ele-
ments (pj,q;,7j)jef0,1y Of [1,00]2. Further, consider an operator A which
continuously maps LPi(X1; L9 (X3)) into L (X3) for j in {0,1}. For any 0

in [0,1], if
1 11 1 11 1 11
<_7_7_) d:e‘f(l - 9) (_7_7_) + 9(_7_7_>7
Po qo To Po 490 To P @1 M
then A continuously maps LP?(Xq; L1 (X5)) into L™ (X3) and
Al £(zro (X150 (X3)):L70 (X5)) < Ag  with

def (116 0
Ay = ”AH[;(Lpo(Xl;qu(XQ));Lro(Xg))HAH[:(LIH(Xl;qu(Xz));L““l(Xg))'

Proof. Consider f in LP?(X1; L% (X5)) and ¢ in L™ (X3).* Using Lemma 1.2,
it is enough to prove that

- (1.10)

| An@s)eten)duna) < Aol s aan

Let z be a complex number in the strip S of complex numbers whose real
parts are between 0 and 1. Define

z

Mo ( el >qe<lqoz+“)||f<x el )
- |f@r,z2) [\ || f(z1,)|| Lo 1 )llLae

f(@1,22)

and

‘p(x3>| ( 3)|’"/9<1%2+ﬁ).

Pel8) = oy 1917

Obviously, we have fp = f and ¢y = ¢. It can be checked that the function
defined by

Fz) /X (Af.)(3) s (23) dyua(s)

is holomorphic and bounded on S and continuous on the closure of S. From
the Phragmen—Lindelh6f principle, we infer that

F(0) < MAOM? with  M; Y sup |[F(j +it). (1.11)
teR

* Throughout this proof, we write LP?(X1;L%(X2)) simply as LPO(L%)
and L™ (X3) simply as L.
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We have i
_ |f($1,l"2)| 5
reonen) = (N gy )

Thus, we have that f;;;+ belongs to LPi (L% ) and

Py
Wseillzrs oy = 1F 1 g
In the same way, we get that |¢;j1i(z3)| = |¢(z3)] ™
inequality, we get

Thus, thanks to Holder’s

M; < sup
teR

/X (Af i) (@s)si0(x3) dias (s)

PG

RS

< AN s (xm A,

Using (1.11), we then deduce (1.10) and the lemma is proved. O

From this lemma, taking X; = {a} and then X3 = {a}, we can infer the
following two corollaries which will be used in Chapter 8.

Corollary 1.12. Let (Xy, pur)1<k<2 be two measure spaces and (p;, q;)je{o,1}
be two elements of [1,00]%. Consider a linear operator A which continuously
maps LPi (X7) into L9 (X3) for j € {0,1}. For any 6 in [0,1], if

() Zo-na) e
Do 4o Po qo P1 q1

then A continuously maps LP9(X1) into L% (Xs3) and

def
||A||£:(LP9(X1);L‘19(X2))§ AO = ||A||L(Lpo(xl) qu(xz))||A||95(LP1(X1);LQ1(X2))-

Corollary 1.13. Let (X1, 1), (Xo, u2) be two measure spaces and (po,qo),
(p1,q1) be two elements of [1,00]%. Let A be a continuous linear functional
on LPi(Xy; L% (X3)) for j in {0,1}. For any 6 in [0,1], if

11 11 11
(11) &, (1), (1 1)
Do Qe Po do P ¢1
then A is a continuous linear functional on LP¢(X1; L9 (X3)) and

||AHL(LP0(XI;LQG(XQ));(C) < Ay with

def
||A||£(LP0 (X130 (X3));C) HAH%(Ll’l (X1;L91(X2));C)*
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1.1.6 The Hardy—Littlewood Maximal Function

In this subsection, we state a few elementary properties of the maximal func-
tion, which will be needed for proving Gagliardo—Nirenberg inequalities on
the Euclidean space R.

We first recall that the maximal function may be defined on any metric
space (X, d) endowed with a Borel measure u. More precisely, if f: X — R
isin L}, (X, p), then we define

def su L
v X, M) Eap s [ i@, 012

The following well-known continuity result for the maximal function is fun-
damental in harmonic analysis.

Theorem 1.14. Assume that the measure metric space (X,d, u) has the dou-
bling property.® There then exists a constant C, depending only on the dou-
bling constant D, such that for all 1 < p < oo and f € LP(X,u), we have
MfeLP(X,u) and

1
1Mo < ~ 25O fls (1.13)
Proof. First step: M maps L™ into L*°. Indeed, we obviously have
[Mfllpe < |[[fllzee  forall fe L*(X,p). (1.14)

Second step: M maps L' into L. We claim that there exists some constant
C1, depending only on D, such that

IMflley, < Crllfll forall e LM(X,p). (1.15)

This is a mere consequence of the following Vitali covering lemma that we
temporarily assume to hold.

Lemma 1.15. Let (X,d) be a metric space endowed with a Borel measure
with the doubling property. There then exists a constant ¢ such that for any
family (B;)1<i<n of balls, there exists a subfamily (B;;)1<j<p of pairwise dis-

joint balls such that
p n
() 2en(()2)
=1 i=1

Fix some f € L'(X, 1) and some A > 0. By definition of the function M f, for

any z in the set E) def {Mf > A}, we can find some r, > 0 such that

/ Fldu > Mu(B(z,r2)). (1.16)
B(x,ry)

5 That is, there exists a positive constant D such that u(B(z,2r)) < Du(B(z,r))
for all z € X and r > 0.
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Therefore, if K is a compact subset of E), then we can find a finite cov-
ering (B;)1<i<n of K by such balls. Denoting by (B;,)i1<j<p the subfamily

vj

supplied by the Vitali lemma and using (1.16), we can thus write

At 1< 1< 1
MK < ;u(JL_Jle—j) < L2 By < —z_j/B ¢ [ 1sldn

which obviously leads to (1.15).

Third step: M maps LP into L? for all p € ]1,00[. The proof relies on ar-
guments borrowed from real interpolation. Fix some function f in LP and

€1]0,1[. Since M|f| = M f, we can assume that f > 0. Now, for all A > 0,
we may write

f=far £ with (= Aa) poaa).
Note that, thanks to (1.14), we have
(Mf >N C(Mf>(1—a)\).

Hence the equality (1.8) implies that

+o0
IM Iz < p/ AP (M > (1= a))) d
0

According to the inequality (1.15), we have

C
/J(Mf)‘ > (1-— a))\) < m“JO\”LL

So, finally, using the definition of f* and Fubini’s theorem, we get

p Cip [T p—2
IMFI < 5 A (/(@) = Aa) du(a)
—aJo (f>Aa)
C I o)
< P </ f(x)/ AP*QdAdu(z)—a// /\pldAdu(:z:)>
I—a\Jx 0 x Jo

Ch
< oot

Choosing a = (p — 1)/p completes the proof of the inequality (1.13). a

Proof of Lemma 1.15. Without loss of generality, we can assume that B; =
B(x;,r;) with r1 > -+ > r,. We can now construct the desired subfamily
by induction. Indeed, for B;,, take the largest ball (i.e., By). Then, assuming
that B;,, ..., B;, have been chosen, pick up the largest remaining ball which
does not intersect the balls which have been taken so far.
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Clearly, this process stops within a finite number of steps. In addition,
ifi ¢ {i1,...,4,}, then there exists some index i; such that i; < i and B;NB;;
is not empty. Therefore, by virtue of the triangle inequality, B; is included
in B(w;;,3r;;). This ensures that

n p

U B; C U B(SL’Z‘J.73’I“Z‘J).

i=1 j=1

As the measure p has the doubling property, this yields the desired result. 0O

The following result is of importance for proving Gagliardo—Nirenberg inequal-
ities.

Proposition 1.16. Let G be a locally compact group with neutral element e,
endowed with a distance d such that d(e,y=' - x) = d(z,y) for all (z,y) € G*
and a left-invariant Haar measure p satisfying (1.1).

We assume, in addition, that for allr > 0 there exists a positive measure o,

on the sphere X\ def {x € G /d(e,x) =r} such that for any L' function g on

G, we have i
/Gg(z) du(z) :/0 00(/2 g(2) dar(z)> dr.

r

For all measurable functions f and any L' function K on G such that
Vo € G, K(x) = k(d(e,x))
for some nonincreasing function k : RT — RY, we then have
V€ G, |K* f(z)] < [|K|L1cu Mf(2).

Proof. Obviously we can restrict the proof to nonnegative functions f. Arguing
by density we can also assume that k is C'' and compactly supported. Owing
to our assumptions on d and K, we have

K+ f(z) = / K@) f(y" 2) du(y)

[ e

Therefore, integrating by parts with respect to r, we discover that

K*f(x)z/o (//f das()ds)dr
- / <—k’<r>>( [ sty ))ar
. ,

<Mf@) [ (B dr.
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Finally, since

(Bla.r)) = u(Bter) = [ ' /. raoan

performing another integration by parts, we can write that

/O+OO(—k'(T))M(B(x,T)) dr — /;OO (r) (/ 1dar(y))dr = K| 21 (s

T

and the desired inequality follows. a

Remark 1.17. All the assumptions of the above proposition are satisfied if we
take for G the group (R?, +) endowed with the usual metric and the Lebesgue
measure, or the Heisenberg group (Hd, -) endowed with the Heisenberg dis-
tance and the Lebesgue measure of R24+1

We also note the following obvious generalization of the inequality stated
in the above proposition:

Ve € G, |K*f(x)| < (/( sup |K(y')|) dy>Mf(:z:),
G Md(ey')>d(e,y)
which holds for any measurable function K on G. In fact, in Chapter 2 we
shall use the above inequality rather than the above proposition.

1.2 The Fourier Transform

This section is devoted to a short presentation on the Fourier transform, a key
tool in this monograph. In the first subsection we define the Fourier transform
of a smooth function with fast decay at infinity. In the second subsection we
then extend the definition (by duality) to tempered distributions. We conclude
this section with the calculation of the Fourier transforms of some functions
which play important roles in the following chapters.

1.2.1 Fourier Transforms of Functions and the Schwartz Space

The Fourier transform is defined on L'(R%) by

~

F1©) = F©) = [ 0 (@) aa. (117)

where (z|¢) denotes the inner product on R?. It is a continuous linear map
from L'(R?) into L>°(R?) because, obviously, | f(€)| < || f|/z1. It is also clear
that for any function ¢ € L' and automorphism L on R®, we have

FpolL)= $po L1, (1.18)

1
| det L
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We now introduce the Schwartz space S(R?) (also denoted by S when no
confusion is possible), which will be the basic tool for extending the Fourier
transform to a very large class of distributions over R%. Let us first introduce
the following notation. If « is a multi-index (i.e., an element of Nd), T an

element of R?, and f a smooth function of R, then the length |a| of « is
defined by |a % oy +- -+ ag. We also define 9= f 1 oo .. .95 f and 2° def

.. pQd

Definition 1.18. The Schwartz space S(Rd) is the set of smooth functions u
on R? such that for any k € N we have

de
lulis % sup (1+ 2))¥[0%u(z)| < oo.
o <k
xERd

It is an easy exercise (left to the reader) to prove that, equipped with the
family of seminorms (|| - ||r.s)ren, the set S(R?) is a Fréchet space and that
the space D(Rd) of smooth compactly supported functions on R? is dense
in S(RY).

The way the Fourier transform F acts on the space S is described by the
following theorem.

Theorem 1.19. The Fourier transform continuously maps S into S: For any
integer k, there exist a constant C' and an integer N such that

Vo €S, [dlrs < Cllgln.s.

Moreover, the Fourier transform F is an automorphism of S, the inverse of
which is (2m)~9F, where F denotes the application f —— {f — (ff)(ff)}.

Proof. Let k € N and « € N¢ with length k. Using Lebesgue’s theorem and
integration by parts, we get that, for any ¢ in S,

~

(i0)° (&) = F(x“¢)(€) and (i€)*d(€) = F(O“¢)(€).  (1.19)
From this, we deduce that
€°0°0()| < [F(©°(@"0))(©)]
< (|07 (z* )| 1

< call L+ [2))* 0% (@) [l

Hence, by the definition of the seminorms, we have ||<$| k.S < Cllollktd+1,s-

We now prove the inverse formula, namely, F~! = (277)_d_7: . The proof

is based on the computation of Fourier transforms of Gaussian functions.
If d = 1, we have, thanks to (1.19),
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dé

= —5F(e)©).

g2 . 1 2 L&
Asf(e 'T )(O):/e * dx =77, we get that F(e™*)(§) =m2e 7.
From this and Fubini’s theorem, we can now deduce that if d is any positive
le1?

integer, then F (e“mlz) (&) = w2e” 5 . Using (1.18) we then infer that for

any positive real number a,

d
. 2 2
/ ol galal? gy _ (g) 4 (1.20)
R

Let ¢ be a function in & (Rd) and € any positive real number. Fubini’s theo-

rem applied to the function (277)_dei(m_y‘5)e_s‘f‘zqﬁ(y), together with (1.20),
implies that

(27) 4 /Rd 110 o=el€ 3 6) g — (1)3(6 . )(2).

4dme

On the one hand, owing to Lebesgue’s dominated convergence theorem, the
left-hand side tends to (27)~¢F¢. On the other hand, the right-hand side is
the convolution of ¢ with an approximation of the identity. Letting ¢ tend
to 0 thus completes the proof of the theorem. a

1.2.2 Tempered Distributions and the Fourier Transform

Definition 1.20. A tempered distribution on R? s any continuous linear
functional® on S(R?). The set of tempered distributions is denoted by S'(R%).
A sequence (un)nen of tempered distributions is said to converge to u
in S'(RY) if
¥ € S(RY), lim (un, ) = (u,0).

Remark 1.21. The link with distributions on R? is as follows: If T is a distri-
bution on R? such that for some integer k and positive real C' we have

Vo € DRY), (T, 9)| < Cllelr,s, (1.21)

then, as D(Rd) is dense in S (Rd), the linear functional 7" may be uniquely
extended to a continuous linear functional. Moreover, if T' belongs to S’ (R%),

5 That is, u is a tempered distribution if there exist a constant C' and an integer k
such that |(u, ¢)| < C||¢||x,s for all ¢ € S(R?).
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then the restriction of 7' to D(R?) defines a distribution on R? because, for
any positive R and any function ¢ in D(B(0, R)),

(T, 0) < Cllellrs < C(L+ R)* S 10%@] Lo

Thus, the set of distributions 7 on R? which satisfy (1.21) may be identified
with S"(R%).

Ezample 1.22. — Let us denote by L}, the space of locally integrable func-
tions f on R? such that for some integer N, the function (1 + |z|)~N f(x)
is integrable. For any f € L},, we can then define the tempered distribu-
tion Tt by the formula

(Ty, ¢) = /Rd f(@)o(x) dx.

In other words, we identify the function f with T%.

— Any finite Borel measure may be seen as a tempered distribution. Indeed,
we may take k =0 in (1.21).

— Any compactly supported distribution may be identified with an element
of &'.

Let us use L. Schwartz’s idea of duality to define operators on the space of
tempered distributions. It is based on the following proposition.

Proposition 1.23. Let A be a linear continuous map from S into S.” The

formula

(tAu, 6) ¥ (u, A9)

then defines a tempered distribution. Moreover, 'A is linear and continuous,
in the sense that if (un)nen s a sequence of distributions which converges to u
in 8'(RY), then (‘Auy,)nen converges to *Au.

Proof. By the definition of a tempered distribution, an integer k& and a con-
stant C' exist such that

VO €S, [(u,0)] <Cl0k.s- (1.22)

The linear map A is assumed to be continuous, hence there exist a constant C’
and an integer N such that

Vope S, |Ad|rs < C'l9lln.s-

Applying (1.22) with # = A¢ and the above inequality, we then get that *Au
is a tempered distribution. By the definition of the convergence of a sequence
of tempered distributions, we then write

" That is, for any integer k, there exist a constant C and an integer N such that
14¢llk,s < Cllglln.s for all ¢ € S(RY).
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("Atn, §) = (un, Ap) — (u, Agp) = (‘Au, ¢).
The proposition is thus proved. a

We now list a few important examples to which Proposition 1.23 applies:

— We may take for A any operator (—9)® or z® — x%u with a € N . Indeed,
we have, for all ¢ in S,

[(=0)*¢llr.s < [[0llktja.s and 20|

ks < |9llk+)als-

— Let L be a linear automorphism of R? and define

def 1 —1
Appg = —— o L.
L9 det L ¢o
It is clear that Ay satisfies the hypothesis of Proposition 1.23.
— If we denote by @ the space of smooth functions on R? such that, for
any integer k, an integer N exists such that

sup (1 4 [2*) " sup [0 f(2)| < oo,
zER la|<k

then the operator Ay of multiplication by f satisfies the hypothesis of the
proposition.

— If @ is a function of S, it is left as an exercise for the reader to check that,
for any ¢ € S,

. def ~
468|155 < CrllOllkrarrsldllns with Agp = 0 x .

— Theorem 1.19 guarantees, in particular, that the Fourier transform F sat-
isfies the hypothesis of Proposition 1.23.

For all the above operators, we can apply Proposition 1.23. We now check
briefly that this is a generalization of classical operations on functions. If u is
an L}Vl function which is also C', then we have

¥ €S, ((-0)u0) = (1,-0,0) = [ ula)(~00)(z) da.
R
An integration by parts ensures that *(—d;)u = d;u, in the classical sense.
Next, we claim that ‘A f(y) = f(Ly) for all f € L},. Indeed, a straight-
forward change of variables ensures that for all ¢ € S we have

1

t _
<ALf7¢>_ |detL\ Rd

(x)qb(L_lx) dx = y f(Ly)o(y) dy.

In the particular case where Lz = Az, we denote ‘Arf by fx, and when \ =
—1, the distribution 'Ap f is denoted by f. In passing, let us recall that a
tempered distribution f is said to be homogeneous of degree m if
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fHr=A"f forall A>0.

It is obvious that the operator Ay generalizes the classical multiplication of
functions by f.
Finally, for any L' function f, we have, according to Fubini’s theorem,

("Apf, ¢) = (f,0% )
= / f(@)0(y — 2)p(y) dy dz
R4 x R4
= (fx0,0¢).

Thus, the notion of convolution between a tempered distribution and a func-
tion of S coincides with the classical definition when the tempered distribution
is an L' function.

In order to extend the definition of the Fourier transform to tempered
distributions, we consider an L' function f. By Fubini’s theorem and by def-
inition of the Fourier transform on L', we have, for all ¢ € S,

A

(‘Ff.o) f@)e(z

- / F(@)e @O g(e) dar e
R4 x R4
= ([, ¢).

In other words, the operator *F restricted to L' functions coincides with the
Fourier transform of functions. Thus, it will also be denoted by F in all that
follows.

Proposition 1.24. For any (u,6) in 8’ xS, A € R\{0} and (a,w) € R? x RY,

we have®

~ (i0)*1 = F(xu), (i)*4 = F(0"u), e D= F(r.f), R
rf= ]:(ez(at‘UJ)f>7 df()\ 5) =F(f(A\z)), and F(ux0)=0u.

Proof. The first five equalities readily follow from (1.19) or direct computation
once we observe that ‘(AB) = 'B'A. In order to prove the last identity,
it suffices to use the fact that, by definition of the Fourier transform and
convolution, we have

(Fux0),0) = (ux0,0) = (u,0 ).
Fubini’s theorem implies that

8 Below, the notation 7, stands for the translation operator 7, : f +— f(- — a).
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(0 9)(

)= [ote=n( [ ot ds )an
/ —i(zl€) (/ e—i(xn—&)g(n_g)dn) o(z) dx
F (@

We infer that (F(ux0),¢) = (u,f(§¢)) = (u, 5(25) = <§ﬂ, ¢). The proposition
is thus proved. a

Theorem 1.25 (Fourier—Plancherel formula). The Fourier transform is

an automorphism of S’ with inverse (2m)~%F. Moreover, F is also an au-

tomorphism of L2(Rd) which satisfies, for any function f in L%, ||f|lz> =
d

(2m) 2| f]l 2

Proof. On the space S, we have FF = FF = (2r)?1d. Arguing by transposi-
tion, we discover that these two identities remain valid on S’. Next, using the
fact that for any function ¢ in & we have F¢ = F(¢) and taking advantage
of the inverse Fourier formula (see Theorem 1.19), we get, for any function ¢
in S,

1772 = (Fo, Fo) = (6, FFd) = (2m)°[|¢lI7-

Combining the Riesz representation theorem with the density of S in L?
enables us to complete the proof. a

Finally, let us define a subspace of &'(R?) which will play an important role
in the following chapters.

Definition 1.26. We denote by S),(RY) the space of tempered distributions u
such that®
)\lim |0(AD)u||p =0 for any 6 in D(R?).

Remark 1.27. It is clear that whether or not a tempered distribution u belongs
to S;, depends only on low frequencies. As a matter of fact, it is not hard to
check that u belongs to S;(R?) if and only if one can find some smooth
compactly supported function € satisfying the above equality and such that

6(0) # 0.
Examples

— If a tempered distribution u is such that its Fourier transform  is locally
integrable near 0, then u belongs to S;. In particular, the space £ of
compactly supported distributions is included in Sj,.

— If u is a tempered distribution such that (D)u € LP for some p € [1,00]
and some function # in D(R?) with 6(0) # 0, then u belongs to Sj.

9 We agree that if f is a measurable function on R? with at most polynomial growth

at infinity, then the operator f(D) is defined by f(D)a dff]: (fFa).
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— A nonzero polynomial P does not belong to S; because for any 6 € D(R?)
with value 1 at 0 and any A > 0, we may write §(AD)P = P. However,
if 7 is in R?\{0}, then ¢C") P belongs to S} because the support of its
Fourier transform is {n}. We note that this example implies that Sj, is
not a closed subspace of S’ for the topology of weak-x convergence, a fact
which must be kept in mind in the applications.

1.2.3 A Few Calculations of Fourier Transforms

This subsection is devoted to the computation of the Fourier transforms of
some functions which are definitely not in L!.

Proposition 1.28. Let z be a nonzero complex number with nonnegative real

part. Then,
d
Fle )@ = (T) e
z
oo _adef a4 _idg . 0
with z72 = |z|7ze 2% if z = |z]e"’ with 0 € [-7/2,7/2].

Proof. Let us remark that for any £ in Rd, the functions

d
i a1zl T\ 2 _l&?
Z— e~ @0 e=2121" gp and 2 —s (—) e 4=
R4 z

are holomorphic on the domain D of complex numbers with positive real part.
Formula (1.20) states that these two functions coincide on the intersection of
the real line with D. Thus, they also coincide on the whole domain D. Now,
let (zn)nen be a sequence of elements of D which converges to it for ¢ # 0. For
any function ¢ in S, we have, by virtue of Lebesgue’s dominated convergence
theorem,

n—oo Rd ]Rd
e _le?
lim e~ % P(€) dE = e 4t (&) dE
n—oo Jpd R4

As we have .,

2 m™\2 _le?
]_-(efznu ) - (_) e oo
Zn
passing to the limit in §’(R?) when n tends to oo gives the result, thanks to
Proposition 1.23. g

Proposition 1.29. If 0 € 10,d], then F(| - |77) = c4.»
stant cq,. depending only on d and s.

-|7=4 for some con-
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Proof. We only treat the case d > 2. The (easier) case d = 1 is left to the
reader. Defining

d
R d:ef Z xjaj and Zj,k d:ef xjak — xkéj
j=1

we have R(|-|~7) = —o|-|77 and Z; x(|-|~7) = 0. Then, using Proposition 1.24,
we infer that Z; ;. F|- |77 =0 and

d
RF|-|77 =Y _0;(&F|-177) —dF|- |77 = (o —d)F| - |7°.

j=1
By restricting to R?\{0}, we then see that
R(1-17F ) 17) = Zia (1177 F1-177) =0 in D'®R*\{0}).

We note that for any k,

d d
2|20, = Zx?@k =z R+ ijijk.
j=1 j=1

Therefore, V(| - [*=7F| - |77) is supported in R?\{0}. Because d > 2, we
deduce that there exists some constant ¢4, such that |- [177F|- |77 — ¢y, is
also supported in R*\{0} and, owing to o > 0, s0 is F|-|~7 —cq0|-|” "% The
conclusion then follows easily from the following lemma. ad

Lemma 1.30. Let T be a distribution on R supported in {0} and such
that RT = sT for some real number s.

— If s is not an integer less than or equal to —d, then T = 0.
— If s is an integer less than or equal to —d, then there exist some real

numbers a, such that
T= > a.0%.
|la|=—s—d

Proof. We first observe that a distribution supported in {0} is of the form T =
Z a60%0y. We thus have

la| <N

d
RT =YY" aax;0;0

j=1|a|<N

= Y (d+ |al)aad*s.

lo| <N

As (0%00)qene is a family of linearly independent distributions, the fact
that RT = sT implies that (d+|a|)as = —saq. The lemma is thus proved. O
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1.3 Homogeneous Sobolev Spaces

This section is concerned with homogeneous Sobolev spaces. We first establish
classical properties for these spaces, then we focus on embedding in Lebesgue,
BMO and Hoélder spaces.

1.3.1 Definition and Basic Properties

Definition 1.31. Let s be in R. The homogeneous Sobolev space H#(R?) (also
denoted by H?®) is the space of tempered distributions u over Rd, the Fourier
transform of which belongs to L} (Rd) and satisfies

loc
d ~
iy, < [ ePae? as < .

We note that the spaces H* and H s' cannot be compared for the inclusion.
Nevertheless, we have the following proposition.

Proposition 1.32. Let so < s < s1. Then, Hs 0 H*' is included in HS,
and we have

lull e < ||u||1_9 |u||%,s1 with s = (1—0)sg + 0s1.

> 50

Proof. Tt suffices to apply Holder’s inequality with p =1/(1 —0) and ¢ =1/6
to the functions & — [£[2(1=0)s0 ¢ |€]2951 and the Borel measure |@(€)]? d€.
O

Using the Fourier-Plancherel formula, we observe that L? = HO and that
if s is a positive integer, then H? is the subset of tempered distributions with
locally integrable Fourier transforms and such that d“u belongs to L? for all «
in N of length s.

In the case where s is a negative integer, the Sobolev space H* is described
by the following proposition.

Proposition 1.33. Let k be a positive integer. The space H’k(Rd) consists of
distributions which are the sums of derivatives of order k of Lz(Rd) functions.

Proof. Let u be in H*k(Rd). Using the fact that for some integer constants
A,, we have

‘€|2k — Z §]21 e jQA = Z Aa(iﬁ)a(*if)a, (123)

1<j1,....jx<d o=k
we get that

a6) = Y (i) va(§) with v,(€) dzean<|_;§2aﬂ<f>-

el =k
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As v is in H‘k, the functions v, belong to L2. Defining uq def F~ v, we
then obtain
U= Z O%Uu  with  u, € LE(RY).
|a|=k

This concludes the proof of the proposition. a
. d
Proposition 1.34. HS(Rd) is a Hilbert space if and only if s < 5

Proof. We first assume that s < d/2. Let (u,)neny be a Cauchy sequence
in H%(R%). Then, (i, )nen is a Cauchy sequence in the space L*(R%; |¢]?* d€).
Because |€]25 d€ is a measure on R?, there exists a function f in L2(RY; |€]25 d€)
such that (@, )nen converges to f in L2(R%; €] d€). Because s < d/2, we have

Lo @1 ([ |€|25|f(§)|2d§)%(/3(0,1) )} <oo

This ensures that f‘l(lg(o,l)f) is a bounded function. Now, 1eg (g, 1).f clearly
belongs to L2(R%; (1 + |¢]?)® d¢) and thus to S'(R?), so f is a tempered dis-

tribution. Define u def F~1f. Tt is then obvious that u belongs to H* and

that lim w, = u in the space H*.

n—oo

If s > d/2, observe that the function
N wr— @]l Lo, + llull g

is a norm over H*(R%) and that (H*(R%), N) is a Banach space.

Now, if H S(Rd) endowed with ||-|| ;. were also complete, then, according to
Banach’s theorem, there would exist a constant C' such that N(u) < C|lul| ..
Of course, this would imply that

Il 1 (B(o,1)) < Cllull g (1.24)

This inequality is violated by the following example. Let C be an annulus
included in the unit ball B(0,1) and such that C N 2C = (). Define

def . n 2‘1(54‘%)
L, S FY 1yac.
q=1 9

We have

n

. "1
IS0l B0y =C Y and || Z,]%. <C Y Z < Ch.

q=1 q=1

9a(s—$%)

As s > d/2, we deduce that Hi’an(B(o’l)) tends to infinity when n goes to
infinity. Hence, the inequality (1.24) is false. O
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Proposition 1.35. If s < d/2, then the space So(R?) of functions oflS(]Rd)7
the Fourier transform of which vanishes near the origin, is dense in H®.

Proof. Consider u in H*® such that
Vo € SR, (o) = [ I a0 dt = 0.

This implies that the Lj, . function @ vanishes on R? \{0}. Thus, & = 0. Thanks
to Theorem 1.25, we infer that u = 0. As we are considering the case where H*
is a Hilbert space, we deduce that So(R?) is dense in H*. O

The following proposition explains how the space H~* can be considered
as the dual space of H*.

Proposition 1.36. If |s| < d/2, then the bilinear functional

S()XS()—)(C

B 0o = [ el

can be extended to a continuous bilinear functional on H~* x H*. Moreover,
if L is a continuous linear functional on H®, then a unique tempered distri-
bution u exists in H™° such that

Vo€ H', (L,6) = Blu,¢) and L]y = llull -

Proof. Let ¢ and ¢ be in S§g. We can write

/

R
’/T

¢(x)p(x) da
R4

(F1)(O)(F)(©) ds‘

(2

/ €3 (—E)lel*@ d»z]

< 2m) "Nl gl gy
As Sy is dense in _H" when |o| < d/2, we can extend B to H—* x H*. Of
course, if (u,¢) € H* x S, then B(u, ¢) = (u, ¢).

Let L be a linear functional on H*. Consider the linear functional L

defined by
I ,{Lz(Rd) —C
. foo—= L FH )
It is obvious that
sup [(Ls, /)l = sup [(L,FH(-[7*f))]
[[fll2=1 1fll,2=1

= sup [(L,9)]
loll gs =1

= HLH(Hs)/~
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The Riesz representation theorem implies that a function g exists in L? such
that
vhe L7 (L) = [ o(@n(e) de
R
We obviously have | - [*g € L2(R%; |¢|725 d€). Now, as |s| < d/2, this implies
that | - [°g is in S'(R?) and thus we can define def F(| - 1°g). For any ¢
in S(R?), we then have

(w8) = [ oD &t = (L] D)

By the definition of Lg, we have (u,¢) = (L, $) and the proposition is thus
proved. O

For s in the interval ]0, 1], the space H* can be described in terms of finite
differences.

Proposition 1.37. Let s be a real number in the interval |0,1] and u be in
H*(R?). Then,

u(@ + y) — u(@)]?

2 (md
u € Li, . (R") and [

loc

L dz dy < oo.
R* xR

Moreover, a constant Cs exists such that for any function u in Hs(Rd), we

e [ule + ) — u(@)P
2 u(r +y) —ul@

Proof. Tn order to see that u is in L7, (R?), it suffices to write

u = .7-'_1(13(071)@ + f_l(ch(O,l)ﬂ).

The rest of the proof relies on the Fourier—Plancherel formula (see Theo-
rem 1.25), which implies that

lu(z + y) — u(z)|? _d/ letWle) — 112
dr = (2 _— d€.
/Rd |y|d+2s == (2m) ra  |y|dtEs RO de

Therefore,

u(x — u(x)]?
I e R RAGIL IR

]Rd
with ]
def |el(y|§) — 1|2 dy
F(&) = T g2s yld
R [yl ly]
It may be easily checked that F' is a radial and homogeneous function of

degree 2s. This implies that the function F(§) is proportional to |¢|>* and
thus completes the proof. O
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1.3.2 Sobolev Embedding in Lebesgue Spaces

In this subsection, we investigate the embedding of H*(R?) spaces in LP(R?)
spaces. We begin with a classical result.

Theorem 1.38. If s is in [0,d/2[, then the space H*(R?) is continuously em-
bedded in L7 (RY).

Proof. First, let us note that the critical index p = 2d/(d — 2s) may be found
by using a scaling argument. Indeed, if v is a function on R? and vy stands

for the function vy (x) def v(Az), then we have
_d _dg
[oxllice = A7 [[vllze and  JJoall . = A72F ol ..

If an inequality of the type |[v||» < C||v]| . is true for any smooth function v,
then it is also true for vy for any A. Hence, we must have p = 2d/(d — 2s).

Consider a function ¢ in So(R?). Defining (EQ(f) def |§\S$(§) and using

Propositions 1.24 and 1.29, we get that

27T 7dcds . -4
¢ = (HTS’ * s with ||ds||r2 = (27) 7 2||d|| .-

Theorem 1.7 thus implies that ||¢||L» < C||¢s|[z2. Now, according to Propo-
sition 1.35, the space SO(]Rd) is dense in H*. The proof is therefore complete.
O

Corollary 1.39. If p belongs to |1,2], then LP(Rd) embeds continuously in

H5(RY) with s = g

Proof. We use the duality between H# and H~* described by Proposition 1.36.
Write

lallgs = sup {a,¢).
lellz—e <1

1 1
Ass=d <§ - 5), by Theorem 1.38 we have ||¢|| ;v < Cll¢llz-. and thus

lallge <C  sup (a,¢) < Cllalrr.
lell <1

The corollary is thus proved. a

According to Proposition 1.24, the Fourier transform changes dilation into
reciprocal dilation and translation into multiplication by a character e*(*«)
(and vice versa). Obviously, the inequality

lullr ey < Cllull s (gay with  p=2d/(d — 2s)
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provided by Theorem 1.38 is invariant under translation and dilation.

We claim, however, that it is not invariant under multiplication by a char-
acter. Indeed, consider a function ¢ in S(R?) such that ¢ belongs to D(RY).
For all positive €, define the function

e(z) = % ¢(a). (1.25)
By the definition of || - || 4., we have
ol = [ 1epe 5(5— )| ae
/ ‘ﬁ—i- )|2d§ with e; d—ef(l,O,...,O).

Hence, ||¢. ||z is equivalent to e~° when ¢ tends to 0, while ||¢.|/1» does not
depend on e.

In what follows, we want to improve the estimate of Theorem 1.38 so that
it becomes also invariant if u is multiplied by any character ¢**l). In fact, we
shall construct a family of Banach spaces Ey, the norm of which is invariant
under translation, satisfying

la(A-) “lallg, . flla(n)

and, for some real number 8 € 10, 1],

s.dllallge s

1—
lallzr < Csallally.”
In order to do this, we introduce the following definition.

Definition 1.40. Let 6 be a function in S(Rd) such that 0 is compactly sup-
ported, has value 1 near 0, and satisfies 0 < 6 < 1. For u in S'(RY) and o > 0,
we set

de .
lull - = sup A7 (A %] 1
A>0

It is left to the reader to check that the space B~ of tempered distributions u
such that |u||5-. is finite is a Banach space. It is also clear that changing
the function 6 gives the same space with the equivalent norm. These spaces
come up in the next chapter in a more general context. We shall see that B
coincides with the homogeneous Besov space Bgo"oo

For the time being, we will compare B~ with Sobolev spaces.

Proposition 1. 41 For any s less than d/2, the space H* s contmuously

embedded in BS~% and there exists a constant C, depending only on Supp )
and d, such that

C .
lull ...a < ——ullgy. forall we H®.

SRR CERY
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Proof. As i is locally in L!, the function GA(A_1 i is in L. The inverse Fourier
theorem implies that

|AYB(A) %l g < (2m) | HA Yl s
< (2m) / BAE) €] |l [a(e)] de.
]Rd

Using the fact that fis compactly supported, the Cauchy—Schwarz inequality

implies that
C

ot

and the proposition is thus proved. a

d_s
1A0(A) % ufl L < A= |ull g

The difference between the H* norm the BS~% norm is emphasized by the
following proposition.

Proposition 1.42. Let ¢ € ]0,d] and let (¢dc)eso be defined according
to (1.25). There then exists a constant C such that ||¢:|| 5-» < Ce? for all
e>0.

Proof. By Holder’s inequality, we have
AYO(A) * pell e <(|0] 1| o -
From this we deduce that if Ae > 1, then we have
ATTN0(A) * el poe < e7)|0] L1 [|6]| e - (1.26)

If Ae < 1, then we perform integration by parts. More precisely, using the
fact that

(—iedy)%e' = =

and the Leibniz formula, we get

AYB(A) * g2)(a) = (i4e)" | 05, (B(Alx — )o(w) e dy

= (ide)* ) <Z) AF((=01)k0)(A) * (e 8] F¢) ().

k<d
Using Holder’s inequality, we get that

AF (oo Ay « (2 ai=r)| < 9kl 1ot ol -

Thus, we get A4[|0(A-) x ¢.||L~ < C(Ae)?. As we are considering the case
where Ae < 1, we get, for any o < d,

AY|O(A) % pe|| = < C(Ae).

Together with (1.26), this concludes the proof of the proposition. ]
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We can now state the so-called refined Sobolev inequalities.

Theorem 1.43. Let s be in ]0,d/2[. There exists a constant C, depending
only on d and 0, such that

C 1—
—ul
(p—2)7

Proof. Without loss of generality, we can assume that Hu||BS,% =1. As will

oz 24
Py lully,  with p= -

p <
lullzr < —

Bs

be done quite often in this book, we shall decompose the function into low
and high frequencies. More precisely, we write

~

u=1upa+upa with wupa=F YO(A1)7), (1.27)

where 6 is the function from Definition 1.40. The triangle inequality implies
that
(Jul > A) C (lug,al > A/2) U (Jun,a| > A/2)-

¢ we have |lug alp= < A%75_From this we deduce

By the definition of ||- | somd

that

AN
A=4,% (5) — p(lugal > A/2) =0,

From the identity (1.8) we deduce that

fullfe <p [ 0 ulfunay| > A/2) dx
0
Using the fact that

l[un, a5 1172

llun,a,| > A/2) < 47202

we get
o0
Jullfs < dp [ 2Py 3 0
0
Because the Fourier transform is (up to a constant) an isometry on L2(R%)

and the function 0 has value 1 near 0, we thus get, for some ¢ > 0 depending
only on 0,

fullfy <apenyd [ [ j@@Pagan )
0 ([€]>cAx)
Now, by definition of Ay, we have
d
|§| >cAy <= I < Cg d:ef2(|£c‘)p.

Fubini’s theorem thus implies that
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Ce¢
lullf < 4p (2m)~ /R ) < /O A”‘?’dA) () dg

dap=2)
<o 20 [ (D) e pa

1 1
As s = d(§ — —), the theorem is proved. 0O
p

Remark 1.44. Combining Proposition 1.41 and Theorem 1.43, we see that if
0 < s < d/2, then we have, for all u € H*®,

2
b with p= —2% . (1.29)

\/mHUHH° d—2s

Of course, since we have ||u| ;2 = (27)~ % l|lul| 70, we do not expect the constant
to blow up when p goes to 2. In fact, combining this latter inequality with the
inequality (1.29) (with, say, p = 4) and resorting to a complex interpolation
argument, we get

[ullzr < Ca

2d
d—2s

lullr < Cav/pllullg.  with p = (1.30)
By taking advantage of Proposition 1.42 and the computations that fol-
low (1.25), it is not difficult to check that the inequality stated in Theorem 1.43
is indeed invariant (up to an irrelevant constant) under multiplication by a
character. We now want to consider whether our refined inequalities are sharp.
Obviously, according to Proposition 1.42, we have

[ 6elle
O figell”,_glleelly”

s=3

=400 forany >1-—2/p.

Therefore, the exponent 1 — 2/p cannot be improved. We claim that even
under a sign assumption, the above refined Sobolev inequalities are sharp.
More precisely, we shall exhibit a sequence (f,,)nen of nonnegative functions
such that

1fnll | 24
im — =400 forany §>1-2/p. (1.31)
n—oo ﬁ 1-8
157 17l

Constructing such a family may be done by means of an iterative process. At
each step of the process, we use a linear transform T (defined below) which
duplicates any function f into 2% copies of the same function, at the scale 1/4.

Definition 1.45. Define @ def [-1/2,1/2]¢ and let x; = 3/8J for any ele-
ment J of {—1,1}¢. We then define the transform T by



34 1 Basic Analysis

D(Q) — D(Q) def
T: f —Tf d:ede Z T;f  with Tyf(x) = f4(z — ).
Je{-1,1}d
For B C Q, we define T;(B) def zy + 1B, T(B) def U T;(B) and
Je{—1,1}4

denote T;(Q) by Q.

Using the fact that for any f € D(Q), the support of T f is included in Q
and the fact that if J # J’, then Q; N Qs = (), we immediately get

1T flle = 2°075) | ]| . (1.32)

For the sake of simplicity we restrict our attention here to the case where s is
an integer.'® Then, observing that

0;(Tf)(x)=2" Y 40;f)A(x —2y)) = 4T(9;f)(x)
Je{-1,1}4
and using (1.32), we get
1Tl = 25520 o (1.33)

The estimate of T'f in terms of the B~ norm is described by the following
proposition.

Proposition 1.46. For o € ]0,d], a constant C exists such that
ITflg-a < 272N fl g0 + Cllf i1
Proof. Since, thanks to (1.32), we have
MZTNO) * (T )l < A0l | Tf Nz < X77N0) e | £l e,
we get

sup AN (T ) o < [16]] o< || f] 1 (1.34)
The case where \ is large (which corresponds to high frequencies) is more

intricate. We first estimate A(0(\-)x (T f))(x) when z is not too close to T(Q),

namely, z € Q° def {r € Q/ d(x,T(Q)) > 1/8}. As the function § belongs
to S(R"l)7 we have, for any positive integer N,

1
MO = )@ < Xl s || e T wldy

< Ol s AN f e

10 The general case follows by interpolation.
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This gives, for sufficiently large N,
Sup A7 IN0ON) # () ey < ClOs (1.35)

We now investigate the case where =z € é By definition, an element J,
of {—1,1}¢ and a point y of Q 5, exist such that d(x,y) < 1/8. For any J' # J,,
we have

d(z, Q) = d(y, Q) —d(x,y) > 5 —
We now write
IATO(A) (T f)] (x) < 27 [MO(N) % (T, f)] (2)
+ > 24 MO\ % (Ty f)] (@)

Je{-11}\{J.}
Again using the fact that the function 6 belongs to S(R?), we have, for any
positive integer N and any J' # J,,
1
X = (21 (@) < WolvsN [ | e T Fw)] dy
re AN[z =yl
< Cll0llwsA N Ty fll -
Using (1.32), we infer that, for A > 1 and N sufficiently large,
> MO % (T )| () < Clflln.s >, 1T £l

J'e{-1,13\{Jz} J'e{—1,1}N\{J,}
< OOl v sl fllzr- (1.36)

For any .J, we have, by definition of T,

(3)0G) 4], <05

Together with (1.34), (1.35), and (1.36), this gives
sup ATTIXON) > (Tl <272 fllg-o + ClIf Il 1o

sup A7 ||IATON) * (T f)|| e < sup A7
A>0 A>0

This completes the proof. a

We can now construct a sequence (f,)nen of functions satisfying (1.31). For
that purpose, we consider a smooth nonnegative function fj, supported in @,
and define f,, = T™ fy. Iterating the inequality from Proposition 1.46 yields

n—1
1all g < 2772 foll oo + O (3 27C72) | o 10
m=0

Taking o = d/2 — s with s €]0,d/2[, we deduce that
1 fall ey < Cpo2%m.

Using (1.32) and (1.33), we can now conclude that (1.31) is satisfied.




36 1 Basic Analysis

1.3.3 The Limit Case H?%

The space H 2 (R?) is not included in L>°(R?). We give an explicit counterex-
ample in dimension two. Let the function u be defined by

u(z) = p(z)log(—log|x])
for some smooth function ¢ supported in B(0, 1) with value 1 near 0. On the
one hand, u is not bounded. On the other hand, we have, near the origin,

C
oju(x)| £ —————
0N = T TogTal]

so that u belongs to H'(R?).
This motivates the following definition.

Definition 1.47. The space BMO(R?) of bounded mean oscillations is the
set of locally integrable functions f such that

w1
B/f fBlde <oco with fp = |B|/dex.

The above supremum is taken over the set of Euclidean balls.

def
I fllBro = Sup

We point out that the seminorm || - |pao vanishes on constant functions.
Therefore, this is not a norm. We now state the critical theorem for Sobolev
embedding.

Theorem 1.48. The space L% (R?) N H2(R?) is included in BMO(R?).
Moreover, there exists a constant C' such that

lullBpo < Cllull ;4
(RY) N HE (RY).

Proof. We use the decomposition (1.27) into low and high frequencies. For
any Euclidean ball B we have

for all functions v € L},

2
— < _ oy + —— .
/ |u uB| |B| l[ue,a = (ue,a) Bl L2 (s, ) + B l|un,allz2
Let R be the radius of the ball B. We have

l|e, 4 — (W,A)BHL2 B, &%) < R[[Vug al| e
< CR/d €11~ % €] %[, (€) | de
R
< CRA||u] ;4
We infer that

u— u -3 dae)?
[ lu—usl g < CRAJul g + C(AR) ( [ el dg)

Choosing A = R~! then completes the proof. O

=
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1.3.4 The Embedding Theorem in Hélder Spaces

Definition 1.49. Let (k,p) be in N x]0,1]. The Hélder space C**(RY) (or
Ck? | if no confusion is possible) is the space of C* functions u on R? such

that
|0%u(z) — 0%u(y)|

|z —ylP

lullcrr = sup ([l0°ullz +sup ) <o
zFyY

la|<k

Proving that the sets C*** are Banach spaces is left as an exercise. We point
out that C%! is the space of bounded Lipschitz functions.

Theorem 1.50. If s > % and s — % is not an integer, then the space Hs (Rd)
is included in the Hélder space of index

1= (- G- - 2).

and we have, for all u € H*(R?),

up sup 127(E) = 9°u(y)|

|a|=k o7y \;Ufy|;0 < CddHUHHS'

Proof. We prove the theorem only in the case where the integer part of s—d/2
is 0. As s is greater than d/2, writing
Q/Z == 13(0’1)@/\‘*' (1 - 13(071))@

we get that 7 belongs to L! (Rd), and thus v is a bounded continuous function.
We again use the decomposition (1.27) into low and high frequencies. The low-
frequency part of u is of course smooth. By Taylor’s inequality, we have

lue,a(x) —ue,a(y)| < [[Vugalpelz —yl.

Using the Fourier inversion formula and the Cauchy—Schwarz inequality, we
get

IVuralli < C [ elfate)de

1

C 2725d o
< (/Wma s) ol

< LIAFPHUHHS with p=s—d/2.
(1-p)>

Reasoning along exactly the same lines, we also have that
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lun allz~ < / . (€)] de
Rd

( / g% dé‘) lull
[£]>A

C

A7 lull g
p2

IN

IA

It is then obvious that

u(z) —u(y)] < [[Vueallpe |z —y[ + 2|lun,all L
< Cs (Jo =yl AT + A7) Jul ..

Choosing A = |x — y|~! then completes the proof of the theorem. a

1.4 Nonhomogeneous Sobolev Spaces on R¢

In this section, we focus on nonhomogeneous Sobolev spaces. As in the previ-
ous section, the emphasis is on embedding properties in Lebesgue and Holder
spaces. We also establish a trace theorem and provide an elementary proof for
a Hardy inequality.

1.4.1 Definition and Basic Properties

Definition 1.51. Let s be a real number. The Sobolev space H*(R?) consists
of tempered distributions u such that i € L _(R?) and

loc
ul%. % / (1 + JE12)° [a(€) 2 de < oo
]Rd

As the Fourier transform is an isometric linear operator from the space H* (Rd)
onto the space L2(R%; (1 + |€]2)® d€), the space H*(R?) equipped with the
scalar product

(o [ (1 ey de (137

is a Hilbert space.

It is obvious that the family of H?® spaces is decreasing with respect to s.
Moreover, we have the following proposition, the proof of which is strictly
analogous to that of Proposition 1.32.

Proposition 1.52. If so < s < s1, then we have

1-0

lullmre < llull o llull e with s = (1~ 0)so+ 1.




1.4 Nonhomogeneous Sobolev Spaces on R? 39

When s is a nonnegative integer, the Fourier—Plancherel formula ensures that
the space H® coincides with the set of L? functions u such that 0®u belongs
to L2 for any « in N with |a| < s. In the case where s is a negative integer,
the space H?® is described by the following proposition, the proof of which is
analogous to that of Proposition 1.33.

Proposition 1.53. Let k be a positive integer. The space H’k(Rd) consists of
distributions which are sums of an L? (Rd) function and derivatives of order k
of L2(R%) functions.

Remark 1.54. The Dirac mass dg belongs to H=5—¢ for any positive ¢ but
d . . o
does not belong to H~z. Moreover, dq is not in H* for any s.

It is obvious that when s is nonnegative, H® is included in H#, and that the
opposite happens when s is negative. Further, H* # H® for s # 0. In the
following proposition, we state that the two spaces coincide for compactly
supported distributions and nonnegative s.

Proposition 1.55. Let s be a nonnegative real number and K a compact
subset of RY. Let H3 (R?) be the space of those distributions of H*(R?) which
are supported in K. There then exists a positive constant C such that

1
s d
Vu € Hig(RY), Fllulla: < llullg. < Julla-.

Proof. We simply have to prove that ||u||z2 < Ck||u|zs. Using the Fourier—
Plancherel formula and the inverse formula, we have!l

~ _4d ~
(@] < lullr < VIE]ullz2 < (2m) 72 VK] [ 2

For any positive € we then get

@l < Cn) Kl BO.2) + [
R4\ B(0,

€172 1€ 1> [a(e) [ dg
o)
_ _ 1
< (2m)~eas” |K| [[al7e + 5 lull.-

Taking € such that (27) " %cqe? |K| = 1/2, we see that

I
@22 < W(%d\KDdHUHHu (1.38)
and the result follows. O

From the above proposition, we can infer the following Poincaré-type inequal-
ity, which is relevant for functions supported in small balls.

' From now on, we agree that |K| denotes the Lebesgue measure of the set K.
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Corollary 1.56. Let 0 <t < s. A constant C exists such that for any posi-
tive  and any function u € H® (Rd) supported in a ball of radius §, we have

lull e < CO* " ullge and ullae < C6* " ul -

Proof. Using the fact that the || - ||+ norm is invariant under translation, we
can suppose that the ball is centered at the origin. If we set v(z) = u(dz),
then v is supported in the unit ball and obviously satisfies ||v|| gt < C||v|| &=,
hence also ||v|| ;. < C||v|| ., due to the previous proposition.

Using the fact that 9(§) = 5_‘1@(%)7 we thus get [Jul| 7. < C6* lull ..

Using (1.38) we then get the inequality pertaining to nonhomogeneous norms.
O

We have the following density result, strictly analogous to Proposition 1.35.
Proposition 1.57. The space S is dense in H®.

The duality between H® and H~* is described by the following proposition,
the proof of which is analogous to that of Proposition 1.36.

Proposition 1.58. For any real s, the bilinear functional

SxS—C

B0 (6,0 H/¢

can be extended to a continuous bilinear functional on H™° x H®. Moreover,
if L is a continuous linear functional on H®, a unique tempered distribution u
exists in H~° such that

VoS, (L,¢) = B(u,9).
In addition, we have ||L||(gsy = [|ul|g--.
The following proposition can be very easily deduced from Proposition 1.37.

Proposition 1.59. Let s = m + o with m € N and o € ]0,1[. We then have

H*(R?) = {u e L*(RY) / Ya e N / |a| <m, 8%u € L*(R?)

0 u(a-+y) - 0*u(a) P
7

and, for o/ |a| = dr dy < —|—oo},

Re xR
and there exists a constant C such that

0%u — 0%u(x)|?
Ml < Y / e %

lal= d x R4

+ Y 10%ullfs < Ollull-.

o] <m
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The above characterization of Sobolev spaces is suitable for establishing invari-
ance under diffeomorphism. In what follows, it is understood that a global k-
diffeomorphism on RY is any C* diffeomorphism ¢ from R? onto R? whose
derivatives of order less than or equal to k are bounded and which satisfies,
for some constant C,

V(z,y) € R* xR, [p(z) — o(y)| = Clz —y|.

Corollary 1.60. Let ¢ be a global k-diffeomorphism on RY, 0<s <k, and
u € H*(RY). Then, uoyp € H*(RY).

Proof. By virtue of the chain rule, it is enough to consider the case where s
is in [0, 1[. The result follows easily from the identity

J(w) def /Rded u(@(lz))_yztﬁiy))l dr dy

u(z) — uly)|?
= [ e e Do) de Do) e dy

_ 2
<c |u(z) Z(y)l dr dy,
RixRd [T — y|THEs
where it is understood that 1) = ¢ ~!. This proves the corollary. a

The following density theorem will be useful.

Theorem 1.61. For any real s, the space D(Rd) s dense in Hs(Rd).

Proof. In order to prove this theorem, we consider a distribution v in H*® (Rd)
such that for any test function ¢ in D(R?), we have

[ @00 + e T@de ~o.

Knowing that D(R?) is dense in S(R?) and that the Fourier transform is an
automorphism of S(R?), we have, for any function f in S(R?),

[ 10 + 1k i ~o.
This implies that (1 +|-|?)*7 = 0 as a tempered distribution. Thus, & = 0,
and then u = 0. O

The Sobolev spaces are not stable under multiplication by C°° functions;
nevertheless, they are local. This is a consequence of the following result.

Theorem 1.62. Multiplication by a function of S(Rd) 1S a continuous map
from H*(RY) into itself.
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Proof. As we know that gu = (27)~ 9% * @, the proof of Theorem 1.62 is
reduced to the estimate of the L2(R%) norm of the function U, defined by

U 1+ 103 [ 1pte = o)l ) dn

We will temporarily assume that

| s

(141625 <27 (1+[€—n)F 1+ ). (1.39)

We then infer that

P& = mI(1 + |nl*) = [a(n)| dn.

sl sl
vl <2 [ arle-np)
R4
Using Young’s inequality, we get

lsl sl
lpull: < 2= X+ %)= @llpaflulm,

and the desired result follows.

For the sake of completeness, we now prove the inequality (1.39). Inter-
changing £ and 7, we see that it suffices to consider the case s > 0. We have

(L+1€)F < (L +2(16 =0 +[n*))?
<25(L+[E—n?)2(1+ ()=,
This completes the proof of the theorem. a

We will now consider the problem of trace and trace lifting operators for
the Sobolev spaces. Consider the hyperplane z; = 0 in R?. Because this has
measure zero, we cannot give any reasonable sense to the trace operator -~y
formally defined by yu(z’) = w(0,2’) if u belongs to a Lebesgue space. For
instance, there exist elements of L?(R?) which are continuous for z; # 0 and
tend to infinity when z; goes to 0. This obviously precludes us from defining
the trace of a general L? function.

The following theorem shows that defining yu makes sense for u € H*(R?)
with s greater than 1/2. Extending the usual trace operator by continuity
provides us with the relevant definition.

Theorem 1.63. Let s be a real number strictly larger than 1/2. The restric-
tion map 7y defined by

.{S%%st*w
o — (d): (za,...,xq) — &(0,29,...,24)

can be continuously extended from H*(RY) onto Hs—2(R*™1).
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Proof. We first prove the existence of . Arguing by density, it suffices to find
a constant C such that

VoeS, (D), .-y < Cliollae (1.40)

To achieve the above inequality, we may rewrite the trace operator in terms
of a Fourier transform:

00,) = (2m) 7 [ 56, ¢) g de

=t [0 (en) [ e ) e

—

7@)E) = (2m)! / o(60. &) dér.

By multiplication and division by (1+ |£;]% +|¢/|?)2 and the Cauchy-Schwarz
inequality, we have

T < e [ar@rierraa ) [@dora+ierya )

Having s > § ensures that the first integral is finite. In order to compute it,
we make the change of variables & = (1 + [€/|2)2z\. We obtain

/(1+£% FIEPR) " dey = Cu(1+ |€2) "% with C, = /(1“2)-%.

We deduce that ||7((;5)||i1571 < Cs||6||%4-, which completes the proof of the

2

We thus have

first part of the theorem.

We now define the trace lifting operator. Let x be a function in D(R) such
that x(0) = 1. We define

Ro(z) & (2)-0+1 / IO (€)(E) de with (€)= VITIEP.
It is clear that
FRu(E) = / e (HENDE) dt

R

— (%) aee).

Taking N sufficiently large, we deduce that
IRolfr: = [ (+16R + 167 €) R0 ) e ae

<ov [ ([(+80) e a )+ eprinera

< Cx|vll?

H%
Of course, we have yRv = v. This completes the proof of the theorem. a
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We infer the following corollary.
Corollary 1.64. Let s > m + % with m € N. The map

H*(RY) — éHS*j*%(Rd_l)
=0
u +— (7j(u))o<j<m

I:

with v;(u) = (8], u) is then continuous and onto.

Remark 1.65. More generally, the trace operator vsx may be defined for any
smooth hypersurface X of R?. Indeed, according to Theorem 1.62 and Corol-
lary 1.60, the spaces H*® (Rd) are local and invariant under the action of dif-
feomorphism, so localizing and straightening X' reduces the problem to the
study of the trace operator defined in Theorem 1.63.

1.4.2 Embedding

In this subsection, we present a few properties concerning embedding in
Lebesgue spaces. First, from Theorems 1.38 and 1.50 we can easily deduce
the following result.

Theorem 1.66. The space Hs(Rd) embeds continuously in:

~ the Lebesgue space LP(RY), if 0 < s < d/2 and 2 < p < 2d/(d — 2s)
— the Hélder space C*P(R?), if s > d/2+k+p for some k € N and p € ]0,1].

As in the homogeneous case, the space H % fails to be embedded in L.
However, the following Moser—Trudinger inequality holds.

Theorem 1.67. There exist two constants, ¢ %nd C, depending only on the
dimension d, such that for any function v € H? (RY), we have

/]Rd (eXp(c( |||;ﬁz); )2) - 1> dx < C.

Proof. As usual, arguing by density and homogeneity, it suffices to consider
the case where f is in S and satisfies ||fHH% =1.

Now, the proof is based on the fact that, according to the inequality (1.30)
and the definition of nonhomogeneous Sobolev spaces, there exists some con-
stant Cy (depending only on the dimension d) such that

1 fllz2r < Cay/p forall p>1. (1.41)

For all z € Rd, we may write

exp(clf(@)2) 1= §|f<x>|2p.

p>1 "



1.4 Nonhomogeneous Sobolev Spaces on R? 45

Integrating over R? and using the inequality (1.41) yields

[ (eotelsen?) - 1) ae = T ez

p>1

The theorem then follows from our choosing the constant c¢ sufficiently small.
O

As stated before, the space H*(R?) is included in H*(R?) whenever ¢ < s. If
the inequality is strict, then the following statement ensures that the embed-
ding is locally compact.

Theorem 1.68. Fort < s, multiplication by a function in S(Rd) is a compact
operator from H®(R?) in H'(R?).

Proof. Let ¢ be a function in S. We have to prove that for any sequence (u,,)
in H*(RY) satisfying sup,, ||[un|zs < 1, we can extract a subsequence (ty, )
such that (@uy,, ) converges in H*(R?).

As H S(Rd) is a Hilbert space, the weak compactness theorem ensures
that the sequence (up),en converges weakly, up to extraction, to an ele-
ment u of H*(R?) with |lul|z- < 1. We continue to denote this subsequence
by (4n)nen and set v, = u,, —u. Thanks to Theorem 1.62, sup,, ||¢v,| g < C.
Our task is thus reduced to proving that the sequence (@v,)nen tends to 0
in H*(R%). We now have, for any positive real number R,

/(1+IE\Q)t\F(wvn)(é)lzdé S/ (1 + €)1 F (pva) (€)1 d€

IEI<R

R P o) O de
[E1=R

lvnllFs
< (1+ [€1) [ F (pvn) (€) | d + 75t
/£<R (1+R2)>
As (pvp )nen is bounded in H*(R?), for a given positive real number ¢, we can
choose R such that
. A e et
(1+ R2)s—t 1 ¥inlle =

On the other hand, as the function ¢ defined by

m) = F (1 + Inl®) 3 - m)

[\

Ye(n) def

belongs to S(R?), we can write
Fleon)(©) = 2m)~ [ 3¢~ nmatn) dn

- / (1 -+ [n[2)* B ()T ()
= (e | o).
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As (vp)nen converges weakly to 0 in H® (Rd), we can thus conclude that
Ve e RY, lim F(pu,)(€) = 0.
n—o0
Let us temporarily assume that

sup |F(pvn)(§)] < M < oc. (1.42)
[§I<R
neN

Lebesgue’s theorem then implies that

lim (1 + € 1F (pun) (€)1 d€ = 0,

oo JIEI<R

which leads to the convergence of the sequence (pv, )nen to 0 in H!(R?).
To complete the proof of the theorem, let us prove (1.42). It is clear that

Fler)©) < a7~ [ 126 =)l Futn)ldn

2

< @) o | ( Ja+iry et - n>|2dn>

Now, as @ belongs to S(R?), a constant C' exists such that

Cn,

d
—_— ith Ny = — 1.
T —npyNe Mt No=g s+

D6 —n)| <
We thus obtain

/(1 +[n*) " 1@(E—n)|* dn < / (1+ [nl*)~*[@(§ = m)|* dn

In|<2R

+ / (1 -+ [nl2)~* |3 (€ — ) dn
[n|>2R

<cC (1+ [y dn
[n|<2R

[ (LI e-nP) N do,
In|>2R

Finally, since [¢| < R, we always have | —n| > @ in the last integral, so we

eventually get

o
(1+[nf2)2+!

This yields (1.42) and completes the proof of the theorem. a

Jasmpylee - ki< cas o [
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From the above theorem, we can deduce the following compactness result.

Theorem 1.69. For any compact subset K of RY and s’ < s, the embedding
of Hi(RY) into H5(R?) is a compact linear operator.

Proof. 1t suffices to consider a function ¢ in & (Rd) which is identically equal
to 1 in a neighborhood of the compact K and then to apply Theorem 1.68. O

1.4.3 A Density Theorem

In this subsection we investigate the density of the space D(R?\{0}) in
Sobolev spaces. This result is useful for proving Hardy inequalities and is
related to the problem of the pointwise value of a function in H* (Rd). Indeed,
having D(R?\{0}) dense in H*(R?) precludes any reasonable definition of the
“value at 0” of an element of H*(R%). We now state the result.

Theorem 1.70. If s < d/2 (resp., < d/2), then the space D(R%\{0})
is dense in H*(RY) [resp., in H5(RY)]. If s > d/2, then the closure of
the space D(R\{0}) in H*(R?) is the set of functions u in H*(R?) such
that 9*u(0) = 0 for any o € N* such that |a| < s — d/2.

Proof. As H*(RY) is a Hilbert space it is enough to study the orthogonal
complement of D(R?\{0}) in H*(R?). For u in H* we define

us 11+ €2)%0).

If u belongs to the orthogonal complement of D(R?\{0}), then we have

[ B3 d = (a0 forany o in DRN\(0}).

This implies that the support of ug is included in {0}. We infer that a se-
quence (aq)ja|<n €xists such that

us = Y aad®d. (1.43)

la|<N

As us belongs to H™®, Remark 1.54 implies that a, = 0 for |a] > s — d/2.
Thus, if s < d/2, then us = u = 0 and the density is proved in that case. The
proof of the density in the homogeneous case follows the same lines and is left
to the reader as an exercise.

When s is greater than d/2, the orthogonal complement of the space
D(R?\{0}) is exactly the finite-dimensional vector space V, spanned by the
functions (uq)|a|<[s—d/2) defined by

ua () def (2m) ¢ /Rd pRICTS (17$§|)£2)5 de.
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However, thanks to the relation (1.43), if the partial derivatives of order less
than or equal to s — d/2 of a function v in H*® vanish at 0, then we have

(V) s = {(v,0%) = 0.

Thus, the function v belongs to the orthogonal complement of V,, which is
the closure of D(R\{0}). O

Remark 1.71. If d = 1, then the above result means that the map u +— (0)
cannot be extended to Hz(R) functions. More generally, arguing as above,

we can prove that the restriction map v on the hyperplane x; = 0 cannot be
1 .
extended to Hz(R?) functions.?

1.4.4 Hardy Inequality

This brief subsection is devoted to proving a fundamental inequality with
singular weight in Sobolev spaces: the so-called Hardy inequality. More general
Hardy inequalities will be established in the next chapter (see Theorem 2.57).

Theorem 1.72. If d > 3, then

)12 3 .
</]Rd |fi.|g| dx) S%HV}"HB for any f in Hl(Rd). (1.44)

Proof. Arguing by density, it suffices to prove the inequality for fe ’D(Rd \{0}).
d

Let R be the radial vector field R = Zxﬁz Because R|z|~2 = —2|x|72,
i=1
integrating by parts yields

U@E L[ 2A@RI@) ,d [ @R
/]Rd der = /Rd dxr + /Rd dx.

|z[? 2 ]2 2 ]2

Thus, we have, by the Cauchy—Schwarz inequality,
[, 2 [ SR,
Rd

@2 T 2—d Jpa Ja?
2 F@2 N2 ([ [RE@P N2
Sd—z%d EE dx) </ 22 dw) ’

12 Tn fact, yu makes sense whenever u belongs to the smaller space

which implies that

u

HE(R?) 9 {u € H%(Rd)/ _ ¢ LQ(Rd)}.

|z1]2
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(LUere) s (fmmore)’.

Remark 1.73. Let us note that using Lorentz spaces provides an elementary
proof of more general Hardy inequalities, namely,

B
|[*

Indeed, using real interpolation we can show that H* not only embeds in the
space LP with 1/p = 1/2 — s/d, but also in the Lorentz space LP-2. Now, it

d
<C|fllgs for 0<s< 3

L2

is clear that the function x +— |- |~° belongs to the space LZ,/S, so applying
generalized Holder inequalities in Lorentz spaces, we get
f H 1 /
—— <Cl|+—= 2 < C
|$|s 12 | . |s Lf“/SHf” P ||f||H

1.5 References and Remarks

The Hélder and Young inequalities belong to mathematical folklore. Refined Young
inequalities are special cases of convolution inequalities in Lorentz spaces. An ex-
haustive list of such inequalities can be found in [171] or the book by P.-G. Lemarié-
Rieusset [205]. More about atomic decomposition and bilinear interpolation can be
found in the book by L. Grafakos [150].

In the present chapter, we restricted ourselves to the very basic properties of the
Fourier transform. For a more complete study of the Fourier transform of harmonic
analysis methods for partial differential equations, the reader may refer to the text-
books [40] by J.-M. Bony, [122] by L.C. Evans, [275] by E.M. Stein, [167, vol. 1] by
L. Hérmander and [282, 283] by M.E. Taylor.

The Sobolev embedding in Lebesgue spaces was first stated by S. Sobolev him-
self in [270, 271]. There is now a plethora of generalizations (WP spaces, metric
spaces, etc.) Basic references for Sobolev spaces may be found in the books [3] by
R. Adams and [146] by D. Gilbarg and N. Trudinger. Refined Sobolev inequalities
were discovered by P. Gérard, Y. Meyer, and F. Oru in [140]. The proof which
has been proposed here is borrowed from [77]. The fractal counterexample comes
from [22]. The study of embedding of Sobolev spaces in Holder spaces goes back
to C. Morrey’s work in [235]. The BMO space was first introduced by F. John and
L. Nirenberg in [174].

Most of the results concerning nonhomogeneous Sobolev spaces are classical.
Hardy inequalities go back to the pioneering work by G.H. Hardy in [153, 154]. In
the next chapter, we shall state more general Hardy inequalities in Sobolev spaces
with fractional indices of regularity.

For more details on the Moser—Trudinger inequality, see the pioneering works by
J. Moser in [236] and N.S. Trudinger in [290]. For recent developments, see [2].

Note that combining the Sobolev embedding theorem with Theorem 1.68 ensures
that the embedding of H*(R?) in LP(R?) is locally compact whenever 2 < p < oo
and s > d/2 — d/p. In contrast, due to the scaling invariance of the critical Sobolev
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embedding,'® the fact that A*(R?) < LPs(R%) when 0 < s < d/2, and that fact that
ps = 2d/(d — 2s), no compactness properties may be expected in this case. Indeed,
if u e H° \ {0}, then for any sequence (y.) of points in R? tending to infinity
and for any sequence (h,) of positive real numbers tending to 0 or to infinity, the
sequences (7y,u) and (8, u) converge weakly to 0 in H® but are not relatively
compact in LP since |7y, u||zr = ||ul|zr and ||0n,u|lzr = ||u||z». The study of this
defect of compactness was initiated by P.-L. Lions in [212] (see also the paper by
P. Gérard [139]). In short, it has been shown that translational and scaling invariance
are the only features responsible for the defect of compactness of the embedding
of H® into LP.

13 Throughout this book, we agree that whenever X and Y are Banach spaces, the
notation X — Y means that X C Y and that the canonical injection from X to Y
is continuous.
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Littlewood—Paley Theory

In this chapter we introduce most of the Fourier analysis material which will
be needed in the next chapters. The main idea is that functions or distribu-
tions are easier to deal with if split into countable sums of smooth functions
whose Fourier transforms are compactly supported in a ball or an annulus.
Littlewood—Paley theory provides such a decomposition.

The first section is dedicated to the study of functions with compactly
supported Fourier transforms. We state Bernstein inequalities and study the
action of heat flow or of a diffeomorphism over spectrally localized functions.
The Littlewood—Paley decomposition is introduced in the second section. Sec-
tions 2.3, 2.4, and 2.5 are devoted to the definition of homogeneous Besov
spaces and the proofs of some of their properties (basic topological proper-
ties, characterizations in terms of heat flow or finite differences, embedding in
Lebesgue spaces, and Gagliardo-Nirenberg-type inequalities).

In Section 2.6 we introduce the (homogeneous) paradifferential calculus
(after J.-M. Bony in [39]) and state a few results concerning continuity of
the paraproduct. We also study the effect of left composition by a smooth
function. The next section is devoted to the definition and a few properties of
(the more classical) nonhomogeneous Besov spaces. In Section 2.8 we state a
paralinearization theorem. Compactness properties of Besov spaces are stud-
ied in Section 2.9. In Section 2.10 (which may be skipped at first reading)
we give some technical commutator estimates which will be needed in the
next chapters. In the last section, we state a few properties for the Zygmund
space B! and provide some logarithmic-type interpolation inequalities.

00,00

2.1 Functions with Compactly Supported Fourier
Transforms

Littlewood—Paley theory is a localization procedure in frequency space. The
interesting feature of this localization is that the derivatives (or, more gen-
erally, Fourier multipliers) act almost as homotheties on distributions whose

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential 51
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7-2, (©) Springer-Verlag Berlin Heidelberg 2011
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Fourier transforms are supported in a ball or an annulus. This nice property
leads to the so-called Bernstein inequalities and is investigated in the next
subsection.

2.1.1 Bernstein-Type Lemmas

Throughout, we shall call a ball any set {¢ € R? /|¢] < R} with R > 0 and
an annulus any set {& € R? /0 < r; <[] <y} with 0 < 7y < 7.

Lemma 2.1. Let C be an annulus and B a ball. A constant C' exists such that
for any nonnegative integer k, any couple (p,q) in [1,00)% with ¢ > p > 1, and
any function u of LP, we have
~ k def o 1y kd(2—1)
Supp & C AB = ||D"u||pe = sup [|[0%llpe < CPT Ao T || e,

lee| =k

Supp @ C AC = C "I \¥||u|1» < || D ullre < CFFINF||u| 1o

Proof. Using a dilation of size A, we can assume throughout the proof that
A =1. Let ¢ be a function of D(R?) with value 1 near B. As G(£) = ¢(£)a(€)
we have

0% = 0% *xu with ¢g=F 1¢.

Applying Young’s inequality we get

1 1 1
0% ullzo < [0°lerlullze with % g,

and the first assertion follows via

10%gllLr < [10%gllL> + [[0%g] L1
<O+ )%l
< C)(1d =) (()* )|z
g Ck-‘rl'

To prove the second assertion, consider a function ¢ € D(R?\{0}) with value 1
on a neighborhood of C. From the algebraic identity (1.23) page 25 and the
fact that @ = ¢4, we deduce that there exists a family of integers (Aq)q € N
such that

o . def 1 a2k
u= Y gax0u with go = A FH(—i€)*[E|7*(9),
la|=k
and the result follows. a

The following lemma describes the action of Fourier multipliers which behave
like homogeneous functions of degree m.
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Lemma 2.2. Let C be an annulus, m € R, and' k = 2[1 + d/2]. Let o be
a k-times differentiable function on R*\{0} such that for any a € N with
|a| < k, there exists a constant C,, such that

VE € RY, [9%0(€)] < Cule™ 1ol

There exists a constant C, depending only on the constants Cy, such that for
any p € [1,00] and any A > 0, we have, for any function u in LP with Fourier
transform supported in A\C,

lo(D)ullzr < CA™ullze  with o(D)u ™ F1(0q).

Proof. Consider a smooth function ¢ supported in an annulus and such that
@ =1onC. It is clear that we have

o(D)u = NKy(\)*u with (2.1)
Kofa) S 2m) 4 [ O5(6)a(xe) ds

Let M = [1+ d/2]. We have
(14 o)V K (o) = (=2 (19) (e)o(re) de
= [ €19 (a- 2™ (F(e)o(r) de
> ol [0 0°50) 0%0(36) de

|| +|B]<2M

for some integers co 5 (whose exact values do not matter). The integration
may be restricted to Supp @. On this set we have |9%a(\)| < Caa™~ 181,
Thus, we get

(1 + )M Kx(2)] < Cy ™.

As 2M > d we may conclude that || Ky[|,; < CA™. Applying Young’s inequal-
ity to (2.1) then yields the desired result. O

2.1.2 The Smoothing Effect of Heat Flow

This subsection is devoted to the study of the action of heat flow over spec-
trally supported functions. Our main result is based on Faa di Bruno’s formula,
which we recall here for the convenience of the reader.

L Throughout this book we agree that whenever r is a real number, [r] stands for
the integer part of r.
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Lemma 2.3. Let v : R? — R™ and F : R™ — R be smooth functions. For
each multi-index o of N¢, we have

*(F ou) ZC#,,Z? F H (PP,
1<18]<] e
1<j<m

where the coefficients C,, ., are nonnegative integers, and the sum is taken over
those i and v such that 1 < |u| < |af, vg, € N,

Z Vg, = Ij for 1<j<m, and Z ﬂyﬁj:a.

1<]81< ol 1<IISlel
SJism

The following lemma describes the action of the semigroup of the heat equa-
tion on distributions with Fourier transforms supported in an annulus.

Lemma 2.4. Let C be an annulus. Positive constants ¢ and C' exist such that
for any p in [1,00] and any couple (t,\) of positive real numbers, we have

Supp @ C AC = [le"2ul|zr < Ce ™ ||ul| s

Proof. We again consider a function ¢ in D(R%\{0}), the value of which is
identically 1 near the annulus C. We can also assume without loss of generality
that A = 1. We then have
etAu = ¢(D)et?u
= 7 (&)™ a(e))
—g(t, ) xu with g(t,z) < 2m)—d / 1O g(e)e 1 ge. (2.2)

The lemma is proved provided we can find positive real numbers ¢ and C such
that
vt >0, |lg(t, )| < Ce . (2.3)

To begin, we perform integrations by parts in (2.2). We get
gltsa) = (14 o) [ (L e (6)e 16" ag
= (o) [ ((1d-20% 10 p(e)e €7 dg
= la)™ [ 0 1a-ag (s(e)e 4 as.

Via Leibniz’s formula, we obtain
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(1d-A¢)" (o()e 14" = Z Cg (09(8)) (9%1<") .
|a|<2d

From Faa di Bruno’s formula (see the above lemma) and the fact that the sup-
port of ¢ is included in an annulus, we deduce that there exists a couple (¢, C)
of positive real numbers such that for any € in the support of ¢,

‘(a(a—6)¢(f)) (aﬁe—tlﬁlz)‘ < O(1 +t)lBltler
< C(1+t)Ple=et,

We have thus proven that |g(t,z))] < C(1 + |z|>)~%e~°*, and the inequal-
ity (2.3) follows. O

From now on, we agree that if X is a Banach space, [ is an interval of R, and p
is in [1, 00], then LY (X) stands for the set of Lebesgue measurable functions u
from I to X such that t — ||u(t)||x belongs to LP(I). If I = [0,T] (resp.,
I = R"), then we alternatively use the notation L5.(X) [resp., LP(X)]. We
shall often use, without justification, the fact that the space L}(X) endowed
with the norm

def
HUHLP (X) =

1
L def
([ ar)” it p<oo and oo essup )
I

is a Banach space.

The following corollary is the key to proving a priori estimates in Besov
spaces for the heat equation (see Chapter 3).

Corollary 2.5. Let C be an annulus and A a positive real number. Let ug
[resp., [ = f(t,x)] satisfy Supp ug C AC (resp., Supp f(t) C AC for all t
in [0,T]). Consider u, a solution of

Ou—vAu=0 and up—o = uo,
and v, a solution of
Ow—vAv=f and wv—=0.

There exist positive constants ¢ and C, depending only on C, such that for
any 1 <a<b< oo and 1 <p<qg< oo, we have

J1g(i_1
lull g ooy < COA2) TN D g | 1o,
(11 1_1
ol g ry < C@A)™HG=DNG =D £l 1p (o
Proof. Tt suffices to use the fact that

t
u(t) = e""?ug and  v(t) = / e?EA () dr
0

Combining Lemmas 2.1 and 2.4 with Young’s inequality now yields the result.
The details are left to the reader. O
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2.1.3 The Action of a Diffeomorphism

Lemma 2.6. Let x be in S(RY). There exists a constant C such that for
any CHt (see Definition 1.26 page 22) global diffeomorphism 1 over RY with
inverse ¢, any u € S'(Rd) such that w is supported in XC, any p in [1,00], and
any (A, 1) in ]0, 00[?, we have

I D) (w0 )l < ON T 1l fee llar (1D Tl 170+ 1D ).

de de
where Jy(2) :f|det D(z)| and x(p~'D)(uorp) = f F (x(p™) Fluoy)).
Proof. Using (2.1.1), we get, after rescaling,
d
u = )\_1 ng’,\ *8ku with ||8O‘gk,,\|\L1 < C)\la‘. (24)
k=1

If h = F~1y, we write x(u~'D)(uo)) = AUy, with
d f
Unu(z) = dzh (gk)\*aku) 1/’)(55)

- Mdz / 2)0k(gr % u)(2)Jo(2)

Integrating by parts, we get Uy ,(z) = Uy ,(z) + U3 ,(x) with

d
Ul (z) & et > / Div(u(z — 3(2))) - e (2) (ghr % ) (2) T (2) dz,
U3, () & dZ / (2)(ghn 5 0) ()T (2) dz

We estimate ||U§,M||Lp. Setting z = ¢ (z — u~ly), we see that

Ul ( MZ / Dh(y) - Oud(w(x — 1)) (gion > u) (bl — = 1y)) dy.

Hence, by Holder’s inequality,

1
7

UL, ()] < Do ( | 10w >|dy)

1

< ([ DR [(ger *w)((x — u~ y)P dy )
(L. )
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We infer that

1
7

U ullze < pll Dol | Dhl| 7

=

‘ </ IDA(Y) |(ge *w) (bl — p~ )P de dy)

Combining the change of variable 2’ = ¥ (x — u~1y) with Fubini’s theorem,
we then get
~ 1
10X llLe < pl DAY 2| D@l oo | To | 7 e i x % uell o
1
< Cull Dol o< 1]l Lo llull -

Following the same lines, we also get

1
IUR ullze < ClIDIgl Lo 1961 7w [l -
The lemma is thus proved. a

In the case where the diffeomorphism ¢ preserves the measure, we can get a
more accurate result, one which will prove useful for transport and transport-
diffusion equations (see Chapter 3).

Lemma 2.7. Let 0 be a smooth function supported in an annulus of R . There
exists a constant C' such that for any C%! measure-preserving global diffeomor-
phism 1 over R? with inverse ¢, any tempered distribution u with U supported
in \C, any p € [1,00], and any (\, u) € ]0,00[%, we have

)

_ e A
[0 D)o 0l < Clulzemin (% 1061~ 2 10 )
Proof. Since Jy = Jy =1, the fact that

0G0~ D) (wo ), < €5 1Dl s

is ensured by Lemma 2.6.

In order to prove the other inequality, we use the fact that, owing to the
spectral localization of 6, there exists a family of smooth functions (64, ..., 6)
with compact support such that

d
0(&) =i &br(§) forall ¢eRe.
k=1

Hence,

O(u='D) = p~' > Okbi(n~' D),
k
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so we can write
0~ D)o v)(a) = 't S [ F 00 =) Bkt ) w)
k

From the above equality and the fact that ¢ preserves the measure, we easily
deduce that

10(n= D) (wo p)||Le < Cu™t [DY]| oo | Duo )] e
< Cp~H DYl 1Dl o

Bernstein’s lemma yields || Du||z» < Allu||z». This completes the proof. O

2.1.4 The Effects of Some Nonlinear Functions

The following lemma describes some properties of powers of functions with
Fourier transforms supported in an annulus.

Lemma 2.8. Let C be an annulus. A constant C exists such that for any
positive real number X\, positive integer p, and function u in LP whose Fourier
transform is supported in AC, we have

luPllz2 < CATHIV(uP)] e

Remark 2.9. This lemma is somewhat surprising. Indeed, if Fu is supported
in an annulus, then F(u?) is not supported in an annulus, but rather in a
ball. Despite that, the above lemma guarantees that the L? norm of P may
be controlled by the L2 norm of its gradient.

Proof of Lemma 2.8. As usual, it suffices to consider the case A = 1. Owing
to the spectral properties of u, we can write

d
. def def . o7
U:ZGjuj with  u; = gi*u and g; =F L(—ig;1€1729(8)),

j=1

where 5 stands for a smooth function supported in a (suitably large) annulus
and with value 1 in a neighborhood of the annulus C.

Using the above decomposition and performing an integration by parts,
we thus infer that

d
2p _ 2p—1
uPdr = /8»u~u dx
d
=—(2p— 1)2/ uju®P 20 u dx
j=1 7R

d

2p—1 / 1
— w;0; (uP)uP~" dz.
g G

p
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Hence, by virtue of the Cauchy—Schwarz inequality,

d !
/ W2 dz < C|V(uP)| 12 (Z/ |uj|2u2(p_1)dx)
Rd j=1 ]Rd

We obviously have ||u;||z2r < C|lu|/L20, so, by Hélder’s inequality,

/Rd u? da < OV (uP)]| g2 [} 2,

and the result is proved. a

2.2 Dyadic Partition of Unity

We now define the dyadic partition of unity that we shall use throughout the
book.

Proposition 2.10. Let C be the annulus {€ € R? /3/4 < |¢| < 8/3}. There
exist radial functions x and @, valued in the interval [0, 1], belonging respec-
tively to D(B(0,4/3)) and D(C), and such that

VEERT, X(O) + ) @277 =1, (2.5)
7>0
Ve e RI\{0}, D p(277¢) =1, (2.6)
JEZL
j—5'] =2 = Supp ¢(279-) N Supp p(277) =0, (2.7)
j > 1= Supp xNSupp p(277-) =0, (2.8)

the set (’Z’Vd:efB(O7 2/3) 4+ C is an annulus, and we have

j—j|>5=12'Cn2ic=0. (2.9)
Further, we have
1
d
VEER!, 2 <xHO+D PP (2.10)
7>0

1 ,

d 20—
veeRN\(0), £ <Y <1 (2.11)

JEZ
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Proof. Take « in the interval ]1,4/3[ and denote by C’ the annulus with small
radius o~ ! and large radius 2a.. Choose a radial smooth function 6 with values
n [0,1], supported in C, and with value 1 in the neighborhood of C’. The
important point is the following: for any couple of integers (7, j'), we have

j—j'l>2=2'cn2ic=0. (2.12)

Indeed, if 27'CN27C # () and j' > j, then 27" x 3/4 < 4x 29+ /3 which implies
that j' — 7 < 1. Now, let

&= 627

JEZ

Thanks to (2.12), this sum is locally finite on the set R?\{0}. Thus, the
function S is smooth on R*\{0}. As a is greater than 1, we have

| 27¢’ = r"\{0}.
JEZ
As the function € is nonnegative and has value 1 near C’, it follows from the

above covering property that the function S is positive.

We claim that the function go 9/ S is suitable. Indeed, it is obvious

that ¢ belongs to D(C) and that the function 1 — ng (2779.) is smooth
J=20
[use (2.12)]. Further, as Supp 6 C C, we have

€l > éZw g =1 (2.13)

7>0

Thus, setting

§=1- w279, (2.14)

=0

we get the identities (2.5) and (2.7). The identity (2.8) is an obvious con-
sequence of (2.12) and (2.13). We now prove (2.9), which will be useful in

Section 2.8. It is clear that the annulus C has center 0, small radius 1/12, and
large radius 10/3. It then turns out that

~ 3 P 10 1 8
2kcmfc;é®:>(1x2J§2kx§ or E><2’f<233)

and (2.9) is proved. We now prove (2.10). As x and ¢ have their values in [0, 1],
it is clear that 4
26)+ 3 A < 1. (2.15)
j=0

We bound the sum of squares from below. We have
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1= (Zo(&) + Z1(€))* with
So(€) = > 92778 and Xi(§) =x(&)+ Y 9(277%).

j even j odd

Obviously, 1 < 2(X2(¢) + X%(¢)). Now, owing to (2.7) and (2.8), we have
5O =D P26 and () + 3 pP(27).

j even 7 odd

This yields (2.10). Proving (2.11) proceeds similarly. O

From now on, we fix two functions y and ¢ satisfying the assertions (2.5)—

(2.11) and write h = F~l¢ and h = F~1x. The nonhomogeneous dyadic
blocks A; are defined by

Au=0 if j<-2, Aju=x(D)u= / h(y)u(z — y) dy,
Rd

and Aju= (2 D)u= 2jd/ (29 y)u(x —y)dy if 5> 0.
R4

The nonhomogeneous low-frequency cut-off operator S; is defined by

Sju = Z Ajru.

j'<j—1

The homogeneous dyadic blocks Aj and the homogeneous low-frequency cut-
off operators S; are defined for all j € Z by

Aju= (277 D)u = 274 /]Rd h(2y)u(z — y) dy,

Su=x(2D)u=2" [ hyulz—y)dy.

Remark 2.11. We also note that the above operators map L? into LP with
norms independent of j and p. This fact will be of constant use in this chapter.

Obviously, we can write the following (formal) Littlewood—Paley decomposi-

tions: ]
Id=)Y A; and Id=)» A; (2.16)
J J
In the nonhomogeneous case, the above decomposition makes sense in S’ (R%).

Proposition 2.12. Let u be in S'(R?). Then,u = lim; ., S;u in S'(R).

Proof. Note that (u—S;u, f) = (u, f—S; f) for all fin S(R?) and u in §'(R?),
so it suffices to prove that f = lim;_ .., S;f in the space S(Rd). Because the
Fourier transform is an automorphism of S(R?), we can alternatively prove

that X(2*j~)f tends to f in S(R?). This is an easy exercise left to the reader.
O
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We now state another (somewhat related) result of convergence.

Proposition 2.13. Let (u;) en be a sequence of bounded functions such that

the Fourier transform of u; is supported in 2JC where C is a given annulus.
Assume that, for some integer N, the sequence ( “INuj| L) jen is bounded.
The series 3_;u; then converges in S'.

Proof. After rescaling, the relation (2.1.1) reads as follows for all integers j

and k:
uj =279k Z 29g.,(27-) % 9%u;
la|=k

For any test function ¢ in S, we then write

(uj, @) =277 3 " (u5,299,(27) % (=0)°¢)  with ga(z) = ga(—2).
o=k
We then have
|(uj, )] < C277% 3~ 2N )00 1.
lo|=k
Choose k > N. Then, > (u;,¢) is a convergent series, the sum of which is
less than C||¢||ar,s for some integer M. Thus, the formula

< ¢ defJLHOlOZ Uj7(,25

I<]
defines a tempered distribution. a

Proving the equality (2.16) for the operators Aj is not so obvious, even for
smooth functions: it clearly fails for nonzero polynomials. However, it holds
true for any distribution in the set S}, defined on page 22. Indeed, if u belongs
to Sy, then Sju tends uniformly to 0 when j goes to —oo

The homogeneous version of Proposition 2.13 reads as follows.

Proposition 2.14. Let (u;);jez be a sequence of bounded functions such that
the support of w; is included in 27C, where C is a given annulus. Assume
that, for some integer N, the sequence (279N ||u;||L=)jen is bounded and that
the series Zj<0 u; converges in L. The series ZjeZ u; then converges to
some u in S, and u belongs to Sj,.

Proof. Thanks to Proposition 2.13, the series ) jez Uj converges to some u
in §’. We are therefore left with proving that « belongs to S;,. We have, for
some integer No,

1= < |85 > w| = X w
J'<j+No J'<j+No

oo

As the series ) ._,u; converges in L, the proposition is proved. a

7<0
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2.3 Homogeneous Besov Spaces

To begin, we define homogeneous Besov spaces.

Definition 2.15. Let s be a real number and (p,r) be in [1,00]?. The homo-
geneous Besov space B; , consists of those distributions u in S}, such that

def . . r
lullsy, @ (2l ) < e,

JEL

Proposition 2.16. The space Bp endowed with || - || 5. is a normed space.
o

T

Proof. Tt is obvious that ||-]| Bs. is a seminorm. Assume that for some u in Sy,
we have ||ul| By, = = 0. This 1mphes that the support of @ is included in {0} and

thus that for any j € Z, we have Sju = u. As u belongs to S}, we conclude
that v = 0. O

Remark 2.17. The definition of the Besov space B;T is independent of the

function ¢ used for defining the blocks Aj, and changing ¢ yields an equivalent
norm. Indeed, if ¢ is another dyadic partition of unity, then an integer Ng
exists such that |j — j/| > Ny implies that Supp @(277-) N Supp ¢(277" ) = 0.
Thus,

2°||g(27 D)ul p» = 27

> s,

|7—3"|<No
< 211N Tl (= 5027 Ay o
j/

Young’s inequality implies the result. _
We also note that a distribution u of S}, belongs to Bj . if and only if there
exists some constant C' and some nonnegative sequence (c;), ez such that

Vi€ |Ajule <Cc;277% and ||(¢;)|er = 1.
This fact will be extensively used throughout the book.

Examples.

— Thanks to (2.11), we can deduce that the (semi)norms |- || ;. and || - HB; ,

are equivalent. Further, it is clear that H® C B;Q and that both spaces
coincide if s < d/2.

— If s € ]0,1[, then the Besov space B2, . coincides with the space of dis-
tributions of S;, which are Holder functions with exponent s (see Theorem
2.36 below).
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Homogeneous Besov spaces have nice scaling properties. Indeed, if u is a
tempered distribution, then consider the tempered distribution uy defined
by un def u(2V.). We have the following proposition.

Proposition 2.18. Consider an integer N and a distribution v of S;. Then,
llul| 5= s finite if and only if uy is finite. Moreover, we have
p,T

2N |l 5.

g, =

Proof. By definition of Aj and by the change of variable z = 2Vy, we get

Agun(a) =20 [ (o= )u(zy) dy
= 2U=N)d / (27N @2Nz — 2))u(z) dz
= (A;_nu)(2Nz).
It turns out that ||Ajun|r = 27Ny |A;_ nullp». We deduce from this that
27| Ajullze = 2V 20N Ayl 0,
and the proposition follows immediately by summation. a

Remark 2.19. More generally, there exists a constant C, depending only on s,
such that for all positive A, we have

L s_d s_d
CTIN o lullg, < luN)|p. < OXNTFlulp. .
p,T p,T p,T

We emphasize that having u in some homogeneous Besov space B;,T yields
information about both low and high frequencies of u. Thus, if s; # sa, then
we cannot expect any inclusion between the spaces B;},, and B;fr However,
we can state the following theorem, which may be compared with the classical
Sobolev embedding theorem (see Theorem 1.38, page 29).

Proposition 2.20. Let 1 < p; <ps <0 and 1 < ry < ry < oo. Then, for

. . S,d(;,L)
s . . 3 P1 p2
any real number s, the space By, . 1is continuously embedded in Bp, r, .

Proof. Lemma 2.1 yields
. . 1 1 .
[AjullLr2 < o2 ”Q)HAJ'UHLM-
As (" (Z) is continuously embedded in ¢"2(Z), the proposition is proved. O

In contrast with the standard function spaces (e.g., Sobolev spaces H® or L
spaces with p < 00), homogeneous Besov spaces contain nontrivial homoge-
neous functions. This is illustrated by the following proposition.
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Proposition 2.21. Let o be in |0,d[. For any p in [1,00], the function |-|~°

LA
belongs to B} ~ .

Proof. Using Proposition 2.20, it is enough to prove that p, def | -] belongs
to Bd’og . In order to do so, we introduce a smooth compactly supported
function x which is identically equal to 1 near the unit ball and we write

. def . def .
po=po+pr with po(z) S x(@)lal™ and py(e) (1 - x(@))al .
It is obvious that pg € L' and that p; € LY whenever ¢ > d/o. This implies
that p, belongs to Sj,. The homogeneity of the function p, then gives

Ajpo = depa * h(2j')
— 2j(d+<7)pa(2j.) * h(2j-)
= 277(App,)(27-).

Therefore, || Ajpy| 1 = 279 || Agps|| L1, which reduces the problem to prov-
ing that the function Aopg isin L'. As pg is in L* Aopo is also in L', thanks
to the continuity of the operator Ay on Lebesgue spaces. Using Lemma 2.1,
we get

[Aop1[|r < CklID* Aoprl|r < Crl[D*pr o

By Leibniz’s formula, D¥p; — (1 — x)D¥p, is a smooth compactly supported
function. We then complete the proof by choosing k such that k >d—0o. O

Proposition 2.22. A constant C exists which satisfies the following proper-
ties. If sy and so are real numbers such that s; < s and 0 € ]0,1[, then we
have, for any (p,r) € [1,00]* and any u € S},

—0
lull gp-ec-0en < Il llullzf  and
C 1 1 0 1-0
lull gy wa-oes < = (g + =5 ) Il

Proof. To prove the first inequality, it suffices to write that

) . . . 0 . .
PO Ayl = (2 Ajulse) (27014l

and to apply Holder’s inequality.

To prove the second one, we shall estimate low and high frequencies of u
in a different way. More precisely, we write

||u||BgS1+(1,6)S2 = Z 2j(0sl+(1—9)82)||A‘juHLp + Z 2j(931+(1_9)32)||Aju||Lp.
o J<N >N

By the definition of the Besov norms, we have
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20 1=0053) | Ay < 29000200 a5,
2O+ A=0%) | A ] 1y < 2799025 u] o
< o

We thus infer that
Hu||Besll+(179)52 < ||UHB;10c Z 9i(1=0)(s2=s1) . ”uHBf;%c Z 9—30(s2—s1)
" J<N >N
2N(1—0)(82—51) 2—N9(52—51)
< sy sa=gm=n =1 + Mlse T—5=am =0

Choosing N such that

llull g2 lull gz,

S 2N(52781) < 282751
l[ull gs1_ lull g1

completes the proof. a

The following lemma provides a useful criterion for determining whether the
sum of a series belongs to a homogeneous Besov space.

Lemma 2.23. Let C' be an annulus and (uj)jcz be a sequence of functions
such that , ,
Supp @; C 2°C"  and H(238||uj||Lp)j€ZHé < 0.

If the series g uj converges in S’ to some u in Sy, then u is in B, . and
JEL

lull 5, < C

(2 Jujllzo)sez|, -

Remark 2.24. The above convergence assumption concerns (u;);<o. We note
that if (s, p,r) satisfies the condition
d d
s<—, or s=-— and r=1, (2.17)
p p
then, owing to Lemma 2.1, we have
li = i .
; lim | Z Uj 0 in L
J'<j

Hence, EjeZ u; converges to some u in §’, and Sju tends to 0 when j goes
to —oo. In particular, we have u € Sj,.

Proof of Lemma 2.23. 1t is clear that there exists some nonzero integer g
such that Aju; =0 for |j" — j| > No. Hence,
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Vgl = | 3 Ay
|7—3'|<No

<C Yl
[7—3"1<No

Therefore, we obtain that

2| Ajulle <C YT 20|y o
[7—3"1<No

We deduce from this that
2js|‘Aju||LP < ((Ck)*(df))j with ¢ = Cl[—NoyNo](k) and dy = 2€8Hu£||Ll’c

Applying Young’s inequality (namely, Lemma 1.4 page 5 with G = Z) then
leads to '
lull g, < @ Nusllen)sezl|,,

As u € S} by assumption, this proves the lemma. 0O

The previous lemma will enable us to establish the following important topo-
logical properties of homogeneous Besov spaces.

Theorem 2.25. Let (s1,82) € R? and 1 < P1,P2,71,72 < 00. Assume that
(s1,p1,71) satisfies the condition (2.17). The space B3, N B2 endowed

P1,T1 p2,72
with the norm || - ||B§},r1 + - ||B;§,T2 is then complete and satisfies the Fatou

property: If (un)nen 48 a bounded sequence ostl NBs2 . then an element u

p1,71 p2,727

of B;}M N B;;m and a subsequence Uy exist such that

Jim gy = in S’ and lullgz, < Clinnlgf||u¢(n)||}3;§” for k=1,2.
Proof. We first prove the Fatou property. According to Lemma 2.1, for any j €
Z, the sequence (Ajun)neN is bounded in L™»(P1:r2) 0 L°°, Cantor’s diagonal
process thus supplies a subsequence (uy(n))nen and a sequence () ez of C™
functions with Fourier transform supported in 2/C such that, for any j € Z,
peS,and k=1,2,

lim (Ajuy . 6) = (7;,6) and [[@]|zoe < liminf |40 oo

n—oo

Now, the sequence ((2jsk||Aju¢(n)||ka, )]) . is bounded in £"*(Z). Hence,
ne

there exists an element (E;“) jez of £ such that (up to an omitted extraction)
we have, for any sequence (d;) ez of nonnegative real numbers different from 0
for only a finite number of indices 7,
) 4 . .
nlLII;OZ 2750 || A gty () || e dy = chdj and
JEL JEL

. -
1@ llere < Timinf [fug oyl 555,
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Passing to the limit in the sum and using Lemma 1.2 page 2 with X = Z and u
the counting measure on Z gives that (275 ||@;|| ». ); belongs to £+ (Z). From
the definition of u;, we easily deduce that Fu; is supported in the annulus 27C
(where C has been defined in Proposition 2.10). As (s1,p1, 1) satisfies (2.17),
Lemma 2.23 thus guarantees that the series ZjeZ u; converges to some u
in ;. Given (2.7), we obviously have, for all M < N and ¢ € S,

(S dud)= (3 Y Ayigns).

N
j=M J=M |j'—j|<1

Hence, by the definition of %; and, again, by (2.7), we have

N N
Z Aju= lim Z Ajuyy in S
i=M T M

Since the condition (2.17) is satisfied by (s1,p1,71), and (uyn))nen is bounded
in B;’;}’Tﬁ Lemma 2.1 ensures that SMu¢(n) tends uniformly to 0 when M goes
to —oo. Similarly, (Id — SN)U'L/)(n) tend uniformly to 0 in, say, B;;;; Hence, u
is indeed the limit of (y(n))nen in &, which completes the proof of the Fatou
property.

We will now check that B;},rl N B;;M is complete. Consider a Cauchy
sequence (qn)neN. This sequence is of course bounded, so there exists some u
in Byt NBy2 . and asubsequence (ty(n))nen such that (y(n))nen converges
to u in &’. Using the fact that for any positive €, an integer n. exists such

that

n2m2ne = |[uym) = tpmllgg  + g —wemllpgz,, <eé

P1:7T1 P2,72

the Fatou property for (ty(m) — Uyp(n))nen ensures that

Vm > e, ([Ugim) —ullgsr -+ [ugpm) —ullgs: < Ce.

P1,71 p2,7T2

Hence, (Uy(n))nen tends to u in Bsr B2 ,- This completes the proof. O

P1,71 p2,T

Remark 2.26.1f s > d/p (or s = d/p and r > 1), then B;’T is no longer a
Banach space (Proposition 1.34 may be adapted to the framework of general
homogeneous Besov spaces). This is due to a breakdown of convergence for
low frequencies, the so-called infrared divergence.

There is a way to modify the definition of homogeneous Besov spaces so
as to obtain a Banach space, regardless of the regularity index. This is called
realizing homogeneous Besov spaces. It turns out that realizations coincide
with our definition when s < d/p, or s = d/p and r = 1. In the other cases,
however, realizations are defined up to a polynomial whose degree depends on
s—d/p and r. It goes without saying that solving partial differential equations
in such spaces is quite unpleasant.
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Proposition 2.27. If p and r are finite, then the space So(Rd) of func-
tions in S(Rd) whose Fourier transforms are supported away from 0 is dense
in B3 .(RY).

Proof. Let u be in B;T. Because r is finite, for all € > 0 we can find some
integer N such that

lu —unllp. <e/2 with uy def Z Aju.
’ <N
Fix 6 in C(B(0,2)) with value 1 on B(0,1). For R > 0 set 6y def 0(-/R).
Further, fix an integer M such that M > N. We then define

uﬁ’M d:ef (Id —S,M) (93 UN).

Because M > N, we have (Id —S,M)uN = upy and hence
uﬁyM —UN = (Id 7S_M) ((9R - ].)UN)
According to Lemma 2.1, we have, for all j € N and k& = max(0, [s] + 2),

27| A (uf pp — un)llLe < 277278 A ((Td —=S_ar) ((Or — Duw) |z
< 052_j||Dk((HR — Dun)||ze-

If —-M —1<j < -1, we may write
25| Aj(ufi pp — un)llze < C2°(|(0r — 1un]|Le,

and if j < —M — 2, we have A;(uk ), — uy) = 0. So, finally,

[y ar = un]

-1
5y, < C(ID(r = Duwlln + 3 210n = Duler ).

j=—M-—1

Now, by virtue of Leibniz’s formula and Lebesgue’s dominated convergence
theorem (recall that p is finite), the right-hand side of the above inequality
tends to 0 when R goes to infinity. Therefore, a positive real number R exists
such that

iy ar —unllpy < e/2

As uﬁ,yM is a function of Sy, this completes the proof of the proposition. O

Remark 2.28. The same arguments show that when r = oo, the closure of Sy
for the Besov norm B; . is the set of distributions in S, such that

lim 27%||Ajul|p» = 0.
j—Eoo
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It turns out that Besov spaces have nice duality properties. Observe that
in Littlewood-Paley theory, the duality on S translates, for ¢ € S, into

wo) = 3 (A, Ape) = /Au $(x) dx.

li—3"1<1 li—3'1<1

As for the LP space, we can estimate the norm in B;T by duality.

Proposition 2.29. For all 1 < p,r < o0 and s € R,

By, xB*, —R
(u,¢> — Y (Aju,Ajg)

li—4"1<1
defines a continuous bilinear functional on B} . X Bp sr/ Denote by Q o the
set of functions ¢ in SOBP 5, such that H¢||st <1. IfuisinSy, then we
p/’,,,/

r

have

ps <C sup (u,¢).
" $€Q,",,

Proof. For |j — j'| <1, we have, thanks to Holder’s inequality,
[(Aju, Ay )] < 241 27%)| Ajull 1o 277 Ay ] 1
Again using Holder’s inequality, we deduce that

[(w )| < Cllulls, Nellse -

In order to prove the second part, for a positive integer NV, we denote by Q}”\lf
the unit ball of the space of sequences of ¢" (Z) which vanish for indices j such
that |j| > N. By definition of the Besov norm, we have

lulls;, = sup | (1y1<n2 NAsules) ||,
BT NeN §

sup sup Z | Ajul r27% ;.
NeN (O‘7)€QN 7SN

Let € be any positive real number. Lemma 1.2 page 2 ensures that for any 7,
a function ¢; exists in S such that

€2Js
(Jag[ + 1)L+ [5]%)

1Agulir < [ Aju(eyos(a)da+
We define the function @ in Q;,fr, b

¢N d:ef Z OéijSAj(bj.
1SN
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Using Lemma 2.23, we infer that ||®x|z-- < C, independently of N. We
then have, for any N, .

H(1IJ‘\SN2jS||AjU||L”) Hz < (u&y) +e
iller

The proposition is thus proved. O

Finally, we consider the way that homogeneous Fourier multipliers act on
Besov spaces.

Proposition 2.30. Let o be a smooth function on R*\{0} which is homoge-
neous of degree m. Then, for any (s, pk,7r) € R x[1,00] (with k € {1,2})
such that (s1 — m,p1,r1) satisfies (2.17), the operator o(D) continuously
maps Bt ., 0 B2, into Byl 0 By

Proof. Lemma 2.2 guarantees that [|o(D)A;ullz» < C27™ | AjulL». The fact
that (s; —m, p1,71) satisfies (2.17) implies that the series (o(D)A;u) ez con-
verges in &’ to an element of S; . Lemma 2.23 then implies the proposition. 0O

Remark 2.31. We note that this proof is very simple compared with the similar
result on L? spaces when p belongs to |1, 00[. Moreover, as we shall see in the
next section, Fourier multipliers do not map L*° into L in general. From
this point of view Besov spaces are much easier to handle than classical LP
spaces or Sobolev spaces modeled on LP.

Corollary 2.32. Let (s1,p1,71) and (s2,p2,72) be in R x[1,00]%. Assume
that (s1 + 1,p1,71) satisfies the condition (2.17). If v is a vector field with
components in B;};ll N B;g;; which is curl free (i.e., ajv’“ = O’ for

any 1 < 4.k < d), then a unique function a exists in B;i,n N BZ;M such
that Va = v and

-1
C allgge .

By
with C a positive constant independent of v.

Proof. We define the function? a def —(=A)"tdive. As the operator
(—A)~! div is homogeneous of degree —1, Proposition 2.30 implies that a
belongs to B3 .. N B2 . and satisfies

Pp1,71 Pp2,72

lallgz, < C”U”B;'fi;i for k=1,2.

As curlv = 0, the classical formula

2 From now on, if s € R, then (=A)® denotes the Fourier multiplier with sym-
bol |£]*.
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d d
Awi = Za?wl = Zﬁj(atwj — aiwj) + 8,- divw

Jj=1 J=1

ensures that Av = Vdivv, hence Va = v and [[v|| g1 < Cllaf|ger  for
PEksTk Pr>Tk

k = 1,2. The uniqueness of a is obvious because S} does not contain any

nonzero constant function.

In the case of negative indices of regularity, homogeneous Besov spaces may

be characterized in terms of operators S;, as follows.

Proposition 2.33. Let s < 0 and 1 < p,r < co. Let u be a distribution in Sj,.

Then, u belongs to Bg’,, if and only if
(27°||Sjull o)jez € .
Moreover, for some constant C depending only on d, we have

—|s is || C 1
O ul g, < ||@Ssules|| < O (14 =)l

|s]

Proof. We write
25| Ajull e < 27°(|S;1ullLe + ||Sjullr)
S 2_82(j+1)SHS'j+1u||Lp + 2jS||Sju||Lp.

The left inequality is proved. To obtain the right inequality, we write

2°||Sulle <270 > |4zl
i'<i-1

< 30 20T Al

J'<i—1

As s is negative, the result follows by convolution.

2.4 Characterizations of Homogeneous Besov Spaces

In this section we give characterizations of Besov norms which do not require
spectral localization. The first of these concerns negative indices and relies on

heat flow.

Theorem 2.34. Let s be a positive real number and (p,r) € [1,00]%. A con-

stant C exists which satisfies

c-1 ||u||B;?f < H HtsetAuHLp

Lr(R+,dt)

< COllullgz2s for all u€ Sy
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Proof. According to Lemma 2.4,
. . 24 . .
[t5A et ul Lo < C12227%7127 27205 || Ajui| 1o

Using the fact that u belongs to S}, and the definition of the homogeneous
Besov seminorm, we have

e ulze < 3 17 Ay ull s
JEZ
< CHUHBE%S Zt522j8676t22'] ey
JEL

where (¢, j)jez denotes (here and throughout this proof) a generic element of
the unit sphere of ¢"(Z). If r = oo, then the inequality readily follows from
the next lemma, the proof of which is left to the reader.

Lemma 2.35. For any positive s, we have

sup E 159208 =ct2 oo
>0 57

If r < 0o, then using Hoélder’s inequality with the weight 92ise=<t2 and the
above lemma, we obtain

dt > dt
tA 27 —t2J
[l <l [T (e, ) §

JEZ
< CH”H; , / (Zt 2239 —ct2 J) (Zt 22]9 —ct2% e )ﬂ
=~ ~2s ]
" JEZ JEZ ¢
o2 dt
< CHUH%;%/ Zt 22]5 ct2 T,]?
JEZ

Using Fubini’s theorem, we infer that

Ootrs” tA Hr @ < C’”UHT § tSQQJS —ct2 dt
0 o Ly = By Cm N
JEZL
T : def e s—1 —t
< CI'(s)[Jull’y-2s  with I'(s) = t*" e  dt.
b, 0

To prove the other inequality, we use the following identity (which may be
easily proven by taking the Fourier transform in x of both sides):

Aju= / 5 (= At Audt )T (s41). (2.18)
0
As etPu = e%Ae%Au7 we can write, using Lemmas 2.1 and 2.4,



74 2 Littlewood—Paley Theory
A % e02i(s+1 1229 A LA
|Ajullzr < 0/ 1922+ e=et27 | Ao Aqy|| 1y dt
0
% so2j(s41 229 tA
< C’/ 15223 (D) =et27 ) ot Ay || 1, dt.
0
If r = 0o, then we have
A tA % 2i(s+1 22
| Aullrr < C(supt5||e u||Lp)/ 2% (s+ ) g=et2™ gy
>0 0
< 02%¢ (sup tSHetAuHLp).
>0
If r < 0o, we write

o) . T
2 Ay, < CY 2 ( / e~ 2 ||t Ay 1o dt> .
0

jez JET

—ct2%9

Holder’s inequality with the weight e implies that

> s_—ct2% || _tA " > —ct2? o > rs_—ct2? | _tA, |7
t’e lle"“ullpr dt | < e dt t"e llet 2|y, dt
0 0 0

oo .
< C2—2j(r—1)/ trse—ct221 HetAu”Zp dt.
0

Thanks to Lemma 2.35 and Fubini’s theorem, we get

oo .
o2 Al £ O30 [ e e dul
p ez 0
< [T (S e Yoo,
< p
0 VNjez '

e dt
<o [ el
0

The theorem is thus proved. a

We will now give a characterization of Besov spaces with positive indices in
terms of finite differences. To simplify the presentation, we only consider the
case where the regularity index s is in ]0, 1[.

Theorem 2.36. Let s be in |0,1] and (p,7) € [1,00]%. A constant C ewists
such that, for any u in S},

7y — uller
e < Clulls, -

CMullg,, < |
||UHB:;77T — L"(Rd;%) =~
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Proof. In order to prove the right-hand inequality, we shall bound the quan-
tity ||7—.Aju — Ajul|L». Note that according to (2.7), we have

S A4
177 —41<1
Hence, using the definition of A'4 and Taylor’s formula, we get

Ty Aju— Aju = Z 2Jd/ W2 (z+y—2)) — h(27 (z—2))) Ajru(2) dz,

[7/—jlI<1

d 1
> 21X Y (/ hej (27, ty) dt) * Ay with
I3/ —4I<1 =1 0
def j
hej(X,Y) = 0, h(X +27Y).
As ”h@vj("Y)HLl = ||0z,h|| L1 for any Y, we have

Iy Aju— Ajulle < C2lyl > | Ajulle

li—3"1<1

< Cer 20 Iyllull s,

where (¢, ;) ez is (as throughout the proof) an element of the unit sphere
of £7(Z). We also have

-y Aju — Ajull e < 2| Ajul|zo
< Ceny 277 ul 5, .
We infer that for any integer j,

Bs <|i‘/| Z Cr,j2j(1_s) + Z cm-Q_jS),

J<i’ >3’

||Tfy

1 4 1
We now choose j' = j, such that W <2 < ZH. If r = oo, then for any y
Y Y

in Rd, we have

Iy —ullrr <

If r < oo, we write

< 02"

def/ (Z Crj 9j(1— s) |y‘*d+7’(1*5) dy and

J<Jy

def —9s " —d—rs
bélzwﬂﬂ>m dy.

J>Jy

‘wrwu—whp
|yl

LT(]Rd d ) TBZT(Il +IQ) with
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Hélder’s inequality with the weight 27(1=%) and the definition of Jy together
imply that

(Z Cm'zj(l_s))T < (Z 23'(1—3))T1 Z C:7j2j(1—s)

J<Jy 7<dy J<iy
< Ol 37 ¢ 9i0-9),
J<Jy

By Fubini’s theorem, we deduce that
n=e3 (],

Estimating I is strictly analogous.

‘y|—d+1—s dy) 2j(1—s)c:’j < C.

02 ]+1

We will now prove the reverse inequality. As the mean value of the func-
tion h is 0, we can write

Aju(z) =27 | h(2y)ryu(z)dy
_ g7 / h(27y) (ryule) — u(z)) dy.
When r = oo, we have

2 Agulr <20 [ 2] Iryu = ulen dy
R

< 97 / 233y ()| dy sup 17wt lLr
R4 yER |y

< 0w Il

- yER? ‘y|s

When r < oo, we write
> Al < 27(21 4 o) with

J
2h dzefZstr(/
2

J

PN d:‘EfZQjST(/
2

J

() Irulr dy) - and

Ily|<1

T
29| (2)| |7y dy) .
Ily|>1

Hoélder’s inequality implies that
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T r—1
([ 2meiinu-dwa) < ([ o)
2i|y|<1 23 [y|<1

x / g}, dy
27 |y|<1

< C2jd/ lTyu — u||rs dy.
27]y|<1
Using Fubini’s theorem, we get that

o< c/ > Ts+d>)||7yu—u|\m dy

3/29lyl<1
<C/ [myu — ullfe dy
= Jre Yl |yl

Next, note that applying Holder’s inequality with the measure [y| ~4 dy enables
us to bound the general term X of ¥y as follows:

. . . . . T,U — ull L, dy r
2775 <2 J(/ 27yl a2y 1t =l —d>
27 |y|>1 lyl Yl
<o [ lneoslis dy
- 20 [y|>1 ly|" |y|?
Using Fubini’s theorem and the fact that s < 1, we then infer that

o <C/ Y oG- s)) [y u | lImyu —ullz, dy

d
i ylm oyl
_ o[ mu—uly, dy
Y U L
The theorem is thus proved. a

In the limit case s = 1, the characterization given in Theorem 2.36 fails. We
then have to use finite differences of order two.

Theorem 2.37. Let (p,r) be in [1,00]%. A constant C exists such that for

any u in Sj,

| T—yu + Tyu — 2u|| L
[yl L (R 44)

O ully < ‘ < Cllullgy -

Remark 2.38. Applylng the above theorem in the case where p = r = co shows
that the space Bl coincides with the Zygmund class of functions u such
that

0,00

lu(z +y) +u(z —y) - 2u(z)| < Cly|.
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Proof of Theorem 2.87. Again using the fact that Aj = le_j‘q AjAjr7 we
can write -

1
T_iju+TijU72Aju = 974 Z Z 220y (/0 (1ft)ha7j(2j~,ty) dt)*Aj«u
lal=2 || <1

with fa (X, Y) € gen(x + 20y,

As ||ha, ;i (- Y)||Lr = ||0%h]|| 1 for any Y, we have

Iy Aju+ myAju— 2450 e < C271yl> > (| Ajul|Le

li—3"1<1

S CCr7j2j|y‘2Hu”B;ma
where (¢, ;) jez stands for an element of the unit sphere of £"(Z). We also have

||T,ij’U/ + TyAJu — 2AjU||Lp § 4||AJUHLD
< Cep 27 |ullgy .

We infer that for any integer j’,
7y 70— 2]l < Cllull s (y|2 e+ Y Cr,ﬁ‘j)-
J<g’ >3’
The conclusion is strictly analogous to the case where s € ]0,1][.

We will now prove the other inequality. Because h is a radial function with
mean value 0, we can write

Agula) = 520 [ Wy)(ryut 7o) dy

=52 [ W) () + 7 yu(e) - ) dy,

and from this point on, we can mimic the proof of Theorem 2.36.

2.5 Besov Spaces, Lebesgue Spaces, and Refined
Inequalities

In this section, we compare homogeneous Besov spaces with Lebesgue spaces.
We start with an easy (but most useful) result pertaining to Besov spaces
with third index 1.
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d

Ld_
|2 such that p < q, the space By,
d

Proposition 2.39. For any (p,q) in [1,00

s continuously embedded in LY. In addition, if p is finite, then 35,1 is con-
tinuously embedded in the space Cy of continuous functions vanishing at in-
finity. Finally, for all ¢ € [1,00], the space L% is continuously embedded in

d . .
the space Bg,oo, and the space M of bounded measures on R” is continuously

embedded in BY .
.d_d .d_d
Proof. Let uw € Bj | *. Because B} | * C S}, we may write
J
Now, according to Bernstein’s lemma, we have

. crd_ d .
1A ullpe < €276~ Ajul e,

so the above series converges in L?. This yields the first part of the statement.
d

If p is finite, then the space Sy is dense in B; 1- This ensures that functions

d
of Bf’ 1 decay to 0 at infinity. The last part of the statement is easy to prove: It
suffices to use the fact that, by definition, Aju = 2/¢h(27-) xu. Hence, Young’s
inequality (or Fubini’s theorem, in the case where u is a bounded measure)
gives the result. a

We now compare homogeneous Besov spaces with regularity index 0 and third
index 2 to Lebesgue spaces.

Theorem 2.40. For any p in [2,00], B2,2 is continuously included in LP

’ . . . . hd
and LP is continuously included in BS, 9

Proof. Arguing by density, we can assume with no loss of generality that «
belongs to Sy (see Proposition 2.27). Therefore, writing Fj,(x) = |z|", we can
rewrite ||ul|}, as a telescopic series:

Null}, = ZFp(SJHU) — F,(Sju), and hence
jez

1
lal, = S (Ayumy) with () < / Fy ($5u(x) + thju()) dr
0

J

Using the Fourier—Plancherel formula and denoting by A~j the convolution
operator in terms of the inverse Fourier transform of $(277-), where ¢ is
in D(R?\{0}) with value 1 near the support of ¢, we can write

(Aju,my) = (Aju, Aymy).
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By Lemma 2.1, we infer that

14| o < €270 sup || Ol o (2.19)
1<0<d
The chain rule and Holder’s inequality imply that
1
[[0em; | L S/ Haé(SjUHAJU)F;(SJ +tAjU)HL, dt
0 ¥
1
< /0 [0e(Sju + tAzu)| e || ' (Sju + tAjU)HLlT% dt.
As F/(x) = p(p — 1)|z|P~2, we immediately get that
vt € [0,1], [|E)(Sju+ mju)HL;;L2 < p(p — D[ Sju+ tA;ullf,2.
Using Lemma 2.1, we infer that for all ¢ € [0, 1],
IEy (Sju+tAzu)ll, e, < CPp(p = 1)|ull7,”. (2.20)

Now, by the definition of Sj, Lemma 2.1, and Young’s inequality for series,
we get

106(Sju+ tAju)| e < [|0eAgul Lo
k<j
S 2j Z2k_j||Ak’u||Lp
k<j

< CCj2j||UHB()2 with E c? =1
D,
J

Combining (2.19) and (2.20), we deduce that

_ B .
1A m;ll e < C7p(p = Dejllullfz?ull gy, with D cf =1.
J

As we have ||ul]f, = Z(Aju, Ajm;), we infer that

J

lullZe < CPp(p = Dllull o, D esllAjullze < CPp(p = Dlfull, . (2.21)
r :
This concludes the proof that 3272 — LP. In order to prove the dual result,
consider v in L?’. For any ¢ € S such that [#ll g0, < 1, we have, thanks
P,
to (2.21),
[(w, O)| < l[ull o |9l e < Cllufl -

Use of Proposition 2.29 then completes the proof. ad
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Theorem 2.41. For any p in [1,2], the space ng is continuously included
m LP, and LY s continuously included in Bg/yp/

Proof. We first observe that B% is continuously included in L', and 32 5 18
equal to L?. We shall then use a complex interpolation argument to prove
that for any p € [1,2], By, is continuously included in L. Consider f € B) ,

and @ € L* . As in the proof of Lemma 1.11 page 11, we consider a complex
number z in the strip S of complex numbers whose real parts are between 0
and 1, and we define, for @ € D(R?\{0}) with value 1 near the support of ¢,

f. d—estﬂsz)(é f;m Jp-=+s >)7

JEZ

def ¥
]

Note that fp = f and @y = ¢ if 8 = 2/p’. Tt can be checked that F is
holomorphic on S and is continuous and bounded on the closure of S. From
the Phragmén—Lindel6f principle, we infer that

oo() & Ziel3 and P& [ @)oo

FO) < MFoM? with M; ©sup |F(j +it)]. (2.22)
teR

We now have, for any t € R,

- Aif 1—it+4)
Viellr < 273 ) ( j (1-it+
]% |Ajf| L1

<CY 1A f17

JEZ
<Oy A frI,

JEL
< CIfI, - (2.23)

In addition, using the “almost orthogonality” of the terms of the series defin-
ing f., we infer that

p
I fivallzz < CD 7 NAFI2 22
JEZ

<O 14fI1%
JEZ
< ClfIG - (2.24)

Moreover, |y (z)] = 1 and |@1 ()| = [¢(x)| . Thus,
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P p’
Mo<Clfl, and My < I, el

Using (2.22), we infer that
[, f@otoyts = F6) < Cll gy, el

and the first result is proved. That L¥' embeds continuously in Bg,vp, follows
by duality (see Proposition 2.29). O

We now present a generalization of the refined Sobolev embedding stated in
Theorem 1.43 page 32.

Theorem 2.42. Let 1 < g < p < 0o and « be a positive real number. A con-
stant C' exists such that

< 1-6 0 : _ (P _ _ 4.
70 < CUSNGE g, with B=a(f~1) and 0="

Proof. The proof follows along the lines of that of Theorem 1.38, which turns
out to be a particular case (take ¢ = 2 and o = d/2 — ). As usual we may
assume without loss of generality that || f||5-_ = 1. We write

1 =p [ 15 0)dn and £ =854 (14-5,)1
0
According to Proposition 2.33 we have ||ij||Loo < C2ja|‘f||f3;o"w' As

{If] > A} C{IS;fI > A2} u{|Id-S;) f| > \/2}
choosing j» in Z such that

l(i)é <2ir < (i)é (2.25)
2\2C —\2C

guarantees that {|f| > A} C {|(Id—5jk)f| > /\/2}. By the Bienaymé-
Chebyshev inequality, we then have

915 < [ 00 ta(l0d=85)11 > A/2) ax
0
<p [ N8, 1 ax
0
We now estimate ||(Id —S;, ) f||a. By the definition of || - ||B§q’ we have

”(Id _Sj,\)f”Lq < Z ||AijLq
J>Jx
< > 2709P | A f| o
J>Jx
< Clfllgg, Do 27%; with l(e)llen = 1.

J2Jix
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We thus get
918 <CUAl,, [ et (30 20%) i
0 i

Holder’s inequality with the weight 2777 and the definition (2.25) of jy to-
gether give

(Z ijﬁcjy < (Z ijﬁ>q_1 3 gl

7> e 3>
—jxB(q—1) —jB 4
< 0279 Z 2798 ¢!
i>i
—(¢-1)2 —iB .4
<O\ Z 2790¢d.
3>

Hence, it turns out that
o _ (g1
110 < U, [ (27715 - -tan
0 .
J

Using (2.25) and Fubini’s theorem, we end up with
202(]4’1)0‘ 5
191 < €AY, Y2t [ ity
4 0
J

Because p—q¢—1— (¢ —1)58/a =p/q — 1 is positive, we thus obtain

171, < ClAIg, S e (a(54)-9).
J

As g = a(g—l) and ||(¢;)[les = 1, we get || fI|F, < C||f||q 5 , and the theorem

is proved. a

We now state the analog of the above refined inequalities in the context of
Sobolev spaces.

Theorem 2.43. Let g be in |1, 00[ and s in the interval |0,d/q[. A constant C
then exists such that

def

with |Jully, = [[(=4)%ul| ..

1—4as
lulle < Clull , s
00,00
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Proof. We decompose v into low and high frequencies:

Assume that ||uHBl,Lds = 1. Using the definition of |[ul|z_ _, we see that

1S;ul| e < C27(d0=5), (2.26)

In order to study the high-frequency part, we note that for any smooth ho-
mogeneous function a of degree m, we have

Aja(Dyu = 2291, (29) xu with o S F1(ga).

By Proposition 1.16 page 15 and the remark that follows, we infer that a
constant (depending, of course, on a) exists such that for any j € Z, we have

|Aju(z)| < C2™(Mu)(z), (2.27)

where Mwu denotes the maximal function of w. Thus, we have, for any j in Z,

|(1d =S )u(z)| < ZIA A)7E(=A)2u(z)|
< C(Z 9=d' ) —A)su)(x)

< C273(M(=4)%u)(a).
Together with (2.26), this gives, for any j € Z and z € RY, that
lu(z)] < C29(44=5) 4+ 02775 (M (—A)3u)(z).
Choosing 27 ~ (M(—A)3u(x))d then gives
u(@)| < C(M(=2)Fu)(x)' .

Because the maximal operator maps L? into L9 continuously (see Theo-
rem 1.14 page 13), the proof is complete. a

Finally, we establish the so-called Gagliardo—Nirenberg inequalities.

Theorem 2.44. Let (q,7) be in ]1,00]? and (o, s) be in ]0,00[* with o < s.
A constant C' exists such that
1 6 1-6

oo < COllullfllult7? with === and 9:173~
lllig < Clulf ully =t -

Proof. As usual, we decompose u into low and high frequencies:

u = Sju+ (Id —S;)u.
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For the low-frequency part, using (2.27), we may write
1S5 (=2) Fu(@)| < Y A5 (=4) Fu(a)]
J'<j
< (X 27) (Mu)(a)
J'<j
< C277 (Mu)(z). (2.28)

For the high-frequency part, again using (2.27), we get
(1d=55)(=A) 2u(@)| < Y |A;/(~A)F 73 (=A)2u()]
J'23j

< (Y27 (M(-A) k) ()

J'2J

< 0270 (M (= A)5u) (=),

Together with (2.28), this implies that for any integer j € Z and any x in RY,

[(—A)Zu(x)] < C2°7(Mu)(z) + C277C=)(M(=A)zu)(x).

Choosing j such that

we infer that

o

[(=4)Fu(z)| < C(Mu)(2)' 5 (M(=4)2u)(x))*,
from which it follows, by virtue of Holder’s inequality, that

1-2 s
[ullyye < ClIMullLq* [M(=A)2u

As g > 1 and r > 1, applying Theorem 1.14 page 13 completes the proof.

2.6 Homogeneous Paradifferential Calculus

In this section, we study the way that the product acts on Besov spaces.

2.6.1 Homogeneous Bony Decomposition

Let u and v be tempered distributions in S},. We have

u = ZAj/u and v= ZAjv,
J’ J
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hence, at least formally,
uv = Z Aj/u Aj’l}.
33
Paradifferential calculus is a mathematical tool for splitting the above sum
into three parts:

— The first part concerns the indices (j', §) for which the size of Supp F(A;u)
is small compared to the size of Supp }"(Aﬂ)) (i.e., j/ < j — Ny for some
suitable positive integer Ny).

— The second part contains the indices corresponding to those frequencies
of u which are large compared with the frequencies of v (i.e., j' > j+ Np).

— In the last part we keep the indices (j,j') for which Supp f(Aj/u) and
Supp F(A;u) have comparable sizes (i.e., [ — j/| < No).

The suitable choice for Ny depends on the assumptions made on the support
of the function ¢ used in the definition of the dyadic blocks.

In what follows, we shall always assume that ¢ has been chosen according
to Definition 2.10 so that taking Ny = 1 will be appropriate. This leads to the
following definition.

Definition 2.45. The homogeneous paraproduct of v by u is defined as fol-

lows: p
Tu’l) :efz Sj_luAjv.
J

The homogeneous remainder of u and v is defined by
R(u,v) = Z ApuAjv.
[k—jl<1
Remark 2.46. It can be checked that T,,v makes sense in S’ whenever v and v
are in Sy, and that T': (u,v) — T,v is a bilinear operator. Of course, the re-

mainder operator R : (u,v) — R(u,v), when restricted to sufficiently smooth
distributions, is also bilinear.

The main motivation for using the operators T and R is that, at least formally,
the following so-called Bony decomposition holds true:

uv = T,v + Tyu + R(u,v). (2.29)

So, in order to understand how the product operates in Besov spaces, it suffices
to investigate the continuity properties of the operators 7' and R.

To simplify the presentation, it will be understood from now on that when-
ever the expressions T,v or R(u, v) appear in the text, the series with general
terms
Sj_l Aj’U or Z Aju AJ‘_VU
lv|<1

converges to some tempered distribution which belongs to Sj,.
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We can now state our main result concerning continuity of the homogeneous
paraproduct operator T.

Theorem 2.47. There exists a constant C' such that for any real number s
and any (p,7) in [1,00]?, we have, for any (u,v) in L™ x B, .,

1uwols, < CHolullz~ ol 5, -

Moreover, for any (s,t) in R x |—00,0[ and any (p,r1,72) in [1, oo]?, we have,
for any (u,v) € BY_ . x BS

o0, T, p,T2’

11
d:efmin{l,— +-}

Ol+ls+t| _
T llullpollp,  with e

—t 1

S| =

1Tl sy <

Remark 2.48. Thanks to Lemma 2.23 and the remark that follows it, the
hypothesis of convergence is satisfied whenever (s,p,r) or (s + t,p,r) sat-
isfies (2.17).

Proof of Theorem 2.47. According to (2.9), f(S’j_luAjv) is supported in 29C.
Therefore, we are left with proving an appropriate estimate for ||5j_1uAjv\| Lp-
Lemma 2.1 and Proposition 2.33 tell us that for any j € Z and ¢t < 0,

. . C iy
1Sj-1ullze < Clluflz and [ISjaulre < —e;rn 27 fullg, 5 (2.30)
where (c¢jr, )jez denotes an element of the unit sphere of ¢™(Z). Using
Lemma 2.23, the estimates concerning the paraproduct are proved. a

We now examine the behavior of the remainder operator R. Here, we have to
consider terms of the type Aju Ajv, the Fourier transforms of which are not
supported in annuli, but rather in balls of the type 2/ B. Thus, to prove that
the remainder terms belong to certain Besov spaces, we need the following
lemma.

Lemma 2.49. Let B be a ball in Rd, s a positive real number, and (p,r) €
[1,00]%. A constant C exists which satisfies the following. Let (uj)jez be a
sequence of smooth functions such that

Supp 4; C 2B and ”(QjSHUjHLP)jGZHE < 0.

We assume that the series ZjeZ uj converges to u in S;,. We then have

) . .
we By, and Juls, < ||,

r(z)

Remark 2.50. Thanks to Lemma 2.49 and the remark that follows it, the hy-
pothesis of convergence is satisfied whenever (s, p, r) satisfies (2.17).
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Proof of Lemma 2.49. As C is an annulus and B is a ball, an integer N7 exists
such that if j* > j + Ny, then 27°CN2/B = . So, if j/ > j + Ny, then the
Fourier transform of Aju; (and thus Aju;) is equal to 0. Hence, we may
write

1Ajulle <> 1Az

J>j'—N1

<C Y gl

j>j’'—Ni

We therefore get that

2| Ajulle <C Y 27wy

Jj2j’'—Ni
<C 30 20D ulu
Jj23'—Ni

As s is positive, applying Young’s inequality for series completes the proof of
the lemma. a

Remark 2.51. The above lemma fails in the limit case s = 0. Indeed, fix a
nonzero function f € LP, spectrally supported in some ball B, and a nonneg-
ative real a such that ar > 1. Set u; = j=%f for 7 > 1, and u; = 0 otherwise.
It is clear that

Vj ez, Supp ;€ 2B and ||(fuslzo)ien|, < oo

If » > 1, then we can additionally set o < 1 so that the series ) ;Uj diverges
in §&. If r = 1, then the series converges to a nonzero multiple of f. As BSJ
is a strict subspace of LP, the function f need not be in Bgﬁl, so the lemma
also fails in this case.

We can now state a result concerning continuity of the remainder operator.

Theorem 2.52. A constant C' exists which satisfies the following inequalities.
Let (s1,52) be in R? and (p1,pa,r1,72) be in [1,00]*. Assume that

1 def 1 1 1 def 1 1
Z :ef—+—§1 and - Zef—+—§1~
P P11 P2 r Lo T2
If 51 + so is positive, then we have, for any (u,v) in B;},Tl X B;;,m,
) Clsits2|+1
[R(u, v)[| gor o2 < WHU”B;;” lvll 3., -

When r =1 and s1 + s3 > 0, we have, for any (u,v) in Bs1 x B2

P1,71 p2,m27

1R (u, 0)| parees < CPF2 ] ger ol gza
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Remark 2.53. Thanks to Lemma 2.49 and the remark that follows it, the hy-
pothesis of convergence is satisfied whenever (s; + s2,p,7) or (s1 + $2,p, 00)
satisfies (2.17)

Proof of Theorem 2.52. By definition of the homogeneous remainder operator,

U) = ZR] with Rj = Z A'j,UUA‘j’U.
J

lv|<1

Because ¢ is supported in the annulus C, the Fourier transform of R; is sup-
ported in 27 B(0,24). So, by construction of the dyadic partition of unity, there
exists an integer Ny such that

J'>j+Ny=AyR; =0. (2.31)
From this, we deduce that

AjR(uv)= > AR

Jj=3'—No

Using Holder’s inequality, we infer that

2j'(81+52) ||Aj/R(u’ U)”LP < CQj,(51+52) Z ||Aj—VUAjU||LP
lv|<1
j>j'—No
<02 ST Al | Aol s
[v|<1
j>j'—No
<Oy 2G| Ay ul 1 29| Ay | s

[v|<1
§2§"~No

Using Holder’s and Young’s inequalities for series, we get the theorem in the
case where s; + so is positive.
In the case where r = 1 and s; + so is nonnegative, we use the fact that

2 () A R, )l <C D 207 Ay ul| e 27| Ao o

<1
j>j'—No

take the supremum over j', and use Holder’s inequality for series. O

By taking advantage of Bony’s decomposition (2.29), a plethora of results
on continuity may be deduced from Theorems 2.47 and 2.52. As an initial
example, we derive the following so-called tame estimates for the product of
two functions in Besov spaces.
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Corollary 2.54. If (s,p,r) € ]0,00[x[1,0]? satisfies (2.17), then L™ HB;,T
is an algebra. Moreover, there exists a constant C, depending only on the
dimension d, such that

s+1
luvll gy, < =— (ool | + lullg, loll) -

Proof. Using Bony’s decomposition, we have
uwv = T, + Tyu + R(u,v).
According to Theorem 2.47, we have
Fullsy, < O ullimlollsy, and [Tuulls,, < O ullgy ol

Now, using Theorem 2.52, we get

s+1

1R 05, < ——llullgy,_llvlls, -

Since, obviously, ||u|lgo < C|lu||z, we obtain the desired inequality. O

Our second example deals with the product of two functions in homogeneous
Sobolev spaces.

Corollary 2.55. For any (s1,s2) € |—d/2,d/2[?, a constant C exists such
that if s1 + so is positive, then we have
¢ < Cllullge

s1ts2— 5
2,1

luvll [Vll ez -

Proof. We again use Bony’s decomposition. First, as H* is continuously in-
cluded in B;_f and s — d/2 < 0, Theorem 2.47 implies that

2

51‘*’52*%
,1
Second, as s1 + s2 > 0, Theorem 2.52 guarantees that

1R(u, v)]

grvres < Cllull o 0] o

. e . . . . =S81+s -4 .
As the space B;"* is continuously included in B, **" *, the corollary is
proved. a

Remark 2.56. The constant in Corollary 2.55 may be bounded by

c { 1 1 1 }
min ) )
d—2s1 d—2s5 81+ 89

with C depending only on the dimension d.
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As an application of Corollary 2.55, we get the following family of Hardy
inequalities, which contains the particular case of Theorem 1.72 page 48.

d
Theorem 2.57. For any real s in [0, 3 {, a constant C exists such that for

any f in H5(RY),

2

/ T 40 < o2, (2.32)
Rt |T]*

Proof. The case s = 0 being obvious, we assume that 0 < s < d/2. As Sy

is dense in H*, it suffices to prove the above inequality in the case where f
belongs to Sg. We define

T 2
[ O =g,

|1‘|28

Using Littlewood-Paley decomposition and the fact that f? belongs to Sj,, we
can write

L= Y (4174, ),

l7—3'1<2
<C Y @GR4 720 G2 Ay ).
li—3"1<2
By virtue of Proposition 2.21, the function |- |~2¢ belongs to B . Corol-
lary 2.55 yields [|f?] ...y < CHf||2 .- Thus, I,(f) < CIfIl%.- 0
2,1

We conclude this section with the statement of some refined Hardy inequal-
ities, in the spirit of the refined Sobolev inequalities (see Theorem 1.43
page 32).

Theorem 2.58. Let (s,p,q) be a triplet of real numbers such that
d 2d
= d 2< = < 0.
0<5<2 an _q<d25<p_oo

d(i_1
There exists a constant C' such that for any function u € BS %

following inequality holds:

|u w ' P 1 1 s
([ s s Sy e = palgata)

,2

, the

Proof. Bony’s decomposition for u? reads

u? = 2T u + R(u, u),
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so it suffices to prove the inequality for T},u and R(u,u) instead of u2. Of
course, arguing by density, we can assume that u belongs to Sp.
The term T, u is easy to deal with: According to Theorem 2.47, we have

1 Twull 2o 10 < C||UHZ;,§-

d—2s

Proposition 2.21 now ensures that the function | - |~2* belongs to Bl)oo ;

according to Proposition 2.29, we have

{172, Tyu) | < Cllull®,_ -
B 2

00,2

S0,

. cs—(4-1) cs—(4-1) 4 .
Since both B, ,** *" and B, ,"* "’ are embedded in B, 7, we end up with

{172, Tuw)| < Cllull_

q,2 P2

llP2 2.33)
The estimate of (| - |~2%, R(u, u)) relies on the following interpolation lemma.

Lemma 2.59. Under the assumptions of Theorem 2.58, there exists a con-
stant C such that for any functions f and g in LP N LY, we have

1 1 s
L |—2s <C ap ap j et jEyet ith — bq (_ N _) .
(1177, fa) < ClUAIE gl zo 1A Nlgll ™ with o b a\s 27 d
Proof. For any positive R, we can write (|- |72, fg) = I1(R) + I2(R) with
L(R) d:ef/ f9@) o4 5L(R) d:ef/ f9(@) .
\

sl<r |T|* >R |T]%

The condition on p and ¢ implies that | - |72% is locally L7 and is Li2
outside any compact neighborhood of 0. By Holder’s inequality, we infer that

L(R) < |1q<rl- 17201 2, [ f e llgll e,

Lp—2
L(R) < |1 zr)| - 171 2, [1fllzallgllze-
Because the function | - |*25 is homogeneous of order —2s, we get
- d—2s— 24 —
<m0 e, = BT ggenl - 1720 e,
- d—2s— 24 —
=m0 ey = BT 0 gz - 720 sy

Thus, for any positive R, we have

— 4S8 —28 —2d _2d
(1172, fg) < CR* (R % flloligler + R~ 1 fllzallgllze)-

Choosing the best R, namely

Prq
R— ral|g|lLe -
_ (Ifllzellglze \ 7

£l llgllze

completes the proof of the lemma. a
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We now resume the proof of Theorem 2.58. By the definition of R(u,u), we

have o
(172 Rlu,w)) = Y0 (- 177, Ajud;_pu).
le|<1j€z
Lemma 2.59 implies that

[ 172, Rl wp| < 57 30 (220 S0 Agull o |14 ull1e)

|6|<1j€Z
. . . 11—«
x (229G =D Ajul 1| Ay -eull s )

By the definition of the Besov norms, this implies that two sequences, (¢;) ez
and () jez, exist in the unit sphere of £?(Z) such that

o 7 (1
72 A )] < CIIES %7 ) 37 3 feses=)* €
B2 |a<1gez

From Holder’s inequality, it follows that

(172, Rl )] < Clull® (a0

t

2

)

Bp,2 Bq 2
Together with (2.33), this gives Theorem 2.58. o
Remark 2.60. Theorem 2.58 fails for p = ¢, = ﬁ since, if it were true, for

any function v with Fourier transform supported in C, we would have

u(z)?
| e < Clully,_ | < Ol ey (234

In particular, this inequality would be true whenever u € S (Rd) satisfies
supp u C B(&p,¢) C C.

As the inequality (2.34) is invariant under oscillation (i.e., under translation
in the Fourier space), we deduce that it is true for any function u € S(R?)
such that supp @ C B(0,¢). The invariance under dilation implies that it is
true for any function u € S(R?) such that supp @ C B(0, R) for any R > 0.
By density, we obtain (2.34) for any function v € L2?%(R%), but this implies
that the singular weight |z|=2* belongs to L3s, which is false.

2.6.2 Action of Smooth Functions

In this'subsection we will consider the action of smooth functions on the
space Bj .. More precisely, if f is a smooth function vanishing at 0, and u

is a functlon of Bp -, does f owu belong to B;’T? The answer is given by the

following theorem.
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Theorem 2.61. Let f be a smooth function on R which vanishes at 0.
Let (s1,82) be a couple of positive real numbers and (p1,pa,71,72) € [1,00]°.
Assume that (s1,p1,71) satisfies the condition (2.17).

For any real-valued function u in B;i N B;g r VL%, the function fou

belongs to the same space, and we have, for k =1 and k = 2,
Ifoullgse, <O Jullos)ull sz

Proof. As u is bounded, we can assume without loss of generality that f is
compactly supported. The proof then uses the same basic idea as in the proof
of Theorem 2.40: We introduce the telescopic series

ij with f; = f( Sjrau) — f(Sju).

The convergence of the series is ensured by the following lemma.

Lemma 2.62. Under the hypotheses of Theorem 2.61, the series EjeZ fj con-
verges to f(u) in S', and we have

1
fj = mjAju U)Zth mj d:6f/ f/(SjU +tAj’U,) dt (235)
0

Proof. The identity (2.35) readily follows from the mean value theorem, so
we will concentrate on the proof of the convergence of the series. We observe

that
0

3" = F(Siu) — F(S_wu).

j=—N

As u belongs to S and f(0) = 0, we have that || f(S_nu)||z~ tends to 0
when N tends to infinity. Moreover, for all positive integers M, we have

ij_ F(Sau) — f(Siu).

By virtue of the mean value theorem, we have

1 () = f(Sarw)|Lre < [l — Sarullzea |[f]l ==

Because sy > 0, the function S M tends to u in LP?2 when M goes to infinity.
Therefore, the series ), f; converges to f(u) in L+ LP2.

Next, we prove that f(u) € S} . It suffices to show that ||S; f(u)|| g~ — 0
when j goes to —oo. For that, we use the decomposition

u):S] Z fj/‘FSj Z fj/.

j'<—-N §'>-N
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Let € be a positive real number. As the series Y <0 fj converges in L*°, we
can choose an integer IV, such that

‘ S >t
J/<—N.

As the f;’s are in LP* and ZjeN f; is convergent in LP!, we then have, using

5
S_
Lo 2

Lemma 2.1,
I > 5| et
§'>-Ne BT
Thus, ||S; f(u)|/ = tends to 0 when j tends to —ooc. O

The terms m; will be handled according to the following lemma.
Lemma 2.63. Let g be a smooth function from R? to R. For j € Z, define

d ) .
m;(g) :efg(sj% Aju).

For any bounded function u, we then have
Yo €N, Vj € Z, [[0°m;(9)llz < Calg, lullz=)2"*.
Proof. The proof relies on Lemma 2.3, which provides us with the formula
*mi(g) = Y. Cy ( I @$u™ (35Aju)”‘32>afla§2 9(Sju, Aju),
P1,P2,V 1<]8]< ]

where the coefficients C, ,~ are nonnegative integers, and the sum is taken

other those p1, pa, and v such that 1 < p; + p2 < o],

Z vg, =p; for j=1,2, and Z By, +vg,) = a.
1<[B]<]a] 1<[B<] e

Note that there exists a constant C' such that
max{ || Ajul|pe, || Sjullp=} < Clul| forall jeZ.

Since g and all its derivatives are bounded on B(0, C ||u||;« ), Lemma 2.1 and
the above formula thus ensure that

10%m; (9 < Calg, l[ull =) 271,
This completes the proof of the lemma. -

In contrast with the situation which was encountered when proving Theo-
rems 2.47 and 2.52, here, the elements f; of the approximating series ) f;
are not compactly supported in the Fourier space. This difficulty is overcome
by the following lemma.
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Lemma 2.64. Let s be a positive real number and (p,r) be in [1,00]%. A
constant Cy exists such that if (uj)jez is a sequence of smooth functions
where Y u;j converges to some u in S}, and

de

Nitw)yen) C (s D) [ <o
loe|€{0,[s]+1} jller(z)

then u is in BS, and |[u| 5. < CsNy(u).

p,T
Proof. As the series ) u; converges to v in §’, we have
Au-ZAuJ +ZA7.LJ
J'<y J'>3

Using the fact that ||Ajuj e < [Juj||Le, we get

2js Z AjUj/ < 2]5 Z ||UJ ||Lp
>3 i>i
<y 27D | (2.36)

J3'>j
Using Lemma 2.1, we may then write that

|Ajupllpe < C277EHFD sup (0w || o,
laf=[s]+1

from which it follows that

ZA”LLJ

9is <ZQ(J “DH=9) gup 29 G laD) || 9o || .

laf=[s]+1

This inequality, combined with (2.36), implies that

. a; 1 (7)279° + ()2 B9,
27| Asull L < (axb); with df s s—laD 1 ac
14;0llr < (axb); bj o sy e+ sup 21D 9% 1.
jof=[s]+1
This proves the lemma. a

Given the above three lemmas, it is now easy to prove Theorem 2.61. Note
that, according to Lemma 2.64, it suffices to establish that

N, ((f5)jez) < oo. (2.37)

Now, using Leibniz’s formula, Lemma 2.1, and Lemma 2.63 with the function

g(%y):/o [z +ty)dt
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we get that
10°Fille < C2VICH(F, ul| )27 1=V Aju| o,
BLa
from which it follows that, for s = s1, s9,
10% fillLe < Calfs lullL=)21 | Ajul| o
< ¢iCa(f" lull )27 71V Jul| 5y with || (c;)lle- = 1. (2.38)
This completes the proof of the theorem. a

In the case where f belongs to the space Cy°(R) of smooth bounded functions
with bounded derivatives of all orders and satisfies f(0) = 0, a slightly more
accurate estimate may be obtained. Indeed, we have, for |ax| > 1 and any j
in 7Z,

max (|9° Sjull =, 107 Ajul| L= ) < C2N|Vul| g < 271 fu]l 5,
Arguing as in the proof of Lemma 2.63, we thus get
Va e N, [[0%m;lre < Calfs llullgo )21, (2.39)

We now state the result we have just proven.

Corollary 2.65. Let f be a function in Cg°(R) such that f(0) = 0. Let (s1, s2)
be in |0, 00[? and (p1,p2,71,72) be in [1,00]%. Assume that (s1,p1,71) satisfies
the condition (2.17).

Then, for any real-valued function u in B;l N B;Q N Bgom, the func-

1,71 2,72
tion fowu belongs to By! . N Bg2 . and we have
Ifoullyse, < Cullullgy lullps, for ke {12},

Finally, by combining Corollary 2.54 and Theorem 2.61 with the equality

f(0) = flu) = (v —u) / £ (u+ (v — w)) dr,

we readily obtain the following corollary.

Corollary 2.66. Let f be a smooth function such that f'(0) = 0. Let s be a
positive real number and (p,r) in [1,00]% be such that (s,p,r) satisfies (2.17).
For any couple (u,v) of functions in B;T N L, the function fov— fou then
belongs to B;T N L*> and

1f(v) = fu)

gy, SC(lv=ullg,, sup Jutr(o-wl
’ " T€l0,1]

+ o= ull sup]nu+r<v—u>||ggm),

7€|0,

where C depends on ", ||u||pe~, and ||v| e
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2.6.3 Time-Space Besov Spaces

One of the fundamental ideas in this book is that nonlinear evolution par-
tial differential equations may be treated very efficiently after localization by
means of Littlewood—Paley decomposition. Indeed, it is often easier to bound
each dyadic block in L?([0,T]; LP) than to estimate directly the solution of
the whole partial differential equation in L? ([0, T7; B;,T).

As a final step, we must combine the estimates for each block, then per-
form a (weighted) " summation. In doing so, however, we do not obtain an
estimate in a space of type L* ([0, T; B;,T) since the time integration has been
performed before the summation.

This naturally leads to the following definition.

Definition 2.67. For T >0, s € R, and 1 <r,p < 0o, we set

def \1nish A
||u||i§~(B;’r) = HQJ ||A]"U’HL§~(LP) o (2)"
We can then define the space E‘:}(B;)T) as the set of tempered distribu-
tions u over (0,T) x R? such that lim Sju = 0 in LP([0,T); L*°(RY)) and
j——o0

HUHEQ(B;,T) < 00.

The spaces Z%(B;,) may be linked with the more classical spaces

L%(BISM) def Lr([0,T7; B;S),r) via the Minkowski inequality: We have

lullzg sy ) < Nulleoss ) i r=e lullge e, )2 el i r<p

The general principle is that all the properties of continuity for the product,
composition, remainder, and paraproduct remain true in those spaces. The
exponent p just has to behave according to Holder’s inequality for the time
variable. For instance, we have the time estimate

||UU||ZPT(B;,T,) < C(HUHLS’}(LN)”UHZQ’?(B;J,) + HU||L§3(L<><>)||UHZ;4(B;7,,,))

whenever s >0, 1 < p < 0o, 1 < p, p1, p2, p3, pa < 00, and

1 1 1 1 1
P PL P2 P3 P4
It goes without saying that this approach also works in the nonhomogeneous

Besov spaces B, . which will be defined in the next section. This leads to

function spaces denoted by EPT(B;T).
2.7 Nonhomogeneous Besov Spaces

This section is devoted to the study of nonhomogeneous Besov spaces. It turns
out that most properties which have been proven thus far for homogeneous
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spaces carry over to the nonhomogeneous framework. The results are basically
the same, and the proofs are often simpler since we do not have to worry about
the low frequencies. Therefore, we shall omit the proofs whenever a similar
statement has been proven in the homogeneous setting.

Definition 2.68. Let s € R and 1 < p,r < co. The nonhomogeneous Besov

space By . consists of all tempered distributions u such that

d i
@ Asulle)sea|, < oo

Jullz;, .

Examples.

— Nonhomogeneous Besov spaces contain Sobolev spaces. Indeed, by (2.10)
and the Fourier-Plancherel formula, we find that the Besov space B3,
coincides with the Sobolev space H® defined on page 38.

— 1In the case where s € R™\ N, we can show that B3, .« coincides with the
Holder space C¥15s] of bounded functions u whose derivatives of order
|| < [s] are bounded and satisfy

|0%u(z) — 8%u(y)| < Clz —y* B for |z —y| <1.
We emphasize, however, that in the case s € N, the space BS,  is strictly
larger than the space C° (and than C*~1L1 if s € N¥).

The first point to look at is the invariance with respect to the choice
of Littlewood—Paley decomposition. This fundamental property is based on
the following lemma, the proof of which is analogous to that of Lemma 2.23.

Lemma 2.69. Let C' be an annulus of R, s be a real number, and (p,r) €

[1,00]2. Let (u;)jen be a sequence of smooth functions such that

Supp @, C 21C"  and H(2j3||uj'||Lp)jeNHZ () =0
We then have

d
u :equj €B,, and |ulp; <Cs
JjEN

295 |u; | ), H .
@ lulrlien]),

This immediately implies the following corollary.

Corollary 2.70. The space B, , does not depend on the choice of the func-
tions x and  used in Definition 2.68.

The following result is the equivalent of the Sobolev embedding (see Theo-
rem 1.38 page 29) for nonhomogeneous Besov spaces.

Proposition 2.71. Let 1 < p; < ps <0 and 1 < r; < ry < o0o. Then, for

s—d( -1
any real number s, the space By, .. is continuously embedded in szm(pl P2 )
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Proof. Tt suffices to apply Lemma 2.1, which yields
Sou||pre < C||Soul| e and ||Asu|l e < C2jd(ﬁ7%) Au|per for all j € N.
J J
As (™ (Z) is continuously embedded in ¢"2(Z), the result is proved. O

Theorem 2.72. The set B, ,. is a Banach space and satisfies the Fatou prop-

erty, namely, if (un)nen is a bounded sequence of B, ., then an element u

of By, and a subsequence wy ) exist such that

nli_)n;ouwn) =u in 8 and |ulps, < CliTEi()réf [y ()l Bs.,.-

The following result will help us to prove that the set of test functions is
densely embedded in Besov spaces By, . with finite r.

Lemma 2.73. If r is finite, then for any u in By ., we have

lim ||S;u—ullg:  =0.
Jj—o00 por
Proof. Let u be in B, .. Because r is finite, we have
lim > 27| A7, = 0.
j—oo £~
J'23

This obviously implies that lim Sju=win By ,. a
j—oo ’

We can now state a very useful density result.

Proposition 2.74. If p and r are finite, then D(R?) is dense in B;T(Rd).

Proof. Assume that p and r are finite. Let £ be a positive real number. Ac-
cording to Lemma 2.73, there exists an integer N such that

|u—Snullps, <e/2.

Fix a smooth positive function 8 supported in B(0,2) and with value 1 on the

ball B(0,1). For R > 0, set O d:efﬂ(-/R). Let k = max(0, [s] +2). Arguing as

in the proof of Proposition 2.27, we deduce that for all j € N, we have
2j3|\Aj(HRSNu - SNU)HLP S CSQ_jHDk(eRSNU — SN’LL)HLp
From the above inequality, we get that

||QRSNU — SNUHB; S CS(\|Dk(GRSNu — SNU)HLP + ||6RSNU - SNU||Lp).

r

Because p is finite, combining Leibniz’s formula and Lebesgue’s dominated
convergence theorem ensures that there exists some R > 0 such that

l0rSNu — Snul Bs, < e/2.

As Syu is a C°° function, we have proven that D is dense in By ,.. O
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Remark 2.75. When r = oo, it is obvious that the closure of D for the Besov

norm By, is the space of tempered distributions such that

lim 27%||Ajul|r» = 0.

j—o0
Nonhomogeneous Besov spaces have nice properties of duality: The space B;i,,
may be identified with the dual space of the completion By, of D for the

norm B, .. In this book, we shall only use the following, much simpler, result,
the proof of which is similar to that of Proposition 2.29.

Proposition 2.76. For all 1 < p,r < oo and s € R,
B;. x By, — R
(w ) = Y (A, Ape)

l7=3"I<1
defines a continuous bilinear functional on By . x B, , - Denote by Q, y
set of functions ¢ in S such that ||¢||B s <L Ifu is in S', then we h(we
p’
ullpy, <C sup (u,d).
¢€Q;IS)T/

We will now examine the way Fourier multipliers act on nonhomogeneous
Besov spaces. Before stating our result, we need to define the multipliers we
are going to consider.

Definition 2.77. A smooth function f : R? — R is said to be an S™-
multiplier if, for each multi-index o, there exists a constant C,, such that

Ve € RY, |07 F(€)] < CulL+ €)™ Io.

Proposition 2.78. Let m € R and f be a S™-multiplier. Then, for all s € R
and 1 < p,r < o0, the operator f(D) is continuous from By, to B, ™.

Proof. According to Lemma 2.69 it suffices to prove that
Vj > 1, 207 | /(D) Agul, < C2° || Agull, - (2.40)

Obviously, we can find some smooth function o satisfying the assumptions of
Lemma 2.2 and such that

Vi>0, A;f(D)u=oc(D)A;u.

Hence, Lemma 2.2 guarantees that (2.40) is satisfied for j > 0.
Next, introducing € in D(Rd) such that # = 1 on Supp x, we see that

A f(D)u=(0f)(D)A_1u.

As F71(0f) is in L', convolution inequalities yield (2.40) for j = —1. This
completes the proof. O



102 2 Littlewood—Paley Theory

Proposition 2.79. Let §<0,1<p,r <00, andu be a tempered distribution.

Then, u belongs to By, . if and only if

(27°)1Sjullr)jen € £

Moreover, a constant C' exists such that
C o |, < H(QJ‘SHSJ-UHLP)J-HZ < C(l i |)||u|\3

The proof is very close to that proof of Proposition 2.33 and is thus omitted.
We conclude this section with the statement of interpolation inequalities.

Theorem 2.80. A constant C exists which satisfies the following properties.
If s1 and sy are real numbers such that s1 < sa, 0 € ]0,1[, and (p,7) is
n [1,00], then we have

IA

and

0
el
C 1 1

(5+ 75 ) Il Nl

Hu”Bgfirﬁ(l*@)Sz

A

HUHBiiﬁ(lfe)sg —

2.8 Nonhomogeneous Paradifferential Calculus

In this section, we are going to study the way the product acts on nonhomo-
geneous Besov spaces. Our approach will follow the one that we used in the
homogeneous framework and most proofs will be omitted. Of course, we shall
now use the nonhomogeneous Littlewood—Paley decomposition constructed in
Section 2.2.

2.8.1 The Bony Decomposition

The basic idea of nonhomogeneous paradifferential calculus is the same as in
Section 2.6: Considering two tempered distributions u and v, we have

uy = g AjruAjo.
3’

We then split the sum into three parts: The first corresponds to the low
frequencies of w multiplied by the high frequencies of v, the second is the
symmetric counterpart of the first, and the third part concerns the indices j
and j’ which are comparable. This leads to the following definition.

Definition 2.81. The nonhomogeneous paraproduct of v by u is defined by

d—efz Sj—1uAjv.
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The nonhomogeneous remainder of u and v is defined by

R(u,v) = Z Apu Ajv.

[k—jl<1

At least formally, the operators T'and R are bilinear, and we have the following
Bony decomposition:
ww = Tyv + Tyu+ R(u,v). (2.41)

We shall sometimes also use the following simplified decomposition:

w="Tow+Thu with Tu% S S04 (2.42)
J

The main continuity properties of the paraproduct are described below.

Theorem 2.82. A constant C' exists which satisfies the following inequali-
ties for any couple of real numbers (s,t) with t negative and any (p,r1,72)
in [1,00]3:

Il (Lo xBs o5,y < CIT,

P,
ClsttHl 1 def 11
HTllﬁ(BZ;o,,-lXBZ,,»Q%BS.?) < — with o= mln{l, o + E}
The proof of this theorem is analogous to that of Theorem 2.47 and is thus
omitted.

Remark 2.85. In fact, due to Sju = 0 for j < 0 and the property (2.7), we
have

T.,v= Z Si—u ;i ((Id—x(D))v).

j>1
Lemma 2.1 thus provides a slightly more accurate estimate: Under the as-
sumptions of the above theorem, we have, for all £ € N,

1Tl s

D,

< Oflullz~ | DMl gy and [Tull s < Cllullse, [D*0]] gy

Next, we want to study the continuity properties of the remainder operator R.
As in the homogeneous case, we have to consider terms of the type Ajud v
whose Fourier transforms are not supported in annuli but in balls 27 B. We
thus need the following nonhomogeneous version of Lemma 2.49.

Lemma 2.84. Let B be a ball in RY, s be a positive real number, and (p,r) €
[1,00]2. Let (u;)jen be a sequence of smooth functions such that

Supp @; C 2B and H(2j5||uj|\LP)jENH[. < oo.
We then have
d
u :efzu] c B;T and ||U|
jeN

stm" < Os

(27 lusll»)sen]|,-
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Theorem 2.85. A constant C' exists which satisfies the following inequalities.
Let (s1,52) be in R* and (p1,pa,r1,72) be in [1,00]*. Assume that

ldef 1 1 ldef1 1
- :ef—+—§1 and - Zef——&-—ﬁl-
p pP1 P2 r 1 T2
If s1 + 89 > 0, then we have, for any (u,v) in Byl X Bg2 .,
Clsits2|+1
IR0l pgrres < ———lullsgy.,, Il 533..,-
If r =1 and s1 + s3 = 0, then we have, for any (u,v) in Byl . x B2
[ R(u,v)|l5y . < Clsl+82|+1‘|“||32},r1 lvllpsz.,,-

From this theorem, we infer the following tame estimate.

Corollary 2.86. For any positive real number s and any (p,r) in [1,00]?, the

space L> N B, . is an algebra, and a constant C exists such that

s+1

C
m;, < —— (Ihullz=[1

[[uv]

5y, + Jullsg llollz )
The proof simply involves the systematic use of Bony’s decomposition (2.41)
combined with Theorems 2.82 and 2.85.

2.8.2 The Paralinearization Theorem

In this subsection we investigate the effect of left composition by smooth
functions on Besov spaces B, .. We state an initial result.

Theorem 2.87. Let f be a smooth function vanishing at 0, s be a positive
real number, and (p,r) € [1,00]?. If u belongs to By .NL>, then so does fou,
and we have

Ifoullps, < Cls, f', llull)llullB;,, -

This theorem can be proven along the same lines as the proof of Theorem 2.61.
We note that it is based on the following lemma, the proof of which is left to
the reader.

Lemma 2.88. Let s be a positive real number and (p,r) be in [1,00]%. A
constant Cs exists such that if (uj)jen is a sequence of smooth functions which
satisfies

(sup 2D o) € ),
la] <[s]+1 j

then we have

d .
u :equj €B;, and |u|ps, <C; ( sup 2](57|a|)H3°‘ujHLp> H .
e ’ lal<[s]+1 sller
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In the case where the function f belongs to Cg°(R), Theorem 2.87 may be
slightly improved.

Theorem 2.89. Let f be in C;°(R) and satisfy f(0) = 0. Let s be positive
and (p,r) be in [1,00]2. If u belongs to B, . and the first derivatives of u belong
to BZ'._, then f ou belongs to B? ., and we have

00,007 p,T?

Ifoullpy, < C(s, [, [Vull g2 )llullz; -

b,

d
Remark 2.90. If u belongs to the space By, then the first order derivative

d
of u belongs to BD’O{OO. Thus, the space By, is stable under left composition
by functions of Cp;° vanishing at 0. This result applies in particular to the

Sobolev space H? = B; 9

Finally, we state the nonhomogeneous counterpart of Corollary 2.66.
Corollary 2.91. Let f be a smooth function such that f'(0) = 0. Let s > 0
and (p,r) € [1,00)%. For any couple (u,v) of functions in By . N L%, the
Junction fowv — fou then belongs to B, , N L> and

TE

1f(v) = fW)lB;, < C(Ilv —ullB;, o [ut7(v—u)] L

B;m) )

o ulle sup fut (o — )
T€[0,1]

where C' depends on ", ||ullLe, and ||v|| L.

When the function » has enough regularity, we can obtain more information
on f owu. In the following theorem, we state that, up to an error term which
proves to be more regular than u, f o u may be written as a paraproduct
involving u and f’ o u.

Theorem 2.92. Let s and p be positive real numbers and f be a smooth func-
tion. Assume that p is not an integer. Let p, r1, and ro be in [1,00] and such
that ro > r1. Let r € [1,00] be defined by 1/r = min(1,1/r1 + 1/r2). For any

) s o
Junction u in B, N BE, . , we then have

|ul| Bs

1 o u = Tpotll e < CU, ullz) ullpe., lulls; . -
Proof. To prove this theorem, we again write that
. def
flw)=>"f; with f; = f(Sj11u) — f(Su).
J

According to the second order Taylor formula, we have

1
fi = F(S;u)Au+ My(Aju)? with M, dzef/ (1— )" (Sju+ tAzu) dt.
0
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1
Applying Lemma 2.63 with g(z,y) = / (1 —t)f"(x + ty) dt gives
0

Vo€ N, [|0%M; |z < Calf”, ullne)2714. (2.43)
Using Leibniz’s formula, we can write

0™ (M;(Aju)®) = > CHCR0* P M; 077 Ajud Aju,
y<BLa

Using Lemma 2.1 and the inequality (2.43), we get
10270 M; 0%~ Aju 07 Ajul| o < Calf”, ullL) 27| Ajul| oo || Ajul | -

Thus, according to the definition of Besov spaces, we have, for some sequence
(¢j,a)j>—1 satisfying [|(c;)[ler =1,

27 (steraD) 9% (M (Aju)?) | e < Cal ", ull L) c)a

lull e, .., llullBs ., - (2:44)

We now focus on the term f/(S;u)A;u. Clearly, it is not the desired para-
product involving u. Therefore, we consider

1 def f1(Sju) = Sj—1(f ou).

Obviously, we have
fj = jfl(f/ o U)AJU + ,ujAju + Mj (Aju)Q.
We temporarily assume that

210192 | e < €0 Ca(f" Null o) [ull 2

SN

with |(¢j.a)

e = 1. (2.45)

Using (2.44), we then have, for some sequence (¢jqo)j>—1 belonging to the
unit ball of £,

2D 19%(f; = Spa (f ow) Aju) | L= < Ca(f" ull e )ejallull m

oo, Ty

lull s,

Py’
Applying Lemma 2.88 then yields the desired result.

In order to complete the proof of the theorem, we have to justify the
inequality (2.45). First, we investigate the case where |a| < p. We have

det
0@y S S = ),

Hi =Kyt H def
i () = S (F ()):
Using the fact that (Sju);en converges to u in L™, we get
g . = def
') = f'(Sju) =Y fir with fir  f/(Speau) = f(Sju). (246)

J'2J
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Applying (2.38) yields, for some sequence (¢ o)j>—1 With [[(¢ja)|/e= = 1,

27" (=109 || oo < cjr.aCalf” ull L) ull g ., - (2.47)
By summation, we then infer that, when |a| < p,
23 (=1oD |99 (UM || 1o < ¢jaCalf”, Nullpoo)ullpe, ,, with [[(cja)lle= = 1.

Next, thanks to Theorem 2.87, we have

aaf/(u) e Bgo_’l‘y and HBO‘f’(u)HBg;L;‘ < Ca(f”, HUHLOO)HuHBgQ”.

Thus, we can write that

j [eY a, (2 j « le"
2D 9 ) | e <20HD N7 407 (w) 2
j>j—1
< Calfs lull=)llull gz, ,, Y ejra2V™70r7leD
Jj'zj—1
<¢.aCa(f; ullze)lullps, ,, with [[(cja)lle2 = 1.
This completes the proof of (2.45) when |a| < p.
The case when |a| > pis treated differently.® As 9 f’(u) belongs to Bé’;l;“‘,
we have, using Proposition 2.79 and Theorem 2.87,

2109551 [ ()= < ¢j.aCalf", ullp=)llull s, ,, with [[(¢ja)lle= = 1.

We now estimate 0% f/(S;u). Again using the fact that (Sju); converges to u
in L*°, we can write that

FS) = 3 Fr with fr € pu) - £(S;).

3'<i-1
Using (2.47), we then get
201D )9 1 (Syu) [ 1oe < 207D F 707 el
J'<i-1

< Calf" Iullz=)lullpe.,, D ep.a2071D

i'<i—1
< Ca(f", Nullzoo) lull 5

SN

Cj,a with ||(Cj’a)||g7‘2 =1.
The inequality (2.45), and thus Theorem 2.92, is proved. O

3 Recall that p is not an integer, so |a| # p.
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2.9 Besov Spaces and Compact Embeddings

This section is devoted to the statement of (locally) compact embeddings for
Besov spaces, properties which prove to be of importance for solving certain
partial differential equations in the following chapters.

The following statement is an extension of Proposition 1.55 to general
Besov spaces.

Proposition 2.93. Let K be a compact subset of R?. Denote by B; .(K)
[resp., B;T(K)/ the set of distributions u in By, (resp., B;’T), the support
of which is included in K. If s > 0, then the spaces B, .(K) and B;T(K)

coincide. Moreover, a constant C exists such that for any u in B;T(K),
sy, < C(1+ 1K) “[lull 5, -

Proof. For any j in Z, we write u = S’ju + (Id—S"j)u. As u belongs to B;T?

the function Sju belongs to L, and (Id ij)u belongs to LP. This implies
that By, is included in L} and thus that By ,.(K) is included in L. In order

to prove the inequality, we write, for any u in B;’T(K) and j € Z,

ullzocrey < 1Sjullpocrey + |(Id —=Sju)|| e
l . —48
< K7 [[Sjullze + €277 Jull g, -

Using Bernstein’s inequalities and, again, the fact that Supp u C K, we get

[ullzr < CIK 324 ul g2 + C279%|[ul| .
p,r
< CIK[2ul r + C277 u 5, .

If j is chosen in Z such that 1/4 < |K|27¢ < 1/2, then the first term of the
right-hand side may be absorbed by the left-hand side, and we can infer that

lullze < CIE[ Jul g, -

Because s is positive, we have B, , = B;yr N LP. This completes the proof of
the proposition. ]

Theorem 2.94. If s' < s, then for all ¢ in S(R?), multiplication by ¢ is a
compact operator from B, . to By ;.

Proof. Let (un)nen be a bounded sequence of By . Thanks to Theorem 2.72,
a subsequence (uy(,))nen and a function v exist in By, , such that (wyn))nen
converges to u in §’. Thus, we are reduced to proving that if (uy,)pen is a
bounded sequence of B, ., which tends to 0 in &', then ||c;$un||BZ/1 tends to 0.
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By virtue of product laws in nonhomogeneous Besov spaces (see Theo-
rems 2.82 and 2.85), the sequence (@un)nen is bounded in Bj .. We then
write

= > 27 4(¢un)llzr
j

< D PV A Gun) e + 3 272 A (fun) o

Ji<jo Jj>jo
< 30 2114 (Gun)llor + Cow27 ) sup | gunll ;.

J<jo "

A positive € being given, we choose jy such that
C’S,S,Z_j‘)(s_s/) sup [[gun|B; . < €/2.
n ’

We then simply have to prove that

lim [|A;(¢uy)|zr =0 forall j> —1. (2.48)

n—oo

Actually, it suffices to consider the case where p = 1. Indeed, first, since ¢ is
in (say) B| 1 and (un)nen is bounded in B _, it is not difficult to check

,00 p,00

that ((bun)neN is bounded in Bf ., (use Theorems 2.82 and 2.85). Second,
Bernstein’s lemma guarantees that

14; () 1o < OV Aj (G| 1 -

We therefore assume from now on that p = 1. We only treat the case where
J € N, the case j = —1 being similar. By the definition of A;, we then have

Ay (fun)() = 270 / B2 (2 — 4))é()un(y) dy
R
= 2jd<un, T_wﬁ(2j~)¢>.

As u,, tends to 0 in &', the above equation ensures that the function Aj;(dus,)
tends to 0 pointwise. Moreover, according to Proposition 2.76,

[45(0un)@)] < C2(sup ;.. ) 172 h(2 )0 e

Hence, thanks to Lebesgue’s dominated convergence theorem, proving (2.48)
reduces to the following lemma.

Lemma 2.95. For any (f,g) in S* and any (o,p,r) in R x[1,00]?, the map

2 |(7=f)gllsg,

belongs to L' (R?).
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Proof. Observe that for j > 0, by using a rescaled version of the rela-
tion (2.1.1) and Leibniz’s formula, we get, for any positive integer N and
some functions hy in S(R?),

Aj(rafg)=27N 3" 200 (27) « (0 P7. £ 0%9).
I%\S:i\f

Thus, using Bernstein’s inequalities, we infer that

—j(N—<
145 (7= f 9)l|r < Cn27N 75 sup 07 f 971
la+BI<N
< On2 N (fy x ) ()
. def - def o .
with fy () = sup [0%f(z)| and gn(z) = sup|q<n [0%g(x)|. Choosing N

la|<N
greater than d + o + 1, we infer that

|- f9llBs, < C(fn*gn)(2)-

Observing that the convolution maps L' x L! into L' completes the proof of
the lemma. a

Theorem 2.94 immediately implies the following corollary.

Corollary 2.96. For any (s', s) in R? such that s' < s and any compact set K
of RY, the space By (K) is compactly embedded in By | (K).

2.10 Commutator Estimates

This section is devoted to various commutator estimates which will be used
in the next chapters. The following basic lemma will be of constant use in this
section.

Lemma 2.97. Let 0 be a C! function on R? such that (1+|-|)8 € L'. There
exists a constant C' such that for any Lipschitz function a with gradient in LP
and any function b in L1, we have, for any positive X,

11 1
10X D), albll- < CATH|[Val|zo [Bl| e with P

Proof. In order to prove this lemma, it suffices to rewrite (A1 D) as a con-
volution operator. Indeed,

(67" D), alb) (x) = O(A™" D)(ab)(x) — a(z)0(A~" D)b(x)

= )\d/ﬂgdk()\(x—y))(a(y)—a(:z:))b(y) dy with k= F16.



2.10 Commutator Estimates 111

Let k1(2) def |z| |k(2)]. From the first order Taylor formula, we deduce that

|(6(A"D), alb) (z)| < A" /[0 e k1 (\2)|Va(z — 72)| |b(z — 2)| dz dr.

Now, taking the L” norm of the above inequality, using the fact that the
norm of an integral is less than the integral of the norm, and using Hoélder’s
inequality, we get

[[6(A™'D), alb|

1

L SAT! /0 /]R NEy(A2)||[Va(- — 72) || o |b(- = 2)|| e dT dz.

The translation invariance of the Lebesgue measure then ensures that
[6AT'D), alb| . < A7 Kl [[Vallzollb] 2o,

which is the desired result. a

Remark 2.98. If we take = ¢ and A = 27, then this lemma can be interpreted
as a gain of one derivative by commutation between the operator A; and the
multiplication by a function with gradient in LP.

Lemma 2.99. Let f be a smooth function on R?. Assume that f is homo-
geneous of degree m away from a neighborhood of 0. Let p be in 0,1, s be
in R, and (p,r) be in [1,00]2. There exists a constant C, depending only on s,
p, and d, such that if (p1,p2) € [1,00)? satisfies 1/p = 1/py + 1/pa, then the
following estimate holds true:

1T, FDYul gt < ClIVall gyl - (2.49)
In the limit case p = 1, we have
| Tas FD)Jull gy < ClIVal o iz, - (2.50)

Proof. We only treat the case p < 1. The limit case p = 1 stems from similar
arguments. Let ¢ be a smooth function supported in an annulus and with
value 1 on a neighborhood of Supp ¢ + Supp x(-/4). We have

[T, f(D)u =5, Sj—1a f(D)Aju — f(D)(Sj-1a4;u)
= Zj21[sj*1a7f(D)A/j]Aju with ANJ- def ?(277D).

Note that the general term of the above series is spectrally supported in dyadic
annuli. Hence, according to Lemma 2.69, it suffices to prove that

271810, (D) A1 Ao

. <ClVall gy Il

By, (251)

Owing to the homogeneity of the function f away from 0, there exists an
integer Ny such that
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Vi > No, f(D)4; =2"(f3)(277 D).
Taking advantage of Lemma 2.97, we thus infer that for any j > Ny,
1[S-1a, F(D)A;]Aul| s < C270 V|| _yal| o | Ajull o

Of course, if 1 < j < Ny, we can still write, according to Lemma 2.97,

[[Sj—1a, f(D)A;]AjullLr < C279(|VS;_1al Lo || Ajul| e
< C2Nolm|i(m—1) ||VSj,1aHLp1 ||AjuHLp2 .

Because ||V.S;j_1allpe: < C’2j(1*P)HVa||B£7LO if p < 1, we can now conclude
that (2.51) is satisfied, completing the proof. a

The following corollary will be important in the next chapter.

Lemma 2.100. Let 0 e R, 1 < r < oo, and 1 < p < p; <o0. Let v be a
vector field over R% . Assume that

11 11
o> —dmin{ .~} or o>-1—dmin{-—.—] il dive=0. (252)
p1 p p1 p

Define R; def [v-V,Alf (or R, d:efdiv([v,Aj]f), if divo = 0). There exists
a constant C, depending continuously on p, p1, o, and d, such that

|(27 ||Rj||L,,)jHW <CIVol s flleg, i o<1+ (253)

d
P
P1.0©

then

Further, if 0 >0 (or o > —1, ifdive =0) and pLQ =

| 185020 )

1_ 1
p p1’

o < C(IVell=fllzg, + IV llee V0l g2 (2:5)

In the limit case o = fmin(pil, z%) Jor o = —1— min(pil, 1%)’ if dive = 0],
we have 4
sup 27 Byl < CIVOll s [l (2.55)
j>-1 11

P1,

Proof. In order to show that only the gradient part of v is involved in the es-
timates, we shall split v into low and high frequencies: v = Syv+v. Obviously,
there exists a constant C' such that

Va € [1,00], [|SoVU|l e < C||V| . and |V0] . <ClVo|a. (2.56)

Further, as v is spectrally supported away from the origin, Lemma 2.1 ensures
that ‘
Va € [1,00], Vj > =1, [|A; V0| ;. = 27 [|A;0]] . . (2.57)

We now have (with the summation convention over repeated indices):
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Rj =v- VAJf - Aj(’l) . Vf)
= [0%, Aj]0k f + [Sov*, A;]0k f-

113

Hence, writing Bony’s decomposition for [0¥, A;]0kf, we end up with R; =

8 i
> i1 I, where

R} = [Ty, 4]0, f, R = To,a,50",

R} = = ATy, /0", Rj = 0:R(, 4;F),
RS = —R(div, 4;f),  RY=—8,A;R(W, f),
RT = A;R(div7, f), R} = [Sov*, A1k f.

In the following computations, the constant C' depends continuously on o, p,
p1, and d, and we denote by (¢;j);>—1 a sequence such that [|(¢;)|¢ < 1.

Bounds for 27° ||RJ1HLp By virtue of Proposition 2.10, we have

R} = Z [Sj/,lfﬁk,Aj]akAj/f.

l7—3"<4

Hence, according to Lemma 2.97 and the inequality (2.56),

27| R, <CIVolle Y 27145 fll
[/ —71<4
< C¢; IIVoll o £ 1155, -

Bounds for 277 ||Rj2 By virtue of Proposition 2.10, we have

HLP'
RI= > Sy 1004, f Ao,

J'2j=3
Hence, using inequalities (2.56) and (2.57) yields

el

o <Ce IVl e 1 f N1 B2 .-

Bounds for 277 ||R? We proceed as follows:

Iz

R == 3 Ai(Spadnf Ayt
3" —jl<4

== > 4(4pora).
17" —j]<4
J<i =2

(2.58)

(2.59)

(2.60)

(2.61)

Therefore, writing 1/ps = 1/p — 1/p1 and using (2.56) and (2.57), we have
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2R, <C 30 PNAWOS | 45T
I3 —j|<4
i'<i’ -2
. .11 d v e
<C Y 20T Ay £, 2T P AVl
li'—jl<4
J'<i -2

“im

Hence, if 0 < 1+ d/p1, then
< ColVoll ||f||B° : (2.62)

P

27 B

Note that, starting from (2.60), we can alternatively get

27 |R2|,, <C > IVSj—1fll e 27V AV

3" —jl<4

Iz,

from which it follows that

27 B3, < Cei [V F ]l o [1V0] g1 (2.63)
Bounds for 27 ||R?HLp and 29° ||R]5‘|Lp, Defining ANJ-, def Ajr 1+ A5 +Aj 4,
we have
= > (A" A4 f).
3" —jl<2

Hence, by virtue of (2.57), we get
27 ||Ri ., < CeslIVolli< | fllzg, - (2.64)

A similar bound holds for R?.
Bounds for 277 HR?HLP and 297 HRZHLP
1/p+1/p1 < 1. Let ps satisfy 1/ps def 1/p+ 1/p1. Then, under the condition

d

o > —1 — d/p1, Proposition 2.85, combined with the embedding de Pl
B¢ . yields

p,r?

We first consider the case where

27|18 < Ceslll i 115, (2.65)

Pl»OC

Lr —

Now, if 1/p 4+ 1/p1 > 1, then the above argument has to be applied with p’
instead of po, and we still get (2.65), provided that o > —1 — z%' Appealing
o0 (2.56), we eventually get

2'7 || Rj < e[Vl s Wfllsg, (2.66)

Iz,

Note that in the limit case 0 = —1 — mln(p 4 Proposition 2.85 yields

w2 [ 7], < Il g 115, (2.67)

Pl
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Similar arguments lead to

217 ||R7HLp < CC]HV’UH o | fllsg,, if o> —min(;- d ﬁ), (2.68)
Pl S

217 ||R7HLP < C|Vv| « ||f||Bo , if o= —min(;; d I%) and r = 00.(2.69)
B

p1

Finally, we stress that if o > —1, then the standard continuity results for the

remainder, combined with the embedding L — Bgo 00> yield
27 | RY||,,, < Cesl|Voll= | fl1gg, - (2.70)

Of course, the same inequality holds true for R]7- if 0 > 0.

Bounds for 279 HR?HLP, As R} = 2olj—ji<1lQ, Acv] - VA f, Lemma 2.97

yields
27|l <C D IVAle 2 1Ay il
3" —jl<1
< Ce; Vol |1 f 155, (2.71)
Combining inequalities (2.58), (2.59), (2.62) or (2.63), (2.64), (2.66) or (2.67),
(2.68), (2.69) or (2.70), and (2.71) yields (2.53), (2.54), and (2.55). 0

Remark 2.101. Assume that o > 1 + pil, oroc =1+ pil and r = 1. We note
that By, ' < L2, so the inequality (2.54) ensures that

1277 1Rl .o

o S ClIVoll g1l sy,

Remark 2.102. There are a number of variations on the statement of Lem-
ma 2.100. For instance, the inequalities (2.53), (2.54), and (2.55) are also valid
in the homogeneous framework (i.e., with A; instead of A; and with homoge-
neous Besov norms instead of nonhomogeneous ones), provided (2.17) is satis-
fied by (p,r,0). The proof follows along the lines of the proof of Lemma 2.100.
It is simply a matter of replacing the nonhomogeneous blocks by homogeneous
ones.

Remark 2.103. In Section 3.4 of the next chapter, we shall also make use of
the fact that the inequalities (2.53), (2.54), and (2.55) are still true for the
commutator ) ) )

Sjyngv - VA f = Aj(v- V),
where Ny is any fixed integer. Indeed, it suffices to note that for all j > —1,
we have

H(Sy‘wov—v) : VA'ijLp < 2

SﬂNOU_UHLoo ‘

S C Z 2]'7']-/ HVAJ/U

LN’
0

< ClIVollgy 147l
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2.11 Around the Space Bio’oo

The space B;o,oo will play an important role in Chapter 7 when dealing with
the incompressible Euler equations. This section is devoted to proving various
logarithmic interpolation inequalities involving that space. We start with the
most elementary of these.

Proposition 2.104. Let e be in |0, 1[. A constant C exists such that for any f

in B¢
c T
1l < Sl e (1 +log—*)-
e 11z Flee

Proof. In order to prove this, we write the function f as the sum of the dyadic
blocks A; f. For any positive integer IV, we have

DolA = < Y 1Al + D 1Al

00,007

Jj=-1 —1<j<N-1 j>N
2—(N 1)e

<N+ DIfllsy, o + == Ills=

As [[fli~ < oy 14 taking
1 Hf”B
N=1+ 10
B2 I1£llse,

yields the result 0

Remark 2.105. In fact, the above proof gives the following, slightly more ac-
curate, estimate:

I fllBs,
7es, < Eislen. <1+1og’)-
Floe

We now define the space LL of log-Lipschitz functions.
Definition 2.106. The space LL consists of those bounded functions f such

" |f (=) — f(&')]
def z)— @
fler = sup < co.
I o<|z—ar|<1 |7 — 2'|(1 —log |z — 2'|)

Béo,oo is a subspace of the space LL of log-Lipschitz functions. More precisely,
we have the following.

Proposition 2.107. A constant C exists such that for any functionw in BL,
and any z,y in R? such that |z —y| <1, we have

lu(z) —u(y)| < Cl[Vully, , [v —yl(1—log |z —yl).
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Proof. The proof is similar to the one above. We write that, for |z —y| < 1,

u(z) —uly) = Y Ajulz) — Ajuly) + Y Aju(z) = Ajuly).

J<N i=N

By combining the mean value inequality and Bernstein’s lemma, we get

[u(z) = u(y)| < Cla —y| Y 14;Vull= +2 ) 277 |[VAu 1,
J<N i=N

from which it follows, by the definition of the space B2 that

00,007

u(z) — u(y)] < C[|Vull g

00,00

(N + 1Dz —yl+277).
As above, choosing N = [—log, |z — y|] + 1 completes the proof. O

We have just established a relationship between the modulus of continuity and
the growth of L> norms of dyadic blocks in the special case of log-Lipschitz
functions. A similar connection may be established for a more general class of
moduli of continuity given in the following definition.

Definition 2.108. Let a be in |0, 1]. A modulus of continuity is any nonde-
creasing nonzero continuous function p : [0,a] — Ry such that u(0) = 0. The
modulus of continuity p is admissible if, in addition, the function I' defined
fory>1/a by
I'(y) dzefyu(l)
Y
is nondecreasing and satisfies, for some constant C and all x > 1/a,

1 I'(x)
A =TI'(y)dy < C—=.
@ [ Srwd=os
Examples. If o € ]0,1], then the functions p(r) = r*, u(r) = r(—logr)®,
and pu(r) = r(—logr)(log(—logr))* are admissible moduli of continuity.

Definition 2.109. Let i be a modulus of continuity and (X, d) a metric space.
We denote by C,(X) the set of bounded, continuous, real-valued functions u
over X such that

def [u(z) — u(y)|
lulle, = llullpex)y+ sup ——2—75

u
< 0.
0<d(z,y)<a u(d(x, y))

Examples. When p(r) = r* for some « €]0, 1], the space C,(X) coincides
with the Hélder space C*(X). If u(r) = r(1 —logr), then C,(X) is the space
LL(X) of log-Lipschitz functions on X.

Definition 2.110. Let I' be a nondecreasing function on [1,00[. We denote
by Br (Rd) the set of bounded real-valued continuous functions u over R such
that VS
def GU|| Lo
U = ||u||lpe +Sup —=r—— <
e <l +s0p = ES
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Example. When I'(y) = y'=@ [hence u(r) = r%], the space Br is equal
to B, - This is a consequence of Proposition 2.79, which ensures that Vu

is in Bg“o ~ if and only if sup ;< 23(@=1)||8;Vul| = is finite. Therefore, we see
that in this particular case, the spaces C,, and Br coincide.
The following proposition states that this is still true in a much more

general framework.

Proposition 2.111. Let u be an admissible modulus of continuity and let I’
be defined as in Definition 2.109. Then, C,,(RY) = Bp(R%).

Proof. Assume that u belongs to Br. According to the identity (1.23) page 25,
there exists a family of functions (g )1<z<a in D(R*\{0}) such that

M&

#2797 D)0 A,
k=1

This implies that _ 4
|Azullz < C279T(2)lull5,.. (2.72)

We now write, for |z — 2'| < a,
Ju(@) —u(@’)| < [|VSjullp=lz —a'| +2 ) |Ajull
J'zj
< |VSjullp<le = /| + Cllullp, Y 277 T(27).
Jj'2j

Using the condition (A), the fact that I" is nondecreasing, and the definition
of |||z, we get

’ j / *1
) = u(e')| < el (P —a'l+C [ T dy)
< Jullg, (M@)z = o| + C27/1(2)).

Choosing j such that 277 ~ |z —2/| and using the definition of I" gives u € C,,.
Now, assume that u belongs to €, and let h=F ~1x. By the definition
of S; and the fact that / 8kﬁ(y) dy = 0, we may write
Rd

OuSjula) = 212 | Och(2 (¢ - y))(uly) - u(x)) dy.

Therefore, using the definition of ||u[|c, and splitting the integral into |y —x| <
a and |y — x| > a, we get

10S;u()] < 2792 (|u||c,b /| (2 (@ — y))|pully — x]) dy
y

~a|<a

+ 2l [ |akﬁ(2j<x—y>>|dy).
ly—z|>a
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Setting z = 27(x — y) and splitting the first integral into two parts yields

|0k Sju(@)| < HUIlcﬁj/ |Okh(2) (27| 2]) d=

[z|<1
e, [ b Ar () de ol [ el
1<|z|<27a | ‘ |z|>27a

As p and I" are nondecreasing functions, we have, for any z such that [z < 1

(resp., |z| > 1), u(277|z|) < u(277) [resp., (l |) < I'(27)]. Thus, we get

|m&wmsw@wmr0/|maaMz
z|<1

e, £@) [ (oF@ el + Cllulo.

1<|2|<2/a

As the last term may obviously be bounded by C'I'(27)||ul| for some con-
stant C’ independent of j and u, we end up with

IVSjullpe < Cllulle, I'(27), (2.73)
and the proposition is proved. a

Example. If we take p(r) = r(1 — logr), then we get I'(y) = 1+ logy.
Hence, the above proposition shows that LL coincides with the set of bounded

functions u such that
— 7 <0

jeN J + 1
Proposition 2.104 extends to general C), spaces in the following way.

Proposition 2.112. Let u be an admissible modulus of continuity. There ex-
ists a constant C such that for any e € 10,1], u in CY¢, and positive A, we

have
lullc, + A [Vl o 2
o <O = (= =2e
IVulze < < € +llullc, (||UI|CM,+A)

€
whenever |lullc, +A < (%) [[Vul|co.e.

Proof. Write
Vu = S;Vu+ (Id—-S;)Vu.
By definition of C%¢, for any j € N such that 27 > 1/a, we have, using (2.73),
IVl = < Cllulle, I'(27) + Ce™1277%||Vul|o..
Choosing j such that

1 1
l( [Vul|co.e )E <9< ( [Vullgo. )E
2\ |ulle, +4 l[ullc, +4

and using the fact that I" is nondecreasing gives the result. O
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2.12 References and Remarks

Bernstein’s inequality and the lemma that follows it belong to the mathematical folk-
lore. The statement of Lemma 2.1 is borrowed from [69]. The subsection devoted to
the action of a diffeomorphism over functions with localized Fourier transforms was
inspired by the work of M. Vishik in [296] (see also [156] and [103]). The smoothing
effect for the heat flow which is pointed out in Lemma 2.4 was first stated in [71, 72].
A proof of Faa di Bruno’s formula (Lemma 2.3) may be found in [298]. Lemma 2.8
has been stated in [90] (under slightly more restrictive assumptions over the sup-
port), then extended in [251] and [95] for any p € |1, o0l

Littlewood—Paley theory first appeared in the context of one-dimensional Fourier
series (see the works by J. Littlewood and R. Paley in [218, 219]). The presentation
adopted in Section 2.2 follows that of J.-Y. Chemin in [69]. We mention in passing
that a number of more sophisticated decompositions of the phase space (z,&) have
recently been proposed. The most celebrated of these is probably the wavelet de-
composition introduced by Y. Meyer in [230-232]. In the present book, we restrict
ourselves to the cruder Littlewood—Paley decomposition, which proves to be suffi-
cient for tackling most problems related to nonlinear partial differential equations.

Besov spaces were named after O. Besov who introduced them in [37] for the
study of the embedding and trace of functions with derivatives in L”. The general
definition is due to J. Peetre in [249]. The characterizations in terms of finite dif-
ference or heat flow are standard. More properties for these spaces may be found
in [34, 204, 240, 250, 254, 288, 289]. There is no consensus surrounding the defini-
tion of homogeneous Besov spaces. In the above references, they are defined modulo
polynomials of arbitrary degree. In [41], G. Bourdaud showed that homogeneous
Besov spaces Bfm may be realized, that is, embedded in some Banach space. When
s >d/p (or s > d/p, if r = 1), however, that Banach space is a function space mod-
ulo polynomials of degree less than or equal to s —d/p if r > 1 (less than s — d/p, if
r = 1). We believe that the presentation adopted in this chapter is the most suitable
one for the study of partial differential equations.

The refined Sobolev inequality was discovered by P. Gérard, Y. Meyer, and
F. Oru (see [140]). The approach presented here is taken from [77]. The embedding
property BSQ — LP for 2 < p < oo is sharp. It may actually be shown that for any
p € ]1,00], the Lebesgue space L” coincides with the Triebel-Lizorkin space Fj ,
(see [150, 273]). The proof relies on general results for vector-valued singular integrals
which are beyond the scope of this book. Gagliardo—Nirenberg inequalities arise from
the works by E. Gagliardo in [131] and L. Nirenberg in [241].

Paradifferential calculus was invented by J.-M. Bony in [39] for proving a priori
estimates for quasilinear hyperbolic partial differential equations in nonhomoge-
neous Sobolev spaces. The discrete version of paradifferential calculus that we chose
to present here is due to P. Gérard and J. Rauch [141] (in the nonhomogeneous
framework). More results on continuity may be found in, for instance, [254] or [285].
The proof of the Hardy and refined Hardy inequalities is borrowed from [22]. More
general refined Hardy inequalities have been proved in [23, 24].

There is an extensive literature on the properties of Besov spaces with respect to
left composition (see, in particular, [42, 43], and [254]). The proof which is presented
in Section 2.6.2 is an adaptation of the so-called paralinearization Meyer method
(see [11] and [232]) to the homogeneous functional framework. The paralinearization
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theorem stated on page 105 was inspired by the work of S. Alinhac in [5] and
Y. Meyer in [232].

The compactness properties of Besov spaces presented in Section 2.9 belong to
the mathematical folklore; however, we did not find any comprehensive and self-
contained proof in the literature. Those properties are fundamental for proving the
existence for some of the nonlinear partial differential equations which will be studied
in the next chapters.

Section 2.10 provides the reader with various commutator estimates which will
be used throughout the book. Lemma 2.100 gathers different estimates which have
been proven in [69, 99], and [103] and is likely to be useful for investigating a number
of partial differential equations.

The Zygmund space (here denoted by Bio,oo) was introduced by A. Zygmund
in [304]. The logarithmic interpolation inequalities were discovered by H. Brézis and
T. Gallouét in [50]. They will be used in Chapters 3, 4, and 7 for proving continuation
criteria for different types of nonlinear partial differential equations.






3

Transport and Transport-Diffusion Equations

This chapter is devoted to the study of the following class of transport equa-
tions:

Of+v-Vf+A-f=g
(T) {ft_ofo,

where the functions v: R xR? = R%, A : RxRY — My (R), fo: R? — RV,
and ¢ : R x RY — RY are given.

Transport equations arise in many mathematical problems and, in particu-
lar, in most partial differential equations related to fluid mechanics. Although
the velocity field v and the source term g may depend (nonlinearly) on f,
having a good theory for linear transport equations is an important first step
for studying such partial differential equations.

The first section is devoted to the study of ordinary differential equations.
The emphasis is on generalizations of the classical Cauchy—Lipschitz theorem.
When the vector field v is Lipschitz, there is an obvious correspondence be-
tween the ordinary differential equation associated with v and the transport
equation (T'). Moreover, this study will provide an opportunity to establish
some very simple blow-up criteria for ordinary differential equations that will
act as guidelines for proving blow-up criteria in evolution partial differential
equations (see Chapters 4, 5, 7, and 10).

In the second section we focus on the transport equation (7") in the case
where the vector field v is at least Lipschitz with respect to the space variable.
As an application of the results established, we solve the Cauchy problem for
a shallow water equation. The main focus of the third section is the proof of
estimates of propagation of regularity with loss when the vector field is not
Lipschitz. The particular case of log-Lipschitz vector fields plays an important
role in the study of two-dimensional incompressible fluids (see Chapter 7).

Finally, in the last section of this chapter, we prove a few estimates for the
solution of the transport-diffusion equation. This type of equation appears,
in particular, in the study of the problem of vortex patches with vanishing
viscosity (see Chapter 7).

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential 123
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7_3, (©) Springer-Verlag Berlin Heidelberg 2011
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3.1 Ordinary Differential Equations

This section recalls some basic facts about ordinary differential equations.

3.1.1 The Cauchy—Lipschitz Theorem Revisited

To begin, we establish a generalization of the classical Cauchy—Lipschitz the-
orem. The underlying concept is the Osgood condition, defined below.

Definition 3.1. Let a > 0 and p be a modulus of continuity defined on [0, a)
(see Definition 2.108). We say that p is an Osgood modulus of continuity if

) =

Examples. The function r — r is an Osgood modulus of continuity, as are
the functions

1\ @ 1 1\o |
r— r(log 7) and r+——r log— <log10g 7) if a<l.
r r r

The function r — r* with @ < 1, however, is not an Osgood modulus of
continuity. Neither are the functions

1\« 1 1ye |
r— r(log 7) and r+—— r log— (loglog 7) with a > 1.
r r r

The relevance of Definition 3.1 is illustrated by the following theorem.

Theorem 3.2. Let E be a Banach space, {2 an open subset of E, I an open
interval of R, and (to,xo) an element of I x 2. Let F be in L}, (I;C,(2; E)),
where 1 is an Osgood modulus of continuity and C,,(£2; E) is the Banach space
introduced in Definition 2.109. There then exists an open interval J C I such

that the equation
t

(ODE) (1) = a0 + / P, 2(t')) dt
to

has a unique continuous solution on J.

Proof. We first establish the uniqueness of the trajectories of the equation.
Let 27 and x2 be solutions of the equation (ODE) defined on a neighbor-

hood J of ty with the same initial data zo. Define 8(t) def lz1(t) — z2(2)].
Because F € L}, .(I;C,(12; E)), we have

loc

t
0<6(t) < / Yt u(s(t'))dt' with v € L},.(I) and ~v>0. (3.1
to
The key to uniqueness is the so-called Osgood lemma, a generalization of
the Gronwall lemma. For the reader’s convenience, we first recall the Gronwall
lemma.
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Lemma 3.3. Let fand g be two C° (resp., C' ) nonnegative functions on [ty, T].
Let A be a continuous function on [to, T]. Suppose that, fort in [to,T),

1d

5 950 < AW g0 + F(Dg(0) (32)

For any time t in [to, T] we then have

o(t) < glto) exp /t AWyt + /t t 7t esp( /ﬂt Aty di" )

Proof. Define

ga(t) d=efg(t)e><p(—/t:,zl(t’)dt’) and  fa(t) d:‘aff(ﬁ)exp(—/t:A(t’)cht’).

1d
Obviously, we have 3 dtgA < faga, so for any positive €,

gA

mfft < fa.

By integration we get, for all ¢ € [tg, T7,

(g4(t) + %)% < (g% (to) +€2) /fA

Letting € tend to 0 then gives the result. a

We now state the Osgood lemma.

Lemma 3.4. Let p be a measurable function from [to, T] to [0,a], v a locally
integrable function from [to,T] to R*, and p a continuous and nondecreasing
function from [0,a] to RY. Assume that, for some nonnegative real number c,
the function p satisfies

t

o) < o+ / AV (p(E)) A for a.el t € [ty, T]. (3.3)
to

— If ¢ is positive, then we have, for a.e. t € [to, T,

t a d
—M(p(t)) + M(c) < / NE)dt with M(z) = / W:) (3.4)
to T
- If c=0 and p is an Osgood modulus of continuity, then p =0 a.e.

If we assume this lemma to hold, then we get 6 = 0 in (3.1), from which
uniqueness follows.

! From now on, the abbreviation “a.e.” means “almost every.”
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In order to prove existence in Theorem 3.2, we use the classical Picard
scheme:

$k+1(t) = x9 + / F(t',xk(t’)) dt’.

to

We skip the fact that for J sufficiently small, the sequence (zx)ren is well
ef

defined and bounded in the space Cp(J, 2). Let pg (%) de sup ||zgsn(t’) —
<t

to<t’'<

xi(t')]|. It is obvious that

0< proin(t) < / ()i () d.

to

Because the function p is nondecreasing, we deduce that py def sup pg,n sat-
n
isfies .
0< pra(®) < [ A(E (ot dt,
to

from which it follows that

A1) X tim sup pi (1) < / V() (B dt.
k—-+o0 to

Lemma 3.4 implies that p(t) = 0 near tg; in other words, (zj)ren is a Cauchy
sequence in Cy(J; £2). This completes the proof of Theorem 3.2. O

Proof of Lemma 3.4. Arguing by density, it suffices to consider the case where
the functions v and p are continuous. Now, consider the following continuous

function:

Ro(t) % ¢+ / AV ulplt) '

to

Because p is nondecreasing, we have

(t)pu(Re(t)). (3.5)

First, we assume that ¢ is positive. As the function R, is also positive, we
infer from the inequality (3.5) that

—%M(Rc(t)) )

Integrating, we thus get (3.4).

Finally, suppose that ¢ = 0 and that p is not identically 0 near ty. As
the function g is nondecreasing, it is possible to replace the function p by

the function p(t) def SUPy ey, 4 A(T')- A real number ¢; greater than ¢ exists



3.1 Ordinary Differential Equations 127

such that p(t;) is positive. As the function p satisfies (3.3) with ¢ = 0, it also
satisfies this inequality for any positive ¢’ less than p(t1). The inequality (3.4)
thus entails that

Ve € 10,p(t1)], M(¢) < / () de + M(p(t),

to
e ¢ dr
which implies that —— < 00. a
o K(r)

The following corollary will enable us to compute the modulus of continuity
of the flow of a vector field satisfying the Osgood condition.

Corollary 3.5. Let pu be an Osgood modulus of continuity defined on [0, al
and M the function defined by (3.4). Let p be a measurable function such that

plt) < plto) + [ A(EInlp(t) .

to

t
If t is such that / ~(t) dt < M(p(to)), then we have

to

plt) < M~ (Miptan)) - | () at).

to

Proof. The inequality (3.4) can be written

M(p(t)) > M(p(to)) - / At

to

The fact that p satisfies the Osgood condition implies that the function M is
one-to-one from |0, a] to [0, +oo[. Thus, as the function M is nonincreasing,
the corollary follows by applying M ™! to both sides of the above inequality.

O

Corollary 3.6. Let v be a wector field satisfying the hypothesis of Theo-
rem 3.2. Assume that

t

z;(t) = z; +/ o', x;(t")dt" for j=1,2.
to

t

If | ~(t)dt" < M(||x1 — x2]|), then we have
to

o6 = 2a(0] < M (MGl =2l — [ 200 ).

to
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Applying this corollary with p(r) = r(1 —logr) [in which case we have a =1
and M(z) = log(1 — log z)], we get the following result which will be useful
in the study of the incompressible Euler system (see Chapter 7).

Theorem 3.7. Let v be a time-dependent vector field® in L}, (RY; LL). There
exists a unique continuous map 1 from RT x R? to RY such that

t
Y(t,x) =x —|—/ v(t' (' x))dt.
0
Moreover, for any positive time t, the function vy : x «— (¢, x) is such that

t
Y — Id € C=PVer®) i, mm@)§{/|w@mhLﬁh
0

1—exp VL (t)

More precisely, if |z —y| < e , then we have

[(t, x) — Pt y)| < |o — y|oPVer®)glmexp(=ViL(t)

Corollary 3.5 provides a control of p on a small time interval. In order to con-
trol p on larger time intervals, we now establish a dual version of the Osgood

lemma [involving the function I'(y) = y,u(i) introduced in Definition 2.108
page 117].

Lemma 3.8. Let pu in C([0,a];RY) be an Osgood modulus of continuity. Let p
be a measurable function on [ty, T| with values in [a~t, oo[ and v a nonnegative
locally integrable function on [ty,T]. Assume that

p(t) < plto) + / AT (p())plt') dE for ae. t€ [to, ).

to

def (Y dy

The function G(y) = —— then maps [a™", 400[ onto and one-to-one
172 Y T(Y)

[0, 4+00[, and we have

t

p(t) <Gt (g(p(to)) —|—/ y(t') dt') for a.e. t € [to,T).
to

Proof. The proof of this lemma is very similar to that of the previous one. The

fact that G maps [a~!, +oo[ onto and one-to-one [0, +-00[ follows immediately

from the fact that p is an Osgood modulus of continuity. We now introduce

the function

def

RO ) + [ A0t at.

to
Because the function I is nondecreasing, we have (assuming that p and v are
continuous) that

2 See page 116 for the definition of the set LL of log-Lipschitz functions.



3.1 Ordinary Differential Equations 129

dR
dt

YO (p(8)p(t)
YO (R())R(),

IA

d
and thus %Q(R(t)) < ~(t). Integrating then completes the proof. O

Finally, we consider the way the flow depends on its generating vector field.

Proposition 3.9. Let i be an Osgood modulus of continuity. Let (v, )nen be a
bounded sequence of time-dependent vector fields in L' ([0,T]; Cy) converging
to v in LY([0,T]; L*°), and let 1, (resp., 1) denote the flow of v, (resp., v).
We then have

Jim ([0 — Pl Lo (po.73:2) = 0-

Proof. By the definitions of ¥ and ,,, we have, for all n € N,
t
Un(t, ) — Y(t, x) =/ (vn (' (', 2)) —o(t', (', 2))) dt'.
0

Hence, defining p,, () def |n(t, ) — (t, 2)| L, Wwe deduce that there exists
some integrable function « such that for all ¢ € [0, T], we have

t T
pult) < en + / V() (pn()) dt with 2, % / lon(t) — v(t)]| e .

According to the Osgood lemma, we thus have, for all ¢t € [0, T,
pn(t) dr t
pn(t) <&, or / — < / y(t") dt'.
En /.L(’)”‘) 0

Since the Osgood condition is satisfied, we can now conclude that (p)nen
goes to zero uniformly on [0, 7] when n tends to infinity. O

3.1.2 Estimates for the Flow

In this section, we recall a few estimates for the flow of a smooth vector field.
These estimates will be needed in the study of transport-diffusion equations
(see Section 3.4 below).

Proposition 3.10. Let v be a smooth time-dependent vector field with bounded
first order space derivatives. Let 1, satisfy

() = :C+/O vty (x)) dt’.

Then, for all t € RT, the flow ¢, is a C' diffeomorphism over R, and we
have
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D¢ o < expV (1), (3.6)

| Dyt —1d]|, .. <expV(t)—1, (3.7)
t

D26, < expV (1) / 1D20(t")|], . expV(t') dt’ (3.8)
0

t
with, as throughout this chapter, V (t) d:ef/ | Du(t')|| ;- dt’.
0

Proof. Let (t,t',x) — X(¢,t',x) be (uniquely) defined by

t
X(t,t',x) = x+/ o, X", ¢, x))dt". (3.9)

t/
Uniqueness for ordinary differential equations entails that
Xt t", X', x)) = X(tt,x).
Hence, ¥y = X (t,0,-) and 9; ' = X(0,t,-). Differentiating (3.9) with respect
to x, we get, by virtue of the chain rule,
t
;X (' 2) =00+ | O, X"V, 2))0; X (¢, 2)dt”.  (3.10)
t/

Taking the modulus and applying the Gronwall lemma thus leads to

¢
|IDX(t, ¢, z)| < exp‘/ |Do(t", X (¢", ', z))| dt”
t/

)

t
< exp| [ 1Dt} t”
t/

which obviously yields (3.6).

The proof of (3.7) is similar. This is just a matter of subtracting the
identity matrix from (3.10). To prove (3.8), we differentiate (3.9) twice. This
yields (with the summation convention over repeated indices)

t
ajakXi(t,t’,m):/ O (¢, X ("t 2))0;0, X ("t ) dt”
t/

t
+ [ 00 (¢, X (" x)) O X (", 2)0; Xt ) dt.
t/
Taking advantage of (3.6) and the Gronwall lemma once again, we easily get,
for all nonnegative ¢ and ', and all z € R?,

10,06 X1, ¢, )| < el 1PoE X pl |

t
« / |D21)(t”,X(t”,t',x))\e“tt/ |Dv(t”,X(t”,s,x))\ds|dt// ’
t/

which clearly entails (3.8). O
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3.1.3 A Blow-up Criterion for Ordinary Differential Equations

We emphasize that Theorem 3.2 is only a local-in-time statement. This section
is devoted to blow-up statements for ordinary differential equations.

Proposition 3.11. Let F : R XxE — FE satisfy the hypothesis of Theorem 3.2.
Assume, further, that a locally bounded function M : RT™ — R™ and a locally
integrable function 3 : R — RT exist such that

1t w)ll < BE)M([[ul)- (3.11)

Let |T,, T*[ be the mazimal interval of existence of an integral curve u of the
equation (ODE). If T, (resp., T*) is finite, then we have

limsup [lu(t)| =co  (resp., limsup [|u(t)]| = c0).

t3T, ST

Proof. We shall only prove the result for the upper bound 7%. Consider two
times Ty < T such that ||u(t)|| is bounded on [Ty, T'[. We deduce from (3.11)
that for any time ¢ in [Ty, T'[, we have

IE @t u(t)|] < CA(#).

As the function S is integrable on the interval [Ty, T'], we deduce that for any
positive €, there exists some 7 > 0 such that

llu(t) —u(t)|| < e forany (t,t')€ [Ty, T[* verifying [t —t'| <n.
As F is a Banach space, we deduce that there exists some ur in E such that

li t) = ur.
) = v

Applying Theorem 3.2, we can now construct a solution @ of (ODFE) on some
interval [T — 7, T + 7] such that u(T) = ur.

By virtue of uniqueness, @ coincides with w on [T — 7,T[ and is hence a
continuation of v beyond T. We can thus conclude that T" < T*. O

Corollary 3.12. With the notation and hypothesis of Proposition 3.11, let
be a maximal integral curve of (ODE). If F satisfies

1F(t w)ll < M]Jull?

for some constant M, then for any to € Ty, T*[, we have

to T
/uwww—nzr+/|mww=m

to
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Proof. The solution satisfies

t
o)1 < lloll + 1] | 0] a
0

The Gronwall lemma implies that

).

which completes the proof of the corollary. a

t
o)1 < ol exp (]| (e ae

3.2 Transport Equations: The Lipschitz Case

This section is devoted to the study of the transport equation (7') in the case
where the time-dependent vector field v is at least Lipschitz with respect to
the space variable. To simplify the presentation, we focus on the evolution
for nonnegative times and assume that there is no 0-order term (i.e., A = 0).
Similar results may be obtained for negative times and for nonzero A (see
Remarks 3.17 and 3.20).

The basic idea is that the Lipschitz assumption should ensure that the
initial regularity is preserved by the flow. The importance of the Lipschitz
condition becomes obvious if we consider Holder regularity. Indeed, assume
that fo € C%¢ for some ¢ € ]0,1] and that A = 0 and g = 0 (to simplify
matters). Since v is Lipschitz, the flow ¢ of v is also Lipschitz, and we have,
for all (z,y) € R x R% and t € [0, 7],

fty) = f(t2) = fo(y ' (y) = foldy (@)
Therefore, by virtue of the first inequality of Proposition 3.10,

|(t.y) = f(t.2)] < folloos [0 () — v ()]
< |[follco.c exp(eV (1)) ly — x|*.

From this, we deduce that Holder regularity is preserved during the evolution.
In this section, we seek to generalize this basic result to general Besov spaces.

3.2.1 A Priori Estimates in General Besov Spaces

Let us first explain what a solution to (7') is.

Definition 3.13. Assume that fy € (S'(R?))N and g € L' ([0, T]; (S’ (RY))N).
A function f in C([O,T}; (S’(Rd))N) is called a solution to (T') if A- f, f®w,
and f divv are in L* ([0, T7; (8’(]Rd))N), and, for all ¢ € C*([0,T]; (S(]Rd))N),



3.2 Transport Equations: The Lipschitz Case 133

’8Zd’ idiV,id/ t ij,@»id’
S( [ osar+s v¢>t)+;j/0<fv 6 dt

%

%

+ZA <A§fj,¢i>dt’ — Z(<fl(t)7¢z(t)> . <fé,¢l(0)>)

This section is devoted to the proof of the following result pertaining to the
case where A = 0 (a more general statement will be given in Remark 3.17).

Theorem 3.14. Let 1 < p <p; < oo, 1 <r < oco. Assume that
p1’ P p1p

crzfdmin(l 1) or szlfdmin(L i) it dive=0 (3.12)

with strict inequality if r < co.

There exists a constant C, depending only on d, p, p1, r, and o, such that
for all solutions f € L>([0,T]; By ,) of (T') with A = 0, initial data fo in By,
and g in L'([0,T]; BS,.), we have, for a.e. t € [0,T],

p,r

[ (TP

+ [ ew(-cn, <t'>>||g<t'>||3g,,,dt') exp(CVy (1) (3.13)
0

with, if the inequality is strict in (3.12),

d
V’U t d 5 if o< 1+ —
o [T i d
Vo(t)|| go-1, if o>1+— or {0:1+— and rzl},
IVo@llgg 1. if 2 2

and, if equality holds in (3.12) and r = o,

, d
Vi@ Yol .

pP1
Bplyl

If f =w, then for allo >0 (o > —1, if dive = 0), the estimate (3.13) holds
with
Vo, () = V()] oo

Proof. To prove this theorem, we (as quite often in this book) perform a spec-

tral localization of the equation under consideration. More precisely, applying
Aj to (T) yields

(7)) { (Aat.]:zvol_v)f,jf];:Anger with B; 0. vA,f— 4,00 V)),.
J =0 J

Since Vv € L([0,T]; L*°), we readily obtain
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t
1455 Oll < 1Asfall+ [ 145901 a
t 0 1
+/0 (18 v o) 1A () d (314)

This may be proven by writing an explicit formula for A; f in terms of the flow
of v and of the data, or by multiplying both sides of (7;) by sgn(A4; f)|4; f|P~*
(in the scalar case) and integrating over R?. We note that ||A; f(t)
be replaced by sup, ¢4 [|4;f(¥')||,» in the left-hand side.

According to Lemma 2.100 page 112, there exists some constant C', inde-
pendent of v and f, such that

HLP may

IR; (D)l < Ce; )27V, (OIf )lBg, with le;(t)ler =1, (3.15)

p,T

where V) is defined as in Theorem 3.14 [note that if f = v, then we can apply
the inequality (2.54) page 112 with p; = p and ps = 0.
Take the ¢" norm in (3.14). Using (3.15) and the fact that

||fHL;>°(Bg,T) < Hf”Zgo(Bgm) and HQHZ%(B;T) < ||9||L%(Bgyr)»

we get

t
1z s < Iollg, + / (lg®) sz, +CVi )Nz g ) ' (3.16)

Applying the Gronwall lemma completes the proof of the theorem. a
Remark 3.15. Actually, the above proof yields

t
1/l 5. < Mollg, +C / G V7 P I T
and we thus have a slightly more accurate estimate, namely,

1z < (Iollg, + lgllz; g ) ex0(CVo (). (317)

Remark 3.16. By taking advantage of Remark 2.102, we can extend Theo-
rem 3.14 to the homogeneous framework under the additional condition that

d d
o<l+— or o<1+ — if r=1. (3.18)
bh1 D1

Remark 3.17. In the general case where A is nonzero and satisfies

1A H)Ollsg, < AWDNF(B)ll5g, ae. for some Ae LH([0,T]),  (3.19)

p,T

an easy variation on the proof of (3.14) leads to the inequality (3.13) with V),
replaced by V,;, + A.

Note that the inequality (3.19) is satisfied whenever A belongs to a Besov
space with a suitably large index of regularity.
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3.2.2 Refined Estimates in Besov Spaces with Index 0

If the vector field v is divergence-free, then the flow of v is measure-preserving
so that there is no exponential term involving ||Vv||, . in the estimates
of || f]|rr: We have

t
1f@llze < | follze +/ lg(t)||ze dt"  for t>0. (3.20)
0

As a consequence, we shall see that the exponential term may be replaced
by a linear term in the inequality (3.13). This improvement will be the cor-
nerstone of the proof of global existence for two-dimensional incompressible
Euler equations with data having critical regularity (see Chapter 7).

Below, we give a statement pertaining to nonhomogeneous Besov spaces
of index 0. It goes without saying that a similar statement holds true in the
homogeneous framework.

Theorem 3.18. Assume that v is divergence-free and that f satisfies the
transport equation (T) with A = 0. There exists a constant C, depending
only on d, such that for all 1 < p,r < oo and t € [0,T], we have

”f”E,?C(Bg,T) = O(”fOHBg,, + ”g”E%(BS,T)) (1+ V() with

t
vy ? [ 9ol it

Proof. In order to simplify the presentation, we shall only consider the case
where r = 1. First, by virtue of the uniqueness of the transport equation (see

Theorem 3.18 below), we can write f = Y. fi with fj satisfying
E>—1

{atfk F vV = Arg (3.21)

frje=0 = Arfo.

We obviously have

e, < D A fullee = D WA fullee + D 14 uller, (3:22)

p,1 —
j.k>—1 lj—k|<N lj—k|>N

where N stands for some positive integer to be fixed hereafter.

Because divv = 0, using (3.20) yields

t
[ @®llze < Ak follze +/ | Akgll e dt’.
0

Hence,
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Z 14 fr@®)[r < C Z 1)l e

li—k|<N li—k|<N

< CNZ(HAkfoHLP + HAkQHL}(LP))
k
< N (Ifollsg, + llgllzicse. )-

The last sum in (3.22) may be dealt with by taking advantage of the estimates
in the space Bpij (where € is chosen in ]0, 1[) supplied by Theorem 3.14 for f.
We thus have

1Ol s < (180 foll p2; + 1Akl 352, ) exp(CV (),

from which it follows, for some nonnegative sequence (a;);>—1 such that
Zj>71 a; =1, that

145 f@) e < 27y (|| Ak follor + 1Akg] L (1)) exp(CV(2)).

From this latter inequality, we deduce that

S 1Al < 27V (ol + gl sn ) exp(CV (D).

li—k[=N

Choosing N such that® Nelog?2 ~ 1+ CV(t) then completes the proof. O

3.2.3 Solving the Transport Equation in Besov Spaces

We now state an existence result for the transport equation with data in Besov
spaces. To simplify the presentation, we assume here that there is no 0-order
term in (7') (see Remark 3.20 for the general case).

Theorem 3.19. Let p, p1, r, and o be as in the statement of Theorem 3.1}
with strict inequality in 3.12. Let fo € By ,, g € Ll([O,T];BI‘i,J7 and v be a
time-dependent vector field such thatv € L([0,T]; BZM,) for some p > 1 and
M >0, and

d
V'U € Ll([O’T];B1§)117OO OLOO)7 lf o< 1 + 1;_i17
Vv e LY[0,T]; BS 1), if cr>1—|—pi17 or (',r:1—|—pi1 and r=1.

P17
The equation (T) with A =0 then has a unique solution f in

3 From now on, the notation A ~ B means that C™'A < B < CA for some
irrelevant positive constant C.
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~ the space C([0,T]; By ,.), ifr<oo
- the space (mglcho TJs B ) ) N\ Cu (0. T)s By o), if 7 =
Moreover, the inequalities of Theorem 3.14 hold true.

Proof. Uniqueness readily follows from Theorem 3.14, so we focus on the proof
of the existence. For the sake of conciseness, we treat only the case o < 1+ pil.
We first smooth out the data and the velocity field v by setting

fO d_ef S an gn d:ef Pn *t Snga and vn d:ef Pn *t Snvv

where py, def pn(t) stands for a sequence of mollifiers with respect to the time
variable.?
We clearly have fg € By, g € C([O TY; By, ), v € Gy([0,T] x RY),

and Dv™ in C([0,T]; ByS,) with B, ﬂ . Moreover, (f§)nen is
bounded in By, (g )ﬂeN is bounded in Ll([O T] ), (v™ )neN is bounded

d
in L°([0,T]; BM,), and (Dv™)pen is bounded in Ll([O,T]; Bl oo N L.
The standard Cauchy—Lipschitz theorem ensures that v™ has a smooth
flow ¢™ defined on [0,T] X R?. Hence, the function f" : [0,T] x RY — RY
defined by

i) = B @) + [ e @) de
is a solution to

Of"+0"-Vf"=g", fi—o = 10"

Further, as all the functions are smooth, we have, according to Theorem 3.14,
t ! n 1" "
an(t)”Bg i S eojgt V() dt <|f6L||BZ i + / e—ng V(') dt ||fn(t/)||Bg i dtl>
, ) 0 )

with V7 (8) € [won )]«

Bg’llmmLoo'
Thus, the sequence (f")nen is uniformly bounded in C([0,77; By ,.).

In order to prove the convergence of a subsequence, we appeal to compact-
ness arguments. First, because

o ft —g"t=—-v" -V (3.23)

4 In what follows, if X is a Banach space with predual X*, then we denote by
Cw([0,T]; X) the set of measurable functions f : [0,7] — X such that for any
¢ € X*, the function ¢ — (f(t), #) xxx= is continuous over [0, 7.

> With no loss of generality, we can assume that v and g are defined on R x R%.
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we can deduce that (0;f™ — ¢g")nen is bounded in L°([0,T]; B, 2}) for some
sufficiently large m > 0: It suffices to use the bounds for v™ and f™ and to take
advantage of the results on continuity of the paraproduct and the remainder
stated in Section 2.8.

Second, introducing the functions fn(t) def fo "Ydt', we thus

deduce that there exists some 5 > 0 such that the sequence ( fn)neN is uni-
formly bounded in C#([0, T7; B, %) and hence uniformly equicontinuous with
values in B, 0!. Now, if m is large enough, then Theorem 2.94 guarantees that
for all p € C2°, the map u — ¢u is compact from By . to B, . Combining
Ascoli’s theorem and the Cantor diagonal process thus ensures that, up to

a subsequence, the sequence ( fn)neN converges in S’ to some distribution f
such that ¢ f belongs to C([0,T7; B, ) for all p € D.

Finally, appealing once again to the uniform bounds in L*°([0, TT; By ,.)
and the Fatou property for Besov spaces (see Theorem 2.25), we get f €
L*>([0,TY; B;’,T) By interpolating the above results on convergence with the
bounds in L*°([0,7T7]; By )0 for (7" )nen, we find that ¢f " tends to ¢f in
C([0,T); By 5) for all e > 0 and ¢ € D so that we may pass to the limit
in the equatlon for f”, in the sense of Definition 3.13. That the sequences

(fi ) nen, (9™)nen, and (v™)nen converge respectively to fo, g, and v may be

easﬂy deduced from their definitions. We conclude that the function f = def

f+ fo (') dt' is a solution of (T').

We still have to prove that f € C([0,7]; By ,) in the case where r is fi-
nite. From the equation (7'), we deduce that 0; f € Ll([() T]; B ) for some
sufficiently large M’. Hence, f belongs to C([0,T]; B, o MYy Therefore, Af e
C([0,T]; LP) for any j > —1, from which it follows that S;f € C([0,T]; By )
for all j € N.

We claim that the sequence of continuous By .-valued functions (S;f);en
converges uniformly on [0, 7. Indeed, according to Proposition 2.10, we have

Ap(f=Sif)= Y Apdpf,

I3 —3"|>1
j'"'>3
from which it follows that
TN sc( N ‘””Aj/fllzp> . (3.24)
j’>j—1

Using the inequalities (3.14) and (3.15) to bound the right-hand side of (3.24),
we deduce that, for some sequence (¢;);j/>—1 such that >, ¢%,/(t) =1 for
all t € [0,T], we have B

5 In order to pass to the limit in fv? and f*dive, we use the fact that strict
inequality has been assumed in the condition (3.12).
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£ = S f s, < c(( > (2 14y L))
>

* /T( > (@ IlAjfg@)an)T) "t

Jj'2j—=1

T %
+||fHL°T"(Bg)T)/O (Z Cgf(t)) V;l(t)dt)

J' 251

The first term clearly tends to zero when j goes to infinity. The terms in the
integrals also tend to zero for almost every ¢. Hence, by virtue of Lebesgue’s
dominated convergence theorem, || f —.S; f|| Lg(Bg.,) tends to zero when j goes
to infinity. This completes the proof that f € C([0,7]; By ,.) in the case r < oo.

When r = oo, we can use the embedding By ., — BZ,H for all o/ < o
and the previous argument applied to the space Bg:l in order to show that f
belongs to C([0, TY; Bg’ll) for all o' < 0. As a matter of fact, we can also prove
that f € C,,([0, T]; BS ). Indeed, for fixed ¢ € S(R?) we write

(f(t),0) = (S f(t),®) + ((Id = ;) f, )
= (5 f(t),0) + {f, (Id = 5;)9).
Since f € C([0,T]; BJl), for all j € N, the function ¢t — (S;f(t),¢) is con-
tinuous. Now, by duality (see Proposition 2.76), we have

1, (1 = 500 < 1fl13 16— 56l 50,

hence (f, (Id —S;)¢) goes to 0 uniformly on [0, ] when j tends to infinity. We
can thus conclude that ¢ — (f(t), ¢) is continuous. This completes the proof
of weak continuity in the case r = co. a

Remark 3.20. Theorem 3.19 extends to the case of nonzero functions A with
sufficient regularity. Indeed, the above proof may be adapted to the case
where A may be approximated by a sequence of smooth functions A™ sat-
isfying the inequality (3.19). The obtained solution f is unique and satisfies
the regularity properties described in Theorem 3.19 and the inequality of Re-
mark 3.17.

The main point is that if A™ is smooth, then

of" +u" -V A" [ =g", fli=o =10

has a unique smooth solution given by the formula
t
it =ep(~ [ 4w @) | @)
t T
+/ exp(/ A”(T’,zbi(zb[l(w)))df’) -g" (1, - (W () dr |
0 0



140 3 Transport and Transport-Diffusion Equations
3.2.4 Application to a Shallow Water Equation

The a priori estimates stated in Theorem 3.19 are a good starting point for
the study of equations of the type

Ou + f(u) - Vu = g(u).

As an example, we here solve a nonlinear one-dimensional shallow water equa-
tion which has recently received a lot of attention: the so-called Camassa—
Holm equation,

Opu — 03 u 4 3u Opu = 20,u 0% u + w02, u. (3.25)
Above, the scalar function v = u(t,x) stands for the fluid velocity at time
t > 0 in the x direction. We assume that x belongs to R, but (as usual in this
book) similar results may be proven if = belongs to the circle.

We address the question of existence and uniqueness for the initial value
problem. For simplicity, we restrict ourselves to the evolution for positive
times. (We would get similar results for negative times: just change the initial
condition ug to —uyg.)

At this point, the reader may wonder which regularity assumptions are
relevant for ug so that the initial value problem is well posed in the sense
of Hadamard [i.e., (3.25) has a unique local solution in a suitable functional
setting with continuity with respect to the initial data).

Note that applying the pseudodifferential operator (1 — 92)~! to (3.25)
yields

du + udyu = P(D) (u?+3(9,u)?) def

(CH) { with P(D) = —0,(1-02)"".

Ujt=0 = Uo

Hence, the Camassa—Holm equation is nothing but a generalized Burgers equa-
tion with an additional nonlocal nonlinearity of order 0. In light of Proposi-
tion 3.19, we thus expect that having data in some subset E of the space C%!
is a necessary condition for well-posedness. Moreover, as the solution u will
be in C([0,7T]; E) (a gain of regularity cannot be expected in a Burgers-like
equation), the application

G:ur— P(D) (u2 + %(GZU)Q)

should map F to F continuously.

If we restrict our attention to nonhomogeneous Besov spaces B, ., then
the condition E C C%! is equivalent to s > 1+ 1/p (or s > 1+ 1/p, if
r = 1), and no further restrictions are needed for the continuity of the map
G (up to the endpoint » = 1, s = 1, p = oo, which has to be avoided). We
shall see, however, that for proving uniqueness, our method requires that we

additionally have s > max(1+ 1/p,3/2).
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Before stating our local existence result, we introduce the following func-
tion spaces:

S def . S . S— 3
B;,(1) (o, 1) By, ne (0.7): By i v < oo,

s def s o
B} o (T) = Cyu(0,T3 B3 o) N COY([0,T); B3 2L
with T'>0,s € R, and 1 < p,r < o0.

Theorem 3.21. Let 1 < p,r < oo, s > max(3/2,1+ 1/p), and ug € B, ,..
There exists a time T > 0 such that (CH) has a unique solution u in E; . (T).

The proof relies heavily on the following lemma.
Lemma 3.22. Let 1 < p,r < 00 and (01,02) € R? be such that
2
Bp2 — C%' o1 <o0y, and o409 >2 —|—max{0, - — 1}.
’ p
Then, B : (f,g) — P(D)(fg+ 20 f 0,9) maps Bpi x B2 into By

Proof. We note that P(D) is a multiplier of degree —1, in the sense of Propo-
sition 2.78. It hence suffices to prove that

H:(f,9)— fg+30.f0ug

maps Bl x Bp? into Bg’lr_l.
The term fg is easy to handle, so we focus on the study of 0, f0.g. By
virtue of Bony’s decomposition, we have

8zfaa:g = Taxfa:cg + Tawgawf + R(a'va a:vg)

Proposition 2.82 ensures that the map (f,g) — Tp, 0,9 is continuous from
By x Bp2 to
91
— the space B;fﬁgz Poifop <14 %,
— the space B;’fr_l_s foralle >0,if oy =1+ 1—17 and r > 1,
— the space Bgfr_l, ifo; =1+ 1—17 and r=1,oro; > 1+ %.

According to our assumptions on o1, 02, p, and r, we thus can conclude
that (f,g) — Tb, 0.9 maps BJ} x BJ2 into Bgi~'. Since BS2~' is con-
tinuously included in L*°, Proposition 2.82 readily yields the continuity of
(f,9) — To,40,f from BJ: x BJ2 to BJi~'. Finally, according to Proposi-

. . . toa—2-3
tion 2.85, the remainder term maps By} x Bp2 into BZ}T 7 P (and thus

pr
to BgL~'), provided that

2
o1+ 09 >2+max{0,— —1}.
p
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Uniqueness in Theorem 3.21 is a straightforward corollary of the following
proposition.

Proposition 3.23. Let 1 < p,r < oo and s > max(1 + 1/p,3/2). Suppose
that we are given

(u,v) € (L=(0,T}; B,) nC(0,T); B:Y)?,

two solutions of (CH) with initial data uo,vo € B, ,.. We then have, for every
t € [0,T] and some constant C, depending only on s, p, and r,

[u(t) = v(®)]

izt < lluo — ol

t
e exp(C [ (®)llng, + Io(e)15;,) ).

Proof. Tt is obvious that w def v — u solves the transport equation
Ow + ud,w = —wd,v + B(w, u+v).
According to Theorem 3.14, the following inequality holds true:

C t 81 . d " t C t 81 . d "
||w(t)||B;;1 < ||w0||B§;16 Jo N10zull sy dt +C/ . Jir 10zull ps—1 dt
’ ’ 0

x (||w8$v||B;;1 + ||B(w, u+v)] B;;l) dt'. (3.26)

Since s > max{%, 14 %}, we have, according to Lemma 3.22 and the product
laws in Besov spaces,

1B(w, utv) g1 < Cllwl gz (llullsy, + [lvlls;,)-
Plugging this last inequality into (3.26) and applying the Gronwall lemma
completes the proof. a

In order to prove the existence of a solution for (C'H), we shall proceed as
follows:

— First, we construct approximate solutions of (C'H) which are smooth so-
lutions of some linear transport equation.

— Second, we find a positive T for which those approximate solutions are
uniformly bounded in Ej (7T').

— Third, we prove that the sequence of approximate solutions is a Cauchy
sequence in some superspace of £5 (7).

— Finally, we check that the limit is indeed a solution and has the desired
regularity.
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First Step: Constructing Approximate Solutions
0

Starting from w def 0 we define by induction a sequence (u")nen of smooth
functions by solving the following linear transport equation:

{ (8 + w9, )u"tt = P(D) ((u™)? + 1(0,u™)?)

(Tn) un+1

[t=0 = Uo-

Assuming that u" € E; (T') for all positive T, Lemma 3.22 guarantees that
the right-hand side of the equation (T},) is in LjS,(R™; B5 ). Hence, applying
Theorem 3.19 ensures that (7},) has a global solution u™*! which belongs to

E; .(T) for all positive 7.

Second Step: Uniform Bounds

t
We define U™ 4! / [u" ()| 55, dt’. According to Theorem 3.19 and Lemma

0
3.22, we have the following inequality for all n € N:

”un—H(t)”B;T < QCUn(t)(|u0|BZ,r +C’/ efCU"(t')Hun(t/)‘

t
23;,- ) dt’> . (3.27)

0 :

We fix a T' > 0 such that 2C||uo|[p; T < 1 and suppose that

[uoll B,

vt e [0,T), ()| gs < ——— Db 3.28
0,71 1@l < Tt (3.28)
Plugging (3.28) into (3.27) yields
la™ (#)ll5;, < (1-2Ct|luol|s;, )~ (Uol B,

+ /
dt
+Cugl|%- / B )
I 0||Bp_, o (1—2Ct|uo| 5,7‘)%

uollBs,,

= 1-2Ct[[uo|lp;

Therefore, (u")nen is bounded in L*([0,T7; B, ,.). This clearly entails that
u"d,u" is bounded in L*°([0,T]; B;'). As the right-hand side of (T},) is
bounded in L*°([0,T]; B, ,.), we can conclude that the sequence (u"),en is
bounded in E; ,.(T).

Third Step: Convergence

We are going to show that (u")nen is a Cauchy sequence in C([0,T]; B3 7').
For that purpose, we note that for all (m,n) € N2, we have
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(815 + un—&-mam)(un-&-m-i-l_u'rwl) _ (un _ un+m)amun+l + B(uvL-i-m_un’ un+ﬂ1+un)

Applying Theorem 3.19 and Lemma 3.22, and using the fact that B;;,l is an
algebra yields, for any ¢ in [0, T7,

||(un—|-m+1_un+1)(t)| ) < CeCU"*’”(t)

s
Bp,r

t
X/O e—CUrmn(t’)||un+m _unHB;TTI(”un”B;T + ||un+1||B;m + ||un+m”B;1T) dt'.

Since (u")nen is bounded in Ej ,.(T'), we finally get a constant C7r, indepen-
dent of n and m, and such that for all ¢ in [0, T], we have

t
||(’u,n+’m+1 — un—H)(t)HB;frl < OT/ ||(u"+’m — un)(t/)HBz?} dt’.
, 0 )

Hence, arguing by induction, we get

+1
nmtl ot (TCr)"
[[u — U e ppny < m”um”qu’?(B;),.)'
As [[u™([s(Bs,) may be bounded independently of m, we can now guarantee
the existence of some new constant C?. such that

[

— Wl < Cr27"
Hence, (u™)nen is a Cauchy sequence in C([0, T]; Bs ') and converges to some
limit function u € C([0,T7; By,1).

Final Step: Conclusion

We have to check that u belongs to £, ,.(T') and satisfies (C'H). Since (u"),en
is bounded in L*°([0, T; B, ,.), the Fatou property for Besov spaces guarantees
that u also belongs to L>°([0,T]; B, ). Now, as (u")nen converges to u in
C([0,TY; B;;l), an interpolation argument ensures that convergence actually

holds true in C([0, T]; B;:T) for any s’ < s. It is then easy to pass to the limit
in (T,,) and to conclude that v is indeed a solution of (CH).

Finally, because u belongs to L>([0,T]; B, ,.), the right-hand side of the
equation

dyu +udyu = P(D)(u® + 3(9,u)?)

also belongs to L>°([0, T; B; ,.). Hence, according to Theorem 3.19, the func-
tion u belongs to C([0,7]; B; ) (resp., Cu([0,T]; B;,)) if 7 < oo (resp.,
r = 00). Again using the equation, we see that dyu is in C([O,T];B;;l) if

r is finite, and in L>°([0, T]; By ') otherwise, so u belongs to E5 . (T).
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Remark 3.24. 1f vy belongs to a small neighborhood of ug in B, ., then the

arguments above give the existence of a solution v € Ej ,.(T) of (CH) with ini-
tial data vg. Proposition 3.23, combined with an obvious interpolation, ensures

continuity with respect to the initial data in C([0, T]; B,.) N C1([0,T]; Bt)

for any s’ < s. In fact, continuity holds up to exponent s whenever r is finite.
This may be proven by adapting the method presented in Section 4.5.

Finally, we state a blow-up criterion for (C'H). In what follows, we define the
lifespan Ty of the solution u of (C'H) with initial data ug as the supremum
of positive times 7" such that (CH) has a solution u € E; .(T) on [0,7] x R.
We have the following result.

Theorem 3.25. Let ug be as in Theorem 3.21 and u the corresponding solu-
tion. If Ty is finite, then we have

T T
/ " 0t dt’ = 0 and / () py _ dt’ = oo.
0 0

The proof is based on the following lemma.

Lemma 3.26. Let 1 < p,7 < 00 and s > 1. Let u € L*>([0,T]; B; ) solve
(CH) on [0,T[xR with ug € By, as initial data. There exist a constant
C, depending only on s and p, and a universal constant C' such that for all
t €10, T, we have

lu(®) 55, < ||u0||B;1T€C'fOt lu(@)lico. di’ (3.20)
[u(®)llgoa < [[uol|goaeC Jo 12w oo dt”, (3.30)

Proof. Applying the last part of Theorem 3.14 to (CH) and using the fact
that P(D) is a multiplier of order —1 yields

t ’
e—C.fo [0z ull oo dt ||u(t)HB;T < HUOHB;,T

t ’
7C t 8;,: o 1"
+ C[) e J5 N0z ull oo dt (||u2||B§;1 + ||(8$u)2||35;1)dt’.

As s —1 > 0, we have
[u?]| o1 + 1(02u)? [ gs- < Cllullgoalluls,, -
Therefore,

e=C olldzull oo dt” 4y 4]

B, < ol

s
P, Bp,v‘

t "
. C/ e C 10l Ay ] o .
0

Applying the Gronwall lemma completes the proof of (3.29).
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By differentiating equation (C'H) once with respect to x and applying the
L estimate for transport equations, we get

e~ Joll0ulioe Aty (4) | o < [Jug| o

t [ ’
+/ e~ Jo 10zull 00 dt ||P(D) (u2 + %(61’[1)2)@/)”00.1 dt'.
0

Now, by using the fact that the operator (1—92,) ! coincides with convolution
by the function x — %e*m, it may be easily proven that for some universal
constant C’, we have

1P(D) (u? + 5(8zu)?)lco.r < C"llullcon [|0pul| o -
Hence, the Gronwall lemma gives the inequality (3.30). O

Proof of Theorem 3.25. Let u € (\p_p. Ej .(T'). We want to show that if

T*
/ 10su(t')]| e dt! < oo,
0

then no blow-up occurs at time T.
T
According to the inequality (3.30), / |u(t')||co.x dt’ is also finite. There-
0

fore, the inequality (3.29) ensures that
vt e (0,77, Ju()ll;, < M- ©lugllpy e R 1M leordt’ < o (3.31)

Let € > 0 be such that 2C2cMp. < 1, where C is the constant used in the proof
of Theorem 3.19. We then have a solution u € EJ .(¢) of (CH) with initial
data u(T*—e/2). By uniqueness, we have u(t) = u(t + T* — &/2) on [0,e/2]
so that u extends the solution u beyond T*. We conclude that T* < T .

We can now conclude that if T is finite, then we must have

*

| et = oc.

0

This simply follows from the logarithmic interpolation inequality
Julloos < C(1+ ull sy, _ log(e+ llulls; ), (3.32)

which holds true whenever s > 1 + 1/p and which may be deduced from

1

Proposition 2.104 combined with the embedding B;Hl — Bz; ; v,
Now, plugging (3.32) into (3.31), we get

t
[u®)lz;, < Juollsy, < exp(C [ Nullny, . logte + lulsy,) dt').
0
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Therefore, easy calculations lead to

t
log e+ u(t) | ;,) < log(e+ [l ) +Ce+C [l _log(e+ulay, ) dr.

The Gronwall lemma thus yields

t u /

log(e + [[u(t)llB;,) < (log(e +luollss ) + Ct)e% s, de"
T

Therefore, / |ull 1. _ dt < oo implies that uw € L>([0,T]; BS ). Arguing as

0
above completes the proof of Theorem 3.25. a

Remark 3.27. The fact that ||0,ul|;~ may be replaced by the weaker norm
|0zul| po. _ is not particularly sensitive to the structure of the equation. In
fact, a similar criterion may be stated for the incompressible Euler equations
(see Chapter 7) and for quasilinear symmetric systems (see Chapter 4).

3.3 Losing Estimates for Transport Equations

In this section, we consider transport equations associated with vector fields
which are not Lipschitz with respect to the space variable. Since we still intend
to obtain regularity theorems, those vector fields cannot be too rough. The
minimal requirement seems to be that the vector field v is log-Lipschitz, in
the sense of Definition 2.106. We shall see that if v is not Lipschitz, then
loss of regularity may occur, going from linear loss of regularity to arbitrarily
small loss of regularity, depending on how far from Lipschitz v is. In order to
precisely measure the regularity of the vector field v, we shall introduce the
following notation, used throughout this section:

i d
def 2% ||V So(t)|| 10
>0 (j+1)=

Voa(t)

p1,&

< 0. (3.33)

We note that if p; = oo, then V, ,(t) is exactly the norm | - ||, of
Definition 2.110 page 117 in the case where I'(r) = (logr)®.
Those results have many applications in problems related to fluid mechan-

ics (see Chapter 7 and the last part of this section).

3.3.1 Linear Loss of Regularity in Besov Spaces

This section is devoted to the statement of estimates with linear loss of reg-
ularity. Recall that, according to Proposition 2.111, v is log-Lipschitz if and
only if there exists some constant C such that

IVSjull ;o <C(j+1) foral j>-1.

This motivates the following statement.
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Theorem 3.28. Let 1 < p < p; < 0o and suppose that s; € R satisfies (3.12).
Let o be in ]51, 1+ pil[ and v be a vector field. There then exists a constant
C, depending only on p, p1, o, s1, and d, such that for any A > C, T > 0, and
any nonnegative integrable function W over [0,T] such that op > s1 with

fef 5 _ /\/ ol wW(t')) dt',

the following property holds true.
Let fo € By , and g = g1 + g2 with, for allt € [0,T], g:1(t) € By, and

Vi > =1, 45020l <2777 (G + W) F (O] 5 -

Let f € C([0,T]; By'y) be a solution of (T') with A =0 such that f(t) € Byt
for all t € [0,T]. The following estimate then holds:

T
sup £l < 525 (Iollog. + [ lon(®lsge. at).

t€[0,T]

Proof. Applying the operator A; to the equation (T'), we see that for all
j > —1, the function A;f is a solution of

(T) 0tfj + Sij . Vf] = Ajg — Ej
! fij=o = Ajfo

with R] def 5, j(v-Vf)—=Spv-VA;f.

We shall now temporarily assume the following result.

Lemma 3.29. Let 0 € R, « > 0, and 1 < p < p; < co. Assume that (3.12)
is satisfied and that o < 1+ pil. There then exists a constant C, depending
continuously on p, p1, o, and d, such that

sup. 27| Ry, < CU+2)*Vy, o) 1F ()35
j>

The proof of the theorem is now easy. Indeed, as A, f is a solution of (1}), we
have

A;f(t,z) = Afo(w (t,2)) /Ajg (05 Y(t, x))) dt’
- / Byt (' (8, ))) it

where we have denoted by v; the flow of the vector field S;11v.
From inequality (3.6) and the Bernstein inequality, we get

sup |det Dy, (¢, V5 Y, o))t < 9C(2+9) [{i Vy, 1 (#) dt”
z€R?
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We deduce that
1A £ ()|l Lo < || A; fol 29 G Vora(®)

/HAﬂgl e 9C(2+) [/ Vi, a () dt” g1

+C/ (249 (Vy, 1+ W) ()2 L Vo a DA =)y £y | o,y alt.
0 pree

Next, we multiply the above inequality by 22797 and take the ¢*° norm of
both sides. As

O = Oy — )\/ p/1 L t" _|_ W)(t”) dt”,

we get

1F@)lpz. < Ifollmg /m oo dt

t
+C/ (24 ) (Vi W) (#)20 DO I Vo BDED S ) | oyt
0

Straightforward calculations show that the second integral in the above in-
equality is bounded by

C
m te[Op £t )HB;f,,o-

Therefore, changing C' if necessary, we get, for any A > C|

1f Ol Bge. < llfolls

C
o [l a5 & 2 1 Olag

which leads to the theorem. O
Proof of Lemma 3.29. It suffices to observe that
R; = [4;,Sj410] - Vf + A;((v = Sj11v) - V).
Now, on the one hand, we have, according to Lemma 2.100 page 112,
sup, 297 |[[4;, Sj4r0] - VIl < C||VSJ+1U” 5 e s
<CU+2)* V0 IIfHBW.
On the other hand, we have (with the summation convention)
A (0= 8,10)- V1) = AT, idid
R;
+ 0 AjR(v' — S0, f) + R(Sj41 dive — divo, f) +Tp, y(v* — Sj410").

R2 R3 R4

J J J
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Continuity results for the paraproduct (see Proposition 2.82) ensure that
DR 1o < O v — Sjs10l e [ Fllpg . forall j= 1.

Now, observing that

lo = Sj10)l g < C Y2277 VA0 o

i'>j
<C Y2 Y ||VS vl
J'23
<OV Ly 272+
=
<OV W24 5)*27,

we get the desired inequality for Ejl

Next, setting 1/ps = 1/p+ 1/p1 and A~j = A1+ A4A; + Ajq, we have,

2| B[ < CPOUTTHED N | A (1d = Sji1)0ll 1o 1Ay f 2o

J'>3
<3 20D o B Ay Vol 277N Sl
J'2J
<ovy, < j+2)° 3 209D 9 A | 1
/>j
+ 3 ()2 2j'“||5j'f||L”>
/>J
<OV o2+ 9277 fllBg

Hence, taking advantage of the Bernstein inequality, we get
1R Lr < C@+5)°279V,, fllsg . i o+1+L>0. (3.34)
In the case where 1/p + 1/p; > 1, we replace py with p’ in the above compu-
tations and we still get (3.34), prov1ded o+1 + > > 0.
A similar bound may be proven for R? if o > dmln(pil, I%) Finally, we
note that _ _
D 4 (Aj"aifﬂj' (v' = 5j+101))-

7' —j]<4
jllgj/72

Therefore, writing 1/ps = 1/p — 1/p1, we have
DR} r <C > 27 Aj0if s |45 (0 = Sjia0)

7' —]<4
j//Sj/—2

HLpl :
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Because, for j > —1, the function f(v - S v) is supported away from 0, we
can write, thanks to Lemma 2.1,
v = Sj1vll . <C Y277 VA0 1,
3> o
< C‘/;l’a Z(]/ + 2)a2—] (1+E)
iz o
< cv’ (] + 2)0‘2_](1+E).

P11,

Hence, as 0 < 1+ d/p1, we conclude that
27| Rjllr < CVy, oG +2)%fllBg -

This completes the proof of the lemma. O

3.3.2 The Exponential Loss

In this section, we give an example of a global result with exponential loss of
regularity for transport equations. Before stating our main result, we have to
introduce some new function spaces.
Definition 3.30. Let p € [1,00] and s € ]0,1[. We denote by F; the space of
functions u in LP(R?) such that for any couple (z,z') € R x R?,
|u(z) — u(z’)| /
——— = < U(x)+ Uz 3.35
D < U@ +U) (3.35)
for some function U in LP(R?).

Endowed with the norm

lullrs = Jullze + inf{|Ullzo, U satistying (3.35)},

the space FJ is complete. In the case p > 1, it may be proven that F; belongs
to the family of so-called Triebel-Lizorkin spaces (in fact, F,; = F; ) and
that By | — FJ — Bj .

In the present section, we shall just use the following, easy, lemma.

Lemma 3.31. For all p € [1,00] and s € 0, 1[, the space F; is continuously
embedded in B .

S

oo 10 terms of finite dif-

Proof. Tt suffices to use the characterization of B

ferences. Indeed, since By ., = LP N B

5.0os Lheorem 2.36 page 74 guarantees
that

lullps . ~ llulle + sup [A]”*(lTpu — ullLe.
' <| 1

Now, if u belongs to F};, we have, for all (z,h) € R,
lu(z — h) —u(z)| < (U(x — h) + U(z))|h|* with U e LP.

This obviously ensures that supg|s < [h|~*||Thu — ul/r» is finite. O
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Theorem 3.32. Let s € 10,1[ and let v be a divergence-free, time-dependent
vector field with coefficients in L} (RT: LL). Let

loc

t
o(s,8) 9 sexp(=Vir(t)) with Vip(t) d:“’f/ [o(#)]| L dt',
0

with || - || as defined on page 116. Let fo be in F; and g be such that the
| potsty belongs to L (RT).

There then ea:ist; a unique solution of (T) with A = 0 such that t —
||f(t)||F;(s,t) belongs to L7 (RT).

loc

function t — ||g(t)

Proof. We consider a sequence (v, )nen of smooth, bounded, divergence-free
vector fields satisfying

lon) |l < |lv(t)||rr, and  lim v, =v in L}OC(R+;L°°).

Let f,, be the solution of the equation

{atfn+vnvfn =9
fn|t:0 = fo-

Denoting by ,, the flow of v,, we may write

falt,z) = fo(vy ' (t,2)) +/0 g(t on(t' 07 (8 2))) dt’. (3.36)

In the light of Theorem 3.7, the problem reduces to the study of how the right
composition by a C%® measure-preserving homeomorphism operates on F7.
Let 6 be such a homeomorphism and u be in F}. For |z — 2’| <1, we have,
with the notation of Definition 3.30,

u(0(z)) —u(0(z")] _ |u(0(z)) = u(8(="))] |6(z) — ()"
|z — | - [0() =@ |z — !>

10110 (U(0(x)) + U(0(z")))-

IN

As 0 preserves the measure, we thus have

[wo bl Fge < (14 [|0]|E0.0) lu]

Fs.

Applying the above inequality at each time to (3.36), we get, for some non-
decreasing locally bounded function A,

t
16Ol < A0 (Lol + [ o lggernar). 337

Therefore, the sequence (|| f(t)| poo.0 Jnen is bounded in Lgs,(R™).
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We shall now prove that (f,,)nen is a Cauchy sequence in some Besov space
with negative index. For that, we shall take advantage of Theorem 3.28. For
all (m,n) € N?, we have

{at(fn - fm) + dlv((fn - fm)vn) = div(fm(vm - 'Un))
(fn - fm)\t:O = 0.

Fix T > 0 and set

st = %exp(—VLL(t)).

For sufficiently large A, let

oy = ST — 1-— )\VLL(t).

Applying Theorem 3.28 with s1 = s7/2, g def (Vm — V) Vfm, and go def 0,

we get, for any t such that oy > s7 — 1,

t
[(fn = fm) D)l Bge, < CT/O (v = vn) + Vi) ()] oot
However, owing to Theorems 2.82 and 2.85, we have

Hvan—vjlaimeB;:rsT < C'TH’Um - UnHL“’ Hfm||B;Too7
1T5, 0 Vg = V)| p-tter < OTllvm = villzoe [l finll 537,
OuR(h, — i, ) posser < Crllvm = vall ol sz

Because ;7 — B>T_ and (3.37) is satisfied, we find that the sequence (f,)nen
belongs to the space L>°([0,T]; B~ ). Hence, for any ¢ € [0,7] such that
o > 81 — 1, we have

1((Wm = vn) - V) ()l goer, < Crll(vn = vin) () [ 2o

Therefore, for small enough Tp, the sequence (f,,)nen satisfies the Cauchy cri-
terion in the space C([0, To]; BZS,,TOéZ_l). This proves the theorem on the interval
[0, Tp]. Note that the argument may be applied again, starting from Tp. After
a finite number of steps, we finally prove convergence on [0,T]. Since T has

been fixed arbitrarily, we end up with a global existence result. O

3.3.3 Limited Loss of Regularity

In this section, we make the assumption that there exists some « € ]0, 1] such
that the function V, , defined in (3.33) is locally integrable.

Recall that in the limit case « = 0 (treated in Theorem 3.14), there is no
loss of regularity and that if o = 1, then a linear loss of regularity may occur
(see Theorem 3.28). In the theorem below, we state that if o € ]0, 1[, then the
loss of regularity in the estimates is arbitrarily small.
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Theorem 3.33. Let (p,p1) be in [1,00]? such that 1 < p < p; and suppose
that o satisfies (3.12). Assume that o is less than 1+ pil and that V,, ., is in

1,0

LY([0,T]) for some a € ]0,1[. Let fo be in By ., and g be in EIT(B;OO). The

equation (T') with A = 0 then has a unique solution f in C([0,T];
and the following estimate holds for all small enough €:

’
o
o'<o Bp,oo)v

C =
1025 ey < € (Iollmg . +lgllzy sy ) exp(g(vm,am) )
where C' depends only on «, p, p1, o, and d.

Remark 3.34. Theorem 3.33 applies with & = 1 — 1/r whenever Vv belongs
d
to Lj(Byl.r)-

Proof. We focus on the proof of the a priori estimate. Existence may be ob-
tained by arguing as in Theorem 3.32.

Fix a small enough ¢ and let > 0 satisfy € = nV,, (7). We define, for ¢
in 0,7,

def
o0 E o=V, alt).

Following the lines of the proof of Theorem 3.28, we now get
2D Ay f(B)s < 2D Ay fol o2V
t
+ / 2@+ || Asg(#)|| pp 2 "D Jir Vi () 8 gy
0

t
4C [ 240)V o)z GO 8 )] e at
0 pooe

On the one hand, if j is so large as to satisfy

1
20 \T®
245> <n10g2> : (3.38)

then we have

p1,& )

t
C [+ 3V 2D O <
0

N~

from which it follows that
2G4 A (1) Lo < 2P| A foll o

t
. 1
+ [ 2 gt + 5 sup )]
0 t€[0,1] ’

On the other hand, if (3.38) is not satisfied, then we can write
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227 A f ()| e < 247N A; fol |

b 24 20 \T+ [t
22+ || Asg ()| 1o dt! — / o dt’
+f 13590l de + (o) [ @Ol

Combining these two inequalities and using the fact that o < o for t’ € [0, T,
we deduce that

2 Wz, < 20 ollng 42l 2y +Cn°“/ )] ot
/e ’ Pp,00

from which it follows, according to the Gronwall lemma, that

sup ||f ()]l o < 2e Co I Vi a0 (||f0||Bg,oo + gl s ))-
t'€[0,t] P P

Taking ¢ = T and using the definition of 1 completes the proof. Indeed, we
obviously have o, > 0 — ¢ for all ¢ € [0, 7. O

Remark 3.35. The estimate stated in Theorem 3.33 may be generalized to the
case where a small loss of regularity occurs in the source term. More precisely,
if g=¢g1+ g2 with g1 € LT(BU ) and if, for some integrable function W, we
have, for all ¢t € [0, T7,

Vj > -1, Vo' €lo— el [4502(0) 0 <2777 (G + 2 WO (Dl g
then the following estimate holds:

1025 ey < € (Mollmg . + lonllzy g )

X exp(ai (/OT(V;I o)+ W)(1) dt)kla).

3.3.4 A Few Applications

Theorem 3.28 will help us to prove uniqueness for the incompressible Eu-
ler system with minimal regularity assumptions. The reader is referred to
Chapter 7 for more details. It may also be used to establish the global well-
posedness of the density-dependent incompressible Navier—Stokes equations
in the two-dimensional case (see the last section of this chapter).

In this subsection, we shall use Theorem 3.28 to obtain the following
uniqueness result for linear transport equations.

Theorem 3.36. Let v be a dwergence -free vector field in L}, (RT; LL(RY)).
Consider a distribution g in Lloc(R ;M) and a measure” fo of M. There
exists a unique solution of

7 Recall that M denotes the set of bounded measures on R?.
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{&ngrdiv(f’u) =g

(T) f\t:o = fo

in the space LS (RT; M).

loc

Proof. To prove existence, it suffices to smooth out the data and the vector
field v. More precisely, let (vy,)nen be a sequence of C° vector fields with null
divergence, uniformly bounded in the space L} (R™;LL) and such that

loc

lim v, =v in L}, (R",BS ) forall e<1.

n—00

Also, consider a bounded sequence of functions (fo n)nen in S satisfying
lim fO,n = fo in M
n—0o0

Finally, take a bounded sequence (g, )ney in L}, (RT; L) such that

loc

lim gn =G in Llloc(R+;M)‘

n—oo

Let f,, be the solution of

fnji=0 = fon-
It is clear that (f,)nen is a bounded sequence of L5 (RT; L). We can then
extract a weakly convergent subsequence. The limit distribution f belongs
to L;’;’C(R"'; M). It is then obvious that f,v, tends weakly to fv. Hence, the
equation (7T') is satisfied.
Finally, as ensured by Proposition 2.39 , the space L (RT; M) is embed-

ded in L{S (RT; BY ). Theorem 3.28 ensures uniqueness. O

3.4 Transport-Diffusion Equations

In a number of physical models, both convective and diffusive phenomena oc-
cur. This is particularly the case in most models coming from fluid mechanics.
At the mathematical level, it means that the corresponding partial differential
equations contain both a transport term of the type v-V f and a diffusion term
which, in the simplest case, reduces to vAf for some nonnegative constant v.

There is a profuse mathematical literature on the transport and heat equa-
tions. We must note, however, that most methods which suit transport equa-
tions fail to treat the heat equation efficiently, and vice versa. In the present
section, we consider equations of the type

Of+v-Vf-vAf=yg
TD,
( ) { f|t:0 = an
where fj, g, and v stand for given initial data, external force, and vector field,

respectively. We aim to state a priori estimates which apply for all possible
values of v > 0 and Lipschitz vector fields v.
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3.4.1 A Priori Estimates

We focus on the study of (T'D,)) in the whole space R? (although our approach
also works in the torus ’]Td) and, in order to simplify the presentation, we
restrict our attention to estimates in homogeneous Besov spaces.

On the one hand, if there is no convection (i.e., v = 0), then (T'D,)) reduces
to the standard heat equation with constant diffusion so that applying Aj to
the equation yields

WA f —vAA;f = Ajqg, A; fii=o = A; fo.
Since Aj fo and Aj g are spectrally localized in the annulus 2C, we have, by
virtue of Lemma 2.4 and Corollary 2.5,

. L1 . L 1 1 .
14 lugery < C((#2%) 2 1A follus + (#2) 775 Aggllps (1m))

for all real numbers p, p1, p, and r such that 1 < p,r < co and 1 < p; <
1 27 .

p < 0o. Therefore, multiplying both sides by v»2% 295 and performing an £"

summation, we get

1 1 _1
< : .
AL eor, <O (Il +25 o, e ) 3
for some universal constant C.

On the other hand, if there is convection but no diffusion in (T'D,,), then,
as stated in Theorem 3.14 and Remark 3.16, we have

Byt ||9||Z1T<B;,r>>

b,T

71 gz, < €5 <||f0|
T

T
with V,, (T) d:ef/ IVo(®)] o dt, subject to some restrictions on the
0 Bl oNL®>
indices p, p1, r, and s.
This section aims to unify the above two estimates for (7'D,). This is
achieved in the following theorem.

Theorem 3.37. Let 1 <p<p; <ooand 1< p;,r < oo, Let s € R satisfy

d d
s<1l4+— or s<14+—, ifr=1,
n
Sl 1 11 o (3.40)
5> —dmln{—, —/} or s>—1-— dmln{—, —,}, if dive =0.
b1 p
There exists a constant C, depending only on d, r, s, and s —1— pil, such that
for any smooth solution f of (T'D,) with v > 0, and p € [p1, 0], we have the
following a priori estimate:
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v < CVpl(T) . i—l )
Ve HfHZ”T(B;,t%) <e HfOHBi,r +vr ”gniﬁ}l(B;;H%)
d T

Vpl (T) :ef/ HV'U(t)” 4 dt7 ZfS < d +1,

3 0 BP1__ Lo D1
with def T P10
e

Y [ g s,

0 BP1 1

P1,1
Note that a standard energy method provides such estimates in the frame-
work of Sobolev spaces H*® (at least in the case p > 2, where no tilde spaces
are needed). Also, note that by taking p = co and p; = 1, we find a family
of estimates which are independent of v and coincide with those of Theo-
rem 3.14. If the vector field v is equal to 0, then V},,, = 0, and we recover the
inequality (3.39) exactly.

The proof of Theorem 3.37 is based on a Lagrangian approach (after suit-
able localization in Fourier space) which amounts to canceling out the bad
convection term. Of course, in the Lagrangian formulation the good Laplace
operator A is no longer “flat”. It turns out, however, that it remains “al-
most” flat at small time so that it is still possible to take advantage of the
inequality (3.39).

Proof of Theorem 3.37. Let f; def Ajf and f; def Ajg. Applying Aj to (T'D,)
yields .
atfj + Sj,ﬂ] . ij — I/Afj =49; + Rj
def

with R]‘ = (Sj,ﬂ} - ’U) ' Vf] - [Aj,?) : V]f

Let ¢; be the flow of Sj_lv and ¢; def wj_l. Define f; def fiov;, g; def

g; 04, and Ej def R; o1p;. We have

0f; —vAf =G, + R, +vT; with T; % Af 00— A, (341)
Applying Aj/ to (3.41) and using Lemma 2.4, we get
14, £t Lo < Ce 2 || Ajs fo 5 o
t il . . ~ .
+C/ e (||Aj'§j||m+ 14 Rjll L + V||AJ'TJ‘HLP) dt’. (3.42)
0

We first focus on the term Aj/Tj. We have®
Tj = Afjonp; — tr(Viy; - D*f 04h; - D) — Dfjoh; - Ay

= tr(([d=V4y) - D2fj 0 4y - Dyyy)
8 Here, DF denotes the Jacobean matrix of F, and VF denotes the transposed
matrix of DF. If ' has d components, then we define Jp d:ef det DF.
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Therefore,

14,/ Tillze < C(IDYjll oo + 1) 11d =Dl o | D* £ 005 1,
+ C APl oo 1D F5 0 sl o -

Combining Bernstein’s inequality with an obvious change of variable when
computing the LP norm, we infer that

. 1
IDfj opill e < C2 || T, || 2 N fill 1o »
. 1
1D2F5 095l < C27 || T, |7 1 fil o
Hence, appealing to Proposition 3.10, we get, for all ¢ in [0, T7,
1Ay T3(0)le < €229 (YO 1) ||, with (3.43)
t
V() d:ef/o Vo (t)]| e dt.
Next, we treat Aj/gj. According to Bernstein’s lemma, we have

145l e = 277 || Ajs D]l L

We also have Dg; = Dgjo1;- Di;. Hence, according to Bernstein’s inequality
and Proposition 3.10,

14,:G;(®)|Lr < CeV O gi(D)]] - (3.44)
From similar arguments, we get
14 R; (0)[z» < Ce“VO2T Ry (1)), -

The term ||R;(t)
eventually get

|;» may be bounded according to Remark 2.103, and we

14, R ()| Lr < €277 ¢;(#)277°V (£)eCV | £(1)]

By, (3.45)

with [|c;(t)[le- = 1 and V}; as defined in the statement of Theorem 3.37.
Plugging (3.43), (3.44), and (3.45) into (3.42), taking the L norm over
[0,t], and multiplying by V%Q%, we thus get

-/

120 L ; o 2
ve2 e | Ay fillLe ey < C(IAj/fo,jlle + 27702 eV D g Lo 1y

B;,T dt/) )

’ t
Y 25 Y .
+22(]-J )U%ZT (ecv(t) _ 1) ||fj||Lf(Lp) 4977 /0 CjQ—Js‘/pflecvlm

where p| stands for the conjugate exponent of p;.
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After multiplying both sides by 929525 1) e obtain
391t 2)) AL 2 (- gds || A
ve 2! TR A fille ey < O 27 27| Az fo 5l e
4y el 2( )(J —3") CV(t)2 ( )

ll9; ||L£1 (LP)

49207, b i (++2) (ecv(“—l) 1fill g e
+2(3) 6" / ¢V fl5,, d ) (3.46)
; -

Let Ny € N, to be fixed hereafter. Because

fj— Ji— NUfJ Z A f] ?5,

Jj'>j—No
we have, for all ¢t € [0, 7],
£l Lo rey < €€V (|SjNoijf(LP) + 0y Aj’fjHLf(Lp))- (3.47)
Jj’'>3—No

In order to bound the term ||Sj,N0fj||Lf(Lp), we use Lemma 2.6 page 56
with A = 27 and p = 2/~No. This implies that for any ¢ in [0, T},

18- 3o f5 (E) | o < C279 || T, oo |1 £ (8) | o

x (1D T, o 17y, = + 27| D5 o0 )

Thanks to Proposition 3.10, we have that ||.Jy, ||z~ and ||.Jy, ||z~ are bounded
by e“V®) . Moreover,

d
DJy, - h = D(det Dg;) - h =Y _det(Dg},...,D*¢% - h,...,D¢Y).
/=1

Therefore, again using Proposition 3.10, we infer that
t
Doy 1 < eV [ ID2, (e eV at
0
t
< CefV®oI / Vo) L€V dt!
0
< OeCV(t)Qj(eCV(t) _ 1)

Thus, we get

HSJ NofJHL”(LP < eV (2_N° +eOVI 1)||fj||L"(LP)~ (3.48)
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We now bound the last term in (3.47). Using the fact that A'j/foﬁj = 0 for
|7 = j| > 1 and summing the inequality (3.46) for j' > j — Ny, we obtain

1_i(s42 Y ) S
Z Z/PQJ( +P)HAj/fjHLf(Lv) §C<2j ||f0,j||LP
J'2j—=No

L i(s==2
OV g, i ( ”i)l\gjl\L;”(Lp)

t
4290 (VO 1) D I g+ 2% [ 07V
0

Bs, dt/).

Plugging this and the inequality (3.48) into (3.47), we discover that, up to a
change of C, we have

1 (2 s — ils—2
wzf(*p)nfjm(m<0eCV<t>(2ﬂ ol +2%%0 %272 gy

A /

Choose Ny to be the unique integer such that 227" € |, 1] and T} to be
the largest real number such that

t
+ (2—N° +92No (eCV“) —1))y%29 (s+2) £ g (1) +250 / eV Il
0

2—2N0
Ty <T and CV(Ty)<e with e= min{log 2, W} (3.49)
With this choice of 77 and Ny, the third term of the right-hand side of the
above inequality may be absorbed by the left-hand side whenever ¢ is in [0, T7].
This yields, for some positive constant C1,

1 i(er2 is
v ) |l r o < 1 (2] Vosll,

1 (2 t
0 gl + [ @OV, )
0 |

Finally, performing an ¢” summation gives, for all ¢t € [0,71] and p € [p1, 0],

N
s v gl s
LYY (Bp,»1)

n / V(8]

ve a2 <C
191, g2, < a1

B, dt’). (3.50)

It is now easy to complete the proof. Indeed, it is only a matter of splitting
the interval [0, 7] into a finite number m of subintervals [0, T1], [T1, T2, and
so on, such that

c Tkt
P / IVo(t)] e dt <e.
2 T
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By arguing as was done to prove (3.50), we get, for all t € [Ty, Tg11],

AL, e <G (1N,
L[Tk t]( P, )

_a t

R A
L By T

Note that if £ = 1, then the first term on the right-hand side may be bounded
according to (3.50) with p = oo and t = T3. Hence, after an obvious induction,
we get

H k41
A, ez <€ (nfo :

p,T
L
ol ok / NFE) . dt’).
LYY (Bp,r P

Since the number of such subintervals is m ~ CV(T)e™!, we can readily
conclude that up to a change of C, we have, for all p in [p1, 00],

L R (e I
By, LT (pr )

/ OOl s dt>. (3.51)

Taking p = co and using the fact that V'(t) < CV} (t), the Gronwall lemma
gives

10555 ) < €@ (Iols;

otV ~||gn 5 ).
pr 1

Plugging this estimate into (3.51), we get

1
I, ez <C(Iollsg, +v gl s )
Lf(Bp,rp) LP1 (B 91)
CVin (D) 1+C/ dt)
This completes the proof for general p € [p1, x0]. ad

By treating the low frequencies separately, we can state the following a priori
estimates for (T'D,) in nonhomogeneous Besov spaces.

Theorem 3.38. Let 1 < p; <p < oo, 1 <r < oo, s €R satisfy (3.12),
and Vy,, be defined as in Theorem 3.14.

There exists a constant C' which depends only on d, r, s, and s — 1 — p_1
and is such that for any smooth solution f of (TD,) and 1 < p; < p < 0o, we

have
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1 1
vollfll e < QORI )((1+VT)ﬂ||fo 5
L. (Bp,r)

LA+ e gl e )
Lpl(Bp-, f’l)

Remark 8.39. If r = oo, then both Theorems 3.37 and 3.38 hold true with

def def
Vo (1) & / Vo)l s dt and V(1) & / Vo)l s dt,

P11 P11
respectively, in the limit case

s = —dmin(1/p1,1/p’) or s=—dmin(l/p1,1/p’)—1 if dive =0.
This is a consequence of the inequality (2.55) page 112 and Remark 2.102.

Finally, we point out that similar estimates may be proven for the nonsta-
tionary Stokes equation with convection:

Ou+v-Vu—vAu+ VIl =g
o

divu = 0, U= = Ug-

Indeed, we shall see in Chapter 5 that the Leray projector on divergence-
free vector fields is a homogeneous Fourier multiplier of order 0. Thanks to
Lemma 2.2 page 53, such operators are continuous self-maps on L{ (B ).

3.4.2 Exponential Decay

In this final subsection, we study the effect of diffusion in (7'D,) on compactly
supported data. Our main result is the following.

Theorem 3.40. A constant C exists which satisfies the following properties.
Let v be a divergence-free vector field which belongs to LlOC(R"’; C%1), fo be a
compactly supported function in L2, and v be a positive real number. Consider
a solution f of the equation (T D,) with right-hand side 0 and initial data fo.
We denote by v the flow of the vector field v and define

F % (e, Supp (o).
(F); e e R? [ d(z, B) > 1},
(Foy Y e e B/ d(w,0F,) > h).

t
Let V(t) d:ef/ IVu(t")|| L~ dt’. We then have, for all (t,h) € RT x RT,
0

1 Ollz2rog) < Ifollze™ o VO, (3.52)
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Moreover, if fo is the characteristic function of a bounded domain Fy, then
we have

n2

. vty 2 I
1F O L2 < lfollze min{L, 0 (55 ) "2V s eV L (3.53)

Proof. Proving this theorem relies on energy estimates. Using regularization
arguments, we may assume that the vector field v and the function f are
smooth. We consider a smooth function @g, denote by v the flow of v, and
define

def

B(t,z) = Do(p (¢, 2)).

It is obvious that
Oh(Pf)+v -V(@f) —vAPf) = —vfAD — 20V P -V f.

Taking the L? inner product with &f and performing integrations by parts

gives
1d

2dt
We choose (¢, r) = exp(¢(t,z)) with ¢(t,z) = ¢o(v~1(¢,x)). From the above
relation, we get that

12£1I72 + VIV(@HIZ> = v fVP|Z--

d
T PFIIZe < 2Vl L1 fII7z-

From the Gronwall lemma, we thus infer that

I@N®llzz < 1@1)(O)]1 22 exp(v / IVo(t) 3 dt').

We define deof
do(z) = amin{R, d(z,Supp (fo)) } * Xe,

where x.(z) def e~ 4x(e~'x) for some function y of D(R?) with integral 1.
Note that with this choice, the function (@f)(0) tends to the function fy
a.e. when e goes to 0. Using the fact that ||V¢.(t)||r~ < aexp V(t), we get,

by the Gronwall lemma, that
[2F(0)llz= < [@F(0)]gae” ™t PEVO,

Taking the limit when € tends to 0, it turns out, by the definition of @, that
if 0 < n < R, we have
14 2 X
NI g i) < I ollae @O, (354)

But, obviously,
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d:ef h ‘
[V the| Lo

Thus, taking n = 4(t, h) in (3.54) and assuming that §(¢,h) < R, we obtain

(Ft)zcwt((FO)g(t,h)) with  4(t, h) (3.55)

2 —ahexp(—
||f(t)||L2((Ft)§L) < ”fO”Lzeuoc texp(2V (t)) h exp( V(t)).

As the above inequality is independent of R, it is true for any (¢, k). The best
choice for « then gives the inequality (3.52).

The proof of (3.53) follows essentially the same lines. Let w(t, x) = f(t, z)—
1p,(x) and ®(t,2) = ®o(¢~1(t,2)) with &g in D(Fp). Then, due to

A(th:ﬂ-ﬂ) :ﬂ-FtAQSt and V(bt'vj].pt :O,

we have
(O +v-V —vA)(Pw) = —vwAP — 20VP - Vw.

As above, by an energy estimate, we get

1d
57 1Pwliz +vIV@w)i: = vifwVe|..

Fix a constant C' such that for any positive hg, a function x exists in D(Fp)
such that y is identically 1 on (F§)n, and ||Vx|/z~ < Chg'. Then, choos-
ing @y = xe?, where ¢ is equal to (a regularization of) the function z +
d(z, F§), we get that

1d 2 —112 2 2 o 2

5 71 Pwllze < 20 [V [ (19wl Vol + ll(w o pu)e? VXIIZ:),
from which it follows, since ||w o 9|2 < 2||fol 2, that

d Ce2aho
Slpwlte < vet® (402 @ullfs + oI folli: )-
0
Using (3.55) (with Ff instead of F;) and the Gronwall lemma, we get, for
any t and h such that he=V(®) > hy,

20(ho—h exp(—V(t)))

a2h0 (e4a2texp(2V(t)) o 1)

e
lwlZ2 ey < CllfollZz

Now, using the fact that e=%(e? — 1) < e~ 2 and choosing

he—V(t) and o — he—SV(t)
2 - 8wt

ho =

gives the result. O
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3.5 References and Remarks

Most of the material in Section 3.1 belongs to the mathematical folklore. It may
somewhat extended to non-smooth vector fields (see e.g. [12]). Here, we chose to
extend some of the results stated in Chapter 5 of [69].

The study of transport equations under minimal regularity assumptions on the
vector field is currently very active. See, in particular, the recent works by L. Am-
brosio and P. Bernard [13], F. Colombini and N. Lerner [83], and N. Depauw [111].
In this book, we chose to focus on the study of a priori estimates in the case where
the vector field is at least quasi-Lipschitz. The a priori estimates and existence re-
sults for the transport equation which were stated in Section 3.2 are well known
in the framework of Holder spaces or Sobolev spaces with positive exponent. Their
extension to Holder spaces with negative indices of regularity (i.e., in B5, o with
—1 < r < 0) in the case where the vector field v is divergence-free has been car-
ried out in [69, Chapter 4]. The a priori estimates and the existence statement in
general Besov spaces essentially come from works by the second and third authors
(see, in particular, [102]). That estimates for (7") improve in Besov spaces with reg-
ularity index 0 was discovered by M. Vishik in [296]. For proving Theorem 3.18,
we instead followed T. Hmidi and S. Keraani’s approach, which turns out to be
more robust. In particular, it also works (with no changes) for transport-diffusion
equations (see [158]).

The so-called Camassa—Holm equation (3.25) was derived independently by
A. Fokas and B. Fuchssteiner in [126], and by R. Camassa and D. Holm in [56].
Its systematic mathematical study was initiated in a series of papers by A. Con-
stantin and J. Escher (see, e.g., [84]). It has infinitely many conservation laws, the
most obvious ones being the conservation of the average over R and of the H' norm
for smooth solutions with sufficient decay at infinity. By taking advantage of this
latter property, Z. Xin and P. Zhang proved that (3.25) has global weak solutions
for any data in H' (see [301]). The results stated in Section 3.2.4 are borrowed
from [96]. Note that for proving uniqueness for data in B, ,., we are led to estimate
the difference between two solutions in Bj,'. Owing to the term (9,u)?, the addi-
tional condition s > max(g, 14+ %) is thus required. In fact, uniqueness is also in

true in BE 1; see [96]. Further improvements were recently obtained in [108].

Losing estimates for transport equations associated with a log-Lipschitz vector
field have been stated by a number of authors. The statement of Theorem 3.28
pertaining to loss of regularity in general Besov spaces comes from [102]. The phe-
nomenon of exponential loss has been pointed out by the first two authors in [17].
Theorem 3.33 has been stated in [102], and a related result in Sobolev space has
been proven by B. Desjardins in [113]. Theorem 3.36 may be seen as a borderline
case of the results of Di Perna and Lions in [117] and of B. Desjardins in [112]. More
details concerning the proof of Theorem 3.41 may be found in [100].

We give an application of Theorem 3.33 concerning the density-dependent in-
compressible Navier—Stokes equations:

Op+u-Vp=0
p(Oru+u-Vu) — pAu+ VII =0 (3.56)
divu = 0.



3.5 References and Remarks 167

Theorem 3.41. Let ug € H* (R2) with divug = 0. Assume that po = 1/(14ao) with
ao € H'TP(R?) for some 3 € |0, 1[. Further, assume that 1+ao > 0. Then, the system
(3.56), supplemented with initial data (po,uo), has a global unique solution (p,u)
which satisfies

d -~
a:ef%—1€C(R+;HH"6)7 pte L™, and weCR";HY)NLL.(RT; HY).

Proof. We only sketch the proof, emphasizing how Theorem 3.33 is used. A more
detailed proof is available in [100].

On the one hand, in dimension two, under the assumptions that p(jfl € L* and
uo € H', it is well established (see, e.g., [14]) that (3.56) has a global weak solution
(p,u) with p*! bounded and

2
we (LERY HY) N LRV H?))

Now, because Vu € L,.(RT; H') and, by assumption, ag € H**? Theorem 3.33
with @ = 1/2, p1 = p = 2 ensures that a belongs to C(R™; HHﬁl) for all 3 < .

On the other hand, the local well-posedness theory for density-dependent Navier—
Stokes equations provides a unique local maximal solution (a,w) such that

aec((0, T H™?) and @€ C([0,T"[ H') N Line((0,T"[; H).

Since Va remains for all time in some Sobolev space with positive indez, and, by
virtue of Sobolev embeddings, the vector field & belongs to Li,.([0, T*[; C*!), it is
not difficult to prove a weak-strong uniqueness statement. It is only a matter of
writing the equation satisfied by (a — a,u — ) and applying Theorem 3.14 and the
inequality (3.39). Therefore, we actually have (a,u) = (a,u) on [0,7[. Now, if one
assumes that 7" is finite, then we have ||a(¢)|| g1+s and ||u(t)|| 71 uniformly bounded
on [0, T*[ so that the local existence theory enables us to continue (a,u) beyond T*.
Hence, we must have T = co. ]

Remark 3.42. A similar statement may be proven under the weaker assumption that
uo € H7(R?) for arbitrarily small v > 0.

The proof of a priori estimates for transport-diffusion equations has a long history.
The case of Sobolev spaces H® is classical. The extension to more general Besov
spaces was initiated in [90], then improved in [95] under the restrictions that 1 <
p < oo and that divv = 0. The proof was based on a slight generalization of
Lemma 2.8 page 58 (see [90, 251, 95]), which fails in the limit cases p = 1,00. The
extension to all p € [1,00] in the case dive = 0 is due to T. Hmidi in [156]. This
is based on the Lagrangian approach that was used in the present chapter and on
the smoothing property of the heat equation stated in (3.39) that was first observed
in [72]. Finally, the whole statement of Theorems 3.37 and 3.38 was proven in [103].
Different types of estimates have been obtained by a number of authors (see, in
particular, the work by E. Carlen and M. Loss in [59]).

The exponential decay results for transport-diffusion equations were been proven
n [90]. Some generalizations have been obtained by J. Ben Ameur and the third
author in [32], and by T. Hmidi in [156].






4

Quasilinear Symmetric Systems

Quasilinear and linear symmetric systems appear in a number of physical
systems such as wave equations, systems of conservation laws, compressible
Euler equations, and so on (some examples are given in the first section below).

In this chapter, we state a few elementary and classical facts concerning
these systems. The first section is devoted to a short presentation on linear and
quasilinear symmetric systems. In the second section, we focus on the linear
case with suitably smooth coefficients. We demonstrate global well-posedness
in Sobolev spaces H® for any s > 0. We also establish that linear symmetric
systems have the finite propagation speed property. In Section 4.3 we focus
on quasilinear symmetric systems. We prove that they may be solved locally
in any Sobolev space embedded in the set of Lipschitz functions and exhibit
a blow-up criterion involving the L!(Lip) norm of the solution. Section 4.4
is dedicated to the study of the Cauchy problem for quasilinear symmetric
systems under minimal regularity assumptions, as well as to refined blow-up
criteria. In the last section, we investigate the regularity of the associated flow
map.

4.1 Definition and Examples

We shall begin by explaining what is meant by a linear symmetric system.
Let I be an interval of R and (Ag)o<k<q be a family of smooth bounded
functions from I x R? into the space of N x N matrices with real coefficients.
Let tg € I. We want to solve the following initial boundary value problem for
any suitably smooth functions Uy : RY — RY and F: I x R? — RY:

d
U+ AU + AU = F

(LS) : P

U|t:t0 == Uo.
We will first explain what it means to solve (LS).
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Definition 4.1. A function U € C(I; (8’(Rd))N) is called a weak solution
of (LS) on I x R if:

(i) Functions ), Ul Agi; and > Ul (div A); ; with (div.A); ; d:efzk Ok Aki
are in LY(I;S'(RY)) for alli € {1,...,N} and k € {1,...,d}.
(ii) For all t € I and ¢ € C*(I; (S(R)N), it holds that

t t
Z/ (U, 0rpi) sxs dT+Z/ (F'+U7 ((div A); j—Aoi ;) @i)sixs dT
i 70 ij V0

> | 0 i 005 am = S (W' 0. 01(0)s = Ui ) s,

75

Formally, in order to control the energy of a solution U of (LS), we can proceed
as follows. First, we take the L2(R% R™) inner product of (LS) with U. We
find that

d

1d 2 t t
SZIU@IE: = - ;(AkakmU) (U012 + (FIU) 2.

If we further assume that the first order space derivatives of the functions Ay
(1 < k < d) are bounded, then we can next perform an integration by parts.
This gives

—<-Ak8kU|U>L2 = —Z/]Rd AW,]’BkUﬂ' Ut dx
()

ZZ/ .Ak,iJUjakUidl‘—l—Z/ (9kAk,i7jUind$.
iy R i VR

In general, due to the first term on the right-hand side, estimating the
term (AzOxU|U),, (and thus ||Ul|g2) requires a bound on [|0;U]z>. This
loss of one derivative precludes our closing the estimates and motivates the
following definition.

Definition 4.2. The above system (LS) is said to be symmetric if for any k
in {1,...,d} and any (t,x) € I x R?, the matrices Ak (t,z) are symmetric,
that is, for any i, j, and k, we have Ay ; ;(t,x) = Ak j.i(t, ).

We now resume the above computation under the additional assumption
that (LS) is symmetric. We get

d
_ z::(AkakU|U)L2 = %((div AUIU) 2.

1

This implies that
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d

1, .. 9
Z(AkakU|U)L2‘ < 5” div AL || U] 72
k=1
Thus, we get that
d
ZNUMDI: < ao®ITD72 +2FOIU(H)) 12 (4.1)

with ag(t) def | div A(t)|| L= + 2| Ao () || >, SO we may now control the energy
of the solution in terms of the data by means of the Gronwall lemma.

We next define a quasilinear symmetric system. A “general” quasilinear
system is of the form

d
U+ AU)oU + Ag(U) = F
k=1

(@Q5)
U|t:t0 = Uy,

where A = (Ag)o<k<a is a family of d + 1 smooth functions from RY to the
space of N x N matrices with real coefficients. Motivated by the linear case,
we define symmetric quasilinear systems as follows.

Definition 4.3. The system (QS) is said to be symmetric if for any k
in {1,...,d}, the function Ay is valued in the space of symmetric N x N
matrices.

As an example, we will consider the Euler system for a perfect gas in the
whole space R, Denoting by p the density of the particles of the gas and
by v the velocity field of the particles, the system to be considered is
Oip+v-Vp+pdive =0
dw+v-Vo+p 'Vp=0 with p=Ap".

The above system is not quasilinear symmetric. However, if we introduce the
new unknown function ¢ defined by

def 2 <ap)5_(47A)% -

—_ — 2
op ’y—lp

v—1

and define ¥ def (v —1)/2, then the system becomes
Oic+v-Ve+7vedive =0
ov+v-Vu+7cVe=0.

This system is symmetric. For instance, if d = 3 and we write U = (¢, v), it
is of the form (QJS) with
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vy y¢ 0 0 vg 0 7¢ 0 vg 0 0 ~c
|Aewn 00 {owo0o0 {ows0o0
AU =1 0wv, 0] A (U) = e 0 vy 0] As(U) 0 0wvs 0
00 0 v 0 0 0 v ¢ 0 0 wvg

We shall temporarily suppose that the solution U = (¢,v) is a perturbation
of order ¢ of the steady state (¢,0), where ¢ is a given positive constant. By
identification of powers of ¢, we get, for the first order term,

Oic+~vcdive =0
at'l) + ﬁEVc =0.

This is a symmetric linear system, called an acoustic wave system. In fact, an
immediate computation shows that ¢ satisfies the wave equation

D2c—7PAc=0

so that ¢ has a finite speed of propagation, namely 7¢. We shall see in Sec-
tion 4.2.2 that any linear first order symmetric system has the finite propa-
gation speed property.

4.2 Linear Symmetric Systems

In this section we investigate linear symmetric systems. First, we want to solve
them and then study a few basic properties of their solutions.
In all that follows, for s in N, we define

def -
U(t)2 = Z ogU7 (8)]|72-
1<G<N
0<fal<s

To simplify the presentation, we shall assume throughout this chapter that I =
[0,T] and tg = 0. Due to the time-reversibility and translational invariance of
the systems that we here consider, however, similar results are true for any
interval I and tg in 1.

4.2.1 The Well-posedness of Linear Symmetric Systems

This subsection is devoted to the proof of the following well-posedness result.

Theorem 4.4. Let (LS) be a linear symmetric system with smooth, bounded,
and Lipschitz (with respect to the space variable) coefficients and let s be an
integer. Let Uy be in H® and F be in C(I; H®). Then, (LS) has a unique
solution in the space C(I; H*) N CY(I; H*1).

Proving this theorem requires four steps:
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— First, we prove a priori estimates for sufficiently smooth solutions of the
system (LS).

— Second, we apply the Friedrichs method so as to solve a sequence of ordi-
nary differential equations which approximate (L.S).

— Third, we pass to the limit in the case of sufficiently smooth initial data
and get existence in any case by smoothing out the initial data.

— Finally, we get uniqueness using existence of the adjoint system.

We begin by stating a priori estimates for smooth solutions (the symmetry
hypothesis is crucial here).

Lemma 4.5. For any nonnegative integer s, a locally bounded nonnegative
function as exists such that for any function U in C(I; H**Y) N CL(I; H®)
and t in I, we have

t t
[U@)]s < [Uols exp<%/ > / |F(t)|s exp < / as(t") dt"> dt’'
0 y

with
d

F = 6tU+ZAk8kU+A0U.

k=1
Proof. To begin, we prove this lemma for s = 0. Consider a function U in the
space C(I; H') N C*(I; L?). By the definition of F, we have

1d

S 0B = U1

d
= (F|U)o = (AU[U)o = Y (AxdhUU),
k=1

As the system (LS) is symmetric and U belongs to C(I; H*) N C*(I; L?), the
computations carried out on page 171, leading to (4.1), are rigorous. Thus,
we have

%IU(t)Iﬁ < ao(®)|U®)IF + 21F (1)U (t)]o (4.2)

with ag(t) def ||div A(t, -)||n= + 2||Ao(t,-)||L<. By the Gronwall lemma, we
get

"t 7 ’ t t 1" "
U(8)|o < |Ugloe? Jo a0t dt +/ |F(#)]g e2 o a0t dt” gy (4.3)
0

In order to prove the lemma for any nonnegative integer, we shall proceed by
induction. Assume that Lemma 4.5 is proved for some integer s. Let U be a
function in C(I; H*?)NCY(I; H¥*!) and introduce the function [with N(d+1)
components] U defined by

U= (UdU,...,0U).
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As .
F=0U + Y AU + AU,

k=1

we obtain, for any j in {1,...,d}, by differentiation of the equation,

d
9 (0,;U) ZAkaka U~ (0;A) - kU — 9;(AU) + 0, F.
k=1 k=1
def
Let F = (F,0,F,...,04F) and
def ¢
BoU = (AOUZ (01 Ak) - OxU +01(AgU), ..., > (DaAr)- 8kU+3d(A0U)>.
k=1 k=1
We may write
Ak 0O --- 0
_ ~ ~ = def :
U+ BroU + BoU = F with B, < | 0 "
k=1 . . Ak 0
0 --- 0 A

The induction hypothesis then allows us to complete the proof of Lemma 4.5.
O

Remark 4.6. In the case s = 0, 1, the above computations are still valid when
the matrices Ay, .. .,.Aq are only continuous, bounded, and have bounded first
order space derivatives.

We should point out that proving the inequalities of Lemma 4.5 requires one
more derivative than in the statement of Theorem 4.4. Hence, existence does
not follow from basic contraction mapping arguments. This leads us to smooth
out both the system and the data. To do so, we shall use the Friedrichs method.
More precisely, we consider the system (LS,,) defined by

d
k=1

(LSy) :
E, Uji=0 = Ey Uo,
where E,, is the cut-off operator defined on L? by

def ~
E,u= F ' (1p0.m0) (4.4)

In other words E, is the L? orthogonal projector over the closed space L2
of L? functions with Fourier transforms supported in the ball with center 0 and
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radius n. Lemma 2.1 tells us, in particular, that the operator Jy is continuous
on L2. As the functions Ay are bounded, it turns out that the linear operator

d
Vi > Ey (ArdkV) + En(AV)

k=1

is continuous on LZ. Thus, the system (LS,,) is a linear system of ordinary
differential equations on L2 . This implies the existence of a unique function U,
in C1(I; L2) which is a solution of (LS,,). Of course, due to the definition of L2,
the function U, is also in any space C!(I; H*) with s € N.

We claim that the functions U, still satisfy the energy estimates of
Lemma 4.5. More precisely, we have the following lemma.

Lemma 4.7. For any nonnegative integer s, a locally bounded function as
exists such that for any n € N and any t in I, we have,

t

t t
U ()]s < | En UO\SeXp/ as(t’)dt’+/ I, F(#))], exp (/ as(t”)dt”> at'.
0 0 t/

Proof. Taking the scalar product of (LS,) with U,, in L? and using the facts
that the operator E,, is self-adjoint on L? and E,, U,, = U,,, we get

U

d

ZNUR O = =2 (AxdxUn|Un)y = 2(AoUn)|Un)o + 2(En F|Un)o-

k=1

We proceed exactly as in the proof of Lemma 4.5. As the system (LS) is
symmetric and U,, belongs to C(I; H') N C!(I; L?), the computations carried
out on page 171 are rigorous. Thus, we have

% Un (5 < ao(®)|Un (O + 2| B F(£)]o]Un(t)lo (4.5)

with ag(t) def | div A(¢, )| + 2||Ao(¢, ) ||z~ The Gronwall lemma implies
that

t
|Un(t)|0 < |En UO|0 G%fﬂt ao(t') dt’ +/ |]En F(t,)|0€%f:’ ao(t) dt” gt
0

Proving the lemma for any integer s works exactly the same as for Lemma 4.5
and is thus omitted. O

The third step amounts to proving the following well-posedness result.

Proposition 4.8. Let s > 3. Consider the linear symmetric system (LS)
with F in C(I; H?) and Uy in H®. A unique solution U exists in

L®(LHS)NC(I; H ) nCH(I; H?)
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which, moreover, satisfies

t t t
U)o < [Uslo exp/ () dt + [ |F(t)], exp (/ as(t”)dt”>dt’
0 0 t/

for all integers 0 < s and t € I.

Proof. Consider the sequence (U, )nen of solutions of (LS, ). We shall prove

that (U,)nen is a Cauchy sequence in L>°(I; H*~2). In order to do so, we

define V;, ,, def ntp — Un. We have

d

atvn P + Z En-‘,—p Ak 8kVn p) + En+p(-’40v ,P) n,p
k=1
th,p|t:0 = (]En—i-p - ]En)UO

(4.6)

with

d
p ST By —En) (A kUn) = By — En)(AoUn) + (Engy — En) F.
k=1

Lemma 4.7 tells us that the sequence (Up,)nen is bounded in L*°(I; H®). More-
over, we have, for any real ¢ and any a in H?,

C
|(]En+p - ]En)a|c771 S E|a|a~

Thus, we have

|(En+p - En) (Ak akUn(t)”s_z

IN

Sl}ip |(En+p —En) (Ax akUn(t))‘s_l

IA

The same arguments give

‘(En-&-p _En)(AOUn<t)) + (En+p _En)F(t)| (lU ( )‘s + |F(t)|8)

(4.7)

s—2

C
n?2
By using the energy estimate for (4.6) and Lemma 4.7, we get

C
Vaa(®)ls2 < =

t
(1+t)exp/ as(t')dt'.
0

Thus, (Up)nen is a Cauchy sequence in L>(I; H*~2). Moreover, using (4.6)
and (4.7), we infer that (0;U,,)nen is a Cauchy sequence in L>(I; H*~3). We
denote by U the limit of (U, )nen. Of course, U belongs to the space

C(I; H=3)nCH(I; H*~3).
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We now check that this function U is a solution of (LS). As Uy is in H® and F
belongs to C(I; H®), we have that

lim E,Up=Up in H® and lim E,F=F in L>*(I;H®). (4.8)

n—oo n—oo

As the sequence (Uy,)nen is bounded in L*°(I; H®), we have
C
[(Ep —1d)AxOrUn || oo (1,55 -2) < -

Thus, U is a solution of (LS). To complete the proof of Proposition 4.8, we
use the fact that (U, )nen is bounded in L*°(I; H®). Hence, for all ¢ in I, the
sequence (U, (t))neny weakly converges (up to extraction) in H®. Thus, U(t)
belongs to H® and

[Ulle < timminf [0 (8) -

Now, combining the uniform bounds for (Uy, )nen in L*°(I; H®) with the above
result on convergence in L>°(I; H¥~?) and using the interpolation inequality
stated in Proposition 1.52, we get that for any s’ < s, the sequence (U, )nen
converges in C(I; H*'). Thus, U belongs to C(I; H*'). Using the fact that U
is a solution of (LS), we get that U belongs to C(I; H*') N C*(I; H*~1). So,
finally, passing to the limit in Lemma 4.7, we find that

’

t t +
U)o < [Uolo exp / ag(t') dt’ + / [F(t')]y exp ( / ag(t”)dt”> at
0 0 t

for all integers o < s. Proposition 4.8 is thus proved. 0O

In order to prove the existence part of Theorem 4.4, we now have to solve (LS)
for general data Uy € H® and F € C(I; H?). We therefore consider the se-

quence (U )nen of solutions of

U | < ~ ~
- Ao Uy + AU, = E, F
ot + ’; kOkUn + Ao
Unji=o = En Uo.
Thanks to Proposition 4.8, U, is well defined on I and belongs to C*(I, H*) for
any positive real number s. Further, the function V,, , def ~n+p — U, satisfies

d
OnVnp+ Y Ak Vop + AVop = (Bpyp —En)F
k=1 _
Vn,p\t:O = (En+p - IEn)UO

Lemma 4.5 implies that
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_ t
Tos®le < [y~ E)Viluexp [ ot
0

+/Ot|(IEn+p—]En)F(t/)sexp (/tt as(t’)dt’) dt.

As the function F' is continuous from I into H?, the sequence (E, F),en
converges to F' in the space L>°(I; H®). This is a consequence of Dini’s theorem
applied to the nonincreasing sequence of continuous functions t — ||(F —
E,, F)(t)||s on the compact interval I.

As Uy belongs to H?, the sequence (E,, Up)nen converges to Up in H®. Thus,
the sequence (U, )nen is Cauchy in L>(I; H*) and therefore converges to some
function U in C(I; H®) which is, of course, a solution of the system (LS). The
fact that 9;U belongs to C(I; H*~1) comes immediately from the fact that U

is a solution of the system (LS).

Remark 4.9. Assume that the matrices Ag, ..., Aq are only continuous and
bounded with bounded first order space derivatives. By taking advantage of
Remark 4.6 and compactness arguments, it is possible to prove that for any
data Uy in H! and F in L*°(I; H'), the system (LS) has a solution U in the
space L= (I; HY) N C%Y(I; L?).

Finally, uniqueness in the case s > 1 is merely a consequence of Lemma 4.5.
This completes the proof of Theorem 4.4 when s > 1.

Uniqueness in the case s = 0 follows from the following proposition.

Proposition 4.10. Under the assumptions of Remark 4.9, let U be a solution
in the space C(I; L*) of the symmetric system (LS) with initial data Uy = 0
and external force ' = 0. Then, U = 0.

Proof. In order to prove this proposition, we shall use a duality method. Let 1
be a function in D(]0,T[ x R?) and consider the solution of the system

d
(th) . _at()o - Zak(-Ak@) + tAO‘p = w
k=1
=7 = 0.

The system (*LS) can be understood as the adjoint system of the system (LS).
As we have 0k (Agp) = AkOre + (OkAk)p, it may be rewritten as

d

—0ip — Z ArOkp + Aop = 1
k=1

= =0

with Ao def tAy — div A.
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This is obviously a linear symmetric system. Since v belongs, in particular,
to H', Remark 4.9 provides a solution ¢ for (‘*LS) in L>°(I, H')NC%1(I; L?).
Thus, we have

d
(U,¢) = <U, —Oip — Z ApOrp + «‘To@>
o

d
:7/1((”8“0 ;/j t) | Ox(Arp) (1)), dt
+ / (U() | tAop(t)), dt.

Owing to the weak regularity of U, the integrations by parts must be justified.
Because each Ay, is continuous and bounded with bounded gradient, O (Axp)
is in L°°(I; L?). Therefore, we can write that

(U®) | 0 (Are) (1)), Z (U (1) | O(Ar,ij0") (1)) .2

=3 BT, Ak () s

Observe that A,0xU is in L°(I; H~'). Indeed, for any smooth function V,

we have

(AROKV, ) = —(V, (0" Ar) ) — (V, "ArOrp)
< (Il o + 10k Akll ) IV I 21| -

Because the matrices Ay are symmetric, we therefore have, for any t in I,

—(U®) | 0k(Axp) () g = (ARIKU (), 0()) -1y 41

from which it follows that

(U)o = (U | at‘P <Z Ar0kU + AU, g0>

H-1xH'

In order to justify the time integration by parts, we observe that 9,U belongs
to L>°(I; H~'). We now use the smoothing operator E,, defined by (4.4). The
function E,, U belongs to C!(I; H®) for any nonnegative integer s. Using this
with s greater than d/2 + 1 implies that for any z, the function

(t,x) — E, U(t,x)

is C! on I x R?. Likewise, the function E,, pis C'on I x R?. This implies
that
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- / B, U(t, 2)0 By o(t, 2)dt = — By, U(T, 2) By, (T, 7)
I

+ B, Uo(2) Bn (0, 2) + / 0B, Ut 2) By o(t, 7) dt.
I
Using the facts that Uy = 0 and ¢(T,-) = 0, we get that

— / E,U(t,x)0 E, o(t,z) dt = /8,5 (E,U)(t,z)E, p(t,x)dt.
I I

Integrating with respect to the variable x and interchanging the time and
space integrations, we get that

_ /1 (Ba U(t) | 8 En p(t)), dt = /I (OB U) () Enp(t) 1 dt. (4.9)

As U is a function of C(I; L?) N C(I; H~1), we have
lim E,U=U in L*(I;L?*) and lim E,0,U =0,U in L>(I;H ).
n—oo

n—0oo
Similarly, as ¢ belongs to L>(I; H') N C%'(I; L?), we have
lim E,p=¢ in L¥([;H') and lim E,dip = dyp in L(I;L?).

Passing to the limit in (4.9) thus gives

- / (U@ | dup(t)), dt = / (OU 1), (1)) syt

I I
and thus

d
/I(U(t) | z/z(t))odt:/1<8tU(t) +3 " AdU () +A0U(t),<p(t)> dt.

H-1xH!
k=1

As U is a solution of (LS) with F = 0, we conclude that U = 0. O

4.2.2 Finite Propagation Speed

Linear symmetric systems have the finite propagation speed property. This
means that there exists some positive constant Cp (the maximal speed of
propagation) such that the value of the solution U at some point (zg,to)
determines U (t, ) only for those (¢,2) such that |z — x| < Colt — to].

This phenomenon is described in the following theorem.

Theorem 4.11. Let (LS) be a symmetric system. A constant Cy exists such
that for any R > 0, xg in RY, F in C(I; L?), and Uy € L? such that

F(t,z) =0 for |[t—zo| < R—Cot and Uy(z) =0 for |z—x0| < R, (4.10)

the unique solution U of the system (LS) in C(I; L*) with data F and Uy
satisfies
U(t,z) =0 for |z —xo| < R — Cyt.



4.2 Linear Symmetric Systems 181

Another form of this statement is given by the following corollary.

Corollary 4.12. If the data F and Uy satisfy
F(t,z) =0 for |z —xo|>R+Cot and Us(x)=0 for |z—x9| >R,
then the solution U satisfies

U(t,z) =0 when |z —xo| > R+ Cot.

Proof. Of course, it suffices to consider the case o = 0. To begin, we smooth
out the data Uy and F, perturbing their support as little as possible. Let
be a function in D(B(0,1)) with integral 1. For any positive e, we define

and consider the data

def

U v xp and Fo(t,) ¥ v x F(t, ).

Of course, we have
Supp Up,e C Supp Up+ B(0,e) and Supp F.(¢,-) C Supp F(t,-)+ B(0,¢).

Hence, the support hypothesis is satisfied for Uy . and F; with R + ¢ instead
of R, and the associated solution U. is in C!(I; H®) for any s € N and tends
to U in C(I; L?). It is thus enough to prove Theorem 4.11 for those regular
solutions, namely, the following statement.

Theorem 4.13. Let (LS) be a symmetric system. A constant Cy exists such
that for any positive real number R and any data F in C(I; H) and Uy in H*
such that

F(t,z) =0 for |z| < R—Cot and Uy(x)=0 for |z|<R, (4.11)

the unique solution U of the system (LS) in C(I; H') NCY(I; L?) with data F
and Uy satisfies
U(t,z) =0 when |z| < R — Cot.

Proof. The key to the proof is a weighted energy estimate. More precisely,
for 7 greater than 1, we introduce

def def

Ur(t,w) = 00 (tx) with  ¢(t ) S —t + ¢(x),

Above, ¢ stands for a smooth real-valued function on R? which will be chosen
later. We have



182 4 Quasilinear Symmetric Systems

d

U, + > Ax Uy + B,U, = F, with
k=1
d
F.(t,x) def eT?ED Pt ) and B, = Ag+ 71 <Id -> awAk) .

k=1

Thus, a constant K > 0 exists such that for any (¢, z) € IxRY, any vector W e
RY, and any positive real number 7, we have

IVl < K = (B (t, 2)W|W) = (Ao(t, ) W[W).
Next, we write the energy estimate and use the above inequality and the

relation (4.1) to obtain

|U )2 = 722 (AwORU-|U:) 12 — 2(BrUA Uy ) 12 + 2(F-|U-) 12

< ao(D)|U-()[5 + 2(F- (1)U~ (1)) 2

Using the Gronwall lemma, we get
t
U Ol < U Oloelé O 4 [ B (@faels oWy, (112)
0

Note that the above inequality is independent of 7. We now define
def (< 2 \/? def
Co @ (Y lAulz~) " and K € 1/C,
k=1

and choose a smooth function ¥ = v (|z|) such that
—2e+ KR —|z|) <¢(x) < —e+ K(R—|z|) and |V¥|r- < K. (4.13)
We then have, for any (¢, ) in I x RY,
|z|] > R — Cot = —t +¢(x) < —e.

When 7 tends to +oco in the inequality (4.12), we get, for any ¢ in I,

lim e DU (t, ) |2 da = 0.

T—00 Jpd
Thus, U(t,xz) = 0 on the open set t < ¥(x). If (tg, xo) satisfies |zg| < R— Coto,
then it is possible to choose a function v satisfying (4.13) and such that ¢y <
¥(xg). This proves the theorem. O



4.2 Linear Symmetric Systems 183

4.2.3 Further Well-posedness Results for Linear Symmetric
Systems

In this section, we are concerned with a priori estimates and existence re-
sults for (LS) in more general spaces: Sobolev spaces with noninteger indices

or Besov spaces of type Bj . These results will be needed for proving exis-

tence results in general Sobolev spaces or in B, /1 1 for symmetric quasilinear

systems, and also for stating the continuity of the flow map.

For simplicity, we drop the 0 order term in (LS) (i.e., Ap = 0 is as-
sumed). Throughout this section, r is given in [1,00] and (¢;);>—1 denotes
a generic sequence of nonnegative locally integrable functions over I such
that ||(¢;(t))|le- = 1 for any ¢ in 1.

Lemma 4.14. Let s > 0, r € [1,00], and V satisfy

d
OV +> AoV =F.

k=1
Let V; _fAjV’ 5 d:efSJ' if j 20, and' 5, YA, if p € {-2,—1}. We have
d —
9 Vj + Z(SjﬂAk;) OV;=A,F+R; foral j>-1,
k=1

where R; satisfies, for allt € I,

S

27| R;(Dllzz < Ce; (1) 3 (VAR 1 9V ()] s

k=1

HIVV @Ol VAR g ) - (4.14)

If0 < s < d/2+1, then we also have

2°||R; ()| 2 < Ces(DIIVV ()] g3 IZ IVAOI 4 o (415)
and if s =d/2+ 1, then for all € > 0,
PEVR; ()] 12 < Oy (O VV (1) an g (416)

2rk1

! This unusual choice for the low-frequency cut-off is motivated by the wish to have
only the gradient of A involved in the estimates of R;. This refinement turns out
to be important in the next section for functions Ay which need not tend to 0 at
infinity.
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Proof. First, we write

d
OV + A; Y AdRV = AjF.
k=1
Recall that _
(AedkV)' =" Api 0k V"
4

To simplify the notation, we shall drop the indices ¢ and ¢ in the following
computations.

In order to better describe the commutation between the multiplication
operator and A;, we shall use a simplified version of the Bony decomposition
defined in Section 2.8. We write

A0V = TA,ﬁkV + TlakVAk with
T4, 0KV = Z Sji—1 Ak A0,V and T:akv-Ak = Z S 420KV Aj Ag.

§'>-1 />0

As the support of the Fourier transform of S;_1.4;A;0xV is included in
an annulus of the type {¢ € RrR? /C12j, < ¢ < 022j/}, and AjA; = 0 for
|7 — 7| > 2 (see Proposition 2.10), we have, for some fixed integer Ny,

A Sy A 80V = Ay > Sy g A AjokV
j/

|7/ —31<N1
= le',k + R?,k + gjfl/lk 0kVJ

def _
le’k = Z [Ajvsj/—lflk} A0V
with def 7' =3|<N1
RJZJ" = Z (Sj’flAk - ij1Ak)AjAj/8kV,
l7'—3l<1

Finally, then, the commutation between the operator A; and the equation
can be described by the following formula:

d 3
OV + > 8 1A 0V; = AjF+ Y R with (4.17)
k=1 m=1
1 def
R} = Z R},
1<k<d
2 def 2
R?= Z R,
1<k<d
def =

1<k<d

R
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Lemma 2.97 page 110 implies that

PR}l <C Y IVSy—1 Akl 1450V ]

3" —F1<N:
1<k<d

Hence, because |V.S;_1Ak||L= < C||VAk| L, we get that

2R}l <C Y 207DV A | 207D 4500, V|| s -
l7'—3|<Ny
1<k<d

We thus get, according to the definition of the B3, norm,

27| Rjll L2 < Oyl VA|| L[| VV]

Byt (4.18)

In order to estimate Rjz., we observe that, due to the fact that [j" — j| < 1,
the block A_; A does not play any role. Now, Bernstein’s inequality ensures
that

|AcAL|| L < CZ_KHV.A]CHLM for /e N.
This implies that

2°|| Rfl|z2 < Cojl| VA= [[VV|

Bt (4.19)

Finally, as s > 0 and A_; .4y is not involved in T:;kVAk either, arguing as in
Remark 2.83 page 103 enables us to get

—
T g v Ak|

B3, < CIVVIlLelI VAl gy
whenever s is positive, hence
2°||Rjllz2 < Cej| VY| oo |V All gy (4.20)

Combining the three estimates (4.18)-(4.20), we get the inequality (4.14).
Proving the other two inequalities follows along the same lines. It is only
a matter of using appropriate continuity results for the paraproduct and re-
mainder when bounding the term R? (see Propositions 2.82 and 2.85). The
details are left to the reader. O

Theorem 4.15. Let r € [1,00], s > 0, Up be in Bs ., and F be in C(I; B3 ,.).
Assume that the matrices Ay are symmetric and continuous with respect to
(t,z), and that

- V.AkEC(I;B;_Tl) ifs>d/24+1,ors=d/24+ 1 andr =1,
- VAkEC(I;Bé;E) for somee >0 ifs=d/2+1 and r > 1,
- VA, €C(I; B2 NL®)if0<s<d/2+1.
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The system

oU d U =F
(Lso>:{ U e A
Uj—o = Uy

then has a unique solution U in the space C(I; Bs,) N C*(I; B;;l) ifr>1
and in the space L>(I; Bs )N C%(I; B;;l) if r = co. Moreover, for allt € I
and some constant C' depending only on d and s, we have

t
[Ut)|Bg, < |Uo|ssg, exp ( / Cas(t’)dt’)
0

t t
+/ |f(t')|B§Texp< C’as(t”)dt”> dt’ (4.21)
0 ' t/

X 12951 AU ol and

2o VAR ps- 1 if s>d/2+1, ors=d/2+1 andr =1,
w0 SVAQDI e o = a2 1 and o1,
S IVAL@)l % . Jif 0<s<d/2+1.

Proof. We first prove (4.21) for smooth solutions U of (LSy). Defining U; def

A;U, we have
d

0U; + > (Sj-1Ak) OkU; = A;F + R; (4.22)
k=1

with, according to Lemma 4.14 and the embedding B3 L L™ifs > 1+d/2
(orif s >1+d/2and r =1),

||RjHL2 S chQ_jsas

(4.23)

Now, applying the usual energy method to the equation (4.22) yields
5 dt‘U 5 < HdiVAHLoo U5 + (IRjlo + 4, Flo) [Ujlo-
Inserting the inequality (4.23), we get, for all positive a,

d
E\/|U]’|g a<|A; F|0+ ||d1vA||Loo |Ujlo + Cc;2~ 15a5|U|Bs

Integrating over [0, ¢] and letting « tend to 0, we end up with
t ot
Uj)lo < [U;(0)lo + [ [A;F()odt’ + 02‘35/ as(t')e; (¢ )U )| ps, dt’.
0 0 ‘

Next, we multiply both sides by 2?° and take the /" norm to obtain
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t t
\U(t)|Bs, < I|Uolps, + / |[F(7)|Bs,, dT + C/ as(T)|U(7)|Bs., dr.
0 0

Applying the Gronwall lemma then leads to the inequality (4.21).

In order to prove the existence of a solution of (LSp) under the assump-
tion of Theorem 4.15, we can use exactly the same Friedrichs method as on
page 174: We consider the ordinary differential equation

d
U™+ En(Ap0pU") =E, F
k=1

Uli—o = En Uo,

[t=0
which admits a unique solution U™ in C'(I; L?), thus in C'(I; B,.) for any
r € [1,00] and ¢ € R, owing to the spectral localization. As E2 = E,, and
E, U™ = U™, the above estimates remain unchanged, so (4.21) is satisfied.

Mimicking the proof of Theorem 4.4, it is now easy to complete the proof
of existence. Note, however, that in the case r = oo, the sequence (E,, Up)nen
does not converge to Up in Bj ,, so time continuity does not hold up to
index s.

Finally, if s > 1, then uniqueness is a consequence of Lemma 4.5. In the
case where 0 < s < 1, we still have U € C(I; L?), and the functions Aj, are
continuous with bounded first order space derivatives. Hence, Proposition 4.10
yields uniqueness. O

4.3 The Resolution of Quasilinear Symmetric Systems

The purpose of this section is to prove local well-posedness for the following
quasilinear symmetric system:

d
U + > Ap(U)okU =0

k=1

(5):
U|t:0 = Uo.

For the sake of simplicity, we do not consider any 0-order term or source term
in the system. Further, we assume that the functions Ay are of the type
N
ApU) =AY + 3 AUt
=1

for some constant real matrices A;CO) and Aé (I1<k<dand1</{¢<N).

We aim to prove the following statement.
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Theorem 4.16. Let Uy belong to H® for some s > d/24 1. There then exists
a positive time T such that a unique solution U of (S) exists in

c([0,T]; H)nc([o,T); H* ).

Moreover, T can be bounded from below by CHUOHZIls, where ¢ depends only on
the family A = (Ax)1<k<d. Finally, the mazimal time of existence T* of such
a solution does not depend on s and satisfies

T*
T < 00 = / IVU (¢, )| L dt = oc.
0

Remark 4.17. Note that, due to Sobolev embedding (see Theorem 1.50), the
solution U is C! and therefore it is a solution of (S) in the classical sense.

Remark 4.18. The above blow-up criterion implies that the maximum time of
existence does not depend on s.

Indeed, let Uy be in H® for some s > 1 + d/2 and consider some s
in ]1 + d/2,s[. Denote by Us (resp., Uy) the corresponding maximal H®
(resp., H*') solution given by the above theorem. Denote by T** (resp., T7%) the
lifespan of Uy (resp., Uy ). Because H® C H s’ uniqueness entails that T; <T%
and that Us = Uy on [0,T7[. Now, if T < T, then we must have Uy
in C([0,T7]; H*) so that, due to Sobolev embedding, VU, € L'([0, T*]; L*°).
This stands in contradiction to the above blow-up criterion. Hence, Ty = T7;.

Proof of Theorem 4.16.
To prove existence, we shall use the following iterative scheme: Consider
the sequence (U™),en defined by UY = 0 and

d
QU™ Y A (UM)aU =0
k=1
Uity = Snilo.
Theorem 4.4 ensures that this sequence is well defined and that U™ belongs
to C1(R; H?®) for any s. The proof of Theorem 4.16 proceeds in three steps:

— First, we prove that for T sufficiently small, the sequence (U")en is
bounded in L*>([0,T]; H?).

— Second, we establish that for T sufficiently small, (U™),¢cy is a Cauchy
sequence in L>°([0,T]; H*) for any s’ < s.

— Finally, we check that the limit of this sequence is a solution of (S) and
that it belongs to C([0,T]; H*) N CL([0,T]; H™1).

As we shall see, the proof relies on Littlewood—Paley theory and paradiffer-
ential calculus.
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4.3.1 Paralinearization and Energy Estimates

We aim to prove uniform estimates in H® for the approximate solution U™.
We claim that some constant Cy can be found such that

CoT||Upllzrs < 1= V¥n €N, |[U"||zoo(o,1:m5) < V2| Uo7 (4.24)

We shall proceed by induction. The above assertion is of course true for n = 0.
We assume that it is satisfied for some n. In order to bound U"*!, we shall
perform a paralinearization of the system satisfied by U™*!, according to
Lemma 4.14. For all j > —1, we get

d
AU +3 (8,1 Ax(U™)) 0 AU = RY
k=1

for some remainder term R satisfying, for all ¢ € 1,
RS ()]lz> < ch(t)TjS(IIVU"(t)IILwIIVU"“(t)IIHsfl

HIVU" (1) L IIVU"(t)IIHH) with [|(c} (£))[[e < 1.
The L? energy estimate (4.2) and the fact that

[VS;-1A(U™)|| o < CIVU™

together imply that

2dtIIU”“Ilm < CIVU | |72 + CIR | 2 1U7 | 2

As s — 1 > d/2, the space H*"! is continuously embedded in L. Hence,
thanks to the induction hypothesis, for any ¢t € [0, 7], we get

d »
ST e < ClTl o |07 o (107 2 + e,27 |0 ).
By definition of the Sobolev norm, we thus get
d ,
U2 < ClT e 2272 U

.

By time integration, we obtain that

”UJTI—H”%%O([P) < 14;U0l172 + Cl|Uol| -+

T
U”“H%%c(Hs)TQJS/O 3 (t) dt.

Recall that for any ¢, we have Zc?(t) = 1. Multiplying by 2%/¢ and taking
J
the sum over j thus gives
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D 2NUM B 2y < Ul + Ol TIU™ M e 11y (4:25)
J
Now, by virtue of Minkowski’s inequality, we have
U™ e ey < D 275U 2 12
J

so that choosing Cy > 2C, where C' is the constant that appears in the above
inequality, we get that

1O M1 e (1rey < 201001 - (4.26)
This is the conclusion of the first step of the proof.

Remark 4.19. We should point out that we have proven slightly more than
what was originally suggested. In fact, plugging (4.26) into (4.25) gives

D 25U D 12 < 20Ul (4.27)
J
This will be the key to proving the continuity of the solution with values

in H®.

4.3.2 Convergence of the Scheme

We first prove that (U™),¢n is a Cauchy sequence in L>(([0, T]; L?). We have

d
QU™ = U™ + ) AU (U™ = U™)
k=1
d

== > (A" = AU )oun,
k=1
Using the energy estimate (4.2), we then get, for any € > 0,
d
a(llU”+1 — U1z + %) < CIVU||1= U™ = U™ 12

% (I = U gz + U™ = U2

Define v, def [U™ — U™ Y| o (£2). From the above inequality and the fact

that for any positive x and any positive €, we have z < (x2 +62)%, we deduce
that for all ¢ € [0, T,

d 1
%(H(U”H — UM )72 +€)* <CIVU™ )| L= (vnt1 + vn).
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Integrating and using the estimate (4.26) together with the Sobolev embed-
ding H*~! — L gives

(vn1 +%)% < (1AnT0lF + %) + CllTs| T (W1 +vn).
Passing to the limit when ¢ tends to 0 gives
Un+1 < [|[AnUoll L2 + CllUol|l T (vt + vn)-

Assuming that 4CT||Up||g= < 1, we then have

4 1
Un+41 S g”AnUvO”L2 + gvrw
As [|A U2 < C27™%, the series Y wv, converges. Hence, (U™)nen is a
Cauchy sequence in L*(([0,T]; L?).
Now, using Proposition 1.52 page 38 and (4.26), we get, for any s’ in [0, s,

1-<d s
O™ = Ul e ey < CIU™P = Ul e 2y 100l e

and hence convergence also holds true in L>°([0,T]; H*'). Therefore, as the
product continuously maps H* x H*'~! into H*'~! when s’ is greater than d/2,
we may pass to the limit in (5). In addition, from the weak compactness prop-
erties of Sobolev spaces and the fact that the sequence (U™),en is bounded
in L*°([0,T); H®), we deduce that U belongs to L*°([0,T]; H?).

4.3.3 Completion of the Proof of Existence

To summarize, the whole existence part of Theorem 4.16 is now proved, except
for the fact that U is continuous in time with values in H®. This may be
achieved by passing to the limit in (4.27). However, we shall proceed slightly
differently. In fact, we shall instead state a new estimate for the solution which
will be most useful for proving the continuation criterion.

We therefore consider a solution U of (S) belonging to

L>([0,T]; H*) nC([0, T]; H') N €' ([0, T]; L?).
By Lemma 4.14, A;U satisfies

d
RAU +Y (8;-145(U))0kA;U = R;
k=1
AletZO == AJUO

with '
Rz < Cej ()27 VU @)= U @) -

By an L? energy estimate and time integration, this leads to
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t
14;U 1172 < 114;Uoll7 +0272”/0 GENVUE) = U )G dt'.
After multiplication by 2%/ and summation in j, we find that for all ¢ € [0, 77,

t
S92 AU e 1) < Vol +C / VU (U de. (4.28)
J

Minkowski’s inequality and the Gronwall lemma then finally imply that
t
0oy < S I AU e gy < Wollex(C [ 19Ul ). (420)
J

Because H*~! is continuously embedded in L> and U € L*°([0,T]; H®), we
can thus conclude that

D 2 AU e 12y < 00
J

We now consider any positive €. The above inequality implies that an integer jg
exists such that

[ V)

s £
D 2 AU 12 < T
Jj=Jjo

Thus, we have

lU@) = U) 5 < Y 21 4;U (1) = UE))1Z

7<Jjo
+2 Z 22js||AjUH2L%C(L2)
Jj>Jjo
2
< AWM - U + 5
7<Jo
. 52
<O U = U7 + 5 -

As U is in C([0,T]; L?), we can now conclude that U € C([0, T]; H®).

4.3.4 Uniqueness and Continuation Criterion

The uniqueness is an obvious consequence of the following proposition.

Proposition 4.20. Let U and V' be two solutions of (S) in the space
c(fo, T HY)nc'(([0,T]; L?)

with continuous and bounded gradients on [0,T] x R®. We then have

1U(t) = V(B)lz2 < [To = Vollz2 exp(C / IVUE) = + 9V (E) ) dt')-



4.4 Data with Critical Regularity and Blow-up Criteria 193

Proof. We have

d d
U = V) + > AU)(U = V) = AV = U)0, V-
k=1 k=1

Using (4.3), which is valid under the assumptions of the proposition, we get
the result. O

In order to prove the blow-up condition, we first observe that, according
o (4.24), the maximal time of existence T™* satisfies

C
Z - .
| Uol| a2

Let U be the solution of the Cauchy problem for (S) with data U(t) at time ¢.
By virtue of uniqueness, we must have U(7) = U(t+7) for 0 <t +7 <T* so

*

that the maximal time of existence for U is T* — t. Thus, we have

c
T*
HU( s’
which can be written o
Ut)|gs > ——- 4.30
0Ol 2 g (430)

This implies that |U(¢)]| g+ does not remain bounded when ¢ tends to T*.
Now, if VU € L([0, T*[; L®°), then the inequality (4.29) obviously implies

that U is in L*°(0,T*[; H®). Combining this with the inequality (4.30) com-

pletes the proof of the whole of Theorem 4.16. O

4.4 Data with Critical Regularity and Blow-up Criteria

In this section we give a generalization and refinements of Theorem 4.16. This
involves two directions: First, we consider more general spaces for the initial
data, and second, we give a refined blow-up criterion.

4.4.1 Critical Besov Regularity

The following theorem can be understood as a borderline case for well-
posedness.

d
Theorem 4.21. Let Uy be in B 1“ Then, (S) has a unique mazimal solu-
tion U in C([0, T*]; BQH) nct[o, T*[; 3221) Moreover, there exists a positive

constant ¢, depending only on the functwns Ay, such that

(&
>
||U0||B2%1+1
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Finally, if T* is finite, then
J—-
/ IVU ()| L~ dt = 0.
0

d
Proof. The first step is to prove an a priori estimate in L*([0,T7; ijl) of
any solution given by Theorem 4.16. To achieve this, we paralinearize the
system (5). Let U be a suitably smooth solution of (S) defined on some time

interval [0, 7*[ and define U def A;U. We have

d
U; + Z(gjﬂAk(U)) o,U; = R; forall j>—1
k=1

with, according to Lemma 4.14,

—j 4
|Bjllze < Ce;27 /U2 VU | VU

d
2
2,1

Throughout this proof, we agree that [|(¢;)|s = 1.

Next, applying the usual energy method to the above paralinearized system
yields, for any time ¢ in [0, 7%,

d _i(d
U1 < C279E ) e | VU | e | U112 |VU|_g -
2,1

Let € be a positive number. From the previous inequality, we infer that

1

(lsla +2) " < 275 e, |VU = [ VU g -
2,1

d
dt
A time integration yields
: :
(w513 +2)" < (114,00ll3: +¢)

t
+ €2 [ @)U VU] y dr.
0

da
B22,1
Taking the limit when ¢ tends to 0 and then summing over j, we get that

i(d
01, o, < 22 E N o
T 2,1 ]

T
<10l g+ C [ INU@IIVUO] g de (@430

Using the Gronwall lemma, we get that
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t

[T,y < 100l g wexp(C [ IVU@ 1) (@32)
B3y B3y 0

d
From (4.31) and the fact that the space B3, is continuously included in L,
we infer that

t
Ut < U (C U dt’).
0@ g <1000 v ex0(C [ 100
Therefore, if
1
T < min{T*, Ty} with T,% - |
A
2.1

then

e

| %4-1 S2HUOHB%+1- (433)
3.1

L (B
d
Because B3 ; — L, the blow-up condition of Theorem 4.16 thus implies that

1

T">Th=
20(Uoll 44
B2,1

(4.34)

We now consider the sequence (U™)nen of solutions to (S) with the initial

da
data S,Uy for some fixed Uy in the nonhomogeneous Besov space B;jl.
Using (4.34), we see that the lifespan of U™ is bounded from below by Tp.
Therefore, according to Proposition 4.20, for any time ¢ < Ty, we have

U™ =U™) ()2 < 1S0U0 = SmUol| L2
<op(C [ U0l + VU@ ).
By the inequality (4.33) and thanks to the fact that Bzg’1 — L, we get
[ 90 @ e + 1907 @) 1) e < vl ..
Thus, (U™),en is a Cauchy sequence in L*([0, Tp]; L?) and, by interpolation

(see Theorem 2.80 page 102), in L°°([O,TO];B§:1) for any s’ < d/2 + 1. The
limit U of (U™),en is obviously a solution of (5). Using the Fatou property

d

for the Besov space Bzzjl (see Theorem 2.72), we conclude that U belongs to
da ’ ’

L([0,To); Bi ) N C([0,To); Bs,) N CH([0, To); By 1) for any 8" < d/2 +1.

d
In order to prove that U belongs to C([0,To]; B;Il), we pass to the limit in
the inequality (4.31) (for U(™), thereby obtaining
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> 2 G0 1) < 2ol
j>—1

We can now conclude as in the Sobolev case: consider a positive €, then, owing
to the above inequality, we can find some integer jo such that

> 21(5+1) | 4, Ullrgs (z2)

J>jo

€
4
Therefore, we have

U@ = U@ g0 < 3 2ED)4,W00) - UE)]2e

g
2
Bia j<jo
+2 5 264,01 1)
j>Jjo
< CPEVU() = U)o + = -

2

Because U is in C([0,To]; L?), the first term on the right-hand side tends
to 0 when ¢’ goes to ¢. This implies that U is continuous in time with values

d
. dyq
2
n 3271 . O

4.4.2 A Refined Blow-up Condition

Here, we prove a more accurate blow-up condition than the (classical) one
given in Theorem 4.16. We are going to substitute for the Lipschitz norm
any norm associated with an admissible Osgood modulus of continuity (see
Definition 2.108 page 117 and Definition 3.1 page 124).

Theorem 4.22. Let s > d/2 + 1 and U be a mazimal solution of (S)
in C([0,T*[; H®). If T* is finite, then for any admissible Osgood modulus of

continuity, we have
T+
| 1w, @ -

Proof. In order to prove this theorem, we define the C'' nondecreasing func-
tion R, as follows:

Ru(t) % (|Uo||Hs+c/ VU @) o~ U >|Hsdt)

Note that the inequality (4.28) guarantees that if the constant C' has been
chosen sufficiently large, then we have Rs(t) > sup ||U(t')| gs. Therefore,
0<t/<t

t
Ra(t) < | Uoll e +c/ VU)o Ba(t) dE
0
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Let € = min(l, s— % — 1) and I be the function associated with the modulus
of continuity  : [0,a] — RT introduced in Definition 2.108 page 117. Using
Proposition 2.112 page 119 with A = ||Up|| g+, we see that for some constant
depending only on ¢ and on a, we have

IVUl|co- )))
VUl < C(IUlle, + 1Uollms) (14T
VU~ < C(IUllc, + | 0|H>( (<||U||cu+||Uo||H5

whenever the argument of I" is greater than or equal to 1/a.

Note that if this latter condition is not satisfied, then the above inequality
is trivially satisfied (if we agree that I" is continued by the constant function
I'(1/a) on the interval [0, 1/a]). Therefore, taking advantage of the continuous
embedding of H* in C%¢ and of the fact that I' is nondecreasing (which, in
particular, enables us to drop the exponent 1/¢), we infer that

Ra(t) < |[Uslle + C/Otw(t’) (1 + F((CRS(t/))é>>Rs(t’)dt’

1Uo]| 25
. def
with (t) = [UOllc, + [Uo] s
CRs(t 1
Thus, defining p(t) def 0 |( ) and I (y) d:eff'(yé), we get
oll e

py < (14 [ )0+ oot at ).

def at. Given that w is an Osgood modulus of continuity, it is easy

v dy
Sy Ie(y)
one-to-one [0, +oo[. Therefore, arguing as in Lemma 3.8 page 128, we infer
that?

to check that the function G.(y) def / maps [aZ !, +oo[ onto and
a,

t
ps(t) <G 1 (O + C/ y(t') dt’)-
0
By the definition of pg, this implies that
1 t
U@l < glallae6* (c+ ¢ [ ar),
0

This means that if the solution U belongs to C([0,T[; H*) N L'([0,T[;C,,)
for some finite T, then ||U(t)| g stays bounded on [0,T[. Thus, the inequal-
ity (4.30) ensures that Theorem 4.22 holds. i

2 Note that we can assume with no loss of generality that C' > 1/a..
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Ezample 4.23. Recall that the function r +— r(1 — logr) is an Osgood modu-
lus of continuity and that Bl . is embedded in the set LL of log-Lipschitz

functions (see Proposition 2.107 page 116). Therefore, Theorem 4.22 implies
that no blow-up may occur at time 7' unless

T
[ 100l = .
0

4.5 Continuity of the Flow Map

Let s > 1+ d/2. According to Theorem 4.16, for any data Uy in H®, the
system (5) has a unique solution U on some nontrivial time interval [0, T].
Moreover, by taking advantage of the lower bound that we have stated for
the lifespan of the solution of (S) and using the inequality (4.26), we can
find some H°®-neighborhood Vy, of Uy and some positive constant K such
that for any Vo € Vy,, the system (S) with data V; has a solution V in
C([0,T); H*) N CL ([0, T); H*~') which satisfies

IVIIzse sy + 10eV || Lge (mrs-1) < K. (4.35)

In the present section, we address the question of continuity of the flow map

5. ) Yoo — CO.TLH?) neH((o, 7] H=~)
To begin, we observe that by combining the inequality (4.35) with the stabil-
ity result stated in Proposition 4.20, we can deduce that the flow map @ is
continuous on Vy,, in the sense of the norm L*°([0,T]; L?). Also, note that
by interpolating with the H* bound given by (4.35), we find that continuity
holds for the L>°([0,T]; H® ) norm whenever s’ < s.

We claim that continuity holds true up to index s. In other words, the
system (.9) is locally well posed in the sense of Hadamard.

Theorem 4.24. Let Uy be any data in H® with s > 1+ d/2. There exists a
neighborhood Vi, of Uy and a positive time T such that the flow map @ defined
above is continuous.

Remark 4.25. A similar result holds true in the critical Besov space B;jd/ %,

To simplify the presentation, however, we shall focus on the Sobolev case.

The following stability result for linear symmetric systems is the cornerstone
of the proof of Theorem 4.24.

— d
Lemma 4.26. Define N :efNU{oo}. For k in {1,...,d}, we consider a se-
quence (A}), e of continuous bounded functions on I x R with values in the
set of symmetric N x N matrices. Assume, in addition, that there exists a
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real number s > 1+d/2 such that for all k in {1,...,d} and n € N, the func-
tion VAL belongs to C(I; H*™'), that there exists a monnegative integrable
function o over I such that

IVAL )|l gs—r < a(t) forall t€l, ke{l,...,d}, n€N, (4.36)

and that
A — AP —, .o 0 in LYI; HY). (4.37)

Let F € C(I; H*~') and Vo € H*~'. For n € N, denote by V™ the solution of
OV +Y ALV =F
V\?:o = V]{)'

The sequence (V™)nen then converges to V™ in C(I; H5™1).

Proof. We first consider the smooth case: Vy € H® and F' € C(I; H®).

By virtue of Theorem 4.15 and the assumption (4.36), the sequence
(V™) ,en is bounded in C(I; H®). In order to prove that V" tends to V>
in C(I; H*~1), we shall use the fact that

(V= VX)+ D ARG (V = V) = (AF — A7)0V,
k

k

Indeed, because V™*(0) = V*°(0), Theorem 4.15 and the assumption (4.36)
together yield

t
mvnfvmxwmwﬁfaﬁQCL“T”TMA?—v%ﬁhvmmwﬁdr

Because s — 1 > d/2, the Sobolev space H*~! is an algebra. Therefore,
t
IV = V=) )l e < C/ eI eI AR — AR yyos |0V 2| o1 d.
0

Taking advantage of (4.37), it is now easy to conclude that V" tends to V>
in C(I; H* V).

Consider now the rough case Vo € H*"*and F € C(I; H*~!). Foralln € N
and j € N, we introduce the solution V" to

oV + >k ApopVj' =E; F
(V1)jt=0 = E; Vo.

Since

{@W“—WU+ZWQ@WW—Wﬂ=F—%F

Viico = Vo — E; Vo,
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Theorem 4.15 and the assumption (4.36) guarantee that for all t € T,
[V = V) @)l < €T orar (vo — B Vollgeos

t
+/ ||FEjFHsldT>. (4.38)
0

We are now ready to prove that V™ tends to V> in C(I; H*~1). Indeed, fix
an arbitrary € > 0 and write

V" = V= peo(ryms—1y S IV™ = V| poo(rym5-1y
IV = Villlee ey + V7S = V=l pee (me-1y. - (4.39)

On the one hand, because E; V, tends to Vp in H*~ ! and E; F tends to I in
the space C(I; H*~1), we can, according to (4.38), find some j € N such that

V™ = V|| o (r;e-1) < €/3 forall neN.

On the other hand, since the data E; V; and E; F' are smooth, we can, accord-
ing to the first part of the proof, find some integer ny such that the second
term in the right-hand side of (4.39) is less than /3 for all n > ng. This
completes the proof of the lemma. a

Proof of Theorem 4.2/. In the introductory part of this section, we stated the
existence of some H*-neighborhood Vi, of Uy and some positive T" such that
for all V € Vy,, the system (S) has a unique H*® solution #(V,) over [0, 7]
which is bounded independently of V; and such that $(V,) tends to ¢(Up) in

c(; B with 1 % (o, 77.

We claim that convergence holds true in C(I; H®). To prove this fact,

consider a sequence of data UJ converging to Ug® def Uy in H?. Of course,
with no loss of generality, we can assume that all the terms of the sequence
belong to Vy,. For n € N, denote by U™ the solution of (S) with initial
data Uf. Given that U™ — U in C(I; H*~'), it suffices to prove that, in

addition, V" 4 Gun tends to Vo L vu~ in C(I; H*~1'). This latter task

may be achieved by splitting V,, into W™ + Z™ with (W™, Z™) satisfying

and
VV‘?:O — Vooo Zﬁ:o — ‘/On _ ‘/OOO

with A7 4,0 and Y-S var oo,
k

W™+ AROW = P 02"+ ApowZ" = F" — F>
k k

Because (U™),, o is bounded in C(I; H®), it is obvious that (V.A}), o is
bounded in C(I; H*~1'). Further,
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N .
Al — AT =D ALU" -U™)
j=1

and therefore, owing to the fact that (U™ — U) goes to 0 in C(I; H5™1),
the sequence (AP — A%°),en converges to 0 in C(I; H*~1). Lemma 4.26 thus
ensures that W™ tends to W (i.e., V) in C(I; H*~1).

Next, according to Theorem 4.15, we have, for all n € N and ¢ € [0, T,

t
R L T (I T S s )
0

Using the definition of A} and the fact that H 5=l is an algebra, we deduce
that

V= gy SOV ages + [Vl gges) [V =V g
<OV laor + 1V=les) (127 + W =W,

Denoting by K a bound in C(I; H*™!) for (VA}),en, we thus get

t
127 ()| = < eCKt(IIVO" = Vo<l + C/O (V™ o= + 1Vl ro-1)
< (12 rems + W™ = W o dT>.

Applying the Gronwall lemma and using the facts that

— (V™),ex is bounded in C([0,T]; H*™1),
— V§ tends to V© in H57L,
~ W™ goes to W™ in C([0, T]: H*Y),

it is now easy to conclude that Z" tends to 0 in C([0,T]; H*~1). O

4.6 References and Remarks

There are a number of references concerning the study of more general linear or
quasilinear systems. Results related to the well-posedness theory in H® and finite
propagation speed for (LS), (QS), or more general systems may be found in the
monographs by T. Kato [177], S. Alinhac and P. Gérard [11], L. Hérmander [168],
D. Serre [262], or S. Benzoni-Gavage and D. Serre [33]. For results concerning the
particular case of the compressible Euler system introduced at the end of Section 5.1,
one may refer to e.g. [63, 261]. The concept of paralinearization was introduced by
J.-M. Bony in his pioneering paper [39]. The standard blow-up criterion involving
the L'([0, T[; Lip) norm of the solution is part of mathematical folklore.

The well-posedness for data with critical regularity was first stated by D. Iftimie
in the Appendix of [172]. We mention in passing that a slightly more accurate
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lower bound for the lifespan T™ of the solution to (S) may be proven, namely,
T >¢||VUo| 7}, -
B22,1

To the best of our knowledge, the fact that the L'([0,T[;Lip) assumption in
Theorem 4.16 may be replaced by a slightly weaker condition goes back to the
pioneering paper [31] by J. Beale, T. Kato, and A. Majda for the incompressible
Euler equations.

The continuity of the flow map up to index s belongs to the mathematical folk-
lore. In Section 4.5 the method introduced by T. Kato in [177] (in the framework of
abstract quasilinear evolution equations) has been applied. We should mention that
an alternative method combining viscous regularization of the system and regular-
ization of the data may be used (see, e.g., [38] for the KdV equation).
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The Incompressible Navier—Stokes System

This chapter is devoted to the mathematical study of the Navier—Stokes sys-
tem for incompressible fluids evolving in the whole space! Rd, where d = 2 or 3.
Denoting by u € R? the velocity field, by P € R the pressure function, and
by v > 0 the kinematic viscosity, the Cauchy problem for the incompressible
Navier—Stokes system can be written as follows:

ou+u-Vu—vAu = —VP
divu =0
’u’\t:O = Uo,

where
d ‘ d d
divuzzajuj, u~V:Zu]8j, and A:Z@z.
j=1 j=1 j=1

The first section of this chapter is devoted to the presentation of a few basic
results concerning the Navier—Stokes system. There, we introduce the weak
formulation of the system, state Leray’s theorem, and prove a fixed point
theorem which will be of constant use in the sections which follow.

In the second section, we solve a generalized Navier—Stokes system locally
in time for general data in H%_l, or globally in time for small data in Hs-1
In the third section, we present results which use the special structure of the
nonlinearity in the Navier—-Stokes system. First, we prove the uniqueness of
finite energy solutions in dimension two. Next, in dimension three, we establish
a result concerning the asymptotics of possible large global solutions. As a
consequence, we show that the set of initial data which give rise to global
solutions in L (R*; H') is an open subset of Hz.

In the fourth section, we prove local well-posedness for general data
in L3(R?) and global well-posedness for small data. This result is a by-product
of a more general result where Besov spaces embedded in B! .~ arise natu-
rally. The next section is devoted to the study of the Well—posedness issue in

! This means that boundary effects are neglected.

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential 203
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7_5, (©) Springer-Verlag Berlin Heidelberg 2011
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the so-called endpoint space for the Picard scheme. There, we consider data
which are scarcely better than Bo_olm.

Up to this point, all results concerning the Navier—Stokes system are ob-
tained by means of elementary methods: nothing more than the classical
Sobolev embedding and Young’s and Holder’s inequalities. The last section,
however, is more demanding. There, we present a result concerning well-
posedness in the context of Besov spaces which uses the smoothing effect
of the heat flow described by the inequality (3.39) page 157. Next, we take
advantage of that approach in order to study the problem of the existence of
a flow for the velocity field in a scaling invariant framework.

5.1 Basic Facts Concerning the Navier—Stokes System

We begin by introducing the weak formulation of the Navier—Stokes system.
From Leibniz’s formula it is clear that when the vector field u is smooth and
divergence-free, we have

d
u-Vu =div(u ®u), where div(u® u)’ def Z O (W k) = div(u/u),
k=1

so that the Navier—Stokes system may be written as

Ou+diviu @ u) —vAu = —-VP
(NS,) divu =0
U|t:0 = Uug-

The advantage of this formulation is that it makes sense for more singular vec-
tor fields than the previous formulation, a fact which will be used extensively
in what follows.

Based on this observation, we now define a weak solution of (NS). The
following definition may be seen, in the nonlinear framework, as the analog of
Definition 3.13 page 132.

Definition 5.1. A time-dependent wvector field u with components in the
space L2, (0, T]xR%) is a weak solution of (NS, if, for any smooth, compactly

loc
supported, time-dependent, divergence-free vector field ¥, we have

t
/ u(t,x) - W(t, x)de = // (vu- AV +u@u: V¥ +u- %) (t', ) dw dt’
R 0 JR?
+/ uo(x) - ¥(0,2) du. (5.1)
R4

We now formally? derive the well-known energy estimate. First, taking
the (L2(R%))? scalar product of the system with the solution u gives

2 These computations will be made rigorous in the next sections.
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1d
2 dt

Using formal integration by parts, we may write

||u||L2 + (u-Vulu)rz — v(Aulu) 2z = —(VP|u) 2

(u-Vulu)pz = Z / u (0ju”)uF da
Rd'

1<jk<d
-1 Ly / W, ([ul?)
1<j<d
1 _ )
=—— [ (divu)|u|®dx
2 R4

= 0.
Moreover, we obviously have
—v(Aulu) 2 = v||Vul|2..

Again, (formal) integration by parts yield

—(VPu)> = Z/ w 9; P dx

= Pdivudx
Rd
=0.
It therefore turns out that

1d

S @2 + v Vu()2: = o,

from which it follows, by time integration, that

t
e+ 20 |9t = ol
0

205

(5.2)

It follows that the natural assumption for the initial data wug is that it is
square integrable and divergence-free. This leads to the following statement,

first proven by J. Leray in 1934.

Theorem 5.2 (Leray). Let ug be a divergence-free vector field in L*(R?).

Then, (NS,) has a weak solution u in the energy space
L®RY; L) N L2(RT; AY)

such that the energy inequality holds, namely,

t
()]l +2V/0 IVu(t)II72 dt" < [luol|Z--

(5.3)
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Remark 5.3. The Leray solutions satisfy the Navier—Stokes system in a stronger
sense than that of Definition 5.1: For any smooth, compactly supported, time-
dependent, divergence-free vector field ¥, we have

t
/u(m)-wt,x)dsw//(uvu:VW—u@m:VW—u-atw)(t’,x)dxdt'
R4 0 JRE

:/ uo(x) - ¥(0, ) dz.
R

Proving Leray’s theorem relies on a compactness method analogous to that
of the first section of Chapter 6:

— First, approximate solutions with compactly supported Fourier transforms
satisfying (5.3) are built. This may be done by solving an appropriate
sequence of ordinary differential equations in L2-type spaces.

— Next, a time compactness result is derived.

— Finally, the solution is obtained by passing to the limit in the weak for-
mulation.?

In dimension two, the Leray weak solutions are unique. More precisely, we
have the following theorem, which we shall prove in Section 5.3.1.

Theorem 5.4. If d = 2, then the solutions given by the above theorem are
unique, continuous with values in L? (RZ), and satisfy the energy equality

t
lu(®)]1Z + 2’//0 IVu()I[72 dt’ = |luoll7-.

Another important feature of the Navier—Stokes system in the whole space R?
is that there is an explicit formula giving the pressure in terms of the velocity
field. Indeed, in Fourier variables, the Leray projector P on divergence-free
vector fields is as follows:

: &
= (k= 1) §f 6), (5.4)
P €]

where 0;;, =11if j =k and 0 if j # k.
Therefore, applying the Leray projector to the Navier—Stokes system and
denoting by @ ns the bilinear operator defined by

Qns(v,w) def 7% P(div(v ® w) + (divw @ v))

3 For the proof of Theorem 5.2, the reader is referred to the magnificent original
paper by J. Leray (see [207]). For a modern proof, see, for instance, [75] or [86].
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yields
{3tu —vAu = QNS(%U)

Ult=0 = UO-

Note that the divergence-free condition is satisfied by v whenever divug = 0.
Hence, u satisfies the “original” system (NS,,).

Throughout this chapter, we shall denote by @ any bilinear map of the
form

i def i,m
Q](’U,,U) = Z qi’,e am(ukvé),

k,4,m

where qi”? are Fourier multipliers of the form

i def fm,n,p — Enkp
dipa® Yoyt E (Sarace),

n,p
Jsm,n,p

and oy, are real numbers.

As pointed out above, the incompressible Navier—Stokes system is a par-
ticular case of the system

Ou — vAu = Q(u,u)

Ujt=0 = U0

(GNS,) {

with the operator @) defined as above.
Let B(u,v) [resp., Bns(u,v)] be the solution to the heat equation

{&B(u,v) —vAB(u,v) = Q(u,v) [resp., Qns(u,v)]
B(u,v)4=o = 0.

Solving (GNS,)) [resp., (IN.S,)] amounts to finding a fixed point for the map
u— "% ug 4+ B(u,u) [resp., Bys(u,u)].

Throughout this chapter, we shall solve (GNS,) or (NS,) by means of a
contraction mapping argument in a suitable Banach space. This is based on
a classical lemma that we recall (and prove) here.

Lemma 5.5. Let E be a Banach space, B a continuous bilinear map from E x
FE to FE, and a a positive real number such that

1
a<—— with IB]Y sup B, (5.5)
48| ull ol <1

For any a in the ball B(0, &) (i.e., with center 0 and radius «) in E, a unique x
then exists in B(0,2a) such that

x=a+ B(x,x).
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Proof. The proof involves an application of the classical iterative scheme de-
fined by
xo=a and xpt1 =a+ B(xn,x,).

By induction we may prove that [|z,| < 2«. Indeed, using (5.5) and the
definition of z,11, we get

lzns1] < a(l+4a|B8|) < 2a.
Thus, the sequence (x,),en remains in the ball B(0,2a). Now,

Tn+1 — Tp = B(l’n,fﬁn) - B(In—lamn—l)

= B(xp — Tp_1,2n) + B(Tp_1,2n — Tp_1).
Therefore, we obtain
[Znt1 — @nll < da|[B| [|zn — zp-1]]-

Hence, by virtue of (5.5), (zn)nen is a Cauchy sequence in FE, the limit of
which is a fixed point of z +— a + B(x, x) in the ball B(0,2«). This fixed point
is unique because if x and y are two such fixed points, then

[z —yll < 1B(z —y,y) + B(z,z —y)|| < 4a|[B]| ||z — yl|.
The lemma is thus proved. a

Proving the existence of global solutions for (GNS,) or (NS,) by means
of Lemma 5.5 requires a Banach space X with a norm invariant under the
transformations that preserve the set of global solutions. This set contains the
translations with respect to the space variable and, more importantly for our
purposes, the so-called scaling transformations defined by

ux(t, ) def (N2, Ax).

The following spaces obviously meet these conditions:

L®®RY; LY, LR HE ), LART H'),
LR H2 YN LA(RY; H?2).

When d = 2, the energy space itself, L (R": L?) N L3(R"; H'), is scaling
invariant. This is the key to the proof of Theorem 5.4. In the case where
d = 3, however, the regularity of the energy space is below that of the scaling
invariant space H?. In other words, in dimension d = 2, demonstrating the
global existence of regular solutions of the Navier—Stokes system is a critical
problem, whereas in dimension d = 3, this can be interpreted as a supercritical
problem. This is the core of the difficulty. As we shall see, being able to use
the special structure of the equation in a scaling invariant framework is one
of the challenges involved in resolving the global well-posedness issue.
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5.2 Well-posedness in Sobolev Spaces

In this section, we investigate the local and global well-posedness issues for
the generalized Navier—Stokes system (GNS,,).

5.2.1 A General Result

The main theorem of this subsection is the following one.

Theorem 5.6. Let ug be in Hg_l(Rd). There exists a positive time T such
that the system (GNS,) has a unique solution u in L4([0,T];H%) which
also belongs to

([0, T]; H2~Y) N L([0,T); H ).

Let T,,, denote the maximal time of existence of such a solution. Then:

— There exists a constant ¢ such that
HUOHH%” <cow =T,, = .

- If T, is finite, then

Ty
/ la@®)* as dt = oo. (5:6)
0 H 2

Moreover, the solutions are stable in the following sense: If u and v are solu-
tions, then

t
o) = oy g+ ) = oI g < o = vl

C t
<exp(sg [ (1Y + 1ol o) ).

Remark 5.7. We note that for any small data, the corresponding solution u
belongs to L*(R™; H %) In fact, we shall see in Theorem 5.17 that any global
solution of (GNS,) belongs to L*(R*; HZ").

Remark 5.8. As a by-product of the proof, under the condition [[uo|| . 4. < cv,

we actually get ||u(t) _; < 2¢v for any time t.

74
Proof of Theorem 5.6. We shall prove that the map

u— €% uy + B(u,u)
has a unique fixed point in the space L*([0,T]; H %) for an appropriate T

This basically relies on the following two lemmas, the first of which is simply
a variation on Sobolev embedding.
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Lemma 5.9. A constant C exists such that
1Q(@,B)l 4> < Cllall s [bl],

Proof. We focus on the cases d = 2,3, where the result may be proven by
elementary arguments. For d > 4 the result follows from Corollary 2.55 page 90
(the proof of which requires more elaborate techniques).

Beginning with the case d = 2 we can use Sobolev embedding (see Theo-
rem 1.38 page 29) to write

1Q(a, )1 < Cllab] .
< Clall g [b] 1
< Clall,y I8,

Next, if d = 3, then we have, by the definition of @,
Q@b s < Csp(lart] -y + 00,y )

Thanks to the dual Sobolev embedding (see Corollary 1.39 page 29) and to
the Sobolev embedding itself, we have

Qa5 < Csup(llakanl, y + 10" )

< c(nanmwbnm n ||Va|Lz|b||Le)
< Cllall g [bll 1.
This proves the lemma. a

The second lemma describes an aspect of the smoothing effect of the heat flow
and may be seen as a particular case of the inequality (3.39) page 157. Here, we
provide an elementary self-contained proof which does not require Littlewood—
Paley decomposition.

Lemma 5.10. Let v be the solution in C([0,T]; S'(R%)) of the Cauchy problem

{8tU—VAU=f

Vjt=0 = Vo
with f in L*([0,T); H*~') and vo in H*(R?). Then,
ve (2T ) Neto. 15 )
p=2

Moreover, we have the following estimates:
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2 v ‘ V|12 d/: 2 ! / /sd/,
o). +2 /O Vo). dt” = voll s+2/0<f(t),v(t)> t

INCIAY 1
(e (smw 7 001) €)ool + gl

o<t/ <t

1
16O o+3, < = (Il + S5 sg o)

1723

with (a,b), / €25(£)D(€) de.

Proof. The first estimate is just the energy estimate. The proof of the second
one is based around writing Duhamel’s formula in Fourier space, namely,

t
Bt €) :e_ut|g|2@0(§)+/ e EOIEP Fy! 6y ay!

0

The Cauchy—Schwarz inequality implies that

Oilj’zt |U(t 75)' < |’U0(§)| \/W

Taking the L? norm with respect to [£]?* d¢ then allows us to conclude that

2 3
vio & ([ (s o) e ac)

1 " v \?
< lvollgge + —= (/]Rd 1 GO T2 (o, €17 2df>

IFC e o,0)-

(21/)%
1 ~ . 2
< Mool + ([ 1R 9P 2 dear
(2v)z \J[o,fxr?
1
< lvoll g + W“Jc”m([o,t];gs—ly

Since, for almost all fixed ¢ € RY, the map ¢ — (¢, & ) is continuous over [0, 77,
the Lebesgue dominated convergence theorem ensures that v € C([0,T]; H?).
Finally, the last inequality follows by interpolation. a

Combining Lemmas 5.9 and 5.10, we get the following result.

Corollary 5.11. A constant C exists such that

1B ey € gl g Bl e

Proof of Theorem 5.6 (continued). To prove the first part of Theorem 5.6, we
shall use Lemma 5.5. We know that if
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3
lle tAuOHL4 @it < — 1o (5.7)

with Cp > C, then there exists a unique solution of (GN S,) in the ball with

center 0 and radius (%) in the space L4([0,T]; Hz").
Next, we investigate when the condition (5.7) is satisfied. Applying the
last inequality of Lemma 5.10 with s = d/2 — 1 and p = 4 yields, for any

positive time 7',

vtA

1
e Zuoll y ez ) < —rlluoll 741 (5.8)

Li(H 2 )
Thus, if HuOHI.{%,1 < (4Cp) v, then the smallness condition (5.7) is satisfied
and we have a global solution.

We now consider the cas_cdof a large initial data wg in H 2=1. We shall
split ug into a small part in H2 ! and a large part with compactly supported
Fourier transform. For that, we fix some positive real number p,,, such that

(/lfzpuo |€|d_2|a0(£)‘2d£>% = é'

Using (5.8) and defining u}, def .7:_1(13(0,%0)@0), we get

le”" “uo + e ug

Ly (H )_ 8C L41'3"

We note that

utAb 3 VtAI?
T T N T T

< (P2, 1) uoll 4

Thus, if

T < ( . > : (5.9)
800/)5«0”/“0”}'[%71

then we have the existence of a unique solution in the ball with center 0 and
1

3 o d—
radius g7 in the space L*([0, T]; HT).
Finally, we observe that if u is a solution of (GNS,) in L*([0,T7; H%),
then, by Lemma 5.9, Q(u, u) belongs to L2([0,T]; H2~2). Hence, Lemma 5.10
implies that the solution u belongs to

el
2

C([0,T); H2 =YY N L2([0,T]; H?).
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In order to prove the stability estimate, consider the difference w between two
solutions u and v. We note that w satisfies

{@w —vAw = Q(w,u + v)

def
W|t=0 = Wo = Ug — Vo-

Thus, by the energy estimate in He1 (see Lemma 5.10), we have
Aui O,y +20 [ 1T, g, at
w(t) -1 0 e

< ol +2 [ (@), ule) + ol )ity .

The nonlinear term is treated by means of the following lemma.

Lemma 5.12. A constant C exists such that
(Qa.).¢)g 1 < Cllall s Bl o [Vel 4.

Proof. Let o = Q(a,b). By definition of the H 5=1 scalar product, we have,
thanks to the Cauchy—-Schwarz inequality,

(@c)yr = [ @l de
= [ 1e# %) je1#efate) ag

< llal g 2196l g1

which, by virtue of Lemma 5.9, leads to the result. 0O

Completion of the proof of Theorem 5.6. We now resume the proof of the
stability. We deduce from the above lemma that

t
Au(t) < fJwoll® 4, +C/O lw(@) a2 NEIVwE)] g dt’

. def
with N(8) = [[u(®)]  azs + 0@,

tween H2~! and H?, we infer that

i1 By the interpolation inequality be-

t 1 3
400 < ol g, +C [ Tt} NEOITwEl av.

1 3
Using the convexity inequality ab < Za4 + Zb%’ we deduce that

C t t
A0 < ool g, + 35 [ 0 N v [ Tu@l, ar.
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By definition of A,,, this can be written
t
2 7\ 112 /
o)1 g+ [ Tl

C t
<lhwollyg -, + 35 [ Tl g N2 at

Using the Gronwall lemma, we infer that

t t
C
)12 g, o [ IV g de < ol exo(5 [ V) ar).

The theorem is thus proved up to the blow-up criterion. Assume that we have
a solution u of (GNS,) on a time interval [0, T'[ such that

T
4
0l o e < .

We claim that the lifespan T, of u is greater than 7'. Indeed, thanks to
Lemmas 5.9 and 5.10, we have

2

/ €172 ( sup [a(t,€)])" d€ < oo,
Rd te[0,T|

Thus, a positive number p exists such that

we[o,T[,/

[€1=p

€12t ) dg < -

The condition (5.9) now implies that for any ¢ € [0,T], the lifespan for a
solution of (GN S,) with initial data u(t) is bounded from below by a positive
real number 7 which is independent of t. Thus, Ty, > T, and the whole of
Theorem 5.6 is now proved. a

5.2.2 The Behavior of the F12—! Norm Near 0

In this subsection, we show that for small solutions, the H%~! norm behaves
as a Lyapunov function near 0.

Pr0p0§i(ition 5.13. Let ug be in the ball with center 0 and radius cv in the
space H2=2(RY). The function
e ) g

is then monincreasing.
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Proof. We shall again use the fact that the function w is a solution of the
equation

Ou —vAu = Q(u,u) with Q(u,u) € LQ(R‘*‘;H%—?).

Thus, thanks to Lemma 5.10, we infer that

t
2 N2 /
la(®)I? 4, +2v / IVult)I? 4, dt

2

= ol g, +2 [ Q). ) ult) 4 .

Using Lemma 5.12 and an interpolation inequality, we get, for any 0 < ¢ < to,

ta
def
Ut t2) & el + 20 [ I9u@)IR, . a

ty

IN

ta
2 12 / /
lut)I? 4, +C / Ja(@)IP s (V)] gt

IN

ta
2 / 12 /
Il g C [ I g IV g

By Theorem 5.6, we know that u(¢) remains in the ball with center 0 and
radius 2cv in the space H %_1(Rd). Thus, if ¢ is small enough, we get that

ta
e g v [T gt < ) g

This proves the proposition. a

5.3 Results Related to the Structure of the System

In this section we present results which are related to the very structure of
the Navier—Stokes system. Here, the energy estimate will play a fundamental
role.

5.3.1 The Particular Case of Dimension Two

As explained above, in dimension two the energy estimate turns out to be
scaling invariant for the Navier—Stokes system. This fact will enable us to
prove that (NS,) is globally well posed for any initial data in L2?(R?), as
follows.
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Theorem 5.14. Let ug be a divergence-free vector field in LQ(RQ). A unique
solution then exists in the space L*(R™; H%) which also belongs to

CRY; L) N L>®(RT; L) N LA(R'; HY)
and satisfies the energy equality
t
[u(®)]1 2 +2’//0 [Vu(t')||72 dt’ = ||uo|lZ--
Proof. Let u be the solution given by Theorem 5.6. Thanks to Lemma 5.9, we

know that Qns(u,u) belongs to L2 ([0, Ty, [; H~'). Therefore, Lemma 5.10
implies that u is continuous with values in L?(R?) and satisfies

lu(t)32 +2v / IVu(t) 3 dt’ = o3 +2 / (@us(u(t'), u(t), u(t)), dt'

We temporarily assume the following lemma.

Lemma 5.15. Let u and v be time-dependent, divergence-free vector fields
over RY. If u and v belong to L*([0,T); L*) N L2([0,T]; H'), then we have

| (@ustut®).o(e ). ot )} e =o.

Combining interpolation and the Sobolev embedding H2 (R?) < L*(R?), we
see that u is in L*([0,T] x R?). Therefore, we deduce that for any ¢t < T,

t
lu(t)ll7> + 21// IVu(t)][72 dt’ = [luoll7-
0

Thanks to the above energy estimate and using an interpolation inequality
between L? and H'!, we obtain, for any T < T,

T T
| 1@l de < ol [ 19032 d
0 0

The blow-up condition (5.6) then implies the theorem. O

For the sake of completeness, we now prove Lemma 5.15. We know that

Gosw0) E —diviolu) = 3 9,(=2) " adu(u’).

1<k, £<d

Note that all the terms on the right-hand side are in L2([0,T]; H~'). There-
fore,
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(Qns(u,v),v) = — Z / v div(vju) dx
R

1<5<d

+ > /Rdvjaj(A_lakOg(ukvé))dx

1<g,k,0<d

—1/ (div w)|v|? dz
2 Rd
- Z /(divv)Ailakag(ukvg)dz. (5.10)
]Rd

1<k,6<d

As divu = dive = 0, this completes the proof of the lemma. a

5.3.2 The Case of Dimension Three

The case of dimension three is much more involved. The question of whether

or not (NS,) is globally well posed for large data in H%(R?’) is still open.
The purpose of this section is first to prove the energy equality for solutions
of (NS,) given by Theorem 5.6 and then to show that any global solution is
stable.

Proposition 5.16. Consider an initial data uo in Hz (R*) with divug = 0.
If u denotes the solution given by Theorem 5.6, then u is continuous with
values in L*(R®) and satisfies the energy equality

t
()17 +2V/ IVu(t)Zz dt’ = [luol|7--
0

Proof. As the solution u belongs to

L2 ([0, T [: H2) N Lo ([0, T [: HY),

loc

the interpolation inequality between Sobolev norms (see Proposition 1.32
page 25) implies that u belongs to the space L8 ([0, Ty, [; H ), which, in view

loc

of Sobolev embedding, is a subspace of L} ([0,T,,[; L*). Therefore, we may

loc

apply Lemma 5.15, and the energy equality is thus satisfied. Now, because

u € L} ([0,T,,[; L*), we have Qns(u,u) € L2 ([0, Ty, [; H1), so applying

loc loc

Lemma 5.10 yields the desired continuity result. O

Next, we shall investigate qualitative properties of global solutions. In fact,
any global solution is stable, even if associated with large initial data. More
precisely, we have the following statement.

Theorem 5.17. Let u be a global solution of (NS,) in L (R*; H'). We then
have

t—o0

lim ||u(t)||H% =0 and /0 ||u(t)||‘;1,1 dt < oco.
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Remark 5.18. We know that if ||ug| ;3 satisfies the smallness condition of The-
orem 5.6, then the global solution associated with the Cauchy data ug belongs
to the space L*(R™; H'). Hence, it suffices to prove that tlim ||u(t)||H% =0.

Remark 5.19. If ug also belongs to L?(R?), then this theorem is an immediate
consequence of Proposition 5.16. Indeed, interpolating between L? and H'
yields
1
Ot dt < — 4.,
[ ol it < -l

2

from which the result follows since the H2 norm is a Lyapunov function
near 0.

Proof of Theorem 5.17. For fixed, given p > 0, we decompose the initial
data ug as

. def ~
Ug = Ug,p +Uoe With uge = F 1(13(07p)u0).

Let € be any positive real number. We can choose p such that
: €
HUO,EHH% < rnln{cy7 5}

Denote by u, the global solution of (N S,) given by Theorem 5.6 for the initial
data ug . Thanks to Proposition 5.13, we have

VEERT, Jut)]l g < 5 (5.11)

N ™

Define uy, def u — ug. This satisfies

Orup — vAup = Qns(u,un) + Qns(un, ur)
uh‘t:o = UO,h-

Obviously, ug, belongs to L? (with an L? norm which depends on p and
thus on €). Moreover, both Qns(u,un) and Qns(un,ue) belong to the
space L2 (RT; H~!). Applying Lemma 5.10 and Lemma 5.15, we get

t
lun (8)122 + 20 / IV ()22 dt’ = o p] 2

+2/0 (@ns (un () uet)), un(t)) g .

From Sobolev embedding, we infer that

< Cllun(@ue(t)| 2 [[Vun (#)]| L2

< Cllun(®)l e [lue (@] s [|Vun ()| 2
< Cllue@®)l 3 IVun (@17

(Qns(un(t), ue(t)), uh(t»H—l x H1
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We then deduce that

t t
un (8)122 + 20 / V()12 / V()22 d’.

Choosing ¢ small enough ensures that

t
lun (72 + V/ IVun (#)| 72 dt” < [luonl|Zz-
0

This implies that a positive time f. exists such that |lua(to)]l 1 < /2.
Thus, ||U(ta)HH% < e. Theorem 5.6 and Proposition 5.13 then allow us to
complete the proof. 0O

Theorem 5.17 has the following interesting consequence.

Corollary 5.20. The set of initial data ug such that the solution u given by
Theorem 5.6 is global is an open subset of Hs.

Proof. Let ug in H? be such that the associated solution is global. Let w
be in Hz. Denote by v the maximal local solution associated with the initial

data vg def ug + wo. The function w def v — u is solution of

{ Ow — vAw = Qns(u,w) + Qns(w,u) + Qns(w,w)

W|t=0 = Wo-

Lemma 5.12, together with an interpolation inequality, gives

1 3
(@ns(uw) + Qus(w,w), w) 1y < Cllulga ol V0l

@Qus(w,w),w) g < Cllwl,y [Vwl?

Assume that ||w0||H% < % and define

def v
= 1 < — 5
T, Sup{t/ qax w3 < 40}

1 3
From Lemma 5.10 and the convexity inequality ab < Za4 + Zb%’ we then infer
that for any ¢ < Ty,

Oy +v [ 1Ty @t < ol + 5 [ Tl a
The Gronwall lemma and Theorem 5.17 together imply that for any ¢ < T,

t t
C
2 L N\ |12 L /< 2 L ( AYIES /).
lw (I, 5 +v/0 IVw(t)]7,y dt’ < [lwoll?, y exp 73/0 ()13 dt



220 5 The Incompressible Navier—Stokes System

Now, according to Theorem 5.17, v is in L* (R+; Hl) Hence, we can conclude
that if the smallness condition

1/2

C (o]

2 4

. L dt) < ——
HonHf eXp(V3 /o ||u(t)||H1 t) < 62

is satisfied, then the blow-up condition for v is never satisfied. Corollary 5.20
is thus proved. O

5.4 An Elementary LP Approach

As announced in the introduction of this chapter, we here prove local well-
posedness for initial data in L3(R?). The main result is the following theorem.

Theorem 5.21. Let ug be in L3(R*). A positive time T then exists such
that (GSN,) has a unique solution u in the space C([0,T]; L3). Moreover,
there exists a positive constant ¢ such that T can be chosen equal to infinity
’Lf HUOHL3 <cv.

Proving this theorem cannot be achieved by means of a fixed point argu-
ment in the space L°°([0,77]; L?). Indeed, as discovered by F. Oru in [243],
the bilinear functional Byg does not map L>([0,77]; L3) x L*([0,T]; L?)
into L ([0, T7]; L?).

As in the preceding section, we shall use the smoothing effect of the heat
equation to define a space in which the fixed point method applies. This
motivates the introduction of the following Kato spaces.

Definition 5.22. If p is in [3,00] and T is in ]0,00], then we define K,(T')

d d 1 3
o1) = {ueco, 11 17) / ulliyiry < sup 00202 u(v)] s < oo},
t€]0,T]

If p € [1,3], then we define K,(T) by

5,1 € {u e .72/ Nl € sup (020 D@l < 0},

)

We denote by K,(c0) the space defined as above with 10, 00[ (resp., [0,00[)
instead of 10,T] (resp., [0,T1]).

Remark 5.23. Kato spaces are Banach spaces. Moreover, K,(co0) is invariant
under the scaling of the Navier—Stokes system.

Remark 5.24. Consider some ug in L? and p > 3. As

vtA 1 L2
e ug = € vt kU,
(4mvt)2
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we have, thanks to Young’s inequality,

1
HeytAuOHLp < (47”6 4

1 2 1
llugllrz with — ==+ —.
r 3 P

This gives ||e”"?uo||z» < c(vt)” 3 (1~ )||U0HL3 and thus
e A uol| ik, (00) < Clluollzs- (5.12)

We note that if uy belongs to L3, then, for any positive ¢, a function ¢ can
be found in & such that ||ug — ¢|| s < e. This implies, in particular, that

e (uo — @)l k, (00) < Ce.

Observing that ||e”*2¢||1» < ||¢|/1r, We then get, for p > 3,

le" "l i, ry < Ce + (T)2=2) ]l 1. (5.13)

vtA

We can thus conclude that [[e”*“ug ||k, (7) tends to 0 when T' goes to 0.

Remark 5.25. We now give an example of a sequence (¢, )nen such that the L3
norm is constant, the Hz norm tends to infinity, and the K,(o0) norm
of e**?¢,, tends to 0 for any p > 3. Consider, for some w in the unit sphere,

the sequence
¢n(x) d:ef ein(a:|u.:)¢(x)7

where ¢ is a function in § with a compactly supported Fourier transform.
On the one hand, since ¢n(§) = gb({ — nw), straightforward computations
give N
Tim 072 lgull a2 = (1622

On the other hand, we have
-3 in(z|w i(z —v nw|? 7
A, (z) = (2m) ~Bein(el) /R etteln vt enst G gy

Hence, because g/b\ is compactly supported, we find that for large enough n,
le" 2 gnlle < Ce 8™ |8l and [|e”" 40,12 < Ce™ 5|81,
from which it follows, by Holder’s inequality, that
le**2gnllze < Clrtn?)~2(75).
Thus,

C
||€utA¢nHKp(oo) < nl—_%,

which implies that the K,(co) norm of e’t2 ¢, tends to 0 when n goes to infin-
ity. Finally, as ||¢n||zs = ||¢||3, this example has the announced properties.
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Remark 5.26. We emphasize that when p > 3, [[¢”*uq |k, (o) is equivalent to
3

the norm of the homogeneous Besov space B ii: ? (see Theorem 2.34 page 72).

In fact, Theorem 5.21 turns out to be a corollary of the following theorem.

Theorem 5.27. For any p in |3,00[, a constant ¢ exists which satisfies the
following property. Let ug be an initial data in S8’ such that for some positive T,

vtA

e “uo ||k, () < cv. (5.14)

A unique solution u of (GNS,) then exists in the ball with center 0 and
radius 2cv in the Banach space K,(T).

Remark 5.28. Thanks to the inequality (5.13), this theorem implies that for
any initial data in L3 we have a local solution. Thanks to the inequality (5.12)
this solution is global if ||ug||zs is small enough.

Proof of Theorem 5.27. The proof relies on Lemma 5.5 applied in K, (7). It
therefore suffices to state the following result.

Lemma 5.29. Let p, q, and r be such that
1

1 1
0<—-+4+-<1 and <-+-< —-
p q r

s
3

S|

1 1
p g

For any positive T, the bilinear functional B maps K,(T)x K,(T') into K, (T).
Moreover, a constant C (independent of T') exists such that

C
1B(w, )| k(1) < Nl () vl e, (1-
Proof. This will involve writing B as a convolution operator. More precisely,
we have the following lemma.

Lemma 5.30. Define the operator L,, by

OtLpf —VAL,f + VP =0,f
divL,,f=0
me|t:0 =0.

We have
t .
Lnf(t0) =Y [ [ D=t s e - ) ar.
% Jo Jrs

where the functions F,g}f belong to C(]0, 00[; L*) for any s in [1,00] and satisfy

40 .
(Vvt+ |z])*

117 ()| < (5.15)
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Proof. In Fourier space, we have

t 3
FLnf/(1,€) =i /O e IS T F R €) d.
k=1

Using the computation of the pressure (5.4), we get

t 3
FLnf/(t.6) =i / e =NER 3 o SSEm Fy g) gy

0 2 ki

Thus, defining

Fj k(t ) d:ef iOék j]:_l <e—ut|5|2%>
m, ) , E

gives the lemma, provided that we have the pointwise estimate (5.15). Define,
for € N* with length 3,

, B
ra(e) i (et ).

Using the fact that
2 o0 2
el €72 = V/ eVt 1€l dt’,
t
we get

Fg(t,l‘)

(2m)3vi / Pl IE” gyt ge
t R3

= —(2m)"*vd”? /Oo/ e @lO—IE” gy e
t R3

Using the formula (1.20) page 18 for the Fourier transform of Gaussian func-
tions, we obtain

o 1 12
Is(t,z) = —1/86/ —Se_z‘w‘t’ dt’
t (47TVt')§
v o 1 x def 1|2
-7 w( )dt’ ith Wy(z) € o821,
i /t (w3 P\ 1w A 5(2) ‘

The change of variable r = (4vt')~1|x|? leads to

|z)2

C 4vt €T 1
D5(t,z)| < |33|4/0 TWQ(—N)dr.

]

This implies that
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Ds(t,2)| < cmin{ (,,1)2’ ﬁ} (5.16)

and thus that
C

()%
In order to prove the continuity, we observe that there exists some ¢ > 0 such
that for 0 < ¢ < t; < t9, we have

1736 (E, )lze <

]2
. ‘ C vt —&r
T (b2, @) — I (b1, )| < B /m‘2 re=o" dr.
iy
This implies that
| | 5t 1
IV (tg, ) — TV (4,2 <Cmin{ . 1’—}'
| k,z( 2y ) k,f( 1 )| - (Vt1t2)2 |JI|4

The lemma is thus proved. O

Completion of the proof of Lemma 5.29. Thanks to Young’s and Holder’s
inequalities, and to the condition

1 1 1
- S - + - S 17
r . p 4q
. . 1 1 1 1
we have, according to Lemma 5.30 with s defined by 1+ - = - + — 4+ -
T 5 P
¢ 1
!
|1B(u,v) ()| < C/ Y-y (@) e lv(E) || La dt’.
0 I/(fft/) T P q

By the definition of the K,(T") norms, we thus get that

[1B(u, v)®)l|zr < Cllullk, 1) lvllx, (1)

X /t ! ! dt’
0 V(t—t’)l_g(%_%_%) \/ﬁ2_3(%+%)

c 1
< ;Tg‘|u||Kp(T)||v‘|Kq(T)-
vt 7
Lemma 5.29 is proved, and thus Lemma 5.5 implies Theorem 5.27. a

Completion of the proof of Theorem 5.21. According to Remark 5.24 we may
apply Theorem 5.27 with p = 6 and T suitably small. Note that if the initial
data is small in L3, then the inequality (5.12) enables us to take T = oo.
Hence, it remains only to check the following two points:
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— The solution u is continuous with values in L3.
— The solution u is unique among all continuous functions with values in L3.

These two problems are solved using a method which turns out to be impor-
tant in the study of the (generalized) Navier—Stokes system: It consists in the
consideration of the new unknown

def
w = u— e’ uyg.

The idea is that w is smoother than w. Obviously, we have w = B(u,u).
Lemma 5.29 applied with p = ¢ = 6 and r = 3 implies that w belongs
to C(]0, T]; L*(R?)). The continuity of w at the origin will follow from the fact
that, still using Lemma 5.29, we have

C
lwll Los (j0,4;28) < ;||u|h2r<6(t)~
However, the solution u given by Lemma 5.5 satisfies

[ull ko) < 2lle” Aol ko0)-
Remark 5.24 thus implies that }E)% lwl| Lo (jo,¢;28) = 0. As the heat flow is

continuous with values in L3, we have proven that the solution u is continuous
with values in L3.

We will now prove that there is at most one solution in C([0,77]; L?). Ob-
serve that by applying Lemma 5.29 with p = ¢ =3 and r = 2, we get

w = B(u,u) € Ky3(T).

In particular, w belongs to C([0,T]; L?). Consider two solutions u; and us
of (GNS,) in the space C([0,T]; L3) associated with the same initial data
and denote by us; the difference us — u1. Because ug; = wo — wy, it belongs
to C([0,T); L?) and satisfies

{atuzl —vAug = f21

with
u21jt=0 = 0

fa1 = Qe ug, ug1) + Quar, € up) + Q(wa, uz1) + Q(uar, wy).

Via Sobolev embeddings, we have

1Qa,b)[l ;-3 <C sup [a*o||,_;
1<k, <3

H 2
<C sup ||akbz||L% (5.17)
1<k,0<3
< Cllalls 10l s (5.18)

Thus, the external force fa; belongs to L2([0,T]; H~2). As ug; is the unique
solution in the space of continuous functions with values in &', we infer
that us; belongs to
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L([0,T); B~ %) N L2([0,T); )

and satisfies, thanks to Lemma 5.10,

d
Ugl() E ||u21( 2 %+2V/ H’LL21 dt’

2 [t vty o

IN

t
2 / 1),z ()], (5.19)
0

As the space of continuous and compactly supported functions is dense in L3,
we may decompose ug into the sum of a small function in L3 norm and a
(possibly large) function of LS:

ug = ug +ul  with ||ug||L3 <ew and u)e LS. (5.20)

Defining go; dlef for — Q(e’*Aub, ua1) — Q(ua1, e’ uf) and applying (5.18)
gives, again via Sobolev embeddings,

A (8) 1 gan t My, -3

c(ne"“‘ Bllzs + ol e + Nzl ey )z (8) 2o

IN

A

< C(ublzs + lwn sy + Nwzllicy o )z ()] -

If ¢ is sufficiently small, and ¢ is chosen sufficiently small in (5.20), we get
v
Azi(t) < g lluar (@) 3 (5.21)

Still using Sobolev embeddings and Hélder inequality, we can write

def y y
Ba(t) = HQ(@ 12, u1) + Q(uz, e tAU%)HH,g

(e ug® yus

< C su U 3
- 1<k11? 2l
< Clle” Aug|| o luzr (t)]] 2

Using the fact that the heat flow is a contraction over the LP spaces and then
.. 1 1
the interpolation inequality between H~2 and Hz, we get

b 1 1
B (t) < Cllug e lluar (117 _y lluaa (117 -

Using (5.19) and (5.21), we then deduce that
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a1,y + 50 [ T2, a

1
2

m. NI

¢ 3
<Ol [ (@) o ], .
0

1 3
Using the classical convexity inequality ab < ia‘l + Zb%’ we then get

s O+ [ T @2, < Sablte [ a2, a.

The Gronwall lemma implies that us; = 0 on a sufficiently small time interval.
Basic connectivity arguments then yield uniqueness on [0, T']. This completes
the proof of Theorem 5.21. O

5.5 The Endpoint Space for Picard’s Scheme

According to Theorems 2.34 and 5.27, the generalized Navier—Stokes sys-
tem (GNS,) is globally well posed whenever the initial data ug is small with

3

. o—1+ . .
respect to v in the homogeneous Besov space By o * with 3 < p < oco. In this

section, we seek to find the largest space for solving (GNS,) by means of an
143

iterative scheme. Since the spaces Bp,(,: P are increasing with p, a good candi-

date would be the space Bgo{oo. In fact, the following proposition guarantees

that it is pointless to go beyond that space.

Proposition 5.31. Let B be a Banach space continuously embedded in the
set S'(R®). Assume that for any (\,a) in R x R?,

IFAC = a)lls = A" Ifll5.

B is then continuously embedded in BZ!

Proof. As B is continuously included in &', we have that |(f,e~ ") < C||f||5-
By dilation and translation, we then deduce that

1
1l = sup i "2 fllz < C|If] 5

This proves the proposition. a

It turns out, however, that Booloo is too large a space. The main reason why
is that 1f we want to solve the problem using an iterative scheme, then we
need e'“uq to belong to L7 ,(RT x R?) so that B(e'?ug, e!“ug) makes sense.
Taking into consideration the scaling and translation invariance thus leads to

the following definition.
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Definition 5.32. We denote by Xo the space’ of tempered distributions u
such that

de _3
fullx, bz + s m ([ et ayar)” < o
’ xeRs P(ZL’R)
R>0

where PY(x, R) def [0, 'R?] x B(x,R) and B(z, R) denotes the ball in R?
with center x and radius R.

We denote by X" the space of functions f on R} x R* such that

def 1 1.3
1 “oup0 15Ol + swp iR ([ (s ayar) <oc,
>0 zcR? Pv(z,R)

>

We denote by YV the space of functions on R} x R? such that

de
1y sup v £~ + sup vR- / |F(t.y)|dy dt < oo,
t>0 %%Ro Pv(z,R)

Remark 5.33. The spaces Xy and X! are related by the fact that [uollx, is

equal to ||e*Aug || x1. We also emphasize that any space B, o Y P withl <p< oo
is continuously embedded in Xj. Indeed, since we can assume with no loss of
generality that p > 3, it suffices to note that for any = € R* and R > 0, we
have

ia 2 1-2 ia ;
/ / le"®ug|" dxdt < |B(z,R)| " » / </ " P |” dw> dt.
0 B(z,R) 0 B(z,R)

Now, according to Theorem 2.34, we have, for some constant C,

—14+3
le" ol 2o < Ot 0 fluo|® _, s

p,o0

which obviously entails the announced embedding.

We now show that the space Y” is stable under mollifiers.
Proposition 5 34. Let 0 be in S(R*). There exists some C' > 0 such that for
all t >0, fp % t‘§9( —2.) % f(t,-) satisfies || folly» < C|If|yv-

Proof. To simplify the notation, we will just consider the case v = 1. Observe
that for any z in the ball with center 0 and radius R, we have

* In the original work by H. Koch and D. Tataru in [196], this space is denoted
by BMO™1.
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0% ) [1s0em @ (¢l dy

3 1 t
+Ct’§/ —  f(ty)dy
b7 ]

Fttal <ed [

3 1 C
<473 (1005 * a02m £, )]) () + g sup £ (1) o

Hence,
! H H < < / ‘ (t )‘ tdy + C t” (t )H
’ - 5 su 5" o .
R3 OlILY(P(0,R)) i3 P(O.R) f(t,y)| dtdy t>0p J L

This proves the proposition. a

The following theorem tells us that the space X" is suitable for solving the
generalized Navier—Stokes system.

Theorem 5.35. A constant ¢ exists such that if ug is in Xy and ||ugl|x, < cv,
then (GNS,) has a unique solution u in X" such that ||u||x» < 2||uollx,-

Proof. Using the change of functions
u(t,x) =vo(vt,x) and wup(x) = vug(z),
we see that it suffices to treat the case v = 1. Indeed, we have

[ullxv = wllvx1 and Jluollxo = vlvollxo-

Therefore, we assume from now on that v = 1 and define X = def 31 VY = def Yt

and P(z,R) = def Pl(x, R). According to Lemma 5.5, it suffices to prove that
there exists some constant C such that

1B(u, v)|lx < Cllullx]|vllx- (5.22)

Observing that || fglly < ||fllx|lgl|x, we see that the above inequality is im-
plied by the following lemma.

Lemma 5.36. If v = 1, then the operator L; defined in Lemma 5.30 maps Y
continuously into X.

Proof. Using Lemma 5.30, we get that

(L; Z Folt =t x —y) f () dt’ dy

with, for all positive real numbers R,
C

T <P+ rPr0)

[TFo(7,¢)| <

1

ef 1
= Lezricm and T (r,¢) 1\<|<Rm

with ' (r,¢) €
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The functions I 1(%1) and I 1(32) may be bounded according to the following
proposition.

Proposition 5.37. There exists a constant C such that, for any R > 0,

C

TS * fll oo (o.r21xm8) < =lIfllys (5.23)
R
C

1T % Fll e o sy < 1Sl (5.24)

Proof. Splitting F ) f into a sum of integrals over the annuli C'(0, 2P R, 2P R)
yields

00 t
'Y )t z)| < //
I r ) ) ; 0 JC(0,2PR,2P+1R) \y|4

1
< — ) 2TPT3(ptIR)T / / If(t' 2 —y)|dydt’.
RZ ( B(0,2P+1 R)

p=0

|f(t',x —y)|dydt’

As p is nonnegative, we have, for ¢t < R?,

IrY £, < & Zz—p(2p+13)—3/ £t 2)] dt d
R p,o P(z,2°+1R)

| /\

— 27P su t,z)| dtdz.
Z R’>pO R’3 (zR')|f( )

By the definition of || - ||y, the inequality (5.23) is proved.
In order to prove the second inequality, we observe that for all z € R® and

t > R?, we have

(TP % f)(t, )| < T2D(t2) + T2 (t,x)  with
%

e (¢, ) %f /min(RQ’ )/ Y e —y)dydr
R 0 Bo.r) (VE—1U+[y)* " ’

t
def 1
F(22)(t,x) = / / e |f(t',x —y)|dy dt’.
R min(R2,4) JB(0.R) (VI —t' + |y[)*

To bound I 21)( x), we use the fact that ¢ < 2(¢t —t'). We get

(21) R (1 [ / /
2 \R* Jo JBo,r

so that, for any t > R? and z in R,

| Q

rgvt,z) < Tl (5.25)

M
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In order to estimate F}(zzz)) we use the facts that ¢ < 2t' and, for any a > 0,

/ dy < 1/ dz
Bo.R) (@+ YD)t = a Jps (14]2)*

This enables us to write that

t

1
(i z) < / / (e dyat’
R min(RQ,% B(0,R) (Vt_tl+ |y‘)4

t / t !
1 dt B(0,R)| dt
<oy ([ A=y [ POl
t/2 t — t, t R2 t t
1 1tR3
< CHfHY(t—% + ﬁt—2>
As R </t this completes the proof of the proposition. O

Completion of the proof of Lemma 5.36. Note that applying the above propo-
sition with R = v/t yields

1L £t~ < t%nfny. (5.26)

Hence, it suffices to estimate ||L; f||z2(p(«,r)) for an arbitrary € R3. Using
translations and dilations, we can assume that x = 0 and R = 1. We write

Ljf = Li(1cpo,2)f) + Lij(1p0,2)f)-

Observing that for any y € B(0,1) we have

1L (tepo2 N)(9)] < CKLY * (Lepo| f1) (1)
and using the inequality (5.23), we get
||Lj(1°B(0,2)f)HLOO(P(O,l)) < C”f”Y
As the volume of P(0, 1) is finite we infer that
I1L;(Xegeo,2) /)l 2P0,y < Cllflly- (5.27)

The proof of Lemma 5.36 is now reduced to the proof of the following propo-
sition.

Proposition 5.38. For any function f : [0,1] x R® — R such that f(t,-) is
supported in B(0,2) for all t € [0,1], we have

1Lt e~ < Clflly for all ¢ € [o,1].
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Proof. We decompose f into low and high frequencies, in the sense of the heat

flow: ;
F=f 4 with £t) 7101 f,9),

where 6 denotes a function such that @ is compactly supported and with
value 1 near the origin. We write

_ 1—0(t26)
||fﬁ||iZ([O’1];H—l) = (271—) 3/ M

[0,1] xR3 t|€]2

<C tf(t, )72 dt
[0,1]xR3

(f0,1]x®3) SUpt|| f(t, )| Lo~
£>0

8 F(t,€)|? dt dg

Using the energy estimate for the heat equation, we thus end up with
HLjfﬁHLQ([O,l]xIW) <C[flly- (5.28)

We now estimate || L; f° | 22 (0,1 xR3)- First, observe that by the definitions of L;
and f°, we have

a / t t Af
= 95! / Py with  FPE,€) e w2 Fit€).
0

Note that, by the definition of €, we have

3

P, )—t‘iﬁ(\[)*f( ) with e S(R®). (5.29)

Thus,

3
def
Lf = Z||Lfb||%2 ([0,1]xR3)

[l f 7
By symmetry, we have

L',f:2/01/0t/0t/(Veme’(t”)

tA

dt.
L2

tA 7h gt "oggl
Veld Pt ))m dt" dt’ dt.

By integration by parts and because e*4 is self-adjoint on L?, we get

(Vera PP )| Vet (1)) | = —(Ae AP, P(2)).
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Moreover, as 2Ae?4 = 9,e2'4 | we infer that

(Ve P|vea P(E)) | = —5 AP, P
We then deduce that

L2 2 dt
/ / / ([ Zesa)Pan. pe)a
:/0 <(62tA ezA)/ot fT’(t”)dt”,f”(t')>dt/

t/
< 1P larqoapessy s [ =) [7 Py ar
0

Lo

First, note that using (5.29) and the fact that the operator ¢4 maps L' (R?)
into L>(R?), we have

t/
2A Y "
") dt
He /0 Fanar

Thanks to Proposition 5.34, f" belongs to Y. We write

t/
2t’A iy "
e th, x)dt / /
| P m,% |

where B,, 1+ denotes the ball with center nVt' and radius v/t'. Using translation
invariance, it is enough to estimate the above integral at the point z = 0. We
write, thanks to Proposition 5.34,

’(ém/o ,f (t") dt”) ’ S <“—|3/p<n t,)lfb(t”vy)dt”dy)

[n |>2

_le—y? Zb "

A o t 5 dt"d
p— // WPy dtdy
< Cllflly-

Thanks to the inequality (5.28), this completes the proof of the proposition.
d

L= Cllfll 0,17 xr?)- (5.30)

WP y)| at"dy,

EZS

|n |<2

As explained above, this completes the proof of Lemma 5.36 and thus the
proof of Theorem 5.35. O

5.6 The Use of the L-smoothing Effect of the Heat Flow

According to Theorem 2.34 page 72, the smallness condition (5.14) in the
L1428
case where T' = oo satisfies the smallness condition for the Bp,i: ? norm. The
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purpose of this section is to provide another approach to Theorem 5.27, one
which relies on Littlewood—Paley theory and on the smoothing effect of the
heat flow described in Corollary 2.5 page 55.

5.6.1 The Cannone—Meyer—Planchon Theorem Revisited

143
We assume that uo belongs to Bp o *. We deduce from Lemma 2.4 page 54
that ||A;e" A ug| rr < Ce—oviz” | Ajuo||Lr. By time integration, we get

L C 143
45 Suolliagon < o2 Dol iy (5.31)

p,o0

This leads to the following definition.

Definition 5.39. For p in [1,00], we denote by E, the space of functions u

; oo (Rt '71+%
in L°(R™; Bp oo ”) such that

def (143 A (143 A
lulls, = sup 2GR Ajull oo 10y + sup 122272 A 1 1)
J J

is finite.
We note that the estimate (5.31) implies that

le”" uoll, < Clluoll, 13-
B r

P,00

This motivates the following statement (which should be compared with the
global existence result stated in Theorem 5.27).

Theorem 5.40. Let p € [1,00[. There exists a constant ¢ such that the sys-
tem (GNS,) has a unique solution u in the ball with center 0 and radius 2cv
in E, whenever ||ug|| _,,3 <cv.

B r

P00
Proof. Since the proof relies on Lemma 5.5, it suffices to prove the following.

Lemma 5.41. There exists a constant C' such that for any p in [1,00],

Cp
B(u,v)||E, < 7||U||Ep|\v||Ep- (5.32)

Proof. We recall that the nonlinear term Q(u,v) can be written as

Q™ (u,v) =) AR (D)(u*o"),
k.

where the A’,ng(D) are homogeneous Fourier multipliers of degree 1. With the
notation of Chapter 2 page 61, we may write
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uFol = Z SjukAjve + Z Ajuk5j+1ve.
J J

As the supports of the Fourier transforms of S;u*A;v¢ and A;u¥S; 10" are
included in 278 for some ball B in R®, an integer Ny exists such that if j’ is
less than j — Ny, then

A;Q(Sju, Ajv) = A;Q(Aju, Sjiy1v) = 0. (5.33)
We now decompose B as
B(u,v) = Bi(u,v) + Ba(u,v) with
B (u,v) Cl:efZB(Sju,Ajv) and Bs(u,v) d:efZB(A.ju,S’ij).

J J

According to (5.33) and the definition of B in Fourier space, we have

A;Bi(u,v) ST A;B(S;u, Ago), (5.34)
Jj'2j3—No

A} By (u,v) def > A;jB(Aju, Sjiav). (5.35)
3'>j7—No

We shall treat only B; since Bs is similar. Using Lemma 2.1 page 52, we infer
that

14;Q(S;u, Ajiv)|| L < C2 sup||S b At .
k0
Hence, using Lemma 2.4 page 54, we get
t
N o . —ev(t— o2 . . .
14,385 A} Ol < C [ A,Q(8u(t), Aol Dl
0

t i . .
< CQj/ e~ (=12 gy 1S u® () Ayt ()| Lo At
0

)

t 1 . .
=CY / e =2 St o | Agro(t) | o dt.

By the definitions of the operators S'j and of the £, norm, we get, thanks to
Lemma 2.1,

I1Sju()z= < D IAjmult’)] =

]//<_7
< " 2 Apu(t)|
j//<j/

< C¥'|lu|g,.
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Thus, we deduce that
T (t—t")2% || A ’ ’
||A B( irU, A /’U)( )HLP S CH’LL||EP2]2] o e v HAj/’U(f )”Lp dt .
Using Young’s inequality for the time integral, we obtain, by the definition of

the E, norm, that

def
Bj s (u,0) S (|4, B(Sjru, Ajov) | Lo (o) + v2% | A B(Sju, Ajrv) | L1 (1o

Cllullg, 22" | Aj0] o1 o)

IN

A

C s
;HUHEPH’U”EPZJQ Ty,
Thanks to (5.34) and (5.35), we thus get

sup 2 142 (114, By (4, 0) g o) + 022 145 B (1,0 | 1)
J

C s
< —lullg, llvlle, Z 27U

Jj'zj—

The lemma, and thus Theorem 5.40, is proved. a

143
Remark 5.42. For any divergence-free data ug in Bp’ojp (with p € [1,00]),
we can construct a local solution which belongs to the space E, restricted to
[0,T].

5.6.2 The Flow of the Solutions of the Navier—Stokes System

In this final section, we seek to determine whether the solutions constructed
in the previous sections have flows. We first consider the solutions of (GNS,,)

associated with initial data in the space H 2=1. In what follows, we write
wy(r) = r(=logr)~" for  in 0, 1[ and r in ]0, 1].

Theorem 5.43. Let u € C([0,T); H2 1) N L2([0,T); H?) satisfy (GNS,) on
the time interval [0,T). Then, u belongs to L*([0,T); C.,, (R%:RY)) for all n

in 0,1/2[ and there exists a unique continuous map 1 : [0,T] x R? — R?
such that

t
vltia) o+ [ ult vt ) dr
0
Moreover, v belongs to L°°([0,T]; C%'1=¢) for any positive ¢.

The proof of this theorem relies on the following two lemmas.

Lemma 5.44. Under the hypotheses of Theorem 5.43, the fluctuation B(u,u)
belongs to L([0, TY; BQH).
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Lemma 5.45. Let E be a Banach space, n €

10,1[, and v be a vector field
with coefficients in the space L*([0,T}; C,, (E; E)

. Let

t) = /Ot [v(T)]|w, dT  and  wy () = exp (_ ((log %)n B ﬂVn(t))%’) |

There exists a unique continuous map ¥ : [0,T] X R? — R? such that

w(t,x):x—l—/o ol () dt

Moreover, v is such that for any time t € [0,T], we have 9(t,-) € C,,, , and
t— 1Y@, ), . € L=([0,T1).
In particular, ¢ € L>([0,T]; C%1=¢) for any positive €.

Proof of Theorem 5.43. We first introduce some notation. For T' positive, s
in R, and p in [1, 00], we denote by Lf.(H?®) the set of tempered distributions
u over [0,T] x R? such that

j=>-1

Since u = e'"4uy + B(u,u), combining Corollary 2.5 and Lemma 5.44 shows
that the solution u belongs to LL(H%+!). We claim that L1L(H2T1) is em-
bedded in the space L'([0,T]; C,,,) for all € ]0, [. Indeed, if z, y are distinct

elements of R? such that |z —y| < 1 and t € [0, T], we may write that

Ju(t,y) —u(t,z)| < o=yl D IVAu®)] e +2 D [A5ub)] -

J<N j>N

VA, u( M
24Nz — g LRt SEALD v
A C T
v 1o 1A VU]l e
+C 27 (244 =L L=
PO
VA u(t)||

b

Choosing N = [1 —log|z — y|] — 2 and defining a,(t defz| (2+ )t
J

we deduce that
1—
u(t,y) — u(t,z)| < Coy(t)|x—y|(1 —loglz—y[) "

Bernstein’s lemma now ensures that

T T
/ an(t)dt§02(2+j)’7_1/ 2D || Aju(t)]] o dt,
0 0

J
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from which it follows, according to the Cauchy—Schwarz inequality for series,
that

T
| et <ciuly,

Therefore, the solution u belongs to the space Ll([O,T};Cwn). Applying
Lemma 5.45 completes the proof of Theorem 5.43. a

d

Proof of Lemma 5.44. Since u € C([O,T];H%’l) N L%([0,T); H?), a straight-
forward interpolation argument ensures that u € L3([0, T]; H %’%). By taking
advantage of Holder’s inequality and the continuity results stated in Sec-
tion 2.8 page 102, we thus find that

Q(u,u) € LE([0,T); H2™3).

Using the smoothing properties of the heat flow (namely Proposition 2.5) and
the fact that

Ot B(u,u) — vAB(u,u) = Q(u,u), B(u,u)(0) =0,

we deduce that s B L
B(u,u) € La(H2 s)N L3 (H23).
Of course, as ug € Hg_l, Corollary 2.5 also ensures that e®”“ug belongs to
the above space.
In order to complete the proof, it suffices to note that the operator
~3 ~ d
(a,b) — ab maps (LZ(H2"3) ﬁLi}(H%_%))2 into L' ([0, T]; B ;). This may
be easily proven by taking advantage of Bony’s decomposition for ab and
the continuity results for the paraproduct and remainder [generalized to the
spaces Li(Bj ).
The above continuity result now entails that Q(u,u) belongs to the
d_
space L ([0, T]; B3, 1), so once again applying Corollary 2.5 leads to B(u,u) €
d
LY([0,T]; BE ). 0
Proof of Lemma 5.45. The fact that for any Cauchy data, we have a unique,
global, continuous integral curve follows immediately from Theorem 3.2 and
the fact that the vector field v belongs to L'([0,T]; C,,, (E; E)).
In order to prove the regularity of the flow, consider two integral curves, v,

and 7y, of the vector field v, coming, respectively, from x; and x5 such
that ||z — 22| < e~!. By the definition of the space C,, , we have

n?

[71(8) = v < [l — 22| +/0 [o(T,71(7)) = v(7,72(7)) | d7

< flar — 2ol + / (), X g (2 (7) — 72()]) dr-
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We now apply Lemma 3.4 with p(t) = [|71(t) —v2(t)]], p = wy, ¢ = [Jx1 — 22|,
and ¥(7) = [|v(7)||s, . We find that

(—=1og [In () =% @))" = (=log |z = 22[))" = nVy(?). (5.36)

Assume that 1+ nV, (¢) < (—log ||x1 — x2||)", which means that
o1 = ol < exp (=14 nVy(1)7). (5.37)

We deduce from the inequality (5.36) that if |21 —2 || < exp(—(1 + 0V, () /"),
then we have

1(5) = v2()]] < exp (((1og A AC) ) .

This proves the lemma. O

To conclude, we consider whether the solutions constructed in Theorem 5.40
have flows. In the following proposition, we establish that constructing such
flows cannot be done according to Osgood’s theorem.

Proposition 5.46. Let ug be a nonzero homogeneous distribution of de-
gree —1 which is smooth outside the origin. Let p be any admissible modulus
of continuity such that e'“ug belongs to L([0,T];C,,) for some positive T.
Then, p does not satisfy the Osgood condition.

Proof. As ug is homogeneous of degree —1, we have V.S;jug = 2% (VSouo)(27-),
hence _ _ . )

||6tAVSjUOHLoo = 22j H@t2 JAVSQUQHLOO.
Let j, denote the greatest integer j such that 272 > t. According to Def-
inition 2.108, the function I' given by I'(y) def yu(i) is nondecreasing.
Since (eTA)T>0 is a semigroup of contractions over L>°, we deduce that

. 2j . Ay &
cup 12T S0l i, 2 2V S s

; T(29) I(2i0) T2 (1/V1)

Note that since ug is nonzero and homogeneous of degree —1, we must

have VSoug # 0, hence also HeAVSOUOH # 0. Thus, if e?uy belongs
LOO

to L*([0,T7; C,,), then we have, by definition of I" and under Proposition 2.111

page 118,
VT 1 (Tt T
0 H 0 tF(W) 0

The proposition is thus proved. a
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Even though the Osgood lemma cannot be used, the following theorem states
that small elements of E, have a flow.

Theorem 5.47. A constant C exists such that for any positive r, and any v
in L'([0,T]; BZ".,) such that for some positive integer jo,

0,00

def 1
N, (T,v) = sup 27||Ajv||L1 (L) < Yok
VES T

a unique continuous map 1 of [0,T] x RY to R? exists such that
t
O(t,x) = x+/ ot (' x))dt and p(t,-) —Id € 1N ()
0

Proof. Uniqueness is an immediate consequence of the following lemma.

Lemma 5.48. Under the hypothesis of the above theorem, if v1 and v are
continuous functions such that

¢
ut) =+ [ o) for j=1.2
0
and if, in addition, |1 — z2| < 2790, then we have, for all to < [0,T],

. to
|71(t0) o 72(t0)‘ < C|J}1 o x2|17CNjo(to,v) eXP(QJO(TJrl)/ ||’U(t, ')HBJJ.OC dt)
0 .

Proof. Splitting the vector field v into low and high frequencies yields
t
71 () = 72(t)] < |21 — 22 +/ [Siv(t', m(t) = Sjo(t, 2 (t))| dt’
0
+2/ > 1Ay e dt’

/>-7

t
<oy — @ +/ IV Sjo(t) Lo () — 2(t)] dt’
0

+21 Y 2 J2j/||A/v | dt.

/>‘7

For 0 <t <ty < T, we define p(t) def sup |y (t") — 72 ()| and
<t

def i
D;(t) = oy — @a| + 227 Ny (to,v) / IV S0t | Lo 7 (t') =2 ()] dt'.

By the definition of Nj,(¢,v), we have p(t) < D;(t) for any j > jo. Therefore,
for any t < to,
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Dj(t) < |1‘1 —1‘2| —|—227jN to, / HVS ’U |LooD ( ) dt’.

The Gronwall lemma implies that, for any ¢ < ¢y,

t
D;(t) < (lor = @l + 2277 Ny, (to,v)) exp(/o IV 8500t oo dt' ).

Using Lemma 2.1 page 52, we deduce, for any ¢ < g, that

/ ||VS ’U HLoc dt </ Z 2J ||A /’U HLoo dt
J’'<Jjo
+ Z/zﬂ | Ajo(t')| Lo dt’

J'=jo
< do(r+1) /O t [o()| por, dt’ + G N, (£, 0). (5.38)
Thus, for any integer j > jo and any t < 3, we have
D;(1) < ((ler = ol + 227/ Ny (to, v))
X exp (2j°(r+1) /Ot lv () ., dt" + 3 Njo (2, U))-

Choose j such that 1 < 27|z; — 25| < 2. We then infer that

. to
plto) < Clzy — ma|' =Moo lfov) eXP<2]0(T+1)/ o) 5= dt,)
. g

and the lemma is proved. a

In order to prove the existence, we shall establish the convergence of the
classical Picard scheme,

t
) :x0+/ o, 2 (t')) dt.
0

We define dof
pr(t) = sup [wppa(t') — 2i(t)].
t'<t
n>0
Along the same lines as the proof of Lemma 5.48, separately treating the high

and low frequencies, we get, for any j > jo,
t
pna(®) < [ 1ot onan(®) — oft' (8]
0

t
< 227N (T, v) + / IVSj0(") | pu(t) dt'.
0
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Now, setting p(t) def Jim sup pi(t) and

k—oo

def

t
D;(t) 920 Ny (7,0) + / VS50t p(t) d,

we obtain, passing to the limit,
. t .
D;(t) £ 2Ny, (L) + [ [VS0(t) o~ Dy '
0
The Gronwall lemma ensures that
. T .
D,(7) < €277 exp( / I98;0(') 2 dt'). (5.39)
0
Appealing to (5.38), this leads to
Dy (1) < €270 CN T exp (204D [ o) 5, a
0 ,00

for any j > jo, which completes the proof of the theorem. a

5.7 References and Remarks

For a much more detailed introduction to the incompressible Navier—Stokes
system, the reader can consult [57, 86, 214, 286, 299]. For a complete and
up-to-date bibliography, see [205].

The mathematical theory of the incompressible Navier—Stokes system orig-
inates with J. Leray’s celebrated 1934 paper (see [207] and also the work by
E. Hopf in [165]). There, the concept of weak solutions was introduced and
the existence of such solutions was proven. The regularity properties of those
weak solutions have been studied by a number of authors (see, in particu-
lar, [54]). In this seminal paper [207], J. Leray also proved that if the initial
data satisfies a smallness condition of the type

luoll 2 I Vuoll2 < cv? or  lul|72l|Vugle < e,

then the solution exists in a space in which the uniqueness of such a solution
holds. The smallness condition was improved by H. Fujita and T. Kato in
1964: In [129], they essentially proved Theorem 5.6 (see also [144, 145]). The
proof presented here relies mainly on Sobolev inequalities and our proof of
these classical inequalities comes from [67].

The proof of uniqueness in dimension two (Theorem 5.14) is contained in
the works by J. Leray [206, 207], J.-L. Lions and G. Prodi [211], and O. La-
dyzhenskaya [201]. It has been extended in [106] to the Boussinesq system
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with partial viscosity (a coupling between the Navier—Stokes system and some
transport equation). The global stability result Theorem 5.17 was proven by
I. Gallagher, D. Iftimie, and F. Planchon in [134], and the idea of Corol-
lary 5.20 can be found in [252]. The existence part of Theorem 5.21 is close
to T. Kato’s theorem of 1972, proven in [176]. The uniqueness of continuous
solutions with values in L? was proven by G. Furioli, P.-G. Lemarié-Rieusset,
and E. Terraneo in [130] (see also [82]). The proof of Lemma 5.30 follows the
computations carried out by, for instance, F. Vigneron in [295].

In dimension three, the question of global solvability for general large data
has remained unsolved. Let us emphasize that on the one hand it has been
proved in [239] that the self-similar solutions introduced by J. Leray in [207] as
models of blow-up solutions cannot have finite energy, and that, on the other
hand, solutions blowing-up in finite time have been constructed in [234] for a
Navier—Stokes like system that enters in the class (GNS, ). For more results
concerning the lifespan of solutions to the three-dimensional Navier—Stokes
system, the reader may refer to [132, 143].

Theorem 5.40 was proven by M. Cannone, Y. Meyer, and F. Planchon
in [58], by a different method. A local version and various extensions of The-
orem 5.40 can be found in [72] and [198]. The endpoint case (Theorem 5.35)
was first studied by H. Koch and D. Tataru in [196].

The rest of this chapter comes essentially from [76] and [73]. We men-
tion in passing that in dimension three, the Leray solutions have a (possi-
bly nonunique) flow (see the work by C. Foias, C. Guillopé and R. Temam
in [127]).

For an extensive study of the Navier—Stokes equations by means of Fourier
analysis techniques, the reader may refer to the books [57] by M. Cannone
and [205] by P.-G. Lemarié-Rieusset.






6

Anisotropic Viscosity

The purpose of this chapter is to study a modified version of the incompressible

Navier-Stokes system in R®, where the usual Laplace operator A is replaced

by the Laplace operator Ay, in the horizontal variables, namely Ay, def 09?402

The system we will consider is thus of the form

ou+u-Vu—vAyu = —VP
(ANS,) divu =0
'l.l,|t:0 = UgQ.

Systems of this type appear in geophysical fluids. In fact, in order to model
turbulent diffusion, physicists often consider a diffusion term of the form
—vp Ay — V38§, where v, and v are empirical constants. In most applica-
tions, it turns out that 3 is much smaller than v,.

Obviously, the system (ANS,) has the same scaling invariance as the
standard Navier—Stokes system studied in Chapter 5. That is, (u, P) satisfies
(ANS,) with data ug if and only if for all A > 0,

(ur, ) () A (\u(A2t, Ax), A P(A2t, Ax))

satisfies (AN S,) with data Aug(A-).

In contrast with the system (NS,), however, the system (ANS,) is of
mixed type: parabolic in the horizontal variables and hyperbolic in the vertical
variable so that the classical approach for the Navier-Stokes system (which
strongly relies on parabolicity) is bound to fail. Nevertheless, we shall see in
this chapter that some global well-posedness results for small data in suitable
scaling invariant spaces may be proven.

This chapter is structured as follows. In order to make the basic ideas
clear, we first prove a theorem which is not optimal (i.e., not at the scaling),
but requires only elementary tools. More precisely, in Section 6.1 we prove
an existence and uniqueness result for L? data with one vertical derivative
in L2. The rest of the chapter is devoted to the study of the well-posedness
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Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7_6, (©) Springer-Verlag Berlin Heidelberg 2011
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issue in a function space with the right scaling. Roughly speaking, we shall
consider three-dimensional data which have horizontal derivative —% in L* and
vertical derivative % in L2. The corresponding function spaces are introduced
in Section 6.2, together with some technical tools (nonisotropic paradifferential
calculus in particular). Global existence is proved in Section 6.3, and the last
section is devoted to the proof of uniqueness.

6.1 The Case of L? Data with One Vertical Derivative
in L?

In this section, we will show that the system (ANS,) is well posed for any

divergence-free data in L? with one vertical derivative in L2.

Since the horizontal variable x, dgf (21,x2) does not play the same role
as the vertical variable x3, it is natural to introduce the following anisotropic
Sobolev spaces.

Definition 6.1. Let s and s’ be real numbers. We define the Banach space
H**" as the set of tempered distributions u such that @ belongs to L?, (R?)
and

def PN
e = [ 41620+ 6P @O d < oo,
Before stating the main result of this section, we shall introduce some more no-

tation. Throughout this chapter, we write R® = Ri X R, . The components of
the three-dimensional vector field v are denoted (v”, v3), and it is understood

that V, dlef (01, 02) and divy, v = 91v' + 902, Finally, the notation X}, (resp.,
X,) means that X}, is a function space over R (resp., R,). A function space

over R? is simply denoted by X. For instance, L? def 7 (R%), L} def 7y (R}),

and L2 L 1r(R,).
We can now state the main result of this section.

Theorem 6.2. Let ug be a divergence-free vector field with coefficients in HO!.
There exists a positive time T such that the system (ANS,) has a unique so-
lution u in the space

L>(0,T]; H>YY n L*([0, T7; HYY).

Moreover, the solution u is in C([0,T]; L?) and satisfies the energy equality
t

) +20 [ IVault) It = ol for att e€0.7) (61
0

Furthermore, if we have

1 1
[uol|Z21105u0l| 72 < cv (6.2)

for some small enough constant c, then the solution is global.
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Proof. The lack of smoothing effect in the vertical variable x3 prevents us
from solving the system by a fixed point method (as in Section 5.2) and from
using compactness methods based on the L? energy estimate. The structure
of the proof is as follows:

— First, we define a family of approximate problems with global smooth
solutions.

— Second, we prove uniform bounds for this family on some fixed time inter-
val.

— Third, we show that the sequence defined by this procedure converges to
some solution of (ANS,) with the desired properties.

— Finally, we establish a stability estimate in L? which implies uniqueness.

Step 1: The family of approximate solutions. We shall use the Friedrichs
method introduced in Chapter 4. We wish to solve
Oy, — VARUy + Ey (uy, - Vuy,) + VP, =0
(ANS,..) P, = Enzjﬁk(—A)*lajak(uﬁ;uﬁ)
Un|i=0 = Ep uo,
where (—A)719;0) stands for the Fourier multiplier with symbol [£]72&;&y,
and E,, denotes the Fourier multiplier defined by (4.4) page 174. As in Chap-

ter 4, the system (AN, ,,) turns out to be an ordinary differential equation on
the space

L2 def {v € L*(R*) / divu=0 and Supp o C B(O,n)}

endowed with the L? norm. Indeed, we have, thanks to Lemma 2.1, for any u
and v in L2,

Qu(u,v) &

Eo(u-Vo) +E,V Y (—A)*lajak(ujvk)HLz

1<j,k<3
< Cn=Huf g o] -
Thus, for any n, there exists a T;, > 0 such that the system (ANS, ,) has a
maximal solution u,, in C*([0, T, [; L2).

Step 2: A priori bounds. Arguing as on page 205 (which is rigorous since w,,
is smooth), we get, for all ¢ € [0, T,,],

t
lun ()72 + 21//0 IVnun ()72 dt" = | Enuolliz < lluollz.  (6.3)

Thanks to the blow-up condition for ordinary differential equations given
by Corollary 3.12 page 131, this implies that for any n, the solution wu,
of (ANS, ;) is global and belongs to C>(R.; L27).
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Bounding u,, in L ([0, T]; H%')N L?([0, T]; H'!) for some T independent
of n is more involved. We differentiate the system (ANS, ,) with respect
to 03. This gives, dropping the index n in order to ease notation,

t
10su(t)|2 + 20 / IV nBsu(t)|2 di’
0

t
= ||83 ]En UOH%Q -2 Z / Ik,é(t/) dt/ (64)
0

1<k <3

with Iy o(t) d:ef/ Dzu® (t, x)Oput (t, 2)0su’ (t, ) dz.
R3

We will start with the terms I, , where k # 3, namely, the terms which
contain only two vertical derivatives. The following proposition will be useful.

Proposition 6.3. A constant C exists such that

2
([, atn@)ete)dz)” < Cllall g oo Tl e
x min Jlall .~ z,522) Vb2, I Vaal e e, ) 0122 -

Proof. Define

def

J(a,b,c) z/ a(x)b(x)c(x) dx
R3
:/dzg/ a(wp, 23)b(zh, v3)c(Th, T3) T
R R?
Holder’s inequality implies that
Hab.e) < [ laCoas)lzg 106 20l etaa) g da
< lallpes ®,;22) 1l L2 (my 0y el L2 rys8) -

1
Using the Sobolev embedding H,} — L;‘H the interpolation inequality be-
tween H} and L?, and the Cauchy-Schwarz inequality, we then get that

% <C/bx,-21dx
16122z, ;01) < RII (23 )HHE 3

h
<€ [ 19nbCoaa)lzg bt )l das
< ClVrbllL2 0]l 2
The proof of the other inequality is similar. a

We shall also use the following corollary of Proposition 6.3.
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Corollary 6.4. A constant C exists such that

2
([, at@nt@)ete)dz)” < Closalesal o Tab] o o[Vl e

Proof. According to the previous proposition, we have

2
( / a(@)b(@)e(@)dr)” < Cllal? e, o) Vabllze bl 2 [ Vacll sl 2

Noting that

. 22:
lotalEs = [ 2 ([ laten ol don) e

T3
= 2/ /2 a(xn, y3)O0y,a(xn, ys) dey, dys,
—oo JR

the Cauchy—Schwarz inequality then implies that

Vs €R, [la(,23)|72 < 2/|0sallz2]|a £2
The corollary is thus proved. a

Proof of Theorem 6.2 (continued). Applying the above corollary for a
Opu’, b= 0su”, and ¢ = dsu’ gives, for k # 3,

T o (t) < ClIVa0su(®)| 12 10su(t) ]| L2 Vau(®)lI7

Bounding the terms I3 relies on the special structure of the system: We use

the fact that the nonlinear term is « - Vu and that divue = 0. Indeed, the
divergence-free condition implies that

I3 o(t) = . d5u®(t, x) Osul (t, x) Osul (t, ) da
R

— [ divy u"(t, z) Bsul(t, ) Dsul (t, x) da.

R3

This term is strictly analogous to the preceding ones. Thus, we have, for any k
and /, that

3 1
T o (t) < C[ViOsu(t)|| 22| Osu(t) [ L2 [ Viu(t) || 2
Plugging this into the energy estimate (6.4) gives

t
105u(t)]I72 + 21// IVROsu(t)||2> dt’ < [|0suol|Z
0

t 3 1
+ C/ IV hO3u(t))]| 72|03 (t) || L2 | Viu(t)||7 2 dt'.
0
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1 3
Using the convexity inequality ab < Za“ + Zb%’ we obtain
t
105u(t)]122 + V/ IVhdsu(t)||72 dt’ < [|05uol| 2
0

C t
+;/0 105 (t) |22 IV hu()|[ 22 dt’. (6.5)

We now reintroduce the index n and define

def
T, de sup{t > 0/ 105unll3 < (12) + VIV stn |32 12y < 2||53u0||iz}.

The function w,, is continuous with values in H* for any s, and |03 E,, ugl| 2

is less than or equal to ||Osug||pz. Thus, the time 7, is positive and, for
any t < T,,, we have

t
105 (£)][72 + V/ IV 05 ()| dt’ < [|05uo||72
0

C t
< (14 ool [ IV ()] dt'). (6
0
Thanks to the energy estimate (6.3), we have, for any ¢ < T,,
t C
Josen (O + v [ 19305003 bt < sl (14 57 Iosu0 ol )
Thus, under the smallness condition (6.2), we have that T,, = 400 and thus
¢
vt >0, Vn €N, [[O3un(t)|Z + l// IV 05un ()22 dt’” < 2[05u0]Z--
0

We now investigate the case where the initial data does not satisfy the small-

ness condition. We write u,, as a perturbation of the free solution un,, r d:ef

eVt An By, uo. Let

def
Wp = Up — UNy,F

for some integer Ny to be chosen later. The inequality (6.6) becomes

t
105 (1)]I72 + V/ IV 05 ()| dt’ < [|05uol|Z
0

C t t
(1 Satomallta ([ 19nim et + [ 19l o) ).
0 0

From the definition of up,, r, we infer that
t
103un (t)]|72 + V/ V831 (¢)[|72 dt’ < [|D5uol|7-
0

C t
X (1 + ;Haguoﬂiz (tN§||u0||%2 +/ IV hwy (£)][|72 dt’)).
0
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We now estimate the last integral. By the definition of w,, we have
Oywn, — vA Wy, + Ey (uy - Vwy) + Ey(uy, - Vun, ) = —VPB,
divw, =0

wn|t:0 = (Id *ENO)]En Uug.

Using the divergence-free condition, we get, by the energy estimate, that

t t

V/ IV hwn ()72 dt” < [[(1d—En; Juol7> — 2/ (un(t')-Vuny p ('), wn (1)) dt’.
0 0

Note that using Lemma 2.1 page 52 and (6.3) yields

[{un (') - Vi, p (¢), wn(t))| < [IVung, £ (8) || oo l[un ()] 22 [|wn ()] 2
< Clluo|Z2 Ve, (¢)]| Lo

3 3
< ONZ ol

Thus, for any n € N,
¢ 5
V/ IV hwn ()72 dt” < [[(1d = Enguol[ 72 + CENG [[uo]| -
0
We infer that for all T' > 0,
T
o3 + [ 193]’ < sl
0
c 2 2 2 1 2 | 3
< ( 1+ 51050l (TG o2 + 1114 = Eng Juoll 3 + TN |fuoll}s ) )-

First choosing Ny sufficiently large and then T sufficiently small so that the
above quantity is small enough ensures that for all ¢ € [0,7] and n € N,

t
JOutn (1 + 7 [ 1 000n ()3 dt” < 2Bl (6.7)
0

Step 3: Convergence. To simplify the presentation, we only consider
the case where T is finite. Since (u,)nen is bounded in L*([0,T]; H%1) N
L2([0,T); HY1), we also have (u, )nen bounded in L4([0,T]; H2'') by interpo-
lation.! Assume, temporarily, that

Hab' s L2(L) N L (LY. (6.8)

We then deduce that the convection and pressure terms of (ANS, ) are
bounded in L?([0,7]; H~'). Therefore,

! In fact, this may be proven directly using the definition of H =" and Holder’s
inequality.
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dyu,, is bounded in  L2([0,T); H1). (6.9)

Since the embedding of H~! in L? is locally compact (see Theorem 1.68
page 45), we can now conclude, by combining Ascoli’s theorem and the Can-
tor diagonal process, that up to extraction, (u,)nen converges to some u
in C([0,T];S"). Because (uy)nen is bounded in L°°([0,T]; H*') N L2([0, T7;
HY1), we actually have u € L*°([0,T]; H%Y) N L2([0, T]; HY') (use the weak
compactness properties of the Hilbert spaces H%! and H'!), and it is possible
to pass to the limit in (ANS, ). Hence, u is a solution of (ANS,).

We now prove that u € C([0,7]; L?). Since u satisfies (ANS), it is not
difficult to show that d;u is bounded in L2([0,T]; H~!) [just proceed as in the
proof of (6.9)]. Since, in addition, u is bounded in L2([0,T]; H!), a classical
interpolation argument ensures that u belongs to C([0,T]; L?).

Finally, we note that Lemma 5.15 page 216, combined with the fact that
u € L*([0,T]; L*) N L*([0,T]; H'), implies that the energy equality (6.1) is
satisfied.

For the sake of completeness, we shall justify (6.8). Note that Hz'l is

1

1 1
embedded in L2(H?), and H/? is embedded in L}. Hence, H2' — L2(L}).
In order to prove the embedding in L°(L#), consider some function a in S.

For all z3 in R,, we may write
xr3 2
a*(xp, x3) day, :/ (/ (a03a)(xh, ys) dy3> dxp,.

4/
R ]Ri —00

Therefore, by virtue of the Cauchy—Schwarz inequality,

2
h

4 2 2
[ o) don < ol oz 00l

2

h
Applying the Minkowski inequality then completes the proof of (6.8).
Step 4: Uniqueness. This is obviously implied by the following lemma.
Lemma 6.5. Let u;, j € {1,2}, be solutions of (ANS,) in the space

L>=([0,T); H*') n L*([0, T]; H'Y).
We then have

IIU2(t)*U1(t)||2Lz+V/O IV (12 —ur) (') |22 dt” < || (uz —u1)(0) |22 exp My, (£)

: def C [*
with My, %9 € / 195 tun ()| g2 | Vaen ()| 2
0

v
Remark 6.6. As uy belongs to L°°([0,T]; H%') N L%([0,T); H!), we have

C 1 1
My, (T) < ;||33th1||L2T(L2) (ﬁ”ul(o)ﬂm + T |33U1|L°T°(L2)) < 0.
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Remark 6.7. We note that this lemma is a stability result for initial data
in H%!. We should point out that the stability is proved in L (L?)N L7 (H),

which corresponds to the loss of one vertical derivative with respect to the
regularity of the initial data.

Proof of Lemma 6.5. Defining ug def us — uy, we get, by an L? energy
estimate,

t
[uz1 (#)1172 + 21// [Vugy (t')]|72 dt’ = —21"(t) — 21°(t)
0
with

t
I (t) def Z //ulgl(t’,x)akuli(t’,m)ugl(t’,x)dt’d:ﬂ,
1<k<2/0 /R
120<3

¢
I°(t) def Z /0 /}R3 ud (', ) Osul (', ) ub, (¢, ) dt’ da.

1<6<3

Corollary 6.4 applied with a = dyuf, b = uf,, and ¢ = uf, implies that
t 1 1
I"(t) < C/ 105V s ()11 22 1 Viur ()12 1V nuz () [ 2 luar (8) || 22 dt’
0
vt
<% [ 1Vhar ()]s e
2 Jo
C K !/ !/ / 2 !
+ [ 10Vhu (@) 22 [Vaua ()| 2 uzi () ][22 a2
0
Proposition 6.3 applied with a = u3;, b = dzuf, and ¢ = u, gives

t 1 1
1°(t) S/ 5y ()| oo (., :22) 105V ua ()] 72 185w ()] 7.
0

1 1
X [V huzr ()| 72 luar ()] 72 dt’.
We shall temporarily assume the following result.

Lemma 6.8. Let v be a divergence-free vector field. We then have
”U?’”iw(Rv;L%) < 2| divp, || p2]|0%|| 2.

We now have

t 1 1
I°(1) S/ [V nugr (8) )| 22 [|uzr ()| 2 103V aua () ]| 72 |03us ()] 7.2 dt’
0
14 t 2
<5 [ IVhuan (@]
0

C t
+ ;/ 05V sy (8) || 2| O5ua (¢) || L2 luzn ()| 72 dt’.
0
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Applying the Gronwall lemma then completes the proof. a

Proof of Lemma 6.8. Write
z3
||U3(',3?3)H%i = 2/ (/ 33113(15117?43)03(%793)dﬂ?h) dxs
—o0 R2
xr3 A
= —2/ (/ divy, v" (2, y3)v3 (zh, y3) dxh> dzxs.
—o00 R2

Applying the Cauchy—Schwarz inequality then completes the proof. a

6.2 A Global Existence Result in Anisotropic Besov
Spaces

Theorem 6.2 asserts global well-posedness under the smallness condition (6.2).
On the one hand, this smallness condition is scaling invariant. On the other
hand, the H%! regularity which was needed in Theorem 6.2 is not scaling
invariant. The rest of this chapter is devoted to the proof of a global existence
statement for small data in some suitable scaling invariant function space.
Motivated by the results presented in the previous chapter, we seek a func-
tional framework in which a suitable class of highly oscillating data generates
global solutions.

6.2.1 Anisotropic Localization in Fourier Space

In order to define the spaces we shall work with, we first have to construct
an anisotropic version of the dyadic decomposition of the Fourier space intro-
duced in Proposition 2.10 page 59.
For (k,¢) in Z*, we define
Ala=F N2 e)a), Aja=F ' (p(27&))a),
Sha = Z Aha, and  SYa= Z Aja, (6.10)

k' <k—1 v<i—1

where @ denotes the Fourier transform of the tempered distribution a over R?,
and ¢ denotes a function in D([3/4,8/3]) such that, for any positive T

> 27T =1
JEZL

Remark 6.9. Note that if we define

d—efl—ngQ ir (6.11)
jeN
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then we have, for all a € S(R?),

F(Sta)(§) = x(2” én])Fa(€) and  F(SPa)(€) = x(27 &) Fa(€).

In what follows, we shall always consider functions a for which ||S£a’| oo

and [|Syal|; .. converge to 0 when k goes to —oco so that we may write Sj'a =
x(27*Dp)a and SYa = x(27*D3)a.

The following lemma can be understood as an anisotropic version of Lemma, 2.1
page 52.

Lemma 6.10. Let By, (resp., B, ) be a ball in R3 (resp., R,) and Cy, (resp., Cy)
be an annulus in R} (resp., Ry). Let 1 < py < py <00 and 1 < gz < q1 < 00.
We then have the following results:

— If the support of @ is included in 28By,, then
E(la|+2( X -1
102, all s gy < €202 65750 oo .
— If the support of @ is included in 2°B,, then

181+ (55— a7
108l pr uny < 0200 al .

— If the support of @ is included in 2FCy, then

—k
lall ey (o) < C27°Y S |05 all o1 (nae)-
o=

— If the support of @ is included in 2ECU, then
—UN || oN
lallger pary < C27 N0 all o (ary

Proof. This is analogous to the proof of Lemma 2.1. As an example, we prove
the last inequality. As usual, using dilations, we can assume without loss of
generality that £ = 0. Let ¢ be a function in D(R\{0}) with value 1 near C,.
We have

©(&3)
(i€3)N

Defining hy def 71 (9(&3)(i&3) ™), we may write

a(&n,€s) = F(05'a). (6.12)

a(zp,r3) = / hy (x5 — y3)a(zn, ys) dys.
i

Young’s inequality then gives the result. O
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6.2.2 The Functional Framework

This subsection is devoted to the presentation of the function spaces we shall
work with when globally solving the anisotropic Navier—Stokes equations.

In the following definition, we introduce two scaling invariant spaces in
which (ANS,) turns out to be well posed.

1 11
Definition 6.11. We denote by B%2 and B, *'* the respective completions
of S(R®) for the norms

def 20w
lall go.s =251 A}all ey and

—

B2
ez
0o 1
def 2 ki AR AU (2 ? iiah  Av
||GHB—%,% = 222 Z 2 HAkAZa”L‘;L(Lg) +222H5j—1Aja”L2-
4 12/ k=0—1 jEz

Remark 6.12. The definition of B%? is “natural”. Indeed, the functions of B%3:
are L? in the horizontal variable and have vertical derivative 1/2 in L?. The
choice of an ¢! summation in the vertical variable allows us to get for free
an L? (LS°) control which turns out to be of paramount importance for treating
the nonlinear terms. Note, in passing, that this control would not be given if
we used the (slightly smaller) H 0.2 norm instead.

The reason for the choice of the space 84_%’% is probably less obvious.
Of course, it has the required scaling (roughly —1/2 horizontal derivative
in L* and 1/2 vertical derivative in L?), and Lemma 6.10 ensures that B2
is continuously included in BZ%’%. Having a negative regularity index for
the horizontal variables will enable us to show global existence for highly
oscillating data in the horizontal variable. The choice of the norm is also

motivated by the following consideration: If we consider the linear equation
ou—vAyu=f on RV x R3,
then the terms AQAZU satisfy
O (ARAY ) u — v AR (ARAY)u = ALAYT.

It is now clear (from Lemma 6.10) that whenever k > £ — 1, the action of
the operator A over AZA;’u is equivalent to that of the operator A [indeed,
we have [£,|* ~ [¢|? for all { in the support of F(AlAyu)]. Therefore, those
terms will be treated by means of parabolic techniques. On the other hand, no
smoothing effect is expected on the remaining terms S j’L 1A%u, which should
dealt with as solutions of a hyperbolic equation.

To study the evolution of (AN'S, ) with initial data in B%2 (resp., B;%’%)

also need to introduce the following subspace of the space L?([0,T]; B,
(resp., L2([0,T]; B*2)).
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Definition 6.13. We denote by B%=(T) and B;%’%(T) the respective com-
pletions of the space C([0,T],S(R*)) for the norms

de £ v 1 v
||a||301%(T) = 222 (||ANHL°T°(L2(R3)) +V2thA£aHL2T(L2(R3)))7

LeZ
1
def S~ 9| Ab A )
lall o34 = 2028 (( 2. 2 Ik aieliz asazy
(€T k=(—1
1 > %
+,,2< 3 2k|AZAZai2T<Lg<L3>>> )
k=(—1

+) 28 (||5?—1A§a||L%°<L2<R3>> +vz ||Vh5?714§a||L%(L2(R3>>)-
JEZ

Lemma 6.10 obviously implies the following result.
Corollary 6.14. For all T € ]0, 0], the space B%2 (T) is continuously embed-
11
ded in By 22 (T) and in L3 (L2 (L)). Moreover, the norm of the embedding
is independent of T.
11
We shall also make use of the fact that the space B, *’? is embedded in the
_1 1

space of distributions which are B, 5 in the horizontal variable and B3, in

the vertical variable. More precisely, we have the following.

11
Corollary 6.15. There exists a constant C such that for all a € B, 2'*(T),
we have

11
232"

So2t (2 1At a0y 0y ) <l

LET kez 4

1

2

2 (Y (2 1AL Al g o + 72 1AL AT ) )
V1=V keZ

<Clall —33 -

B, (T)

Proof. We only treat the first inequality, the proof of the second being similar.
Obviously, it suffices to show that

1

def _ v 2

St (X r A0y < ClaO, s
€z k<e—2 4

According to the second inequality of Lemma 6.10, we have

Iscz25< > 1ArAy IILz)Q-

LEL k<t—2
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Now, since (horizontal) Littlewood—Paley decomposition is almost orthogonal
in L2, we get, arguing as in the proof of (2.11),

> IArAal7s <2010 Afal3s,
k<0—2

from which the desired inequality follows. a

6.2.3 Statement of the Main Result

We now explain briefly how we may proceed in order to show that the sys-

11
tem (ANS,) is globally well posed for small data in B, 2’2. We shall search
for a solution of the form v = up + w with

Up def ey, and  up def Z AZA}’uO. (6.13)
k>0—1
Note that ugp, def ug — Upyp, Satisfies
Uyp = ZSJ}LIA})UQ. (6.14)

JEL
It turns out that wg, is smoother than ug. Indeed,

h
Alugy = > 8B AY AV,

l7—3"1<1

and thus
[A w2 <C > [ISh_ Ao e

l7—3"1<1
11
This implies that if ug belongs to B, ?'?, then uy, belongs to B%z and

l[wenll o < CHUOHB;%,%' (6.15)

In turn, this implies that w is also more regular than the free solution up.

We can now state the main result of this chapter.

Theorem 6.16. There exists a constant ¢ such that for all divergence-free
< cv, the system (ANS,) has

11
initial data ug in By 2’2 satisfying |luol|

11
2°2
84

_11
a unique global solution u in B, 2’2 (00). Moreover, the vector field u — up

belongs to B%z (co).
The above theorem will be proven in the next two sections. For the time being,

11
we will show that the B, >’ norm may be made small by fast horizontal
oscillations.
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def
Proposition 6.17. Let ¢ be in S(R?) and define ¢.(x) zefe”“/s(é(x). A con-
stant Cy exists such that for any positive ¢,

1
”QSEHBZ%% < C¢€2.

Proof. By definition of the norm || - || 5ot and because the || - ||z norm is
less than or equal to the || - ||;» norm, we have
4
||¢e||54-%,% < Z‘I’?) with
Jj=1
ol Lf Z 27" | Af AfdellLa(r2),
e2F>1
k>6-1
@(2) dﬁf 2—% AhAU
s = Z AR A7 e llLa L2y
e2F<1
k>0—1
def i
o)=Y IS AT e e,
€2i>1
def
P LN 2H||S] AV 1o
e2i<1

In order to estimate @51), we note that

o < (30 27h) ot up [ AL A7 6 g 23)

e2k>1 LEZ

< e? 225 sup || Af A7 el s (12)-
tez

Using Lemma 6.10 and the definition of ¢., we get
216112) ||AZAE¢E||L;§(L5) < CH%HL;IL(L? < C||¢HL4(L2
and also
sup AR A bell s 2y < C27°)Osdbell s (r2) < C27°|0sl| 1 (1.2)-
Thus, taking the sum over £ < N and ¢ > N and choosing the best N gives
1) < b 328 sup | AL AYGe g 1) < 10115 (12 1056y 1

LeZ

(2

Estimating &¢ ) demands the use of oscillations. Let
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1

Ora(w) 2! / (019) (2" (wn—yn)) (2 (w3 ~15))e" ™= o(y) dy

with F§(&n) = 3(|€n) and Fh(&s) = 3(&3). Integration by parts gives

ALAYS. = oiors with o € isAl Ay 010) and 67 —ie2" 57

Using Lemma 6.10, we get
_k £ 1, vy iYL
277 Y 22165l s n2) < Cesup [ AFAY (€7 010)| 1 (r2)
et ez
< Ce2% |01 2

Moreover, we have

_k £ 2, k £ 72,
27 22| ¢yl L2y < €22 222 1642/l Le (z2)-
0<k+1 tez

Using Lemma 6.10, we get

165202t 2 < Clidllog ez and 650 Leeay < C2 11050l (12)-

Again, taking the sum over ¢ < N and ¢ > N and choosing the best N, we
get

L0172, 1 1
222 ”qbk,ZHL‘}L(Lg) < C||¢||[21%’(L%)”&%b”z;lb@%)'
LEL

Therefore,
@9) < C¢€ Z 2% < C¢€%.

e2k<1

In order to estimate 4523), we note that, thanks to Lemma 6.10, we have

@) < Y 274||Sh AV0s0. 12

€21>1

< Cl|03¢]| L2 Z 2%

€2i>1

< Cet|05¢| 2.

Estimating 4524) requires use of the oscillations. Integrating by parts, we get
Sh Al —gbl’s ¢2’5 ith ¢1»5d_ef' gh AY( 1%18 ) d¢2,sd_6f 291 §2e
18P = @57+ @ Wi ;= 1eS5_1Aj(e 1¢) and ¢;° = —ie2! §;

with §%*(z) &' 2% / (049)(2 (a1 — yn)) (2 (w5 — )€ = Bly) dy for some

function g in S(R?).
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Using Lemma 6.10, we get

> 2810} ue < Celltrole Y 24 < Ceborolle

€2i<1 £2i<1

Using Lemma 6.10 again, we get 23||<$?E|

12 < ||03¢| 2. Thus, we infer that
A i 1
D 22672 < Cel|Osoll L2 Y 2% < Ce? 056 1o
e27<1 e2i<1
This completes the proof of Proposition 6.17. a

Combining Theorem 6.16 with the above result, we deduce that data with high
oscillations with respect to the horizontal variable generate global solutions
of the system (ANS,).

Corollary 6.18. For any ¢ in S(}R?’)7 there exists some €9 > 0 such that for
all € in]0,e0[, the system (ANS,) has a global unique solution with data

ug(z) = sin(%) (0, —03¢,029) . (6.16)

6.2.4 Some Technical Lemmas

For the remainder of this chapter, it will be understood that (cx)kez [resp.,
(dj)jez) denotes a generic element of the sphere of ¢%(Z) [resp., {*(Z)]. Fur-
thermore, (ck,¢)(,nezz Will denote a generic element of the sphere of (2 (Z?)
and (dy¢) (k,0)cz2 @ generic sequence such that

> (X)) -
el ke

We shall often use the following property, the proof of which is omitted.
Lemma 6.19. Let o be in ]0,00[ and Ny be in Z. We then have

alN
E 27 U=D g, e < A d.:
’ —1-—2-a
(k,0)ez?
£>3j—No

The following lemma will be of frequent use in this chapter. It describes some

11
estimates of dyadic parts of functions in B, 2’2 (T)).

11
Lemma 6.20. For any a € B, 2’2 (T'), we have

)

v 1 v kE_ _¢
1Sk AballLge L (L2)) + V2 VRSt Afall L2 13 (12)) < Cdi 22272 ||a\|67%,%(T)
4

1 k
ISRallLge (La (Laey) + ¥2 I ViSall Lz (1 (o)) < Cex2? HGHB*%'%(T)'
4
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Proof. By definition of S}, we have

def
Sk,e(a) = ||SkAZaHL°°(L4(L2 +V2||VhSkAZaHL2 (L(L2))

< Z (||AkaeaHL°Tc(Lﬁ(Lg)) + Vi||thk'A€aHL2T(Lﬁ(L§))) .
K <k—1

Noting that

N\N

— Y
2 -

k'<k—1
x(

we get, by applying the Cauchy—Schwarz inequality, that

1
23 (Z 2_k8k,e(a)2) P <t (Z 27" (”Ah'AN”L‘”(L A(L2)

kEZ k'€Z

222 23kg

v 1 v
| Al Afal| e (1 (L2)) + V2 ”thZ'AEQHL%(L%L(Lg)))a

1
2

1 " 2
+V2||VhAZ/Aea||L2T(L;§(Lg))) )

By Corollary 6.15, this proves the first inequality.

In order to establish the second inequality, we shall prove that for any
sequence (cp)rez in the unit ball of ¢2(Z), we have

def _k .
I(a 22 5 Spen < C’HaH 1 with (6.17)
ez f)
def 1
Sk = 1Srall Lz na () +’/2||Vh51’cla”L2T(L‘,ﬁ(L3°))' (6.18)

Again using Lemma 6.10, we have
L v 1 v
Sp<C Yy, Y2 (||Ah'4ea||L%°<Lz<Lz>> +V"‘||A’1§'4Nha||L2T(Li(L3>>) :
k' <k—1 (€T
We deduce that
k—k' !
) <CY 28 YT 2 E 2 g (||A?A?a||Lss<Lﬁ<Lz>>

LeL (k,k")ez?
k' <k—1

1 v
+v2 IIAZ/AeVhalle(L;s,(L%))) ~

From the Cauchy—Schwarz inequality with the weight 2~ 1k/< k—1, we infer
that
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1
I(a) go( 3o cz> Zz%( 3
(k,k"yez? LeZ (k,k")eZ?
k' <k-1 k: <k—1

1
2

i 2
(14 Al apoey + 4185 AFVaal sy iy ey )

From this, we deduce that

gsoy( ¥
L€ (k,k')ez?
k' <k—1

_k—k" gy v
=27t (HAh’AZGHL%"(L;‘L(L%))

N

1 v ?
+v2 HAh/AthaHL%(L‘}L(L%))> )

<022%<22— (HAh,AgaHLm 5 (L2))

LEL k'€Z

=

1 v 2
+V2HAZ/AEVha”LQT(Lﬁ(L%)O )
< Clla] sch

)

1
2(T)
which proves (6.17) and thus the whole Lemma 6.20. O

With Lemma 6.20 at our disposal, we will now establish a result which is very
close to Sobolev embedding and which will be of constant use in proving the
existence part of Theorem 6.16.

11
Lemma 6.21. The space B, 2% (T) is embedded in L4(L}(L)). More pre-
2(T), we have

N\H
[SE

cisely, for any function a in B,

v dj _i
HAja‘|L4T(Lﬁ(L%))SO%2 *llall 3.3
B, 272(T)

lallza. (s Ly < I || ||B by

Proof. First, note that
||A§a||i4T(L;§(L3)) = H(A;CL)QHL%(L%(L},))-

Then, according to Bony’s decomposition in the horizontal variables, we may
write
(A%a)? =3 " Sp AV AR AYa+ > Sp,AVa AR Ala.
kEZ kEZ
The two terms on the right-hand side may be estimated exactly in the same
way, so we first focus on the first term. Applying Hoélder’s inequality, we get
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h h
1Sk—147a AgAjallrs 1z (o))
_k E
< 273|181 AYall e (pa (1222 |1 AR AYall 12, (13 (12))-

Using the first inequality of Lemma 6.20 and Corollary 6.15, we infer that

dz .
h v h Av k.J o—j 2
18k-147a AgAjallLz 1wz ey < C s 2 ||a||3;%,%(T)-
Taking the sum over k, we thus deduce that
2
v \2 D e AIPATE)
1(A7a) Lz (L2 (1)) < CV% 2 ”aHBZ%'%(T)’

which is exactly the first inequality of the lemma. Now, using Lemma 6.10,
we have v
v L v
145 all g zgoeey < €221 AT all oy g r2))-

This proves the whole lemma. ad

We will now use Lemma 6.10 to study the free evolution up of the high
horizontal frequency part of the initial data ug, as defined in (6.13). In order
to do this, we first recall a result, in the spirit of Corollary 2.5 page 55, which
describes the action of the semigroup of the heat equation on distributions
with Fourier transforms supported in a fixed annulus.

Lemma 6.22. Let ug € B;%’%, up be as in (6.13), a € N*, and p € [1,00].
Then, AZA;’UF =0ifk<{-3, and

i p(1_2),_2 .
|A}Afurlgogeay < C=52P G702 S luol|_yy if k> 0-2. (619)
1224 4

11
Moreover, up belongs to B, 2’?(c0) and satisfies

(6.20)

3

N

furlly 3.4, < Cllull4

(o0)
Proof. From the relations (2.2) and (2.3) page 54, we deduce that

Al Ajup(t) = 22 g(t, 25 ) Al Aty with [g(t, )11 ey < O, (6.21)
Here, the convolution must be understood as the convolution on R?. Thus,

1A} A up(tan, )z < 2°F|g(8, 2)] % (| A} Afuo(zn, )| 2.
Using (6.21) and Lemma 6.10, we get
2k
AR Afup(t) psr2) < Ce™ 2 || AL Afuoll s r2)

< Cem 2" 4y 25273 ||| 1 1.
4 B4 2’2

By time integration, the lemma then follows. a
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From Lemma 6.22, we immediately deduce the following corollary.

Corollary 6.23. For any (p,q) in [1,00] X [4, 0], we have

1 Ck(2(1a1)_
||AZUFHLP(]R+;LZ(L$°)) < C_l cL2 k(2(17+q) 1)||u0||87%
v

4

Nl=

1 1 1
If, in addition, — + — > =, then we have
poq 2

(S

1 _i(o(141)_1
147 urllLe@+;rg (p2)) < CV_%dJQ e Z)HUOHB’%’

4

The following lemma corresponds to the endpoint of the second estimate of
Corollary 6.23.

Lemma 6.24. Under the assumptions of Lemma 6.22, we have

_11  and
2°'2

d;
[ATur |l L2@+iLeeL2)) < 072 2||Uo|\

||UF||L2(R+;L°° <C—HUOH -1

\/_ 55
Proof. Trivially, we have
2 2
||A§“FHL2T(L;;°(L5)) = ||(A§UF) ||L1T(L;>L°(L}J))-
Using Bony’s decomposition in the horizontal variables, we obtain

(A%up)® =Y Sp Abup AR AYup + Y ApAYup Spy o Alup. (6.22)
kEZ keZ

Now, the idea is to take advantage of the smoothing effect on the high-
est possible horizontal frequencies of up. Applying Holder’s inequality and
Lemma 6.10, we get

1551 A% up AR ASup| Ly (nee (1)
< C2k||S£—1A§UF||L%°(L;§(L3))HAZA§UF||L1T(L%L(L3))-

Note that by (6.19) and the fact that S | = Z Al we have
k/<k—2

1
Z 2 kg
||Sk: 1A UFHLoo L4 Lz ) < C( d ) 222 2||u0|‘67% %
k' <k—2 4
Therefore, by using (6.19) once again, we arrive at

Lk (L°°(L1)) (Z div, ) |u°|

k'€Z

W=

IS st Ayur Al A |

keZ

"* |
ol
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Estimating the other term in (6.22) follows along the same lines. Therefore,

2

2 J o—j 2
1A7ur s (e p2) < €2 JHUO”BQ%‘%'

From Lemma 6.10 we then conclude that
v L v 1
1S5 urllrawey <C Y 2% | AV ur g sy < C ol ;.4
J'<i—1 *

This completes the proof of the lemma. a

6.3 The Proof of Existence

As announced in the previous section, we seek a solution of the form
U =ur +w.
By substituting the above formula into (ANS, ), we find that w must satisfy

ow+w-Vw —vAyw+w-Vup +up - Vw = —up - Vup — VP
(ANS,) divw =0
def
Wt=o = wgn, = Uo — Unh.
Recall that, according to (6.15), if ug belongs to B,
to BOz.
As in the proof of Theorem 6.2, we shall use the Friedrichs regularization

method to construct the approximate solutions to (717\7/5 v). Define up, def

=
=

)

, then uyp belongs

(Id —E,,)up. The approximate system (mm) we consider is of the form

Oywn, — vA wy, + Ep(wy, - Vwy,) + Ep (wy, - Vup,) + Ey(up, - Vo)
= —En(upn - Vur,) — E, v(_A)ilajak ((U%n + w%)(u%n + wﬁ))
divw, =0,

def
wn|t:0 - En (’U,gh) :e En (UO - uhh)-

Arguing as in the first section of this chapter, we can prove that the sys-
tem (/T]\V/Sl,n) is an ordinary differential equation in the space L??. Thanks
to Theorem 3.11 page 131, this ordinary differential equation is globally well
posed because

d
%Hwn(t)lliz < Cullupn (@)l lwallZz + Callurn @Ol 7a 12) lwn(®)ll 2,

and, according to Corollary 6.23 and Lemma 6.24, the function up, belongs
to L2(RT; L> N L} (L2)).
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The proof of Theorem 6.16 now reduces to the following three propositions,
which we shall assume for the time being.?

11
Proposition 6.25. Let ug be in By 2’2 and a be in B2 (T). Define
def [T » v
L(T) :f/ (Aj(uF-VuF)|Aja) dt.
0

Then, for any j in Z, we have

1;(T)] < Cde_IQ_jHUoHZ;%,% ||a||Bo,%(T)~

Proposition 6.26. Let a and b be vector fields in B%2 (T). Define
def (T
7,7 / (A%(a - Vup)|A%) dt.
0
If diva = 0, then, for any j in Z,

D] < Clv2 all gy o ol 5.3 1o

N

s

N

Proposition 6.27. Let a be a divergence-free vector field in B, 2’*(T) and b

a vector field in B%= (T). Define
d ’ v v
Fy(T) :ef/O (AY(a- Vb)|AYD) dt.

Then, for any j € Z, we have

2. —1lo—j 2
()] < Cdiv™2 7 all yy b2

Completion of the proof of Theorem 6.16. Apply the operator Aj to (Z?v/syn)

and take the L? inner product of the resulting equation with A;-’wn. Because
E, w, = w,, we get

def d ., »
Do) = A5 wn ()72 + 20| Vadjwa (1) 72

= —2(A%(wn - Vwy,)|AJw,) — 2(A% (upn - Vw,)|Afwy,)
= 2(A% (wn - Vup,)|Afw,) — 2(A(upy, - Vup,)|Ajwy,).

By integrating the above equation over [0, 7], we get
2j||A§wn||%39(L2) + 2j+1V||VhA§wnH%2T(L2)

2 In the following three statements, we drop the index n from ug, to simplify
notation.



268 6 Anisotropic Viscosity

4
< 27| A%w, (0)]|72 + 2> [WHT)| (6.23)

=

win W) Sy [ (A1) - Veon (1) AL (1)
WA(T) € 2 / (A 0) - T ()| A0 1)
wyr) o (A% ®)- V() A0 (1)
w(r) 4 o /O (A wpn(®) - Vim0 An (1) d.

Applying Proposition 6.27 with a = b = w,,, together with Corollary 6.14,
gives
[WHT)| < C,fld§||wn||20%m. (6.24)

Thanks to Lemma 6.22, Proposition 6.27 applied with a = ug,, and b = w,
implies, in particular, that

W) < Cv ol .y ol (6.25)

1 .
: ©3 (1)

Proposition 6.26 applied with a = b = w,, yields

(W3(T)| < Ofldﬁuuongzl ] (6.26)

2
11 ||wnHBo,% (1)
Finally, Proposition 6.25 guarantees that

W) < Cvdluoll] gy lwnllgn.y oy

(6.27)
Plugging the estimates (6.24)—(6.27) into (6.23) gives
. 2 .
2 (A wnl 22y + VIR A0l 312 ) - < 27| ATwn (0)]32

C
+ S (Il gy + 0l ) Tnlg

Using (6.15), we get, by the definition of B%2 (T),

<c <
lwnllgo.g gy < ||u0||B;%,% 7 lwnll go.y oy + llwoll —3.3 ||w””50=%m'

4

Define

def
T, = sup {T > O/HM"”BO'%(T) < 2C||u0||67%,% } .
4
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The fact that w, is continuous with values in HV for any integer N ensures
that T,, is positive. The above inequality then implies that, for any n and
any T < T, we have

V2C(2C + 1)\/5H E
NG Holl-14

< v, then we get, for any n and any T < Ty,

OHUOH +

oy oy < 1

Thus, if 2C(1 + 2C)?|Juo| _
4

11
2°2

[[wn | < 2C | uol|
B

1.

B%%(T) nE:
Thus, T,, = 400 for any n. Existence then follows from classical compactness
methods, the details of which are omitted. Theorem 6.16 is then proved, pro-

vided, of course, that we have proven the three propositions 6.25-6.27. a

Proof of Propositions 6.25-6.27. We shall proceed differently for terms in-
volving a horizontal derivative and terms involving a vertical derivative. For
the former, the following two lemmas will be crucial.

N

Lemma 6.28. Let a be in B, ’%(T) and b be in B2 (T). We have, for h =

1,2,

. d;
143 @onb)]| 4 <02ty

Liwiwey = 23 (7 )H 0.4 2y

=

Lemma 6.29. Let a and b be in 84_%’ (T'). We have

—
-

v d;
A7 (ab)|[2.(L2y < CV—%Q 2||a||B_§ Q(T)H [ b h oy

Proof of Lemma 6.28. Using Bony’s decomposition in the vertical variable
gives

AV(adpb) = Y AV(SL_aALopb) + Y AY(S5(Onb)Ala).

l7=3"1<5 3'>5-3
Using Holder’s inequality and then Lemma 6.21, we have

145 ( ;‘)’—1QA;‘)’6hb)”f§ 4 z2) S OIS —rallza s ey 145 0nbll 23 (22)

dj/ _il
< CV—%Q > HQHBZ%,%(T)”bHBo,%(T)'

Similarly, we have

147 (S512(0rb) A a) || 4
T

L <c|s +28hbHL (L,‘;"))”A;’QHL%(L;‘L(L%))

4
(L (L3))

v

J
<O all yy Bl
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It then turns out that

245D g 40 S

Sl Q

7 |all 7%,%(T)||b|\60 1 Z

3'>3—5

which implies the lemma. a

Proof of Lemma 6.29. We write

AV(ab) = Y AUSL_aAUb)+ > AY(SYH ,bAYa).

13" =31<5 §'>j-3
Again using Hélder’s inequality and Lemma 6.21, we get

| A7 (S5 _1a A7) 2. (L2 (12)) <C||Su1a||L4T(L;(Lgo))\|A§'bHL4T(L;§(Lg))

\»—'
\»—-

it
< C%T%IIGII -1 IIbH
vz By 2’

1 .
2 —2 2(T)

We can now conclude as in the previous lemma. a

Proof of Proposition 6.25. Note that, thanks to the fact that up is divergence-
free, we have
T
LT = / (AY(up - Vup)|AYa) dt = I;L(T) +I7(T) with
0

def

T
() % / (AY(ulh ® up)|AVV)a) dt - and
0

def T
INT) = /0 (034 (upup)|AYa) di

Using Lemma 6.29 and the definition of B%2 (T, we get

[(D)] < 145 (ul @ up)ll g2 145 (Vra) |z 22)
2

dJ -7 2
< O 2 uoll _y yllallgog -
B,

For the term with the vertical derivative, we write, using Lemma 6.10,
|I7(T)| < CQjHA;(U%UF)HLIT(LZ)HA;bHLgs’(LZy
Again using Bony’s decomposition in the vertical variable, we infer that

AY( (udup) Z A7(ST 1uFA up) + Z AL (AT /uFS,+2uF)

[7/—=31<5 Jj'2j=3

Using Bony’s decomposition in the horizontal variables, we get
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St _yupAbup = 3 {Sg,lsv,,lu%AgA;,uF + A’,gs;v,,lu%SQHA;,uF}.
k>j/—4

The two terms in the above sum are estimated along exactly the same lines.
As in the proof of Lemma 6.24, we use the smoothing effect on the highest
possible horizontal frequencies of up. Using Holder’s inequality, this gives

||51?71S}}'71U%A2A;/UF||L1T(L2)
_k K
<272 ||Sp 1 S)yupllpee na ()22 1AR A upl| s (14 (2))-

Lemma 6.22 guarantees that

E . c _il_
22||AZA]’UFHL%~(L?L(L%)) S ;dkd2 22 kHUOHB,
4

1 1.
272
Lemma 6.20 states, in particular, that

_k
272 ||SZ—1S;'—1UF||L39(L;1L(Lgo)) < CCkHUOHB—%,
4

=

Using Lemma 6.19, it then turns out that

C _ _,/
15 vur Ajurlpyan < 2( Y adey2™)2 T oy
4

k>j7—2

11
2°2

d_ "
< O |||
1% 34

We deduce that

35 C )
2|yl < Dol Y 2

2
4 J'25=5

This completes the proof of Proposition 6.25. O

Proof of Proposition 6.26. Again, we distinguish the terms with horizontal
derivatives from the terms with vertical ones, writing

T
J(T) = / (A%(a- Vup)|AL) dt = JH(T) + J(T) with
0
I % [ (vt Vgl A%) df and
Hn= (45 (a" - Viup)|Ajb) dt - an
7o) % [ A (@0 A
7(T) = : (A7 (a°d5ur)|A7b) d.

Using integration by parts gives

(A;-’(ah . thF)‘A;)b) = — (A;(’LLF divy, ah)\A;’b) — (A;’(ah & ’U,F)|th;]b) .
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From Lemma 6.21 and Lemma 6.28, we have

T
(5 divn oty a50) e < 183 ar dina] g g 14T g
2
< 0L uol gyl

2% BO 1 T)”b”

B3 (1)’

Lemma 6.29 gives

T
/0 (43" @ ur)|Vaa7) | dt < [147(a" @ ur)llzs o)l A7 abll sz 22

2
< O ol 410" 3y [Pl oy
Therefore,
az .
7] < €522 ol g 510" g3y [Py

On the other hand, using Bony’s decomposition in the vertical variables,
we get

A ( 3631,(,1:' Z AU v/ _1a 83 /UF) (628)
|77 —31<5
+ Y AVALGPSY ,05up).
3'>3-3

To deal with the first term, we use Holder’s inequality to get
155 _10° 03 A% up || 1y (12) < c27'||SY 116% | pee (12 (oo 1A ur | Ly (e (12)) -

Corollary 6.14 and Corollary 6.23 applied with p = 1 and ¢ = oo together
imply that

1510 fullyan < CL2 % fuoll_yyllall g

from which we infer that

d;
3 — 1
I_{anA;( a0 A1) < C22 ol -yl
1 —I1>

We now estimate the second term of (6.28). Holder’s inequality gives
||A La’ S '+233UF||L (L2) <CY ||Avr@3||L2 (L?) 1S +2UF||L2 (L=°)-

From Lemma 6.10, we get
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3 —5' 3
A% a”|| L2, (L2re)) < €277 | AT 03a°|| 2. (12)-
Using the fact that diva = 0, we have

v —4 v djr 35’
1A%,6%| 12, (r2y < C277 || A, divy a1z (12) < CﬁQ 3 I\ahHBo,%(T)-

Together with Lemma 6.24, this implies that

v v v d; _ 1
> 1A a8y aduur) g as < OL2 ol gy ooy
Jj'zj=3
This completes the proof of Proposition 6.26. O
Proof of Proposition 6.27. We decompose F;(T") into

Fy(T) = /O ’ (AY(a- Vb)|AY) dt = FIT) + FY(T) with

T
Fi(r) /0 (A(a" - V4b)|AVB) dt and

def [T
F(T) = /O (AY(a®03b)| AYD) dt.

On the one hand, according to Holder’s inequality, we have

h v h v
D) < 1850y g 14 oy

so combining Lemma 6.28 with Corollary 6.14 and Lemma 6.21 yields

\Fh(T)\<Cd—?2_jlla|| o (]
=T B 22 B (T)

On the other hand, the norms B%2(T) or BZ%’%(T) do not have any gain
of vertical derivative. This difficulty may be bypassed by taking advantage
of the fact that diva = 0. More precisely, the vertical Bony decomposition,
combined with a straightforward commutator process, enables us to write

AY(@®05h) = S0_1a 05 A% + Y [AY, S 1a%)95 A%
[7—€<5

+ N (S840% - 5V ,a%)0AYAT + > AY(ALaP55Y, 5D).

li—tl<1 0>j-3

From this we may decompose F}(T’) into

T
def 1,v 2,v 3,v 4,0 . 1,v d_Gf 3
FY(T) € F 4+ FPU 4+ FPY 4+ F with F) _/0 (SY_,a®05 AUB AYD) dt,

. . 2 3 4
and obvious definitions for F;", F;"", and F}"".
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In order to bound Fjl’v we use the fact that
d3a® = — divy, a”. (6.29)

Integrating twice by parts we thus get
o 17
Fjt =3 /0 /R Sy divia”| AYb|? da dt
g h vy AV
= 7/0 ” S7_qa” - VAo AYbdz dt.

Applying Lemma 6.21, together with Corollary 6.14, yields
1,v v v v
[F5 L < 195 10™ | pana (22 VR A 2. (22) | Ab] 1.1 (2

d2

< L2 a"| ;
v B,

%,%(T)HbllBo,%(T)-

To deal with the commutator in F' j2’v, we first use Taylor’s formula. Writing

h(z3) = z3h(z3) and integrating by parts, we find that

Fr=— Y /OT </R h(27 (x5 — y3))

l7—£1<5
1
X (/ Sy, 03a®(xn, Tys + (1 — 7)x3) dT) A7b(xp, ys3) dyg’A}fb) dt.
0

Next, using (6.29) and integration by parts, we rewrite FjQ’” as
2 T 7107
= 5 [ e - w)
g0 MR

1
X Sy a™(xn, Tys + (1 — T)a3) dr - Vi ASb(2n, y3) dy3|A}’b> dt
0

+ Z /OT(/Rh(Qj(x:s—%))

li—€1<5
1
X (/ Sy ja(zn, Tys + (1 — 7)x3) d’T) A7b(zp,ys) dy3|VhA}’b> dt.
0
Young’s inequality, together with Corollary 6.14 and Lemma 6.21, then yields

F2Y1 < C Y 1810 g ey (190 A8 g 0o 1ALy 1 22
|7—€1<5

+ HA;bHL“T(Lﬁ(L%))thA;bHL%(L2)>

dz .
<CL279ah| aa (bR
v 642'2(T) B2 (T)
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Note that

T
I3 (A} a®05 AV AYD|AYD) | dt.
j—e<17°
li—¢€1<1

To estimate F' ;”U, we then need to gain two derivatives from Az,ag’. In order
to do this, we need to use (6.12) with N = 1, which implies that

AZ,a?’(x) = / g“(2€,(x3 — yg))agAZ,a?’(xh,yg) dys, (6.30)
R

where g¥ € S(R) is defined via F(g")(&3) = @
53
Plugging (6.30) into Ff’”, using (6.29), and then integrating by parts in the
horizontal variables, we find that, up to an irrelevant multiplicative constant,
. 3,0 -
the quantity F;"" is less than

T
/ <(/ 9" (2" (x5 — y3)) Afa" (zn, ys3) dys) - V03 A7A7b A})b> ‘ dt
li—¢]<1”° R
[7—€]<1
T ’
+ Z / ((/ 90(25 (x3 — y;,))AZ/ah(xh,yg) dyg)a;;A})Azb th;b)’ dt.
i—¢'1<1”0 R
[i—€<1

Together with Young’s inequality, Corollary 6.14, and Lemma 6.21, this im-
plies that

<C Y 20N ALA s s o IVRAYBI L2 (22 1ATb] L (L3 (22))
li—¢'|<1
l7—¢]<1
iy n 2

<C=27a| oy Wbl
v B, 22(T) "B2(T)

3,v
|F;

Finally, using (6.30) once again, we can write that F ;»M is equal to
T
Z / (A§ (/ 9" (2% (w3 — y3)) Aja" (w1, y3) dys - Vh3352)+2b) lﬂﬁb) dt
15523\/0 R

T
# [ (@( [ 0 = ) At o) ddnsitn) [V dt>.
0 R
From Young’s inequality, we deduce that

4, v v v
[F < C E HAéah”L‘}(L;ﬁ(L%))<||VhSZ+2b||L2T(L,%(Lg°))HAijL“T(L‘}L(Lg))
;-3

1% 2Dl o IVR ATl ) ).
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which, together with Corollary 6.14 and Lemma 6.21, implies that

az .
4, — h
|FY| < C-L277]la"| 1.1 160123
1% T) B 2(T

This completes the proof of Proposition 6.27. O

6.4 The Proof of Uniqueness

1

In the previous section we showed that any small divergence-free data in B, 2’

D=

11
generates a global solution u in B, 2’2 (c0) such that, in addition, (u — up) €

1
B%2 (00). In this section we want to prove uniqueness in the space B, *’ 2 (00).
As a first step we prove the following regularity theorem.

Theorem 6.30. Let u € BZ%’%(T) be a solution of (ANS,) with initial

_11
data ug in By *’?. We then have

w d:efu —up € B3 (T).

Proof. We have already observed (at the beginning of Section 6.3) that the
vector field w is the solution of the linear system

o ow —vAw=—u-Vu—VP
(ANS,) divw =0

Wit=0 = Uth,

where wuyy, is defined as in (6.14). As stated in Lemma 6.22, up belongs to the

space BZ%’% (T) and thus so does w. Hence, it is only a matter of proving that
v 1 v _i
10 =8P ) AYw] g (12) + v2 [|(Ad =8I ) AYV hwl| 2 (12) < Cd;27 2.

In order to do so, we apply the operator (Id — Sh 1)A7Y to the system (ANS )

and define

| def v
< (Id -8 ))A%w

This gives, by virtue of the L2 energy estimate,
t

[lw; (£)]I72 + 21// IVhw;(£)|I72 dt' < || AYuen||7
0

+2/ ((1d =S5 ) AY (u(t') - Tu(t')), wy (¢))] dE".

From the Fourier—Plancherel theorem, we then infer that
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t ¢
Jw;(t)]|72 + V/ IV hw; ()| 2 dt’ + cv2® / [[w; (¢)[|7 dt’
0 0

< aunlt +2 [ 1(0a-S1) A5 ) Vule),s())]
Observe that, thanks to the divergence-free condition, we have
u- Vu™ = divy, (u™u") + 05(u™u?).
Integrating by parts, we get
|((1d —S]h_l)Ag divy, (u™uh),w;)| < |((d —Sh_l)Ag(umuh)7 Vhw;)|

J
< 145 ") | L2 | Viw]| 2

IN

v C v m
1932 + ATt
while, by using Lemma 6.10, we have
[((Id =S} _1)AY 05 (u™u?), wy )| < (A7 (™ u?) || 2 |wj]| 2
U _o; C
< Loy 20 + g )| 2.
Using the inequality (6.15) and Lemma 6.29, we deduce that

il 1) + VEIVAw I3 2y < €27 % (Iluoll .4 +v-1||uujg,%ém).

4 4

This completes the proof of Theorem 6.30. g

The above theorem implies that if uq and us are two solutions of (AN S,) in the

11
space B, 2’2 (T') associated with the same initial data, then the difference ¢ def

us — uy belongs to BY2 (T). Moreover, it satisfies the system

6t5 - VAh6 =L6—VP
(ANS") dive =0
6\1‘,:0 = 07

where L is the linear operator defined as follows:

L6 % 5. vy —uy - Vo

In order to prove uniqueness, it suffices to establish that 6 = 0. Because ex-
istence in Theorem 6.16 is not proved by using Picard’s fixed point method,
this is not obvious. The main reason why is that the system (ANS,) is hy-
perbolic in the vertical direction. Roughly speaking, we thus expect that the
contraction argument may be realized with one less vertical derivative than
for the existence space.

Before proceeding to the heart of the proof of uniqueness, we have to
introduce more notation: Let A}’i def A7, S}’i =S7ifj >0, AV def Syt =Sy,

and AV = 8¥1, = 0if j < 2.
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Definition 6.31. We denote by H the space of tempered distribution such
that

def s .
lall3, =) 277 AYal7. < ce.
JEZ
The corresponding inner product is denoted by (- | -)x.-

Because the space H is nonhomogeneous, it is not true (owing to the low verti-
cal frequencies) that B%2 (T is embedded in LY (H). Since ¢ satisfies (ANS),),
however, we have the following result.

Lemma 6.32. The difference § is in L5 (H) and satisfies V0 € L2(H).
Proof. Let S¥é be a solution (with initial value 0) of

OSy0 —vARLSF = g1+ g2+ g3 with
def v
g1 =) S§os(arby),

reA
def v 1 v
g2 = > S§ diva(ea(Id —S5)0),
AeA
def - v
g3 = Y daS§ divi (S§9),
AeA
11
where A is a finite set of indices and ay, by, ¢y, and dy belong to B, 2% (T).
Using Lemmas 6.10 and 6.29, we get that
155 03(axba)llra.z2) < C > 2| AY(axba)llzz re)
j<-1
C
< V_%HGAH -33 7 ||be 43y
Defining C12(T) def luill —rr +usll —12 we thus have
By 22 (T) B 2E(T)
C
lg1llrz (2 == 012( )- (6.31)

Estimating go relies on Lemma 6.21. We get
1(1d =55)0 4. (24 (12)) < Cv™ 4||5H

leallz 24 2oy < Cv™7 IICAII
from which it follows that

lex(Id =50)8l 2. (z2) < lleallza s ooy 1(Id=56)6] 24 (3 (z2))
[[]]

B éQ(T) B 22(T)
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This gives that
g2 =divy Go with |2l p2 2y < Cv™2CH(T). (6.32)

The term g3 must be treated with a commutator argument based on the
following lemma.

Lemma 6.33. Let x be a function of S(R). A constant C exists such that,
for any function a in L3 (L), we have

1
Ix(ews), Sglall2 < Ce2llall Lz (ne)-

Proof. The first order Taylor formula gives

def v
Ce(a)(wn, x3) = [x(ews), Stla(zn, v3)
= e [ hles ) G0 =)+ 7)) alons ) dys dr
R x[0,1]
Using the Cauchy—Schwarz inequality for the measure |h(xs — y3)| dxs dys dr
on R? x[0,1], we may write that

IC<(a)(@n, )lI7z < e*lalan, )7z

<o ([ htes =l o) dasdue ) 01 + 15)
R

HLP”L2(R)§1
< Ce*|la(an, )| 2 (HE + Hs),

where we define H] and H5 as follows:

- def
H € / [ ](x’)2 (e((1 = 1)z + Ty3)) [h(z3 — y3)| das dys dr,
R2 x[0,1

_ def
5 4 / | OO0 U =7 7)) s — ) ds s .
R? x[3,1

Changing variables

=1 —=7)xs+71Yys . T; = X3 .
in Hf and in HS
{y'ryS ! Yr = Tyz + (1 —7)a3 2

gives

- | L ()2 ()

ZX[O,%] 1—7

5 = / L) ews)

2x[3,1] T

h(%) ‘ dz, dy, dr,

h(“"TTJ) ‘ dz, dy, dr.

We immediately infer that [|C.(a)(zn,-)[r2z < C’E%||a(xh,~)\|L3c and the
lemma is thus proved. a



280 6 Anisotropic Viscosity

Completion of the proof of Lemma 6.32. Choose x € D(R) with value 1 near 0

and define Sj .a def x(e:)S8a. We get, via a classical L? energy estimate and
a convexity inequality, that

t t
155 5(IIZ- + V/O IVRSE ()72 dt’ < 2/0 g (#) 1 £21195 6 ()| = dt’

1 t _ t
by [ 1)t + 2 [ et S350
0 0

By the definition of g3, the integrand in the last term of the above equality is
a finite sum of terms of the type

d f v v v
Dy = (x(e)S5(drSE0). ISy .0)

with h € {1,2} and dy € B; **(T)). Writing Dy = D + D? with
DL ([x(e), S21(dxS50), 0,85.6) and D2 X (80(dy Sy .6), 0,88 .6),

Lemmas 6.21 and 6.33 imply that

t
/0 DLt dt! < CeEC2 () VhSo o8]l 2 12

AN

C
< 2JIVASE 135 2y + —=Ch(t).

=~

Next, we write
1 3
IDX(0)] < Cllda(®)]| 1t (1) 158, 221 V1S5 0] 22
v v C v
< VIS0l + S lr @)L o 155 (132
Using (6.31) we get, for € € ]0, 1],
t
1555013+ 5 [ IVaSE80)Es de < OO +u-30h(T)
0
t 1 )
v !
20 [ (14 5 (lltpe + lualyr) 1850001 ar.
The Gronwall lemma, together with (6.31), gives

t
14 ) _ _
||S§7€6(t)||2L2 + 5/0 ||Vh55)55(t’)”%2 dt' <Cw + v H0L(T)

¢
1
X eXp<C’/O (1 + 3 (Huluii([/gc) + ||UQ|Z£;1L(L$O)))dt/)
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and thus, by Lemma 6.21,
2 v ! 12 /
155803 + 5 | 19550003

< O™+ v72)C4(T) exp <o(1 n Vlgc;g(T)))

Passing to the limit when ¢ tends to 0 then allows us to complete the proof
of Lemma 6.32. O

Proof of Theorem 6.16 (continued). Let us first point out the main diffi-
11
culty we shall encounter here. Roughly speaking, a function in B, 2’2 (T') must
1
be B3 in the vertical direction, while a function in H is H =2 in the vertical

direction. Hence, we have to deal with products of distributions in 32%_1 xH" 2,
which is known to be the “bad” critical case for product laws (see, e.g., The-
orem 2.52 page 88). In order to bypass this ultimate difficulty, we introduce
the seminorms

1
def s 2 def i ,
ol oy & (S 1a5als ) and (ol S 2 AL Aol

=
We note that as ¢1(Z) is included in ¢%(Z), we have
2 2 < 2
ol oy, + PIVRI2, oy < Cllal g (6.33)
2 2 2
91w + V1T < CIBIE 3y (6.31)

The key to the proof is the following lemma, which we will temporarily assume
to hold.

Lemma 6.34. Let a and b be two divergence-free vector fields such that a
1

and Vya are in H>2 N'H, and b is in B, N L} (L) with Vb € B,. We

assume, in addition, that ||al|?, < 27'5. We then have

v
|(b- Vala)y | + |(a- VEla)y| < 5 Vaalit + Cla, b)u(llaliz,)

with p(r) dzefr(l —log, 1) logy (1 — log, r) and

def C

C(a,b) =

18124 1)\ | C
D) 2 (1 [bllE,)

2
613 0y (14—

1o
<) (I3, IVRbIE, + lall20, IVnall, ) -

v2

14 v

x(1+
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Thus, we have

def

1317 < / FE)u(8(t)17,) dt’ with f() = C(ua(t), (1)) + Clua(t), 8(t)).

Lemma 6.21 and assertions (6.33) and (6.34) collectively imply that f €
L([0,T]). The uniqueness then follows from Lemma 3.4 page 125. ad

Proof of Lemma 6.34. As both terms may be treated similarly, we focus
on (b-Vala)s. Using a nonhomogeneous Bony decomposition in the vertical
variable, we may write

AY(b-Va) =Ty"Va+ R"(b,Va) with

TVVa defZS b VAYa and RY(b,Va) 3T Apib. vyl a.
4

As usual, we shall treat the terms involving vertical derivatives in a different
way than the terms involving horizontal derivatives. This leads to
AV (TY'Va) =T + T  with
T A ST g v,Aya and TP S A ST gy by
li—£1<5 li—€1<5

By the definition of the space H and using the anisotropic Holder inequality,
we get

17" < COlbllsg ey Y IViAYallr2
li—t<5

< C¢;22 ||b s (poe) | Vel

4
L} (L3)

We immediately infer that
ors i Vi
(T"AYa) 2] < Ce;22[[bl pa (o) [ A all 2 (22 | Vnal |-
As we have
147 allZs 12y < CllAT all L2 [V AT al 2, (6.35)
we get

. . 3 1
> 27(TAY a) 2] < ClIbll Lt (1) [ VnallFllall - (6.36)
i

Estimating (7;°|AY"a) > is more involved. We write
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3
:Zyg

283
with
v, def Vi Vi
TS S b5 A
702 LS (av gy 10, A7,
li—1<5

and

7;1) 3 d:ef Z (S;ilbg _ Sm’ 1[)3)83AMAM
li—21<1
In order to estimate 7", we perform an integration by parts and obtain
TU,l A'ui . ]‘
( j | j a)pz =

2/ S'uz 1(93()3 (sz )
Using the fact that 050>

variables, we get

— divy, b and integrating by parts in the horizontal

(T AYVa) 2 = — / SV b VAV a AV da.

Now, arguing as we did in proving (6.36), we end up with

. 1
D 27T A a) e <C||bHL4(L2)||VhaHH||aH721
i

(6.37)

In order to estimate the commutator, we use Taylor’s formula. For a function f
on R3, we define the function f on R* by

1
~ def
Flos) < [ fana 4 7l = 20))d
0
Then, defining h(x3)

xzh(zg), we have

T” Z / (27 (23 — y3

|7—£|<5

) (8571 050%) (2, y3) D3 A7 awn, ys) dys.
Using the fact that b is divergence-free and the fact that Vi f = Vj, f, we infer
that

7}”’2 Z /h (27 (3 — y3
|7—2|<5

) divy, (S¢210M) (2, y3)03 A} alwh, ys) dys.

Integrating by parts with respect to the horizontal variable, we then get
that (77" 2|A§’a)L2 is equal to the sum over £ € {j — 5

yeersj+ 5} of
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/ h(27 (w3 — y3))(SY 1 b") (2, y3) 05V AY a(z, yg)A;?ia(x) dx dys
]R4

+ | B2 (s — ) (ST 0 (@, ) Bs AV an, ys) Vi AL a(w) da dys.
RAL

As we have ||b(zp, -, y3)llLse < [|6(2h, )|z, we infer that

‘(7}1;,2

A?ia)Lz

< C2 bl o (1959 allz2 ATl nz)
[€—j1<5

+ 10547 all g (1) |V n A a2 )

<COlbllpsesy Y, IVadiialll|AYalLsre).
le—3j1<5

Using (6.35), we get that

. . 3 1
> 27 (T2 AV a) 2] < Clbll s ooy IVnallFllallZ, (6.38)
J

The estimation of ’]}"’3 is based on the following observation. For any diver-
gence-free vector field u, we have, from (6.30),

Apud(z) = / 0" (2 (x5 — y3)) ALDsu® (wn, vs) dys
R

—dth/g”(ZZ(xg — y3)) A" (z, y3) dys
R

—2~ div), AYu” (6.39)

with A~§ def @(27*D3) for some suitable smooth function @ supported in an

annulus.

Note that if j > 2, then the term Sp* b% — S’;?ilb?’ which appears in 7}”’3
reduces to just A¥'b* or A ,b%. Thus, using (6.39) and integrating by parts
in the horizontal variable, we get

(T3 A% a) e = S 2€'<(A; (236"n 27 Ap0ga) | Aj'a)
t'e{j—2,5}

=<1
+ (43 (Apb" Ay Ap04a) ‘th;%ia)).

Now, following the lines of reasoning which led to (6.38), we get

Z 2—]“(7}1),3

=2

. 3 1
AYia) 2] < Clbll g uo IVnallflalli. (6.40)




6.4 The Proof of Uniqueness 285
If j <1, we observe that
(T AT a) 2| < ClIbllLs Loy [ Vnall x|l alla.

Combining this with the inequalities (6.36)—(6.38) and (6.40), we end up with

. 3 1
[(Ty*Vala)w| < Clbll s (o) [ Vaallllallf + 1l Ls o) [[Vrall#llall2.
From the convexity inequality
af < ba’ + (1—60)3T0 (6.41)

for 0 =1/4 and 6 = 1/2, we infer that

vl 1
(T Valalred < o190l + 1B ey (1 D0 ) )l

To bound (RV(b, Va)|a)z;, we have to deal with the fact that the sum of the
indices of the vertical regularity is 0. Again, we separate the terms involving
vertical derivatives from the terms involving horizontal derivatives. This leads
to

A})z‘Rvi(b Va) — ’Rf? + ’R,V + RQ with
RI def Ay Z AP -V, SE o0,

£(j-3)*t
Rv d_ef Am Z Amb3sé+283a’
£>(j-3)*
0 def

RY AV (g - VSya).

We first estimate R?. It is obvious that if j is large enough, then R? =0. We
thus have

(R A% a) 53] < Clbllzs 1 [ Vnallelialln
C
< I Vnall + b3 e lall

Bounding R;‘ relies on the following lemma.

Lemma 6.35. A constant C exists such that for any p € [4, 00|, we have

. 1-2 )
Al e 2y < Cejy/p2 2 |IblIG, IVabllg,”  for all j > 0.

Proof. By the definition of || -
in [4, 00l,

B, and using Lemma 6.10, we have, for any p
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J _2 j—k
25| AV p 12y < C Y 2K 2)2 | AR AV a1

k<N
_2k =k v
+C Y 2772 |ARAT Vbl (na)
k>N
_2 __ 2k
< Cllbls, S 2"0- ey + CIViblis, S 27 % ey
E<N k>N

Using the Cauchy—Schwarz inequality, we deduce that

Q%HA;}bHL‘Z(L%) < C(Z ci)j)% (b||5u (Z 22’“(1*%))%
k

k<N

+19le. (2 ¥))

k>N

<c(X Ci,j)%(llbl\sﬂN(l*%) 1 9ablls, B2 )
k

< Ce; (108,270 72) + | Vablls, P2~ 7).

Vib
% then gives the lemma. a
B“,

We now derive a first estimate for R;l which takes care of the high vertical
regularity of a. Using Lemmas 6.10 and 6.35 we get®

Choosing 2V ~

IREN 5, <C25 ST AR ViSEipal s

rha) o by
<02 Z AP | 1 (22) [ VRSE 00l 2
£>(j—3)"
j 1 1
< 025 (32 ) IBlI&, I Vnbllz, IV nalle
¢

Using (6.35) we then infer that

v 3 1 L Vi
(R}AY a) 2| < ClblI, IVablI, IVhalln 22 | A all g (12)
1 1 1 1
< CIpIE, IVablE, IV nalbalall®, , [ Vnall?, 1 (6.42)
We shall now estimate R? using only the fact that a and Vja belong to H.

This may be done by taking advantage of Lemmas 6.10 and 6.35. For any p
in [4, co[ we get

3 Below, (j — 3)" means max (0,5 — 3).
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IR 2 <28 N AU VS al
) . L2 (LY)
2(-3)* "
J
<028 N AR ()| VRSl e

£2(3=3)*

< 024 (3 &) v lbla, IV blls, " Vaall.
4

By interpolation, a constant C' exists (independent of p) such that, for any p
in [4, 00[, we have

. .o 1-2 . 2
145" all 2o, < CllATallL. " 145" Vhal L.
h

v

Thus, we get
h| AVE i > 1-2 v 1-2 vi :
|(Rj145 a) 2| < C22/p|bllg, [IVadlls, " [ Viallxll AT all . * | A7 Vhal
I 19t R el
< Cc;2y/plblig, IVabllg, " llally " Vrally - (6.43)

Using the estimates (6.42) and (6.43), we infer that for any positive integer M
and any p in [4, 0o,

Y 27IRYAV )z = Y 2 |(RYIAT @) 2| + Y 27 |(R|AY ) 1]

J 0<j<M j>M
A 1 1 1 1
<C( X 27) IbllE IVablig, I Vnalsdllal, , 1Vnal 2,
i>M
2 1—2 1—2 1+2
(X0 ) VBIBIE Vbl " lally " [ Vhall
0<j<M

Using the Cauchy—Schwarz inequality, we obtain

. . 1 1 1 1
Y 27|(R}IAY )2 < C2 M llg, 1VbllE, [ Vnallrllall .,y [Vaall?,
i

1 2 1—2 1—2 1+2
+M)=([bll5, [Vidlls, " llally " Vhally "

Using the convexity inequality (6.41) with § = 1 and with 6 = %, we deduce
that

—7 vi v C ] p%
> 27 |(R}|4; a)L2|§1—0||Vha||31 + g (PM) 7= 16115, Vnbll3, llal3
J v
+€2_2M||b||6u||Vhb||Bu||Vha|| otllall o1
14 H H

Assume that M > 16. As p is in [4, 00, we can choose p = log, M. We infer
that for any M > 16, the sum Z2‘j|(R§L|A}’ia)Lz| is less than
J



288 6 Anisotropic Viscosity

v Cc __
1—0||Vha||?;1 + -2 M6, V0l 5,V Rall o 3 lall o 3

011 1]/
+ B (14 B VbR, lal} M logy M
If |a|l < 27, then we can choose M such that 2™ =~ ||a||s. This gives
_j i v
Y 27(R}A )] < 1olIVaallt + Ci(a, b)u(lallz) (6.44)
J
with

def C
Ca(a,b) E b5, IVablls. 1 Vaal o3 lal o1

51135, 5115,
+ B (1 B VbR,

We now estimate (RY|AYa) 2. First, we use (6.39). Together with integration
by parts in the horizontal variable, this gives

(RY|AYa)r2 = R (a) + R *(a) with

def — Vi AV v vi
R;{J(a) = Z ot (Aj (A" - V0387, 0a)|A] a>L2 and
>(j-3)*
Yoo (A;i(Agbhags;Ha)|th;ia)Lz

£2(j-3)*

RV (a)

J

Having observed that for any u € H 0.3 N 'H, we have

10552012 < Cce2” |Jully  and  ||05SVullzz < Cep2? ||ul| (6.45)

HO’%’

by following exactly the lines of reasoning which led to (6.44), we find that

2 2R @l < LIV nal, + Cu(a, bl aly). (6.46)

We now estimate ’R}”z(a) by using the fact that a and Vja are in HO3, Using
Lemma 6.10, we get

| AV (AGb" 0557, pa) || L2 < C23 (| AFb 058, 50l 12 (1
< 02%HAEbhHL;‘l(L?)||8352+2a||L 1(12)-
From (6.45), we infer that
v 2 1 1
H635€+2a”L;‘L(L3) < Ccep22 thaH;Io,% HG’H;U,%'

Lemma 6.35 applied with p = 4 then leads to
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v,2 j - 3 3 3 3T o—d| Avi
Ry (@) < €2 (3 27 )IBIZ, IVabllE llall 2, , [Vnall?, , 2731147 Vnalls

£>5j—3

o3 IVhall?, Ll Vaall. (6.47)

0,% ‘
Finally, we estimate |7€;’2 (a)| by using the fact that a and Vja belong to H.
Lemma 6.35, applied for any p € [4, 0o[, together with (6.45), gives

| AV (AFH 0357, 50) 12 < C2H|AP] 1p 13 1955 20l e, 2 )
l

J > -2 2 2
< Cﬁdz\/ﬁllb\\éullvhb\lsf lally, * IV aall,.
Thus, we deduce that

02 e T T
Ry (@) < Cc2? VB [bl14, Vbl * lally * | Vnalls

Using (6.47) and following exactly the same lines of reasoning which led
o (6.44), we get that

—J V| AVE v
> 2R} 1A a) ] < 1511V mallf + Ci(a, bla(lal3y). (6.48)
J

This proves Lemma 6.34. O

6.5 References and Remarks

For a more complete discussion of the geophysical considerations leading to
the anisotropic Navier—Stokes system, the reader is referred to the book by
J. Pedlosky [248] or the introduction of the book by J.-Y. Chemin et al. [75].

The use of anisotropic Sobolev spaces is not recent in the study of par-
tial differential equations (if we have in mind boundary value problems); see,
for example, the book by L. Hormander [166]. An anisotropic paradifferential
calculus was constructed by M. Sablé-Tougeron in [255]. Anisotropic Sobolev
spaces were introduced in the context of the incompressible Navier—Stokes
system by D. Iftimie in [172]. The study of the anisotropic incompressible
Navier—Stokes system was initiated by J.-Y. Chemin et al. in [74] and D. If-
timie in [173]. The first sharp scaling invariant result was obtained by M. Paicu
in [244], wherein he proved local existence for any divergence-free data in B%z
and global existence for small data. Uniqueness was obtained in the class of
solutions which belong to L>([0,T]; H%z2) N L3([0,T]); H"2) [which is not
comparable to our space BZ%’% (1))

Except for the first section, all the material in the present chapter is
borrowed from the paper by J.-Y. Chemin and P. Zhang [78]. The key
Lemma 6.34, however, was first proven by M. Paicu in [244].

Finally, we note that it is possible to prove a local version of Theorem 6.16

for any (divergence-free) large data in B, 2’2






7

Euler System for Perfect Incompressible Fluids

This chapter is devoted to the mathematical study of the Fuler system for
incompressible inviscid fluids with constant density:

ow+v-Vv=-VP

(E) dive =0
’U|t:0 = 9.
Here, v = wv(t,z) is a time-dependent divergence-free vector field on R?

(d > 2). The scalar function P = P(t,z) may be interpreted as the La-
grange multiplier associated with the divergence-free constraint. From a phys-
ical viewpoint, v is the speed of a particle of the fluid located at x at time ¢,
and P is the pressure field.

The choice of R? instead of the more physical case of a bounded domain
is for the purposes of simplicity (since we shall mainly use tools coming from
Fourier analysis). Of course, the results that we shall present here carry over
to the case of periodic boundary conditions.

The vorticity {2 def Dv — Vv (where Dv stands for the Jacobian matrix of
v, and Vv stands for its transposed matrix) plays a fundamental role in incom-
pressible fluid mechanics. Indeed, on the one hand, {2 satisfies the following
linear transport-like equation:

0 2+v-VR+ 2 -Dv+Vou-2=0. (7.1)

On the other hand, owing to the fact that dive = 0 and Z;l:l 8]'(2;- = Ao,
the vector field v may be computed in terms of {2 by the formula

’I}i = —Z@-Ed * Q;,
J
where E, stands for the fundamental solution of —A. In other words, we have

v@=aY [ 2 ol a 72

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential 291
Equations, Grundlehren der mathematischen Wissenschaften 343,
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+oo
with ¢q def L+d/2) and I'(s) dZEf/ ts~let dt for s > 0.
d7d/2 0
The above relation is sometimes called the Biot-Savart law. The coupling
between (7.1) and (7.2) is called the vorticity formulation of the Euler system
and is formally equivalent to (E).
In dimension three, the skew-symmetric matrix {2 may be identified with

the vector field w = V x v and the vorticity formulation becomes

Ow+v-Vw=w-Vuv with (7.3)
_ 1 [ (z—y) xwly)
v(x) = yy /]RS P dy. (7.4)

In dimension two, the vorticity may be identified with the scalar function w def

01v% — Oov' so that the vorticity formulation reduces to'

) _ ; _ 1 (z — Z’/)L

w+v-Vw=0 with v(z)= o /]R2 Wm(y) dy. (7.5)
Due to the fact that dive = 0, this implies that all the LP norms of the
vorticity are conserved by the flow. As we shall see below, this is the main
ingredient for proving the global existence of the two-dimensional Euler sys-
tem. In dimension d > 3, however, the vorticity equation has an extra term
(the so-called stretching term) so that one cannot expect any global control
for the LP norms of the vorticity. This is one of the reasons why, until now,
no global results have been known for general data in dimension d > 3.

This chapter unfolds as follows. In the first section we prove local existence
and uniqueness for the Euler system in general nonhomogeneous Besov spaces.
Global existence in dimension two is addressed in Section 7.2. Section 7.3 is
devoted to the study of the inviscid limit for incompressible fluids. The more
specific case of vortex-patch-like structures in dimension two is postponed to
Section 7.4.

7.1 Local Well-posedness Results for Inviscid Fluids

In this section we are concerned with the initial value problem for the Euler
system in dimension d > 2. Before stating our main result, we introduce the
set L3 of measurable functions u over R? such that

[l s def su _Ju@)] < oo with (x) def /1 + |z|?.
cera 1 +log(z)
The set L° endowed with the norm || - || is obviously a Banach space.

! In what follows, it is understood that z+ = (=22, 2') if z = (2, 2?).
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We can now state the main result of this section.

Theorem 7.1. Let 1 < p,r < 0o and s € R be such that> B, — OO,
There exists a constant ¢, depending only on s, p, r, and d, such that for all
divergence-free data vy € B;T(Rd), there exists a time T' > ¢/||vol s such

that (E) has a solution (v, P) on [T, T] x R? satisfying

v, VP € L™([-T,T};B;,) and P e L>®([-T,T);L' + L).

Moreover, if (U, P) also satisfies (E) with the same data and belongs to the
above class, then v =v and VP = VP.

Finally, if r < co (resp., r = ), then v and VP are continuous (resp.,
weakly continuous) in time with values in By, .

Remark 7.2. In Sections 7.1.5 and 7.1.6 we shall state a more accurate unique-
ness result and a blow-up criterion. Global results in the two-dimensional case
will be proven in the next section.

Remark 7.3. We should also point out that in the case 1 < p < oo, we can
define the pressure P such that P € L>([-T,T}; B51').

We shall first provide some guidance concerning the reading of this section.
As explained in the introduction, the vorticity and the way the velocity can
be computed from the vorticity (the Biot-Savart law) play a fundamental
role in the study of the Euler system. For that reason, the first part of this
section will be devoted to the Biot—Savart law. It is well known that dealing
with the pressure term is one of the main difficulties involved in solving the
Euler system. However, it turns out that for sufficiently smooth solutions with
reasonable growth at infinity, the pressure may be computed in terms of the
velocity field, leading to the study of a modified Fuler system. Estimates for
the pressure will be given in the second part of this section, whereas the
modified Euler system will be solved in the fourth part. In the third part,
we give conditions under which the standard Euler system and the modified
Euler system are equivalent. The study of uniqueness is postponed to the fifth
part. In the final part, we give continuation criteria for the standard Euler
system.

7.1.1 The Biot—Savart Law

In dimension two, the vorticity is preserved along the trajectories so that the
way we can deduce information about the vector field from information about
the vorticity is obviously fundamental. In fact, even in dimension d > 3 the
question of global existence of the Euler system is intimately entangled with
the control of the vorticity.

2 That is, s > 1 +d/p,or s=1+d/pand r = 1.
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Throughout this section, it is assumed that the divergence-free vector
field v over R? is computed from the vorticity {2 according to the formula (7.2).
We aim to prove various estimates for the velocity in terms of the vorticity.

We begin with a straightforward estimate.

Proposition 7.4. If 1 <a <d < b < oo, then
[vllzee < ClL2]| Lenre-

Proof. We can split R? as {y ¢ R? /|z —y| <1} U{y € R? / |z —y| > 1} and
use convolution inequalities to bound the integral in (7.2). O

The next estimate that we shall give is much harder to prove. It relies on
the fact that the map 2 — Vv is a Calderon-Zygmund operator. As a con-
sequence, we get the following fundamental estimate that we shall assume
throughout this book.

Proposition 7.5. There exists a constant C, depending only on the dimen-
sion d, such that for any 1 < p < oo and any divergence-free vector field v
with gradient in LP, we have

P2
[Vo][rr < C——||92]|».
p—1

The above inequality turns out to be false in the limit cases p = 1 and p = 0.
In particular, even in dimension two, we cannot find a constant C' such that
the inequality

IVllzee < Cllwl[praze

is true for all divergence-free vector fields v satisfying (7.2).% However, v is
quasi-Lipschitz in the sense of Definition 2.106 page 116: For any finite a,
there exists a constant C' such that

[ollze < Cll82]|Lanree. (7.6)
This is a consequence of Proposition 2.107 combined with the decomposition
Vv=A_1Vv+ (Id fA_l)Vv
and the following lemma.
Lemma 7.6. For any a € [1,00[ and b € [1, 00|, we have
A1Vl e < Cil[2]za and  [|A1 VY| < Colfv]|ze

with Cy depending only on a and d, and Cy depending only on d.

3 For example, if we take for w the characteristic function of the square [0, 1]?, then v
is not Lipschitz. In fact, Vv blows up as the logarithm of the distance to the corners
of the square. See [69] for more details.
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For all s € R and 1 < p,r < oo, there exists a constant C' such that

|(1d—A_)Vols,, < ]2

SO
BPJ"

Proof. That ||A_1Vv| e < C|lv||1s follows from Bernstein’s lemma. Further,
in the case 1 < a < oo, Proposition 7.5 yields ||A_1Vv| ;. < C||A-182Le,
from which follows the desired bound for [|A_;Vv||;, according to Bern-
stein’s lemma. In the case a = 1, we can still write

JA-1 Vol < C ATl 2 < C AL 22 < C €2 -
To prove the last inequality, we may write*

(1d-A_)Vo' = 3 By(D)2; with B,(D) % —(1d—a_,)|D|?v4,.
J

Because the operator B;(D) is an SY-multiplier, the desired inequality is a
consequence of Proposition 2.78 page 101. g

Finally, if the vorticity has enough regularity, then v has to be Lipschitz. More
precisely, we have the following result.

Proposition 7.7. Let s € R and 1 < p,r < oo satisfy s > 1+ d/p. If, in
addition, v € LY for some b € [1,00] or 2 € L for some a € [1,00], then
there exists a constant C' such that

. [142] Byt
IVl < € (min(lo]ze, 2] ) + 2]~ log (e + T2 ) )
127~

Proof. We decompose Vv into low and high frequencies:
Vv=VA_jv+ (Id — A_l)V’U.

The first term may be bounded according to Lemma 7.6. For the second term,

we use Proposition 2.104 page 116. As ¢ def s—d/p—1>0, we can write

[(1d = A_) Vol )
(4= 2 1)Volp _

[(Id=A_1) Vo[, < CI(Id=A_1)Vo| gy, __ log (e+

Next, by virtue of Lemma 7.6 and the embedding L> — B

o o0y WE may write
.

H(Id—A,l)VUHBgcm <C|92||,~ and ||(Id—A,1)VvHBgOW < CHQHB;,W-
Since, in addition, B;;l — B%, «» We get the desired estimate. a

4 Here, |D|~? stands for the Fourier multiplier with symbol |¢|~2.
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7.1.2 Estimates for the Pressure

We first explain formally how the pressure may be computed from the velocity
field. First, we apply div to (F) and get, as the vector field v is divergence-free,

—AP = div(v - Vv) = tr (Dv)2.
Therefore, we must have
VP =Vdiv Eq  (v- Vo) = VEg * (tr (Dv)?).
This induces us to set VP = II(v,v) with
(v, w) = I (v,w) + Iy (v,w) + H3(v,w) + 4(v,w) + s (v,w) (7.7)

and, denoting by 6 some function of D(B(0,2)) with value 1 on B(0,1), we
have

I (v,w) = V|D| 2Ty, ,; ;w’,

IIy(v,w) = V|D|*Ty, i v,

Hg(’(), ’LU) = VID|728183(I(1 — Afl)R(’Ui, wj),

H4(v,w) = 9Ed * V@ic’)jA,lR(vi,wj),

ITs(v,w) = V&,0;Eq  A_ R(v',w’) with E, % 1 0)E,.

In the above formulas, as in the rest of this chapter, the summation convention
over repeated indices is used.

This subsection is devoted to estimating the bilinear operator II in various
function spaces. We first state LP bounds.

Lemma 7.8. Let 1 < p < oco. Assume that v is divergence-free. There exists
a constant C, depending only on d and p, such that

1@, 0)llzr < Crin([vll g 12020, 0] [90] )-
Proof. Tt suffices to note that if dive = 0, then
II(v,v) = Vdiv|D| (v - Vv)
so that, according to the Marcinkiewicz theorem,
I (v, )]s < Cllv- Vol Le.

Applying Hoélder’s inequality and Proposition 7.5 then completes the proof.
O

Lemma 7.9. For all s > —1 and 1 < p,r < oo, there exists a constant C
such that

I (v, w)]

By, < C(llvlconlw]

P,

By, + [wllcoallvls;,)-
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Proof. We first note that the first three terms of IT(v, w) are spectrally sup-
ported away from the origin. Hence, in the definitions of Iy, Ils, and II3,
the operator V|D|~2 may be replaced by an S~!-multiplier, in the sense of
Proposition 2.78. Further, by virtue of Theorems 2.82 and 2.85, if s > —1,
then we have

| T, i 0; wiHBb 1 <OV o [|Vw]

1T, w0 WI\Bg 1 <OVl [[Vol
[ R(v, w)]

Bi7L

BG 17
B! SOHUHB;,QCHWHB;,T'

Hence, I, II5, and II3 satisfy the desired inequality.

Next, since I14(v,w) and II5(v,w) are spectrally supported in a ball, it
suffices to bound their LP norm. Because §E; € L', we have, by virtue of
Young’s inequalities and Bernstein’s lemma page 52,

[4(v, ) l|ze < 10Eall 22 [V0:0; A1 R(v", w) || Lo
< Cll0Eal 1 [| A1 R(v, w)|| »
< Cl0Eq| L1 || R(v, w)|
< ClOEq|| L2 |[vll 1,

B!

As V&-ajEd is in L', similar computations yield the desired inequality
for IT5(v, w). O

Lemma 7.10. Let 1 < p,r < oo and 0 < e < 2+ d/p. We have

)-

Proof. The proof is very similar to that of the previous lemma. First, owing
to the spectral properties of IT;(v,w) (i = 1,2,3) and the continuity results
for the paraproduct and remainder, we have, if 0 < e < 2+ d/p,

HT (o, wll a-c < C(llvlco. il gpe +lwllpee [Vl

p,T p,T

?ma

7—57

IIUl(v,w)IIBl erg SOVl V]l g
IIHz(v,w)IIBlfﬁg < OVl g e MIIVUII

p,T PT

[ s(v,w)l| 1 pa < Cllollpy, Mwll 4 cpa.

By, P : By P
The last terms, II4(v,w) and II5(v,w), may be treated by arguing as in
Lemma 7.9. o

Lemma 7.11. Let 1 < p < co. There exists a constant C, depending only on
d and p, such that if dive = 0, then

1,0l 2-g < Ol + 1ol o ) 120120
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Proof. Owing to the fact that the low frequencies of b are not involved in
the definition of the paraproduct T,b (see Remark 2.83 page 103) and that,
according to Lemma 7.6,

[(Id=A_1)Vollpy, < Cl2] 1,
applying Proposition 2.82 yields

(v, )| e + [[H2(v,0)]| —a <[V _a (2] - (7.8)
Boo, % Boo, % Booso
Because o
II3(v,v) = —V|D|728i(ld — A_1)R(9;v",07)

_d
and B;’Oo — Bio7<§’o, we have

M3, 0) i-g < ClllTs(v, )5y < Clivlisy, NVYllLr-
Note that it is enough to bound the L* norm of IT4(v,v) and of IT5(v,v).

Hence, those two terms satisfy the same inequality as IT3(v,v).
Finally, Proposition 7.5 and Lemma 7.6 ensure that

IVolle < CllQlle and  |ollpy, < C(lvllp~ + 121l ~)- (7.9)
This completes the proof of the lemma. ad
In the case where v is divergence-free, we expect that div IT(v,v) = —tr (Dv)?.

This is a consequence of the following lemma.

Lemma 7.12. Let 1 < p,r < oo and s > 1. There exists a constant C' such
that

| div T (v, w) + tr(Dv Dw)|| o-s

< (|l divellpy, _u

By, + I divw| e, _ [lv]
In the limit case s =1 we have
| div I (v, w) + tr(Dv Dw)|| o __
<c(ldivellsg _llwlpy, + I divelsy ol )-
Proof. From the definition of II we get
—div IT (v, w) = Ty, 050" + Tajwiaivj + 0;0; R(v7, w").
Hence, after a few calculations we get
—divII(v,w) = tr (Dv Dw) + §; R(divv,w") + R(v", d; div w).

The desired inequalities thus follow from continuity results for the remainder
operator (see Proposition 2.85). a
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Note that by construction, if v and w are suitably smooth, then I7 (v, w) is the
gradient of some tempered distribution. Indeed, for ¢ = 1,2, 3,4 it is obvious
that IT; (v, w) = VP;(v,w) with
P (U, w) = |D|_2T3wj @»wﬂ P3(U, w) = |D|_28i(’)j (Id - Afl)R(Ui, wj),
Py(v,w) = |D| Ty, i 0507, Py(v,w) = 0E, % 0;0; A_1 R(v*, w?).
If, in addition, A_; R(v,w) belongs to some L space (which is of course the
case if, say, v € By . with s > —1 and w € C"!), then IT5(v, w) is the gradient
of some smooth function Ps(v,w). Moreover, if 1 < p < 0o, as the operator of
convolution by 0;0;E, is a Calderon—Zygmund operator, we may write

IIs(v,w) = VPs(v,w) with Ps(v,w) = 81-[“)]'57(1 *x A1 R(v', w?),
and, owing to the spectral localization, we find that Ps(v,w) belongs to any
space By . with o € R.

Since D?Ey is not an integrable function, however, in the case p = 1 or
00, expressing Ps(v, w) in terms of v and w requires some care. Therefore, we

set
Z ZL’” RV, w)),

1<i,j<dm=1

where the operators L”, ij, and Lf’j are defined by

def

L (u)(x) aaﬁd(xf )0(x<;>y)U( y) dy,

12, (u) def/ /R *0,0,0, Ba(tz — )(1—9)(“; >y)u( y) dy dt,

<
L3 (u / /Rdxé?(’)Ed )aak{ }u ) dy dt.

Obviously, if u is a continuous, bounded function, then

V(L (u) + L3 (u) + L () = Vi, Eq * u.

Furthermore, the operators L} are continuous from L to L7°, as the follow-
ing result shows.

Lemma 7.13. There exists a constant C such that for m in {1,2,3} and (i, j)
in {1,...,d}%, we have, for any bounded function u,

Vz e RY, |LZ‘(u)(x)| < O(1+ log(z)) f|ull Lo~

Proof. We obviously have
L@@ < Clule= [ el
1<]2<2(x)

hence Lj;(u)(x) satisfies the desired inequality.
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Next, using Fubini’s theorem and an obvious change of variables, we get

1
L @) < Clule~ [ [ gy
| ! | 0 J|te—y|>max(1,(tx)) |t.’t - y|d+1

=l
< C’||uHLoo/ / dtdx
|z|>1 Jte[0,1] / |z|> (ta) |Z‘d+1

mm(l 2] )
el || dz
< Cllu oo/ </ dt)

o= | (] B

< Cllul = (1 + log(z)).

Finally, we note that due to the support properties of Ed and V@, the in-
tegration in the definition of L$;(u)(x) may be restricted to those (t,y) for
which

Itz —yl _,

[tr —y| >1 and 1<
tx

Since, for such (¢,y), we have

a%(t?t;y) = <_§>

the same argument as for L}j (u)(z) leads to the desired inequality. a
5
Setting P(v,w) = Z P;(v,w) and using continuity results for the paraprod-
i=1

uct, remainder, and Lemma 7.13, we end up with the following statement.

Lemma 7.14. For any 0 € R, 1 < p,r < o0, define

W Bo i 1<p<oo,

_ E;T
~ d
- Be, Y iueny, + Ly ) Vue BT

def 1
= Btlfj: + nq>1 ﬂsER Bgﬂ”'

There exists a bilinear operator P such that II (v,w) = VP(v,w), and

~0'
- Bl,r

— if v,w are in CO' N B, . for some s > —1, then
1P(v, w)ll g < C(lvllcos wllsg , + lwlicorllvls; )
~ if v,w are in BY, ., N B5 . for some s >0, then

1P, w)llg, <C(lvllsg,  Nwlsy, + lwlse,  lvls;,)-
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7.1.3 Another Formulation of the Euler System

In the previous subsection, we gave conditions under which the gradient of
the pressure may be computed from the velocity. This motivates our studying
the following modified Fuler system:

(E) 0w +v-Vo+ II(v,v) = 0.

This new formulation is easier to deal with since only the vector field v has
to be determined. Since we are ultimately interested in solving the Cauchy
problem for the true Euler system (F), however, it is important to find con-
ditions under which solving (E) does provide a solution for (E). This is the
purpose of the following proposition.

Proposition 7.15. Let (v, P) satisfy (E) on [T1,Ts] x R?. Assume that for
some s >0 and 1 < p,r < 0o, we have

ve L[, To); By . N B, ) and P e L'([Ty,To); L'+ LY).  (7.10)

Then, v satisfies (E) and VP = II(v,v).

Conversely, assume that v € L>®([T1,Tz]; B, ) satisfies (E) on [Ty,Tb]
with s sufficiently large enough that By , — COL. If, in addition, divv(ty) = 0
for some ty in [T1,T5], then (v, P(v,v)) satisfies (E).

Proof. We begin by proving the first statement. Applying the operator div to
the Euler system (F), we get, for all ¢ € [T, T5],

—AP(t) = div(v(t) - Vo(t)) = —AP(v(t), v(t)).

Hence, P(t) — P(v(t),v(t)) is a harmonic polynomial. Note that the assump-
tion (7.10) and Lemma 7.14 guarantee that P(t) — P(v(t),v(t)) is in L' + L%°
for almost every ¢t € [Ty, Ts]. Hence, P(t) — P(v(t),v(t)) depends only on ¢.
This entails that VP = IT(v,v).

We now prove the second part of the proposition. Because B, , is con-
tinuously included in C%!, Lemma 7.14 ensures that IT(v,v) is the gradient
of P(v,v). In order to conclude that (v, P(v,v)) satisfies (E), however, we still
have to check that the vector field v is divergence-free. This may be achieved

by applying div to (F). We get
(0; +v - V)dive = —div IT(v,v) — tr (Dv)?.

Assume for simplicity that [T7,73] = [0,7] and to = 0. If s > 1, we then
deduce from Theorem 3.14 that for all ¢ € [0, T,

t "t 17
| divv(t)] - g/ eC lirlIvle; . dt | div I7 (v, v) + tr (Dv)?|| g dt’. (7.11)
5 0 37

r

Now, according to Lemma 7.12, we have
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|| div II (v, v) + tr (Dv)2||B;;1 < Clldivo g [lvllB;, < Clldivol|gs-sllv] 5; , -

Plugging this inequality into (7.11) and using Gronwall’s inequality, we con-
clude that divv(t) = 0 in B! for all ¢ € [0,T7].

In the limit case where s =1, due to By, — C%', we must have p =
and r = 1. Then, using the last inequality of Lemma 7.12 and performing the
estimates for divv in the space L>*([0,T}; BY, ), we still get divo =0. O

7.1.4 Local Existence of Smooth Solutions

This section is devoted to the proof of the existence part of Theorem 7.1. We
first state the local existence for the modified Euler system.

Proposition 7.16. Let 1 < p,r < oo and s € R be such that B, , — oo
There exists a constant ¢, depending only on s, p, r, and d, such that for all
initial data v in B;,.(Rd), there exists a time T' > c/||vo| B, such that (E E)
has a solution v in L>([-T,T}; B, ,.).

If r < o0 (resp., r = o0), then v is continuous (resp., weakly continuous)
in time with values in By ,.

The proof relies mainly on estimates for the transport equation and on Lem-
mas 7.9 and 7.10. It is structured as follows:

— First, we inductively solve linear transport equations so as to get a se-
quence of approximate solutions.

— Second, we prove local a priori estimates in large norm.

— Third, we prove the convergence in small norm.

— Finally, we pass to the limit in the equation.

First Step: Construction of Approximate Solutions

In order to define a sequence (v™), ey of (global) approximate solutions to (E),
we use an iterative scheme. First, we set v = vg, then, assuming that v™
belongs to L75.(R; By ,.), we solve the following linear transport equation:

{@v’”l +o" - Vot = [T(v", v")

n 7.12
’Ult:o = 9. ( )

Since v" € Ljo (R; Bs ) and Bj, — C%!, Lemma 7.9 ensures that II(v"™,v™)
belongs to L (R; BS ). Therefore, Theorem 3.19 provides a global solu-
tion v to the equatlon (7.12) which belongs to Ljs.(R; B, ,.).

Second Step: A Priori Estimates

Combining Lemma 7.9 with Theorem 3.19 yields, for all n € N and ¢t € RY,
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t
”UnJrl(t)HB;m < eCVn(t)<||UO| B, +C/ e~ CValt )(Vé(t/))Q dt/)
0

def [*
with V(1) % / Jon () 15, dt".
i |

A similar inequality holds for negative times. Hence, arguing as in the proof
of the existence for the Camassa—Holm equation in Chapter 3, we deduce that
for all n € N,

[vollBs.,
1 —2C[t[|[voll B3,

whenever 2C|t|||vg]

0" ()l B;, < By, <1 (7.13)

Third Step: Convergence of the Sequence

Let us fix some 7' such that 2CT|[vo|ps, < 1. Let (m,n) € N?. By taking
the difference between the equations for v”+t™*1 and v™*!, we find that

(at + ,Un+m . V)(,UnerJrl _ Un+1)
= (v — ™) Vot 4 [T (" — T ), (7.14)

We first consider the case where s > 1. We claim that (v™),en is a Cauchy
sequence in L ([-T,T); B;;l). Indeed, Lemma 7.10, combined with the fact
that B, — C%!, yields®

@M — o 0™ ™) g < O™ — 0 s 0™ 075

By taking advantage of Bony’s decomposition and of continuity results for the
paraproduct and the remainder, it is not difficult to check that

(0" = 0" - D s < ™ = 07 g a0

Applying Theorem 3.14 to (7.14), we thus get, for all ¢ € [0, T7,

t

!

”,Un+m+1 N vn+1”B§,;1 < CeCVner(t)/ e~ CVatm(t)
0

< (lv" sy, + 0" sy, + 10" ls; ) l0" ™ = 0" g2 dt’

and a similar inequality for ¢ € [-T,0].
Using (7.13), we conclude by induction that for all (n,m) € N?,

H’Un+m 1 ( C”,UOHB;T

n m 0
Ve ez = 1\ 720 w0 e ) o™ =07l oo (1,5

Since (v™)men is bounded in L>([-T,T]; B ), this ensures that (v")nen is
indeed a Cauchy sequence in L ([T, T7; B;;l).

5 Without loss of generality, we may assume that s < 2 + d/p.
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Let us now consider the limit case s = 1. Due to the fact that By, — Co1L,
we must have p = co and r = 1. Now, on the one hand, since the vector fields
considered here need not be divergence-free, Theorem 3.14 does not provide
any control for the norm of v™*™+1 — 4"+ in BY, . On the other hand, that
theorem may be used to bound the norm in Bgo’oo.

According to Lemma 7.10, the operator II maps Bgoyoo X 3;0,1 into BgO’OO,
and it is not difficult to check (by combining Bony decomposition with the
properties of continuity for the paraproduct and remainder) that

||(U" _ vn+m) . VUTH_I”B?.O,(X, < C”,Un-‘rm _ U”HB&,,M ”Un-i-l”BéoJ.

Therefore, arguing as above, we can conclude that (v™),ecn is a Cauchy se-
quence in L>([-T,T}; BY, ).

Fourth Step: Passing to the Limit

Let v be the limit of the sequence (v™),en. Using the uniform bounds given
by (7.13) and the Fatou property (see Theorem 2.72 page 100), we see that v
belongs to L>([-T,T]; B; ). Next, by interpolating with the convergence
properties stated in the previous step, we discover that (v™),ecn tends to v in
every space L ([-T,T]; B;:T) with s’ < s, which suffices to pass to the limit
in (E).

Hence, v is a solution of the modified Euler system (E). Note that IT (v, v)
is in L*>°([~T;TY]; B; ,.), so Theorem 3.19 ensures that v satisfies the desired
properties of continuity with respect to time. This completes the proof of
Proposition 7.16. a

Taking advantage of Proposition 7.15 and Lemma 7.14, we can now con-
clude that if, in addition, the initial vector field vy is divergence-free, then
(v, P(v,v)) satisfies the true Euler system (F) and has the required regular-
ity. This completes the proof of the existence part of Theorem 7.1.

7.1.5 Uniqueness

Recall that LL stands for the set of log-Lipschitz functions defined on page 116
and that, according to Proposition 2.111 page 118, the (semi)norms

VS £l
. and sup ————"—
(Al Sup

are equivalent.

In this subsection, we establish a uniqueness result for the Euler system (E)
under the sole assumptions that v belongs to C([0,T]; B, ) N L'([0,T]; LL)
and that the pressure is a measurable function with at most logarithmic
growth at infinity.
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We first state a uniqueness result for the modified Euler system (E).

Theorem 7.17. Let v! and v2 solve (E) on [0,T). Assume that v* and v*
belong to
C([0,T); B3 o) N LY([0,T]; LL).

If, in addition, v'(0) = v2(0), then v* = v® on [0,T] x R%.

Proof. The proof relies on the fact that & def 12 _ 1 satisfies a transport

equation associated with a log-Lipschitz vector field, namely,
Opv +v? - Vv = IT(v,v*) 4+ M (v?, ) — dv - Vo' (7.15)

We claim that the bilinear operator II satisfies the following estimate for
alle €]0,1[ and k£ > —1:

[T (0, 0) e < €O+ 2)25 min (ol poe_lwlizz, 0] e olizz),
(7.16)

where we have used the notation || - |z def -z + 1 oL

According to (7.7), it suffices to establish this inequality for AgIT; (v, w)
with 7 € {1,...,5}.
We begin with AxIT;(v,w). As V(—A)~! is a homogeneous operator of
degree —1 and
(Sk,l(‘“)ivj Akajwi)

E>—1

is spectrally supported in dyadic shells, we see that it suffices to establish that
|Sk-18:07 Ayt e < C (422" min (Jloll e ol ol e lollzr )
We may now write

| Sk 1007 A’ || o < 1Sk-1V | oo | Ak V| oo -
Note that we obviously have

[Sk-1V]| oo < Cmin((k +2)[v]| 2z, 250F Vol g e ),
| A VWl ;e < Cmin((k: + 2)||w|lLL, 2k(1+E)HVw||B;o{;CE).

Therefore, |AgIl (v, w)| L~ is bounded by the right-hand side of (7.16). As
II5(v,w) = II1 (w,v), the same inequality holds for AgIT(v,w).

As the roles of v and w may be exchanged, in order to bound the other
terms of (7.7), it suffices to establish that

|44 R(@, )| < Clk+2)2% D ol llwll o

By virtue of Proposition 2.10 page 59, we may write that
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AkR(Ui, wj) = Z Ak(Ak/’Ui Avk/wj).
k' >k—3
Therefore,
R ) <03 Jawnloa v,
k'>k—3

<O Y 228D ol e
k'>k—3

Ase—1 <0, we get the desired inequality for AgR(v,w). This completes the
proof of (7.16).

We now focus on the term v - Vw. We claim that
[Ak(v - VW)l oo < Clk+2)2% Jw]lzzllv] e - (7.17)

This is, in fact, a consequence of the following Bony decomposition (where we
have used the fact that divv = 0):

v- V' = T, 3111)1 + 8jR(vj, wl) + Tajwi’l}j.
By mimicking the computations leading to (7.16), it is easy to get (7.17). The
details are left to the reader.

We can now resume the proof of uniqueness. Combining the inequali-
ties (7.16) and (7.17), we see that (7.15) is a transport equation associated
with a vector field with coefficients in L'([0,T]; LL) and a right-hand side Jf
which satisfies, for all € € ]0, 1],

1Ak0f || o < Ok +2)2% (0 Iz + W2 llzz) 100l e - (7.18)

t
Let & def C’/ (I[o' ez + [[v*||zx) dt’. As (7.18) is satisfied, Theorem 3.28

0
ensures that if C is taken sufficiently large, then, for all k£ > —1,

e 1
2 AR Dl < 5 s 10

whenever ¢ belongs to the time interval [0, Tp] defined by

DN | =

t
7, =sup{t € 0.7), € [ (o' lzz+ Io¥lz) @ <

This yields uniqueness on [0, Tp].

Because v' and v? are in L'([0,T]; LL) N L>°([0,T]; BY, ), the argument
may be repeated a finite number of times, yielding uniqueness on the whole
interval [0, T]. O
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Corollary 7.18. Let (v!, P') and (v?, P?) satisfy the Euler system (E) with
the same initial data. Assume, in addition, that fori=1,2,

v' € C([0,T); By, o) N L'([0,T}; LL) and P' € L'([0,T]; L' + L).
We then have v' = v? and VP' = VP2 on [0,T] x R%.

Proof. Note that the assumptions on (v!, P') and (v?, P?) guarantee that v!
and v? both solve (E) with the same data (see Proposition 7.15). Hence, the
previous theorem implies that v! = v? and that

VP! = [I(v!,v') = I(v?,v?) = VP2
This proves the corollary. O

Remark 7.19. The logarithmic growth assumption on the pressure cannot be
omitted. Indeed, let vy be a nonzero constant vector field and set

(v'(t,z), P'(t,2)) = (v0,0) and (v3(t,z), P*(t,z)) = (vo cost, (vo-z) sint).

Then, (v!, P?) and (v2, P?) are two distinct smooth solutions of (E) pertaining
to the same initial vector field.

7.1.6 Continuation Criteria

In this subsection, we state various continuation criteria for smooth solutions
of the Euler system. We first explain what we mean by a smooth solution.

Definition 7.20. Let T1 < T. Let s € R and 1 < p,r < co. A divergence-
free time-dependent vector field v is called a B, . solution to the Euler sys-
tem on [Ty, Ty[ if it belongs to L7 (|11, T2[; B, ,) and satisfies (E) in the

space S'(JT1, To[x R?) for some P € L2 (|Th, Tol; L' + L$°).

To simplify the presentation, we focus on continuation criteria for positive
times. Due to the time reversibility of the Euler system, however, similar
results hold for negative times. We begin with a very general statement.

Theorem 7.21. Let s € R and 1 < p,r < oo satisfy B;)T — C%1, Assume

that (E) has a B, . solution over [0,T. If

T
/ [o(t)]| o dt < oo, (7.19)
0

then v may be continued beyond T to a B, , solution of (E).
If, in addition, vg € L* or Vvg € L* for some finite a, then (7.19) may be

replaced by the weaker condition

| 1veolumd < . (7.20)
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Proof. Our definition of a B, . solution guarantees that v satisfies (E)
Hence, according to Theorem 3.19 page 136 and the fact that, according to
Lemma 7.9,

[ (v, )]

we get, for all ¢ € 0,77,

By, < Cllvllcor]lv]

P,

s
Bp

t
lo@®)lls; , < lv(0)]B;, +C/0 o) ol sy, dt’. (7.21)
Hence, Gronwall’s lemma implies that
lo@)ll5s, < [0(0)]|p; e 1Wleor @ gor all ¢ [0, 7], (7.22)

This ensures that v € L>([0,T[; B, ,.)-

Let 7 <t ¢/IlvllLs(Bs,) (where c stands for the constant defined in Theo-
rem 7.1). The Euler system with data v(T" — 7/2) then has a B, , solution v
over [0, 7]. By virtue of uniqueness, we must have

v(t)=v(T —7/2+t) for 0<t<T/2

Hence, v provides a continuation of v beyond T'. This yields the first statement.

We now assume that vy € L* for some finite a. As, of course, vg € L,
we can assume with no loss of generality that 1 < a < co. On the one hand,
according to Lemma 7.8,

1 (v, v)||ze < Cllv][La [Vl oo - (7.23)

On the other hand, because v satisfies (E), we have

t
[o@)llze < lvoll +/O I (v, )| e dt".

Inserting (7.23) into the above inequality and then using the Gronwall in-
equality, we thus conclude that v € L*([0,T[; L*). Now, by splitting v into
low and high frequencies and using Bernstein’s lemma, we see that

[Vl < ClvllLe + 1Voll).

Therefore, v € L1([0,T[; L>°). Applying the first part of Theorem 7.21 thus
shows that v may be continued beyond T.

Finally, we treat the case where Vv, € L® for some finite a. Of course, we
can assume that a > d so that 1 — d/a > 0. Hence, by virtue of Lemma 7.11,

(v, 0)[ e < CUI20 e + [0l o) €21l -

Plugging this into the inequality
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t
[o@)]l= < [lvollz~ +/ (v, v)]| o~ dt’
0

and applying Gronwall’s lemma, we thus get

t !
e=C I 1202 @ty (1) e < g e

t
47Ct/‘e*CLTWML““”HQHLaWQHLm(ﬁC (7.24)
0

We will temporarily assume that the following lemma holds.

Lemma 7.22. For any a € ]1,00[, there exists a constant C such that the
vorticity satisfies

t
vt € LT 20l < 120050 exp(C [ 120, ar).

Due to the fact that Vv € L*([0,T[; L>°), we thus have 2 € L*([0,T[; L* N
L), so the inequality (7.24) entails that v € L1([0,T[; L>). This completes
the proof of the theorem. O

Proof of Lemma 7.22. From equation (7.1) and Holder’s inequality, we get

t
12z < (|90l +2/0 1921 o< |1 Dv]l e dt.

Applying Proposition 7.5 for bounding ||Dv| . and Gronwall’s lemma com-
pletes the proof. O

For sufficiently smooth solutions, the above continuation criterion may be
slightly refined, as follows.

Theorem 7.23. Let s and 1 < p,r < oo be such that s > 1+ d/p. Assume
that (E) has a By, . solution v on [0, T[ for some finite T > 0. If, in addition,
there exists some admissible Osgood modulus of continuity p such that

T
/ﬁwm@a<w
0

then v may be continued beyond T' to a B, , solution of (E).

Proof. The proof, based on Proposition 2.112 page 119, is the same as for
quasilinear systems (see Theorem 4.22 page 196). Indeed, let us set

def
R(t) = ||vo]

/
BIS%T dt .

t
55+ C [ To®llcos o)
According to the inequality (7.21), if C has been chosen sufficiently large, then

[v(®)llBs, < R(t) forall tel0,T]
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Let ¢ = min(1, s — % —1) and I': [0,a] — [0, 4oc[ be the function associated
with the modulus of continuity .
Using Proposition 2.112 page 119 with A =

B;, — B, Zép, we get

R(t) < |lvol B;., +C/ <1+F<(%)%>>R(t’)dt’

. def
with (1) =" [[v(t)l|c, + [lvol
Mimicking the proof of Proposition 2.112, we then get, after a few computa-

tions,
t
Bs G- (C+ C/ 'y(t/)dt’>
' 0

. def [V dy’ def 1
with G.(y) = / ————— and a. = a-.
1 /F (( ) = )
Therefore, [[v(t)||p;, stays bounded on [0, T, and the proof may be com-
pleted by arguing as in the proof of Theorem 7.21. a

Bs., and the embedding

s .
BPYT

1
lv®)ll5;, < Fllvol

As a corollary, we get the following generalization of the celebrated Beale—
Kato—Majda continuation criterion.

Corollary 7.24. Let s > 1+d/p and v be a B, ,. solution of the Euler system.
Assume that Vuvg € L® for some finite a. If T is finite and

T
/ 120 dt < o,

then v may be continued beyond T to a B, , solution of (E).

\T

Proof. As pointed out in Example 4.23 page 198, the space BoO oo 18 contin-
uously embedded in the space C},, where u stands for the admissible Osgood
modulus of continuity defined by p(r) = r(1 — logr). Now, by virtue of the
second inequality in (7.9), we have

lvlsy, o, < C(Iollpe + 1921l )

Because (2 is in L*, the inequality (7.24) and Lemma 7.22 imply that v
belongs to L ([0, T[; L*°). Therefore, Theorem 7.23 applies. a

7.2 Global Existence Results in Dimension Two

As explained in the introduction, in dimension two, the vorticity equation
reduces to
Ow +v-Vw =0. (7.25)

So, at least formally, all the L® norms of the vorticity are conserved by the
flow. Based on Corollary 7.24, we thus expect the solution to be global.
In this section, we justify this heuristic in various contexts.
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7.2.1 Smooth Solutions

In this subsection, we state a global result for two-dimensional data with high
regularity in Besov spaces.

Theorem 7.25. Let vy € B;’T(RQ) with divug =0 and s > 1+ 2/p. Assume,
in addition,® that Vvo € L* for some finite a. The Euler system (E) then has

a unique global B, ,. solution v satisfying Vv € L>(R; L?).

Proof. Local existence in By, has already been proven, so we denote by
T, T*[ the maximal interval of existence for v. Due to Vv € LS (|Ty, T*[; L)
and (7.25), it is clear that w € L (T, T*[; L*°). If T™* is finite, then Corol-
lary 7.24 enables us to continue the solution beyond 7™, which stands in
contradiction to the definition of 7. Hence, T* = +o00. A similar argument
leads to T, = —oo0. O

7.2.2 The Borderline Case

Proving the global existence in the borderline case s = 1+ 2/p and r = 1
is more involved. This is because no continuation criterion is known which is
solely in terms of the vorticity (whether or not Corollary 7.24 is true in this
case is an open question). Nevertheless, as stated in the following theorem,
the global well-posedness in the borderline case is true.

Theorem 7.26. Let 1 < p < oo and vy € B1+2/p with divvg = 0. Assume,
in addition, that Vvg € L* for some finite a The FEuler system then has a

unique global solution v in C(R; B;)jz/p) with Vv € L= (R; L%).

Proof. For the sake of conciseness, we treat only the case where p = oo, the
case where p < 0o being easier. We therefore assume that vg € B, ; and that
Vg € L® for some finite a.

Stating global estimates for the vorticity w in BY ; is the key to the
proof. Theorem 7.1 provides a B, 1 solution v defined on some maximal time
interval |T, T*[. Taking advantage of (7.25) and of Theorem 3.18 page 135,
we deduce that

t
vt € (0.7, [w®lss,, < loollos,, (1+€ [ 1901 ).
0

In order to bound ||Vv||;« , we may combine Lemma 7.6 with the continuous
embedding 32071 — L to get

IVoll e < Cllwllze + wllsg, ,)-

Because ||w(t)||pe = ||wo|lze, we thus have

5 Of course, this assumption is relevant only if p = co.
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vt € [0, T7[, lw®llps, , < llwollpo

00,1 — 00,1

t
(1+ Cllanllot + € [ llag,, ).
el

from which it follows, by virtue of Gronwall’s lemma, that

Ct|lwoll go
lo®llps, < 1P fug | 5o

00,1

(14 Ctllwolle)-

Therefore, if T* < 0o, then Lemma 7.6 ensures that Vo € L ([0, T*[; L*°). So,
according to Corollary 7.24, the solution may be continued beyond T™, which
contradicts the definition of T*. Hence, T* = +o00. Proving that T, = —oco
relies on similar arguments. a

7.2.3 The Yudovich Theorem

As the vorticity is constant along the trajectories, it is natural to wonder
what happens if the initial vorticity is only bounded with no additional reg-
ularity assumption (note that in the global existence results stated thus far,
the vorticity was at least continuous).

As pointed out before, even if the vorticity is compactly supported, the
corresponding vector field need not be Lipschitz. Nevertheless, we shall prove
the following result.

Theorem 7.27. Let vy be a divergence-free vector field in Béo,OO(RQ) with
vorticity wo in L* N L for some finite a. Then, (E) has a unique solution

(v, VP) with

vELS(R;BY o), w€LX®R;LNL>), and P €L, (R;(L'+L¥)).

loc

Moreover, v has a generalized flow v, in the sense of Theorem 3.7 page 128,
and there exists a constant C such that

P(t) — Id € O=PCltllwollzent=)  for qi] t € R.

Proof. Uniqueness follows from Theorem 7.17. To prove existence, we may
smooth out the data. Let v™ be the (global) solution of the Euler system with
mollified initial velocity n?x(n-) * vy [where x is in S(R?) and has integral 1
over RQ]. According to Theorem 7.25, v™ is global and smooth. It is not difficult
to prove uniform estimates for v™ and w™ in the desired spaces. Indeed, we
have

Jo™ (O ez = n2x(n-) *wollzanze < [wollorz= forall ¢ € R, (7.26)
and hence, according to Lemma 7.6,

Vo™ ()]l 5

0,00

< COllwollpanp= forall teR.

Also, note that combining the inequalities (7.24) and (7.26) provides us with

uniform bounds for v™ in LS (R™; BL ).
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Now, from the boundedness of the time derivatives in convenient function
spaces, we get some compactness, and it is then possible to pass to the limit
in the equation. This yields a solution (v, P) with the desired regularity.

Finally, since

[vllee < Cllwllzenzee,

we can conclude, thanks to Theorem 3.7 and Lemma 3.8, that v has a flow v
such that 9 (t) — Id is in C*P(=Cltlllwollenre<) for all real numbers t. a

Remark 7.28. The regularity result for the flow given in the above theorem
is essentially optimal. Indeed, it turns out that if the initial vorticity wg is
supported in the square [—1,1]?, is odd with respect to the two axes, and
equal to 1 in [0,1]2, then the corresponding flow 1 at time ¢ > 0 does not
belong to any C¢ for o > e~ *.

Finally, if the vorticity has some positive regularity, then the following result
is available [see the definitions of F; and o(s,t) on page 151].

Theorem 7.29. Let vy be a divergence-free vector field, the vorticity of which
is in L> N Fy for some s € ]0,1] and p € [1,00]. Let v be a solution of the
two-dimensional incompressible Euler system with data vg.

Then, for any t > 0, the vorticity at time t belongs to the space F;’(S’”.

Proof. Note that this corollary is obvious if s > 2/p. Indeed, in this case,
due to the fact that Fj — B  — Bi;?,ép, the vector field vy has Holder
regularity greater than 1 so that the standard existence theorem for smooth
solutions applies and the initial regularity is globally preserved by the flow.
Now, in the more interesting case where s < 2/p, we can apply Theo-
rem 3.32 to the vorticity equation (7.25). This yields the result. O

7.3 The Inviscid Limit

In this section, we investigate the inviscid limit for the incompressible Navier—
Stokes system. More precisely, given some initial divergence-free vector field vy,
we want to obtain as much information as possible on the convergence of the
solution v, to the Navier—Stokes equations

owv, + v, - Vv, —vAv, = —VP,
(NS,) dive, =0
(Uy)|t:0 = Yo

when the viscosity v goes to 0.
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7.3.1 Regularity Results for the Navier—Stokes System

We emphasize the fact that all the existence and uniqueness results which
have been stated thus far remain true in the viscous case for positive times.
Further, all the estimates pertaining to the solutions of (NS,) for sufficiently
small v are the same as in the case v = 0.

This may be easily proven by taking advantage of the results of Section 3.4
(in particular, Theorem 3.38) and of the following lemma.

Lemma 7.30. Let v > 0, a € [1,00], and T > 0. Assume that {2 satisfies the
following vorticity equation on [0,T] x R%:

0N +v-VR+2-Dv+TDhv- Q2 —vAR =0, Q=0 = 20 € L*(R?).
For allt € [0,T], we then have:
20l e < 12|l o 2 IVl 0

~ 12)]] o < 1920]] o @ N2 A i 1 < 0 < 00,
~ 19201 e <1520l pa s if d = 2.

Proof. In contrast with the case v = 0, which was treated earlier in Lemma 7.22,
we have to take care of the term —vAf2.

We first assume that 2 < a < oco. Arguing by density, we can assume that
(2 is smooth and decays at infinity so that, integrating by parts, we get

7/ Q02172 AQdx = (a — 1)/ |21V R|* dx > 0.
R2 R2

Hence, the inequalities satisfied by ||{2||L« are exactly the same as if v = 0.
This yields the result in the case 2 < a < oo. The case a = oo follows by
passing to the limit, and the case 1 < a < 2 follows by duality. ad

7.3.2 The Smooth Case

In what follows, we shall focus on the rate of convergence of v, toward v for
the L? norm. Of course, due to the uniform estimates which are available
in By ., interpolating provides convergence in all intermediate spaces.

In this subsection, we shall state that for smooth solutions, the rate of
convergence (in any dimension) for |Jv, — v||z2 is at least of order v. Our

result will be based on the following lemma.

Lemma 7.31. Let A be a measurable function defined on [0, T] and valued in
L(L?). Assume that for some positive integrable function K and almost every
t € 10,71, we have

Vw € L?, —(A(t)w | w)rz> < K(t)|wl]|7-.
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Let v be a time-dependent, divergence-free wvector field with coefficients
in L°°([0,T]; C%Y), f be in L([0,T]; L?), and wq be in L2, The system

{@w—!—v-Vw—FA(t)w—VAw:f

Wit=0 = Wo

then has a unique solution w in C([0,T]; L?) which, moreover, satisfies

t / 1 1
()2 < els K (lwom + / e I3 KD £ o dt/)'
0

Proof. The proof relies on the following energy estimate:

1d

3 gplwlie +vIVeliz <liflleelwlle: + K@ fwllz:. (7.27)

Following the proof of Theorem 4.4 page 172 and taking advantage of
Lemma 3.3 page 125 then yields the result. O

Theorem 7.32. Let v (resp., v,) be a C%'-solution of (E) [resp., (NS,)]

over [0,T]. Assume that Av belongs to L*([0,T); L?) and that w, def v, — v
belongs to C([0,T]; L?). We then have, for all t € [0,T],

t
e, (©)]1 22 < ¥ (nwu(mnm +v / eV Aot 1 dt’)
0

def ¢
with V (t) :/ Vo(t")] ;e dt’.
0

Proof. The equation satisfied by w, reads
Oywy, + vy, - Vw, +w,, - Vo + I (w,,v +v,) — vAw, = vAwv.
Note that since v + v, is in L>([0,T]; C%!), Lemma 7.8 ensures that
wy, — wy, - Vo + I (w,,v + v,)
is a linear self-map on L'([0,77]; L?). In addition, we have
~(wy - Vo [ w,)re < Vol oy 22,
and, because IT(w,,v + v,) is a gradient and divw, = 0,
(I (wy,v +v,) | w,)p2 = 0.

Applying Lemma 7.31 thus yields the desired inequality. a
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7.3.3 The Rough Case

Owing to Lemma 7.30, Theorem 7.27 also holds for the two-dimensional
Navier—Stokes equation (NS,). More precisely, we can prove the following
statement.

Theorem 7.33. Let vy be a divergence-free vector field in Béo)oo(Rz) with
vorticity wo in L2 N L. Then, for all v > 0, the system (NS,) with data vo
has a unique solution (v,,VP,) with (uniformly with respect to v)

v, €L (RY; BL ), w, € L®(RT; L2NL™>), and P, € L2 (R"; (L*+LY)).

loc 00,00 loc

In this subsection, we investigate the rate of convergence of (N.S,) toward
(E) for (not necessarily two-dimensional) solutions having the above regu-
larity. We shall see that the rate strongly depends on the regularity of the
inviscid solution. We first establish that the rate is v2 if the inviscid solution
is Lipschitz.

Theorem 7.34. Let v (resp., v,) be a BL, . solution of (E) [resp., (NS,)]

00,00

over [0,T], and let w, d:efvl, —wv. If, in addition,
Vv € L*([0,T]; L>=) N L*([0,T]; L?)
and w,, is in C([0,T]; L?), then we have, for any t in [0,T),
t t
a1+ [ 190, ' < O (o, O +v [ 21T ar).
Proof. The starting point of the proof is the inequality (7.27) with K(t) =

V(t) and f = —vAv. Now, integrating by parts and using Young’s inequality,
we note that

v v
V/ w, - Avdr = —I// Vuw, - Vodz < - ||Vv||iz + = HVw,,HZLQ .
R R4 2 2

Plugging this into the equality (7.27) and integrating, we thus obtain
t
a0l +0 [ IVl it < o O

t t
2 190l e dt +v [ 9013 ar.
0 0

Using Gronwall’s lemma then leads to the desired inequality. a

In the case where, in addition, the limit vorticity (2 belongs to the homoge-
neous Besov space BS  for some a € 0, 1[, we get a better rate of convergence,

1+
namely, vz .
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Theorem 7.35. Under the assumptions of Theorem 7.34, assume, in addi-
5 )
tion, that §2 is in L7+ ([0,T]; BS ) for some a € ]0,1[. We then have

t
o, ()| 55 < e ‘*’(Mwu( IE + o / ||fz||1“‘ d’f)

Proof. The duality result stated in Proposition 2.29 page 70 ensures that

1// w, - Avdr = 71// Vw, - Vvdzx
R2
< CuHVvHBa ||Vw,,||B o

Using real interpolation (see Proposition 2.22 page 65) and the fact that the
map {2 — Vv is homogeneous of degree 0, we thus get

v / s Auds < v g [Vl
R

<CVIIQ\I”“ o | 5% + 511V, 2.

Plugging this latter inequality into the inequality (7.27) and then applying
Gronwall’s lemma, completes the proof of the theorem. a

Remark 7.36. Appealing to the characterization of Besov spaces in terms of
finite differences, it is not difficult to prove that the characteristic function of
any bounded domain {2y belongs to B . In the next section, we shall state
(in the two-dimensional case) that if the initial vorticity is the characteristic
function of a C'" domain, then the corresponding solution v is Lipschitz.
Hence, the above theorem states that the rate of convergence for the L2 norm
is of order v1. This rate proves to be optimal in the case of a circular domain.

If the limit vector field is no longer Lipschitz, then the v2 rate of convergence
is likely to coarsen, as we see in the following result.

Theorem 7.37. Let vy be a two-dimensional divergence-free wvector field

in B, . with vorticity wo in L* N L*. Denote by v (resp., v,) the corre-

sponding global solution of (E) [resp., (NS,)] and define w, d:efvl, — 0.
Then, w, is in C(R+; L?) and satisfies, for some universal constant C,

[l e 2y < ()3 PN 20200 g | o o e ~P(C 0 llz20200 T)
whenever (VT)%exp(—CHoJOHLGLooT)el—exp(—CHwoﬂLszooT) S 1.

Proof. Let us bound the right-hand side of (7.27) as in the proof of Theo-
rem 7.32. Because, in dimension two,

IVolZe = lwlZz < lwollZ:,
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we get
d 2 2 2
E”waLQ +v||Vw,||7: < vl|wollz2 + (wy - Vv) - w, dz|. (7.28)
R2

By combining Hoélder’s inequality and Proposition 7.5, we get, for all a €
[2, o0],

2 2_2
< Callw]za wyll e [[wul[7> "

/ (w,, . Vv) -w, dx
Rz

Recall that ||w||pe < |Jwo|lpe. Further, using the fact that w, = A_jw, +
(Id —A, )w, and Lemma 7.6, we easily get that

lwyll e < C(llwollrz + [lwollLee)-
So, finally, for all a € [2, o0],

d

a 2~ 2 Lo 2 Lo 1+2 2-2
gillwvllze < vlwollzz + CallwollL2npe[lwy 72 + Callwol| 2o llwo [l *

Fix some small positive § and define”

def [[wy (8[|

= —m5 ——— t0.
llwol|7 2o

0 (t)

Assuming that §, < 1 on [0,7], the previous inequality yields

5,(t) < v+ 2Caljwol| 2z (8, (1)
So, choosing a = 2 — 2log ¢, (t), after performing a time integration (up to a
change of C), we get

t
5u(t) < vt + 0 + Cllwol 2np~ / 5, (#)(2 — log 6, (1)) dt.
0

We note that u(r) def r(2 —logr) is an Osgood modulus of continuity. Hence,
applying Lemma 3.4 page 125 and having ¢ tend to 0 completes the proof. O

7.4 Viscous Vortex Patches

The original vortex patch problem has been addressed for the two-dimensional
incompressible Euler system. Assuming that the initial vorticity wq is a vor-
tex patch (that is the characteristic function of some bounded domain D)
Yudovich’s theorem ensures that (F) has a global solution with bounded vor-
ticity. Since, in addition, that solution has a flow ¢, and w satisfies (7.5), we

7 We rule out the trivial case where wg = 0.
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may deduce that w(t) is the characteristic function of the domain transported
by the flow:

Note that having w bounded does not imply that v is Lipschitz, so ¥ need
not be Lipschitz either. Hence, the above relation does not guarantee that the
initial smoothness of the patch is preserved by the flow. Nevertheless, we shall
see that if 9Dy is a simple C*" curve for some r € ]0, 1[, then 9D, remains so
for all time.

The purpose of the present section is twofold. First, we shall study to what
extent the global persistence of vortex patches remains true for viscous flu-
ids, that is, when v solves the two-dimensional incompressible Navier—Stokes
equation (NS,). Second, we shall study the inviscid limit for vortex-patch-
like structures or, more generally, for data having striated regularity in a sense
that we shall explain below.

7.4.1 Results Related to Striated Regularity

Note that if w = 1p, where D is a C" simply connected bounded domain
of R?, then w is “more regular’ in the direction which is tangent to dD.
Indeed, for any smooth vector field X which is tangent to 9D, we have

Oxw dzefX131w + X290 = 0.

Since
div(Xw) — Oxw = wdiv X,

we can deduce that if X is sufficiently smooth and has bounded divergence,
then div(Xw) is in L* (instead of being a linear combination of derivatives
of L* functions if w is just bounded). This motivates the following definition.

Definition 7.38. A family (Xx)aea of vector fields over R? is said to be
nondegenerate whenever

d
1(x) % i sup [ X5(x)| > 0.

Let r € ]0,1] and (Xx)xea be a nondegenerate family of BL, ., vector fields
over R?%. A bounded function w is said to be in the function space Cy if it
satisfies

o]

def (IIwIILwllXAIIB;O,w + div(XAw)IIBgo;o>
- < 00.

oy = sup
X AeA I(X)

Proving that C'% is a Banach space is left to the reader as an exercise.
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Assuming that the initial vorticity wp is in some space C';_, it seems reason-
able (at least in the inviscid case, where w is constant along the trajectories)
that w(t) remains in C% (1) Where X(t) is the family transported by the flow

of v, that is, X (t) = (X,\(t))AeA with
Xa(t) = Dx,(f) forall A€ A

The following theorem states that this is indeed the case (even in the viscous
case), and that properties of striated regularity are conserved in the inviscid
limit.

Theorem 7.39. Let r be in ]O, 1] and (Xo,x)1<x<m be a nondegenerate family
of BL, « wvector fields over R?. Let vy be a C%' divergence-free vector field
with vortzczty wp in C ﬂL2 Then for all positive v, the system (N S,) [resp.,

the system (E)] has a unique global solution v, (resp., v) in LS (RT;COY)
with vorticity in L>®(R"; L?), and there exists a constant K depending only

on the data and a universal constant C such that for all t > 0 we have
[Vo(t)]| oo < KeClwolleet and ||V, (8)]| poo < K(1 + vt)eCleolliect,

Moreover, the family (X, x)1<x<m [resp., (Xa)1<a<m] of time-dependent vec-
tor fields transported by the flow v, (resp., 1) of v, (resp., v) remains Bl
and nondegenerate for all t € RT, and w,(t) [resp., w(t)] belongs to Cx, )
(resp., C}"((t)). In addition, for any bounded subsets I and J of [0,00[ and
10, 00, there exists a constant C' such that

<C,

Xy (t) —

sup [|w(t) o, + supsup w, (1)l
tel tel veJ

and the following convergence results hold true:

o v, —wv and ¥, —1p — 0 in L (RT; B> 5)f0ralls>0.

loc

o X,,— Xy and Ox, Y, — GXAz/J in LSO (R+ BT o) for all ' <.

loc

o Ox, w, — Ox,w in L7, (R*: BT, ’1) for all v <.

loc

7.4.2 A Stationary Estimate for the Velocity Field

One of the keys to the proof of Theorem 7.39 is the following estimate, which
states that any velocity field with striated vorticity is Lipschitz and may be
bounded in terms of [|w||;~ and of the logarithm of [wl|cs, .

Theorem 7.40. Let r be in ]0,1[ and (Xx)1<r<m be a nondegenerate family
of B, ~ vector fields over R?. Let v be a divergence-free vector field over R*
with vorticity w in C%. Assume, in addition, that v € L9 for some q € [1, 0]
or that Vv € LP for some finite p. There then exists a constant C, depending
only on m, p, and r, and such that

. Jwllc
|w||m<c<mm(||v||m7||w||m)+||w||Lwlog(e+ S ).

]l o
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Proof. We will first give a sketch of a proof in the flat case. We thus assume
that the family X reduces to the unique vector field 9. Having w € C'y then
means that w € L*> and Oiw € Bl 1 This obviously entails that all the
second order derivatives of w except 8%40 are in Bgo,go From the relation

Vo = (-A)"1VV-iw,

we thus discover that all the components of Vv except dqv' are in BT,
Now, Opv! = 9102 —w, so, owing to the fact that w € L, this last component
is bounded.

We now turn to the proof of the theorem in the general case. According

to the Biot—Savart law, we have

Vo=A_Vo—A2VVie with 429 p2aa—a_y).
Bounding the first term according to Lemma 7.6, we thus get
IVl < C(min(lvl g Jwllz) + D [|0:054720 . ).
i,J
We will temporarily assume that the following lemma holds.

Lemma 7.41. There exist some functions a;; and bff‘ (1 <4,5,k <2 and

L <X <m) in By, ., and a universal constant C' such that

V(&) e RZxR?, &€ = ay;(x |§|2+ZbkA er(Xa(z)-6),  (7.29)

m? SUPAHXAHB;OO 8
521 < O (=) (7.30)
[6I* X0, <C, and  lag]l - < 1. (7.31)

We then have, for all (z,£) € R*xR? and 1 <i,j < 2,

§i&i(1 = x(&)

by Gkl o S8 = X)) e () x4 ()0(6).
k0

Evaluating the Fourier transform (with respect to x) of the above equality
in £ and then applying the inverse Fourier transform, we thus get

0;0;A7w = (Id=A_1)(aiw) + Y A20,0, (b} X{w).
ANk, L

On the one hand, according to the inequality (7.31), the first term on the
right-hand side may be bounded by C'||w|| .« . On the other hand, the terms
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in the sum may be estimated by using the logarithmic interpolation inequality
stated in Proposition 2.104 page 116:

| A720,00 (b X5w) || oo < CIAT20,00 (b7 X5w) |l 5o, .
||/1 28kag (bff‘Xﬁw) HBQC,OO >
14720100 (b X Sw) || e, .

% log <e +

Because the operator A=29,0, is an S°-multiplier in the sense of Proposi-
tion 2.78, we have, by virtue of (7.31),
A~ 28k85(bkAX>\w)||Bo

00,00

< O b X{w| e < Cllwll s -

As the operator A~20;, is an S~ !'-multiplier and for any a > 0, the function
t — tlog(e + a/t) is increasing, we thus get

0y (DFA X ¢ -
o034 %] < C el Y tow(e+ 190t W)”Bwéc).
Ak 4 HWHLOO

We can now write that [see the definition of 77 in (2.42) page 103]

(b X5w) = 0, T wb” + T, (x4 b7 + T 0ebi7,

so applying Theorems 2.82 and 2.85 gives
100 (65 X50) | . < € (10l e 105} e, 11 div(X30) o (165, ).

As the functions bf’j)‘ satisfy the inequality (7.30), we get the desired inequality.
O

Proof of Lemma 7.41. We first state a local version of the lemma pertaining
to only one of the vector fields, X . For that purpose, we introduce the open
set

Uy ={z € R?, |X\(z)| > I(X)/2}.
We claim that for any A € {1,...,m} and (i,5) € {1,2}2, there exist some

blA

functions b7;* which are homogeneous of degree 3 with respect to the compo-

nents of X and such that for all z € Uy and & € R?, we have

e = AR |§|2+Z‘ @ v kg 1)

To prove this identity, we may set, for x € Uy,

aij(z) = | Xa(@)|?q;(Ya(z)) with q;;(&) = &&;.

Of course, we have g;;(Yx(z)) — @;;(x)|Xa(x)|? = 0, so if we introduce the
matrix ();; associated with the quadratic form ¢;; and
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then we discover that, owing to TA(z)A(z) = Iy /| X (7)|?, we have

TA(2)QijAlx) — @yj(2) TA(2) A(x) = mﬁ (:1123 mlz(x)> '

The coefficients mq1(x), mi2(x), and meo;(x) are homogeneous of degree 2
with respect to the components of X . So, applying the above equality to the
vector n = A71(x)&, we find that for all z € Uy, we have

i (Ya(
&6 — q|;( A 7 Dig = Z‘ 1 (& (X (@) -€)

with Efj’\ homogeneous of degree 3 with respect to the components of X . This
yields (7.32).

In order to complete the proof of Lemma 7.41, it suffices to construct a
family of smooth functions (¢x)1<x<m satisfying:

Z d))\El

1<A<m

(i) Supp ¢ C Ua.

supy | Xallee.
(i) érlle _ < cm(—v

1(X)

Indeed, we can set

B ) = 0 45 (Y2 (2)

Ta@p » o @@ =) T3 e o

We therefore construct the family (¢x)1<x<m. First, we introduce a fam-
ily (xe)e>o of mollifiers, the sets

A e RS Xa(0) > 1(X)) and FE Y (2 e B2 d(z, ) < e,

and the functions

€ d_Ef _ JE €
08 = Lpez *xepz and ér =05 [ (1 - o).

J<A

Because R? = Ui<acm £ and

o= ][] =%,

1<A<m 1<A<m
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it is not difficult to check that the family (¢x)1<x<m satisfies (7).
Now, if we take e = (2(1(X))~!sup, HXAHB&.QC)i%’ then the property
(iii) is also satisfied. In addition, for all x € F¥, we have
[Xal(2) 2 I(X) = €| Xill B, . = 1(X)/2.

Hence, Supp ¢ C F5 C Uy and (%) is verified. ad

7.4.3 Uniform Estimates for Striated Regularity

The basic idea is that the conormal regularity of the vorticity also provides
conormal regularity for the velocity. We shall make this more precise with the
following lemma.

Lemma 7.42. For any r € ]0,1[ there exists a constant C' such that the fol-
lowing estimates hold true:
L <ClXlBy, L Mlwllpe s (7:33)

| div(Xew) — Ties Bl 1.
loxvllss, . < C(IVVllp 1 XI5y, o, + [ div(Xw)|grs ). (7:34)
Proof. To prove the inequality (7.33) it suffices to use the fact that
div(Xw) — Tx; 0w = div(T,X) + [0;, T w

and to take advantage of continuity results stated in Chapter 2 for the para-
product and the remainder, and of Lemma 2.99 page 111.
We now turn to the proof of (7.34). The Biot—Savart law states that

V(Z,j) € {1,2}2, 8jvi = 7(7A)7161J_3jw with af_ = 82 and 85' = 7(91.
Therefore, using Bony decomposition, we get
8Xvi = Téjv"'Xj — (—A)’lafTXjﬁjw + [(7A)7183',TXj}ajw.

Since the multiplier (—A)~!9;" is homogeneous of degree —1, combining
Propositions 2.82 and 2.85, the inequality (7.33), and Lemma 2.99 yields the
inequality (7.34). O

Proposition 7.43. Let r € ]0,1[. There exists a constant C such that for
all v > 0, any smooth vector field v satisfying (N.S,) on [0,T], and any time-
dependent vector field X transported by the flow of v, we have, for allt in [0, T,

I div(Xw)(t)Hngéo < CeCuﬁHonLoo CV (1)

% (14 0) ol o [ Xolls -+ [ div(Xowo) s ), (7:35)

1X (Ol . < VO (I Xollpy . + CteC Tenluoe (|div(Xowo)l| pycr,
(1 w1) fwoll e [ Kol L)) (7:36)

A def [* , /
with V(1) % / Vo ()] o d'-
0
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Proof. We first consider the evolution equation for X. We have

DX =0xv with D, %o, 10 v.

Hence, according to Proposition 3.14 page 133, we have, for some constant C'
depending only on 7,

t
IX ()]s < CVO (||Xo|Bgc R O dt'). (7.37)

The right-hand side may be bounded by taking advantage of the inequal-
ity (7.34). Applying Gronwall’s lemma, we conclude that

t
IX(t)||pr. < eCV® <||X0||Bgo o+ 0/ e~V ||div(Xw)|| gr dt’).
E) 3 O o0, 00

(7.38)
In order to bound |div(Xw)|[gr—1 , we may write an evolution equation

for div(Xw). Since div(Xw) = Oxw + wdiv X, we have
Dt le(XW) = Dtaxw + th div X + W.Dt div X.

Given that

— the vector fields D; and 0x commute,
— due to divv =0, we have D;div.X =0,
— the vorticity satisfies Dyw = vAw,

we discover, after a few computations, that
Dy div(Xw) — vAdiv(Xw) = vdiv(X Aw — A(Xw)).
We write X Aw — A(Xw) = F + G with

FYET Ao+ TaoX — AT/ X and @ L R(X, Aw).

On the one hand, applying Theorem 3.38 page 162 yields, for all ¢ € [0,T7,
[ div(Xw)l peo oy < CeCV () (|| div(Xowo) || gr1.
+ (U4 V)Pl ey + WGy e ) (7:39)

for some constant C depending only on r. On the other hand, Propositions 2.82
and 2.85, together with Lemma 2.99 page 111, ensure that

1F | o g2y < Cllwllzee o) 1 X Loz, )
1GNzy By, oy < Clwlizimz, HIX Lz o

for some constant depending only on r.
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As Dyw = vAw, we have ||w(t)||;« < [lwol e, according to Lemma 7.30.
Furthermore, Theorem 3.38 implies that

V”WHZg(Bng) < CeVO (14 ut) l[woll oo -

Therefore, plugging the above inequalities into (7.39), we end up with
||diV(Xw)||L§C(Bgoiéo) < CeCV®

x (ldiv(Xowo)ll g, + (1 + w8) lwoll e X e sz ) )-

In order to complete the proof, it suffices to insert the inequality (7.38) into
the above inequality. We readily get

e—CV(t) || diV(Xw)HL?Q(Bgc—éO) < C(H diV(XO‘”O)”Bg;éo

t
o)l (Il o+ [ O vy av) ).
0
and hence Gronwall’s lemma yields
ech(t)” diV(Xw)”Lt‘x’(ng}m) < CeCt(lJrut)HonLoo
x (Il div(Xowo)l g, + (1 -+ v8) woll = 1Kol )-

As tllwoll e <V (2), we get (7.35).
Finally, plugging the last inequality into (7.38), we get (7.36). This com-
pletes the proof. |

7.4.4 A Global Convergence Result for Striated Regularity

This subsection is devoted to the proof of Theorem 7.39. Note that since the
initial vorticity is in L2 N L>, Yudovich’s theorem page 312 provides a global
solution with vorticity in L? N L>. However, as explained before, this does
not imply that v is in C%'. Hence, we shall proceed as follows:

— First, we smooth out the data. From the global existence theory of Sec-
tion 7.2, we thus get a global smooth solution.

— Second, we prove uniform estimates for striated norms of those smooth
solutions.

— Third, we prove convergence to a solution of (NS,) or (E) with initial
data vyg.

— Finally, we let v tend to 0.

For notational convenience, we shall drop the index v in the first three steps
of the proof and at the same time shall solve indistinctly (NS,) or (E).
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First Step: Construction of Smooth Solutions

For all n € N, the vector field S,,v° has vorticity w? in L? and belongs to the
set Cp° of smooth bounded functions with bounded derivatives of all orders.
Hence, Theorem 7.25 implies that (E) and (N S,) have a unique global smooth
solution v™ with vorticity in L2.

Second Step: Uniform Estimates for Striated Regularity

By definition, the time-dependent vector field X7 transported by the flow "
of v"™ satisfies

X;\Ab(t) © T/Jn(t) = 8X0,A¢n(t>-
Now, it is clear that
ataXo,/\wn(t’ $) = 8Xo,,\vn(tv 'L/)n(tv LC)) = an(t’ ¢n(t’ ‘r))axo‘an(tv :,C),
so Gronwall’s lemma ensures that

X3 @" (1 2))| T < [Xoa(z)]e”" O

Therefore,
t
X" () > e V" O1(Xy) with V() % / IV ()| . (7.40)
0

Let Yy be one of the vector fields of the family (Xo x)i1<i<m. Since v™ is
smooth, we have
8tY" + " VY = 8yn’0n.

Hence, according to Proposition 7.43,
Aiv(Y"w™) ()| pr-1 < O(1 + vt)eCE 18 Lo OV (1)
|| div( Bl <

x (| e [Yoll g, . + Il div(Yowd) e ),

”Y”(t)HBgo,oo < C(l + Vt)eC”tZH%LHLoo eCV"(t)

x (%o llsr. . + Ct(ldiv(¥owi)l pger, + el [Yollme ).

We claim that the right-hand side of the above two inequalities may be
bounded independently of n. First, it is clear that |[Sywoll e < Cllwoll e -
Next, we have

[[div (Yo Spwo)ll pr-1. < C(HdiV(YOWO)HBg;;C + llwoll L Yol B ) (7.41)

00,00

Indeed, according to the inequality (7.33),
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[| div(Yo Shwo) — TygajSTLWOHBg;},Q < CHYOHB;W ||SnW0HL<>o .
We can now write that
TYO]‘ 0;Snwo = SnTYOj Ojwo + [TY57Sn]8jwo.

Again using the inequality (7.33) and the fact that the operator S, maps

Br L to itself with norm independent of n, we see that the first term satisfies

”SnTYgajWOHB;;;gO < C(H div(Yowo)|

pr=t, + lwoll L Yol Bz )-

Next, according to Proposition 2.10 page 59, we have, for some fixed inte-
ger Ny,

[TYJ,Sn]ijO = Z [Sk_lyoj, Sn]Akaij.
k<n+Nj

Resorting to Lemma 2.97 page 110, we discover that
H[sk_lYoj, Sn]AkajonLw < 027" |V Sk_1 Yol o | ArBiwoll o
< 2 2RI py, | llwoll pe

which completes the proof of (7.41).
So, finally, we find that for any vector X} and time ¢t > 0, we have

” diV(Xf\Lw")(t)Hngée < C(l + Vt)ec”tZH“’g“L‘” ECV”(t)

% (Iwoll o 1XoIBe. .+ | div(Xopwo)llpeos ), (742)

2 n n
HXI\L(t)”BgC,OQ < (1+Vt>eCut lwgllLoo cCV (t)<||X0,/\||Bgo,oo

B L)) (743)

In order to complete the proof of our claim, we have to bound V™ (or,
rather, ||[Vv"| ;«) independently of n. We have already proven that for any
nonnegative ¢, the family (X3 (t))1<ax<m is BY, o, and nondegenerate. There-
fore, Theorem 7.40 yields

+ Ct (|| div(Xo,xwo) | o1, + lwoll poe [ X0, ]

. o Ollcgn,
IV @) < woll 2 + lwioll e Tog ('€ 4~ 2 ) ).

llwoll 1

Taking advantage of the definition of the norm || - ||C§<n<t>

ities (7.42) and (7.43), we get, after a few calculations,

and of the inequal-

[wollex,
196" @ll~ < € (Jol2 + ool o+ (140007 52 ))
LOO

2
+C(Jlwoll g V" (8) + vt lwoll T )
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so applying Gronwall’s lemma leads to

oo
196" @)l < 1) (oollnz og e+ oo

> ) eCllwoll oot (7.44)
Together with the inequalities (7.42) and (7.43), this completes the proof of
the global uniform estimates for striated regularity and for | Vv" || L. Finally,
using the fact that

llwoll oo

[ ()l 2 < Cllwoll e and W™ (@)] oo < Cllwoll e »

together with the inequality (7.24) (which also holds true in the viscous case),

we deduce that (v"),ey is bounded in L£S (RT; L>). Therefore, the sequence

(v™)nen is bounded in L{2 (RT; CO1).

loc

Third Step: Convergence of Smooth Solutions

We claim that (v™),en is a Cauchy sequence (and thus converges) in any
space L (R+; B.°..) with € € ]0,1[. To prove this, we write the evolution

loc 00,00
equation for v™ — v™. For any (n,m) € N? we find that

(O + 0" -V —vA) (" —0™) = T (0" — 0™, 0" +0™) + (" —0") - Vo™

So, according to Theorem 3.14 page 133,

e
t

L L (MR [ R L R P
0 "o =50

Now, according to Lemma 7.10 we have
[ (0" —v™ 0" +0")||goe | < Cllo" = 0™ gz _[[0" + 0™ [con,
and using the (simplified) Bony decomposition and div(v™ —v™) = 0, we get
(V™ = ") - Vo = Tgym (V™ — 0"™) + div Thm _ynv™.
We also find that
10" = ") - Vo™ e < Ol = 0™ e ™ o

Using Gronwall’s lemma and the uniform bounds of the previous step, it is
now easy to conclude that (v™),cn converges to some vector field v in the
space C(R™; B35,.). The details are left to the reader.

As usual, the uniform bounds of the previous step enable us to state that v
satisfies (E) or (NS,), belongs to LS (RT;C%1), and satisfies (7.44). We

can also deduce that the family X (¢) remains B, ., and nondegenerate for
all £ > 0, and that w(?) is in C ;).
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Final Step: The Inviscid Limit

On the one hand, since Vv € L (R; L>), applying Theorem 7.34 yields

loc

v, —v—0 in L2 (RT;L?).

loc

Because L?(R?) is continuously included in B;O%W(Rz), and v, and v both
belong to the space L (R*; Bo_ol,oo), we thus have

loc
v, — v in Lfg’c(RJr;B;Ol,oo).

On the other hand, all the bounds which have been stated in the previous
steps are independent of v for v going to 0. Hence, we may interpolate with
those bounds and complete the proof of Theorem 7.39. a

7.4.5 Application to Smooth Vortex Patches

We want to apply Theorem 7.39 to the particular case of smooth vortex
patches. We therefore consider a bounded simply connected domain Dy such
that Dy is a Cb" simple curve. We aim to solve (E) or (NS,) in the case

where the initial velocity vy has vorticity wq d:ef 1p,-
Let fo be a C1" compactly supported function over R? such that, for some
neighborhood V' of dDg, we have

fot({0}) NV =0Dy and Vfy does not vanish on V.

Because V' fy is O™ and has modulus bounded away from 0 on 9Dy, given
any zg in 0Dy, solving the ordinary differential equation

{8070(0) = V=*fo(v(o))
70(0) = o

provides a C!*" parameterization of the curve 9Dy.

Let W be a neighborhood of dDg such that W CC V. Introduce a smooth
function a supported in V' and with value 1 on W. We set

Xo1 = Vo, Xoz2=(1—-0a)01, and Xp3=(1—a)ds.

It is obvious that (Xo 1, Xo,2, Xo,3) is a nondegenerate family of BY, ., vector
fields and that wy belongs to C . Therefore, Theorem 7.39 provides global
Lipschitz solutions v and v, for (E) and (NS,) with initial data vy, and
uniform bounds in terms of striated vorticity with respect to the family X (¢)
[resp., X, (t)] transported by the flow ¢ of v [resp., 1, of v,].

Defining D; def ¥(t, Do) and Dy, def ¥, (t, Do), we discover that ~(t) def
Yoo [resp., 7. (t) def 1,,00] is a parameterization for 0D (resp., 0D, ). Be-
cause J,7(t) = X1(t,v(t)) and 0,7, (t) = X1, (t,7.(t)), we can thus conclude
that D, and 9D, ,, are C1" simple curves and that 9,7, is in Lf(fc(R+; cory,
uniformly with respect to v. So, we eventually get the following statement.



7.5 References and Remarks 331

Theorem 7.44. Let Dy be a CV" simply connected bounded open set of R? .

Let wy def 1p, and vg be given by the Biot-Savart law (7.2).

For allv > 0, the system (NS,) (resp., E') with data vy then has a unique
solution v, (resp., v) in LS (RT; CO1) and there exists a constant C' depending
only on Dy and such that for all t € RT,

Vv, ()] o <O +vt)e’ and || Vo(t)|| e < Ce“t

Further, for all time, the domain Dy, (resp., D) transported by the flow 1, (t)
[resp., ¥(t)] of v, (resp., v) remains CY7, and we can find CY" parameteri-
zations y(t) for 0D, and v, (t) for 0Dy, such that

05y — 057 N LlOC(RJ’;CO”J) for all ' <.

Remark 7.45. By taking advantage of Theorem 3.40 and of the uniform esti-
mate for Vu,, we deduce that at time ¢, the vorticity is equal to the charac-
teristic function of the domain , (¢, Dg), up to an error term which decays
as e~°"*/(") at distance h from the boundary. More precisely, we have

_n? _4(eCt_
llwy (D)l 22 (d(, Dy 51y < llwol| g2 308 *PEAET=1)

and

wn (t) = 1p, ,|lL2(d(z,0D,..)>1)

< lwoll 22 mln{l C(Vt) (2 =)= g exp(— 4(eCt_1))}

7.5 References and Remarks

Most of the results which are presented here are generalizations to the viscous case
(or to more general function spaces) of some results which may be found in a mono-
graph by the second author (see [69]). Many other results on the incompressible
Euler system are presented in the books by Bertozzi and Majda [36] and Marchioro
and Pulvirenti [222]. For geometrical aspects of the Euler equation, the reader is re-
ferred to the works by V. Arnold in [16], Y. Brenier in [45], E. Ebin and J. Marsden
n [121], and A. Shnirelman in [266].

The existence of C* local-in-time solutions for the incompressible Euler system
goes back to a series of papers by L. Lichtenstein in the 1920s (see [208]). Analytic
data have been considered by C. Bardos and S. Benachour in [28, 30]. The existence
theorem in the W*? spaces was developed by T. Kato and G. Ponce in [178]. The
local existence theorem in Besov spaces (namely Theorem 7.1) is a straightforward
generalization of the work by J.-Y. Chemin in [69] devoted to Holder spaces and
has been extended by the third author to nonhomogeneous incompressible fluids
n [106]. The endpoint case of data in B, ; (R?) has been studied in [245].

Similar regularity results have been obtained by A. Dutrifoy in smooth bounded
domains (see [119]). The case of rough convex domains has been treated in [285].
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The estimate for the Biot—Savart law given in Proposition 7.5 is a consequence of
the well-known Marcinkiewicz theorem, the proof of which may be found in any
book on harmonic analysis (see, e.g., [287, 273], or [150]).

The fact that having the vorticity in L® implies uniqueness was first noted by
V. Yudovich in [302]. Some recent improvements have been obtained by V. Yudovich,
again in [303], and by M. Vishik in [297]. Theorem 7.17 and its corollary are a slight
improvement of a result by the third author in [105].

The so-called Beale-Kato—-Majda continuation criterion given in Corollary 7.24
was first proven in [31] in the three-dimensional case for H® solutions with s
greater than 5/2. The extension to Holder spaces was achieved by H. Bahouri and
B. Dehman in [25]. Some recent improvements have been obtained by a number of
authors (see, e.g., [197]). To the best of our knowledge, Theorem 7.23 is new.

As explained above, the conservation of the L°° norm is the key to proving global
existence in the two-dimensional case. Based on that insight, in 1933, W. Wolibner
proved the global existence of smooth solutions (see [300]). Global well-posedness for

2
data in the critical Besov space B;:E (RQ) has been proven by M. Vishik if p < co.
The endpoint index p = co was treated by T. Hmidi and S. Keraani in [157].

In 1963, V. Yudovich proved the global existence and uniqueness of two-
dimensional flows with bounded vorticity. Theorem 7.27 is in the same spirit as
Yudovich’s result. The proof of Remark 7.28 may be found in [69].

We mention in passing that there exist classes of definitely three-dimensional
data for which global well-posedness is known. This is the case for azisymmetric
data without swirl, that is, vo := vo,r(r, 2)er + vo,z (T, 2)e. in cylindrical coordinates
(see the pioneering paper by [292] and also [256, 265, 105]). It was observed by
A. Dutrifoy in [118] that data with helicoidal symmetry generate global solutions.
The question of global solvability for general three-dimensional data is open. For
related numerical or theoretical results, the reader may consult [151] and [260].

Even in the whole space (where no boundary layer is expected), the study of
the inviscid limit for the Navier—Stokes equations has a long history. The fact that
the rate of convergence in L? is of order v for smooth solutions may be found in
the works by T. Kato (see, e.g., [176]). The statement of Theorem 7.34 is essentially
contained in a paper by P. Constantin and J. Wu [88], whereas Theorem 7.37 was
proven by the second author in [70]. The fact that for a smooth vortex patch, the rate

of convergence is of order at least v1 was observed by H. Abidi and the third author
in [1]. There, it was shown that the rate is optimal in the case of a circular patch.
In this present chapter, to prove Theorem 7.35, we used the method introduced by
N. Masmoudi in [224].

The study of the vortex patch problem for the two-dimensional Euler equations
also has a long history. In a celebrated survey paper by A. Majda [221], it was con-
jectured that a singularity may appear in finite time in the boundary of an initially
smooth vortex patch. Some theoretical results (see the work by S. Alinhac in [6],
P. Constantin in [85] and Constantin and Titi in [87]) and numerical experiments
corroborated the possible appearance of a singularity (see, in particular, the papers
by T. Buttke [52, 53] and Hughes, Roberts and Zabusky in [170]). Nevertheless tak-
ing advantage of techniques from [62], it was shown by the second author in [68]
(see also [64-66, 69, 136, 138]) that striated regularity is transported for all time by
Eulerian flows. As a consequence, an initially C*" vortex patch remains so for all
time. We mention that other proofs have since been provided by A. Bertozzi and
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P. Constantin in [35] and by P. Serfati in [258]. The case where the initial patch has
a singularity has been studied both theoretically in [89, 92] and numerically in [81].
Generalizations to the three-dimensional case have been given by different people
(see, in particular, [137, 259], and [169]). Vortex patches in bounded domains have
been studied by N. Depauw in [110] (dimension two) and by A. Dutrifoy in [120]
(dimension three). More singular solutions as the so-called vortex sheet have been
sudied by e.g. J.-M. Delort in [109].

The study of the inviscid limit in the framework of two-dimensional striated
regularity (thus for vortex patches in particular) was initiated by the third author
in [90]. A simpler proof—the one presented in this chapter—was later proposed by
T. Hmidi in [156]. We should mention that a local-in-time version of Theorem 7.39
may be proven in the d-dimensional case (see [91]) and that a global result may be
proven for three-dimensional axisymmetric data with striated regularity (see [32]).
Some very significant results on the localization properties of viscous patches have
been obtained recently by F. Sueur in [277].
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Strichartz Estimates and Applications
to Semilinear Dispersive Equations

Dispersive phenomena often play a crucial role in the study of evolution partial
differential equations. Mathematically, exhibiting dispersion often amounts to
proving a decay estimate for the L norm of the solution at time ¢ in terms
of some (negative) power of ¢t and of the L' norm of the data.

In many cases, proving these estimates relies on the stationary phase the-
orem and on a (possibly approximate) explicit representation of the solution.
The basic idea is that fast oscillations induce a small average, as may be seen
by performing suitable integrations by parts. As an example, in the case of
the wave equation with constant coefficients, the geometric optics allow the
solutions to be written in terms of oscillating functions, the frequencies of
which grow linearly in time. As a consequence, a polynomial time decay may
be exhibited for suitable norms.

It is now well established that these decay estimates, combined with an
abstract functional analysis argument—the TT* argument—yield a number
of inequalities involving space-time Lebesgue norms. In the last two decades,
these inequalities—the so-called Strichartz estimates—have proven to be of
paramount importance in the study of semilinear or quasilinear Schrodinger
and wave equations.

The purpose of this chapter is to give dispersive estimates for some linear
partial differential equations and to provide a few examples of applications to
solving semilinear problems. Although we shall focus mostly on Schréodinger
and wave equations, the basic dispersive estimates that we derive apply to
a much more general framework, whenever waves propagate in a physical
medium.

The first section of this chapter is devoted to a few basic examples. First,
we study the case of the free transport equation and the Schrédinger equation
where decay inequalities may be proven by means of elementary tools. Next,
we come to the study of oscillatory integrals and (a class of) Fourier integral
operators. Oscillatory integrals arise naturally when proving dispersive esti-
mates for the wave equation, while the L? boundedness of Fourier integral
operators will be needed in the next chapter.

H. Bahouri et al., Fourier Analysis and Nonlinear Partial Differential 335
Equations, Grundlehren der mathematischen Wissenschaften 343,
DOI 10.1007/978-3-642-16830-7_8, (©) Springer-Verlag Berlin Heidelberg 2011
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Section 8.2 is devoted to proving Strichartz inequalities for groups of oper-
ators satisfying a suitable decay inequality called a dispersive inequality. As an
application, we prove a global well-posedness result for the cubic Schrodinger
equation in R?. In the next section, we establish Strichartz estimates for the
wave equation with data in Sobolev spaces. In the following two sections, we
apply those Strichartz estimates to the investigation of some semilinear wave
equations, namely, the quintic and cubic wave equations in R3. In the last
section of this chapter, we establish local well-posedness in a suitable Besov
space for a class of semilinear wave equations with quadratic nonlinearity with
respect to the first order space derivatives of the solution. This result will help
us to investigate some quasilinear wave equations in the next chapter.

8.1 Examples of Dispersive Estimates

In this section, we provide a few examples of linear equations, the solutions
of which satisfy a dispersive estimate. We shall study three examples: the
free transport equation, the Schrodinger equation, and the wave equation.
In passing, we will establish decay estimates for oscillatory integrals and the
boundedness in L? of a class of Fourier integral operators.

8.1.1 The Dispersive Estimate for the Free Transport Equation

In this subsection, we prove basic dispersive estimates for the free transport
equation,

f|t:0 = fO)

which describes the evolution of the microscopic density f(t,z,v) € R of free
particles which, at time t € R, are located at x € R and have speed v € RY .

The dispersive estimates for (T") follow from the explicit formula for the
solution, as the solution may be easily computed in terms of the Cauchy
data fo. It is only a matter of integrating along the characteristics.

Proposition 8.1. The solution of the free transport equation (T) is given by

ft,z,0) = folx — vt,v).

In fact, even though the total mass is preserved, the dispersive effect occurs
for the macroscopic density

N

as stated in the following proposition.
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Proposition 8.2. If f is a solution of the transport equation (T), then we
have 1
o, )z < W"SupfO('aU/)”Ll-
'U/

Proof. For any x, we have, thanks to Proposition 8.1,
flt,xz,v)dv = / fo(z — vt,v) dv.
Rd R
Now, the change of variable y = = — vt leads to the inequalities

folx —vt,v)dv < / sup fo(z — vt,v") dv

R4 R4 v’

1

< —d/ sup fo(y,v") dy,
|t| R o

which means that the macroscopic density p decays in L*°, completing the

proof of the proposition. O

8.1.2 The Dispersive Estimates for the Schrodinger Equation

The linear Schrodinger equation was introduced in the context of quantum
mechanics and takes the form

) 1
(S) {z@tu—iAuzo

Ujt=0 = U0,

where the unknown complex-valued function u depends on (t,z) € R x R%.

As we consider initial data (and thus solutions) which are not regular
functions, solutions have to be understood in the weak sense, as introduced in
Chapter 5. More precisely, a distribution u € C(R; S'(R?)) is a weak solution
of (S) if it satisfies, for all ¢ in C®(R; S(R?)),

/O <u(t'), %Ag@(t’) + i@tgo(t/)> dt’ = (u(t),ip(t)) — (uo,ip(0)).

By using the Fourier transform, the solution may be expressed in terms of the
Cauchy data. More precisely, we have the following result.

Proposition 8.3. For any ug € §’, the Schréodinger equation (S) has a unique
solution u in S(R;S’). Fort # 0, that solution is of the form

idt

_ TN . def e Tt _ilzl?
u(t) = FH (e ) = Sy kup  with  Si(z) = ———e t2t . (8.1
(0 =7 (" ) = Sixuo S ayerIE &4

I
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Ce2
Remark 8.4. The identity Fu(t,&) = et Up(€) implies the conservation of
the H® norm. Also, under this identity, it is easy to see that (U(t))icr, where
U(t) : up — U(t)up and U(t)up is the solution of (S) at time ¢, is a one-
parameter group of unitary operators.

Remark 8.5. On the one hand, in the case where the Cauchy data ug is the
Dirac mass dp, we get, thanks to (8.1), for any time ¢ # 0,

u(t) = St,

and therefore for each fixed time t # 0, u(t) is analytic.

On the other hand, if the Cauchy data is ug(x) def eelzl”  then we get

1 T\ %
— ) =(—) do.
u(?a) (ia) 0
Hence, the support of the solution at time 1/(2a) collapses to a single point,
even though its support is equal to the whole space R at time 0. This phe-
nomenon is due to the infinite speed of the propagation for the Schrodinger

equation. Also, note that the regularity of the solution depends on the behav-
ior of the Cauchy data at infinity.

a2
Proof of Proposition 8.53. Let u(t) = f‘l(elt%ﬂo(é)) For ¢ € C*(R;S),

define .
10 [ (ue), 5 80(0) + i0relt) ) at.
0

By the definition of u, we have

t " 2 1
= / <e” S (€), F ! (§A<,0(t’) +iat<p(t')>> dt’
0
t iy 1612 1
= [ en (o). (~5lePott. -6 + 0. ~9)) ) ar.
0
Because the distribution %y may be interchanged with the integral, we get
b 1
I<P<t) = (27T)_d <@07/ eZt 2 (_§|€|2$(t/7 _5) + iat@(t/7 _5)) dtl> .
0
As we have

i 12 i’—2 1 (4] Y
% ( gt ,—§>) = (S IePR, ~) + i0u Bt —6))

we get that
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K i/ﬁ 1 ~ . ~ . iﬁ/\ L~
| e (5lePate e + ivnp.—0) de = i 3t —) — i7(0.6)
Thus,

-, 1¢12

L, (t) = i(2m)~N(do, €™ = (t, —€)) — i(2m) = (o, B(0, —€))
ia(t), F~o(t) — ilto, F~¢(0))
i(u(t), (1)) = i{uo, ¢(0)).

This proves that u is a weak solution of the Schrodinger equation. Unique-
ness in C(R;S’) may be proven by taking advantage of the duality method
introduced in Chapter 4. Since its adaptation to the Schrodinger equation is
straightforward, we leave the details to the reader.

To complete the proof, it remains to observe that, according to Proposi-
tion 1.28 page 23, we have

e —
(—2int)2
from which follows the desired formula for S;. O

From the above proposition and convolution inequalities, we readily get the
following proposition.

Proposition 8.6. If u is a solution of the linear Schridinger equation (S),
then we have, fort # 0,

1
lu®)ll L= < WHUOHLL

Remark 8.7. Proposition 8.3, together with the conservation of the L? norm
and the interpolation between LP spaces (see Corollary 1.13 page 12), implies
that

vt € R\{0}, Vp € [2,00], [lu(t)l|zr < —5 llwoll -

1
(2t
8.1.3 Integral of Oscillating Functions

Proving dispersive estimates for the wave equation requires more elaborate
techniques that we will now introduce. As we will see in the next subsection,
we shall have to estimate integrals of the form

1) = [ el de,

where 7 must be understood as a large parameter.
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Notation. Throughout this section, 1 will denote a function in ’D(Rd) and ¢ a
real-valued smooth function on a neighborhood of the support of ¥. Moreover,
the constants which will appear will be generically denoted by C and will
depend on a finite number of derivatives of ¢ and on a finite number of
derivatives of order greater than or equal to 2 of the phase function @.

We shall distinguish the case where V& does not vanish (the nonstationary
phase case) from the case where it may vanish (the stationary phase case).

Theorem 8.8. Consider a compact set K of RY and assume that a con-
stant ¢ € 10, 1] exists such that

vEe K, [VO(§)] = co.

Then, for any integer N and any function v in the set Dy of smooth functions
supported in K, a constant C ezists such that

Proof. Note that changing @ to /¢y and 7 to ¢o7 reduces the proof to the
case ¢g = 1 (we leave the reader to check that after this change of function,
the dependence with respect to cg is harmless since ¢y < 1). Assume, then,
that ¢ = 1. It is then simply a matter of using the oscillations to produce
decay. This will be achieved by means of suitable integrations by parts. In-
deed, consider the following first order differential operator, defined for any

function a in Dg:
def
a Z ‘v@|2

This operator obviously satisfies

TP iTD
LeTF =7e'7]

hence, by repeated integrations by parts, we get that

I = = [ (0 D de

We now compute ‘L for a € Di. We have

iy 0,0 0, ;0D

AP
o= —La+i— Vo

2
Vel 1<j,k<d

Thus, it is obvious that
("LY)(€) = f1,1(&, VB(E)) + f12(E V(E)),

where the function f; j(£,6) belongs to D(K x R*\{0}), is homogeneous of
degree —j with respect to 0, and satisfies
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(e, f) € (N)?,  sup

(£,0)€K xS+ 3?89’8]"17]-({79) < Cjap
,0)EK XS4

As the coefficients of the differential operator £ and all their derivatives are
bounded on K, an obvious (and omitted) induction implies that

N
(L)Np(€) =D fn (6, V(E)),

=0

where the function fy (&, 6) belongs to D(K x R%\{0}), is homogeneous of
degree —N — j in 6, and satisfies

V(a,B) € (N2, sup

(€.0)e K xS? 3§<9ng,]'(§,0) < ONjas.
,0)e KX -1

This proves the theorem. a

We will now consider the case where the gradient of the phase function may
vanish.

Theorem 8.9. Consider a compact K of R? and assume that a constant ¢y €
10, 1] ewists such that
Ve e K, [VO(E)] < co

Then, for any integer N and any function v in Dy, there exists a constant Cn
such that
dg

10 < v | e aEE

Proof. As in the preceding theorem, it suffices to consider the case ¢g = 1,
and we may perform suitable integrations by parts to pinpoint the decay with
respect to 7. Consider the first order differential operator

def 1

d
;= W(mqw-a) with V&-0=>"0;00;. (8.2)

=1
This operator obviously satisfies
ETeZT¢ — 6“—@.

Now, by integration by parts, we get that

1) = [ e e o de

Hence, to complete the proof of the theorem, it suffices to demonstrate that
for any integer N, a constant C' exists such that

C .
(L+7|Ve(E)2)"

In order to do this, we define the following class of functions.

(tET)Nw(ﬁ)‘ < (8.3)
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Definition 8.10. Given an integer N, we denote by SN the set of smooth
functions on K x R? such that

N—|B]

V(e B) € N*x N, 3C/ V(€,0) € K x R*, 989, f(€,0)] < C(1+0]*) =

It is obvious that the space S¥ is increasing with N and that the product of
a function in SN by a function in S™V2 is a function in SV +N2, Moreover, we
have 65(51\’) c SN-IAl

It is clear that the following lemma implies the inequality (8.3).

Lemma 8.11. For any N in N, a function fy exists in S™2N such that
(LN = fx (672VR(E))  forall €€ K.

Proof. By noting that S° contains the space Dg and by an immediate induc-
tion, it is enough to prove that if f belongs to SM, then

"L (f& V() = g(6TEVOE) with ge SN (8.4)
For any a € Dk, we have

‘La(e) = z% + o6, 73V(6)) al) (8.5)

: AP +1 . D*P(6,9)
vith o0 =T o 2 e

where, from now on, we agree that
2 def J nk a2
D*®(6,,0,) = ) 610505,
Jik
It is obvious that o € S~2. By using the chain rule, we get

V- V(€ mVE(E) = (V- Vef + D*0(0,Vof)) (€, 75 VO()).

Thus, we have the relation (8.4) with

0(6.0) = 17 (VRO Vel (€.0) + D*8(0.901(6.0)) + (o) (E.6). (5.6)

The lemma is proved and thus so is Theorem 8.9. O

Combining the above two theorems, we get the following statement.

Theorem 8.12. Let ¢ be in D(R?) and & be a real-valued smooth function
defined on a neighborhood of the support of 1. Fix some positive real num-
ber ¢y € 10,1]. Then, for any couple (N, N') of positive real numbers, there
exist two constants, Cn and Cy+, such that
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Cn Licert, |vao()|<c)
[ < C ’ 2 — d .
[Tl < (¥ TN / 1+ cor[va)™ *

Further, the constants Cn and Cy+ depend only on N, N', a finite number of
derivatives of ¥, and a finite number of derivatives of order greater than or
equal to 2 of P.

Proof. Let x be a smooth function supported in the unit ball and with value 1
for |z| < 1/2. We may write

L(r) = /eiTqS(g) (IX(VQS(S)Dw(f) i

]w(T) = 11(7') + [2(7') with o
T Vo 5
B = [ (T2 )y de.
Co
Applying Theorem 8.8 to I; and Theorem 8.9 to I gives the result. O

In the one-dimensional case, we can prove more accurate estimates. More
precisely, we have the following theorem.

Theorem 8.13. Let a be a function in the closure of a smooth compactly
supported function of one real variable with respect to the norm ||a'|| L1 (w)-
Let @ be a C? function on R such that a positive constant ¢y exists, where

Vo € Supp a, &' (z) > cq.

1(t) d:ef/ @) g (z)da
R

C() defl T/l
1) < 20a/ ith Cp % ( 3)
101 < Lt win 0035 (2 s

The integral defined by
then satisfies

Proof. Using integration by parts with respect to the first order differential

operator
def 1

(Lib)(z) = W(b(iﬁ) —id' ()b (),

I
def it@(m)ﬂ :
Li(t) = /Re 1+t(¢/(x))2a(:t)dm and

def el (@) -~ (P (2))*P" (x)
L(t) = / m(lJrz@ (x) —ZZW)Q(:E) dx.
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id'(x) < 1

As |———— 72
T e(@(0))21” 23

» we get

1
L(t) < — a1 () (8.7)
2t2

We now bound Is. As ¢"(x) > ¢p, we have
1 1 @)
L+ t(P'(x))? ~ co 1+ t(P'())?

Thus, ,
)< (5 +3) A%m@)m

For any positive ¢, we have |a(z)| < (a(z)? + &%) 2. We infer that

01= (55 +9) [ =i 00 + ) o

By integration by parts, we deduce that

I(1)] < ( +3) /arctan(t%qs’(x))a'(x)% da

CO /| z)| da

CO
< Ha ”Ll(]R)
t2

Together with (8.7), this completes the proof of the theorem.

IN

8.1.4 Dispersive Estimates for the Wave Equation

The wave equation is a simplified model for the propagation of waves in a
physical medium. In this subsection, we shall only consider the case of an
isotropic medium so that the corresponding system reduces (after suitable
normalization) to

Ou=20
(W) {

(u, atu)\t:o = (UO, uy).
Here, OJ denotes the wave operator 97 — A. The unknown function u = u(t, x)
is real-valued and depends only on (¢,2) € R x RY.

In the one-dimensional case d = 1, it may be easily shown that the solution
of (W) is given (in the smooth case) by d’Alembert’s formula,

u(t,z) = %(uo(x 1)+ uo(e — 1)+ /Ht i (y) dy),

x—t

so we cannot expect the wave operator to have any (global) dispersive property
or smoothing effect.
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In the case of dimension d > 2 that we are going to study in the rest of this
section, the situation is rather different. Easy computations in Fourier vari-
ables (similar to those which were carried out in the proof of Proposition 8.3)
show that we have the following result.

Proposition 8.14. If ug and u; are tempered distributions, then the unique
solution of the linear wave equation (W) in C(R;S’) is of the form

ult) =UT(t)y+ + U (t)y-  with

def 1

FOHnn)© Y e and A6 Y 1

To(€) + — T (¢ )
(70(6) = 7@
Combining the above formula with Theorem 8.12 will enable us to prove the
following dispersive estimate.

Proposition 8.15. Assume that d > 2. Let C def {¢ e R 7 < |¢| < R} for
some positive r and R such that r < R. A constant C' then exists such that
if Uy and Uy are supported in the annulus C, then u, the associate solution of
the wave equation (W), satisfies

C
[u(®)]|ze < rEa (luollzr + lluallzr)  for all T 0.
2
Remark 8.16. As the support of the Fourier transform is preserved by the flow
of the constant coefficients wave equation (a property which is no longer true
in the case of variable coefficients), the Fourier transform of the solution w is,
at each time ¢, supported in the annulus C.

Proof of Proposition 8.15. Due to the time reversibility of the wave equa-
tion, it suffices to prove the result for positive times. Let ¢ be a function
in D(R%\{0}) with value 1 near C. According to Proposition 8.14, we then
have

u(t) = K*(t,) x5+ K~ (t,-) x5~ with

~4 def _ ~ def i(z i
7 ) and K a) [ e10 08 de

We will temporarily assume the inequality

C
| KE(t, )|~ < prs for t>0. (8.8)
2
We then immediately get

[z~ <

C - _
: (wuu IR ||L1).

d—
t =z

Now, because
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~ 1 ;
7t = §(u0 Fih*uy),
where the L! function h stands for the inverse Fourier transform of |- | =1,

we get the desired inequality for ||u(t)]|pe.

In order to complete the proof, we establish the inequality (8.8). As the L™
norm is invariant under dilation, it suffices to estimate ||K(¢,t- )| p~. Now,
Theorem 8.12 implies that

o\ —d
|KE(t, tx)| < —dc_l +C/ <1+t‘xi%’ ) d¢, where
=)

def 1

If C, is not empty, then « # 0. Hence, we can write the following orthogonal
decomposition for any £ € C,:

= with G=(¢fi) i md =g (g )

x
m.
Knowing that ¢’ is orthogonal to the vector x, we infer that

' 1<
|§ 1= Tl
Therefore, using the fact that r < |{| < R for any & € C, we get

Kt t2)| < +C/%dc'dg.
t = c (L4+¢t¢'?)

The change of variables E — ¢2(’ gives (8.8). This completes the proof of the
proposition. a

8.1.5 The L? Boundedness of Some Fourier Integral Operators

In this subsection, we prove the L? boundedness of a particular case of Fourier
integral operators. The proof relies on the techniques of Section 8.1.3 and will
be useful in Chapter 9.

Consider a real-valued smooth function @ over a neighborhood of R? x A,
where A is a compact subset of R? such that for any ¢ in A,

z+— 0:P(z,§)

is a global 1-diffeomorphism of RY, in the sense given on page 41 (with a
constant C' independent of ), and is such that for any £ > 2,
No@) ' sup (0ed(a, €)] < 0.

(z,6)ER? x A
la]<e
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Theorem 8.17. Let & be a phase function satisfying the above hypotheses.
Let o be a smooth function supported in R xA. Consider the operator T

defined on S(R?) by
0 ¥ [ 0w, e)ie)ds.

Then, T extends to a bounded linear operator on L?, and there exists a con-
stant C, depending only on N¢(®) and the supremum of a certain number of
derivatives of o, such that

IZ() |22 < CllYllz= for all ¢ € L?. (8.9)

Proof. Arguing by density, it suffices to prove that (8.9) holds true for all ¢
in S. In that case we may write that

T(0)e) = [ Ko po@dy with Ko,y [ @000, ¢)de.
Rd A
We now define the first order differential operator £ by

rodefa— i(0eP(x,§) —y) - Oca
14 [0¢®(x, €) — y[?

As Le(P@0)=18) = ¢i(2(@,8)=l9) we have, for any integer M,
K ()| = | / PO LM ) (2, y, €) dE
< [leeo)w.v.0) de

We will temporarily assume the following inequality:

¢ MU x g 1 .

. def
with Ci(®,0) = Car Nay (D) sup 1880 || Loo (et x 4)-

lee| <

Take M = d + 1 and define Cy def Cay1(®,0). For any ¢ in L2(RY) we
then have
[(Z(¥)lp(2))] S/ K (2, )l [V (y)] ()] da dy
R?xR?

1
S 045,0/
RéxRIxA (1 + |8§§P(x,§) y[?)

oz [ (W)l e ()] do dy dE.

Applying the Cauchy—Schwarz inequality for the measure
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(1+|0c0(w, &) — y|*) =5 da dy de

gives

|(Z() (@) ‘2 <Cio </ (1+ |a§¢gc(2)) —y/?)

. </ i |6545|Z(7y5>>|2 Jya dg)'

Integrating with respect to (y, &) (recall that integration with respect to £ is
performed over the compact set A) and then in x in the first integral gives

) ()2 o d)
*0'”(/ (L + [0c(a,€) g2y 2 W)

| 2

oz dudy dg)

(zwlew)| <3,

Making the change of variable 2/ = ®(z, ) def O0¢P(z,€) and integrating first

in 2/, we conclude that the last integral may be bounded by C||¢||3., which
completes the proof of the theorem.

In order to prove the inequality (8.10), we may argue by induction. We
claim that

(‘LMo)(2,y,6) = fu (2, 0.P(x,6 —y)) with

A (0% (6%
G 10008 fur(2,6,0)] < Nars1a)(B) SUDja <a1 4o 080 | et 07

We begin by proving (A;). We have

a+i(0:2(x,§) —y) - Oca

fa=
14 |0:9(x, &) — y?

—adiv L. (8.11)

This implies that

(tﬁa)(%yaf) = fl(xaé-va&@(xvg) - y) with
d_ef 1 + 29 . 650’
f1($7£,9) = W—Udﬁ and

T rrer T A+ ep)?

de

Now, assume (Aps). Observing that div £(z,y,&) = dg(z, €, 0:P(x, &) —y) and
using (8.11), we get

1+[0:P(x, &) —yl?
+ (f]y[d[,)(l‘,f,agq)(m,f) - y)

(‘LM Mo (z,y,€) =

Leibniz’s formula then implies that



8.2 Bilinear Methods 349

. (0B, 6) — ) - (O far) (o, €, 0Bz, €) — )
(L Doty ) = T 0c(a,€) — g

1+ |0:9D(x, &) — yl?

+ (fude) (2, €, 0:9(x, ) — y).
Thus, (Ays) is satisfied with

3,k

1+7;9'8§f1w 85'8§k0j89ka
0 = J - d .
fM+1(1',£, ) 1+|0|2 § 1+‘0|2 l:fM
This completes the proof of the theorem. O

8.2 Bilinear Methods

This section describes the so-called TT* argument, which is the standard
method for converting the dispersive estimates (presented in the previous
section) into inequalities involving suitable space-time Lebesgue norms of the
solution. At the end of this section, those inequalities—the so-called Strichartz
estimates—will be used to solve the cubic semilinear Schrodinger equation in
dimension two. More applications will be given at the end of the chapter and
in Chapter 10.

Throughout this section, we agree that the notation || - || ez~ stands for

the norm in L9(R; L"(R?)). We now state the “abstract” Strichartz estimates.

Theorem 8.18. Let (U(t))ier be a bounded family of continuous operators
on L2(R?) such that for some positive real numbers o and Cy, we have

ITOU(E) fllze < i t,|(,||f||L (8.12)

Then, for any (g,7) € [2,00]? such that
é + % = % and (q,r,0) # (2,00,1), (8.13)

we have, for some positive constant C,
1U(#)uolla(zry < Clluol L2, (8.14)
| [v@saal,, <l (815)

Moreover, for any (q1,71) and (q2,72) satisfying (8.13), we have

| [ ver@ie
H /mUa)U*(t')f(t’)

qu(LTl) HfHqu(LT?)’ (8.16)

sy SOl (817)



350 8 Strichartz Estimates and Applications to Semilinear Dispersive Equations

8.2.1 The Duality Method and the TT* Argument

The proof of Theorem 8.18 is based on a duality argument and on the Hardy—
Littlewood—Sobolev inequality stated in Theorem 1.7 page 6.
We first note that

|U®#)uollLa(zyy = sup
wEBy,

/R _ Uuo(@)e(tx)dtde

sup
PEBg,r

[ w@uleo)s dt\,

where

def
Byr = {0 € DR™C) /¢l por vy < 1}

By the definition of the adjoint operator, we have

UO‘/U* 2.

By virtue of the Cauchy—Schwarz inequality, we deduce that

|U®#)uollLa(zyy = sup
996 q,r

V@Ol < lule sw | [ v ©eod],. 613
peBy "R L

Therefore, the inequality (8.15) implies the inequality (8.14). In order to
prove (8.15), we write that

|[voewall, = [ @ @) 0p0) i a
= [ WOU@pt)]o(0) ot at
- [ oo @ee) sl (s

Observe that if we denote by T the solution operator

T :ug — [t U(t)uo),

T s /U*(t)go(t) dt

Moreover, TT* coincides with the operator

then

O — [tH/RU(t)U*(t’)w(t’)dt’}

The so-called TT* argument is the observation that the inequality (8.15) [and
thus (8.14)] is a consequence of the inequality (8.16): This is just a matter of

taking (¢1,71) = (g2,72) = (¢, 7).
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In fact, in order to prove both inequalities (8.16) and (8.17), it will be
convenient to introduce the bilinear operator

def

Ty (f,9) = /Rz X&) UU () f(t),g(t)) dt’ dt, (8.20)

where x is a measurable function on R? with values in the unit disc of C.
In effect, taking appropriate functions y and arguing by duality, we see
that those two inequalities are consequences of the bilinear estimate

|TX(fag)| S C”fHLQi(LTi)||g||L<Zé(LTé) (821)

for all couples (gj,7;) in [2,00]? satisfying the relation (8.13). The rest of the
this section is devoted to the proof of the inequality (8.21).

8.2.2 Strichartz Estimates: The Case q > 2

We first consider the case where (q1,71) = (g2,72) and g1 > 2. As (U(%))er
is a bounded family of operators on L?, we get, thanks to the dispersive
estimate (8.12) and the linear interpolation result of Corollary 1.13 page 12,

Vp € [2,50], [UOU () ]1r < M%”f"”" (322

Therefore, taking p = rq, using relation (8.13), and applying the Holder in-
equality gives

T (fg) < C / e (€)oo .

Because ¢; > 2, the Hardy-Littlewood—Sobolev inequality page 6 gives
T )| < CUF Lot gt It ot (8.23)
which is the inequality (8.21) in the case where (q1,71) = (g2,72) and ¢; > 2.

As pointed out above, this is enough to conclude that (8.15) holds in the case
q>2.

Next, writing that

T\ (f.9) = /Rz X (&, 1) (U(E) ()| U ()g(t)) 2 dt’ dt

- [([rwswralowaw)
def

where fi(t') = x(t,t')f(t'), we get, according to the Cauchy—Schwarz in-
equality and the fact that U*(¢) is uniformly bounded on L2,
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(o)l < (swl [ @serae] ) ool 20

From (8.15), we infer that for any admissible couple (g1,71) with ¢; > 2,

T F )| < CUFlL i ot Il oy

Interpolating between the above inequality and the inequality (8.23) [i.e.,
applying Corollary 1.13 page 12 with (¢},77) and (1,2)], we get the inequal-
ity (8.21) for any pair of admissible couples (g;,r;) such that 2 < ¢; < g¢o.
Now, in the above computations, it is clear that the roles of f and g may
be exchanged. Hence, by the same token, we get the inequality in the case
2<q2<qr.

8.2.3 Strichartz Estimates: The Endpoint Case g = 2

It suffices to prove that if ¢ > 1, then we have

20
c—1

H/ U* () dtH < Cllglfay, with 7= (8.25)
R

Indeed, the above inequality clearly implies the inequality (8.15) [and
thus (8.14)]. Next, again using the inequality (8.24) and arguing exactly as in
the case ¢ > 2, it is easy to get the inequalities (8.16) and (8.17).

To prove the inequality (8.25), we shall show that the operator T) in-
troduced in (8.20) is continuous on (Lz(R;L”/ (Rd)))g. This result may be
achieved by proceeding along the lines of the method that we used to prove

the Hardy—Littlewood—Sobolev inequality. Indeed, let us decompose the bilin-
ear functional T}, into

) = > Ty(f.g9) with
JEL

it U@ @)1, 5(0) de it

T(f.9) %

def
and x;(t,t") = Toi<pp—pr)<2i+1 (8)Xx (¢, ).
The key to the proof is the following lemma.

Lemma 8.19. There exists a neighborhood V' of (r,r) such that for any (a,b)
in 'V and any integer j € Z, we have

—ida ‘ o
\T;(f,9)| < C277% ’b)||f||L2(La’)H9HL2(Lb’) with B(a,b) =0 —1-— PR

Proof. Using a dilation of size 2/ reduces the proof to the case j = 0. It thus
suffices to show that
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To(f, 9 < ClfllL2panyllgll p2erry- (8.26)
First, using (8.22), for any a > 2, we get
ITo(f,9)| < C/ [UU*) fE )| allg(®)]| s dt’ dt
1< [t—t/<2
<c/ LA o g0 o i,
1<|t—t/|<2

which implies, thanks to Young’s inequality (in time), that for any a > 2,

To(f: )l < CllFllz2pary 9]l 2 (pary- (8.27)

We now prove that for any a € [2,r[, the following estimate holds:

To(f, 9| < Cllfl L2 paryllgllz2z2)- (8.28)

Let fi(t") def Ti<je—p|<2(t)x(t, ') f(t'). By the definition of Ty, we have

To(f,g)A(AU*(t’)ft(t’)dt’

From the Cauchy-Schwarz inequality, we then infer that

U*(t)g(t)> dt.

L2

ITo(f,9)] < c/

R

/ U*(t') f (') dt’
R

lg() 2= dt.
2

Applying the estimate (8.15) with ¢(a) and a € [2, r[ satisfying (8.13)! leads
to

ITo(f.9) < C / 1 ill ot gory g8 1 .

We define F, (%) def Il f(®)]| or - Because x < 1, we get, by the definition of fi,

, q(tll)’
To(f.9)| < C / ( / Fy (1)1 dt') ()]l dt
RA\J1<|t—t/|<2

1
< [ (Lstriea < EL ) Olgto)] dt.
R
Thus, by the Cauchy—Schwarz inequality, we get

T gl
Lty M9l

To(f,9)| < C H]1{1§\T|<2} * Fg,(a)

! Note that this implies that q(a) is greater than 2, which is the case proved in
Section 8.2.2.
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As g(a) < 2 and 1{1<|r|<2} € L', Young’s inequality implies that

[raasien < P2 o, < IR
£

Thus, the inequality (8.28) is proved. Of course, as f and g play a symmetric
role, similar arguments lead to

To(f:9)l < Cllfll22)llgll g2 (pery  for any b€ [2,r]. (8.29)

Taking advantage of the bilinear interpolation result stated in Proposition 1.10
page 10, we conclude that

To(f,9)] < C||f||L2(La’)||9||L2(Lb’)

whenever (1/a’,1/b) is in the convex hull of

(rl)ulla) DUt ez}

which is obviously a neighborhood of (1/7/,1/7"). Lemma 8.19 is thus proved.
O

Completion of the proof of Theorem 8.18. We shall use the atomic decompo-
sition of f(¢) and g(¢) defined in Section 1.1.2 page 7. Writing

flt, ) = k(@) fr(t,x) and g(t',x) =Y de(t')ge(t', )
keZ el

and knowing that

c—1=—,
r

we infer that for any (a,b) in V,

1 _ 1 (X _ 1
Ty (ch fr dege)| < Cllewll 2 lldel| L2 @ 2 7° @2~ k(=) o=t =)

< C||Ck||L2(R)||d£||L2(]R)2(7JU+k)(%7%)2( Jot+0(F—3%).

Choosing a and b such that

Lot (L1,
r al |r b 7
1 1 1 1
jotk) (-—2) <0, and (—jo+O)(-—-)<o0
(JU+)(T a)<, an (JU+)<T b)<

for some suitably small ¢, we then get

T5 (fr, 9)| < Cllerl 2 wylldel| p2ry2 25177 ~Fl2 =2l =4

< Cllekll L2 @llde]| 2y 27 H27elk =l
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This gives

IT(f,9) <C Z Hck||L2(]R)Hdl||L2(R)2*5\j0*k|2fe\k7a
Jik, L

< CZ llekll L2 @y lldell L2 (ry2~1F 1.
k.l

Using Young’s inequality for series, we deduce that

(101 < (3 lalage) (3 1delaey)
k 14

SC(/R [ICAGIA P dt)é(/R [ (de(t))el|% dt)%_

The fact that v’ < 2 implies that ||(cx(t))kllez < [[(ck())k|l, . Owing to the
properties of the atomic decomposition, we thus get

1.0 < O [ Mewtonulir ) [ Nl i)
< Ol e gl acorry (5.30)

Taking f = g = ¢, we get the inequality (8.25), from which follows Theo-
rem 8.18 in the endpoint case.

8.2.4 Application to the Cubic Semilinear Schrédinger Equation

As an application of the results of the previous section, we here solve the
initial boundary value problem for the cubic semilinear Schrodinger equation
in R%: ]
10y — §Au = Ps3(u, @)

u|t:0 = Uuo,

(NLSs) {

where Pj is some given homogeneous polynomial of degree 3.

Theorem 8.20. There exists a constant ¢ such that for any initial data ug
in L?(R?) satisfying ||ug|| 2 < ¢, the system (NLSs) has a unique solution u
in the space L=°(R; L?(R*)) N L3(R; L(R?)).

Remark 8.21. We will first look at the scaling properties of the equation

(NLSs). If w is a solution of (NLS3), then wuy(t,z) def Au(A?t, Az) is also
a solution of the same equation. In the family of Sobolev spaces, L? (Rz) is
the only invariant space.

Proof of Theorem 8.20. Let @ be the nonlinear functional defined by
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{i&QW)—%AQW)=FMwE)
Q(u) =0 = 0.

According to Theorem 8.18 and Proposition 8.6, this functional continuously
maps L3(R; LS(R?)) into L>®(R; L?(R?)) N L3(R; L°(R?)). Indeed, using the
fact that the group (U(t));cgr defined in Remark 8.4 is unitary, together with
Duhamel’s formula, we may write

t
Q) = [ Ule = 1) Paute).alt) '
0
The inequality (8.17) leads to
Q)| 3 (mszer2)) < ClIP3(w, W) L1 (r; L2 (R2Y)
< Cllulgs gz @e))-

As Q(u) — Q(v) satisfies

(100 + 5 2) (@) ~ Q) = Pyluw, ) — Py(u,),
we get, again using the inequality (8.17),
1Q(u) — Q(v)| oo (r; L2 (R2))NL3 (R; L6 (R2)) < Cllu — || L3R L6 (R2))
% (12 ogmozoey + 10 Bsgpoeey ) - (83D)

It is now obvious that w is a solution of (INLSs3) if and only if it is a fixed

point of the map
Fu) € U)o + Q(u).

Applying Theorem 8.18 and the estimate (8.31) with v = 0, we get that
1F ()|l s mszey < Clluollze + Cllullfs g, re-

Thus, if 8C?||upl|2. < 1, then the ball B(0,2C||ug||r2) with center 0 and
radius 2C||ug|| > in the Banach space L3(R; L(R?)) is invariant with respect
to the map F. Again using the inequality (8.31), we get, for any w and v
in B(0,2C||luo||z2),

I1F(u) = F(v)|| 3@y < 8C%|luoll7zllu — vl s (g;Lo)-
Thus, if, in addition,
8C*uoll3: < 5
then Picard’s fixed point theorem implies that a unique solution u exists in
some neighborhood of 0 in L3(R; L%). Clearly, the inequality (8.31) (local-

ized on a sufficiently small time interval) implies that uniqueness holds true
in L3(R; L°®) without any smallness condition.
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Finally, the energy estimate entails that this solution belongs to L>°(R; L?).
Indeed, multiplying the equation (N LS3) by %@, integrating over R?, and then
taking the real part, we discover that

1d
2dt
from which it follows, for all ¢t € R, that

lull3s = Zm / TPy(u, ) da,

t
Ol < uollzs + €| [l dr
0

This completes the proof of the theorem. a

We end this subsection with a contraction mapping lemma, a generalization
of the one stated on page 207.

Lemma 8.22. Let X and Y be two Banach spaces such thatY is continuously
included in X, and let L be a continuous linear map from X to X which also
continuously maps Y into Y and satisfies

ILllccxy <1 and |[|L]lzyy < 1.

Consider a finite, increasing family of integers (m;)i1<j<n such that my > 2
and a family (Bj)i<j<n of operators from X™i into X which also map Y™
into Y and are such that for all £ € {1,...,m;},

X — X
T — Bj(l‘1, ey L1, T, P41y - - ,xmj)
is linear or antilinear. Assume, in addition, that for any j € {1,..., N},

my

IBj (a1, em)lx < ¢ I] lemlx  and

m=1

1B (y1, - ym;)lly < ¢ 1§%i§nmj ymlly 1;[ Y || x -
m m

If x belongs to' Y and satisfies ||xolly < ag with

e (Lo max{ oo, [Pl P
07 1gjeN 4(N 4+ 1)m;Ami—1e;
def N+1
A == ’
1 —max{[|L|lzcx), 1Ll covy }

then the equation

N
x:xo—l—Lx—i-ZBj(x,...,x)
j=1
has a unique solution in the ball with center 0 and radius 2ag in X, which
also belongs to Y.
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Proof. Consider the classical iterative scheme

N
Tpy1 = o + L(zn) + Z Bj(xn, ..., xp).
j=1
We have

N

lzn1llx < laollx + I Lllcoollzallx + ) ellzallx
J=1

Assume that for any n’ < n, we have ||z, ||x < Allzo||x. Then,

N
mj— mj—1
|zn+1llx < ||:co||x<1—|—AHLH£(X)+AZA i=Yei||zo |y )

j=1

Thus, if [|zo]|x < a with

def
o =

1
min (I —1[ILllcx)) s
1<G<N\ ¢; (N +1)Ami—1

then ||zni1llx < Allzo|lx. We will now prove that if ||zg| x is sufficiently
small, then (z,)nen is a Cauchy sequence in both X and Y. We have

N
Tpy1 — Tp = L(xn) — L(xp-1) + ZBj(xn, sy @y) — Bj(Tp_1, .., Tpo1).
=1

For each j, the difference Bj(xy,...,z,) — Bj(Tn-1,...,%n—1) is the sum
of m; terms of the form B;(xy,...,%n, Tn — Tn—1,...,Tn-1,...,%Tn—1). This
gives

N
[#n1 = 2nllx < llon — zn-allx <|L|L‘(X) + chmjAmf_lmOV)?j_l).
j=1

Thus, if

1
(1 =Ll zcx)) > my 1

x <o € min
[zollx < .
1<GEN\ (N + 1)mjA™i—te;

then (z,)nen is a Cauchy sequence in X. Now, using the estimate involving
the space Y, we get that if

1
(1 = max{|[ L[ z(x)), ||L||c(y)})) i

lzolly < o def min
- (N + 1)mj2m.7‘—1cj

1<G<N

then (x,)nen is also a Cauchy sequence in Y. The uniqueness is then obvious
and the lemma is proved. a



8.3 Strichartz Estimates for the Wave Equation 359

8.3 Strichartz Estimates for the Wave Equation

We now come to some applications and refinements of the Strichartz estimates
for the linear wave equation. Those estimates turn out to be of particular im-
portance for the study of semilinear wave equations (see Sections 8.4 and 8.5).
For simplicity, we shall focus on inequalities pertaining to the interval [0, 7]
for some given T in |0, oco]. It goes without saying that similar results may be
proven for any time interval since the generic constant C that we shall use
below does not depend on T.
In the rest of this chapter and in Chapter 9, we adopt the notation

def

a% o, ..., vi¥4,0,.,....0,,) and 8 Lo,

which is commonly used for semilinear and quasilinear wave equations (and,
in particular, for the Einstein equations in relativity theory). Note that, here,
the meaning of the operator V is different from in the other parts of this book
as it also involves the first order time derivative.

8.3.1 The Basic Strichartz Estimate

We first introduce the following definition.

Definition 8.23. We will say that a pair (q,r) in [2,00]? is wave admissible
if there exists some T in [2,7] such that
2 d—1 d—1

54— ~ —5 with  (q,7,d) # (2,00,3). (8.32)

The main result of this subsection is the following.

Theorem 8.24. Assume that the space dimension d is greater than or equal
to 2. For any wave admissible pairs (qi1,71) and (q2,72), a constant C' exists
such that for any j in Z,

IV Al g (1) < C2 1 4;Vu(0) 22 + 22 A0y (o (8:33)
with
d 1 1 1 1 1 1 1
R T AP P S T W
2 n q reo T2 Qg

Proof. The solution u of the linear Cauchy problem (W) can be written as u =
v + w, where v is the solution of the homogeneous wave equation

02v — Av =0
(Uv 815’0)\15:0 = (Uo, Ul)a

and w is the solution of the nonhomogeneous wave equation
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{Bfw—Aw = fd:efDu
(’LU, Otw)|t:0 = (O, 0)

Using the notation introduced in Proposition 8.14 and Duhamel’s principle,
we can write, for all ¢ € [0, 7],

o(t) =UT )y + U ()=,
w(t) = /O (U~ ) () + U (6~ ) (1))

with J/c\i(t,,f) = iﬁf(t/,g).

From Bernstein’s inequality, Proposition 8.15, and Theorem 8.18, we infer
that for any couple (g;,7;) satisfying (8.32), we have

40T ulp s < (1 40TuO) i + 18075, )

Since 1 > 71 and 75 < 7%, we deduce, using Bernstein’s inequality, that

1407l 3y < C 1AVl + 1o g, )
This gives the result for j = 0. The result for all j € Z follows by means of an
obvious rescaling. O

The two simple corollaries that we state next will prove to be very useful in
the next sections.

Corollary 8.25. For any wave admissible pairs (g;,7;) and any real o, a
constant C' exists such that, using the notation of Theorem 8.24,

9l g, < C (1T grons + |Du|L;§(B:;m)). (5.35)

Proof. Thanks to Theorem 8.24, we have, for any j in Z,
27|14, Vul| par (1) < CXCHIA;V0(0)]| 2 + C2HD | A;Dul|

(Lre)
Taking the ¢?(Z) norm of both sides, we get

1

(S 14,70l 1)) = C(ITUON o

JEL
%
2%i(eHm2) || A Cul|?, :
+ (oA,

JEZ

As q1 > 2 and ¢} < 2, the Minkowski inequality implies the theorem. a



8.3 Strichartz Estimates for the Wave Equation 361

Remark 8.26. Note that the “natural” norms which appear are the ones which
were introduced in Definition 2.67 page 98. For instance, as a by-product of
the proof of Corollary 8.25, we have the (slightly more accurate) inequality

9z, < C (1T s + ||Du|z;§(,3:;gm)) (3.36)

whenever (q1,71) and (gg,72) are wave admissible pairs.

The following corollary is particularly useful.

Corollary 8.27. For any wave admissible pair (q,7), a constant C exists such
that

. 1 1 1
Jllzgery < € (I90(O) s + 100l y sy with p=d(5 =) =

Proof. Applying Corollary 8.25 with (g2, 72) = (00,2) and 0 = —1, we get

el gy < C (IO s+ 100l g ) )-
Theorem 2.40 page 79 implies the result. O

Remark 8.28. The term 1/q in the definition of the index p may be interpreted
as a gain of 1/q derivative compared with the Sobolev embedding.

Corollary 8.29. For any wave admissible pairs (q1,71) and (qa2,72), and
any i such that

H= (l—l>—i and d(l—i—i)zl—i—i—&—i;

2 n qQ L T2 Qg
a constant C' exists such that
el gp ary < C (10O g + [l ). (8:37)
Proof. Applying Corollary 8.25 with o = —1, we get that
Iz, oy < CQIVHO s + 1Tl 5, )
72,
Theorem 2.40 page 79 implies the result. 0O

In dimension three, the endpoint estimate [i.e., the control of the L2(L°°)
norm)] for solutions of the Cauchy problem (W) turns out to be false. However,
the following logarithmic estimate is available.

Theorem 8.30. Assume that the dimension d is equal to 3. Let C be an an-
nulus. There exists a constant C' such that for any positive real numbers A and
T, and any function u such that for any t, the support of Fu(t,-) is included
in AC, we have

g (1) < C (logle + M) * (IVu(O)llz2 + |Tully zy)- - (8:38)
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Proof. The proof relies on the TT* argument in a rather simple way, starting
as in the proof of Theorem 8.18. Defining U (t)y def FH(e*EhF(€), we have

T
OO0z < Il s [ veeo ar
0

where the supremum is taken over the functions ¢ with ||¢]| rzy < 1 and
such that for each ¢, the support of F¢(t,-) is included in AC. Using a dilation
of size A, we then observe that it is enough to prove the inequality in the
case where A = 1. As previously, we write, using the fact that U is a unitary
operator,

H/OT Ut)o(t) dtH; _ (/OT U)o (t') di! /OT Ult)e(t)dt) |

=/ (Ut —t)p(t")]e(t)) . dt’ dt.
[0,T)2

Thanks to Proposition 8.15 and because Supp @(¢,-) C C, we have
, C
JU(t =)o)~ < mllw(t)llm
[U(t =)o)l < CIUE = )p(t)][L2 = Cllo@)lL2 < C'llo@)lLr

Therefore,

1
[07T]2 ]. + |t - t/|
< Clog(e + T)H‘PH%?([O,T];U)'

2
<C
2 =

H/OT Ue)e(t) @)l o)l dt’ dt

Thus, Theorem 8.30 is proved. ad

8.3.2 The Refined Strichartz Estimate

In some situations (which we shall encounter later in the study of nonlin-
ear dispersive equations), the standard Strichartz estimates are not accurate
enough to control the nonlinearity. In this subsection, we will give some refined
Strichartz inequalities.

Theorem 8.31. Let u be a function on R x R? such that for any t, the support
of the Fourier transform of u(t,-) is included in some ball B(&;, h) with |§;] €
[2972,20%2] and h < |¢;|/2. Then, for any wave admissible couple (g,7), we
have

i L ) 1 1 1
IVellzagery < CP*RE(ITO)lz2 + [Pulluseey) with p=d(5~ ) = o
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Proof. By virtue of Theorem 8.18 page 349, dilation arguments, and Duhamel’s
principle, the theorem reduces to the following proposition. a

Proposition 8.32. Let & in R? be such that |&| € [1/4,4]. A constant C
exists such that for any h € ]0,|&|/2] and any v € L', the Fourier transform
of which is supported in the ball with center & and radius h, we have

h
9> 0, |77 (199 [ < Cmin{ o i

Proof. We shall follow the idea of the proof of Proposition 8.15. It is obvious
that under the hypothesis of Proposition 8.32, we can write

u(t) = Y K*(t,h,-)x7*  with

7 € F (7% (©) and

K*(t,h,z) /Rd ei(x\g)iﬂaw(%) i,

where ¢ € D(R?\{0}) has value 1 near the annulus {¢ € R? /1/4 < |¢] < 4},
and ¢ is a function in D(R?) with value 1 near the unit ball.
First, we note that we obviously have

| K*E(t, h,-)||pe < ChY. (8.39)

Therefore, along the same lines as the proof of Proposition 8.15, it is enough
to prove that the kernel K+ satisfies

Ch

IE=(t By ) < pr=g (8.40)
Note that the inequality (8.39) implies that
Ch
|KE(t,h,)||pe < = for th?<1. (8.41)
t =z

In the case where th? > 1, we shall proceed as in the proof of Theorem 8.12,
except that we will have to control the dependency with respect to h. In order
to do so, we introduce the following definition.

Definition 8.33. Let 2 be an open subset of R? x R* such that
Yhel]o,1], [2,] <1 with o 2 {feRd/(g,h)eQ}.

Let D(£2) be the set of functions 1 from 2 to C such that for any h € Ig»(£2),
where IIg+ denotes the projection of £2 on R*, the map

E—¥(Eh)
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belongs to D(§2y) and satisfies, for all k € N,

d «
1l o) 2 sup (A3 (€ Loy < .

la|<k
hejo,1]

We first consider the nonstationary part of the integral which is described by
the following lemma.

Lemma 8.34. Assume that
V(& h) € 2, [VP(E)| > coh  with ¢o > 0.

Then, for any integer N, an integer k and a constant C' exist such that

i c
’/Rde”(@wg, h) de| < annk,ﬁ(mmh!

for any t # 0 and positive h.

Proof. Exactly as in the proof of Theorem 8.8 page 340, we shall consider the
first order differential operator

def
3,

which obviously satisfies , ,
E(ezt'ﬁ) =t Eezt'@.

From repeated integration by parts, we then infer that
def ;
1) [ e Ouen de
R
1 ,
= o [ O e de
Rd
We now observe that
def AP D?*¢(VP,VP)

"La=—La— (divL)a with divL = i|V¢|2 + 21 Vo)

For any 1) € D(£2), we write

d
1 h=18;® hd;1) Ad 2D2(h~ VP, h Vo)
t - _ At Rt I _ ? .
Lo =42 (Z RAZAE “/)(|h1Vg25|2 V|t )

j=1

Recall that on the support of ¢, we have |h"1V®| > c¢y. Hence, for any
integer k', there exist an integer k£ and a constant C such that



8.3 Strichartz Estimates for the Wave Equation 365
OHw”k,ﬁ(Q)
he

An obvious (and omitted) induction then implies that

"Ly 50y <

C
H(tﬁ)Nz/;HLx(m < 7N
This proves the lemma. a

In the case where |[V®P| < ¢oh, we use the method of the proof of Theorem 8.9
page 341.

Lemma 8.35. Assume that
V(gah) € ‘Qv |v¢(€)| < COh'

Then, for any integer N, a constant C' and an integer k exist such that

itP(§) o 1
[ vt n i < Wl | Grreaem

Proof. We use the differential operator £; introduced in (8.2) page 341:

Vi € D(R2),

d

- a . ajsﬁaja
L= T rvap i 1+ t|Vo[2

j=1

It is clear that £;(e®?) = e?. Using repeated integration by parts, we get

[ e Outemae = [ ¢ uie n de
R R

We now state the equivalent of Definition 8.10 page 342 in the present context.

Definition 8.36. Let 2 be a domain of RYxR* and N a real number.
We denote by SN. the set of smooth functions f on 2 x R? such that for
any (o, B) € N4 x Nd, a constant C' exists such that

N—18]
sup |(hde)*5 f(€,h,0)] < CA+]0]7) = .
(&h)en

We shall now prove that if f is in S, then

'L (F(Eh VD)) = g6 h 11 VB(E) with geSME (3.42)
In order to do this, we recall the formula (8.5) page 342:
VO(E) - Va(§)
t —
b =i NP

iAP(E) + 1 2iD*®¢(6,0)
L+ 162 (1+16]2)

+o(€,t2VP)a(€) with

a(,0) =
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The main point to check here is that if f € SM, then

a&jé(g)agjf(§7 h,0) M—2
trep <0

(8.43)

Leibniz’s formula implies that
O0c. P(€)0¢, f(E, R, 0) Y /
aqgB( Y 3] _ o’ B a
(hog)“0, < NTE ) = ,§< s Cpg (hOg)™ O¢, P (&)

B'<p

o , o 1
< (b0~ 0,08 160008 (10 )

Because we have |V&(&)| < ¢oh for any (£, h) € £2, we get

o a1
‘3@@(5)(/15‘5) 0e; 0 J(6,1, 005" (1+|92>‘

sCh‘(has)aasﬁf'f(ﬁ,hﬁ)@?‘ﬁ'( 1 )’

1+416)?
Thus,
o , Y 1 M—2—|3|
06, 0(€)(100°06, 05 1(6. 0007 (1 )| < O+ o),

If o/ # 0, then

, , ’ -1 1
’(hag)a agjé(f)(hag)a_a 8£j85 f(§,h,9)(9g ’ (TW) ’

<o sw 0"l

2<]a” [<[al+1

/ ’ ’ 1
a—a I 68
(hO¢) 0¢, 0y f(&, h,0)0, <1+|92>‘-

This completes the proof of the assertion (8.42) and thus of Lemma 8.35. O

We can now give an analog of Theorem 8.12.

Lemma 8.37. Let ¢ € D(£2) and

I(t,h) = / PO (€, h) dE.

Then, for any couple (N, N') of positive real numbers, there exist two positive
constants, Cy and Cy-, such that
CN CN’
I(t,h §79h+/ - dé,
TS G| |, T avaery

where £2, ¢ denotes the set of points & € (23, such that |V®(&)| < coh.
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Proof. Tt is only a matter of decomposing I (¢, h) into

1) = [ @O -0 (T )uemac+ [ (T e n ae

where y is a function in D(Rd) with value 1 near the unit ball, and applying
Lemmas 8.34 and 8.35. 0

Completion of the proof of Theorem 8.31. Applying Lemma 8.37 with

£
(P = T’
€ =z+ ]

we get

c C
_C s | i
(th?) =" 2ne (L HUVE(E)?)

As in the proof of Proposition 8.15, we decompose ¢ into

E=GH¢ with 6= () e ¢ =6 (¢)

|K*(t, h,tz)| <

w d€-

T
||

As (2, 3 C B(o, h), ¢1 varies in an interval Ij, of length 2h. Thus,

1 ac’
/(z A rave@p)y © = / </ e t|<’|2>d<1
Ch

= Ta—1

t =z

This amounts to proving Theorem 8.31. O

This refined Strichartz estimate leads to the following endpoint logarithmic
Strichartz estimate in dimension d > 3.

Theorem 8.38. A constant C' exists such that for any T, any h < 1, and any
function u such that for any time t, the support of u(t,-) is included in a ball
with radius h and in the annulus C, we have

1
lull 1=y < C(h*210g(e +T))* (IVu(O) 122 + [ Tull oy 1)) - (8.44)
Proof. The proof is very close to that of Theorem 8.30. Indeed, if we de-

fine U(t)y L F-1(e€)7(¢), then

T
1@ z2q0ry) = I7lz2 sup)| / Uedr .

where the supremum is taken over the functions ¢ with |¢[|lzz L1y < 1 and
such that for each ¢, the support of Fp(t,-) is included in a ball of radius h
and in the annulus C. As U is unitary, we have
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; - (/OT Ut)e(t) dt‘ /OT U p(t) dt’) .

- / (Ut~ ) plt))) o ' dt.
[0,T72

MT U)o (t) dt’

From Proposition 8.32, we can easily prove that

ha—2
!
— o < (—m8 -
Ut =)0~ < Oy

Therefore,
|| vwswal), <owr [l e@lale)l ata
0 L2 o721+ [t —¢|
< Ch¥*log(e + Tl el 2 (0. 17:11)-

Thus, Theorem 8.38 is proved. a

8.4 The Quintic Wave Equation in R?

In this section, we investigate the quintic wave equation in R>:

( +

Out+u® =0
5)

(u, atu)n:o = (uo,u1).

We shall prove that the equation (WZ) is locally well posed in the scaling
invariant space C([0, T); L?) N L°([0, T]; L').

d
Theorem 8.39. If v :ef Vuj—g belongs to L?, then a positive time T exists

such that the Cauchy problem (W) has a unique solution u in

Er d:ef{u e L5([0,T]; ') / Vu € C([O,T];LQ)}.

In addition, u satisfies the following continuation criterion. If T* denotes the
mazimal time of existence of u in Er, then:

— There exists a constant ¢ such that if ||v||r2 < ¢, then T* = 400 and the
solution belongs to

L®RY; HY) N L3(RT; L),
- If T™ is finite, then

T*
| o) de =+
0
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Proof. Denote by B(us,...,us) the solution of the wave equation
5
OB(ut, ... us) = —[[j= uj
B(uy, ..., us)ji=0 = 0 B(u1, ..., us5)t=0 = 0,

and by up, the solution of the free wave equation Ou = 0 satisfying ur(0) = ug
and Oyup(0) = ui. A solution of (W5) is a fixed point of the map

ur— up + B(u,...,u).

The energy equality, Corollary 8.29, and Hélder’s inequality together imply
that for any 7,

5
IVB(us, ..., us)ll g2y + 1Bur, .y us)ll g cpaoy < C [T usll g o)

Jj=1

Provided that |[ur|| s L0y is sufficiently small, Lemma 8.22 page 357 ensures
the existence of a solution with the desired properties on the interval [0, T7.

More precisely, in the case where ||y||z2 is small, we readily get global
existence because, owing to Corollary 8.27,

lurllLs Loy < Cllv[lLz-

Now, if ||]| L2 is not small, we may decompose 7 (as we often do in this book)
into its high-frequency part and its low-frequency part, as follows:

v=8y+ Id-5S;)y.

Denote by u%’ ; and uflé ; the respective solutions of the free wave equa-
tion Ou = 0 associated with S;v and (Id —S;)v. As we know that

Jim /(14 —S,)y]]z2 = 0.
according to Corollary 8.27, for all positive € there exists some J € Z such

that
HU}J?,J||L5(L10) <e. (8.45)

For the low-frequency part we use Holder’s and Bernstein’s inequalities, which
imply that

[ gll g (zr0y < T ufe sl oge (o)
1 _J Vi
S CT525 ||uF7JHL%°(L6)'
Using Sobolev’s inequality and the energy equality thus yields that
Il
g1l g (Lr0y < C25T5 ||| 2
Together with (8.45), this gives that
Jim lupllLs. 10y =0,

which leads to local well-posedness for any data in L2.
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Finally, we prove the blow-up criterion. Consider a solution u of (Wsi) on
the interval [0, T'[ such that

T
[ 1@l de < .
0

Using the energy estimate between ¢’ and ¢ (with ¢’ < t) gives
t
IVu(t) — Vu(t')| 2 < / [[u(t")]|7 20 dt”.
t/
Thus, a function uz exists in H' such that

lim u(t) =up in H.
t—T

The local well-posedness part of the theorem then implies that u can be con-
tinued beyond 7. This completes the proof of Theorem 8.39. a

8.5 The Cubic Wave Equation in R3

The cubic wave equation was introduced in the context of field theory and is

of the form
(W5) {

where the unknown function u has real values and depends on (¢, z) in R x R? .

Outu®=0

(’U,7 atu)|t:0 = (u07 u1)7

8.5.1 Solutions in H?

First, we shall prove that the equation (ng) is locally well posed for initial
data (ug,u1) in H x L2
. def 9 ,

Proposition 8.40. Assume that v = Vu(0) belongs to L*. There exists
a positive time T such that (ng) has a unique solution u, where Vu be-
longs to C([—T,T);L?). Moreover, if |T*,T%[ denotes the mazimal inter-
val of existence of the solution, then there exists some constant ¢ such that

—2
TE| = cllvlzz-

Proof. Define the trilinear operator By (a1, as,as) as the solution of

OBx(a1,az,a3) = Faiazas
By (a1, a2,a3)=0 = 0¢B+(a1,az,a3)|;=0 = 0.

Thanks to the energy estimate and the Sobolev embeddings (see Theorem 1.38
page 29), we get
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|VBi(a1,a2,a3)| po(-71:02) < llarazas|| oy —1,1;02)

3
< T[] laell o -r.1:L0)
=1
3

<T H laell Lo -z 70y
(=1

Now, the solution up of the free wave equation with data (ug,u) satisfies
[Vurpll e 702y < 722
Hence, Lemma 8.22 yields the desired result. ]

In the defocusing case [namely, the case (W;)], the equation is globally well
posed, as stated by the following result.

Theorem 8.41. If the initial data ug s in L* and such that v belongs to L?,
then there exists a unique global solution u of (W3") such that Vu belongs
to C(R; L?). Moreover, this solution belongs to L>=(R; L*), and satisfies

1 1 1 1
SIVa@OE + lu@li < 5193 + Zlu(O)lLe for all teR.

Proof. Formally, this follows easily from the energy estimate. However, we
have to justify that wu(t) belongs to L*. Therefore, we consider a solution
of (W;") such that Vu belongs to C([-T,T]; L?) and u(0) belongs to L*,
and a sequence (uy,)nen of functions which are C* in time, and smooth and
compactly supported in the space variable, such that

lim Vu, =Vu in C([-T,T); L?).

n—00

We can write that

1 1 !
—/ ul (t,z) de = —/ u (0, 2) dx +/ / ud (V') x)Opun (t', ) dt’ d.
4 R3 4 R3 0 R3

Thanks to Sobolev embeddings, we have

¢ ¢
lim / / ud (t', )0y, (', ) dt’ do = / / ud (', x)opu(t', x) dt’ d.
o Jre o Jr?

n—oo

This gives that u(¢) is in L* for any ¢ and that

1 t
@l < Z/ b (@) dx—l—/ / B, )t ) dt da.
R3 0 R3

As u? = —0Ou, we have
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1 1 t
L@t < Z/ (@) dx—/ / Ou(t', 2)0yu(t’, z) dt’ da.
R3 0 R3

Using an omitted density argument, we can write that

¢ 1 1
/ / Ou(t', 2)dpu(t’, z) de dt’ = —5||Vu(t, )72 + 51717
0 Rfj 2 2

This gives

1 1 1 1
Tt < [ uble) do = SIVaOI: + 513

Proposition 8.40 implies, in particular, that if, say, T} is finite, then the
norm ||Vu(t)||z2 goes to infinity when ¢ tends to T%. From the above in-
equality, we can thus deduce that the solution is global. ad

8.5.2 Local and Global Well-posedness for Rough Data
We first show that both equations (W5") and (W) are locally well posed for
data in the scaling invariant space H? x H 3.

Theorem 8.42. If v belongs to H’%, then a positive time T exists such that
a unique solution u exists in L*([—T,T] x R®) which is, in addition, such
that Vu is in C([-T,T]; H*%). Moreover, there exist two positive constants, ¢
and C, such that if ||7||H,% < ¢, then the solution u is global and satisfies

[Vl ) T llellpagivsy < Cllvll -3 (8.46)

. 1
Loo(R;H ™ 2

Proof. By Holder’s inequality and a Strichartz estimate (Corollary 8.29), we
get

1B(a1, az, a3)l pa-r,11xme) < Cllarazasl 4 oy ps

3
< C T llaellza(—r.ryxee) (8.47)
=1

and
lupllpsgi+s) < Clivll ;-1 -

Decomposing ~ into

. def _ ~
Y=71,r+72,r Wwith 71 r = F '(1p0,r)7)

we then get, by virtue of the Sobolev embedding H o L4,
11
sy < CTERI, 3 + Ikl -y

As Rh—r»%o 72,8l ;-3 = 0, the whole theorem is proved using Lemma 8.22. 0O
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It turns out that the equation (W?)i) is also well posed in H* x H*! for
any s € ]1/2,1]. Note that this result is not an obvious consequence of the
previous local well-posedness statement since H?2 and H* are not included in
one another.

Proposition 8.43. Let s be in |1/2,1] and consider an initial data in H* x
H*~'. Define the wave admissible couple (q1,71) by

(1 1) d_ef(l—s 2—3)
q1 ’7‘1 o 2 ' 6
A positive time T then exists such that a unique solution u of (ng) exists in

the space L ([T, T]; L™ (R*)) which is, in addition, such that Vu belongs to
the space C([—T,T]; H*~1). Moreover, if |T*,Tf| denotes the mazimal time
2

T 2s-1

interval of existence, then |T%| is greater than c||vy|| ;2%

Proof. We introduce the wave admissible couple

() = (555)
C]Q77’2 n 2 ’2

From Corollary 8.29, we infer that

lurll Lo r;or ®3)) < CllAll gro-1,

||B(a17 az, 0’3) ||Lq1 ([-T,T];L"1 (R3)) < ||a1a2a3HLq'2([_T7T];Lr§ (R3))

Noting that

1 3
T—1=’I“/2 and — — — =2s—1,
3 93 Q1

we get

3

HB(ala az, a3) HL‘H ([=T,T);L™1 (R3)) <C H ”af”L&z’g([_T,T];Lm (R3))
/=1
3
< T T Naellos (o uoyy-
=1

Applying Lemma 8.22 then allows us to complete the proof. a

We now give a technical statement which will be useful in the next subsection.

Lemma 8.44. Let s be in |1/2,1[ and consider an initial data such that ~
belongs to H*~1 N H~=. Let u be the solution giwen by Theorem 8.42. There
exists a constant C such that for any couple (q,r) # (2,00) satisfying (8.32),
we have

u 2 <V peer- 8.48
I =3y S O e (3.45)
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Proof. Observe that, according to Corollary 8.25 and Theorem 2.40 page 79,
[VB(a1, az, as)]|

S C’HalagagﬂL 2 2

12 2
‘ ()

. s
L‘I([—T,T];an

)
(8.49)

2
< CH ||aZHL4([7T,T]><]R3)||a3HL§([

2 .
=T, T;L1=%)
=1

We first take (¢,7) = (2/s,2/(1 — s)). Also using (8.47), Lemma 8.22 implies
that u belongs to L% ([T, T]; L7-7) 0 L*([—T, T]; L*) and satisfies

< Clhlgn-

bl 2 ey <

Applying (8.49) and Corollary 8.29, we then get (8.48), and the lemma is
proved. O

8.5.3 The Nonlinear Interpolation Method

In this subsection, we want to prove that in the defocusing case, the cubic wave

equation is globally well posed for (ug,u1) € H% x H™%, that is, at a level

of regularity which is less than 1. For this, the very structure of the equation

(namely, the defocusing assumption) has to be used, combined with an inter-

polation method between H' and H 2 (i.e., between spaces for which global

well-posedness and local well-posedness, respectively, has been established).
We now state the main result of this subsection.

Theorem 8.45. Assume that v € H i, A unique global solution of (W3")

then exists in L} (R; L) which is, in addition, such that Vu is in C(R; H 7).

Proof. The proof relies on a nonlinear interpolation method: For any integer j,
we decompose the initial data as

¢ def

def
'Y] h d€]

(8Sju0,Sju1) and ’yj = (8(Id —Sj)uo, (Id —Sj)ul).

On the one hand, as (ug, u1) belongs to H3 x H~%, the high-frequency part
will be small in Hz x H _%, giving rise to a global solution, according to
Theorem 8.42. On the other hand, the low-frequency part satisfies a modified
cubic wave equation for which the basic H' energy estimate makes sense. For
arbitrarily large time T, it will then be possible to choose j so that the solution
exists on [T, T.

We will now be more specific. Denote by v; the (global) solution of (W;")
associated with the Cauchy data vjh given by Theorem 8.42, which exists
provided we choose j such that

I,y <274,y <. (8.50)
As ’yjh obviously belongs to H -3, applying Lemma 8.44 with s = 2/3 implies
that v; € L3(R; L).
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Next, we decompose the desired solution u into u; + v;, where u; is the
solution of the modified cubic equation

Ow + w3 + 3w?v + 3wv? =0
%
o) TG

with v = vf and v = v;. Note that 'yf obviously belongs to L? N H1.

The properties of the equation (W3 ,) are described by the following
lemma.

Lemma 8.46. Let v € L3(R;L%) and v € L2 N H~%. There exists a pos-
itive time T such that (Ws,) has a unique solution w, where Vw belongs
to C([~T,T); L?). Moreover, T can be chosen greater than

-2
¢ (Ivllez + vl eizey)

and Vw belongs to C([—T,T]; H™4).

Proof. Combining the Holder inequality, the embedding H' < LS, and the
energy estimate yields

3
IVB(a1,a2,a3)|| Lo (-1,17:2) < T H IVael| oo (=1, 1);2)
=1
2
2
IVB(v,ag,a3) || po(—1,7);2) < T3 |[v]|£3(r;L0 H IVae| oo ((—1,1):22)>
=1

1
IVB(v,v, )| Lo (—1/13:02) < T3 HUH%?’(R;LG”VGHL‘”([fT,T];L?)-

Lemma 8.22 then implies the first part of the lemma. In order to prove that Vw
belongs to C([—T,T]; H~ %), we can use the fact that, owing to the Sobolev
embedding L7 (R%) — H~1(R?) (see Corollary 1.39 page 29), we have

[IVw]| 1 < Vw0l ;-1 + Cljw® 4 3w?v + 3w?||

Lo (=T, T);H~ LV([-T.TEL %)

Now, using Holder’s inequality and the Sobolev embeddings H %(R3) —
L*(R?) and H'(R?) — L%(R®) (see Theorem 1.38), we can write

||w3||L1([ ATAS TvaH%oc([ T,T];L2)||vw||Loo([ T )
10wl gy S THIVON, i Vol (s lollor oy,
12l gyt STHIVON gt 10 i
The lemma is thus proved. a

Proof of Theorem 8.45 (continued). If we now denote by T7 the maximum
time of existence of (W3,,), the matter is reduced to proving that
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3 *
lilililioij +o0. (8.51)
The last part of this section is devoted to the proof of (8.51). Because of Lem-
ma 8.46, it suffices to prove an a priori bound on the energy of the solution u;.
This will be achieved via the energy inequality, provided that we can control
the nonhomogeneous terms by the energy of u;.
We introduce the notation

def 1

1
H; € 2t + lus Ol

It will be useful to note that if j is nonnegative, then
1 j
H} < Cyey27, (8.52)

where, from now on, (¢j)jen denotes a generic element of the unit sphere
of /*(N) and C,, = Sl ;1) for some locally bounded function f on R*. In
fact, the quantity [|u;(0)|74 is negligible compared to the energy of the initial
data 412
We now define T} by
7, sup{t < 17 / %Hvujnitw(w <o)
and fix some T > 0 and jy € N*.

We seek to prove that there exists some integer j > jo such that T} is
greater than 7. As pointed out earlier, the key point is the control of the
energy of u;. Multiplying the equation by d;u; and integrating over x and ¢,
we get, for any T' less than or equal to T7,

T T
/0 /}R3 v u;Opuy da dt + /0 /R3 vjuiOpu; dx dt).

From now on, we denote by a; a sequence such that

1
§HVUJ‘||2L;°(L2) <H;+3

liminf a; = 0.

Jj—00

Here, we easily see that the whole theorem is proved, provided that we can
find some positive real number « such that

T T
/0 /]1&3 v u;Opu; dxdt+/0 /]1&3 vjuiOpu; dxdt‘ < Taaj”VUjH%%o(Lz). (8.53)

By Hélder’s inequality and Sobolev embedding, we have

T T
[ twstes dwa] < [ sl 0l 100501

T
< CIVUs B 12, / oy (8)[26 dt.
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Finally, using Lemma 8.44, we can write, for all k£ > —2,
||UJ||L2 (o) = CT3||UJ‘||2L3 (L)
<CTH IR _y

1.
H-3+%

We deduce that

1.1
215

[ o ara] < 0TV 1

< CT 2 P,y 19, -
Hence, the first term of (8.53) satisfies the desired inequality.
To handle the second term, we write (with obvious notation)
vj = vj.r + B(vj,v5,0;).

Using Holder’s inequality and Corollary 8.29 with (¢1,71) = (3,6) and
(q2,7m2) = (6,3), we get

1B(vj,v5,) | 3. zoy < ClloillZago,zyxmey Vsl e ey
Using Lemma 8.44, we then get

I%,

1B (vj,v5,v5)|L3.(zs) < OH% 1 ||7] ||H_§+%

We will focus on the term

T
/ B(vj,vj,vj)u?@uj dx dt,
o Jmr3

which turns out to be the easiest one.
Again, thanks to Holder’s inequality and Sobolev embedding, we get

h
(v, 07, 0;) w2y dwdt\ < OTH|Vu 32 oy 2,3 120 gy

]R3
< CT327 3 y|3 ) IVuslEe (1)

Hence, this term is also bounded by the right-hand side of (8.53).
The term involving v;  is more demanding and requires paradifferential
calculus. Using Bony’s decomposition, we can write

def

v, Fu T' u?—l—Tugvj’p with  T0b Z S;HgaAkb

k>—2

As the support of the Fourier transform is preserved by the flow of the constant
coefficients wave equation, the function v;  has no low frequencies, and we
can restrict the summation to those k such that k > j — 2.
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Now, for any k > j — 2, we can write that
. C 1 C
[Skt2(vs,r) Ak ()l L1 22y £ CT2||Sk42(vj, )| 22 (£oo) | Ak (W) L2 (L2).-
Note that, according to Bernstein’s inequality, we may write

1Ak (u)lle < C27F| Apd(ud)| L2
< C27M| Apuy [ 14 [0 Ak | o
< (0272 ||8Akuj||L2.

Therefore,
. . 1, - _k
[Sk+2(vj,m) Ak (W) L1 L2y < CT2 ([ Skr2(vse)ll L2 (2)27 2 IV l|7 0 1.2y

According to logarithmic Strichartz estimates (8.38), we have

1Sk+2(vs,0) 22, (1) < Z 1Ae(v;,p) |z
0<k+1

1
< > (logle +27)) " A 2o
L<k+1

We deduce that for any o < 1,
1
Q 2 —o L
18ke2(im) gy < D (logle +27)) "2 0=y .
£<k+1

1
< C(log(e + 2kT)> “ok(l=o) ||’YJ}'1||HU*1'
Finally, for any % <o<l,

1
I3, puills o2y < CT2 0 o1 1V 1 2 129

1
X Z ok(z-0) <log(e + 2’“T)> :
k>j—2
Note that we can assume with no loss of generality that 7 < 27. Hence,

1
1), w3l 2y < CTZ V) | o1 IV 1 350 12y

1
X Z 2k(%_0)(10g(e+22k))2
k>j—2
1 N
< CTH o [Vl g2y S 2G5,
k>j-2

Observing that, since j > 2,
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K>j—2 k>j—2 J
< 2i(3-9) ;3 Z 2= (] — j 4+ 1),
k>j—2

we deduce that
1 (1_o) .1
T, U2||L1T(L2) < CT2H%}?HHUA||V“j||%<;o(L2)2j(2 0)32-

3, F ]

Finally, taking o = 3, we get, thanks to the inequality (8.52),

T
1 .1
[ Lt oy s d] < CTHA, 1Tl 0o

Note that (¢;) € ¢2 implies that lim infjéooj%cj = 0. Hence, this term also
satisfies (8.53).

The last term, T,2v; r, is the most delicate to treat. We write that?

T T
/ / Tuzvj,FatUj dr dt = E / Sk,l(u?)Ak(vj’F)Ak(atuj)dw dt
0 R3 ’ 0 R3

k>j—2

-2 % [ A

E>5—2 0<k—2
X Ag(Ar(v;.p) Ap(Bruy)) da dt,

Ay being the convolution operator by the inverse Fourier transform of 3(27%),
where & is a function in D(R?\{0}) with value 1 near the support of ¢
[see (2.5)].

According to the standard Strichartz estimates, the function v; p fails to
be controlled in LQT(BEO,Q), whereas dyu; belongs to L5 (L?). Therefore, the
series with general term A.kvL FANkﬁtuj does not converge in any reasonable
sense. In order to overcome this difficulty, we may use the logarithmic refined
Strichartz estimate given by Theorem 8.38. For that purpose, we introduce
a covering of 2¥C by a family of balls of radius 2° centered at (£5¢),ca,,.
Let x € D(B(0,1)) be such that for all £ € 2¥C,

_ ¢kt _ ekt
Z X<£ 25” >—1 and Ciog Z X2<§ 25” )gC’O. (8.54)

vEAL . vEAL.

We write that

2 As before, owing to the spectral properties of vj,F, the summation may be re-
stricted to those k € Z such that k > j — 2.
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def ~ , & ~
0 (Opuj) = Ae(Ax(vj,r) Ar(Oruy))

- ANK Z Az,e(vj,F)ANk:(atUj) with
vEAR.

v 0 T F (e Ry (2 (e — €h))) ale))

As the support of the Fourier transform of a product is included in the sum
of the support of each Fourier transform, we obtain

T
/ / Tuz’Uj)FatUj dx dt
o Jrs

T . ~ ~
-y ¥ /O /R ST AR A 05,0) B (Ouy)) i

k>j-2 0<k-2 vEAR.

. ~ def ~ 1 [ ~,q_ —~
with A7 0 % F 1 ()15 gpe 006 -

We deduce that

T
// TuzvjypatujdxdtgBjHVujH%oo(Lz), where
o Jre r

T
_2z v AV
Bj= > > 27200 ;O AY (05, (1) | e | AF (e (1)) | 2 dit,
I; 270 VEAL ¢

2j—
<k-2

and (cg,;(t))eez denotes, as in all that follows, a generic element of the unit
sphere of (?(Z) such that ¢, ;(t) = 0 for £ < —2.

For fixed k and ¢, applying the Cauchy—Schwarz inequality with respect
to v and dt gives

B 3 (| Y 1) )

k>j—2 VEAL
k-2

N

g (/OT@‘(“ > 1A% vy (0) 13 at)

VEA}CJ{

Applying the logarithmic refined Strichartz estimate (8.44), and using the
quasi-orthogonality property stated in (8.54) and the fact that 7" < 2k+2
for k > j — 2, we get

T
/0 DAY (0 p ()T dt < C Y logle+25)27F||AY )7

VEAL ¢ vEAL.
<CR2F Y 1AL Nz
DEA;C,[
< Ck2" ¥ Ay 13 .
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Therefore,

1 _k H l
oy krtiantle ¥ ([0 318000k a)
0

k>j-2 1<k-2 VEA ¢

Using the Cauchy—Schwarz inequality with respect to ¢, the quasi-orthogona-
lity properties, and the fact that the sequence (c; ;(t))¢ez is an element of the
unit sphere of £2(Z), we obtain

T

) /% S 18 0132 dt) < CIV L ooy Z(/O @ dt)°

<k-2 VEAk ? <k
< CT7k? ||V L (2)-
This yields, for some sequence (c},)ren such that ||(c}.)|e < 1,
1 _k
B; < CT> Z k27> ||AWJ}'L||L2||VUJ'||L§9(L2)
k>j—2

i L ko k(o—
< CT? || Vuglpge o) Vi L go—r D> cik27 22740,

k>j—2
Choosing o = 3/4 and taking advantage of (8.52), we conclude that
B; < CT3¢;2i |,y D k2™t
k>j—2

<CTHell, s Y (k- +1)
k>j—2

< CTHE
Hence, the inequality (8.53) is satisfied, which completes the proof of the
theorem. 0

8.6 Application to a Class of Semilinear Wave Equations

This section is devoted to the study of a class of semilinear wave equations
with quadratic nonlinearity with respect to Vu. This type of nonlinearity
arises naturally in different fields of mathematics and mathematical physics,
and, in particular, for the so-called wave maps equations.

Here, we consider the semilinear wave equation

{ Ou = Q(t, u)(Vu, Vu)

(SW) (’U,, atu)‘t:() — (U/Ou ul)ﬂ

where @ stands for a smooth function from R? to the space of symmetric
matrices on R'*¢, which is bounded, as are all of its derivatives.
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To simplify the presentation, we focus on the evolution for positive times
and on the case d > 4. We now give the main statement of this section.

d cd_
Theorem 8.47. Assume that d > 4 and that tef (Qug, u1) belongs to B3 'n

.d_1
B3, . There then exists a mazimal positive time T* such that (SW) has a
unique solution u on [0, T*[ satisfying

Ld_]  .d 1
Vu e C([0,T*[; Bf, N B3, ?).

Moreover, there exists a nonincreasing positive function ¢ on R™ such that

1)||7||;2 : (8.55)

-1
2
1

T >
> C(IIVIIB

i

d_
2
2,1

N

If T* is finite, then
T
tmsupJu()] .~ +/ [Vut) | dt) = oo.
TST* 0

Proof. For a sufficiently regular function u, we introduce the solution F'(u) of
the following linear wave equation:

OF(u) = Q(t,u)(Vu, Vu) with (F(u))y= =0 and (0;F(u))}=o = 0.

Observe that, by virtue of Duhamel’s formula, u is a solution of (SW) if and
only if u = up + F(u) with

Oup =0, Upj=o = uo, and Jyup—g = u1.

Therefore, the first part of Theorem 8.47 is a consequence of the following
proposition and the Picard fixed point theorem.

Proposition 8.48. For any positive T, define the norms

de 1 .
lallr ©Uvall 4 + Tl with
LE (B3, )
def
lalli,r = ||VGHL%C(B§;%)+ Va2 (L)

Given a couple of positive real numbers (M,r), define the set XTIYI’T of func-
tions a such that

IVal

4y <M and |alir <.
LE(Bsy )

There ezists a positive constant Cy, depending only on d, and a nondecreasing
continuous function C : RYT — R such that if
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M =2|y]l g2 r=Calnll 4y, and rT2C(M) < 1,
2,1

d_1
322,1 2
then u — up + F(u) maps Xr}/[’r into X:,Af[’r, and for any u and v in X:JFVI’T,
we have 1

[1F(u) = F(v)|r < 5”“ =7 (8.56)

Proof. We first establish (8.56). For u and v in Xé\!’r, we may write®
Q(u)(Vu, Vu) — Q(v)(Vv,Vv) = Q1(u,v) + Q2(u,v) with

Q1 (u,v) Q) — Q))(Vu, Vu)  and
Q2(u,v) def Qv)(Vu + Vv, Vu — V).
Hence, F(u) — F(v) satisfies

{ O(F (u) — F(v)) = Q1(u,v) + Q2(u, v)
(F(u) = F(v))jt=0 = 0 and  (9¢(F(u) = F(v)))j=0 = 0.

On the one hand, applying the localization operator Aj to the above equation
and then using the basic energy estimate to bound each block A; (F(u)—F (v)),
we get, for a € {1/2,1},

IV(F(u) = F(v))]l (8.57)

d_, -
1('2 @
T\(BP31

a_ . < u,v) + u, v
@i S 1Q1(u, v) + Q2(u, )||L
On the other hand, according to the Strichartz estimate stated in Corol-
lary 8.27, we may write

IV(F(u) = F(v)llzz.z=) < [1Qu(u, v) + Qa(u, v)| (8.58)

1.
L%"(Bzz,l 2)
So, in order to prove (8.56), it is only a matter of exhibiting suitable bounds

Ld Ld_1
for Q1 (u,v) and Qz(u,v) in L} (Bg, 1) and in Ly.(Bg, ?).
cd_
We first establish bounds in the space L%F(Bj1 1). Taking advantage of the

product laws in Besov spaces (use Corollary 2.54 page 90) and Corollary 2.66
. M,r
page 97, we get, for all v and v in X ",

1Q1(, 0l g <1908 Vull 1) ~ QW) g

2,1

< CM)|IVullz=IVull g2 Ve = Vol| g,

da
2
2,1
where C' is a nondecreasing continuous function of M.

3 For expository purposes, we omit the time dependency of the function Q.
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Along the same lines, we get

192w, )]l , :

-+ < (QOIFIRE)~QW)I g N(Tut V) & (Tu=To)] g

< C(M)||Vu+ VUHB%’% IVu — VU||B _

1

Ny

Plugging these inequalities into the inequality (8.57) with o = 1, we thus get

VF(u) — VF <o) (12| v ooy |V .

IVF@) = VEE, g0, < CON(THIVulg 0 190 o

MV =Vl g #TIVa= Vol gy [Vt el g ),(8.59)
22 ) L%Q(B22,12 (321 )

from which it follows, as u and v are in X", that

VF(u) — VF@)| 4, <COMT>r|u—v|r. (8.60)
LE B2, )
Next, again using the product laws in Besov spaces and Corollary 2.66, we
may write
1Q1(u, vl ,g-3 < QW) = QW) .4 [Vu® Vull 4
2.1 B34 2
S M)V (u =)l g [IVullz= [Vl

2,1

=
N’\H

L. (8.61)

d_
2 2
2
Along the same lines, we have

1Q2(u, )| 43 < (IQO)|+]Q)-Q(0)]

BQQY1 B

< COD(IV (= v)l|z= |V

M(VutVo)@(Vu—Vo)|| 4,

2 2
,1 B2,1

uto)

da_1
272
B3,

IV =o)l gy [V +0)lle<).

2,1

e

/‘\mm

Putting those inequalities together with the energy estimate (8.57) with o =
1/2 and the Strichartz estimate (8.58), we thus get

1
|F(u) ~ () ) (THIV (=) g IV @+ gy
L%‘Q(BQ.I )
FTHV@ =0l ey 190+ 0z
T
1
+T2||v<u—v>\|L%C(B§;1)||Vu||@<mHwnmgﬁf% ). (8:62)

from which it follows that
IF(u) — F()|l1,r < C(M)r(1+rT%)|lu—v]r.

Combining this inequality with (8.60), we conclude that
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1 1
|1F(u) — Fu)||lr < C(M)rT2(1+4rT2)||u—vl|r. (8.63)

Of course, we may assume with no loss of generality that 4C' (M) > 1. So,
choosing T such that )
4C(M)rT= <1,

we see that 772 < 1. Hence, the inequality (8.63) implies that
1
1F(w) = F@)llr < 5llu—vlz.

We now establish that for an appropriate choice of r, M, and T, if u belongs
to X", then so does up + F(u).

First, we note that, thanks to the energy and Strichartz estimates, there
exists some constant Cy, depending only on d, such that for all j € Z and
t € RY, we have

14;Vup®)lze = [Alle and [ A;Vup|gzpe) < Ca2/(E3) | Ajr|l .

By summation over j, we thus get

\% , = , and
IVurl, o, = Ilgo0 and e

LT < CdllVlIBQg;%-
Second, applying the inequalities (8.59) and (8.62) with v = 0, we get, for all
u € X%’T [up to a harmless change of C'(M)],

IVE(u)]| . <C(M)T2r and ||F(u)|lyr < C(M)T?r2.

. d_
L%O(BzzJ )

Taking M = 2||ﬂy||Bg_1 and r = 2C’d||'y||Bg_;, we thus see that the above

2
31 31
inequalities imply that up + F(u) is in XCJFM " whenever T has been chosen
sufficiently small so as to satisfy

20(M)rT= < 1.

This completes the proof of the proposition and thus of the existence of a
solution of (SW). O

The uniqueness is an easy consequence of the above computations. Indeed,
if we consider two solutions, v and v, of (SW), then v —u = F(v) — F(u).
Hence, the inequality (8.63) reads

lu—v|r < CM)rT2(1+rT?)|u—v|r

with 7 = max(||ul|1,7, ||v]1,7) and M = max(||Vu d_, ||V a4 ).
(hullr o) (9l g0 1901 )

This implies uniqueness on a sufficiently small time interval [0, 7). Re-
peating the argument then yields uniqueness on [Ty, 27p] and [27}, 37p], and

so on, until the whole interval [0, T] is exhausted.
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To prove the blow-up criterion, the starting point is the following energy
estimate for o € {1/2,1}:

IVl e < g+ Q) (V0 V)] (3.64)

Ld_y -
2,1 L%"(Bzz,1 )

The term Q(u)(Vu, Vu) is a linear combination of terms of the type
Qij(w)Oudju, 0<1,j<d.
Now, according to the (simplified) Bony decomposition, we have
Qij(u)ud;u = Té?ij(u)aiuaju + T, Qi (u)diu.

Since, for some smooth function Q,; we have @Q;;(u)du = 0;(Q;;(u)), the
composition lemma, together with the paraproduct estimates, enables us to
conclude that

1Q(w)(Vu, Vu)l|

a

¢4 S O(lullz=)[Vulz=l[Vull 4.
2,1 BQ,I

Plugging this inequality into (8.64), we end up with

T
\Y4 < C oo ([0 Vu| < ||V dt.
IV, oy < 00+ Cllullagamy) [ 19l 90l

Now, if u is in L ([0, T*[; L>) and Vu is in L ([0, T*[; L>), then the Gronwall
Ld_ 1 .d

lemma ensures that Vu is in L>°([0,7*[; B§, > N B3, 1). From this, it is easy

to conclude that the solution may be continued beyond 7. This is simply a

matter of following the method that was used in the proof of Theorem 7.21
page 307. a

8.7 References and Remarks

The study of the dispersive properties of linear equations has a long history. However,
the idea of using them to achieve some gain of regularity (compared with Sobolev
embedding) is rather recent. More general stationary or nonstationary phase ar-
guments than the ones we used to prove the basic dispersive inequality for the
wave equation (Proposition 8.15) may be found in, for example, the book [167] by
L. Hérmander. The one-dimensional estimate may be found in [150] and [274].
The first global LY(L") estimate was stated in 1977 by R. Strichartz in [276] for
the wave equation (see also the works by P. Brenner in [46, 47], and by H. Pecher
in [246, 247]). The extension to the whole set of admissible indices was achieved by
J. Ginibre and G. Velo in [147] for the Schrédinger equation, and in [149] for the wave
equation, except for the endpoint case ¢ = 2, r = 20/(0 — 1) with o > 1, which was
established later by M. Keel and T. Tao in [180]. Let us emphasize that global LI(L")
estimates are often the key to proving well-posedness results for semilinear wave of



8.7 References and Remarks 387

Schrodinger equations (see for instance [26, 27, 60, 263, 264]). Such estimates are
also available for other types of partial differential equations (see e.g. the works [48]
and [148] concerning the Klein-Gordon equation).

The set of indices for which we proved the Strichartz inequality (8.14) is sharp.
The so-called Knapp wave provides counterexamples away from the endpoint (see,

g., [128]). On the one hand, it is also known that (8.14) fails for (¢,r,0) = (2,00, 1)
(see, e.g., [233] for the case of the wave or Schrodinger equations). On the other hand,
it holds true for radial functions (see [278]).

Refined Strichartz inequalities were introduced by S. Klainerman and D. Tataru
in [194] in order to prove a sharp result concerning the Yang—Mills equations. There is
a huge literature concerning applications of Strichartz-type inequalities to nonlinear
equations (see, e.g., [60] for the case of the Schrodinger equation and [253] for the
semilinear wave equation).

Finally, that the defocusing cubic wave equation is globally well posed in the
space (H® N L*)(R3) x H*"Y(R®) for s € ]3/4,1[ was first proven by C. Kenig,
G. Ponce, and L. Vega in [181], then by I. Gallagher and F. Planchon in [135] (see
also [21]). The former proof follows the method introduced by J. Bourgain in [44],
which amounts to first solving the equation for the low-frequency part of the data,
then a modified cubic wave equation, while the latter work is based on a strategy
introduced in the context of the Navier-Stokes equations by C. Calderén in [55]:
The authors first solve the equation for the high-frequency part of the data. In this
chapter, we adopted the latter approach. To the best our knowledge, our global
well-posedness result in Hi (]R3) is new. We should point out that since Hi (R ) is
continuously embedded in L*(R?), we do not have any supplementary condition on
the Cauchy data, in contrast with [181] and [135]. We also note out that in [209,
210], H. Lindblad and C. Sogge proved that the Cauchy problem for (W3) in H*® is
ill posed below s = %

The local well-posedness result for the class of semilinear wave equations with
quadratic nonlinearity considered in Section 8.6 is essentially contained in the work
by G. Ponce and T. Sideris [253] (see also [267]). Here, we strived for a scaling
invariant functional framework in which to apply the Picard fixed point theorem.
Finally, we emphasize that if the nonlinearity satisfies the so-called null condition,
then the best index of regularity for which local well-posedness holds true falls to
s = ¢ (see, in particular, the works by S. Klainerman and S. Selberg in [193], and

2
by D. Tataru in [279], dedicated to the wave maps equations).






9

Smoothing Effect in Quasilinear Wave
Equations

This chapter is devoted to the local well-posedness issue for a class of quasi-
linear wave equations. The equations which we consider here may be seen as
toy models for the Einstein equations in relativity theory. We shall see that
the energy method presented in Chapter 4 allows to establish a local-in-time
existence theorem for data in any H® space embedded in the set of Lipschitz

d
functions, or in the Besov space B;jl. In this chapter, we aim to go beyond
such classical results.

To be more specific, we now present the model that we are going to study
here. As in the preceding chapter, we define

def def def
0o = 0, 0= (Ouyy---+02,), and V = (04,0, ...,0z,).

Throughout the chapter, G will denote a smooth function, bounded on R?
(along with all of its derivatives) and valued in a compact subset K of the space
of symmetric d-dimensional matrices. We assume, in addition, that Id +K is
included in the cone of positive definite matrices, a condition which ensures
the ellipticity of the operator

A+0-(Glu)d) with - (G(u)-00) % ST 9@ u)ap).

1<j,k<d

Let Q be a smooth function from R? to the set of quadratic forms on R4*!,
which is bounded as are all of its derivatives.

The quasilinear wave equations that we are going to consider in this chap-
ter are of the form

{3t2u — Au— 90 (G(t,u) - Ou) = Q(t, u)(Vu, Vu)

QW) S =

We point out that if G = 0, then the equation (QW) reduces to the equa-
tion (SW) studied in Section 8.6. More generally, if G and @ are time-
independent, then it still has the following scaling invariance property: u is
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a solution of (QW) on [T, T] x R? if and only if uy(t, z) def u(At, Ax) is a
solution of (QW) on [-A~ T, A~1T] x R? [provided the second line of (QW)
has been modified accordingly, of course]. Obviously, the Besov space B3 ; has
the required invariance property if and only if s = d/2 or, in other words, if

.d_
and only if y belongs to BZ, ' Therefore, we expect the quantity ||| . 4, to
’ BQ,I

play a decisive role in the study of (QW).

This chapter is structured as follows. The first section is devoted to the

proof of the classical well-posedness result for initial data such that

veB! ¥ BTN RS (9.1)
We stress that this assumption is the weakest one (in the framework of Besov
spaces related to L?) for which (dug,u1) is bounded. Therefore, this space
is somewhat critical, inasmuch as it is the largest one for which local well-
posedness may be achieved by means of a basic energy method (which works in
any dimension d > 1 as it is not related to any dispersive properties of the wave
equation). In this section, we pay special attention to the scaling invariance
of all the estimates as this will be important in the following sections.

The rest of the chapter is devoted to going weakening assumption (9.1).
More precisely, in the second section of this chapter, we give our main state-
ment, Theorem 9.5, and explain the strategy of its proof. As this will be based
on geometrical optics, we need to regularize the metric G(-,u) both in time
and space. As regards the time regularization, it turns out to be convenient to
introduce a time cut-off so as to transform the initial quasilinear wave equa-
tion (QW) into a “truncated” linear wave equation (QWr) with constant
coefficients away from the time interval [T, T|. If T is chosen suitably small,
this will enable us to manipulate globally defined solutions only.

Still motivated by geometrical optics, in the third section, we introduce a
refined paralinearization of the system (QWr). This means that after localiza-
tion about frequencies of size A\; = 27, we regularize (in space-time variables)
the metric G (-, u) by spectral truncation at frequency )\g with § less than 1
(instead of the A; used in the classical paralinearization procedure, such as
in, e.g., Lemma 4.14 page 183). This refined procedure makes the method of
geometrical optics more efficient. The price to be paid is that the remainder
term is less regular (i.e., larger after frequency localization).

In the fourth section, we explain how to derive Theorem 9.5 from suitable
microlocal Strichartz estimates (i.e., Strichartz estimates on small intervals,
the lengths of which depend on the size of the frequency we are looking at).
The key idea is to split the interval [0, T into sufficiently small intervals so that
we may apply these microlocal estimates. Combining all these estimates leads
to a Strichartz estimate with a loss, compared to the linear wave equation
with constant coefficients.

The final section is devoted to the proof of rather general microlocal
Strichartz estimates for a class of variable coefficients linear wave equations.
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After suitable rescaling, we shall see that the general statement yields the esti-
mates we are interested in for solving (QWr). Our proof relies on the use of a
geometrical optics method so as to build a sufficiently accurate approximation
of the solution to the linear wave equation, and on the 7T method.

9.1 A Well-posedness Result Based on an Energy
Method

This section is devoted to the proof of a general local existence result for the
quasilinear wave equation in R? (d > 1) with suitably smooth initial data.
To begin, we recall some very basic facts about the variable coefficients wave
equation. We fix some time-dependent metric g = (gj’k)lgjykgd on Rd, that
is, a function from I x R? (where I is a time interval) to the set S; (R) of

symmetric positive definite matrices on R?. Assume, in addition, that there
exists some positive real number Ag such that

Agtn? < Zgj’k(t,x) n* < Agln|? for all (t,z,n) € I x RTxR?. (9.2)
4.k

Define
def

0-(g-0u) = Zaj (gj’kaku).
.k
We have the following lemma.

Lemma 9.1. Consider a continuous function ¢ such that
o(t) = AollOrg(t, )|l -

For any function u such that Vu is C' in time with values in L%, and f =
O?u—0-(g-0u) is L' in time with values in L?, we then have

1 t
exp(~ [ o) de)[Vult)z2 < Ao Va0
0
Lot 1 t
+ A} / exp(~3 / S ") | (1) 2 '
0 2 Jo
Proof. Taking the L? inner product of 9?u — 9 - (g - Ou) with dyu, we get

ZdtHatuHm = (f|O¢u) L2 -I-Z/ ]’kaku Orudzx.

We now integrate by parts in the last term. As ¢9% = g7 for all 1 < j, k < d,
we get
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1 0
Z/ J kaku Oudr = —5 /Rd gJ’ka(é'juaku) dzx

Hence, we may conclude that
1 _
2 — 5 L = J:k .
S IVu@) I, = (Ol + > [ o oyttt z) da
with
def
192, 2 I0u(r)]3 +§ ) / L(t, 2)05u(t, @) Opu(t, o) de.

As [|0yu 2 < [Vl g, and
A IVu®)ze < IVu®)lze,, < AollVu®)lze, (9.3)

this gives
1d 9 1
S Va2 < IO 1@z + 5 Aol gl Tu®)|22

1
< IOl IVult) 2z, + 5 Aol g Lo~ Tu() 25 .

t)

As ¢(t) > Ao||Org(t, )| L=, Gronwall’s lemma (see Lemma 3.3 page 125) thus
gives

1 t
exp(—5 [ o) dt")[Vu®)llLz, < [Vu(0)]|L2
2 0 g(t) 9(0)

+ /Ot 1£ ")l 22 eXp(fé /Ot/ o) dt")dt. (9.4)

In order to conclude, we simply use the condition (9.2). a

Before stating the basic existence result for the quasilinear wave equa-
tion (QW), we introduce an item of notation that will be used throughout
this chapter.

Notation. We denote by C, a generic expression of the type f(||v] .4_,),

d
2
2 1
where f: RT — R" is a nondecreasing continuous function.

Theorem 9.2. Assume that the metric Id + G satisfies the condition (9.2).
If the initial data (ug,u1) s such that v f(auo,ul) belongs to B? fB221

cd_
B3, 1, then there exist two mazimal positive times, Ty and T*, satisfying

Cymin{T, Tl g >1

2,1

and such that (QW) has a unique solution u in the space C(]—Ty, T*[; BY).
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Moreover, if Ty (resp., T*) is finite, then

t
limsup(Hu(t)HLoo +/ |Vu(t')|| Lo dt’) = 00
t—T 0

with T = =T, (resp., T =T%).

Finally, if the initial data is such that -~y belongs to B;;l for some positive s
and 7 € [1,00], then Vu is continuous (or weakly continuous, if r = oo) with
values in the space B;;l.

Proof. As the equation (QW) is time-reversible, we shall focus (as in the
whole of this chapter) on the proof for positive times. The proof has much
in common with those of Theorems 4.16 page 188 and 4.21 page 193. Indeed,
Section 4.2.1 can be effectively reproduced in the framework of linear wave
equations with variable coefficients. Here, we define the sequence (up)nen of
approximate solutions by means of the following induction:

— The function ug is the solution of
Q?up — Aug =0 with  Vug(0) = Spv.
— Once u,, has been defined, u,,, is the solution of?

Pupy1 — Aupirr — 0 (Gt up) - Ouny1) = Q(t, un) (Vun, Viuy,)
Vi 11(0) = Sny17y-

In order to prove that the iterative scheme converges in B¢, the following
commutator lemma (in the spirit of Lemma 2.100 page 112) will be useful.

Lemma 9.3. Let L be a compact subset of 10, +o00[. A constant C' exists such
that for any s in L and any Lipschitz functions a and v which, in addition,
belong to B3 ,. for some r € [1,00], we have, for all k € {1,...,d},

276V Aj(v0ka) — v Aja g < ;C(lIvll g5, l0all + llall g5 10v]|ze),
and also
276V A (v0ka) — v Aja g < ;C (vl pgerllalle + llall g5 l10v]lz),

where (¢;j)jez denotes an element of the unit sphere of £7(Z) which depends
on v and a.

Proof. We have to prove that for all k € {1,...,d},

Rj(v,a) def Aj(vdya) — vdLAja

1 Recall that S, is the low-frequency truncation operator defined on page 61.
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satisfies the above estimate. We write that
v@ka = Z Aj/’l} aij’+2a + Z S”j/,l’l) ak;Aj/a
J’ J’

and then, by virtue of the localization properties of the Littlewood—Paley
decomposition, that

3
Ri(wa) = 3 RO (v,0) with

(=1

Rgl)(vva) = AJ(A]"Uaij”r?a)’
Jj'zj-3

RP(v,a) € ST (4,85 10l0n 4, d

;i (v,a) = jr 05 =100k A5 a,  an
77 —j1<4

RP(v,a) " 3" (851 —1d)w ol ;4.
7' —41<1

We now estimate each term. As ||0ySj/ 420~ < C||dal L, we have
1 e
1R (@, a)llin < CNR (0,a) |22
<02 Y Joalli|Ayvilse

Jj'2j—3
Using Young’s inequality for series, we get, for any positive s,
i(s— 1 j 1
PEINRY (0, a)ll g < OIS (v, 0)] 2

< Clldallp~ Y 27V Ay
i'>j-3
< Cejl|0all Lo |[vll g - (9.5)

As |0k Sjr 420 L~ < C27'||al| L, we also have

PR 0,)| g < Cllallpe Y. 27070227 D A 2
Jj'>2j-3
< Cejllal|polv] gy - (9:6)

We now estimate HR;Q)(v, a)|| .- Using Lemma 2.97 page 110, we can write

PV RD (w,0)] 5 < CPRD (v,0)]|12
<O ovlie 3 24l
li—i'1<4

<Ol Y 207D Ajal| e,

li—i"1<4
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Using the definition of the norm in Bg,r, we thus get, for any s,
. 5
YEVRP (v,0)] g < Cejllvl| e [lall g - (9.7)

Finally, we estimate HR;3)(U, a)l| 1. We use the fact that, according to Leib-
niz’s formula, we have

3 3 3
IR? (0,0)l 1 < IR (v,00) |22 + | RS (00, a) | 2.

From Lemma 2.1 page 52, we infer that a constant C' exists such that for any
integer j', we have

1($y—1 — 1))l = <€ S 279" [0v] = < C277 |0]|

J"z23'-1

Thus, we deduce that for any s,

(s— 3
2R (v,00) |12 < Cel|av] o all 5 - (9:8)
Next, because [|S;j:—10v||p~ < C||0v|| 1, we have
o 3
PR (9v,a)|| 2 < Cesl|0v] o all 5 - (9.9)
Combining (9.8) and (9.9) gives
o 3
2 VNRP (v,a)ll g < Cegllow]lzelal gy - (9.10)
Combining the three estimates (9.5) [resp., (9.6)], (9.7), and (9.10) gives the
first (resp., second) inequality. O

Corollary 9.4. Let s be a positive real number. There ezists a continuous
nondecreasing function Cy : RT™ — RY which vanishes at 0 and satisfies the
following properties. Consider a couple of functions (u,v), the space deriva-
tives of which are locally integrable in time, with values in L and such
that v(t) is also locally integrable in time with values in L. Assume, in
addition, that u and v are locally integrable in time with values in B;v,.. If

0?u— Au—0- (G(t,v)-Ou) = f
with f in L}OC(BST), then we have, for any integer 7,

RAju— Adju—9-(G(t,v)-0Au) = A;f + Rj(u,v),

where the operator R; is such that, for anyt, there exists a sequence (cj(t));jez
in the unit sphere of £"(Z) such that

2C7VNR; (u, 0)(t)l|2 < ¢ ()C(Jo()] 1)
x (lu®llgs Nov@®)lze= + lv(®)] g5

|Ou(t)l|L~) (9.11)
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and

2R (u,0)(1) 22 < ¢ (O)C([[u()]| )
x (lu®)l g Nov@)llLe + v ()]

B3, sy lu@®llz). (9.12)
Proof. Note that

R;(u,v) 0. (4;(G(t,v) - u) — G(t,v) - Aj0u)

satisfies
IR (u,v)| > < [|A;(G(t,v) - Ou) = G(t,v) - A;Oul g

The result is therefore a straightforward consequence of the previous lemma
combined with Theorem 2.61 page 94. ad

We now resume the proof of Theorem 9.2.

First Step: Uniform Bounds in Large Norm

We want to prove by induction that a positive constant By and a positive
time T exist such that for any n,

for s = + 1.

Hs—1
)
B2,1

N QL
N Q.

(Pn,T) ||Vun||L%°(B§f11) < Bo||7|

Choosing By > 1 makes the property (P, 7) obvious for all T > 0.
Assume that (P, 7) is satisfied. Corollary 9.4 with u = w11, 7 =1, and s

in {d/2,d/2+ 1}, hypothesis (P, 7), and the embedding 32%,1 — L together
give
O Ajun i1 — AAjun g — - (Gt uy) - 0Ajun 1)
= A; (Q(t, un)(Vun, Vuy)) + Rj(uny1,un)
with, for s in {d/2,d/2 + 1},

2TV Ry (g1, un) (B)][ 22 < 5 () BoCol1| g 10un1(D) 55
2,1

More precisely, the case s = d/2+1 follows from the inequality (9.11), whereas
the case s = d/2 is a consequence of the inequality (9.12).

Assume that
T
BO = 2A0 exp(AoAl) with / ||6tG(t, ')HL"" dt S Al. (913)
0

Under the condition (P, 7), we then have, owing to the chain rule and the

. d
embedding By | < L,
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T T
Ao [ 10t un(®) = dt < Ao(Ar +10,G ey [ 100w (0)] 1 )
0 0 _
< Ao(Al+CBO||auG||L°°(R2)T||’YHB% )-

Assume that
_ -1
T < A (CBoll0uG eIl g ) (9.14)
We then get
T
AO/ 10:(G(t, un(t,-))|| L dt < 2A40A;. (9.15)
0

From Lemma 9.1 and the above inequalities, we infer that for any t < T and j
in Z, we have

PO Ty < 4 (402
i t
+A; BoCy ||l . 4 / Cj(tl)||aun+1(t/>HBs—l) dt’).
322,1 0 21
Hence, by summation over j, we get
ApA 3
||Vun+1||i<;o(3§31) <efot (AOH“YHB;;l + A8 BOCwHVHBle Hvunﬂ”Lg(B;;l))-

Choosing T such that

1 —
A3 BoehMTC |y <
B2

;1

N =

implies that

||Vun+1||Z;O(B;;1) < 24004 ] sy for s e{d/2,d/2+1}.

Together with (9.13), this gives (P, 7)-

Second Step: Convergence of the Approximate Sequence

We claim that if Tj is sufficiently small, then (Vu,)nen is a Cauchy sequence

in Lg (BQ% 1 1). Indeed, the difference , dlef Unt1 — Up satisfies
(QW,) 02y, — Aty — 0+ (G(t,uy) - Otty) = fr

with
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fr EQ ) — Qt 1)) (Vauy, V)

(
+Q(t, un—1)(Vin—1, Vup + Vup_1) + 0 - (G(t, un) — G(t, un—1)) - Quy).
Applying Corollary 9.4 with s =d/2, r =1, u = Uy, and v = u,, gives
R A, — AAju— 0 - (G(t,up) - 0A;i0,) = Aj fr + Rj(Un, un).

To bound f,, we may take advantage of the product laws (Corollary 2.54
page 90) and the composition estimates (Corollary 2.66 page 97). We deduce
that for any t < T,

1-

(2L A ~
2G4 ()] 22 < ;)G g V-1 ()]l

d_
2
B3

Observe that Vi, (0) = An'Y- Hence, using Lemma 9.1, multiplying by 2j(g_1)’
and summing over j, we get, for any T' < T,

1)

TC
+ WH’VHB )

Vu < By(27" Vi,
IVl ) < Bo2 g $ IVl

Choosing T < T such that

N~

BoTCleWHBﬁl <
we then infer that

1,
IVl g

Vu < By2™"
IVtal, o) < B2l el

L%"(Bf’l ) 1
Ld_
This readily implies that (Vu,)nen is a Cauchy sequence in C([0, TT; B3, 1).
Hence, there exists some function u such that (Vu,),en converges to Vu
Ld_ ~ .
in C([0,T); B3, 1). Moreover, (Vuy)nen is a bounded sequence in LF(Bg,)
and hence, by virtue of the Fatou property for Besov spaces (see Theorem 2.25
page 67), we have

Ld_ ~ .4
Vu € C([0,T); Biy ) N IF (Bs)
and may check that u is indeed a solution of (QW) on the time interval [0, T'].
Third Step: Time Continuity of the Solution
We must now check that Vu belongs to C([0, T; BQ% 1). The argument of Sec-

tion 4.3.2 page 190 can be repeated here. Indeed, if € is a positive real number,
then we have, for any integer j and (¢,t') € [0, T)?,
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IVu(t) — Vu(t)|| .+ = ZW‘%HM ult) — Vu(t')| 2

B2

N
[

<2122J< DA (Vu(t) — Vut')| 2

/<]
gd .
+ 2 Z 27 2 ||Aj/Vu||L%o(L2)
J'>3
< 2|Vu(t) - Vu(t)l g +2 3 2 F 14y Vullip o).

3'>j
As (272 \\AjVu||L%c(Lz))j€Z is in ¢1(Z), an integer j. exists such that
pd €
Z 272 HAj’VU”L%C(LQ) < 1 :
J'>je
Thus, for all (¢,t') € [0, T)?,

IVu(t) = Vu)ll 4 <27 Vu(t) = Vu)] 41 +

2 2
B2,1 B2,1

N ™

.
As Vu is continuous from [0, 7] to B3, 1, the solution u is such that Vu is

- d
also continuous from [0,7] to Bg,.

Fourth Step: Uniqueness

This is a simple variation on the proof of the convergence of (u,)nen. As in the

previous step, it follows from stability estimates in the space C([0, T}; B; N 1).

Fifth Step: The Blow-up Criterion
We argue by contraposition. Let u be a solution of (QW) on [0, T such that Vu
belongs to C[0, T[; BY). Assume, in addition, that

sup (||u(t)||Loo +/0 [Vu(t)| e dt’) < 0. (9.16)

te[0,T[

We want to show that v may be continued beyond T to a solution of (QW).
We temporarily fix some s > 0. Applying Corollary 9.4 withr =1 and u =
v then gives

O Aju— AAju—09- (Gt u) - 0A;u) = Aj(Q(t,u)(Vu, Vu)) + Rj(u, u)
with

2R (u, w) (1) |22 < () C(Ju()l] o) [[0ult) | o [[Ou(t)]

Hs—1.
B31
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Thanks to the product laws in Besov spaces, we have

2CVA;(Q(t w)(Vu, V) 2 < ¢ ()C(lu(®)]l =) | Vult) ]| = [[du(t)]

We now define
def
é(t) = 0:(G(t,u(t))| L= and
def 1)
U, sup ex ——/ )dt 27 (s— AVu
(D)5 g (5 | ol )t )2 DA, V()|
Using Lemma (9.1), we get, after multiplying by 2/(—1,
1 i(s—1) i
exp(—3 ¢>dt)2 14, Vu(®)llz> < AollAjlz:
1t 1
43 [ e Clu@ll)Vul e exp(~5 [ 6 )|Vl gy o
0 0 *

Noting that for any ¢’ < t,

exo(— | o) ) 7))

we deduce, after summation over j, that

1 t
s+ A8 [ Cllult) =) [Va(®)] = U, ()
’ 0

Gronwall’s lemma then implies that

By < UL(0),

Us(t) < Aollv|

Us(t) < Aflly]

t
iz exp(o [ @) )Tt )
Hence, by the definition of Uy, we have
< Aol

HVUHLOC(321 ) = Bé 1

x exp( / (10(G( ul )l e + A1) V() ) d' ). (9.17)

Under the hypothesis (9.16), this ensures that ||v“||Z%O(B§§1) is finite. Taking

s=4d/2, s=d/2+ 1 and using the lower bounds that were previously estab-
lished for the lifespan, we can conclude that the solution may be continued
beyond T.

Final Step: Additional Regularity

We have to establish that if, in addition, v belongs to B; ;1 for some o > 0,
then the solution w is such that Vu belongs to C([0,T1; Bg;l). This follows
from the fact that Corollary 9.4 holds for any positive index of regularity. As
we may proceed exactly as in the first step, the details are left to the reader.

O
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9.2 The Main Statement and the Strategy of its Proof

In this section, we state the main result of this chapter—local well-posedness
of (QW) with initial data which are not Lipschitz functions—and give an
insight into the construction of its proof.

For expository purposes, we introduce the following notation:

def def
lalle = llallg, and [Ibllz,e = [1bllze (55 ,)- (9.18)

Theorem 9.5. Assume that the metric Id + G satisfies the condition (9.2)
and that the initial data (ug,u1) are such that

Ld_1  .d_s
v €B3;"NBg Y, ifd>4,
: %Jre : %Jre . .
v € By, NByy , for some positive € if d = 3,
.7 .1
vy €B3 1 NBy 7, ifd=2.
There then exist two mazimal positive times, T, and T™, such that (QW) has
a unique solution u with Vu € L2, (]=T,; T*[; L>°) and

VueC(|-T., T*[; B, ¢ 035;3)7 ifd> 4,
Vu e C(|-T,, T*[; B4+E N B4+E), if d =3,
Vu € C(]-T., T*[; 32871 N BZ’1 ), if d=2.
Moreover, we have (using the notation of page 392),
C, min{T,, T* }4||'y|| 41 =1, if d > 4,

4
21

Cyemln{T*,T*}zl"‘EnyH . >1, ifd=3,

5

pat

2 1
Cvmln{T*,T*}SH'yH >1, ifd=2.

.7
8
B2,1

If T, or T* is finite, then

t
timsup u(t) |~ + / [Vu(t)]p~ d) =
t—T 0

with T = =T, or T = T*. Moreover, if the initial data is such that v be-
longs to Bs;l for some positive s, then Vu is continuous with values in the
space B;;l

As pointed out in the introduction, we shall instead solve a truncated quasilin-
ear wave equation. More precisely, we fix some smooth function 6, compactly
supported in [—1,1] and with value 1 near [—1/2,1/2]. For any fixed positive
time 7', we then introduce the following equation:

{ O2u — Au — 9 - (Gr(t,u) - Ou) = Qr(t,u)(Vu, Vu)

(QWT) vU|t:0 =7

with G (,u) dl:ef@(%)G(t,u) and Qr(t, ) d—efa( )@ u).
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A quick glance at the definitions of Ay and A; [see (9.2) and (9.13)] shows
that the energy estimates of the preceding section may be made uniform with
respect to the truncation parameter T, and that the value of the constant
C, appearing in the forthcoming Theorem 9.12 may be made independent
of T. As a consequence, the lifespan of (QWr) may be bounded from below
independently of T'. Thus, if T is sufficiently small that the support of the
function 6(-T~!) is included in the interval of existence, then the solution
is global. Indeed, (QWr) reduces to the free linear wave equation with con-
stant coefficients away from [—T,T]. Moreover, as the function 6 has value 1
near [—1/2,1/2], the original problem (QW) is solved on [—-T/2,T/2].

Having global solutions greatly facilitates the implementation of the geo-
metrical optics method which will be proposed in Section 9.5.2. In fact, this
method requires the metric to be smooth with respect to both the space and
time variables. Smoothness in the space variable can be achieved classically
by spectral truncation. A similar method would work for the time variable;
however, as it is nonlocal, this becomes quite unpleasant when solving an evo-
lution equation. Now, if we deal only with functions with compact support in
time (namely, Gr and Qr), then using a cut-off function in the Fourier space
for the time variable is quite harmless.

To simplify the presentation, we shall focus on the proof of the above
theorem in dimension d > 4 and simply indicate what has to be changed for
the case of dimension d = 2, 3. The proof of the theorem relies on an iterative
method which is very much analogous to that of the first section. We define
the sequence (uy,)nen as follows. Start with the solution ug of

Orug — Aug =0 with  Vug(0) = Spy.
Once u,, has been constructed, we then define u,41 as the solution of

{ Qi1 — Aty — 0 - (Gr(t,up) - Ouny1) = Qr(t, un)(Vun, Vuy,)
Vun+1(0) = Sp+17-

Let 1 4 [d/2—1/4,d/2+ 3/4]. We first want to prove that if T is sufficiently

small, then we have the property

||Vun||Tvs_1 S B()H")/Hs_l fOI‘ all s € L
(An,T)

1
IVatnll o) < Cylinllg—y T

Once this has been proven, the rest of the proof will be more classical.

The property (A, r) will be established by induction. As a first step, we
show that our problem reduces to the proof of the L2.(L>) estimate for high
frequencies, namely, for frequencies which are large with respect to T~!. This
reduction is the purpose of the next section.
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9.3 Refined Paralinearization of the Wave Equation

In order to prove Strichartz estimates, we shall use geometrical optics. This
method requires the smoothing out of the metric Gp. This may be achieved
by means of a paralinearization procedure with respect to both the time and
space variables. Here, we need a refinement of this procedure so as to get
even better regularity of the coefficients involved in the paralinearization.
Consequently, the remainders will be worse, as usual.

We now introduce the following definition.

Definition 9.6. For § in the interval [0,1], j in Z, Ny in N, and T > 0, we
set

Js def (76— (1—6)log, T] — Ny and S;-S Cl:ef5§:+d),

where Slng) denotes the Littlewood—Paley low-frequency cut-off in R which
was defined in Chapter 2.

The key result of this section is the following lemma.

Lemma 9.7. Let L be a compact subinterval of |0,00[. Let u and v be two
functions with space-time gradient in

LA (L) N L?(B;El) for some s € L.

If
O*u — Au— 0 - (Gp(t,v) - Ou) = f,

then
O Aju— Adju—0- (S?(GT(L‘, v) - 0Au) = Ajf + R?(u, v)

with, if 29T is greater than 1,

29C DR (u,0) |, ) < GOl oo 7y (27T) 1020 (9.19)
x (l0ull Ly o) 1OVl 7.s-1 + 1+ VU] Ly 2oy Ol 7.5-1)
and
2j(s_1)||R§(U>U)||L1T(L2) < Cjc(HU”L‘X’([O,T]de))(2jT)1_62NO (9.20)

< (lullpy. oy l0vliz,s + A+ 1Vl Ly ooy 10Ul 7,5-1),
where C' denotes a nondecreasing function from RY to R, dependent on L.
Proof. A straightforward modification of Corollary 9.4 implies that
02 Aju— AAju— 8- (Gr(t,v) - 0Au) = A;f + Rj(u,v),

where the operator R; is such that, for any ¢, there exists a sequence (¢;);ez
in the unit sphere of ¢(Z), where
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27(s=1) ||Rj(u7 v) ||L1T(L2) < CjC(HUHLoo([o,T]de))

X (|ul r.slloull Ly pey)  (921)

T,s||8v||L1T(Loo) + [Jv]
and
2j(s_1)||Rj(uaU)||LlT(L2) < ¢ C([|v]| Lo (jo,1) xR7))
X (llullzslovll Ly ooy + 10l T sllull s o)) (9:22)

Noting that
R5-(u,v) =R;(u,v)+0- (((Id fS;-S)GT(t, v)) - 3Aju),

J

we see that we have to bound ||(Id —S?)GT(-, V)|, (). Now, the identity on
page 52 (after an obvious rescaling) guarantees that there exist d+1 functions
gr in LY(R™?) such that for any ;' € Z,

d
A§}+d)a = Z 2*j'2j/dgk(2j/ \) * Oka.
k=0

From the anisotropic Young inequality, we thus infer that

< (1d .

IAST a1 gy < €277 | Val| g1 o).
Thus, by summation over j > js5, we get
||(Id —S;—S)a||L1(R;Loc) < CQij(QjT)li(SQNO ||vaHL1(]R;L°°)~ (923)

We want to apply the above inequality with a = G (-, v). By definition of G,
we have

0,Gr(t,v) = %9’ (%)G(t, (1) + 9(%) (0.6 (1, () B0 () + DG (1, 0(0) ).

As the time cut-off commutes with the space derivative, we thus get

VG (t, )| L1, L~)
< CO([IVllLs Loy 10uGl Lo + 10| L2 |Gl e + 106Gl Ly (1)) -

Taking advantage of (9.23), we can then deduce that
1(Id = S2)Gr(t, v) || 11 (rspey < C277(27T)1 02
< (IIVoll Ly (o) 10uGll o + 10122 [ Gll e + 101Gl Ly <)) -
Therefore,
DR (w,0) | o) < O e o rpey) (el
Hloll,s10ul Ly (<)) + 277D T) 02N 0ul7s -1 (I V0]l 1y (1) [0u Gl e
O 1Glz + 19 g a)) )

|5”||L1T(Loo)

The proof of the second inequality in Proposition 9.7 is similar. a
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Proposition 9.8. If (A, 1) is satisfied and C ||7|| %*%T% is sufficiently small,
then for any s € L, we have

BO 1
[Vt gll7,s—1 < 7H7||s—1(1 + O T2 |[Vunia |l 1z (1)) -

Proof. We apply the inequality (9.11) of Corollary 9.4 and Lemma 9.7 under
assumption (A, r). By virtue of Lemma 9.1, this gives

1A Vunsllng ey < 277V (T)e" ™) with (9.24)
def
() % 4, / 101G (t, wn(t, ) = dt and
0
def

T
Ki(T) = Ao~ V]| Ayl 2 +Cw||7||s—1/0 ¢ ()| 01 (8)]| Lo dt

F 60 Il 3 THIVana .
By definition of G, we have, thanks to (A, 1),

7)< Ao [ 100060 )l
< Ao (/10| L2 |Gl e + |0uG || Loe |0¢un | L1 Loy + (0G| L1, (L°°))
< Ao (10/ 111G e + 0G|z (zoe) + 19uGll=Cyll7ll 4 TH).
Assume that
101l Gl + 19:Gll g 1oy + 10uCl e Co Il 4
and define

i T Ti < A

B(] 4A0 exp(AoA )

By summation over j in (9.24), we get

3
||vun+1||T,s—1 < C’Y”'Y”g—%T‘l ||Vun+1||T s—1

||7Hs 1(1+ Cy I Vungall g p)) -

Taking C.[|v/| 41 T% sufficiently small gives the result. a

Remark 9.9. Taking s = d/2+3/4 and using Bernstein’s and Holder’s inequal-
ities, we immediately deduce from Proposition 9.8 that for any integer j,

. : 1 1 1
19 Vnyillpz ey < (ZT)2C, [Iy]| g1 T (1+ T2 | Vuniallrz (=))-

From Proposition 9.8 and Lemma 9.7, we easily deduce the following corollary,
which will be needed in the next section.

Corollary 9.10. Under the hypothesis (An,r), if Cyllv]4_
small, then we have, for any s € L,

afAjun+1 — AAjun+1 —-0- (S;»SGT(t7 un) . 8Ajun+1) = R‘S(n) with
2RI ()| 12y < €50 Ils—1 (2T 028 (14 T2 |Vl pz (1))

T is sufficiently

1
4
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9.4 Reduction to a Microlocal Strichartz Estimate

In this section, we complete the proof of Theorem 9.5. In view of what was
proven in the preceding section, we first have to establish the second inequal-
ity of (An41,7). This will be based on the following quasilinear Strichartz
estimates that we will temporarily assume to hold.

Theorem 9.11. Let u; be the solution of
Fuj — Auj — 0+ (S9Gr(-,v) - Ouy) = f;

on the time interval [0,T). We suppose that for any t, the support of the

Fourier transform of w;(t,-) is supported in an annulus 2C. If 29T is suffi-
ciently large, then it follows that:

— Ifd > 4, then

V0513 (1) < CUIGr )27
o 8 8
X ((2T)2[|Vuyllpge L2y + (2T) 721 fill r.(r2))-
— If d = 3, then for all sufficiently small € > 0,
IVl Lz Loy < C=(|Grl1=)27 (27T)%
8 8
X ((2T)2[|Vuyllpge L2y + (2T) 721 fill 1y r2))-

- Ifd=2, then

B4 i S PR |
||VujHL4T(L°°) < C(HGTHLW)?“((Q]TV||Vuj||L%°(L2)+(2JT) 2Hfj”LlT(LZ))-

Proof of the second inequality of (An+1,1). For expository purposes, we restrict
ourselves to the case d > 4. Applying Theorem 9.11 with u; = Aju,4;1 and
fi= R‘; (n) then gives

. (d_1
IVAjtnllz (re) < Cﬂj(? 3)
o o
X ((PT)2(|VAjuntillog 2y + (27T) 2[R} ()| L3, (12)) -

Combining the assumption (A, r), Corollary 9.10, and Proposition 9.8 with
s=d/2+ 3/4, we get, for 27T sufficiently large,

IV Ajtn1allzg 1y < €C42 D (@I 327Dy,
+(2IT)" 22790 ||| . (2IT) 02N (1 + T% | Vtnsn HLQT(LOQ)))

1
1

Therefore,
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s
2

4

IV At sl 1y < THeC@T) gy (2T)
FEIT) (14 TH Va1 0m)))-

The “best” choice for ¢ here corresponds to /2 =1 —3§/2, namely, § = 1/2.
By summation over j, this gives, if 277 is sufficiently large,

. 1 1
10 =) Vetn 1 lL23. ) < Collrll g3 T4 (14 T3 Vet L3 ) )
Remark 9.9 now ensures that for all j € Z, we have
. o 1 1 1
195 Vuntallzz ey < (ZT)5C; |1yl a1 T3 (1 + T ||vun+1||L%(L°°))-

Combining these two inequalities and taking 27T sufficiently large, we end up
with . )
IVuniillLz ooy < Cyllvlla 1 T3 (1 + T2 [ Vg 1z o))

So, finally, choosing T" such that
C’,Y||7H%_%T% is sufficiently small (9.25)

ensures that the assertion (A,41,7) is fulfilled.

We can now proceed to the proof of existence in Theorem 9.5. We assume
from now on that the condition (9.25) is satisfied. From the above estimates,

Sd_
we deduce that if, in addition, the data are such that v belongs to B3, 'n

. d
B3, then the sequence (Vuy)nen is bounded in L7,(L*). Therefore, we may
proceed as in the first section of this chapter to prove the following result.

Theorem 9.12. Under the hypothesis of Theorem 9.2, the maximal time of
existence T™* satisfies

*Q
TR g > 1.

1
4
We will now prove that (u,)nen is a Cauchy sequence in a suitable space. As
already encountered in Chapters 4 and 7, and in the preceding section (and
also in Chapter 6 for a more subtle case), owing to hyperbolicity, we lose one
space derivative in the stability estimates. Here, we shall prove that (uy)nen
is a Cauchy sequence for the norm

def 1
lollr = Vol g _sT% + [[oll L2, (pe<)-

o -~ d . .
Proposition 9.13. Let u, fef U1 — Up. If CA,||'y||%71T% is sufficiently

1
small, then we have

1 ~ _ 1 3 ~ ~
TVl g5 < C2 "Il 1T+ Colvlly s TH(@n-rllr + [Tullz).
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Proof. As in Section 9.1, we write that u,, and u,,_ satisfy
~ ~ d f
QW) Ot — Aty — NG (- un) - i) = fr = ka .

Fin Qe un) = Qr(y 1)) (Y, Vi)

with 4 fon 8 00 i ) (Vi 1, Vit + V1)

Fom 0 (Gr(un) = Gr(tuns)) - Oun).

Taking advantage of the law of products, we obtain that
1frnllg—s < 1Qr(um) = QaCun )l g3 I(Vatn, V)2
Corollary 2.66 page 97 thus implies that

1
T\ finlla_s < CyTT|[Tn-1lls_ 1 [|Vttn| o [ Vatnll s,

< Oy lfun—rllrVunlloo [Vunl g
By virtue of (A, 1), the above inequality may be rewritten as
T2 D A frnll iy ey < Gl s TH [Gcallz. (9.26)
We shall now estimate f5 ,,. From the usual product laws, we deduce that
191 (Vatn + V)l g s SC((IVatall e + [ Vatnea )|Vt 4
i1l (IVunll gy + 1 Vunillg_y))-
As Qr(t,un(t)) — Qr(t,0) is bounded in Bil, we thus have
Tl famlla—s < Co([Vunlloe + IVtn-1]lpe) [iin—1z
+ Ol s i T
Hence, according to (A, 1),
TG DA fonliy o) < O llla s THdnallr. (9.27)

Finally, the laws of product and composition lead to

s Olla_s < I(Gr(t,un(t)) — Gt (1)) - Fun(t)] 4
< Ot ()| = 10un (1) 4
+ 10w (8) | = | Vi1 (D] 4 _s.

5
1

M\R
M-A

Therefore,



9.4 Reduction to a Microlocal Strichartz Estimate 409

TG4, faulloy o) < i Cylvll a3 TR [T |-
Together with (9.26) and (9.27), this gives
T8 DA full 111y < 5C5 Mg s T [noalz. (9.28)
Now, according to the second part of Corollary 9.4, we have
R Ay — AA, — 0+ (Gr(-un) - 04j10,) = A fr + Rj(Tn, up)
with

295 =) | Ry (@, ) (1) 12 < ¢;(1)C (||t (t)]| 1< )
% (10 (D] 4 5 10w ()| v + 10 ()] 31 [T ()] v )

Thus, taking the L' norm in time of the above inequality and multiplying
by Ti, we deduce that

1 d_5 ~ 3~
T3 G| Ry (1, un) 2y 22y < 3C g 3 T[]z (9.29)

Taking advantage of the energy estimate stated in Lemma 9.1, it is now easy
to complete the proof of the proposition. 0O

Remark 9.14. From Bernstein’s and Hélder’s inequalities, we may deduce that
for any integer j,

. - L s
195tin L2 (L) < C(IT)E Y T3 Ay Vi || g 2227 273,
1<

Therefore, Proposition 9.13 yields

Y~ i L (a—n 1 3 ~
185l 2y < CEITYH (27 ol gy TF + Collyll gy T (i1 + ).

1
4
This will be used to complete the proof of the theorem.

We now resume the proof of convergence of the sequence (uy,)nen. Applying
the second inequality of Lemma 9.7 with 6 = 1/2 and s = d/2 — 1/4, we get

N[

O Ajity — Ad ity — 8- (SF(Gr(-,un) - 94;0) = Ajf+ RE (n)

J
with, if 2/T is greater than or equal to 1,

(d_5 1 P L
252 R2 ()| 11, (1) < €5Clunll oo (017 wmety) (27 T) 5270

% (U4 IVl 2o) 197, g5+ g oo [ Vg3 )-

Thanks to Proposition 9.13, we obtain
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d
2

. 1 .
T2/ R? (0) | 1y, (1) < ¢C5(2T) 32 |4 s

4

X (OTh 2™ + TA([fdnllr + [Ta 7). (9:30)
Bernstein’s inequality and Theorem 9.11 give, for sufficiently large 277,
148l L2, () < 277145 Vin| 13 ()
< P (@T)H VA inlliz 22
+ @) (14 fall ey + 1R Wlly o) ).
From (9.28) and (9.30), we infer that, for sufficiently large 27T,

A~ — 1 1 ~
145l gz < & (27" lg 3 TH + T4 Vil g s

4

3 ~ ~
+ Ol gy T3 ([Tl + - l1r))-

Note that the second term on the right-hand side may be bounded according
to Proposition 9.13. Hence, if 27T is large enough, then

T4 + Gy llg_s TH (il + lan-a ).

4

1Al g ) < 05 (27" g

1
4

By summation, we thus infer that there exists some M > 0 such that if
2T > M, and CWHVHgfiT% is sufficiently small, then

N\~ — 1 3~ ~
10d =5;)tn |1z (L) < 27" IVlla -1 T* + oVl g1 TH ([anllr + [dn—allr)-

1
4
Using Proposition 9.13 and Remark 9.14, we deduce that

~ 1 ~ S~ S\~

[unllr < T Vunllp g s + (1550l Lz (o) + [|(Id =S5)tnll 12 (1)

<SC+@T)4) (2 " lg_y T+
3, ~
+Cyylla_ 1 T5 (nllr + [[Tn-1llT))-

We now choose T' such that (1 + M%)C’A,||fy||%7%T% is sufficiently small,

then j € N such that M < 2T < 2M. The above inequality then ensures
.d_1

that (un)nen is a Cauchy sequence in L3 (B3| *) N L7(L>). This completes

the proof of the existence part of Theorem 9.5.

To conclude, we shall say a few words about the proof of uniqueness.
Unsurprisingly, we proceed as for the proof that (u,)nen is a Cauchy sequence.
So, consider two solutions, u and v, of (QW) with the same initial data v and
defined on some interval [0,T*]. The difference w = v — u between these two
solutions satisfies
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2w — Aw — 0 - (G(+,v) - Ow) = Q(-,v)(Vw, Vu + Vv)
—(Q(u) = Q(,v))(Vu, Vu) = 8- (G(-,u) = G(-, v))0u).

We now introduce a cut-off function 6 supported in [0, 1] and with value 1
near [0,1/2[. Let T be a positive time less than T*. If

def

Gr(t,v) 5(%)6‘@,@)7

then w satisfies

02w — Aw — 9(Gr(-,v) - w) = Q(-,v)(Vw, Vu + Vv)
- (Q(vu) - Q(-,’U))(VU, VU’) —0- (G(7u) - G(-,U)) ’ au)

on the interval [0,7"/2].

Mimicking the proof of the convergence of (uy,)nen then shows that w =10
on [0,7/2] if T is sufficiently small. The usual connectivity argument yields
uniqueness on the whole interval [0, 7*]. The continuation criterion is based
on the inequality (9.17), as in the smooth case.

So, up to Theorem 9.11 (which we assumed), this completes the proof
of Theorem 9.5. The proof of Theorem 9.11 rests on the following microlocal
Strichartz estimates that will be established in the next section of this chapter.
This theorem is “microlocal”, inasmuch as it holds true on a time interval,
the length of which depends on the size of the frequency we are working with.

Theorem 9.15. Let u; satisfy
Otuj — Auj — 0 - (S?GT(o,v) <Ou;) = f; on [0,T] x RY .

Assume that for any t in [0,T], the support of the Fourier transform of u;(t,-)

is supported in the annulus 2iC. Let I = [I~,1"] be a subinterval of [0,T) such
that for some sufficiently small €,

|I| < eoT(2'T)~°. (9.31)
We then have, for sufficiently large 2°T (and all sufficiently small positive &,
if d =3),
(d_1 _ .
Vsl oy < CPG(1Vu (1) g2 + £l i), if d >4,
IVl 2oy < C22 (2T (|Vuy ()2 + 1 fjllrasey),  if d=3,
IVl aripey < COE(IVu ()2 + I fillr rizey),  if d=2.

Proof of Theorem 9.11. This consists in splitting the original interval [0, T
into subintervals I; ;, on which the microlocal Strichartz estimates apply. Com-
puting the total number of these subintervals is the key to the proof. In order
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to do this, we introduce a small parameter A, the value of which will be chosen
later. We want that, for each interval I; ,

ikl <eoT(2T)"° and || fillir,arey < Alfillos - (9.32)
This is satisfied whenever
: 1 1
(27T)5—/ dt + 7/ Ilfi (@)l p2 dt < 1. (9.33)
eoT Lk >\||fj||L1T(L2) Lk !

We shall prove by induction that such a finite decomposition exists and then
control the number of intervals. Assume that we have constructed an increas-
ing family (t¢)o<e<g of times in [0,T] such that tp = 0, ¢, < T, and, for
any £ <k —1,

1 1 tet
@D plten — )+ g [ I5@lmdt =1
eoT M fillzyzey Ji !

Define
1

def
F 2T _—
KO = (T MhToras Ja

o)+ IIfJ( rzdt'.

1
€0T
This function is increasing and continuous. As F(t;) = 0, either a unique t54+1
exists in |tg, T'[ such that Fy(tg41) = 1, or else the interval [tx, T satisfies the
condition (9.33), in which case we set txy; = T, and the procedure stops.
This defines a sequence (t7)o<e<k. As long as ti is less than T, we have, by
summation,

1
Allfillzy 2

1 bt sl 1
k= @) it + [ 1502 de < @y = 4 5
T 0 50 A
Thus, the number N; of intervals is finite and

27Ty 1

N; <

>

€o

Taking A = (2/7)~? and applying Theorem 9.15 in the case d > 4 gives, for
any interval I o,

[N

1
) (IVuyll s 2y + 15122ty 0122))
VIV a5l e 22y + @ T) 7N f5 s 12))-

||VUJ ||L2(Ij,Z§LOO S 02'7(

M\Q-
w\»-A

< 025

We now write that
N;—1

HVU’JHL2 (L>) = Z ||vu]||L2(I,gL°°
< CQJ CUN; IV g0 22y + TN (12)-

As N; < C(2/T)°, we get the desired inequality for d > 4.
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The case d = 2,3 follows from similar arguments. It is only a matter of
multiplying the above right-hand side by (2/7)¢ if d = 3 and of changing
2i(d=1) 14 237 if d = 2. In the latter case, we must also replace the L? time
integration by an L* time integration. O

9.5 Microlocal Strichartz Estimates

This section is dedicated to the proof of the microlocal Strichartz estimates
in Theorem 9.15. These will arise as a consequence of a much more general
statement pertaining to a class of smooth variable coefficients linear wave
equations (see Theorem 9.16 below) which are of independent interest.

9.5.1 A Rather General Statement

In order to define the class of linear wave equations that we shall consider,
we first introduce a family (G4)a>4, of smooth functions from R'™ to the

space of symmetric matrices on R such that for some positive constant cg,
we have Id +G 4 > ¢q for all A > Ag, and

vk €N, Gp % sup AF|VFG A e sy < 00. (9.34)
A> A

Note that in the particular case where the support of the space-time Fourier
transform of G4 is included in A~'B, where B stands for some fixed ball
of R'4 we have

Gr < C*11Gy. (9.35)

Theorem 9.16. Consider an external force f and initial data (ug,u1) such

~ ~ . d
that f(t,-), Uo, and Uy are supported in some annulus C. Define v :ef (u1,Oug),
and let (ua) a>4, denote the family of solutions to

DA’LL:f

. def Y
Vajimo = 7 with Oyu = 0fu — Au — Z O (GR opu).

1<k,6<d

(L) {

Let I, def [0,e04]. If d > 4, then we have, for all A > Ay,

[uallez (o) < ClVlILz + £l (22))-
If d = 3, then we have, for all A > Ay,
luallez (o) < CQog A)2((IyllL2 + [ fllzy (L2)-
If d = 2, then we have, for all A > Ay,

luallzy ey < ClLz +11flLy 22)-
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In order to show that the above theorem implies Theorem 9.15, we have to
perform a convenient rescaling in the family (S?GT). We consider

def

(S2GT)res(T,y) = SIG(2797,277y).

Obviously, we have
||v£,y(S?GT)T‘eS||L°°(R1+d) = 2_jkva,mS?GT”L‘”(Rl*d)v

and, hence, according to the localization properties of the operator 55 and
Bernstein’s inequality, there exists some positive constant C' such that for all
keN,

JATH(S2G ) el ey < € with 4% (@IT)10

Hence, the inequality (9.34) holds true for this family.

Now, defining ; res def U (277.,277.) and fires def fi(2~ J.,277.), we note

that
azuj,res - Ayuj,res - ay : ((S?GT)res : 8yuj,res) = 272jfj,res~

So, applying Theorem 9.16 to the family (u;,.s) (with j sufficiently large)
and performing suitable changes of variable in the integrals involved in the
inequalities, we readily get Theorem 9.15. a

The rest of this chapter is devoted to proving Theorem 9.16. Compared to the
case of the constant coefficients wave equation investigated in the previous
chapter, the main difficulty is that here, we do not have any explicit represen-
tation of the solution. The naive idea consists in writing out an approximate
representation by means of the geometrical optics method which is presented
in the next subsection.

9.5.2 Geometrical Optics

In this section, we explain how geometrical optics may be used to approximate
a solution of the variable coefficients linear wave equation

Owu=0 . def
W g th Ogu = k(90
(W) { (u, O¢u) =0 = (uo,u1) A o 1<kze:<d oo

in the case where ¢ is a smooth function of the variables ¢t and = with values
in Sf(R).

For ¢ = Id, we saw in Chapter 8 that the solution can be computed
explicitly, namely,
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Z/ e @lOFIHIEIFE (€) de with

+
Adefl
o (() ||<>)

In the variable coefficients case, we look for an approximation of the solution
of the form

ult,

1
x) = Y I(dF, 05 uy) with

=0 =+
1(®,0,a) % / ) (1 1 E)a(E) dE. (9.36)

Of course, initially, the phase functions ®* have to satisfy &+ (0, z, &) = (z[€),
while the modulus functions o=*¢ have to be chosen so that

o0(0,2,6) = 32m) and 071 (0,2,6) + 07 (0,2,6) = 0.

The action of O, on such quantities is described by the following lemma,
which is an obvious consequence of the chain rule.

Lemma 9.17. We have
e 04(e"%0) = (—(0:P)? + g(0:9,0,9))0 + 2iLpo — o0y + R(P,0)
with
oo, - Y 000, ad R@,0) Y00 (9.37)
1<k <d

Taking for granted that the remainder R(®, o) is of lower order (in some sense
that will be specified later), we are left with solving the eikonal equation

(0:8)2 = (0, 0,8)
(EE) { (0, ,€) = (2]¢)

and the cascade of transport equations

2iLeog —oodg®P =0 and 2iLeoni1 — 0py10yP + R(P,0,) = 0. (9.38)

9.5.3 The Solution of the Eikonal Equation

In all that follows, we fix two annuli, C and C, with C C C and d(0C,dC) > 0
and consider the following family of eikonal equations:

{ atéi(ta z, 6) = F/T (t’ €, 8$¢ji(ta x)f))
50,2, = (x[9),
where the family (Fi)>4, satisfies

[ APV O Fall oo i iy < Chioe (9.39)

t.x“p

(HT3)
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Proposition 9.18. There exists a constant g such that for any £ € C there

exists a unique smooth solution &= (-, €) of the equation (H/T]A) on the in-
terval I14.

Moreover, axdﬁ is valued in 5, and for any integer k there exists a
nondecreasing function Cy from R into itself such that the family of so-
lutions (9E) 4> 4, satisfies

def

sup VAV e @l oo (1, xoy) < Ck - with Vo = (AV;4,0¢).  (9.40)
=410

Proof. From the classical theory of Hamilton—Jacobi equations (see, e.g., [15]),

—+
we infer that the equation (HJ ,) has a unique maximal smooth solution on
some nontrivial time interval [O,Tf’*[. In addition, if T f’* is finite, then we
have

lim sup [| 07075 (£, )| oo (ret x ) = +00- (9.41)

t*)TAi’*

To simplify notation, we omit the index * in the rest of the proof. Let Ty
denote the supremum of times T' < min(7'}, egA) such that

1020 4 || Lo (fo.17 xR ) < A7Y and  8,84([0,T] x R? xC) C C.

We note that differentiating the equation with respect to the variable z and

setting 7 def —0pF'y - 0y gives

8taw¢/l + ZA : aﬂ,é/l = 81FA(ta z, 6.11@/1)
(9.42)
8I@A(07 z, 6) = 5
Hence, using (9.39) and integration, we get that for any ¢ < T4,
|a$¢/1<t, Z, f) — €| S 018(). (943)

As { is in C, taking ¢ sufficiently small obviously ensures that 9,® 4 is valued
in C.

Differentiating the equation once more with respect to the variable z and
multiplying by A gives

(9.44)

at/légdi/l +Zx- /1892:@/1 =Ry
/13%45/1(07:5,5) =0

with Ry 0 A02Fy + 240,0,FA020 4 + AO2FA (020 4,020 ).
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By the estimate (9.39) and the definition of Ty, for any T < T we get
IR Al oo (0,17 xR4 x0) < CoA™.
By integration, this gives
A 02D Al oo (0,7 x R xcy) < Ca for all T < Ty.

The blow-up criterion (9.41) implies that T > €oA. Moreover, from the equa-
tion (9.42) we readily get

[10:02P Al oo (14 xre xc) < Co AT (9.45)

We now differentiate (9.42) with respect to the variable €. This gives
0,0,0cP s + Zp - 00:Pp = Ry
89685@/1(0, X, f) =1Id
with By S 02, (020 4, 0,000 1) + 0,0, F 1 - 0,0¢ 1.
Now, by virtue of (9.39) we have
IRA(, )| oot xey < C2A™H 000 Pa(t, )| oo (R xc)-

Therefore,

1020 PA(E, ) oo (14 xre xc) < Co- (9.46)

Combining (9.44), (9.45), and (9.46), we may thus conclude that (9.40) is
satisfied for k = 1.

In order to prove the estimate (9.40) for all k, we proceed by induction.
For the sake of simplicity we do not consider time derivatives as they may be
recovered from the equation (9.42). We define

DA % (18,,00).

Note that as the function F4 does not depend on ¢, the inequalities (9.39)
can be written as

||D§16£FA||LOC(IA xR x¢) < Chye (9.47)
We shall now prove by induction that for any k € N,
def b
gk = SUp [DAOzP Al Loe (14 xR xc) < Cr1- (9.48)
We know that the inequality (9.48) holds true for k& = 1. Assume that the

property holds for 1 < j < k. Now, applying the operator D’fﬁl to (9.42)
gives
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3
DN 0, By + Zy- 0, D504 =D R (9.49)

with, for some suitable nonnegative integers A¥ and BF
? k1 k, Ki,eeey k>

R, def AFHigh+2p
Ry ST oAb DR R arpy (DR 0, s, ., DY 0,8),

ki+-+k-<k
k;j>1

2 def k
R > Bikn

ko-+hy+ -k, <k
k}jzl, ko<k

x Dtk =k gril by (DR 020 4, D 0, D4, ..., DYy 0,84),
Ry Y 0,0, P, DE 10,84 + Dy, Fy - DEO2D 5 + 02F 4 (0204, D5H10,8 1),

The inequality (9.39) readily implies that

IR o< (1, ¢t xe) < Crpr AT}
Using the induction hypothesis and (9.39), we have
||Dlj}+1_k1_m_k7‘ama;FA (Dﬁlam@/h ) Dirax@/‘) ||L°°(IA xR xC) < CkJrlAila
| Di R o gr Py (DR 9204, DY 0, B4, ... DY 02®4) || oo (1, xm )

< CpprA™?

Thus,

||R}1||Loo(IA xR xC) T ||R.%1||L°o(1A xR xC) < Crpr A7

From the property (9.40) with rank & = 1 and the inequality (9.39), we also
infer that

k
||RA||L°°(IA><Rd xC) < CpprA™ 1||D +18 @A”L‘X’(IAXRd xC)*

Gronwall’s lemma allows us to complete the proof of the inequality (9.48) with
rank k + 1. This completes the proof of the proposition. ad

In order to prove Theorem 9.16, we shall consider the following Hamilton—
Jacobi equations:

005 =+( 3 (M + G0, 2% 0., 8%
1§J'J€i§d

Observe that if we consider some family (G)a> 4, such that (9.34) holds true,
then these equations become part of the class of eikonal equations that have
been considered in this subsection: It is only a matter of setting

(EE})
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def

FE(t,x,p) (Ip* + Gal(t, x)(gmp))é for (t,z,p) € R xR xR%. (9.50)

Indeed, as we only have to consider those §’s which belong to some annu-
lus C, we can substitute for the square root in the above formula a convenient
smooth function defined everywhere. Hence, the inequality (9.34) implies the
inequality (9.39) and Proposition 9.18 applies.

9.5.4 The Transport Equation

Proving suitable a priori estimates for the transport equations considered in
the geometrical optics method is the next step. More precisely, setting

L3 def 07 O — Z((Sk’é + G]/'{k)awj@f Oy, and (9-51)
k.l
a e g (9.52)

we wish to consider the following transport equations:

(Tx) 4 )

L% Vo + ALos = pa
OAjp—g = O -

Before going into further detail, we need to define a class of symbols.

Definition 9.19. For any real number m, we denote by S™ the set of fam-
ilies 0 = (04) A> 4, Of smooth functions from I x RY xC to C such that for
any integer k,

def _ . def
lollk,sm = ASU/I;’ A m||V]/€10A||L°°(1Ade wey <00 with Vo = (AVy 4, O).
>

410
Remark 9.20. The inequality (9.40) implies that (V; &%) belongs to S°.

Remark 9.21. The above quantities define seminorms which endow S™ with
the structure of a Fréchet space. Moreover, it is obvious that the operator V’jl
continuously maps S™ into S™. This implies that V, , maps S™ into S™~ .
We also emphasize that the (numerical) product continuously maps S™* x,5™2
into S ™2 and that if ¢ is a function of the Schwartz class S, then ¢(D)

continuously maps S° into S°. Finally, if f is a function of D and o € S°,

then foo def (f(o4))a>a, € S°. More precisely, for any integer k there exists

a locally bounded function C' such that C'(0) = 0 and

I(f 0 0)llk.s0 < C(k,sup[lo];,s0)-
J<k

Remark 9.22. The families Ei’j (0 < j < d) of coeflicients of the vector field
L% defined in (9.51) are in S°. We also emphasize that (A,) belongs to S~
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From now on, we denote by C) a generic increasing function depending
on sup, <y G;. The following lemma pertaining to the class of transport equa-
tions considered in (9.38) will help us to construct approximate solutions of
the variable coefficients wave equation.

Lemma 9.23. Let m be a real number. Consider (p4), a family in S™~1. If
the initial famaly (0510))/12/10 satisfies
—m 0
sup A" Dho | o i xcy < 00,
=410

then the corresponding family (JZE)AZAO of solutions of (Tf) belongs to S™,
and the map (0510)) s (0F) is continuous.

Proof. Recall that the family of symbols (Ejf’o) belongs to S°. In addition,
applying the inequality (9.40) with & = 1 to the Hamilton—Jacobi equa-
tion (EE/?)7 we discover that there exists some positive real number ¢ such
that

ol

> L7°% > ¢ forall A> Aq.

Hence, Remark 9.21 entails that the family (Efo)_1 belongs to S° and the
equation (TF) can be rewritten as

i oo’y + L3 - 0075 + Aok = pa
(Ty) P ()
Alt=0 = 94
+,5
. 1.5 def £ def A5 def pa
Wlth ‘C/l 7= ﬁ ) Ai = L::EAO’ and ﬁi: = F
A A A

According to Remarks 9.20-9.22, we have
(Lr9) e s, (AE)e St and (5%)esm .
Thus, Gronwall’s lemma implies that
HUfHLoc(IAde xc) < CA™

Now, to estimate VX ot 1 we proceed as in the preceding subsection. We do not
have to worry about time derivatives since they may be computed from the
equation (T/jf) Assume that for any j < k

def _ ] . .
a4 = Sl/llp/l m||Di1‘7/i1||L°°(1Ade xc) 1s finite.
Applying the operator D’jlﬂ to the equation (T f) then gives

0, DX oE 1 [F . 9DE ot AT DR IGE — phHIGE | Z R
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with, for some suitable integer values Ay , and By . .

Ry = Z Ak1 koD Ei/la Dito},

ki1i+ko=k
ko<k
R2 def B Dklji Dkz +
kika A AA P A0 Qs
k1+ko=k+1
ko<k

R Y 41Dt A0, Do

The induction hypothesis implies that for £ € {1,2} we have

A™ R4 L (14 xR xe) < C’(Supgj)/l_l.
i<k

Moreover, we have

IR (t, )| oo e xc) < CeA | DE o (2, M Lo me xey-

Gronwall’s lemma then allows us to complete the proof. O

9.5.5 The Approximation Theorem

We can now return to the initial problem of approximating the solutions of a
family of variable coefficients wave equations. We consider the family of wave
equations

DAu =0
LW
( A) { (U, 8tu)\t:0 = (U(), ul)a
where ug and u; are L? functions with Fourier transforms supported in C.

The following statement ensures the existence of an arbitrarily accurate
approximate solution. We shall see in the next subsection that keeping only
the main order term suffices to prove the microlocal Strichartz estimates we
are interested in.

Theorem 9.24. There exist four families of sequences of symbols (ai’ﬁ)neN

(with € in {0,1}) such that O'i’ﬁ belongs to S™" and that, for any (k, N) € N?,
a constant C' exists such that

||(9§(UA - uapp,N,/l)HL?o (L2) < OA7N71|‘(UO7U1)HL2 with
def
Uapp,N.A = ZZI gpi fﬁaW)
£,+ n=0

where the function T is defined by the formula (9.36), and @i is the solution
of (EEY).
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Proof. Note that the equation (EE}) implies that

ml»—-

def (

OBk o = E[E[a with g4 =

€17 + G (0, 2)(€,€)) %

Bearing in mind that we want the true solution u, of (LW,) to satisfy the
initial conditions u Alt=0 = Up and Oyu AJt=0 = U1, We define the sequence Ui ’f;
by means of the following induction:

— The function Ugff is the solution of

2L% - Vou oy +ioy y 0405 =0 with

o0 = L and o} ; .
0:A1t=0 — 2(27)d 0.A1t=0 ~ T 2j|¢[ 4 (2m)d

— Once the function O'i’/l; has been defined, we set G‘ffl’ 4 to be the solution
of

2£A VJn+1A+wn+1ADA¢A 71DA0 A with

ie if
n+1 Alt 0 2Z|f| t nA‘t 0

Using Lemma 9.23 and performing an omitted induction, we observe that the
family (o:5) belongs to S~". Further, as we have

VI(®F,04,a) = I(F,ioVPF + Vo, a) (9.53)

for any family of symbols (o), we discover that
Uapp,N,A|t=p = U0 and atuﬂpva1A\t:0 =u+ <Z I@f»”ifl,m W)) .
0,4+ [t=0

Using Lemma 9.17, we then infer from the definition of the symbols o7+ that

DA(UA_Uapp,N,A) fNA = ZZI ijvDAUNMUZ) with
0,+

def
V(UA — uapp,N,A)‘t:O = ’YN,A :e ((ZI(@fa O'Ij\:/'ﬁl’/p UZ)) 70) .
[t=0

4
Using Proposition 8.17 and the relation (9.53), we get, for any k in N, that

AN0% fnallng, o) + 10578422 < On ATV 2 (9.54)

Performing an H* energy estimate for the wave operator [, (in the spirit of,
e.g., the one used to prove Lemma 4.5 page 173) then allows us complete the
proof of the theorem. The details are left to the reader. a
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9.5.6 The Proof of Theorem 9.16

This final subsection is devoted to the proof of the general microlocal Strichartz
estimates stated in Theorem 9.16. Recall that we consider the solution w4
of (LW,) in the case where the external force f and the initial data (ug,u)
are such that f ( -), Up, and Uy are supported in some annulus C.

For the time being, we will assume that f = 0. Applying Theorem 9.24
with N = 0 ensures that four families of symbols o = (U/il’é) exist in SO such
that for any integer k, there exists a constant Cj such that for any A > Ay,
the solution u, satisfies

|0t (wa = Yo z@F 0 w) | L < CAT e,
+.0 L &%)
where &% is the solution of (FET). As

Up = (’U,A — ZI(@},O’}V , U ) +ZI @i,UA , U ),
+.4

taking the L%A (L*°) norm of both sides and using Sobolev embedding and the
fact that the length of the interval I, is less than £y implies that

||UA||L2 (L) <C||7HL2+Z||I jSaUA ) )||L2;A(L°°)- (9.55)
+,0

For notational simplicity, we omit the exponent £ in what follows. We first
use the “T'T* duality argument” presented in Section 8.2. We write that

[Z(Pas 0, ue)l[ L2 (L) = sup /I(¢A7UA,Ue)(t,w)¢(t,w)dtd:v,

PpeEBA

where B, denotes the set of functions ¢ such that [|¢[[2 (z1) < 1. By the
A
definition of Z(® 4,04, ue), we have

Ta(¥) dzef/I(@A,UA,W)(t,:v)w(t,m) dt dx
= [ ([ e Sanit.z. v, dvar) ae
Using the Cauchy—Schwarz inequality, we get

Ta(@) < |7l L2

/eiqﬁA(t,z;)JA(t, x, )U(t, z) dt de

L2(R%;de)

By the definition of the L? norm, we have
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2

H/e@/‘(t’w")a/l(t,x,-)z/J(t,x) dt dx

L2 (R4;d€)
- / Ka(t,t 2, y)(t, )t y) dt dt’ da dy
with

Ka(t, ¢, z,y) / a2 )= A g (1 1 T A(Hy, €) dE.
C

If we prove that

C
V(t,t', @, y) € I3 x R |Ka(t,t,2,y)| < PR (9.56)
t—t|2
then Theorems 8.18 and 8.30 imply that for £ =0, 1,
1Z(Pas 0, ue)lLz () < CliV[Lz, if d >4, (9.57)
IZ(@a,00,u0)llz (1) < Cllog )2 |yllpz, if d=3,  (9.58)
HI(¢A7 O—A,U[)||L4}A(Loo) S O||")’||L2, if d=2. (959)

Now, according to the mean value formula, we have

QSA(taxag) - @A(t/,y7£) = ($ - y‘a/l(t7t/7x7y7£)) + (t - t/)w/l(tvt/axayaf)

with
1
’ def / /
Oa(t, ' 2y, &) = / DpPa(t' +s(t —t'),y +s(x —y),€)ds and
0
def [*
Uyt t x,y, &) = / KPA(t +s(t —t'),y+s(x —y),&)ds.
0

As 0,Pp|i=¢ = £, we can write that 04(t,t',z,y,8) =+ gA(t, t',x,y, &) with

Y / def ! ! / /
0/1(t7t71‘7ya§) = (t +S(t_t))
0o Jo
X 010:Pa(vt’ + sv(t —t'),y + s(z — y), &) dsdv.
Thanks to the inequality (9.40), we have, for all A > Ay,

~ I
06Tl 13k ) < o) < O, (9.60)

|OFOA| Low (12 xr2e xcy < < Crgrgody ™ if k> 2. (9.61)

Assuming ¢ to be sufficiently small, this implies that (up to an omitted finite
decomposition of C) the map
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e €0t ¢ 2,y,6)

is a smooth diffeomorphism from C onto its range, denoted by CA(t,t', x,y).
We denote by 6! the inverse diffeomorphism. Note that Ca(t,t,z,y) is in-
cluded in some fixed annulus C. Performing the above change of variable, we
eventually get

Kat,t,2,y) = / (TP 00D G (1. ¢ .y, E) dE
Ca(t,t',z,y)
with z d:ef r=y )
t—t
T ’ = def / -1 ! s
WA(t7t ax7y7£) = Lp/l(tat a3372179/1 (tyt 73773%5)) )
~ def

&A(tat/,l’;%f) = UA(ty1779/_11(t7t/7177%5))5/1(15,73/’aXl(tvt/axay,g))
X JA(tat/a'ray70/_11(t7t/7x7yvg))'

Above, J, stands for the Jacobian of the diffeomorphism 9/_11.
Now, the inequalities (9.40), (9.60), and (9.61) imply that for all (k, £) € N?,

sup sup \8§5A(t,t’,x,y,§~)| < oo and (9.62)
AzMo geca(tt )
(t,t,@,y)€I] xR>?

sup A* ~ sup \('%nyt/’z)yw/l(t,t’,x,y,§)| < Ciy. (9.63)
Az geca(tt @)
(t,t ,x,y)€l% xR

Theorem 8.12 page 342 and the estimates (9.40) imply that a constant C

exists such that for all (¢, z,y) in I3 x R4,

d
|Ka(t,t'2,y)| < T*‘/N = ——
‘L‘ —1 ‘ 2 Ca(t,t',x,y) (1 + ‘t - t/| |Z + 8§~WA(t,t’,x,y,§)|2)

where C4(t, ', x,y) denotes the set of €€ Ca(t,t',x,y) such that

=
=g

+ 6§WA(tat/axa y7§)’ S 1.

Hence, the inequality (9.56) reduces to proving that the Hessian of @A is at
least of rank d — 1, uniformly in (¢,¢,z,y), and in & € Cu(t,t',z,y). The
equation (HJ ) and Proposition 9.18 now imply that

sup sup |8E§A(t,t’,x,y,g)| =Cp < o0.
Az geca(t,t z,y)
(¢t ,x,y)€l% xR??
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We thus have, for any (¢,¢', z,y, ) such that Ee CNA(t,t’,x, Y),

[z -yl |-y

Ot 2,1y, )|+ Co < Co+ 1.
|t—t’|*|t—t’|+5A( z,y,£)| +Co < Co +

In particular, we have |x — y| < (Co 4 1)|14|. Therefore, the estimate (9.63)
and Taylor’s inequality give

WA(t, t’,:z:,y,&) = 8t®/1(05 yrf) =+ RA(tatl’%y,f) with

sup sup |8§RA(t,t’,x,y)| < Cpgo forall £eN. (9.64)
A=Ao EG&A(t,t',:v,y)
(t,tz,y)€l; xR

Using (HJ 4), we have (dropping the tilde in what follows)

0Pa(0,.€) = (Ga(0,9)(€,€))*.
For any positive quadratic form ¢, we have

1 ))% ((h1|h2)q o (h1|£)q(h2|£)q)’

where (-|), stands for the bilinear form associated with g¢.

This implies that Dg(q(f, 5))% restricted to the orthogonal set V' of £ (in
the sense of q) is a positive quadratic form. More precisely,

DZ(q(£,€))% (h1, ha) =

Dg(q(f,ﬁ))wxv = mQva-

As there exists a constant ¢y such that, on the orthogonal set V, of &
for GA (07 y)a

=

. . 2
Algflo ylégd (Id +G/1 (05 y)) (ga g) Z CO|§| )

we have, for any h € V,,,
DZi@4(0,y,€)(h, h) > colh|*.
If we take €9 to be sufficiently small, the estimate (9.64) thus implies that

DQJA(O,y,g)(h,h) > %O|h|2 for any h €V,,.

Thus, the inequality (9.56) is proved: It is only a matter of reproducing the
end of the proof of Proposition 8.15.

In order to conclude, we denote by A4 (') the operator defined by

Oa(Aa(t)va) =0,
(AA(t/)’UA, 8tAA(t/)UA)|t:t/ = (O’ UA)~
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The solution of
Uava = fa and Vovg—o=0

is of the form

va(t,y) 2/0 (AA) fAE)(t, y) dt’.

Therefore, for all ¢t € I, we have

t
[va(t, )z < / [(AA@) fa))(t, )L dt’
0
< [ IO A e o
Ia
Taking the L? norm on I, and using (9.55) and (9.57), we end up with

loalligy oo < [ 14U A, ) 2

Ia

< / NGRS

The cases d = 2 and d = 3 can be treated along the same lines. The details
are left to the reader. This completes the proof of Theorem 9.16. a

9.6 References and Remarks

Motivated by the study of the Einstein equations in relativity theory, there are a
number of works dedicated to the local well-posedness issue for the quasilinear wave
equation. The first papers on this equation were mainly devoted to the study of
the lifespan for solutions generated by smooth, compactly supported, small initial
data (see, in particular, the pioneering work by S. Klainerman in [182], the book
by L. Hérmander [168], and the more recent papers by S. Alinhac in [7-10] and by
Klainerman and Rodnianski [185, 188]).

In this chapter we focused on the question of the lowest regularity for which
local well-posedness holds true. One of the motivations for this study is that in the
low-dimensional case, we may hope to achieve the level of regularity corresponding
to a conserved quantity (such as, e.g., the energy) and thus get global existence.

The results of the first section belong to the mathematical folklore (at least in
the framework of Sobolev spaces). The main novelty here is that we strive to find
scaling invariant estimates. The other sections rely on ideas introduced by the first
two authors in [18, 19], where Theorem 9.5 is proved. The lowest index for which
local well-posedness holds true in dimension d > 4 was improved to d/2+1/2+1/6
by D. Tataru in [281] (compared with d/2+41/2+1/4 in this chapter). We emphasize
that in the simpler case of the semilinear wave equation (i.e., G = 0) with quadratic
nonlinearity @, the best index of regularity for which local well-posedness holds true
isd/2+1/2ifd > 3 and 7/4 if d = 2 (see the work by G. Ponce and T. Sideris
in [253]). Actually, even in the semilinear case there is no hope of going below d/2+
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1/2 for general quadratic nonlinearities @ (see the counterexample by H. Lindblad
in [209]).

We should also mention that combining the method presented in this chapter
with the refined Strichartz estimate proved by S. Klainerman and D. Tataru in [194]
is relevant to the study of the quasilinear wave equation in the case where the metric
G(u) satisfies the equation AG(u) = Q(Vu, Vu) for some quadratic form Q. In this
framework, it was shown in [20] by the first two authors that the level of regularity
of v for which the equation may be solved locally falls to d/2 — 1+ 1/6.

Proving Strichartz estimates for the wave equation with variable coefficients is
one of the main ingredients of Theorem 9.5. This question has been addressed by
L. Kapitanski [175] in the smooth case and by H. Smith in [268] for coefficients
in Cb!. Alternatively, Strichartz estimates for the wave equation may be obtained
by the method of commuting vector fields which was introduced by S. Klainer-
man in [182] for proving global existence results for small smooth initial data. This
method was also used in [183, 184] by S. Klainerman for the smooth variable coef-
ficients wave equation. This idea is the basis of the major work by S. Klainerman
and I. Rodnianski, who proved in [189-192] that the Einstein equations are well
posed for initial data in the Sobolev space H>™¢(R?) for some arbitrarily small e.
Other methods have proven to be efficient for solving (QW): For an approach based
on the Fourier-Bros-lagolnitzer transform, see the work [280] by D. Tataru; for an
approach based on wave packets, see the work [269] by H. Smith and D. Tataru.

The idea of performing a refined paralinearization to study (QW) is borrowed
from the work by G. Lebeau in [203]. Finally, we mention that cutting the time
interval into small intervals, the lengths of which depend on the frequency, has been
used recently by N. Burq, P. Gérard, and N. Tzvetkov to prove Strichartz estimates
in the context of the Schrodinger equation on compact manifolds (see [51]).

The use of high-frequency approximation of solutions of hyperbolic partial differ-
ential equations has a long history, beginning with the construction of the so-called
Laz parametriz (see [202]). The reader may refer to the book by M. Taylor [284] for
an exposition on this method in the (more general) framework of pseudodifferential
operators.
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The Compressible Navier—Stokes System

In this chapter, we show the benefits that may be gained from Fourier analysis
methods when investigating fluid mechanics models more complex than those
which have been hitherto considered in this book. We will present the so-called
isentropic compressible Navier—Stokes system, which contains more physics
than the incompressible models we have seen thus far but is still not too
cumbersome.

The content of this chapter is twofold. First, we present a few results con-
cerning local or global solvability in the spirit of the theorem of Fujita and
Kato which was presented in Chapter 5. It turns out that scaling invariance
still allows the appropriate functional framework to be found. Next, we show
that when the Mach number (i.e., the ratio of the sound speed to the char-
acteristic speed of the velocity) is sufficiently small, the solution of the com-
pressible model tends to that of the incompressible Navier—Stokes equations.
In all the results that we obtain, the use of Besov spaces and Littlewood—Paley
decomposition turns out to be fundamental.

The chapter unfolds as follows. The first section is devoted to a short
presentation of the model of viscous compressible flows that we shall consider.
In the next section we prove a local well-posedness statement for data with
critical regularity in the case where the density is a small perturbation of a
positive constant. In Section 10.3, we consider slightly more regular data in
order to remove the small perturbation assumption. Section 10.4 is dedicated
to the proof of global well-posedness for small perturbations of an initial stable
state (p,0) with constant density. In the final section, we study the extent to
which the incompressible Navier-Stokes equations are a good approximation
for slightly compressible fluids.

10.1 About the Model

In this introductory section we briefly explain how the system of equations
for the flow of a compressible fluid may be derived from basic physics. More
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details may be found in physics books such as, for example, [29], or in the
introduction of [213].

10.1.1 General Overview

We assume that the fluid fills the whole space (i.e., boundary effects are ne-
glected), and that it may be described at every material point x in R? and
time ¢t € R by:

— its velocity field u def u(t, z),

— its density p def p(t,x),

— its internal energy e def e(t, ),

— its entropy by unit mass s def s(t, ).

To any subdomain £2 of R?, we may associate:

d:ef pdz,
2

— the momentum P((2) d:ef/ pudz,
2

the mass M (£2)

1
— the energy E(02) d:ef/ (5,0|u|2 + pe) dz,
0

— the entropy S(£2) d:ef/ psdx.
Q

Let 9, be the flow of u (see Chapter 3) and (2 def ¢ (£2). Assuming that there

is neither production nor loss of mass, the mass conservation translates as

d d
— M) = — dx = 0. 10.1
iV =g [ pde (10.1
For the momentum, we have
d d
—P() = — pudx = pfdx+ (0-n)dXx, (10.2)
dt dt 2, 2 a8,

where the first term on the right-hand side represents external body forces
with density f (such as, e.g., gravity), and the second term represents surface
forces. In the absence of mass couples, the angular momentum

/ x A (pu)(t,z) dx
2

is also conserved. This can be shown to entail that o is a symmetric tensor
(see, e.g., [29]).
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Next, the energy conservation can be written as

d o d |u|?
a0 =7 /Q ple+ ) da

:/ pf~udx+/ (c-n) ndX — q-ndX, (10.3)
24 o082 082

where the last integral represents the amount of heat lost across the boundary,
and ¢ is the so-called heat flux vector.

Finally, introducing the temperature T', the entropy balance can be written

d d q-n
—S(2) = — > — — ) dX. 10.4
a4 dt/mp‘gdx— /m(T)d (104)

We assume from now on that the fluid is Newtonian, that is:

— The tensor o is a linear function of Du, invariant under rigid transforms.
— The fluid is isotropic [in other words, the physical quantities depend only
on (t,x)].

As a consequence, it may be shown (see, e.g., [29]) that o can be written as

o=17—pld with 7 def )\ divu 1d +2uD(u).

The scalar function p = p(t, z) is called the pressure and 7 = 7(¢,z) is called
the viscous stress tensor. The real numbers \ and u are the wiscosity coeffi-
cients and D(u) def 5(Du + 'Du) is the deformation tensor.

From the global conservation laws (10.1)—(10.4), we may obtain a system
of partial differential equations involving p, u, e, and s. This is a consequence
of the following classical (formal) lemma.

d
Lemma 10.1. Let {2 be an open subdomain of D, v the flow of u, and {2 :ef
Ye(82). Let b be a scalar function. We then have

d

— bdr = / (9¢b + div(bu)) da = O dx —|—/ (bu-n)dX.
dt Jg, 2 2 o0,

If we assume for simplicity that the Fourier law ¢ = —kVT is satisfied and
that the coefficients k, A, and p are constant real numbers, then Lemma 10.1
implies that
Op + div(pu) =0,
O (pu) + div(pu ® u) — pAu — (A + p)Vdivu + Vp = pf,
O (p(e + #)) + div(p(e + %)u) +divpu — kAT
=pf u+div(r - u) — divg,

O(ps) + div(psu) > kdiv (%)
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If we assume, in addition, that the so-called Gibbs relation

Tds = de +pd(%)

is satisfied, then combining the mass, momentum, and energy equations, we
get
vT

: D vVT|?

Hence, according to the entropy inequality, we must have

(10.5)

T2
TZD(’LL)-F]C&

> 0.
As, obviously,
7: D(u) = Mdivu)? + 2uTr (D(u))?

and, owing to the Cauchy—Schwarz inequality,
(Tr D(u))® < d'Tr (D(u))?,
this yields the following constraints on A, u, and k:
k>0, p>0, and 2u+dX>0.

We give a few examples:

— Monoatomic gases in dimension d = 3 satisfy 2u 4+ 3A = 0.
— Inviscid fluids are such that = A = 0.
— Nonconducting fluids satisfy k& = 0.

In order to solve the system, another two state equations involving p, p, e, s,
and T are needed. We can assume that p = P(p,T) and e = £(p,T') for some
given functions P and e depending on the nature of the fluid.

10.1.2 The Barotropic Navier—Stokes Equations

In what follows, we focus on a simplified model for compressible fluids, the
so-called barotropic Navier—Stokes equations,

Op + div(pu) =0
O(pu) + div(pu @ u) — pAu — (A + p)Vdivu + Vp = pf,

where it is assumed that p def P(p) for some given smooth function P.

The above system may be derived from the general model under the as-
sumptions that s is a constant and k = 0. Note that in the viscous case (which
we will consider in the next sections), the assumption of constant entropy is
somewhat inconsistent with (10.5) for the term 7: D(u) may be positive. From
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a mathematical viewpoint, however, the barotropic (or isentropic) model re-
tains many features of the full model.

In this chapter, we restrict our study to fluids with positive density tending
to some positive constant at infinity (say 1, to simplify the notation). Letting
a = p — 1, the barotropic system for sufficiently smooth solutions reduces to

(NSC)

Oa+u-Va=—(1+a)divu
Ou— (1+a)YAu+u-Vu+ Vg = f,

where A def wA~+ (Ap)V div is the viscosity operator, and g def (a) stands
for the chemical potential expressed in terms of a. The function G is assumed
to be conveniently smooth and, with no loss of generality, to vanish at 0.
The modified viscosity coefficients
v pop, v Cmin(u A+ 20), and 7 p4 a4
will also play an important role.
Throughout this chapter, we consider only viscous fluids, those for which
p >0 and v > 0. This implies that the coefficients v and 7 are also positive.

10.2 Local Theory for Data with Critical Regularity

In Chapter 5 we proved global well-posedness for the incompressible Navier—
Stokes equations with small initial data and local well-posedness for large
initial data (see Theorem 5.6 page 209, Theorem 5.27 page 222, Theorem 5.35
page 229, and Theorem 5.40 page 234). In this section and the two which
follow, we seek to establish similar results for compressible flows.

10.2.1 Scaling Invariance and Statement of the Main Result

As in Chapter 5, scaling invariance is the main thread for finding an appropri-
ate functional framework. More precisely, we note that for all £ > 0, (NSC)
is invariant with respect to the rescaling (a,u) — (ag, u¢) defined by

ar(t,z) = a(Pt,bx) and  w(t,x) = bu(l?t, lx), (10.6)

provided that the chemical potential g has been changed to £2g.

Hence, it may be appropriate to solve the system (NSC) in a function
space whose norm is invariant for all £ (up to an irrelevant constant) with

respect to the transform (10.6). Therefore, if we consider homogeneous Besov
.4 .4 _q1\d

spaces, the data (ag,uo) have to be taken in Bplr X (B;;TZ ) for some

p1,P2,71,72 > 1. In order to guarantee that the density is positive, however,

an L°° control on a is needed. Hence, we have to assume that 1 = 1 so that
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d

BE,H — L (see Proposition 2.39 page 79). Next, owing to the smoothing
d

properties of the heat flow, we expect Vu to be in EIT(BE r,) [see the inequal-
ity (3.39) page 157]. Now, as a satisfies a transport equation, preserving its
Besov regularity requires that Vu € LL(L*) (see Theorem 3.14 page 133).
Hence, we must also take o = 1. Finally, owing to the coupling between the
equations for a and for wu, it is also natural to assume that p; = ps.

For simplicity, we shall only consider the case p; = ps = 2. We thus wish
to solve (IVSC) in the function space

def ~ il ~ il 21\ ¢
Er © {(a,u) € Cr(B5,) x (Co(BET ) N LE(BE)

def : Teof L

= C([O,T]; Bg,l) N L%O(BQQJ)
For the time being, we focus on small perturbations of a constant density

state. For such data, our main local well-posedness result reads as follows.

where we agree that from now on, CN'T(Bil)

Theorem 10.2. If d > 2, then there exists a positive constant n such that for

. .d_q i .d_q . d .
all ug in B3, , f in Li, (R*; B3, ), and ag € B3, with

||aoHB§1 < /7, (10.7)
there exists a positive time T such that (NSC) has a solution (a,u) on [0,T] x
R? which belongs to Er.

Moreover, uniqueness holds true in Ep whenever
Ha”Lg?(Bﬁl) <nv/v, if d>3, and H‘IHZ%O(B;,I) <nv/T, if d=2.
(10.8)

The rest of this section is devoted to proving Theorem 10.2. Before explaining
how we shall proceed, we should point out that, in contrast with the incom-
pressible Navier—Stokes equations, owing to the hyperbolic nature of the mass
conservation equation, the system (NSC) cannot be solved by means of the
Picard fixed point theorem. In fact, although a priori estimates for (NSC)
may be proven directly in the space Er, the term u-Va in the mass equation
induces a loss of one derivative in the stability estimates. For that reason,
we shall instead use a Friedrichs method similar to that of Chapter 4 for
hyperbolic quasilinear systems. Indeed, if T" is taken to be sufficiently small,
then it turns out to be possible to prove uniform estimates in Ep for the
corresponding sequence (a™,u"),en of approximate solutions.

At this point, it would be natural to prove that (a”,u™),en is a Cauchy
sequence for a weaker norm than that of Er. This method would work in di-
mension d > 3, but is bound to fail in dimension 2, owing to the low regularity
of the functions we work with. Therefore, we shall instead use compactness
arguments (based on compact embeddings in Besov spaces and Ascoli’s theo-
rem) to show the convergence of (a™, u™),en up to extraction. This will enable
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us to prove the existence part of the above statement. Uniqueness will be ob-
tained later by independent arguments (here, again, the case d = 2 turns out
to be more tricky). In the last part of this section, we shall state a continuation
criterion which will be useful for proving global existence in Section 10.4.

10.2.2 A Priori Estimates

For the time being, as we focus on local results, the gradient of the pressure
may be considered as a lower order term. Therefore, the coupling between the
mass and momentum equations is not so important, and the two equations
may be treated (almost) separately. More precisely, in order to get a priori es-
timates for (N.SC), it suffices to combine estimates for the transport equation
(as stated in Theorem 3.14) and for the following heat system with convection
terms:!

Ou+v-Vu+u-Vw — Au = f. (10.9)

For this latter system, we have the following result.

Proposition 10.3. Let s € |— 2, 2] There exists a universal constant k, and
a constant C' depending only on d and s, such that

Pl gy + ol aisgioy < (ol + 111y s.)

t
Xexp<C/ IVl g +[Vwll g )dt’).
0 2,1 2,1

If v and w depend linearly on w, then the following inequality is true for all
positive S:

ll e gy +2llull g ey < (lollsg 1 pos ) exp(c / ||VU||L°°dt>

Proof. As usual, the desired estimate will be obtained after localizing the
equation (10.9) by means of the homogeneous Littlewood-Paley decomposi-
tion. More precisely, applying A; to (10.9) yields

Ouj +v-Vu; — Auj = f; — Aj(u- Vw) + R;

with Uj d:ef Aju, fj d:ef Ajf, and R def

> (0%, Aj]0ku.

! In fact, if we are only interested in proving well-posedness for (N.SC), the con-
vection terms may be included in the source term f. The main interest in keeping
them on the left is that we get a more accurate estimate (note that the right-hand
side in the Proposition 10.3 does not depend on the viscosity) which will be used to
state a continuation criterion at the end of this section.
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Taking the L? inner product of the above equation with u;, we easily get
ld 2 1 2 1 2 : 2
o llujll72 — 3 lu; > divodz + [ (p|Vu;? + (A + p)| divu,|*) de
< sl (1550 o + 145 €0 T} + Ry | 2)-
Note that we have
/<u|Vuj|2 + (A + ) divuj|2) dx > g/ |V, |? da.

Indeed, the above inequality is obvious if A+ u > 0. Otherwise, it follows from
the following chain of inequalities based on integration by parts:

/(divuj)2 dz = Z/&u; Opuly = Z/aku; diuly < / \Vu;|? d.
ik ik

Hence, according to Bernstein’s inequality, we get, for some universal con-
stant s,

1d ,
Sl + 2602% a1,
. 1.
< sl g (152 + 1145 - F0) | o 4+ 1By ]2 + G lliv ol e ).

According to Theorems 2.82 and 2.85 page 104, and to Lemma 2.100 page 112,
we have the following estimates for A;(u - Vw) and R;:

|4 (u-Vw)| . < ch2—18|\vw\|3% lullpy » if —d/2 <s<d/2, (10.10)

IR < ccj27j8||w||32% lull g, if —d/2<s<d/2+1, (10.11)

1
where (¢;j)jez denotes a positive sequence such that 3 c; = 1.

Formally? dividing both sides of the inequality by |u;||z2 and integrating
over [0,¢] thus yields

t t
(D)o + 2627 / sl e dt’ < s (O)]],2 + / 1l e d
0 0

t
—jS . . !
w02 [ey (190l g+ 1Vl g Yl g,

1

Now, multiplying both sides by 27 and summing over j, we end up with

||U||Z;V>°(Bgvl) + ’iZ”UHL}(B;j?) < |‘UO‘|B;1 + ||fHLg(B§Y1)

t
+C [(Ivell g +17ull, 4
0 322,1 322,

2 Here, we may proceed exactly as in the proof of (4.31) page 194.

Yl at

1
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for some constant C' depending only on d and s. Applying Gronwall’s lemma
then completes the proof.

If, in addition, we assume that v and w depend linearly on u, then we may
take w = 0 (with no loss of generality) and use the inequality (2.54) page 112
to bound R;. We then easily get the last part of the statement. a

Combining the above estimates with Theorem 3.14 page 133 will enable us to
prove the following result for smooth solutions of (N.SC).

Corollary 10.4. Let (a,u) satisfy (NSC) on [0,T] x R?. Suppose that a €
. d .d_ . d
C'([0,T); B3,) and w e C*([0,T]; B3, ! ﬁBifl)d. Assume, in addition, that
.d_ . d
there eists a function ug, € C*([0,T]; B3, 'n Bifl)d such that

8tuL - .A’LLL = f, uL‘tZO = Up.- (10.12)
Let (1) Y |a Iy ptony 2 withw ¥ w — uy and Uy(t) ¥
321 ) 322,1 )
Juoll - +||f||L1 i

There exist two constants, n and G, depending only on d and G, respec-
tively, such that if

_ _ vUo(T)
< a C —_— T < 10.13
ool g < and O (4 0D s, g +7) < (1013)

then we have, for all t € [0,T],
lall .

sty S Hlaoll jg + /7, lallze qo.gure) < 3/4,
1
Ut

d
251) 22
(10.14)
)< O((Oo0) +n)llucll, g + 7).

Proof. Defining I(a ) /(1 + a), we see that (a,u) satisfies

Oa+u-Va+ (1+a)divu=0
ou+u-Vu+u-Vuy, — Au = —uy, - Vur, — I(a)Au — V(G(a))

Qj¢=0 = Ao, Ujg=0 = 0.

Theorem 3.14 and Remark 3.16 page 134 enable us to bound a: We get

lall..

dt

ety <e(C [l g

< (laol 4 +/exp(—c/ Jull g "Y1+ a)divl g at').
< 322,1 0 0 322,1 221

.d
Now, since B3, is an algebra (see Corollary 2.54 page 90), we may write
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I +a)divul| 4 <C(1+]la],

= a
2
B3,

4 )lidival g
22,1 322,1

so that, combining the previous inequality with Gronwall’s lemma yields (for
some larger constant C')

N a < ao|l .4«
ol g < ool

t
c/ lull g, dt") +exp /||u|| d+1dt
0 B2,1

. d
Let Co be the norm of the embedding B3 ; < L°°. From the previous inequal-
ity, we see that if we assume that

1

< _—_
— 4C,

llao| (10.15)

. d

322,1

and if we have .
g sl g e < (1010

for some sufficiently small 7, then (10.14), is satisfied.
In order to bound @, we may apply Proposition 10.3. We get

t
U(t) < CGXp(C/O (HULH . d+1 + ||’LL|| )dt>

t
[ (sl g+ @Al 1G] )

The right-hand side may be bounded by resorting to the product and compo-
sition estimates proved in Chapter 2. We get

1 S Olluell g IVl

lur - Vur| 4 KE
2,1 21
I(@)Aull g < Cllall, 54, IIAUH g-1)
IV(G(a)ll ,g-1 < Cllall 4 -
BZI 21

Therefore, under the hypothesis (10.16) we have, by virtue of (10.14),

U(t) < O(lJuc|

1 ||UL|| Sd+1

.d_
L (B3y ) Li(B3y )

47aoll g +ne/2) (0O + sl o) + ool g +n2/7)t).

Now, from Proposition 10.3 we have

v < Uo(t), (10.17)

so if we assume



10.2 Local Theory for Data with Critical Regularity 439

Vlaoll.

< 10.18
sd S ( )

Mo

1

on ap with n = min(1/(2C),1/(4Cy
tion (10.15)], then we get

~—

[note that this implies the condi-

0(t) < C((Uo(0) + v lucl, gor) +001/7).

Completing the proof of the corollary follows from a standard bootstrap ar-
gument: Let
def . .
I'={t€[0,T]/ (10.16) is satisfied on [0,]}.
By using the time continuity of the solution, we see that I is a nonempty

closed subset of [0, T]. Now, if T* € I and we assume that 7" has been chosen
such that

Uo(T) nT -
10((1+ 2D sl g + ) <,
=z T 2,1

then the inequality (10.16) is strict at time T*. Again using the time continuity
of the solution, we see that this entails that I is also an open subset of [0, T].

Hence, T* =T. O
Finally, we prove an a priori estimate for the nonstationary Stokes equation
with convection terms,3

Ou+P(v - Vu) + Plu - Vw) — pAu = f. (10.19)

That estimate will be needed in the last section of this chapter, where we
investigate the incompressible limit.

Proposition 10.5. Let s € |—2, 4] and let u be a solution of (10.19) with
divergence-free data ug in Bil and f € Ll([O,T];BSJ). There exists a uni-
versal constant k, and a constant C depending only on d and s, such that

etllzoe 55 ) + ol g gy < (loll g, + 175 )
t
X exp(C’/ Vo] .a +||Vw] . dt’).
0 ( 322,1 B22,1)

If v and w are multiples of u, then for all positive s, the argument of the
t

exponential term may be replaced with C [ ||Vu| L dt'.
0

3 Recall that P stands for the Leray projector over divergence-free vector fields
defined in (5.4) page 206.
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Proof. The proof works in almost the same way as that of Proposition 10.3.

The evolution equation for u; def Aju now reads
Druj + P(v- Vuy) — pAu; = f; — A;P(u- Vw) + PR,

Taking the L? inner product with u; is the next step. Since divu; = 0
and P? = P, the operator P may be “omitted” in the computations so that by
proceeding along the lines of the proof of Proposition 10.3, we get the desired
inequality. a

10.2.3 Existence of a Local Solution

In order to prove the existence part of Theorem 10.2, we proceed as follows:

— First, we approximate (N.SC') by a sequence of ordinary differential equa-
tions, by means of the Friedrichs method.

— Second, we prove uniform a priori estimates in Er (for suitably small T')
for those solutions.

— Third, we establish further boundedness properties involving Holder reg-
ularity with respect to time for the approximate solutions.

— Fourth, we use the previous steps to show compactness, hence convergence
up to extraction.

— Finally, we show that the limit is indeed a solution of (NSC), and that it
belongs to Ep.

First Step: Friedrichs Approximation

Let L% be the set of L? functions spectrally supported in the annulus C, def

{¢e R? /nt < ¢ < n} and let £2,, be the set of functions (a,u) of (L2)d+1
such that inf, cga a > —1. The linear space L% is endowed with the standard
L? topology. Note that, owing to the Bernstein inequality, the L> topology

on L?L is weaker than the L2 topology, so 2, is an open set of (L%)d+1.
Let E,: L? — L% be the Friedrichs projector, defined by

def

FR,U(E) = 1¢, (6)FU(E) forall € e R?.

We aim to solve the system of ordinary differential equations

o 3O-(ED). () ()

in (L2)4! with

Fo(a,1) < _ &, div((l +a)u),

Gnla,u) = def | E, Au — E, (u- Vu)— n(I(a) Au) — E, V(G(a)).
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Above, we agree that u = U + ur, where uy, is the solution of (10.12).
Note that if ||ao|| is small, then 1 + E,, ap > 0 for large n. Hence, the

d
2
initial data of (NSC,,) are in (2,,. Therefore, to solve the system it suffices to
check that the map
(a,7) — (Fy(a,u), Gy(a,))

is in C(R" x§2,,; (L2)**1) and is locally Lipschitz with respect to the variable
(a,u). The proof of that is left to the reader. The main two points are that

uf n def E, uy is in C® (R*; H>), so the time dependency is smooth, and that,

owing to the low-frequency cut-off E,,, all the Sobolev norms are equivalent.
Hence, if we restrict ourselves to nonnegative times, then the above system
has a unique maximal solution (a™,%™) in the space C ([0, T*[; 2,,).

Second Step: Uniform Estimates

We claim that 7)F may be bounded from below by the supremum 7" of all the
times satisfying (10.13), and that (a™, u"),>1 is bounded in Erp.

The key point is that since E, is an L2 orthogonal projector, it has no effect
on the energy estimates which were used in the proof of Corollary 10.4. Hence,
the corollary applies to our approximate solution (a™,u™). Note, also, that the
dependence on n in the condition (10.13) and in the inequalities (10.14) may be
omitted. Now, as (a™,@") is spectrally supported in C,,, the inequalities (10.14)
ensure that it is bounded in L>([0,T7; L%) So, finally, the standard contin-
uation criterion for ordinary differential equations implies that 7}’ is greater
than any time T satisfying (10.13) and that we have, for all n > 1,

n <3 ™| oo < 3/4,
0711 5, <3000 0" e o iy <3/
7 Ny 7 L <C( T/
170 g, + 2T, a0, < C (07 (10.20)
ol g + 10, a2zl )

Of course, because u} = E, u L, the sequence (u})nen is uniformly bounded
~  .d_ L
in Cr(B3, Hn LlT(BQZJH). We further note that, using interpolation, the
~  Ld_q42
inequality (10.20) implies that (a")nen is bounded in L7.(Bj 1+T) for all

€ [1, 00}, a property which will be used several times in the next steps. The
same holds for u’.

4 Proving the existence of uy, involves the same arguments as for the ordinary heat
equation.
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Third Step: Time Derivatives

The following lemma will supply the compactness property needed to pass to
the limit in (NSC,,).

Lemma 10.6. Let a" d:efa” — E,, ag. Then, the sequence (@)n>1 is bounded
in » ) iy
C([Ov T]v B22,1) nce ([07 T]a 322,1 )7
and the sequence (T"),>1 is bounded in
.d_q 1 .d_q .d_3
C([0,T}; Bs, ) NCa([0,T7]; B3, + B3, 2).
Proof. The result for (@"),>1 follows from the fact that a”(0) = 0 and
oa” =—E, div(u™(1 4 a")).

. d . d
Indeed, as B3, is an algebra, and as u" and a™ are bounded in L?F(Bil)
. d Ld_
and L3 (Bg ), respectively, the right-hand side is bounded in LQT(BQ{1 1).
As regards (@"),>1, it suffices to prove that (9;u"),>1 is bounded in

3
2

.d_ .d_ 3
L3 ([0,T); B3, gt Bg, ?). This follows from the fact that
ou" = -, (u" -Vu 4+ I(a™)Au™ — A" + V(G(a"))).

4 .di1
Indeed, by using the fact that (u™),>1 and (@"),>1 are bounded in L%(B:,"‘Ir 2)N
.d_ . d
LF(Bs, 1), and that (@"),>1 is bounded in L (Bg ), we easily deduce that
4.4 3
the first three terms on the right-hand side are in L} (B3 ; *), and that the last

Ld
one is in L3 (Bg 1), uniformly. This is a simple consequence of the product
and composition laws for homogeneous Besov spaces, as stated in Chapter 2.

O

Remark 10.7.1f d > 3, we can also prove that (0,u")nen is bounded in
Ld_ Jd_

L2(0.7): By + B3y ).

Fourth Step: Compactness and Convergence

We introduce a sequence (¢,)pen of smooth functions with values in [0, 1], sup-
ported in the ball B(0,p+1) and equal to 1 on B(0, p). Recall that, according
to the previous lemma and step 2,

@)1 is bounded in CH([0,7]: BS; ") ne((0.T): B, ).
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Therefore, by virtue of Proposition 2.93 page 108,
(6p@")nz1 is bounded in €% ([0, T]; BZ; ") N C([0,T]); B2,) forall pe N,

d
Now, according to Theorem 2.94, the map z —— ¢pz is compact from By,
d_
to By, " Therefore, Ascoli’s theorem ensures that there exists some function
a_
@, such that, up to extraction, (¢,a")n>1 converges to @, in C([0,77]; By, 1).

Using the Cantor diagonal process, we can then find a subsequence of (@"),>1
[still denoted by (@"),>1] such that for all p € N, ¢,a" converges to @, in

C([O,T];Bzg)l_l). As ¢pdpir1 = ¢p, we have, in addition, @, = ¢pa,11. From
that, we can easily deduce that there dexists some function @ such that for all
¢ € D, ¢a" tends to ¢a in C([0,T]; B, ).

A similar argument, based on the bounds stated in step 2 for the velocity
and on the second part of Lemma 10.6, allows us to show that there exists
a vector field w such that, up to extraction, for any function ¢ € D, we have

g — ¢t in C([0,T]; B; 7).

Final Step: Completion of the Proof

Combining the uniform bounds that we proved in the second step and the
Fatou property for Besov spaces (see Theorem 2.25), we readily get

~ . d ~ .d_q d
(@w) e LF(B5,) « (LF B3 ) -
. d
Proving that w also belongs to L%(B;jl) requires some attention. Indeed,
. d
having (@")nen bounded in L%F(Bgzjl) only ensures that @ belongs to the set

. d - d
MT(BQZ’iH) of bounded measures on [0, T] with values in the space B;Il, and
that

T
d||a(t <C
| .. <o

where Cr stands for the right-hand side of (10.20).
It is now clear that the same inequality holds for E, @, for all n > 1. In

d_ : . d
addition, as u € L(Bg3, 1), we obviously have E,u € L%(B;jl). Finally,
then, we may write

T
/ ||]'Enﬂ|\3%+l dt < Cr forall n > 1.
0 2,1

. d
Using the definition of the norm in B;jl, the above inequality implies that

5 In the case d = 2, as d/2 —1 =0, we also use the fact that Bg,l — BSJ.
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T
Jim 2ﬂ'<%+1>/ | Al 2 dt < Cr.
<N 0

_ 1/ e+
Therefore, 7 € Ly(Bg, ).

Let (a,u) def (ag + @,ur, + ). By interpolating between the convergence
results that we have obtained so far and the uniform bounds of step 2, we
get better convergence results for (@™, ") so that we may pass to the limit in
(NSC,). As an example, we explain how the nonlinear term E,, (I(a™)Au™)
may be handled. Fix some ¢ € D(Rd) and some p > 1 sufficiently large so as
to satisfy ¢, = 1 in a neighborhood of Supp ¢. Using the symmetry of E,

and the support properties of ¢ and ¢,, we may write

<En (I(a™)Au™) — I(a)Au, ¢) = (I(a")Au", (E, —Id)¢)
+<I(¢Pan)~’4(¢pun) - I(¢pa)A(¢pU)v ¢>

Combining the bounds of step 2 and product laws in Besov spaces, we see that

(I(a™)Au™),>1 is bounded in L}(Bi 1 1). Hence, we can deduce from duality
properties (see Proposition 2.29) and the smoothness of ¢ that the first term
of the above equality tends to 0.

For the second term, it suffices to use the fact that for any ¢ > 0,

~ ¢pa" — dpain LF(B5; ),
— A(ppa™) — A(ppu) in LL(Bs {5,

which, in view of the product properties in Besov spaces, suffices to show the
convergence. Treating the other terms in (NSC),) is left to the reader.

Finally, then, we have constructed a solution (a,u) of (NSC) with data
(ag, up), which satisfies

Er(Bi) x (BrBi ) nihBih)”
(a,u) € LT (B3,) x (LT (B3 ) r(Bs1))

and the bounds of step 2 are satisfied.
In order to establish the properties of continuity with respect to time, it
suffices to observe that

(0 +u-V)ae LL(BS,) and O e LL(Bi ).

Ld_

The second property obviously ensures that v € C([0, T]; B5 1)7 while accord-
. d

ing to Theorem 3.19, the first one guarantees that a € C([0,T]; B3 ;).

Remark 10.8. Combining (10.13) with Lemma 2.4 page 54, we may deduce a

lower bound for the lifespan T* of the solution. Defining w;(7) def
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2i(5—1) (||Aju0|\Lz + ||Ajf||L1T(L2)), we find that there exists some constant 7,
depending only on d and on G, such that

T > sup{T € ]O,UZ] / jze%(leZTﬂ)uj(T) - P-F;;JEOQ(T)/Z}

10.2.4 Uniqueness

Assume that we are given (a!,u!) and (a2, u?), two solutions of (NSC') (with

the same data) satisfying the regularity assumptions of Theorem 10.2. In

order to show that these two solutions coincide, we shall give estimates for

(da, du) def (a®—a',u?—u'). These estimates will be based on Proposition 10.3

and Theorem 3.14 applied to the following system satisfied by (da, du):

Apda +u? - Va+ 35 6F; =0 (10.2)
Oybu +u2 - Véu + du - Vul — Adu = 30 &G, '
with  oF o va', o s diver, oY (11 al)dive,

Gy (1a")~1(a?) A, Gy © ~I(a") A, G5 T~V (G(a?)~G(a")).

Note that, owing to the hyperbolic nature of the mass equation, we could
not avoid a loss of one derivative in the stability estimates (because the term

Ld_

OFy in the first equation of (10.21) cannot be better than L>([0,T]; Bs, 1)7
Ld_

for we only know that Va' € L*°([0,T]; B, 1)) In addition, because of the

coupling between the equations for da and du, this loss of one derivative also

induces a loss of one derivative when bounding du. Hence, we expect to prove
uniqueness in the function space

def 59-1 5 2—2 54 \\d
Fr = C([OaT]§BQ,1 )X (C([OvT];BQ,l )HL%“(B2,1)) :

We first consider the case d > 3, which is easier to deal with. We have to
check that (da,du) belongs to Fr, a fact which is not entirely obvious since
homogeneous Besov spaces are involved. We note that both 0;a' and 9,a? are

Sd_
in L7(B3, ") (just follow the proof of Lemma 10.6). As al(0) = a2(0), we
thus have & € C([0,T7; 322%1_1), as desired.

Ld_ ‘ ,
In order to show that du € C([0,T]; B3, 2), we introduce T % wi — ur,,
where uy, is the solution of

our — Aup, = f— V(G(ao)), ﬂL|t:O = Ug. (10.22)

We obviously have 4‘(0) = 0 and
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o' = Au' — I(a") Au' —u' - Vu' — V(G(a') — G(ap)).

, .d_ o
Since @' € LF (B3, ') and (a",u*) € Er, the right-hand side belongs
.d_ . .d_
to L3 (B3, 2) (use Section 2.6). Hence, u' belongs to C([0,77; B3, 2), and

we can now conclude that (da, du) € Fr.

In order to get an estimate for du, we apply Theorem 3.14 to the first
equation of (10.21). For T' < T we get

Clell gy
loa g0 Se R >Z||5F I,

a1 = 1 *
LE(Bf )

Ld_
2
2 1

Easy computations based on Theorems 2.47 and 2.52 page 88 yield

1

|0F1]| g1 < Clldu]l g HW I

,1

da
oy < Cldived] s ||6a||
B2,1
1
I6F3, g+ < C(1+]a ||B§1)H6u||

. d
2
1 Bz,l

Hence, using Gronwall’s lemma and interpolation, we discover that there exists
some constant Cr, independent of T, such that

& < Cr| |0 , u . 10.23
Il _ g, < Co(Wal, o+ 00 s ) (10.23)

d_
T 221 )
Next, applying Proposition 10.3 to the second equation of (10.21) yields

ou d_, + . d
I8 g+ 15,
T g+l g, )ae 3
< Ce Bz Bia E (|G| d_s
T sy

. d .
Because Bz"”l(Rd) —C(R?), we have a’ € C([0,T]xR?%). Hence, for sufficiently
small T,

. 1 _
lla" || oo jo, T xRy < 3 for 1=1,2. (10.24)
Therefore, applying Theorems 2.47, 2.52; 2.61 and Corollary 2.66 yields

16 | < Co(L+ | gd t lla?]]

1
s i gt
9G] 5 < Ol g el
1 2
1G] -2 < O+ Il gl

If i has been chosen to be sufficiently small in the condition (10.8), then éGs
may be absorbed by the left-hand side of the inequality for du. Therefore, we
can conclude that there exists a constant C'7, independent of T, such that
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bul g 40l g < Op (T |t Yaall
|| HL (B;l? +|| H % '231) - T +H ||L1 (BZ || ||L°C(BQi 1)
Note that the factor T + |lul|| o decays to 0 when T goes to zero.

L3 (B31)

Hence, plugging the inequality (10.23) into the above inequality, we conclude
that (da,du) = 0 on a nontrivial time interval [0, 7T]. In order to show that we
may take T' = T, we introduce the set

et {te (a*,u?) = (a',u") on [0,7]}.

Obviously, I is a nonempty closed subset of [0,7]. In addition, the above
arguments may be carried over to any t € I N[0, 7], which ensures that I is
an open subset of [0,T]. Therefore, I = [0,T], and the proof is complete in
the case d > 3.

In the two-dimensional case, the above proof fails because, when estimating
some terms on the right-hand side of the equation for du (such as, e.g., 0G3),
the sum of the indices of regularity is zero. Hence, we must use the endpoint
inequalities of Proposition 2.52 [adapted to LPT(B;T) spaces|, but we then

obtain a bound in the larger space L% (B; L), instead of L%«(BZ_%) At this

2,00

point, we may be tempted to estimate (&1 du) in

def 1 oo/ 10 oo 2
Pr € LF(B ) x (LF (B N LB L))

but we then have to face the lack of control on du in LL(L*) (because, in
contrast to Bé’l, the space 32100 is not embedded in L*°) so that we run into
trouble when estimating 6F;. In order to bypass this difficulty, we shall use
the logarithmic interpolation inequality

Jollzy sy )+ 10l i

o)
ol 51, < c||w||z1T(B%m)1og(e+ ) (10.25)

lwllzy sy

the proof of which is similar to that of (2.104), except that we now have to
split w into three parts,

ZA’LU+ ZAw+ZAw

j<—-M i>N

and choose the “best” nonnegative integers M and N. At this stage, it will be
possible to conclude that we have uniqueness by taking advantage of Osgood’s
lemma.

We now give some more details. We omit the proof that (da, du) is indeed
in Fip as it is only a matter of repeating the arguments that were used for d >
3. Next, bounding & may be achieved by combining Theorem 3.14 page 133
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with Propositions 2.47 page 87 and 2.52 page 88, and by using the embedding
32 1= B2 oo N L. After a few computations, we get

iy < Coxp(C [ 1l o)

t
x/o (||6a||Bgm|divu2||B%)1+|&L||B%71 (1+||a1|3;,1))dt’,

from which it follows, according to Gronwall’s inequality, that

t
”(SO“HL;X’(B%OO) < CGXP(C/O \|U2||1'3;1 dt/) (1 + ||al||Lg°(B;,1))||5U||Lg(35,1)

Making use of the inequality (10.25) with w = du, we end up with

00l oo 50y < Crlldull7a g 10g<e+ AGERS : z,w)
L(BY ) LI(B) ) o HZg(B%YOO)

for some constant Cp depending only on the bounds of the solutions in Ep.
Note that since ftoo(Bgl) < L}(B3,) for finite t, we have

def
V€ [0, [l0ull gy ag ) +lldullgy gz ) < V() Z VAE) + Vi) < oo
with dof
V() = () g, + 0’ ()] 55, € L0, T)).

Therefore, V is in L*°([0,T]) and

V()
ol oo g0y < Crlldullz: g log(e—l— 7) (10.26)
L (B3 &) L}(B3,00) ”&L”Z%(B;m)

We now bound du. Making use of (an obvious generalization of) the inequal-
ity (3.39) page 157, we get

10ull oo 51y + 2llOullze s )

3
2
< C(IU Voullgy g1y + 0 Vulllgy o) + ; ||5Gi||Z%F(B2’;))'

In order to bound the terms on the right-hand side,we may exploit Proposi-
tions 2.47, 2.52 and Corollary 2.66 page 97 [recall that (10.24) is satisfied],
adapted to the spaces Ll( ). Since Ll(B2 1) Ll(B2 1), we get, for all
t<T,

lu? - Voullgy g1 ) < Cllull gz gy IVOullza s, ),

t
0w - Vulllgy g1 ) < C/O IVulll gy Noull 2 dt’,
162z 551,y < CPlaM I pee sy ) IV20ul gy 51
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In order to bound the terms dG; and dG2, we need to generalize Corollary 2.66

to the case of regularity index 0. For this, it suffices to note that for any
sufficiently smooth function H, we have

1
H(d?®) — H(a') = (H’(O) + /0 (H'(a" + réa) — H'(0)) d7> &.

Hence, combining the product laws in Besov spaces and Theorem 2.61, we
have

|H(a?) ~ H(a" 5y _ < Clltall sy (1H'O)] + la' |y, + lla®l55,).

So, finally, we get
t
190G |z By ) < C?/O (L +latllzy, + la®llpy JIVZu®llgg lloall gy _ dt’,
t
16Gs 173 55 ) < C/O (L llatll gy, +lla?ll gy ) dall g _ dt’

and can conclude that
“&L||Lg°(35;o)+Z||5U‘|Zg(35m) < CHU2HZ§(B;J)||5U||L2(BZO
t
48l zyog oo+ [ [t Nl
+(1+||a1HB;,1+||a2HB;,1) (172 g ) Nl ] it

Now, if we take a sufficiently small constant 1 in the inequality (10.8), then
the second term on the right-hand side may be absorbed by the left-hand side.
Next, we note that by virtue of the Lebesgue dominated convergence theorem,
HUQHig(B;l) tends to 0 when t goes to 0, and hence there exists a positive T

such that the first term on the right-hand side may also be absorbed® for all
t €10,7]. We end up with the following inequality:

10ull oo gy + 2llOull 7y
t
sc/o (Il Mol oo+ (Ll gy )%l g ) .

We plug (10.26) into this inequality. Defining X () def ||(9uHLoo(B2 )+
H(;U,”Z}(B% ), we get, for any ¢ in [0,7] and some constant Cp depending
only on v, 7, and the norms of the solutions (a',u') and (a?,u?) in Er,

1
6 By interpolation, we easily get ||5u||i§(3200) < H5u||j~2;%( 1 ||(5u\|im(B2
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X(t) < C’T/O (1+V'({#")X (") log (e+§i§j§> dt’.

As
dr

rlog(e + @)

Osgood’s lemma entails that X = 0 on [0,7]. This means that (a',u') and
(a?,u?) coincide on [0, T]. Appealing to the connectivity argument used in the
case d > 3 then completes the proof. O

V' € LY([0,T]) and /1
0

= o0,

Remark 10.9. Having a tilde in the condition (10.8) in the critical case d = 2
is necessary for conveniently bounding the term éGy.

10.2.5 A Continuation Criterion

This section is devoted to the proof of the following continuation criterion.

Proposition 10.10. Under the hypotheses of Theorem 10.2, assume that the
system (NSC) has a solution (a,u) on [0, T[x R? which belongs to Ep: for all
T’ < T and satisfies

’ lall .4 <nu/7, if d>3,
/ ||Vu||LOO dt < 0 and L%O(le) _ )
0 HGHZ%O(B%l) STIZ/V7 Zf d=2.

There exists some T* > T such that (a,u) may be continued on [0, T*] x R?
to a solution of (NSC') which belongs to Er~.

Proof. Note that u satisfies
dutu-Vu—Au= f—V(G(a)) — I(a)Au, Ujt=0 = UQ-

Hence, applying Proposition 10.3 and taking advantage of the smallness of a
to absorb the term I(a)Au, we get, for some constant C, depending only on
d, and for all t < T

||u||~ 1 S C@Cf(f ”VUHLOO dt’

.4 _
LtOO(B2%1 )

X(uo a, F || f a, +t|a d )
I \\Bfll I ||L%(BQ%11) | HL;?"(BZ%)

~ .d_ . .
Hence, u belongs to Lj'f’(Bil 1). Now, replacing ||A;ug||z2 by HA]‘U,”L%Q(L2)
and ||Ajf||L1T(L2) by | 4; fll 1y, r(r2) in Remark 10.8, we get some e > 0 such
that for any 77 € [0,T][, the system (NSC) with data a(T"), uw(T"), and
f(+ +T") has a solution on [0,¢]. Taking 77 = T — /2 and using the fact

that the solution (a, ) is unique on [0, T'[, we thus get a continuation of (a,u)
beyond 7. O
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10.3 Local Theory for Data Bounded Away
from the Vacuum

We next consider initial data (pg,ug) which do not satisfy the smallness con-
dition (10.7), that is, the density need not be almost a constant function.
Since having strict parabolicity in the momentum equation is fundamental,
however, we shall always assume that pg is bounded away from 0, an assump-
tion which will be shown to be conserved for sufficiently small times. In order
to simplify the presentation, we assume that the data are more regular than
needed according to our scaling considerations.
We now state the main result of this section.

Theorem 10.11. Assume that the space dimension is d > 2 and that the data
(ao, uo, f) satisfy, for some a € 10,1],

.4 . d Ld_q  d_ d_ d_
ap € 322,1”322,41&» ug € B3y 1m322,1 M and f e L, (RT; B2 1 1ﬂB2 1 1+a)~
If, in addition, inf, ag(x) > —1, then there exists a positive time T such that
(NSC) has a unique solution (a,u) on [0,T] x R® which belongs to

Eq *fCT(Bz 1mBz+a) (CT(B2 1 mBz 1 1+a)le([07T]; B OB2 IFHQ))

and satisfies itnf a(t,z) > —1.
T

10.3.1 A Priori Estimates for the Linearized Momentum Equation

As in the previous section, since we are only interested in local results, at
the linear level, the mass and momentum equations may be treated sepa-
rately. For the mass equation, using Theorem 3.14 page 133 turns out to be
still appropriate. As for the momentum equation, we now have to consider a
linearization which allows for nonconstant coefficients, namely,

Ou+v-Vu+u-Vw—bAu = f, (10.27)

where b is a given positive function depending on (¢, z) and tending to (say) 1
when x goes to infinity.

In this subsection, we shall prove that the estimates of Proposition 10.3
.d
may be adapted to this new framework, provided that b — 1 is in L%O(Bzzja)
for some positive a.
Proposition 10.12. Let o € ]0,1] and s € |—%,2]. Assume that b =1+ c

with ¢ € L°°(BQ+O() and that

by := inf b(t,a:) > 0. (10.28)
(t,z)€[0,T]xR?

There exists a universal constant k, and a constant C' depending only on d,
a, and s, such that for all t € [0,T],
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lullzze 55 ) + 0 vl g gy < (lollsg, + 1 cygas,))

¢ v 2 2
cosp(C [ (Il g+ ol gt benGo) F el ) o).

2,1

If v and w depend linearly on w, then the above inequality is true for all
s €]0, % + a], and the argument of the exponential term may be replaced with

C/ <|V’LL|Loo + by V(b

Proof. We first consider the case A + u > 0. Applying the spectral cut-off
operator A; to (10.27) then yields

2 ’
Vel )dt.

B22

IT

8tUj +v-Vuy; fudiv(quj) - ()\‘F,LL)V(ble’LLJ) =f; +AJ(U Vw) +R; +Ej

def def

w1thu]—Au i = Af, R [v?, Aj]diu, and

R; def N(Aj (cAu) — div(cVAju)) + A+ (Aj(cV divu) — V(cdiv A]u))

Taking the L? inner product of the above equation with uj, we get, after a
few calculations and integrations by parts,

;:lit [l JHL2 — % / |uj|2divvdx+/b(u|Vuj\2 + (A + p)| divy,|*) do
< Jasll g (102 + 14 Pl + Ry o + 1Bl ).
Under the assumption that A + g > 0, the term (A + p)|divu;|> may be

omitted. Therefore, by virtue of Bernstein’s inequality and (10.28), the above
inequality entails that

t t
()1l 2 + 2D 2% / lgll = dt’ < g (O] + / £l d
t . - 1 )
+ / (14 - V)| o+ 1Bl o+ | Bill 2+ eliv ol o 2 ) e (10.29)

for some universal constant «.

We will temporarily assume that R; satisfies
IRl 2 < 061527j5||0||3~§1+a”V“”Bgﬁl*a for —d/2 <s<d/2+ a, (10.30)
where (¢;)jez denotes a positive sequence such that » . ¢; = 1. Then, using

the inequalities (10.10) and (10.11), multiplying both sides of (10.29) by 27¢,
and summing over j, we end up with
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”uHng(B 1)+2"€b MHUHL HBsH? =

3, + Hf”L%(B;’l)

+0 [ (1ol g0+ ol 5.0

.
wov [ ||c||B§1+a||u\

for a constant C' depending only on «, d, and s.

) ’
B3, 0

pyta-a di (10.31)

Next, by combining interpolation and Young’s inequality, we easily get

— 2_2 _2 2
CPllel g o lullpgy—e < b pillull g2 + Co7 (s p)ta lell 4o llulls,-

3,1
Plugging this into (10.31) and making use of Gronwall’s inequality completes
the proof of the first inequality of Proposition 10.12 in the case where A+ > 0.
The case where v and w depend linearly on u follows from a slight modification
of (10.11) [see the inequality (2.54) page 112].

The case A + p < 0 works in almost the same way. We just have to write
the equation for u; in a slightly different way, namely, for all ¢ € {1,...,d}
(with the summation convention),

Oy +v - Vuy — pdiv(bVuj) — ()\Jrﬂ)ak(baiuf) =/ + Aj(u- V') +R} +R;
with

Rz (1—efu(Aj (cAu®) — div(cVAjui)) + A+ (Aj (cO; divu) — ak(caiAjuk)).

Taking the L? inner product of the above equation with u;, we get, after a
few calculations and integrations by parts,

1d 1 2 7. 2

% |l ]||L2 ~3 luj > divods + [ b(u|Vu,|* + (A + p)Vu; : Vuy) da

< el o (e + 145 - V)| o+ 1Bs 2+ (1B

).

Note that, according to the Cauchy—Schwarz inequality,
V’U,j : V’U,j S \Vuj|2.
As we have A + 1 < 0 and X\ + 2u > 0, we thus get

t t
[ (#)] L2 + 2kDx V227/0 lujll e dt” < Jlu; (0)] 2 +/O £l 2 dt’
t
+ [ (1456 Vol o+ 1A o +

Now, by virtue of Lemma 10.13 below, the new commutator Rj also satis-
fies (10.30). Hence, the proof may be completed exactly as in the case A4pu > 0.
O

1, ..
+ 5 vl o g2 ) '
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For the sake of completeness, we now prove the inequality (10.30). This readily
follows from the following lemma.

Lemma 10.13. Let a € ]1-%,1] and o € |-, 2 + a|. Define

RE Y A (copw)—on(cApw) for ke {l,... d}

There exists some C = C(a,d, o) such that

S22 [RE 12 < Cllel, g0 IVl g e (10.32)
j 2,1

Proof. The proof is based on Bony’s decomposition: We split Rf as

Rf = 8k[Aj7Tc]w — AjTakcw + AjTakwc+ AjR(akw,c) — BkTch.
e —— N — N N—— J

—_——
k1 k.2 k.3 k4
R; R; R; R; RE®

Using the fact that, owing to Proposition 2.10 page 59, we have

Jj+4
R?’l = Z 8k[Aj, Sj/_lc]Aj/w,

jr=j—4
Bernstein’s inequality and Lemma 2.97 page 110 entail (under the hypothesis
that o < 1) that

Y 27UR e < ClVel o [Vl gga (10.33)
J

Continuity results for the paraproduct (see Proposition 2.82) ensure that R?’z
satisfies (10.33) if @ < 1, and that

> 27|R; 12 < OVl oo gllel

- 00,1

J

VIS

<0.  (10.34)

if o—a-—

Bie
Next, Proposition 2.85 guarantees that under the hypothesis o > f%, we have

Yol k,4
27 RE gz < OVl g el ... (10.35)
j 2.1

To bound R§’5, we use the decomposition

7€§5 = ji: Ok (Sjr 424w Ayrc),

J'23-3

which leads (after a suitable use of Bernstein and Hoélder inequalities) to
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P

REP|| | <C Y 207 9 A, G g 27 ) 4y 1

j
j'>j—3
Hence, since o + % — 1> 0, we have
jo k,5
S PR 12 < Clel g [Tl
; :
Combining the last inequality with (10.33), (10.34), and (10.35) and using

. oy d
the embedding B3 ; — B;’f for r = %—&-a—l and 0 —a completes the proof
of (10.32). 0

Corollary 10.14. Let (a,u) satisfy (NSC) on [0,T] x R?. Assume that there
exist two positive constants, b, and b*, such that

b, <1+ag < b, (10.36)
. d Ld Ld_ . d o
and that a € CH([0,T); B, N BE™) and we CL([0,T); B3, ' n B3 )%

. o 54-1 - d4ltand
Also, suppose that (10.12) has a solution ur, in C'([0,T}; Bf, NB3, )"

We introduce the following notation:

def def

A% =

0 = llaoll, 4 npde A%(t) = la HLOC(B $ pirey

def
«
UO ( ) HUOH 2%;1n32%;1+a + HfHLl(B?1 1ﬁ32 1+a)7
def
Ug(t) = ”uL” 2441 dtatro

L%(BQ,I ﬁB2,1 )

d
def with @ < U—Ufp.

U(t) =

L e L
2

d
di1 . dii1ta
2 2] 2
1 NB3, ) B nB3,

There exist two constants, n and C, depending only on d, «, and G, such that
if

_ 2
b*z(b*v> T(45 +1)" <n (10.37)

Ug (TUZ(T) + (AG + D)(T +vUE(T)) < nb. v,

then we have

be/2 <14a(t,x) <20 forall (t,z)€[0,T] x RY, (10.38)
AY(T) < 24941, T“(T) < C((A8+1)(T+EU§(T))+U3 (T)Ug(T)). (10.39)
Proof. We may write the system satisfied by (a,u) as follows:
a+u-Va+ (1+a)divu=0

O +u-Vu+u-Vug — 5 AU = —ur, - Vug, — I(a) Aug, — V(G(a))

(a, ﬂ)\t:o = (ao, 0).
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We first bound a. Applying the product laws in Besov spaces (see Corol-
lary 2.86 page 104), we get

H(l—i—a)dlqu da SC(+lall g 4. dia-

1032 1+ ( B22,1ﬁB22,1+ ) 2,1 B22,1Jr
Hence, Theorem 3.14 (adapted to the homogeneous framework, see page 134)
combined with Gronwall’s lemma yields, for all ¢ € [0,T],

dta dt/)

2,1

A4°(1) < A exp( / Ivull_y

+eXP /HWII .d+udt’)—1. (10.40)
1 NB2

2,1

In order to ensure that the condition (10.38) is satisfied, we may use the fact
that
(O +u-V)(1+a)*' £ (1+a)* divu =0.

Hence, taking advantage of Gronwall’s lemma, we get
¢
00+ 00 < 0+ 0 o [ v )
0
Therefore, the condition (10.38) is satisfied on [0, t] whenever
¢
/ |divul| ;o dt’ <log2. (10.41)
0

In order to bound @, we use Proposition 10.12 with ¢ = —I(a). As, according
to Theorems 2.47, 2.52, and 2.61 page 94, we have, for all § € [0, ],

)

|ur, - VULHB i SO Vugl]l le 1+9||UL||B§

VGl ,4-1ss < Cllall 4+

21

[(a) Aur|| . 4 g1 < Cv|l(a )H 2 VPurl g Jr et
2,1 B21 nLee 21

I <C

| (a)”Bjjﬁmo lall , #4900
we get

2 2

B cfr (nuu d+1+\|uLn g tbe2(57) llall® +Q)dt'
UQ(T) <Ce B B3

X
(e A T

T )
+||a||L?(B§mB;1 STl e gen))
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Note that Proposition 10.3 implies that

< CUST).
HULHL%O(BZ%I ke S o (T)
So, finally, defining
def def
Ua d AYT) = )
L( ) || L”L%(Bzz;rlﬁBdJraJrl) an ( ) || HL"C(B lmBQ 1+a)

we conclude that
AQ(T)gAgexp(C(U )) exp( ( (T)+U;(VT)>>—1,
U(T) < C(Ug(DUR(T )+A°“ +oUL(T)))

[ T)

exp(c<Ug(T) b b*g(bﬂ )%T(A“(T))§>>.

UL
(

Now, if T is sufficiently small so as to satisfy exp(CUg (T)) <2,

exp(cU:(yT)) <2, and eXp(Cb*z(b:/)%T(Aa(T))%) <2,

then we have (10.39) and (10.41).

So, if we choose T such that (10.37) is satisfied for some sufficiently small
constant 7, then both (10.39) and the above conditions are satisfied with a
strict inequality. It is now easy to complete the proof by means of a bootstrap
argument similar to that of Corollary 10.4.

10.3.2 Existence of a Local Solution

The main steps of the proof of the existence are exactly the same as in the
critical case.

First Step: Friedrichs Approximation

Using the notation introduced on page 440, we aim to solve the following
system of ordinary differential equations:

s a@)-@en) 6, )

d

with F,(a,@) effE div((1+ a)u), ud:efﬂ+uL,and

G (a,w) def E, ((1 +a)_1Aﬂ) - En(uVu) - EH(I(a) Aup) — E, V(G(a)).
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Note that if 1 4+ a¢ is bounded away from zero, then so is 1 + E, ao for
sufficiently large n, hence the data are in §2,,, and it is not difficult to check
that the map

(a,7) — (Fn(a,1),Gn(a,))
is in C(R™ x£2,,; (L2)%*1) and is locally Lipschitz with respect to the variable

(a,w). Hence, the system (NSC,,) has a unique maximal solution (a”,u") in
the space C*([0, T:%[; £2,).

Second Step: Uniform Estimates
We note that (a™,u") satisfies

Ora™ + En(u" . Va") + En((l +a") divu”) =0
o — B, ((1+a™) ' Aa") + E, (u" - Vu) + VE, (G(a")) =0

with initial data aﬁ:o = [, ap and aﬁ:o =0, and where u™ def uf +u".

For the reasons already mentioned when treating the critical case on
page 441, the results of Corollary 10.14 remain true for the approximate solu-
tion (a™,u™). Therefore, T;* may be bounded from below by any time T sat-
isfying (10.37), and the inequalities (10.38), (10.39) are satisfied by (a™,u").
In particular, (@™, u"™)pen is bounded in ES.

Third Step: Time Derivatives

The following lemma will supply the compactness needed to pass to the limit
in (NSC,).

d .
Lemma 10.15. Let a™ :efa” — E,, ag. The sequence (@")p>1 is then bounded
mn

. d Ld g, 1 .d_ sd_j4q
C(l0.T): B3y N By ) nex(0.7): By n By ),
and the sequence (")p>1 is bounded in

Ld_ . d_ 14 1 .d_ cd_ o4,
c(0, T} By N Bz Ty nex([0,T); By, '+ B 0.

Proof. To get the result for (@"),>1, it suffices to check whether (9,a"),>1 is
.d_ Jd T4
bounded in L*([0, T]; B3, n B3, 1+ ). As

o = — &, div(u"(1 + a™),

this is a mere consequence of the bounds from step 2 and of the product laws
in Besov spaces stated in Section 2.6.
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As regards (@ )n>1, it suffices to prove that (9;u"),>1 is bounded in
£2(0,7); B ;7 + BET2) for B € {0,a}. This follows from the fact that

o= —E, (u™Vu™) + E, (14a™) "' AT") -V E, (G(a™)) — E, (I(a™)Aut).

Indeed as (u™)p>1 and (T"),>1 are bounded in L%(BilﬂBéfa)ﬂL%o (Bi;lﬂ
3221 1+a) and (@")p>1 is bounded in L""’(B%1 N B%Jra), we deduce that the
first three terms on the rlght hand side belong to L? (32 1 ’n 32 1 2+a) and
that the last one is in L%O(Bll N BQ,1 )7 uniformly. ]

Fourth Step: Compactness and Convergence

According to the previous lemrna the sequence (@"),>1 is bounded in the

space C2([0,T); Bf1 N 8221 ) By combining Proposition 2.93 and Theo-

rem 2.94 page 108 it is easy to check that for all ¢ € D, the map u — ¢u is

compact from B ﬁBZ2 1 T o B22 L . Therefore, arguing as in the proof

of existence for Theorem 10.2, we deduce that there exists some function @
such that for all ¢ € D, the sequence (¢a )n>1 converges (up to a subsequence
independent of ¢) to ¢a in C2 ([0, T7; 3221 1+a)

Likewise, since the map u — ¢u is compact from BQ%II N 32271 o
Bf’ N 2+a, there exists a vector field @ such that (up to extraction), for all

¢ € D, the sequence (¢T"),>1 converges to ¢t in C2 ([0, T7]; B251_2+a).

Next, the uniform bounds supplied by the second step and the Fatou
property together ensure that, in addition, 1 + a is positive and

~ . d Ldy, - 4 N . N
(aw) € L (B, B (DB n B3 )0 LhB T n i)

The proof is similar to that of the critical case and is thus left to the
reader. Interpolating with the above convergence results, we _may get bet-

ter convergence results for (@”,u") and pass to the limit in (N SC,,). Defin-

ing (a,u) def (ap + @,ur + 1), we thus get a solution (a,u) of (NSC) with
data (ag,up). Using the equation and the product laws, we also have

. d

1 i 1/1 d 14+
(O +u-V)a€ Lyp(B3, ﬁB2 ) and 8tu€LT(BQ21 ﬁB;l )
~ . d . d a .

Theorem 3. 19 therefore guarantees that a € Cr(Bg; N B;f ) and, obviously,

~ . d a—
welr(Biy nBi.
Remark 10.16. Combining (10.13) with the properties of the heat semigroup
described in Lemma 2.4 yields a rather explicit lower bound on the lifespan
T™* of the solution. Indeed, using the fact that
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1— e T2 < (yT)% 29,

we may find some constant ¢, depending only on d, b, b*, o, A, and p, and
such that

T*ZSUP{TE}O (140‘)%[/( T)2 UG (T) < 1+(A84)%C+U5¥(T)}.

10.3.3 Uniqueness

Let (a',u') and (a?,u?) be two solutions in E$ of (NSC) with the same
data. We can assume, without loss of generality, that (a?,u?) is the solution
constructed in the previous subsection so that

1+ inf a(t,x) > 0.
(t,x)€[0,T]x R4
We want to prove that (a2,u?) = (a',u') on [0,7] x R?. For this, we shall

estimate (da,du) = def (a?—a',u?—u') with respect to a suitable norm, having
noted that

Oda+u? Vo +6F =0 (10.42)
Opdu 4 u? - Véu + 0u - Vu' — (14 a2)" 1 Adu = 0G1 + 6Gs '

with o 4t 5. va! + & divu? 4 (1 4 a') div du,

G def (I(al) — I(aZ)).Aul, e ey V(G(a') - G(a?)).

For the same reasons as in the critical case, the uniqueness is going to be
proven in a larger function space, namely,

Fe (0, 1) B2 ) x (€0, T); B2 T N Lh(B2 )"

Of course, we first have to establish that (da, du) belongs to F&. For &, this is
—1+O/
).

easy because, arguing as in Lemma 10.15, we get a’ —ag € C2 ([0, T7; 32 1
To deal with du, we again introduce u* def u® —r, where Wy, is the solution
of (10.22). We obviously have %! (0) = 0 and
o' = Au' — I(a") Au' —u' - Vu' — V(G(a") — G(ap)).

Since @ € L°°(B221 Y and (af,ul) € EZ, the right-hand side belongs

to L2 (B;1 2+a) Hence, @' belongs to C([0,T); B221 2+a), and we can now
conclude that (da, du) € F¥.
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Next, applying Theorem 3.14 to the first equation of (10.42), we get

[[dal ph-rre) = exp(0||u2|| for all T € [0, T].

5 5 14+«
Ly (B2, L (i >)H ”Ll LR

2

Easy computations based on Theorems 2.47 and 2.52 yield

1
1OFN 4 -1 <CH&LII ¢ IIW [ g

2,1

+Hdlvu | a lldall g 1ya + (1+||a1|| )Il&tll
B3y B3y

Hence, using Gronwall’s lemma and interpolation, we discover that there exists
some constant Cr, independent of 7', such that

% < Cr (Il ou ). 10.43
ol _ ey < Cr (00l o #0104
Next, applying Proposition 10.12 to the second equation of (10.42) yields, for
some constant C' depending only on d, A, 4, and «,

6

ou
Iy o, 190, e

CIT Ul gy, +lu?] d+1+na2ua 4, dt 2
B B

<Ce B 2t B Z||5G H ——2+a

. d
Because BQ"”I(Rd) < C(R%), we have a' € C([0, T|xR%). Hence, for sufficiently
small T, a' also satisfies (10.38). Therefore, applying Theorems 2.47, 2.52 and
Corollary 2.66 page 97 yields

&G 4 ni0 <C(1+[a! 4 +a?
| IILl(BHH) (141l IIT(“) [la HL"C(le))
&Z 1
Kl g 00, s
Go d g0 SCOT(1+]a +||a? da N
166l , gm0, S CTOFIR,_ g+l g o ose

Hence, for some constant Cr independent of T, we have

d_14a

1
160l v 100, <0T(T+|| [ ))” e ey

’(B21

Note that the factor T+ ||u? || (Bg : decays to 0 when T goes to zero. Hence,
2,1

plugging the inequality (10.43) into the above inequality, we conclude that
(da, du) = 0 on a small time interval [0, T]. The same connectivity arguments as
those used in the proof of uniqueness in the critical case then yield uniqueness
on the whole interval [0,7]. This completes the proof of Theorem 10.11. O
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10.3.4 A Continuation Criterion

Proposition 10.17. Under the hypotheses of Theorem 10.11, assume that the
system (NSC) has a solution (a,u) on [0,T[ x R which belongs to E$, for
all T" < T and satisfies

T

. d

ae LF(BITABE), 1+ inf  a(ta) >0, / IV e dt < oc.
(t,)€[0,T[xR? 0

There then exists some T* > T such that (a,u) may be continued on [0,T*] x
R to a solution of (NSC) which belongs to ES..

Proof. Note that u satisfies
dutu-Vu—(1+a) ' Au = f - V(G(a)), Ujt=0 = UQ-
Hence, applying Proposition 10.12, we get, for all § € [0,a] and T" < T,

ald
cly (\|Vu||m+\|au: i) dt
2+1+ﬁ <Ce 21

)

lell ;. g-vea) T2lul,
T’( 21 T

/(

T/
x(u d g+ d_ -I-/ all .4 dt)
ol g aes U7, oo+ [ ol g0

for some constant C' depending only on d, a, and the viscosity coefficients.

~ . d _ .
Hence, u is bounded in L"C(B221 N B221 e “). Replacing || Ajug|z2 by

[|AjullLse L2y, and I|4; fllzsz2) by (say) |4; f||L1 (2) in Remark 10.16, we
get some £ > 0 such that for any 7”7 € [0, 77, the system (NSC) with data
a(T"), u(T"), and f(- 4+ T") has a solution on [0,e]. Taking 77 = T — /2
and using the fact that the solution (a,u) is unique on [0,7[, we thus get a
continuation of (a,u) beyond T. O

10.4 Global Existence for Small Data

Thus far, the gradient of the pressure has been considered as a lower order
source term in the a priori estimates. This rough analysis entails a linear
growth in time in the bounds for the solution, thus hindering the global closure
of the estimates and any attempt to get a global existence result.

In this section, we shall see that including the main order part of the
pressure term in the linearized equations (under the physically relevant as-
sumption that the pressure law is an increasing function of the density) leads
to a global existence statement in the same spirit as the theorem of Fujita
and Kato (see Theorem 5.6 page 209).
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10.4.1 Statement of the Results

For reasons which will become clear after our analysis of the linearized com-
pressible Navier—Stokes equation (see Section 10.4.2), we introduce the fol-
lowing family of hybrid Besov spaces with different indices of regularity for
low and high frequencies.

Definition 10.18. For a > 0, r € [1,00], and s € R, define

def ; _iy1-2 ;
[ullgs.r = ZstmaX{a,Q 71 /THA‘juHLz.
JEZ

Remark 10.19. We point out that here, the index r has nothing to do with
the third index of classical Besov spaces. Hybrid Besov spaces carry differ-
ent information for low and high frequencies, and the index 7 controls this

cg— 2
difference: The low frequencies have the B;711+"' regularity, while the high
frequencies belong to Bil. In particular,

1
Sl o +allull g ) < el g < Nl +allull .
1 . (1
S min(L o)l gy 4 g < ull g < mm(amnggl, ||u||B;ﬁ1)~

Of course, we have B5? = Bj ;.

We now define the space in which the solution is going to be constructed.
From now on, we agree that if I is an interval of R, and X is a Banach
space, then the notation Cp(I; X) designates the set of bounded and continuous
functions on I with values in X.

Definition 10.20. The space E2 is the set of functions (b,v) in
~ ~ . . d
(L'®*5 B NG (R By) ) x (LM RY B3E) N G(RT: B31))

endowed with the norm”

def
10,0z bl ey + 0l e gty + #0802l g gy

We denote by E7. , the space E, restricted to functions over [0,T] x RY .

We can now state our main global well-posedness result for small data with
critical regularity.

7 For notational simplicity, we omit the dependence on the viscosity coefficients.
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Theorem 10.21. Assume that v > 0 and P’(1) > 0. There exist two positive
constants, n and M, depending only on d and on the function G, such that if
Ld_ S d Sd_ Ld_
ag belongs to B3, 'n B3, ug belongs to By ' f belongs to L'(RT; Bs, 1),
and
laoll 4+ + vlaoll \ Snw/v
B B

+loll g+,

a_ P a_ a_

2 2 2 2

2, 2, 2, 2,
d

then the system (NSC) has a unique global solution (a,u) in EZ which sat-

isfies

Il < M (laoll g2 +vlaoll g + ol gy 11, a0 )-

2 2
v 2,1 2,
10.4.2 A Spectral Analysis of the Linearized Equation

In what follows, we shall assume (with no loss of generality) that P’(1) = 1.
Let P (resp., IPL) be the L? projector over divergence-free (resp., poten-
tial) vector fields. Applying P and P to the momentum equation, the sys-
tem (NSC) can be rewritten as

Ora + div Pty = — div(ua)
0Pty — vAPtu + Va = P+ (f —u-Vu—I(a)Au + K(a)Va) (10.44)
0Pu — pAPu = P(f —u-Vu— I(a)Au).

The function K is smooth, vanishes at 0, and may be explicitly computed in
terms of the function G.

On the one hand, up to nonlinear terms, the last equation reduces to the
standard heat equation, which is well understood. On the other hand, there
is a linear hyperbolic/parabolic coupling between the first two equations that

we have to investigate further.

Introducing the function v def |D|~1 div u, the linear part of the first two

equations reduces to the 2 x 2 system

O —vAv — |Dla = G.

According to Duhamel’s formula, the solution of (10.45) is of the form

(g%) _ JAD) (Zg) +/Ot cAD)(t—t') <gg:;> dt’, (10.46)

where A(D) stands for the matrix-valued pseudodifferential operator

0 —|D|
|D| —v[DJ?) "
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In the low-frequency regime v|¢| < 2, the eigenvalues of A(§) are

v . 4
AE(Q) = —§|§|2 (1 il\/ VER 1) ;

so a parabolic damping for low frequencies of a and v is expected.

For high frequencies (i.e., v[¢] > 2), the eigenvalues are of the form

ey — _Yyep2 _ 4

so a parabolic mode and a damped mode coexist. More precisely, performing
the change of functions

o(e) = (1 /1 ﬂfw) a(e) - 16,

o VI / 4 ). .
ot (¢) = > (1 +4/1- W) v(&) —a(é),

E(L€) = X O %0, ¢).

In the asymptotics || going to infinity, v~ (resp., vT) tends to be collinear
with a (resp., u), and we have

we get

AT(€) ~ —1/v and  AT(E) ~ —vlE.

Hence, the mode v~ is damped, whereas v+ has parabolic behavior.

In short, according to the above analysis, we may expect a parabolic
smoothing for the velocity u to (INSC'), whereas a should be damped for
high frequencies and exhibit a parabolic behavior for low frequencies.

In fact, solving (10.45) explicitly yields the following estimates [which have
to be compared to those for the heat equation stated in (3.39) page 157].

Proposition 10.22. Let (a,v) be a solution of (10.45) on [0,T] x R®. There
exists a constant C, depending only on d, such that for all v in [1,00] and s
mn R, we have

allpr sy vl ay2
lall oy (Bzmy + ”L;(Bz,llh)

< C(Jlao]

B T llvollggyr + I1F Ly 5500y + HGHLIT(B-;;l))'

According to Remark 10.19, we have

Il = - llsgsr + ol g, and (- llgge=1-llgy,  (1047)
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. d Ld_ Ld_ . d Ld_

so that if ag € B, N BE, ', vo € B3, ', F € L'([0,T); B, N B3, ), and
L4

G € L'([0,T); B3, 1), then the above proposition provides us with estimates

for a in L> ([0, T7; 32%1032%,;1) and also in L?([0, T7; Ble) The latter estimate
is the key to getting a global control on the term K(a)Va.

At the nonlinear level, however, the above estimates cannot be used for
the compressible Navier—Stokes equation because no matter how smooth u is,
the convection term u - Va is one derivative less regular than a. Hence, we
first have to adapt the statement of Proposition 10.22 to the following, more
general, linear system:

oa+v-Va+divu =F
(10.48)

du+v-Vu— Au+ Va = G.

10.4.3 A Priori Estimates for the Linearized Equation

For technical reasons, we shall instead consider a paralinearized version of
the system (10.48) and introduce a (small) parameter ¢, the so-called Mach
number that will play an important role in the last section of this chapter.
Finally, then, the system we want to study in this section is of the form
divu _r
¢ Va (LPH®)
8tu+TU-Vu—Au+? =G

Ora + div (Tva) +

with div(T,a) % 9, (Tyia) and T, - Vu < T, 0,0,

Proposition 10.23. Let e >0, s e R, 1 < p,r < oo, and (a,u) be a solution
of (LPHF®). There then exists a constant C, depending only on d, p, r, and s,
and such that the following estimate holds:

t
la@)l ey + lu()l] 5= +/0 (yuanég,; + vyl Bgﬁl) dt’ < CeCVET (D)

t
—-C P74/
X (||a0||§§l,/oo + ||UQ||B£31 —|—/O e~ CVET() <||F|

e +1Gllgg ) dr ).

t
ar | [ IO @ IVl ) e if > 1,
ef ) Jo 32

0,00

where VP (t) :
L (0ol + @yt iwel Y ar, i o=t

Remark 10.24. Only the case where ¢ = 1 and p = r = 1 is of interest for
proving Theorem 10.21. The other cases will be needed in the last section of
this chapter when investigating the low Mach number limit for large data.
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Proof. Setting

a(t, ) def ca(e’t, ex), u(t, ) def cu(e?t, ex),
Ft,o) W 3Pt en), Ot 2) ¥ B2, en)

reduces the study to the case ¢ = 1. It is left to the reader to demonstrate
that the change of variables has the desired effect on the norms involved in
the inequality we want to establish (this may be argued as in Proposition 2.18
page 64).

So, we assume that € = 1. To avoid a tedious distinction between the cases
p > 1 and p = 1, it will be intended throughout that HVUH 2_, stands for

|Vul| ;o if p=1. We shall also denote by p’ the conjugate exponent of p. We
now find that (a;,u;) de (Aja,Aju) satisfies
8taj + diV('Uj aj) + le ]P)J'Uj = fj
8t]P’Luj + ;- VPJ‘UJ' — I/APJ‘UJ' +Va; = gj‘ (LPHJ)
O Puj +v; - VPu; — pAPu; = gy,

h def ¢
where v; = o5;-1,

fi d—efF +le(’UJ a; — A»T a) with  Fj d—efA F,

gt ¥l o VAP -PLAT, Vu with Gf ¥pLAq,

9 G 10 VA Pu-PAT, vu  with G, PAG.

First Step: The Incompressible Part

We first consider the equation for PPu;, which is easier to handle. Taking the
L? inner product of the last equation of (LPHj) with Pu; and integrating by
parts, we get

1d

. 2
3d ||Pu]||L2+uHVIP’u]HL2 = 2/d1vvj |Pu,| dx—l—/gj.IP’ujdx.

The commutator in g; may be bounded according to Lemma 10.25 below. We
find that

1d

S [Pl + 19 Pyl

< [Pyl ,z (lG i+ X 2wl |ujf||L2).

[77—31<4

Now, using the Young inequality
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1K\t ,
Y 2
14 Boc,‘zo

2 ;7
2v"7 ||V
Il < T

00,00

and integrating in time, we get, for some universal constant x > 0 and all
Ky >0,

t t
|Wuxwmp+nuf{4|muﬂuzdﬂsnpuﬁmnm+3£HGnuza/

! v i’ p-1
+C Yy / (KIP’QQJ (%) ||W||;_z/) el dt’. (10.49)

li'—i1<4 Yoo

Second Step: The Compressible Part

We now want to establish a similar inequality for the “compressible” mode
(a,P+u). According to the analysis in the previous section, we must bound
the quantity 2/¢~1k; with

[ llaglle + [[Prugll . i w2 <1,
T IVasl e + PRl i 2> 1

Owing to the fact that the linear operator associated with (LPH) may not
be diagonalized in a basis independent of £, however, bounding k; cannot be
achieved by means of basic energy arguments. We could introduce a convenient
symmetrizer, whose definition depends on |¢|. Here, though, we shall instead
consider the following quantity (for some suitable o > 0, to be chosen later):

2 2 . .
v def Vlasl2: + 1P sl + av(Vajluy) | for j <jo—1,
o de

VIV 2, + 2 (B4, + 20V asluy) . for § > jo,
where jg is the unique integer such that

2 < w20 < 4, (10.50)
and ¢ stands for a constant (e.g., ¢ = 3) such that
]| 452l < IV Azl 12 < 27 227)| A2 o (10.51)

We point out that if a < ¢, then this choice ensures that k; ~ Y;.

We first derive an a priori estimate for the low frequencies of (a,Ptu).
Take the L? inner product of the first equation of (LPH;) with a; and of the
second one with u;, integrate by parts, and add the two equalities together.
Using the fact that the contributions of the skew-symmetric first order terms
cancel out, we obtain
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1 d 2 1 2 n 2
52 (laslFat B3, ) + v [ VP
1
= /(fjaj +95 - Plu; + 5(\IPLuj\2 —a)) divvj) dz. (10.52)

In order to determine the low-frequency parabolic behavior of a, we now write
an equality involving the quantity (Va;|u;). We have

d 2
2 (Vajlug) = [[VPY gl + Va2 — v(AP u;|Vay)
= (ijluj)Jr(gfIVaj)Jr/aj Vu;:Vu;de.  (10.53)

Now, if we assume that j < jo, then the term v(APtu;|Va;) is of lower order
because, due to (10.50), (10.51), and Young’s inequality, we have

v? 1 8
V(AP u;|Va;) < IIVCLJHLz HAPlujH%z < §||Vaj||iz + VP w7

Hence, adding the equality (10.53) times a;/2 to the equality (10.52) and using
Lemma 10.25, we find that if o < ¢, then

1d av «
SV Vel +v(1- 5 - —) IVPL a2
<% (IRl + 6.+ 3 P FIT g X )
l7'—j1<4
with C' depending only on d and p, and X7 = dlef P u, HL2 +Y7.

Take o = ¢*/(c*+8). From the previous inequality, Bernstein’s lemma, and
the fact that k; ~ Y}, we then deduce that there exists a universal constant
K such that

1d
o7+ <08, (181, + 65

+ Y 2w HVUH ) (10.54)

l77—j1<4

We now aim to bound Y; for j > jo. For this, we may combine the three
equalities

2dt HV%HLz (Au;|Vay)

1
= (Vf;|Vay) —|—/ajD2aj : Vo, dx — 3 / |Va;|? div v, dz,
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1d 1 .

o P+ (Vaghug) 4o [ VB2, = (g;|nﬂuj)+5/mwj\2dle dr,
d

pr (Vajlu;) — ||V]P’J‘ujHQL2 + HVajH2L2 — v(APtu;|Vay)

= (g]J-|Va]) + (ij|uj) - /avaj : Vuj dxr

and get

1d 2
Y2 4 v||[Va,|i, v | VPus ||, + 2(Vagluy)

2dt 7
=12 (Vf;|Va;) + 2P u;lg5) + v(g;) |Vay) + v(V flu;)
2
+/ajD2aj : Vu; d:r+/(|]P’J‘uj\2— 7|Vaj|2) div v; dx—/avaj : Vu, dx.
As (Va;|Puj) = 0, we get, according to the definition of j, and Bernstein’s
inequality, for all j > jo,
14 2 9.9 _ 2
2|(VCLJ|U,])‘ S 5 ||Vaj||L2 + 2c 22 2JOV 2(l/ HVPLWHU)
v 2 v 2
< 3 IVa,l72 + 9 HVIP}J_UJ'HL2 :
Next, we note that for j > jg, we also have
2 _ 2
v [ VP = [P
Therefore, for all j > jo, by virtue of Lemma 10.25, we get

1d_, ) )
sa it Y < QY (uIIVFjIIL2+HGj HL2+|WLW|‘/Z<4X,>. (10.55)
71>

Finally, inserting the following Young’s inequalities (with K5 > 0 and K3 > 0)
2 1 K. p=l 14
251wl <2 (52) IVl 4
B P\ V ol DK
1
/Z/Kg ’

into (10.54), (10.55) and performing a time integration, we get, for some uni-
versal positive constant x and all positive K5 and K3,

1 r—1 r
Vol e <~ (K31)" " [ Vol o +

¢ ¢
Yj(t)—|-/<aumin(22j,1/_2)/ Y; dt' <Y;(0) —|—C'(max(1,2jy)/ | Fjl 2 dt’
/ HGlH dt’ + v max 11 min(2%, v~ / X dt'
L2 K K3 )

\J —j|<4

p> /KK?)H IVoll” 5 + (vEKs)"™ 1|VUL°C]X dt)

|7—j]<4 Becloe
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Third Step: Global A Priori Estimates

Bounding ||a(t)]

poee T |[u(t)]| ps-» and exhibiting a time decay for a and the

low frequencies of u is our next task. To achieve this, we may add (10.49) to
the above inequality. We get

¢
X;(t)+ /{/ (vmin(2%,v=2)Y; + p2% [P uyl|.) dt’ < X;(0)
0

t
+C/ (max(l,ij)HAjFHLz + HAjG||L2) dt’
0

1 1
+Cumax< >m1n(22j - /X g’
K ks —jl<4
C
v Z /223 ||PUJ HL2 dt
—jl<4
K\ o\ - T
+C/ [(( 1) —|—<72> >|Vvé% + (vK3) 1va”Lm Xj/dt/.
Beol,noo

Let uf def ngjg Aju Multiply both sides of the above inequality by 27(s—1)

and sum over Z. Using the fact that X; ~ [ju;||;» + max(1,v27)||a;|| .. and
choosing K7, K5, and K3 to be sufficiently large, we infer that there exists
some constant C, depending only on s, p, r, and d, such that

la(®)]

t
Bt dt’ —|—g/0 ||’LL£HB;£1 dt’

t
2+ | (P15~ +e

t
+ @) (lal =+l

t
s+l py v [l
’ 0

o

BSII) dt’

Bs—ll) dt/) .

Thanks to Gronwall’s inequality, we conclude that

t t
L
sy v [ Nl at 4o [

t
_ Pyl
x(uaonggm + luoll 2 + / W) (||F||§3m+||G||B;;;)dt')- (10.56)

lla®)l gs. + [lu(t)] pya dt’ < 0O

Fourth Step: The Parabolic Behavior of u

To complete the proof of Proposition 10.23, we still have to determine the
parabolic gain of regularity for the high-frequency part of w. This is the aim
of the present step.
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Applying Aj to the second equation of (LPH?) yields
Opuj +vj - Vuy — Auj + Va; = G + (vj - Vuy — A; (T, - Vu)).
Taking the L? inner product with u;, we easily get

1d 2 1 . 2 . 2
pap il = 5 [ i dives do + Va3 + O+ ) v

= /(Gj fVaj) U dx+/(vj~Vuj fA'j(TMVu)) g dx.

The last integral may be bounded, thanks to Lemma 10.25. After a few cal-
culations, we get, for all positive K,

t
[ (O] 2 + ,{2223/0 lujll 2 dt” < Jlui (0)]] 2

t t
— 1 Cv -
[ UG+ Nl dt + 2 S 2 [l
0 0

l5—jI<4
1/ K\ ¢
p\Cu Vol[” ol e dt’

We may now multiply both sides of the above inequality by 27(*=1) and sum
over j > jo. Choosing K to be suitably large, we eventually get

t
h h h
[ (#)]] =1 +z/0 [u” || pgir dt” < Cllu(0)] gz

t
By dt’+/0 ("]

with u =3 . Aju, a* = 2> Aja, and Gh =3
Finally, using the fact that ||a"|

5, HIG")

t
+ [ vl Byt ) dt
0 BoPe a

Jj=Jo

Jj=Jjo A]G
Bs, < Cvllal|gs+ and plugging (10.56)

into the above inequality completes the proof of the proposition. a

Lemma 10.25. Let m € R and a > 0. Let A(D) be a smooth homogeneous
multiplier of degree m, in the sense of Proposition 2.30. There exists a constant
C, depending only on o, m, A, and d, such that for all p € [1,00] the following
inequality holds true:

"A(D)AjTab—Sj_laAjA(D)b’

Lp

3 ||Aj/b||m) x

|5"—i1<4

{llValLoo . if a=0,

IVallgzo_, if a>0.
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Proof. This is based on the following relation, the proof of which is similar to
that of the equality (4.17):

A(D)A;T,b— S;_1aA;A(D)b
= Z (A(D)AJ ((Sjl_1 — Sj_l)aAj/b) + [AJA(D), Sj_la] Aj/b) .
77 —j1<4

By taking advantage of Bernstein’s inequality and Lemma 2.97 page 110 to
bound the last commutator, we get, from the above formula, that

HA(D)AjTab — $;_1aA;AD

<2 N (IVApal + [VSi-sall= ) [ Aybl oo,
J—455",5"<j+4

which obviously entails the desired inequality. O

10.4.4 Proof of Global Existence

We first note that if 7 has been chosen to be sufficiently small in the statement
of Theorem 10.21, then Theorem 10.2 supplies a local solution (a, ) with

acCr(B2) and welr(B2)nLh(BEM).

Ld_
As we have assumed, in addition, that ag € By, 1, we easily deduce that a is

also in C([0, T; Bf;l) (use Theorem 3.19). So, finally, we have (a,u) € qu"u
for some positive T. 7

Let T* be the lifespan of the solution (a,u). We want to show that 7 = co.
For this, we shall use Proposition 10.23 and the fact that (a,u) verifies

Oa+divT,a+dive = —divTu
du+T, Vu—Au+Va=K(a)Va—3_, Téjuuj —I(a)Au+ f

for some smooth function K vanishing at 0.
We now introduce the notation

t
def
X0 ot g + IO+ / (u||a||~¢1+u||u|| L)t
v 1
def
Jaoll g + ol g /IIfH

Xo(t) =
Applying Proposition 10.23 with e = 1 and p =r = 1 yields

t
X(t) S Cecfg‘lvul‘[,oo dt’ (Xo(t) +/ (HleTC/LuHE%OO
0 1%

d_
B2
21

HIK@Vall g+ 30 1T g+ (@) Au]
2,1 ] 2,1

1) ) (10.57)
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Remark 10.19, combined with the standard product laws for the remainder
and the paraproduct (see Chapter 2), now yields

v Tl g < Clall g <l g0 (10.58)

Next, assuming that

all. .« <nu/v, 10.59
lall 55 </ (10.59)

where 7 stands for the constant appearing in Proposition 10.10, we get the

following inequalities:

IK(a)Vall .4y <C |al? .,
B3, BZ

1 2,1

T8yl g0 < C gl

a_
2
2,1 2,1

11 (a) Au||B§1_1 <C y—lﬁ\\alléyg,m||u||35rl.

By making use of interpolation, we see that

t
2 !

a dt’ < |la _d o |la dg .

J el d < tall, el o

Hence, inserting the above inequalities into (10.57), we get

XU)gC(XMﬂ+;%X%@)mp@?AWVUWWUEﬁQ.

Now, if we assume, in addition, that

T
C/memmﬁgby, (10.60)
0

then we get

X(t) <4CXo(t) whenever 4CTX(t) < vv.

. d
Because we have By, < L, a standard bootstrap argument ensures that
the conditions (10.59), (10.60), and X (T*) < 4C X, (T*) are satisfied, provided
that

Xo(00) < evv/v

for some sufficiently small constant c.
Applying the continuation criterion stated in Proposition 10.10 completes
the proof of global existence. O
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10.5 The Incompressible Limit

It is common sense that slightly compressible flows should not differ much from
incompressible flows. In fact, the incompressible Navier—Stokes equations

Ov+v-Vo—pAv+ VIl =g
(NSI) dive =0
V=0 = Vo

are often considered to be relevant for describing compressible barotropic flu-
ids in the low Mach number regime.

This may be justified formally by rescaling the time variable by ¢ = &t
(where € denotes the Mach number) and performing the change of unknown
(pyu)(t,x) = (p°,eu®)(t%, z). The system for (p°,u°) is of the form

Orp® + div pu® =0,
A\

O (pfus) + div(pfu® @ uf) — pAuf — (A+p)V divu® + o= <,

where pe %t P(p®) stands for the pressure.

At the formal level, it is clear that if (p°, u®) tends to some function (p,v),
then we must have VP¢ — 0 when € goes to 0. Hence, if P’ does not vanish,
the limit density has to be a constant. Now, passing to the limit in the mass
equation, we discover that v is divergence-free. Returning to the momentum
equation, we can now conclude that v must satisfy (IN.ST) for some suitable
data vy and g.

We aim to rigorously justify the above heuristic. If we assume that the data
are well prepared (i.e., “almost incompressible”), then performing appropriate
asymptotic expansions yields the result. In this section, we focus on the case of
il prepared data so that acoustic waves have to be considered. More precisely,

we assume that the data (p§ def 1+eb®, 1, f¢) are bounded and that (uf, P f°)
tends to some (vg, g) in a sense which will be made clear later.

10.5.1 Main Results
Writing p® = 1+ €b°, it can be seen that (b°,u°) satisfies
div u®
Bt + = — div(bu)
5

1> / £ (>
(NSC,) B+t - Ve — Au P'(1+¢b®) Vb
14 eb® 1+ eb® €

(bev UE)\tZO = (bgv ug)

= f¢

The main difficulty that is encountered when studying the asymptotics
for ¢ going to 0 is that we have to face the propagation of acoustic waves
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with the speed e~ !, a phenomenon that does not occur in the case of “well
prepared” data. Nevertheless, in this section we prove that satisfactory results
may be obtained for quite general data. More precisely, we shall get two types
of results concerning the low Mach number limit:

— A global-in-time result for small data with critical regularity.
— A local-in-time result for large data with some extra regularity.

Before stating our first result, we introduce the following function space:
P e,y B 0 LURY; BSY). (10.61)
We denote by F3 the set of functions of F'® restricted to [0, 7.

Theorem 10.26. There exist two positive constants, n and M (depending
only on the dimension d and the function G), such that if

ool g

ev

ol g U, g Snefn (1002

then the system (NSC.) with data (bg,ug, f) and the system (NSI) with

data (Pug,Pf) have respective unique global solutions (b%,u®) and v in the
d

spaces B2, and F %7 respectively, and

167wl

1)

d_
LY(B3, )
Moreover, there exists a Banach space E C S'(R?) and an exponent p € [2, oo

(both depending on the dimension d) such that Pu tends to v, and (b°, P u®)
tends to 0 in LP(RT; E).

< M (ol g + ol g2 + 1]

da
E 52u

ol g < M1 Boll g+ NBA, g

A more accurate statement for slightly more general data will be given in the
forthcoming Theorem 10.29. There, a rate of convergence involving explicit
norms will be obtained.

We now give a (simplified) statement concerning the case of large data
with more regularity.

(e

N P CR S
Theorem 10.27. Assume that by € By, NB3; ~, ug € By; NB3;, , and

Ld_ Ld_
ferl (RT; B3, n B3, 1+a) for some sufficiently small positive . Suppose

loc
that the incompressible system (NSI) with initial datum Pug and external

d d
force Pf has a solution v € Fj N Fﬁo—m on the time interval [0, Ty[ for some
finite or infinite Tj.

Then, for all sufficiently small € > 0, the system (NSC:) has a unique

d d
solution (b%,u®) in B2, 7. OEEZVZ% (with bounds independent of € ). In addition,

d d
Pue tends to v in Fr N Fﬁ0+a7 and there exist an exponent p € [2,00[ and a
Banach space E such that (b°,Pu.) tends to 0 in LP(RT; E).
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Remark 10.28. Here, the exponents p and function space E may also be de-
termined explicitly. In addition, an upper bound may be given for the rate of
convergence. For more details, the reader is referred to Theorem 10.31.

We also point out that in the case d = 2, the above statement implies
that the solution of (NSC.) is globally defined for all sufficiently small e.
This is a simple consequence of the fact that the corresponding solution of
the two-dimensional Navier—Stokes equations is global.

10.5.2 The Case of Small Data with Critical Regularity

We now explain the basic ideas of the proof of Theorem 10.26. First, an

appropriate change of variables enables us to apply Theorem 10.21. Under the

smallness assumption (10.62), we get a global solution (b, u®) with uniform
d

bounds in E2,. The existence of a global solution for the limit system (N.ST)
follows from classical arguments, similar to those in Chapter 5, and will thus
be omitted.

While, up to this point, our method also works in the periodic setting, our
proof of strong convergence is specific to R%. In effect, it relies on the dispersive
properties of the acoustic wave operator in the whole space. To make our
discussion more accurate, we resume the spectral analysis of Section 10.4.2.
The linear system we now have to deal with is

divu

6tb+ :f

; (10.63)
atu — .AU + V? =g.

As in the case € = 1, the incompressible part of the velocity satisfies an ordi-

nary heat equation with constant diffusion p. As for (b,v def |D|~! div P ),

we have

% (2) = (g) +A.(D) (z) with A.(D) %! (510|D| —j&l}?l) .

The low-frequency regime corresponds to those £’s which satisfy vel¢| < 2.
The corresponding eigenvalues are

tooy VI , 4

so that in the limit where ve|¢| goes to 0, we expect the system to behave like
the linear operator

d v i
— —-A+-|D|.
dt 2 5| |
In other words, the low frequencies of (b,v) behave as if they were solutions

to a heat equation plus a half-wave equation with propagation speed 1.
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In the high-frequency regime ve|¢| > 2, we have

AE(€) = —V|§|2 <1i 1— L) :

2P

which means that a parabolic mode and a damped mode coexist.

In the analysis which has been presented thus far for the case ¢ = 1, we
have made extensive use of the parabolic properties of the system but have
not taken advantage of its dispersive properties in low frequencies. In effect,
using an L? approach precludes us from using the skew-symmetry of the first
order terms. It turns out that in the “whole space” case we are interested
in, the proof of convergence for £ going to 0 is intimately entangled with the
dispersive properties of the system (10.63) (see Proposition 10.30 below).

We now give the full statement of our convergence result for small data.

Theorem 10.29. There exist two positive constants, n and M, depending only
on d and G, such that if

v def
(LA 1+€V||b€|| o8 TGl g eI, e < w7,
2 B2,1 L (B21 ) (1064)
Co & ||UO|| gl+||g|| iy S with divvy = divg =0,
2 21

then the following results hold:
(i) _Existence:
d
(a) The system (NSC.) has a unique global solution (b%,u®) in EZ, such

that
(6%, u)|| & < MCG”.

EEQV
(b) The incompressible Navier—Stokes equations (N ST) with data vy and g
have a unique solution v in F% such that
vl gt 00, g0, < MG
(ii) Convergence: For any o € 10,1/2] if d > 4, a € ]0,1/2[ if d = 3, and
a €10,1/6] if d = 2, Pu® tends to v in C(RT; BLT 1) when e goes to 0.
Moreover: p
(a) Case d > 4 : For all p € [pa, o0] with pqg :efQ(dfl)/(d—Zi), we have

< M(1+7/v)Ci >,

1
2

[l gy I, L
LQ('P2 5P

p,1 p,1

njw

Puf—v a1 +||Puf—v
1Pl g+ Pu

F-c}g.

L= (B,

< M(C3et +Pu—ul g g +IPS =l ey )
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(b) Case d = 3: For all p € [2,00][, we have

1Bl sy 3y #0002y < MO+,
CICHO R A
|| Pu® —UH a1 + || Pu®—o a3
LY(B}, IS Le=(BPF,?)
< M(C3er s +IPus—voll g +IFf gl | a2y )
35,12 LY(B®)

(¢) Case d = 2: For all p € [2,6], we have

1P, gy I s, gy S M T/C5e 57,

Tz(Bj,T ) L=z (8]
IPu—vll g +IPw =0l s
L (B B =(BE ")
< M(Cgugr% + ||IP’uS—v0||B%,% + || [P’fe_g” s %)).
p,1 p,1

Proof. We shall proceed as follows:

— First, we prove that the system (N.SC.) has a unique global solution which
satisfies uniform estimates.

— Second, we combine those estimates with the dispersive properties of (10.63)
to prove that (b°, PLUE) converges to zero in some suitable function space.

— Third, we use the fact that Pu® — v satisfies a heat equation with source
terms which are small because they depend, at least linearly, on (b°, Pt u®).
This yields Pu® — v in some function space.

Step 1. Proof of Global Existence with Uniform Estimates

Making the changes of function

def

cs(t,x) = def def 3f€( 2

b (e%t,ex), v°(t,x) = eut(e®t,ex), and he(t,x) = & f°(?t,ex),

we note that (b%,u¢) solves (NSC.) if and only if (¢¢,v¢) solves (NSC) with
rescaled data eb§(e-), eug(e-), and he. Hence, Theorem 10.21 ensures global
existence: There exist two positive constants, n and M, depending only on d

d
and G, and such that (IVSC) has a solution (¢, v¢) in EZ whenever

et g+ NN g s W, e, < o

Furthermore,

o tlleugE)]l . ay + ||h° d).
Jeut g1+ I,

~d
B 21

I o0l g = o1 (et

Now, arguing as in Proposition 2.18 page 64, we may check that
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—
o
0}
<
™
N

~ ||(b°,u®)|| a« and that
EZ2
+ Rl 4
L1(321 )

~ bE g
1651+ I+ 1571,

Ny Sl
i
|
N

1265 ()1 Lo + llew (el

-

which yields the first part of Theorem 10.29.

Step 2. Convergence to Zero of the Compressible Modes

The proof relies on dispersive inequalities for the following (reduced) system
of acoustics:

ob+elDv=F
(W.) O —e 1 Db=G

(b, v)t=0 = (bo,v0)-

Proposition 10.30. Let (b,v) be a solution of (W.). Then, for any s € R
and positive T (possibly infinite), the following estimate holds:

1B, I cvaci-gye1 <C€T||(bo,vo)||3< + TR

1,l 1
Ly(B,, * ) M
2
with p>2, 2 <min(L9(), (p.d) # (2,00,3)
2
p Z 27 % < mln(la’}/(p)% (’F7i)a d) 7& (270073)7
def 11 1 1 1 1
where y(q) = (d—1) (5—5>, 54—?:1, and %4-;:1
def def p .
Proof. Define & = t(c,v) and H (F, Q). Setting ¥(t,z) = P(ct,x)

and H(t,x) = eH(et,x), we easily check that ¥ solves (W) with the ex-
ternal force H. Hence, the general case £ > 0 follows from the particular case
e = 1. Let U(t) be the group associated with the system (7). We have, in
Fourier variables,

Fsomia - (S8 30) e

Exactly as for the wave equation (see Proposition 8.15), we deduce that for
any function @ € Ll(Rd; ]RZ) with F& supported in the annulus C,

WOl < (Bl
[V ()]l < C (L |t = s)~ 5" 2]

Applying Theorem 8.18 page 349 yields Proposition 10.30 in the special case
where the spectrum of the data is supported in the annulus C.
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More generally, for all j € Z, we have

ﬁil,d

(d(r_1)41 11
9 (=D Ay 1y 1y < Ol A0l e + 222 4, H )
This may be deduced from the case j = 0 (where the spectrum is supported
in the annulus C) after implementing a suitable change of variable. So, finally,
multiplying both sides of the above inequality by 27° and performing a sum-
mation over Z completes the proof. 0O

In order to prove the convergence to 0 for (b%, P-uf), we may use the fact that

(10.65)

O + e 1divPLus = Fe
OPtus +e71VHe = G*

with Fe 9¢f _ div(b°u®) and

1 K (4 £
G e _plaiv (we- Vu® + Au® + (eb) Vo +f).
1+ebe €

Obviously, the dispersive estimates stated in Proposition 10.30 are also true

for the system (10.65) since b° and v® def |D|~t divPLus satisfy (W) with
source terms F¢ and |D|~! div G¢, and |D|~! div is a homogeneous multiplier
of degree 0. Hence, taking p = 2, r = oo, and

- s=d/2—land r=2,ifd >4,
- 2<p<ooandr=2p/(p—2),ifd=3,
- 2<p<ooandr=4p/(p-2),if d=2,

we see that it is enough to prove that

IS, GO < C(1+7v/v)C5".

“m\s.

B3, )
This inequality follows from the uniform estimates of step one. Indeed, com-

bining Holder’s inequality with the usual product and composition laws in
Besov spaces yields

[ Y RN L Ll ey || il 1) < CGy”
(B31 ) L2(B2, L2(B2,
Vel gy <Cluf|| g [Vei]| e, < CCFY
LY(B3, ) L%(B3,) L2(B3, )
1 €
C (1 b® &
Al o, SO (el g VAW, e
- —1||%e €
<C V(]‘+V ”b H Euoo))”u ”Ll(B’Z%,;rl)
ch 71051/
I (eb)VON | gn S CElOT] g VO] L < CeCp.

B L2(BS) (i
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Step 3. Convergence of the Incompressible Part

Let e def Pu® — v. Applying Leray’s projector to the second equation of

(N ) and subtracting (N.ST) from it yields the following equation for w®:

{@wE — pAw® = H® + h®

e e 10.66
Wii=o = Wo ( )

with w L Pug — vo, he ©P e — g, and

A Y P(wevo) — P(uf V) — P(PLuf - Vo) — P(u - VB uf) — P (I(eb°) Auf) .
We will just treat the case d > 4, which is easier to handle. Let

def
[Jw || capy vl
1

a % .
P
LBy,

)

d_
L=(B},
We claim that for all p € [pg, 00|, we have

Y, < C(Cg%eh + Jwill gy + 1A _%)). (10.67)

a
BP, LY(B},
Indeed, by virtue of the inequality (3.39) page 157, we have

Y, < C(||w0|| (10.68)

g IRy FIHE ey ).
Bl LY By, %) LY(Bgy *)

From Proposition 2.54, the previous step, and (10.64), we deduce that

[P(w®- Vo)l a s <OVl gy wfl| = a4y
LBE ) 12(B4; 27, 2)
< COnlws]]
LQ(BP 2)
[P(u® - V)| a5 <C IVwe|| g
sl rwdy’ i
<Conllwsll , a3,
L2(Bp, *
PP - Vo)|| 43 <C Vol , .4 N IPtu L
2 B:lz) 1 (B:),lz)
< CnQE%,
[P(us - VPrus)|  a g <Cu o, ||V]P’L LSS
LY(BY, 2y L2(B3, %)
< Cn25§.

Note that all the above product estimates are justified since d/2 + d/p — 3/2
is always positive for any p < oo when d > 4. Thanks to the embedding
d 3

.d_3 .d_3
B3, ? < B, * and the definition of hybrid Besov norms, we also have
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P (I(eb®)Au d_3 C 1I(ebs) Aus 4 s
[P (1(b%) )IILl(leg) 11 (%) Aus|| it
<Cllebl| | .a |lAu E|| 4 .d_3
L4(3221) 3 (32271 2)
<Cve 2||bE||L4(~74 [ u® IIL%(%%:%)

< C nler.
Plugging all the above estimates into (10.68), we end up with
2 1 e €
Vo Ot +lufll gy + 100, ey +7),

so that we can conclude that (10.67) holds, provided that the constant 5 has
been chosen to be sufficiently small.

In dimension d = 2, 3, the dispersive properties given in Proposition 10.30
are not as good as in dimension d > 4. Hence, we cannot get uniform esti-

d 1
1 . Sp 2 . .
mates for £~ 2 Py in L2 (Rt By ?). However, we can interpolate the uni-

. d
form estimates for u® in L*(R™; B;ﬁfl), given by step one, with the dispersive
inequalities proved in the second step. This still gives some decay in . The
reader is referred to [97] for more details. a

10.5.3 The Case of Large Data with More Regularity

In the case of large data, the problem of global existence in dimension d > 3
for the incompressible Navier—Stokes system (NSI) [which is expected to be
the limit system for (N.SC.)] is open. Therefore, there are few chances to get
a global result for the system (N.SC.), which is more complicated.

In this subsection, we want to establish that the system (NSC.) with
suitably small € has a strong solution on the time interval I (possibly infinite)
whenever the limit system (N.ST) has a strong solution on I. This result is
of particular interest in dimension d = 2 since the limit system is globally
well-posed for any divergence-free data in L2.

. d .d_ .d_
Theorem 10. 31 Let bo € B NB " u e B BT and f €

Ll (RY; B;l ﬂB;l T with o €10,1/2] if d > 4, a € 10,1/2[ if d = 3,
and o € 10,1/6] if d=2 LetT, € 10, 00]. Suppose that the incompressible
system (NSI) with zmtzal datum Pugy and external force Pf has a solution
veFE N Letv & ||v|| v and

T Ty

def 1 1
Xo = ||b P P
0 H 0||B§;1 BQ%YQ—FH “0||B§;1m35;1m+“ fHLlTO(B21 B;;HQ)

There exist two positive constants, eg and C, depending only on d, a, A, u, P,
V, and Xy, and such that the following results hold true:
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(i) For all 0 < £ < g9, the system (NSC¢) has a unique solution (b%,u®) in

d d
E;V,TO N E;VT;O such that
b®, u® C.
[ (6%, )”Ei,%ﬂEiK <

d d
(i4) The vector field Pu. tends to v in Ff N Fﬁja and

IPuf vl 4 4,.<Cerites,

To Ty
(iii) The couple (b°,Pu.) tends to 0, in the following sense:

1 .
a1 S Cez, df d>4,
2 B 2)

T oo, 1

16, P a) |

||(b€,Piuf)||Lp(Ba_1+%)scs%, if d=3 and p>2,
T

oo, 1

(6%, PLus)| <Ces, if d=2.

La_3
L7 (Boo 1)
Remark 10.32. For simplicity, we have assumed that the data do not depend
on €. It goes without saying that more general data may be considered.

Proof. Unsurprisingly, owing to the fact that less dispersive inequalities are
available, the proof in dimension two or three is more technical. Here, to
simplify the presentation, we shall prove the theorem only in the case d > 4.
The reader is referred to [97] for the cases d = 2, 3.

The existence of a solution of (NSC®) on a small time interval (which
may depend on ¢) is ensured by Theorem 10.11, regardless of the size of the
data: The only assumption that we need is that 1+ ebg is bounded away from

. d . d
zero. Since by € By; and By, — L, this is certainly true for sufficiently
small €. We therefore assume that we are given two times, T and T (possibly
infinite), such that 0 < T' < Tj and a solution (b%,u®) of (NSC;) belonging

to Ep def EZ N E;:T for some a € ]0,1/2] and satisfying ||eb®||; . < 3/4.

We shall likewise assume that the corresponding incompressible solution v
is defined on [0,Tp] if Tp < oo (on RY if T = oo) and that it belongs to

In the first step of the proof, we take advantage of Proposition 10.30 to
bound a suitable norm of (b°,PYuf) by the norm of (b°,uf) in Ep times
some positive power of €. In the second step, we derive a priori bounds
for e #(Puf —v) (for a suitable 3> 0) in terms of ||(b°,u°)| g, and |v||F,..
These bounds may be obtained by combining estimates for the nonstation-
ary Stokes equation with first order terms (see Proposition 10.5) and using
paradifferential calculus. The third step is devoted to proving uniform bounds
for ||(b°,u®)||g, in terms of v and the initial data. The key to this step is
Proposition 10.23.
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At this stage, we may use a bootstrap argument (fourth step) to close
the estimates of the first three steps, and a continuity argument (last step)
completes the proof.

Throughout, we shall use the following notation:

def

( - | 6 ,1 + || l u® 1
),y oo, P s,
+||b€|| ~i+ﬂ oo + ||IED E” Bi*”")’
Vo) Sl s I v
def . o def
= g + ||w® Ld_ with w® = Pu® — v,
Ws(T) = [lw H Y e I ||L%O(BZ%1 vy
def i
Yo(T) = 1101, 5} +[[Pru E”L2<ij)'
We shall also use the notation Pg(T) = V3(T') + W3(T') and
def 1
0 ”bOH N—+[s o T ” PJ‘UOH %—1+[ﬂ + H]P) fH do1tp
Bsy TO+1(B2 1 )

The argument 7' will sometimes be omitted, and g will always stand for 0
or .

First Step: Dispersive Estimates for (b, Pt u®)

Applying Proposition 10.30 to the system (10.65), we get, for d > 4,

)

. 10.69
syt HIG e ). (1069

1 il il
Va2 €2 (00 PHuo)l g v+ 1P, e
+| div(6*u)||
From Corollary 2.54, Theorem 2.61, and (10.19), we easily deduce that

ldivbeus)l g <C(||b€|| l
T

Lh(B2, raBE)

el g 11 )

< O Xo(Xa + Pa) + Xa(Xo + Po)),

P (uf - Vue d g, < ||uf Vu® d .,
O L VR T I | s

da
< C(Xo + Py)(Xo + Po),

IPH (IO Au) [ g < Ccllb7]| [l Aw]|

LhBETT Le(BE)) Lh(BET
< CXo(Xu + P,

)

14+

)
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K (b°)Vbe i < C || a
IKEBIEN, ytsee) <€ IF, sk

§C€XO

\Y
I8l e,

Plugging the above inequalities into (10.69), we conclude that

Y, < Cet (X0 4 Xo + (Xo + Po)(Xa + Pa)). (10.70)

Second Step: Estimates for w®
From the momentum equation of (NSC.) and (NST), we get
Ow® +P(A° - Vuw) + P (w® - VA®) — pAw® = PF*®

with A = def PLuf + v and

e def —(Pruf - Vo + v VPuf + wf - Vo + I(eb®) Aus).
Applying Proposition 10.5 with s = d/2 — 1 + 3 yields

Wy < CeCVotXo)| e ) 10.71
s <Ce [ ”pT i) ( )

We now bound F*. We readily have

[[w®- V|

< Cllw?|
L

,_1+,3 . a
Ly (B3 F(B31)

: IV, gouo) < CWWa.  (10.72)
T 2,1

Next, by interpolation and according to (10.19), we have

5 ke £ a—1]11e
[[b IIJ_E};1 < b IIBﬁra_lllb [ ,:1+a < (ev)* b IIEEgVM,oo- (10.73)
From this we deduce that
I(eb® q_ <C ¢||b® Auf d_
I1£( )”LlT(B) ey 16| LB 21)|| I, LBi)
« £ 1>
<O, o 1, g
< Ce*X, (Vg + Wﬁ + Xﬁ) (10.74)

According to step one, P-u® is small in L2([0, T]; Bgoyl). Indeed, using inter-
polation and embeddings, we have
L PP IR S BN LS v i
LT oo, 1 N ’
1

SC(—:Q e~ 3 IPJ_ue a1 > J_ us 1-2a
Gy R
< Ce®(Xo +e72Y,). (10.75)
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A judicious use of paradifferential calculus will enable us to guarantee some
smallness for PLu® - Vv and v- VP uf. For Pru®- Vo, we may use the following
modified Bony decomposition for n € ]0,1[:

PLUE'VU = Z A.jPJ"LLE . Sj—1+[log2 TI]VU + Z Sj+2—[log2 TI]EDJ"LLE . Ava .
JEL JEZL

T1 T2

Recall that for any k € Z, we have
18690 < O3Vl s
Therefore,

T e e P

< OnP2- I8 D | V| 2. (2j<%+ﬁ+1> HA'],PLUE

o)

As the functions A.jIE”LuE . S];H-{logz n Vv are spectrally supported in dyadic
annuli 27C(0, Ry, Ry) with Ry and R, independent of 1, Lemma 2.23 yields

L
ITll g -146 < Cn2||Vv||B§;2||P uallBﬁm- (10.76)

a_
2
2,1

Next, according to Proposition 2.10, we have, for all k € Z,

AkTQ = Z Ak (Sj+2—[log2 7] PLua . Ava).
Jj>k—2+[log, 7]

Therefore,
PEID| AT <O D 2WDEPD PESD 4,00

L JZk-2Hlogs ]
<On' =P ||Phef ||, o HVUHB?T"*“

from which it follows that

_g_d
ol s < Ol P27 e (107)
From (10.76), (10.77), and Holder’s inequality, we thus get
PLuf - Vo d_ §C(n2 v a, |PtuE d
| ”LlT(le e I ”L%°<B§,1 ) ”L%(Bz’%i”")
1-3-4 i
Al P i)
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Since 32071 — L°°, by choosing n = 77175 and using (10.75), we can now
conclude that

IPLus-Vol| 4., < Cevim (VOXB + V(X + 57%Ya)) . (10.78)
Ly (B

The term v - VP+u® may be treated similarly. Indeed, we have

v-VPruf = Z Sj_1+[log2 v A'jVIE’”‘u‘5 + Z Ajv . Sj+2—[10g2 ,7]VIP’LuE )
jez jez

T T>

Now, following the proof of (10.76) and (10.77), we readily get that

Tl gt -vom, SOl g IVPRE g
ITelly yrv0) SO EPNN L s IVl
Choosing n = 5%, we conclude that
v - VPLUEHL%(BQ%;H% < Cerritm (VOXB + Va(Xa + e—%Ya)) . (10.79)

Plugging the inequalities (10.72), (10.74), (10.78), and (10.79) into (10.71),
we eventually get

W5 < CeC(V°+X°)(WoWﬁ-i-EaXa(V,@'i‘XB"'Wﬁ)
e (Vo X g+ Vi (Xa+e 2Y,))).  (10.80)

d
Third Step: Estimates for (b%,u®) in Ez'P

ev, T

We use the fact that (b°,u®) satisfies

ub° + div T b7 + divgue = F*
Opus + Tye - Vu® — Auf + 58 =f+G*
with
P div(rfwf) and e K(elﬂ? — I(eb*)Au® — Th, e (w5)7.

According to Proposition 10.23, we have, for any p,r > 1,

X5(T) < Ce (™) (nbon a0l v
B, Bsy
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P oo, IFN pimm) FIG7I, v ) (108D
with
def ¢
vr | (ul-ﬂwn”. REERERES |W|2m)dt'. (10.82)
0 Bopc,l

We first bound F¢. According to (10.19), we have

170, ooy SOOI, s + I, s ). (1089)

From Theorems 2.47 and 2.52, we have

24148
T( 2 1

< C ol o e

IEEN o gars, < C | Twe|
(Bi:i ) )

13857
However, replacing PLu¢ by b° in the proof of (10.75), we also get
o 1
1% L2 (o, ) < Ce%(Xa+e72Ya) (10.84)
so that

1P, stea - S Ce™(Xg + Pg)(Xo + e 7Yy). (10.85)
T

We now bound G°¢. First, by virtue of Theorems 2.47, 2.52, 2.61 and the
inequality (10.84), we may write

L2 (Bf‘”ﬁ)
"‘HVbEHHT(B;{l)” eb||

<Ce'teXg(Xy +e72Y,).

K (> £ < (> 2 . (4
1K (eb%) Ve i S C(HEb 23 (Loo) VOl

L%(B?”’ )

Next, we decompose Téfua (uf)T as
Tp,ue (W) = Tp g e (W) + Th,pye (PuS) + Tp pye (PHus).
According to the inequality (10.84), we have

j 1
T3 pre W aas S CIVPTu ||z g [[wf]
) 7(Bso,1)

d
.dyg
Lj (321 L%“(BQ%l )

<Cen (Xa +a*%Ya) (Xg + Ps).

For the next term, we simply write
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/ € ]
||T6j IP’uE(Pu ) ||L%1(B2%7;H76)

< C||Pu® a4 ||Pu® d < CPyP;s.
| ||L%(B22:1)H ||L%(B§1+ﬁ) 3

Arguing as for the bounding of T} in step 2 (with v replaced by Pu®), we get

HT(';J-IP’UE (IPLUE)J'” 146 S 052+3i2ﬁ (POXﬁ + Pﬁ(Xa + €_%Ya)) .

d
Ly (B3, )
So, finally, we have

HGEHL%‘(B 1+13) < C(P()Pﬁ—l—EaXﬁ(Xa +g_§YQ)

Do

N
terriim (Png + P3(Xo + 87%Ya)))~ (10.86)

Now, we take p = 1/a and r = 2/(2 — «) in (10.81). Using interpolation and
embeddings, we have

€ < L el2a L e 120
1961, 4 s S VB |y VP 2y FIVRL g
SC(EO‘(XQ +e72Y,) +P0>
. Ivu] o
Vue| 2 <C || =2 4
LI (L LI (B2 )
< C (Po+ Xa).

According to (10.82), we thus have

2

1 1
Us T < C(P()“ te(Xa e 2Y,)5 + (e%(Pa + Xa))%) (10.87)
Plugging this inequality, (10.85), and (10.86) into (10.81), we eventually get

1 2
(PO‘)‘ Fe(Xate 2Ya)a (e (PatXa)) 20 )

C
X5 < Ce (X5 + PoPs

ey (Poxﬁ + (Xp + P3)(Xa + s—%Ya)) ) (10.88)
. def
with ag = 2a/(2 4+ d + 2a).

Fourth Step: Bootstrap
Let X € xo+ X0, v v v, w w4 w, and x0 4 x0 4 x0,
Combining estimates (10.70), (10.80), and (10.88) yields

W < CeCVHY) (eo‘d (X2+V(X0+X+X2+V2)) + W2(1+5°‘dV)) . (10.89)
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X < 0eCexix?)E HErX)Ta) O (VW) & e (X0 (v y2) e % (V) Ta)

X(XO+ (VW) (VAW +e*(X0+VZ+W?))
+e* X (XO4+V4+W+X+X?).  (10.90)

A bootstrap argument will enable us to get a bound for (6%, u¢) from the two
estimates above. More precisely, we have the following lemma.

d d
Lemma 10.33. Suppose that v € Fz N Fﬁoﬂx for some finite or infinite Tj.
There then exists an ey > 0, depending only on «, d, V(Ty), and the norm of

(bo, Prug, PLf) in
.d_ . d .d_ .d_ .d_ .d_
B N By x (B n By T X LNRT (B n BT

g d
and such that if ¢ < g¢, (b°,u°) € E;‘V’TOEEQV’—F;, and e|b®| < 3/4 for some T <
Ty, then the following estimates hold with the constant C = C(d, u, A\, P, @)
appearing in (10.89) and (10.90):

X(T) < Xwm 4ef 1 60eCV = (M) (XO + VQ(To)),

EiadW(T) < W d:ef4C€C(V(TO)+XM)
x (X3 + V(To)(X° + Xu + X3+ VE(Th))) -

Proof. Let 1% {t<T | X&) < Xar and W(t) < e%Was . Obviously, X

and W are continuous nondecreasing functions so that if, say, C' > 1, then [

is a closed interval of RT with lower bound 0.

Let T™ def sup I. Choose ¢ sufficiently small so that the following condi-

tions are fulfilled:
CeCV T+ Xan) caa 7y (1 4 %V (Tp)) < 1/2,

1 2
C(e(X +X2 Vo +(e*X 2ﬂ>
e M M ( M) S 2’

C((WT"H{%WMﬁ+E<X°+(V<To)+e“dWM>2>%+az~%<V(To>+aade>ﬁ)
e
< 2eCV @ (To),
XO+(V(To)+e%aWar ) (V (To) +&%4 Wiy +e% (X0 +V2(Tp) +e29a W)
<2(X°+V3(To)),
1
CeCV e T)gaa(X0 4 V(T) + e* Wy + Xar + X3,) < 1/12.
From the inequalities (10.89) and (10.90), we get
1
X(T%) <1206V ) (X0 4 VA(T)),
W(T*) < 2e2aCeCVT+X00) (X2 4+ V(Tp)(X° + X + X3, + VE(T))) -

In other words, at time T the desired inequalities are strict. Hence, we must
have T* =T. O
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Last Step: Continuation Argument

d d
First, we have to establish the existence of a local solution in E;V’T N E;’VTTO‘ .

Making the change of function a® = eb®, we see that it suffices to apply
Theorem 10.11. We readily get a local solution (b%,u¢) on [0,T] x R? which
belongs to

. d Ld g, .d_ Ld_ . d . d d
C([0,T1; B3, N B3 )% (C(0. T B3 nBE T )N L (0,70 B3 nBE ™))

and satisfies 1 + einf; , b°(¢, z) > 0.
Sd_ Sd
Since, in addition, by belongs to B3 and 8;b°+us-Vo© isin L' ([0, T]; BS ),
Ld_ a diq
we deduce that b° € C([0,7T7]; By, 1). Therefore, (b%,u®) € EZ, 1 N E;:T .

d d
Now, suppose that we have v € Fz N Fﬁ;ra for some Ty € ]0, +00]. We
will show that the lifespan T, defined as the supremum of the set

d
2

{T € RY /(5,uf) € B2, ,NELS and V(t,z) € [0, T|xRY, [sb°(t,2)| < 3/4},

satisfies T. > Ty if ¢ is sufficiently small.

We assume (with the aim of arriving at a contradiction) that T is finite
and satisfies T, < Ty. According to Lemma 10.33, we have, for any T' < T
and ¢ < &g,

X(T) < Xp and W(T) < e¥W)y,.

From the first inequality and (10.73), we deduce that
e[| a4 <ewrTIXy.
L%O(BZ%I)
Obviously, changing ¢ once more if necessary, this entails that

1+e inf |6°(¢, )| > 0.
(t,2)€([0,T]e xR4)

As b® € L*™([0, T]; 32%1 QBQ%IQ) and Vu® € L1([0, T.[; L°°), the continuation
criterion stated in Proposition 10.17 ensures that (b°,u®) may be continued
beyond T.. This stands in contradiction to the definition of T.. Therefore,
T52T0 fOI&SEo. O

10.6 References and Remarks

There is a huge literature devoted to the one-dimensional compressible Navier—
Stokes equations. Since the usual methods are quite far from our own, we will not
elaborate on what is known in this case. However, we should mention the pioneering
work by A. Kazhikhov and V. Shelukhin in [179] and the recent paper by A. Mellet
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and A. Vasseur [227] wherein the existence of global strong solutions is established
for a large class of initial data bounded away from the vacuum.

In the multidimensional case, to the best of our knowledge, the first mathematical
work devoted to the Cauchy problem for the full compressible Navier—Stokes system
is the paper by J. Nash [238] in 1962. There, the existence of local-in-time classical
solutions is proved. By using an LP approach based on parabolic maximal regularity,
in [272], V. Solonnikov has stated local well-posedness results in the case of a smooth
bounded domain. An extensive study of the compressible Navier—Stokes equations
in two-dimensional domains with corners has been undertaken by J.R. Kweon (see,
e.g., [200]).

Global existence for small smooth perturbations of a stable equilibrium was
stated in 1980 by A. Matsumura and T. Nishida in [225] in the R® framework and
extended to the half-space, exterior, or bounded smooth domains with Dirichlet
conditions in [226] (see also [125, 293] and the more recent work by P. Mucha and
W. Zajaczkowski [237] for another approach). More general boundary conditions
have been considered in, for example, [294].

The work by P.-L. Lions concerning weak solutions of the isentropic compress-
ible Navier—Stokes system had a great impact on the subject and may be seen as
the natural continuation of the seminal work by J. Leray in [207] (see Chapter 5)
for incompressible viscous fluids. The construction of weak solutions relies on the
following formal energy identity (here, we take f = 0 in order to simplify matters):

I(v/Au) (D122 + / w(t,2) do + 2 / (0 IVul22 + vt ldiv a2 de

= H\/ﬁouoniz +/7ro(x) dz, (10.91)

where 7 stands for the free energy per unit volume.® This suggests proving the
existence of global solutions for data (po, uo) such that the right-hand side of (10.91)
is finite. However, both constructing approximate solutions satisfying the energy
inequality and passing to the limit is much more involved than in the incompressible
case (see the original work by P.-L. Lions in [215] for more details). More regular
weak solutions have been constructed by B. Desjardins in [114]. For the presentation
of a few recent improvements, the reader is referred to the review paper by E. Feireisl
in [123] and the book by A. Novotny and I. Straskraba [242]. We should also mention
that, following some ideas from Lions’ book, E. Feireisl has developed a complete
theory of so-called wvariational weak solutions for the full Navier—Stokes equations
(see [124]).

The results presented in this chapter concerning local and global well-posedness
are borrowed from recent works by the third author (see [93, 95], and [101]). We
point out that for critical data, the smallness condition (10.7) is not needed (i.e. the
statement of Theorem 10.11 is true for a = 0). This was proven recently in [104]
by the third author (see also [79] for another approach). We should also stress that
local existence results in the spirit of Theorems 10.2 and 10.11 may be established
for polytropic heat-conductive fluids and extended to the LP framework (see [95, 79,
155]). In this case, the scaling invariant space for (ao,uo,80) (where 6y stands for
the discrepancy from a reference temperature) is

Y —_ —_ p—
5 Recall that if P(p) — ap”, then we have 7 — a(%ﬂgl))
A A



494 10 The Compressible Navier—Stokes System
. d LA, .4 o
B;lx(B;I ) X By .

In addition, still in the critical framework, for polytropic fluids, a global well-
posedness result in the spirit of Theorem 10.21 for small perturbations of a stable
equilibrium has been proven in [94]. Theorem 10.21 has recently been extended to
the LP framework by F. Charve and the third author in [61]. In particular, as for the
incompressible Navier—Stokes equations, the smallness condition for global existence
involves Besov norms with a negative index of regularity. Hence, highly oscillating
initial velocities with possibly large moduli give rise to global solutions. Finally, we
point out that a similar approach works for fluids endowed with internal capillarity
(see [107)).

Until now, even in the barotropic case, the question of weak-strong uniqueness
for the compressible Navier—Stokes equations has remained open. More precisely, for
sufficiently smooth data (po,uo) bounded away from the vacuum, we can construct
both a (unique) local smooth solution and, according to Lions’ results, a global
weak solution with finite energy. However, in contrast to what is known in the
incompressible case, there is no evidence that the weak and strong solutions coincide,
even for small time. One of the main difficulties that has to be faced is that Lions’
theorem does not give any information on the possible appearance of vacuum, and
such a control seems crucial to get uniqueness. We should mention here that in [80],
Y. Cho, H.J. Choe, and H. Kim have obtained a result involving the existence and
uniqueness of a special class of initial data where vacuum is not excluded (see also
a promising recent result by P. Germain in [142] and the work [220] by T.-P. Liu
and T. Yang concerning the inviscid case). For a particular class of barotropic fluids,
D. Bresch and B. Desjardins have constructed “stronger” weak solutions with an
additional H* control on the density (see [49]). Knowing that in dimension two,
Theorem 10.2 provides strong solutions for data having almost the same regularity
li.e., uo € BY; and (po — 1) € B3], it may be tempting to study whether we can
bridge the gap between weak and strong solutions. Other types of weak solutions
with possibly discontinuous data (including jumps across a hypersurface for the
density) have been constructed by D. Hoff in [159, 162, 163].

It turns out that for smooth perturbations of a stable constant state, very accu-
rate information may be obtained concerning the asymptotics of the global solution.
Roughly, the time decay properties of the solution are the same as for the linearized
system about the constant reference state. There is an important literature devoted
to this subject (see, in particular, [164] and [195]).

A number of papers have been devoted to the study of the incompressible limit
for the compressible Navier—Stokes equations. The earliest mathematical works are
concerned with the case where p° — 1 = O(e?) and divu® = O(¢). In that case, d;p°
and Jyu® are uniformly bounded so that time oscillations canno/t\ogcur. Starting
from this simple consideration, different authors have studied (NSC.) with data
of the type p§ = 1+ °p§1 and u§ = uo + euf; with divuo = 0 and (p§,1,u 1)
uniformly bounded in a suitable function space (here, we take f© = 0 in order to
simplify matters). In the usual partial differential equations terminology, such data
are referred to as well prepared. Indeed, they are well prepared in the sense that they
belong (up to lower order terms) to the kernel of the singular operator appearing in

(NT@E*E) Hence, they are unlikely to produce highly oscillating terms.
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For such data, it is possible to calculate an asymptotic expansion for (p°,u®)
in terms of powers of . This approach has been adopted by a number of authors:
S. Klainerman and A. Majda in [186, 187], H.-O. Kreiss, J. Lorenz, and M. Naughton
in [199], and D. Hoff in [160, 161], among others.

As explained at the beginning of Section 10.5, in this chapter we considered ill
prepared data (i.e., p5 = 1 + ebg and with no particular assumption on ug) so that
strong time oscillations have to be considered. Solving the problem of the low Mach
number limit in this framework is rather recent. The first result is due to P.-L. Lions
in his book [215] and deals with global weak solutions. The basic idea is that the
energy equality associated with (NSC:) is of the form

t
(Vo) )3 + / 7 (t, %) do + 2 / (B IV 132 + ) v 32 ) dr

t
= Wil + [ i@ +2 [ [0y (ra) duar,

£\ &
ey(y—1)

Taking advantage of the uniform estimates provided by the above equality, it is
possible to pass to the limit when ¢ goes to 0. However, the mathematical justifica-
tion strongly depends on the boundary conditions. The reader may refer to [216] for
the case of periodic boundary conditions, to [115] for the whole space, and to [116]
for the case of bounded domain with homogeneous Dirichlet conditions. In a more
general context, P.-L.. Lions and N. Masmoudi have also proven local weak conver-
gence results in [217]. We emphasize that, to the best of our knowledge, [115] is the
first paper devoted to the incompressible limit where Strichartz estimates have been
used.

As regards the study of the incompressible limit in the framework of strong
solutions, we mention the works by S. Ukai [291], S. Schochet [257], G. Métivier and
S. Schochet [228, 229] in the inviscid case, and the papers by I. Gallagher [133] and
T. Hagstrom and J. Lorenz [152] in the viscous case. The two results on convergence
presented here (namely, Theorems 10.29 and 10.31) are borrowed from [97].

We conclude this section with a few words on the case of periodic boundary
conditions, which turns out to be quite different (the reader is referred to [98] for
more details). Indeed, there is no dispersion whatsoever, so acoustic waves may
interact. It turns out, however, that resonances are not so frequent, so it is possible
to pass to the limit anyway. The mathematical study of the incompressible limit may
be undertaken by means of the filtering method introduced by S. Schochet in [257].
More precisely, if P'(1) = 1, then the system (NSC.) can be rewritten as

d (6N L (6 _ (—div(u) R
dt \ue ) e\ ) T\ f ot Vs — 5TV — K (eb°)bVbE — I(eb%) Auf )

where the function K vanishes at 0 and the skew-symmetric operator L is defined

by
b\ def (divu
H() (")

The operator L generates a unitary group e”” such that e™” (IP(’)u) = < 0 )

where 7€ =a
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Defining V*© d:ef esl (Pfua ), we deduce from the above system that
Ve + Qi (Pu®, V)4 95(VE,V®) — v A5 (D)V* (10.92)

—=ecl 0 + o(1)
PL(f — Pu® - V Puf) ’

where A5(D)B is a linear operator, and Qf and Q5 are bilinear operators which may
be computed explicitly in terms of Fourier series. It may be shown that A5(D)B
tends formally to —AB/2 and that the operators Qf and Q5 tend to some first order
bilinear operators Q; and Qa, respectively.

If Pu® tends to some limit v, then the stationary phase theorem ensures that the
right-hand side of (10.92) tends to 0 in the sense of distributions. We can thus expect
(Pu®,V*®) to tend to some limit (v, V'), where v is a solution of the incompressible
Navier—Stokes equation

(NST) { o+ P(v - Vo) — pAv =Pf

Vjt=0 = Puo,

and V satisfies

LS
(LS) Vii—o = (bo, P1ug).

{atv +Qi(v, V) + Q2(V,V) — AV =0

Up to the term Qi (v, V) (which is linear with respect to v), the system (LS) has
the same structure as (N.SI). However, it was observed by N. Masmoudi in [223]
that the term Q2(V,V) is so sparse that the diffusion —5 AV dominates in any
dimension. Hence, V exists as long as v is defined.

In [98], it was shown that for any data by € H%% with zero average, ug €
Heto 1 and f € LY(R*; H2 ~'+%) with div f = 0, the solution of (LS) is defined
as long as the solution v of (NSI) is defined. Moreover, if v is defined on [0, 7] or
on R*, then the same holds for (b%,u°) for sufficiently small ¢, and

(b5, u°) = (0,0) + e <5V +0(1) in LEH2T)YNLAHETHY forall o < a.

Owing to the appearance of small divisors when proving the convergence of V¢,
the exact meaning of o(1) strongly depends on the quotients of the lengths of the
periodic box T% in which (NSC.) is solved. For special values of (ai,...,an), the
convergence may be slower than any power of e.

For polytropic fluids, the study of the low Mach number limit turns out to be
even richer. For more details, the reader may refer to the recent work by T. Alazard
in [4].
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