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Preface to the Second Edition

The first edition of this textbook was written more than 35 years ago. In the
interim, applications of the theory of Lebesgue measure and integration and
the rudiments of harmonic analysis have soared.

This second edition does not attempt to summarize the enormous recent
expansion of the field. Instead, it develops some important topics not treated
in the first edition. These include the Rademacher-Stepanov theorem, added
in Chapter 7, and Chapters 13 through 15, which treat the Fourier trans-
form, fractional integrals (or Riesz potentials), and first-order Poincaré-
Sobolev estimates, respectively. The setting in the new chapters is the classical
Euclidean one. However, many of the methods in Chapters 14 and 15 can be
extended to more general geometric situations as well as to measures that are
more general than Lebesgue measure.

Chapter 13 studies the Fourier transform of functions in the spaces 11,12,
and I¥,1 < p < 2. As an application of the L? theory in the one-dimensional
case, the Hilbert transform is shown to be a bounded operator on L.

Chapter 14 studies fractional integration and some topics related to mean
oscillation properties of functions, including the classes of Holder continuous
functions and the space of functions of bounded mean oscillation. Motiva-
tion for studying fractional integration is provided by a subrepresentation
formula, which in higher dimensions plays a role roughly similar to the one
played by the fundamental theorem of calculus in one dimension.

In Chapter 15, the norm estimates derived in Chapter 14 for fractional
integral operators are applied to obtain local and global first-order Poincaré-
Sobolev inequalities, including endpoint cases. The notion of weak (distri-
butional) partial derivatives is considered in advance. The subrepresentation
formula derived in Chapter 14 for smooth functions is extended to functions
with a weak gradient, and the formula plays a critical role.

In this second edition, some changes have been made in the 12 chapters
that were in the first edition, such as the addition of many new exercises.
The biggest change in the text itself is the addition of Section 7.7, proving
the existence of a tangent plane to the graph of a Lipschitz function of sev-
eral variables. However, the order of the presentation in Chapters 1 through
12 has been purposely retained. For example, new exercises are generally
placed after those that were already present in the first edition. The number-
ing of equations, theorems, etc., has been retained from the first edition in
the printed version; however, please note that these items have been renum-
bered according to the publisher’s current style in all electronic versions of
this edition.

In the years since the book was originally published, many readers have
sent suggestions to me for ways to improve the presentation of the material.

xiii



xiv Preface to the Second Edition

I am very grateful for many helpful comments and have incorporated a
large number of them. I thank the following people in this regard: James
Bennett, Earl Berkson, Bernard Bialecki, Sagun Chanillo, Richard Gundy,
Max Jodeit, Russell John, Edward Lotkowski, Umberto Neri, Roger
Nussbaum, Eugene Speer, and Jason Tedor. Thanks also go to Luc Nguyen
for collecting and typing course notes related to Chapters 14 and 15.

I especially thank my friend and student Edward Lotkowski. At his own
suggestion, he proofread most of the second edition (as well as the first one).
His comments have been thoughtful and informed, and they have improved
the clarity and content of the book in many places.

I thank Senior Editor Robert Ross for helping in many ways, especially for
his continued support in making the printed version of the book simpler to
read by allowing flexibility in formatting styles. I also acknowledge the help
and energy of my project editor, Todd Perry.

My coauthor, teacher, and friend Antoni Zygmund passed away in 1992.
The first edition of this book evolved from notes that I took as a graduate stu-
dent in his real variables course at the University of Chicago. His influence
is profound both in the book and in the development of harmonic analysis.
I take this opportunity to express my thanks for his nuturing support. In
doing so, I also speak for many others whom he helped.

Richard L. Wheeden



Preface to the First Edition

The modern theory of measure and integration was created, primarily
through the work of Lebesgue, at the turn of twentieth century. Although
the basic ideas are by now well established, there are ever-widening appli-
cations that have made the theory one of the central parts of mathematical
analysis. However, different applications require different emphasis on var-
ious aspects of the theory. For example, certain facts are of primary interest
for real and complex analysis, others for functional analysis, and still others
for probability and statistics. This text is written from the point of view of real
variables and treats the theory primarily as modern calculus.

The book presupposes that the reader has a feeling for rigor and some
knowledge of elementary facts from calculus. Some material that is no doubt
familiar to many readers has been included; its inclusion seemed desirable in
order to make the presentation clear and self-contained.

The approach of the book is to develop the theory of measure and inte-
gration first in the simple setting of Euclidean space. In this case, there is a
rich theory having a close relation to familiar facts from calculus and gener-
alizing those facts. Later on, we introduce a more general treatment based
on abstract notions characterized by axioms and with less geometric content.
We have chosen this approach purposely, even though it leads to some repeti-
tion, since considering a special case first usually helps in developing a better
understanding of the general situation. Anyway, we all “learn by repetition.”

The outline of the book is as follows: Chapter 1 is primarily a collection
of various background information, including elementary definitions and
results that will be taken for granted later in the book; the reader should
already be familiar with most of this material. Very few proofs are given
in Chapter 1. Actual presentation of the theory begins in Chapter 2, which
treats notions associated with functions of bounded variation, such as the
Riemann-Stieltjes integral. Strictly speaking, a reading of Chapter 2 could be
postponed until Chapter 5, where we use the Riemann-Stieltjes integral as a
way of representing the Lebesgue integral.

Chapter 3 deals with Lebesgue measure in Euclidean space, via the notion
of outer measure. Chapter 4 gives the theory of measurable functions, and
Chapter 5 considers the Lebesgue integral, again in Euclidean space. In
Chapter 6, we study repeated integration, the central result being Fubini’s
theorem. Chapter 7 treats the process that is the inverse of integration,
namely, differentiation. Here, we consider the differentiation of integrals
treated as set functions, as well as the differentiation of real-valued func-
tions of a single variable, such as the differentiability of monotone functions.
Chapters 3 through 7 complete the treatment of the general theory of integra-
tion in Euclidean spaces.

XU



xvi Preface to the First Edition

In Chapters 8 and 9, we consider special classes of functions, like 12 and
L7, and special results for these classes, such as the behavior of convolu-
tion operators, the Hardy-Littlewood maximal function, and the integral of
Marcinkiewicz.

In Chapters 10 and 11, we give an abstract treatment of Lebesgue measure
and integration. Here, there are several possible approaches. We have chosen
to start with an abstract definition of measure and develop the theory of inte-
gration following the pattern of earlier chapters. This is done in Chapter 10.
It is natural to ask how such abstract measures actually arise. This question is
answered to some extent in Chapter 11, where we use the notion of abstract
outer measure to construct some specific examples of measures.

Chapter 12 plays a special role and can be read immediately after Chap-
ter 9. It deals with an application of the Lebesgue integral to a specific
branch of analysis—harmonic analysis. This is a very broad field, and we
consider only a few problems indicative of the role that Lebesgue integration
plays in applications. Harmonic analysis also happens to be a field whose
development had a great impact on the theory of integration.

Atthe end of each chapter, we list a number of problems as exercises, some-
times with parenthetical hints at solutions. Some relatively important results
are given in the exercises, but as a rule, the text does not require facts that
have appeared earlier only as exercises.

We would like to express our thanks to the Departments of Mathemat-
ics of Rutgers University and the University of Chicago, and in particular to
Professor William H. Meyer for the friendly help he offered us during the
preparation of the manuscript. Special thanks also go to Joanne Darken and
Dr. Edward Lotkowski, both of whom proofread almost the entire manuscript
and offered many helpful comments, and to Michele Ginouves for her help
with the cover design. Finally, thanks to Annette Roselli, our typist, for an
excellent job.

Richard L. Wheeden
Antoni Zygmund
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1

Preliminaries

This book is devoted to Lebesgue integration and related topics, a basic
part of modern analysis. There are classical and abstract approaches to the
integral, and we have chosen the classical one, postponing a more abstract
treatment until later in the book. The classical approach is based on the the-
ory of measure (while in some modern treatments, the integral is introduced
as a linear functional). Measure can be defined and studied in various spaces,
but we will primarily consider n-dimensional Euclidean space, R™. A prereq-
uisite, undertaken in this chapter, is a review of elementary notions about R™.
We have not attempted to present these in a thorough manner, but only to list
some of the definitions and notation that will be used throughout the book
and state some background facts that a reader should know. We assume a
knowledge of various properties of the real line R! and of functions defined
on R! and leave as exercises the proofs of many facts that are either similar
to or derivable from their one-dimensional analogues.

1.1 Points and Sets in R"

Let n be a positive integer. By n-dimensional Euclidean space R™, we mean
the collection of all n-tuples x= (x1, ..., x;) of real numbers x;, —00 < x; <
+oo,k=1,...,n. If x=(x1,...,x4) and y=(y1,...,yu) are points of R", we
say that x=y if xy =y, for 1 < k < n. R™ is a vector space over the reals if
forx=(x1,...,%1), y=1,...,¥n), and o € R we define x+y=(x1 +y1,...,
Xn +yy) and ax = (oxy, . .., axy). The point each of whose coordinates is zero
is called the origin and denoted 0=(0,...,0) or 0 = (0,...,0). By the vector
emanating from x and terminating at y, we mean the line segment connect-
ing x and y, directed from x to y. The points of this segment are of the form
(1 -1t x+ty,0 <t < 1. We will identify vectors that have equal length
and direction. We will also identify x with the vector emanating from 0 and
terminating at x.

If E is a set of points of R", we use the notation CE=R" — E for the com-
plement of E. The complement of R" is the empty set @. If % ={E} is a family
of subsets of R™, the union and intersection of the sets E in .% are defined,
respectively, by



2 Measure and Integral: An Introduction to Real Analysis

U E={x:xeEforsomeE e .7},

EeF
ﬂ E={x:xeEforalE e Z}.
Ee7Z
(Here, and systematically in the following, we use the notation {x : ...} to

denote the set of points x that satisfy. .. .)

If 7 is countable (i.e., finite or countably infinite), it will be called a sequence
of sets and denoted .# = {E; : k=1, 2, ...}. The corresponding union and inter-
section will be written | J; Ex and (), Ex. A sequence {Ei} of sets is said to
increase to |y Ex if Ex C Eg4q for all k and to decrease to () Ex if Ex D Ex4; for
all k; we use the notations Ex " |J; Ex and Ex \( [ Ex to denote these two
possibilities. If {E¢}p7 ; is a sequence of sets, we define

o0 o0 o o
limsup Ey=("\ | (JEc |, liminfEx=J|()Ex|. (1.1)
j=1 \k=j j=1 \k=j

noting that the sets U; = [ i~ jExand Vj= Nie j Ex satisfy Uj ™\ limsup Eg
and V; /' liminf Ex. We leave it as a simple exercise to verify that lim sup Ey
consists of those points of R" that belong to infinitely many Ej and lim inf
E of those that belong to all Ey for k > kg (where kg may vary from point to
point). Thus, lim inf Ex C lim sup Ej.

If E1 and E; are two sets, we define E; — Ep by E1 — Ep = E; N CE; and call it
the difference of E1 and Ej or the relative complement of E; in E;. We will often
have occasion to use the De Morgan laws, which govern relations between
complements, unions, and intersections; these state that

ClUE|=()cE c|NE|]=UcE
EeF EeF EeF EeF

and are easily verified. The set-theoretic notions discussed earlier are not
confined to R™ and hold for subsets of an arbitrary set S.

1.2 R" as a Metric Space

R" also has, of course, a metric space structure. If x=(xy,...,x;) and
y=(1,...,Yn), we define their inner (dot) product by

n
Xy =Y Xy
k=1
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Wehavex-y=y-x,0x-y=o(x-y) forreal xand x- (y +z)=x-y+x-z.
Noting that x - x > 0, we define the absolute value of x, or the length of x, by

n 1/2
1/2 2
X = (x-x" =<Zxk) :
k=1

We will use this notation regardless of the dimension 7. Thus, if x € R1, |x|
means the usual one-dimensional absolute value of x. Then in any dimension,
x| has the following properties:

(i) x| = 0and |x| = 0if and only if x=0
(ii) |oex| =]ot||x| for « € R1
(iii) |x +yl < Ix| + |yl| (the triangle inequality)

To verify (iii), observe that if we square both sides of the inequality, (iii) is
equivalent to showing that (x+y) - (x+y) < x| +2|x]| lyl+ |y|2. Since (x+y)-
(x+y)= Ix|2 +2(x- y)+ |y|2, the problem reduces to showing that x-y < |x||yl,
that is, that

n n 1/2 n 1/2
Z XYk < (Z x,%) (Z yi) . (1.2)
k=1 k=1 k=1

This important inequality is called the Schwarz (or Cauchy-Schwarz) inequality
and can be proved as follows. For «, § € R, the fact that (« — B)Z2>0 gives
af < 1o? + 1B2. Therefore, Y} _q xkyk < Y f_4 (%x,% + %yi) = 2(x12 + lyP).
Inequality (1.2) follows immediately if |x| =|y| =1, since then Y} _; xkyx <
%(1 + 1)=1=x||y|. Moreover, (1.2) is obvious if either |x|=0 or |y|=0
since then both sides must be zero. Finally, if |x| >0 and |y| >0, let x; =
xe/ XLy =yi/lyl, X' =, ..., x) =x/Ix|, and y' =}, ...,y,) =y/lyl- Then
Ix'| =|y'| =1, so that by the case already proved, Y }_;xjy, < 1; that is,
> k—1 XYk < Ix|lyl, as claimed.

If we now define the distance between two points x and y by d(x,y) =[x —y|,
we immediately obtain the characteristic metric space properties:

(i) dx,y)=d(y, %)
(ii) d(x,y) > 0,and d(x,y) =0if and only if x=y
(iii) d(x,y) <d(x,z) +d(z,y)

We have used the symbol x; to denote the kth coordinate of x. When no
confusion should arise, we will also use {xi} to denote a sequence of points
of R™ If x € R", we say that a sequence {xi} converges to x, or that x is the
limit point of {xi}, if [x — x¢| = 0 as k — oco. We denote this by writing either
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x = limg_, o0 X OF X; — X as k — co0. A point x € R" is called a limit point of a set
E if it is the limit point of a sequence of distinct points of E. A point x € E is
called an isolated point of E if it is not the limit of any sequence in E (excluding
the trivial sequence {xx} where x; =x for all k). It follows that x is isolated if
and only if there is a 6 > 0 such that [x—y| > b foreveryy € E, y # x.

For sequences {x;} in R!, we will write limy_, o, Xy = + 00, Or X — +00 as
k — oo, if given M > 0 there is an integer K such that xx > M whenever k > K.
A similar definition holds for limj_, o, X =— o0.

A sequence {xi} in R" is called a Cauchy sequence if given ¢ > 0 there is an
integer K such that [x; — xj| < ¢ for all k,j > K. We leave it as an exercise to
prove that R™ is a complete metric space, that is, that every Cauchy sequence in
R" converges to a point of R™.

Aset E C Ej is said to be dense in E; if for every x; € E1 and ¢ > 0 there is
a point x € E such that 0 < |x — x1| < €. Thus, E is dense in E; if every point of
Ej is a limit point of E. If E = Eq, we say E is dense in itself. As an example, the
set of points of R™ each of whose coordinates is a rational number is dense
in R™. Since this set is also countable, it follows that R™ is separable, by which
we mean that R™ has a countable dense subset.

For nonempty subsets E of R!, we use the standard notations sup E and
inf E for the supremum (least upper bound) and infimum (greatest lower bound) of
E. In case sup E belongs to E, it will be called max E; similarly, inf E will be
called min E if it belongs to E.

If {ax}2 ; is a sequence of points in R1, let bj= SUPg; Ak and c¢j=
infy>jar,j=1,2,.... Then —oo < ¢; < b; < 400, and {b;} and {c;} are mono-
tone decreasing and increasing, respectively; that is, b; > bj11 and ¢j < ¢jy1.
Define lim supy_, o, ax and lim infy_, o, a; by

limsupay = lim b; = lim {supak},

k— 00 j— o0 j=oo ks

(1.3)
liminfa = lim ¢ = lim {infak].
k— o0 j— o0 j— oo Lk>j

We leave it as an exercise to show that —oo < lim infy_, o ax < limsupy_, o, % <
+oo and that the following characterizations hold.

Theorem 1.4

(@) L= limsupg_, o ax if and only if (i) there is a subsequence {akj} of {ax}
that converges to L and (ii) if L' >L, there is an integer K such that
ar <L for k > K.

(b) I=liminfy ,ocax if and only if (i) there is a subsequence {akj} of {ax}
that converges to | and (ii) if I'<l, there is an integer K such that
a>1' fork > K.
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Thus, when they are finite, lim supy_, o, ax and lim inf}_, « ai are the largest
and smallest limit points of {ax}, respectively. We leave it as a problem to
show that {ax} converges to a4, —oo <a < + oo, if and only if lim supy_, o, a4k =
lim infy_, o ax =a.

We can also use the metric on R™ to define the diameter of a set E by letting

§(E) = diamE = sup {|x —y| : x,y € E}.
If the diameter of E is finite, E is said to be bounded. Equivalently, E is bounded

if there is a finite constant M such that |x|] < M for all x € E. If E; and E are
two sets, the distance between Eq1 and E; is defined by

d(E1,E2) = inf{|x — y| (X € El,y € Ez}.

1.3 Open and Closed Sets in R", and Special Sets
For x € R® and 6 > 0, the set

B(x;0) ={y:|x—yl < 6}

is called the open ball with center x and radius 6. A point x of a set E is called an
interior point of E if there exists & > 0 such that B(x; 8) C E. The collection of all
interior points of E is called the interior of E and denoted E°. A set E is said
to be open if E=E°; that is, E is open if for each x € E there exists § > 0 such
that B(x; 8) C E. The empty set ¥ is open by convention. The whole space R™
is clearly open, and we leave it as an exercise to prove that B(x; 0) is open. We
will generally denote open sets by the letter G.

A set E is called closed if CE is open. Note that @ and R" are closed. Closed
sets will generally be denoted by the letter F. The union of a set E and all its
limit points is called the closure of E and written E. By the boundary of E, we
mean the set E — E°. We leave it to the reader to prove the following facts.

Theorem 1.5

() B ={y:|x—y| <5}
(i) E is closed if and only if E =E; that is, E is closed if and only if it contains all
its limit points.
(iti) E is closed, and E is the smallest closed set containing E; that is, if F is closed
and E C F, then E C F.

The open subsets of R™ satisfy the properties listed in the next theorem.
P Yy prop
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Theorem 1.6

(i) The union of any number of open sets is open.
(if) The intersection of a finite number of open sets is open.

Verification is left to the reader. Using the De Morgan laws, we obtain the
following equivalent statements.

Theorem 1.7

(i) The intersection of any number of closed sets is closed.
(ii) The union of a finite number of closed sets is closed.

A subset Eq of E is said to be relatively open with respect to E if it can be
written E; = E N G for some open set G. Similarly, E; is relatively closed with
respect to E if E; = EN F for some closed F. Note that the relative complement
of a relatively open set is relatively closed. A useful alternate characterization
of relatively closed is as follows.

Theorem 1.8 A set Eq CE is relatively closed with respect to E if and only if
E1=E N Ey, that is, if and only if every limit point of Eq that lies in E is in E.

The proof is left as an exercise.

Consider a collection {A} of sets A. Then a set is said to be of type As if it
can be written as a countable intersection of sets A and to be of type As if
it can be written as a countable union of sets A. Thus, “6” stands for intersec-
tion and “o” for union. The most common uses of this notation are G5 and F,
where {G} denotes the open sets in R™ and {F} the closed sets. Hence, H is of
type Gs if

H= ﬂ G, Gk open,
k

and H is of type F if

H= U Fy, F closed.
k

The complement of a G; set is an F set, and vice versa. A Gs (Fs) set is of
course not generally open (closed); in fact, any closed (open) set in R" is of
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type Gs (Fo): see Exercise 1(j). These two special types of sets will be very
useful later in the measure approximation of general sets.

Another special type of set that we will have occasion to use is a perfect
set, by that we mean a closed set C each of whose points is a limit point of C.
Thus, a perfect set is a closed set that is dense in itself. One particular property
of perfect sets we will use is stated in the following theorem. The proof is
postponed until Section 1.4.

Theorem 1.9 A perfect set is uncountable.

Other special sets that will be important are n-dimensional intervals.
When n=1 and a < b, we will use the usual notations [a,b] ={x:a <x <b},
(a,b)={x:a<x<b},[a,b)={x:a<x<b}, and (a,b]={x:a <x <b} for closed,
open, and partly open intervals. Whenever we use just the word interval,
we generally mean closed interval. An n-dimensional interval I is a sub-
set of R™ of the form I={x=(x1,...,x,) : ax <xx <by,k=1,...,n}, where
ar <bg,k=1,...,n. An interval is thus closed, and we say it has edges par-
allel to the coordinate axes. If the edge lengths by — ay are all equal, I will be
called an n-dimensional cube with edges parallel to the coordinate axes. Cubes
will usually be denoted by the letter Q. Two intervals I; and I, are said to be
nonoverlapping if their interiors are disjoint, that is, if the most they have in
common is some part of their boundaries. A set equal to an interval minus
some part of its boundary will be called a partly open interval. By definition,
the volume v(I) of the interval I = {(x1,...,x,) : ay <xx <b,, k=1,...,n}is

o) = [ ] ok — ap).
k=1

Somewhat more generally, if {e}}/_ is any given set of 1 vectors emanat-
ing from a point in R™, we will consider the closed parallelepiped

n
P={x:x=) te,0 <t <1}
k=1

Note that the edges of P are parallel translates of the e;. Thus, P is an interval
if the ey are parallel to the coordinate axes. The volume v(P) of P is by defini-
tion the absolute value of the n x nn determinant having ey, ..., e, as rows.* In
case P is an interval, this definition agrees with the one given earlier. A lin-
ear transformation T of R™ transforms a parallelpiped P into a parallelpiped

* See, for example, G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, 3rd ed., Macmillan,
New York, 1965, Theorem 8, p. 290.
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P’ with volume v(P') = |det T|v(P).* In particular, a rotation of axes in R™
(which is an orthogonal linear transformation) does not change the volume of
a parallelepiped. We will assume basic facts about volume: for example, if N
is finite and P is a parallelepiped with P C Ull\’ I, then v (P) < le\] v(Iy), and
if (It} are nonoverlapping intervals contained in a parallelepiped P, then
Y10l < o(P).

We shall use the notion of interval to obtain a basic decomposition of open
sets in R™. We consider first the case n =1, which is somewhat simpler than
n>1.

Theorem 1.10 Every open set in R can be written as a countable union of disjoint
open intervals.

Proof. Let G be an open set in RL. For x € G, let I, denote the maximal open
interval containing x which is in G; that is, I, is the union of all open intervals
that contain x and that lie in G. If x,x’ € G and x #x/, then I, and I, must
either be disjoint or identical, since if they intersect, their union is an open
interval containing x and x’. Clearly, G = (J,c¢ Ix. Since each I, contains a
rational number, the number of distinct I, must be countable, and the theorem
follows.

The construction used in this proof fails in R™ if n > 1, since the union of
(overlapping) intervals is not generally an interval. The theorem itself fails
when 1 > 1, as is easily seen by considering any open ball. As a substitute,
we have the following useful result.

Theorem 1.11 Every open set in R™, n > 1, can be written as a countable union of
nonoverlapping (closed) cubes. It can also be written as a countable union of disjoint
partly open cubes.

Proof. Consider the lattice of points of R™ with integral coordinates and the
corresponding net K of cubes with edge length 1 and vertices at these lattice
points. Bisecting each edge of a cube in Ky, we obtain from it 2" subcubes
of edge length % The total collection of these subcubes for every cube in Kj
forms a net Kj of cubes. If we continue bisecting, we obtain finer and finer
nets K; of cubes such that each cube in K has edge length 27/ and is the union
of 2" nonoverlapping cubes in Kj 1.

Now let G be any open set in R™. Let Sg be the collection of all cubes in Ky
that lie entirely in G. Let S1 be those cubes in Kj that lie in G but that are not

* See, for example, G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra, 3rd ed., Macmillan,
New York, 1965, Theorem 9, p. 290.
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subcubes of any cube in Sp. More generally, for j> 1, let S; be the cubes in K;
that lie in G but that are not subcubes of any cube in S, ... ., Sj-1. If S denotes
the total collection of cubes from all the Sj, then S is countable since each Kjis
countable, and the cubes in S are nonoverlapping by construction. Moreover,
since G is open and the cubes in K; become arbitrarily small as j — oo, each
point of G will eventually be caught in a cube in some S;. Hence, G= Jgcs Q,
which proves the first statement. The proof of the second statement is left to
the reader.

The collection {Q: Q € K;, j=1,2,...} constructed above is called a family
of dyadic cubes. In general, by dyadic cubes, we mean the family of cubes
obtained from repeated bisection of any initial net of cubes in R". Note that
the family of dyadic cubes used in the proof of Theorem 1.11 could be replaced
by one in which the initial net consists of cubes of any fixed edge length.

It follows from Theorem 1.10 that any closed set in R! can be constructed by
deleting a countable number of open disjoint intervals from R!. A perfect set
results by removing the intervals in such a way as to create no isolated points;
thus, we would not remove any two open intervals with a common endpoint.

1.4 Compact Sets and the Heine-Borel Theorem

By a cover of a set E, we mean a family .% of sets A such that E C (J,p A. A
subcover #1 of a cover . is a cover with the property that A; € .# whenever
A1 € #1. A cover Z is called an open cover if each set in .# is open. We say
E is compact if every open cover of E has a finite subcover. Two equivalent
statements, whose proofs are left as exercises, are as follows.

Theorem 1.12

(i) (The Heine—Borel theorem) A set E C R™ is compact if and only if it is closed
and bounded.

(ii) A set E C R™ is compact if and only if every sequence of points of E has a
subsequence that converges to a point of E.

We leave it as an exercise to show that the distance between two nonempty,
compact, disjoint sets is positive and that the intersection of a countable
sequence of decreasing, nonempty, compact sets is nonempty. Thus, a
nested sequence of closed intervals has a nonempty intersection. See also
Exercise 12.

With these facts, we can now prove Theorem 1.9.
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Proof of Theorem 1.9.  Let C be a perfect set in R", and suppose that C is count-
able: C={cx}p2 ;. Let Cx=C — {cr}, k> 1. Given x; € Cy, let Q1 be a (closed)
cube with center x; such that ¢; ¢ Q;. Then Q; N C is compact (closed and
bounded) and not empty. Since x; € C and C is perfect, x; is a limit point of
C and so also of C;. It follows that C; N Qf is not empty. Let x € C2 N QF
and choose a cube Q, with center x; such that Q, € Qp and ¢ ¢ Q,. Then
Q2 N Cis a compact, nonempty subset of Q1 N C. Continuing in this way, we
obtain a decreasing sequence Qx N C of compact, nonempty sets such that
¢k ¢ Qk. It follows that (), (Qx N C) is a nonempty subset of C that contains no
k. This contradiction proves that C must be uncountable and establishes the
theorem.

1.5 Functions

By a function f =f(x) defined for x in a set E C R", we will always mean
a real-valued function, unless explicitly stated otherwise. By real-valued, we
generally mean extended real-valued, that is, f may take the values %oo; if
|f(x)| < + oo for all x € E, we say f is finite (or finite-valued) on E. A finite
function f is said to be bounded on E if there is a finite number M such that
|f(x)| <M for x€E; that is, f is bounded on E if sup,cg |f(x)| is finite. A
sequence {fx} of functions is said to be uniformly bounded on E if there is a
finite M such that |fx(x)] < M for x € E and all k.

By the support of f, we mean the closure of the set where f is not zero. Thus,
the support of a function is always closed. It follows that a function defined
in R™ has compact support if and only if it vanishes outside some bounded set.

A function f defined on an interval I in R! is called monotone increasing
(decreasing) if f(x) < f(y) [f(x) = f(y)] whenever x <y and x,y € I. By strictly
monotone increasing (decreasing), we mean that f(x) <f(y) [f(x) >f@)] if
x<yandx,yel

Let f be defined on ECR™ and let xo be a limit point of E. Let
B'(x0; 8) = B(x0; 8) — {xo} denote the punctured ball with center xg and radius
5, and let

M(xp; 0) = su x), m(xp; d) = inf (x).
0 xeB/(XOI;)é)ﬁE f 0 xeB’(xg;0)NE f

As 6\ 0, M(xg; d) decreases and m(xp; d) increases, and we define

limsup f(x) = lim M(xo; ),
x—Xq;XEE 50
liminf f(x) = lim m(xp; d).
X—Xq;X€E 5—0

(1.13)
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We leave it as an exercise to show that the following characterizations
are valid.

Theorem 1.14

(@) M = limsupy_,x,xer f(X) if and only if (i) there exists {x¢} in E—{xo} such
that xx — xo and f (xg) — M and (ii) if M’ > M, there exists & > 0 such that
f(x) <M forx e B'(xp; 8) NE.

(b) m= liminfy_.x,xer f(X) if and only if (i) there exists {x;} in E—{xq} such
that x, — xo and f(xx) — m and (ii) if m’" < m, there exists 6 > 0
such that f(x) > m’ for x € B'(xg; 8) N E.

We also define lim sup |, so:xeg f(X) and lim inf x| coxeE f (X). For example,
M = lim supjy|_, oo;xe£ f(x) means (i) there exist {x¢} in E such that |x¢| — oo
and f (x¢) > M and (ii) if M’ > M, there exists N such that f(x) < M’ if |x| > N
and x € E. These notions should not be confused with lim supy._, ., fx(x) and
lim infy_, 5 fx(X), which denote the lim sup and lim inf of the sequence {f(x)}.

1.6 Continuous Functions and Transformations

A function f defined in a neighborhood of x is said to be continuous at xg if
f(xg) is finite and limy_, x, f (x) =f (xg). If f is not continuous at x, it follows
that unless f(xg) is infinite, either limy_x, f(x) does not exist or is different
from £ (xo).

For functions on R?, we will use the notation

fxo+H) = lim JCof(x) and f(xp—) = lm f(x)

X—>X0;X> X—>X(;X<X0

for the right- and left-hand limits of f at xp, when they exist. If f(xo+), f(xo—),
and f (xo) exist and are finite, butf is not continuous at xo, then either f (xo+) #
f(xo—) or f(xo+) =f(xo—) # f(x0). In the first case, x is called a jump disconti-
nuity of f and in the second, a removable discontinuity of f (since by changing
the value of f at xp, we can make it continuous there). Such discontinuities
are said to be of the first kind, as distinguished from those of the second kind,
for which either f(xp+) or f(xp—) does not exist or for which f(xo+), f(xo—)
or f(xp) is infinite.

If f is defined only in a set E containing xp, E CR", then f is said to be
continuous at xo relative to E if f(xg) is finite and either xg is an isolated point
of E or X is a limit point of E and limy_,x,;xeE f(X) =f(x0). If E1 C E, a function
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is said to be continuous in Eq relative to E if it is continuous relative to E at every
point of E1. The proofs of the following basic facts are left as exercises.

Theorem 1.15 Let E be a compact set in R™ and f be continuous in E relative
to E. Then the following are true:

(i) f is bounded on E; that is, supycg |f (x)| < oo.
(ii) f attains its supremum and infimum on E; that is, there exist x1,xp € E such
that f(x1) = supyeg f(X),f(x2) = infxep f(X).
(iil) f is uniformly continuous on E relative to E; that is, given ¢ > 0, there exists
5 > Osuch that |f(x) — f(y)l < eif|[x—y| < dand x,y € E.

A sequence of functions {f;} defined on E is said to converge uniformly on E
to a finite f if given & > 0, there exists K such that |f;(x) — f(x)| < € for k > K
and x € E. We will use the following fact, whose proof is again left to the
reader.

Theorem 1.16  Let {fi} be a sequence of functions defined on E that are continuous
in E relative to E and that converge uniformly on E to a finite f. Then f is continuous
in E relative to E.

A transformation T of a set E C R™ into R™ is a mapping y = T'x that carries
points x € E into points y € R™. If y=(y1,...,y»), then T can be identified
with the collection of coordinate functions yx =fx(x), k=1, ...,n, which are
induced by T. The image of E under T is the set {y: y=Tx for some x € E}. T
is continuous at xp € E relative to E (by which we mean limy_, xy;xer TXx = Txp)
if and only if each fy is continuous at x¢ relative to E. We will use the following
result in Chapter 3.

Theorem 1.17 Let y=Tx be a transformation of R™ that is continuous in E
relative to E. If E is compact, then so is its image TE.

1.7 The Riemann Integral

We shall see that the Lebesgue integral is more general than the Riemann
integral, in the sense that whenever the Riemann integral of a function exists,
then so does its Lebesgue integral, and the two are equal (Theorem 5.52).



Preliminaries 13

The Riemann integral is nonetheless useful, its significance being simplicity
and computability.

If f is defined and bounded on an interval I ={x : x=(x1, ..., %),k < X; <
by, k=1,...,n}in R", its Riemann integral will be denoted by

by by

(R) f ...ff(xb. .., Xp)dxq - - -dx, or (R) jf(x)dx (1.18)
a an I

and is defined as follows. Partition I into a finite collection I' of nonover-
lapping intervals, I' = {Ik}szl, and define the norm |T'| of T by |T'| = max
(diam Ix). Select a point & in I for k > 1, and let

N
Rr=Rr(&1,...,&n) = Y _f(EDvy),

N k=1 N (1.19)

Ur =) [supfolo(y), Lr= Z[iglif(x)]vak).

k=1 x€ly k=1

We then define the Riemann integral by saying that A= (R)[,f(x)dx if
limr oRr exists and equals A; that is, if given ¢ > 0, there exists 5 > 0 such
that |[A — Rr| < ¢ for any I" and any chosen {&;}, provided only that |[I"| < 9.
This definition is actually equivalent to the statement that

irl}f Ur = supLp = A. (1.20)
r

The integral of course exists if f is continuous on I. Proofs of these facts are
left as exercises; the treatment given in Chapter 2 for the Riemann-Stieltjes
integrals should serve as a review for many facts about Riemann integrals.
See also Theorem 5.54.

Exercises

1. Prove the following facts, which were left earlier as exercises.
(a) For a sequence of sets {Ex}, limsup Ey consists of those points that
belong to infinitely many Ej, and lim inf Ej consists of those points
that belong to all Ex from some k on.

(b) The De Morgan laws.

(c) Every Cauchy sequence in R™ converges to a point of R". (This can
be deduced from its analogue in R! by noting that the entries in a
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given coordinate position of the points in a Cauchy sequence in R"
form a Cauchy sequence in R1.)

(d) Theorem 1.4.

(e) A sequence {a;}in R? converges to a, —oo < a < +oo, if and only if
lim supy_, o x = liminfy_, o ax =a.

(f) B(x;b) is open.

(g) Theorem 1.5.

(h) Theorems 1.6 and 1.7.

(i) Theorem 1.8.

() Any closed (open) setin R™ is of type G5 (F). (If F is closed, consider
the sets {x : dist(x,F) < (1/k)}, k=1,2,....)

(k) Theorem 1.12.

(I) The distance between two nonempty, compact, disjoint sets in R is
positive. See also Exercise 12.

(m) The intersection of a countable sequence of decreasing, nonempty,
compact sets is nonempty.

(n) Theorem 1.14.
(o) Theorem 1.15.
(p) Theorem 1.16.
(q) Theorem 1.17.

(r) The Riemann integral A= (R) fl f(x) dx of a bounded f over an inter-
val I exists if and only if infr Ur = supp Lr = A.

(s) If f is continuous on an interval I, then (R) [; f (x) dx exists.

2. Find limsup Ex and liminf Ex if Ex=[—(1/k),1] for k odd and Ej=
[—1, (1/k)] for k even.

3. (a) Show that C(lim sup Ex) = lim inf CE.
(b) Show thatif Ex  E or Ex ~\( E, then limsup Ex = liminf Ex = E.
4. (a) Show that lim supy_, oo (—ax) = — lim infy_, o, a.

(b) Show that limsupy_, o, (@x + bx) < limsup_ o ax + limsupy_, o bk,
provided that the expression on the right does not have the form
00 + (—00) or —o0 + 0.
(c) If {a} and {b;} are nonnegative, bounded sequences, show that
lim supy_, oo (axbx) < (lim supy_, o a) (lim supy_, o by)-
(d) Give examples for which the inequalities in parts (b) and (c) are not
equalities. Show that if either {a;} or {bx} converges, equality holds
in (b) and (c).
5. Find analogues of the statements in Exercise 4 for lim supy_, x .xeg f(X)-
6. Compare lim supy._, . 4 and lim sup(—oo, a).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Show that Ef N E; = (E1 NE2)° and E; UES C (E1 UE3)°. Give an example
when E{ U E3 # (E1 U Ep)°.

Let E be a set in R" that is relatively open with respect to an interval
I. Show that E can be written as a countable union of nonoverlapping
intervals.

Prove that any closed subset of a compact set is compact.

Let {x;} be a bounded infinite sequence in R™. Show that {x} has a limit

point. (This is the Bolzano—Weierstrass theorem in R™.)

Give an example of a decreasing sequence of nonempty closed sets in R"

whose intersection is empty.

(a) Give an example of two disjoint, nonempty, closed sets E1 and E; in
R™ for which d(E1, E;) =0.

(b) Let Ej, E; be nonempty sets in R™ with E; closed and E; com-
pact. Show that there are points x; € E; and x, € Ej such that
d(E1, E2) =|x1 — x2|. Deduce that d(E;, E7) is positive if such Eq, Ep
are disjoint.

If f is defined and uniformly continuous on E, show there is a function

f defined and continuous on E such that f =f on E.
If f is defined and uniformly continuous on a bounded set E, show that
f is bounded on E.

Show that a bounded f is Riemann integrable on I if and only if given

e > 0, there is a partition I' of I such that 0 < Ur — Lr < ¢. (Exercise 1(r)

may be helpful.)

If {f¢} is a sequence of bounded, Riemann integrable functions on an inter-

val I that converges uniformly on I to f, show that f is Riemann integrable

on [ and that

(R)f Fex) dx — (R)f F(x) dx.
1 I

Let f be a finite function on R™ and define

w(®) = sup{[f(x) —f(y)|: |[x—y| <8},

5 > 0, to be the modulus of continuity of f. Show that w(8) decreases as 6
decreases to 0 and that f is uniformly continuous if and only if w(8) — 0
as 6 — 0.

Let F be a closed subset of (—o0, +00), and let f be continuous relative to
F. Show that there is a continuous function g on (—oo, +00) which equals
finF. If | f(x)] < Mforx € F, show that g can be chosen so that |[g(x)| < M
for —oo < x < 400. (This is the Tietze extension theorem for the real line.)
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20.

21.

22,

Measure and Integral: An Introduction to Real Analysis

Prove the following special case of the Baire category theorem: the
intersection of a countable number of open dense sets in R! is dense in R!.

Show that the irrational numbers form a set of type G5, but that the
rational numbers do not. (For the second part, it is possible to argue by
contradiction, using the first part and the result in Exercise 19.)

Construct a set in R! that is neither of type Gs nor of type F. (Consider
the union of the negative rationals and the positive irrationals, and use
facts from Exercise 20.)

For an integer k=1, ...,n and a real number «, consider the hyperplane
H={x=(x1,...,x5) : xx = ot}. Show that for every ¢ > 0, there is a collec-
tion {Q; }]?":’ , of cubes in R™ with edges parallel to the coordinate axes such

that HC (JQj and ) 0v(Q)) < ¢. (Using the terminology of Chapter 3, it
follows that H has outermeasure 0 in R™.)



2

Functions of Bounded Variation and
the Riemann—Stieltjes Integral

In the chapters ahead, we will study the Lebesgue integral. In this chapter,
we introduce the Riemann-Stieltjes integral and, as a natural preliminary
step, study functions of bounded variation. The justification for doing so
is that Lebesgue integration is intimately connected with Riemann-Stieltjes
integration, although this is not apparent from the definitions. We shall see in
Theorem 5.43 that Lebesgue integrals can be represented as Riemann-Stieltjes
integrals.

2.1 Functions of Bounded Variation

Let f(x) be a real-valued function that is defined and finite for all x in a closed
bounded interval a < x < b. Let

I''={xg,x1,...,Xm}
be a partition of [a,b]; that is, T is a collection of points x;, i=0,1,...,m,

satisfying xo = a, x,, = b, and x;_1 < x; fori = 1,...,m. With each partition
I', we associate the sum

m
Sr =Srif;a,bl= > |f(x;) — f(xi1)l.
i=1
The variation of f over [a, b] is defined as

V =V|f;a,b] =supSr,
r

where the supremum is taken over all partitions I' of [a,b]. The varia-
tion V[f;a,b] will sometimes also be denoted by VI[a,b] or V(f). Since
0<Sr<+4o0, wehave 0 < V < 400. If V < +o00,f is said to be of bounded
variation on [a, b]; if V = +oo,f is of unbounded variation on [a, b].

17
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We list several simple examples.

Example 1 Suppose f is monotone in [a, b]. Then, clearly, each Sr equals

|f(b) — f(a)|, and therefore V = |f(b) — f(a)|.

Example 2 Suppose the graph of f can be split into a finite number
of monotone arcs; that is, suppose [4,b] = Ule [ai,ai+1] and f is mono-
tone in each [4;,4;11]. Then V = Zi-(:llf(ﬂi+1) — f(a;)|. To see this, we use
the result of Example 1 and the fact, to be proved in Theorem 2.2, that
V=Via,bl=Y"* Vg, a;1].

Example 3 Let f be defined by f(x) = 0 when x # 0 and f(0) = 1, and
let [a,b] be any interval containing 0 in its interior. Then Sr is either 2 or
0, depending on whether or not x = 0 is a partitioning point of I'. Thus,
Vlia,b] = 2.

IfT = {xo, x1,...,Xm} is a partition of [a, b], let |T'|, called the norm of T', be
defined as the length of a longest subinterval of I':

| = l’niaX (xi — xi_l) .

If f is continuous on [4,b] and {I‘j} is a sequence of partitions of [, b] with
IT'j| — 0, we shall see in Theorem 2.9 that V = lim; , o Sr i Example 3 shows
that this equality may fail for functions that are discontinuous even at a single
point: if we take f and [4, b] as in Example 3 and choose the I'j such that x = 0
is never a partitioning point, then lim S, =0, while if we choose the I'j such
that x =0 alternately is and is not a partitioning point, then lim Sr; does not
exist. See also Exercise 20.

Example 4 Letf be the Dirichlet function, defined by f (x) = 1 for rational x
and f(x) =0 for irrational x. Then, clearly, V[a, b] = +o0 for any interval [a, b].

Example 5 A function that is continuous on an interval is not necessarily
of bounded variation on the interval. To see this, let {7;} and {d;}, j=1,2,...,
be two monotone decreasing sequences in (0,1] with a; =1, limj,o0aj =
lim, dj =0and } d; = +o0. Construct a continuous f as follows. On each
subinterval [aj41, 451, the graph of f consists of the sides of the isosceles tri-
angle with base [aj;1,4;] and height d;. Thus, f(4;) =0, and if m; denotes the
midpoint of [aj;1,4;], then f(m;) = d;. If we further define f(0) = 0, then f is
continuous on [0,1]. Taking I'x to be the partition defined by the points 0,

{a]-}]l.(:ll ,and {m]-}]l.;l, we see that Sr, =2 Z};l d;. Hence, V[f;0,1] = 4o00. See

also Exercise 1.
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We mention here that there exist functions that are continuous on an interval
but that are not of bounded variation on any subinterval. See Exercise 26 of
Chapter 3.

Example 6 A function f defined on [a,b] is said to satisfy a Lipschitz
condition on [a,b], or to be a Lipschitz function on [a, b], if there is a constant
C such that

l[f(x) = f(y)] < Clx —y| for all x,y € [a, b].

Such a function is clearly of bounded variation, with V[f;a,b] < C(b — a). For
example, if f has a continuous derivative on [4, b], or even just a bounded
derivative, then (by the mean-value theorem) f satisfies a Lipschitz condition
on [a,b].

For more examples of functions of bounded variation, see the exercises at
the end of the chapter.

In the next two theorems, we summarize some of the simplest properties
of functions of bounded variation. The proof of the first theorem is left as an
exercise.

Theorem 2.1

(i) Iff is of bounded variation on [a, b], then f is bounded on [a, b].

(i) Let f and g be of bounded variation on [a,b]. Then cf (for any real constant c),
f + g and fg are of bounded variation on [a,b]. Moreover, f/g is of bounded
variation on [a, b] if there exists an € > 0 such that |g(x)| > € for x € [a, b].

Before stating the second result, we note that if Cisa refinement of T, that is,
if T contains all the partitioning points of I" plus some additional points, then
Sr < Sf. This follows from the triangle inequality and is most easily seen in
the case when T consists of all the points of I' plus one additional point. The
case of general I can be reduced to this simple case by adding one point at a
time to I'.

Theorem 2.2

(@) If [a,V] is a subinterval of [a,b], then V[a',bU'1<Vl(a,bl; that is, variation
increases with interval.

(i) If a<c<b, then Via,bl=Vla,cl+ Vic,b); that is, variation is additive on
adjacent intervals.
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Proof. (i) This follows easily from (ii), as the reader can check. A simple direct
proof based on adjoining the points a, b to generic partitions of [a’,b'] can also
be given.

(i) Let I=Ia,bl,I1=1la,cl,lr=[c,b],V=VIab], Vi=V]ac], and V=
Vlc, b]. If T'1 and T'; are any partitions of I; and I, respectively, then " =T'1UTI'p
isoneof I, and Sr[I] = Sr,[I1]1+45r,[I2]. Thus, S, [I1145r,[I2] < V. Therefore,
taking the supremum over I'1 and I'; separately, we obtain V1 + V, < V.

To show the opposite inequality, let " be any partition of I, and let T be T
with ¢ adjoined. Then Sr[I] < Si[I], and r splits into partitions I'y of I; and
I'; of I. Thus, we have

SrlI] < Sgl] = Sry 1] + Sr,[2] < V1 + Vo

Therefore, V < V1 + V3, which completes the proof of (ii).
For any real number x, define

= x ifx>0 = 0 ifx>0
“ o ifx<o, T —x ifx<0.

These are called the positive and negative parts of x, respectively, and satisfy
the relations

—x. (2.3)

Given a finite function f on [, b] and a partition I' = {x;}}" ; of [a, b], define
m
Pr = Prif;a,bl =Y [f(x) —f(xi-)1",
i=1

Nr = Nrlf;a,b]l =Y [f(x) —f(xi-D)] ™

i=1

Thus, Pr is the sum of the positive terms of Sy, and —Nr is the sum of the
negative terms of Sr. In particular, by (2.3), Pr > 0, Nr > 0,

Pr +Nr = Sr, (24)

P]“ — Nr Zf(b) —f(ll). (25)
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The positive variation P and the negative variation N of f are defined by
P = P[f;a,b] = sup Pr,
r

N = NIf;a,b] = supNr.
r

Thus, 0 < P,N < +o0.

Theorem 2.6 Ifany one of P, N, or V is finite, then all three are finite. Moreover,
we then have

P+N=V, P—-N=f(b) —f(a),

or equivalently
1 1
P=2V+fO) ~f@], N=3[V-f)+f@].

Proof. By (2.4), Pr+Nr <V, and therefore, since Pr and Nr are nonnegative,
P <V and N < V. In particular, P and N are finite if V is. By (2.4) again, St <
P + N and therefore V < P + N. If either P or N is finite, so is the other by
(2.5), and therefore so is V. This gives the first part of the theorem.

Now choose a sequence of partitions I'x so that Pr, — P. Let us show that
Nr, = Nand P — [f(b) — f(a)] = N. By (2.5), Nr, = Pr, — [f(b) — f(@)] —
P —[f(b) — f(a)], and since Nr, < N, it follows that P — [f(b) — f(a)] < N.
If P—[f(b) — f(@)] < N, there is, by definition of N, a partition I' with N >
P—[f()—f(@)]. Then Pr = Nr +[f(b)—f(a)] > P, which is impossible. Hence,
P —[f(b) — f@]1=N and Nr, — N. If N is finite, it follows that P — N =
fb) — f(a). Letting k — oo in the inequality Pr, + Nr, <V gives P+ N < V.
Since V < P 4+ N was shown earlier, we have V = P + N, and the theorem
follows.

Corollary 2.7 (Jordan’s Theorem) A function fis of bounded variation on [a, b]
if and only if it can be written as the difference of two bounded increasing functions
on [a,b].

Proof. Suppose f = fi — f», where f; and f, are bounded and increasing
on [a,b]. Then f; and f, are of bounded variation on [g, b], and therefore, by
Theorem 2.1(ii), so is f.

Conversely, suppose f is of bounded variation on [4, b]. By Theorem 2.2(i),
f is of bounded variation on every interval [4,x], 2 < x < b. Let P(x) and
N(x) denote the positive and negative variations of f on [4, x], respectively.
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By the analogue of Theorem 2.2(i) for P and N (see Exercise 3), it follows that
P(x) and N(x) are bounded and increasing on [a, b]. Moreover, by Theorem
2.6 applied to [, x], f(x) = [P(x) + f(@)] — N(x) whena < x < b. Since P(x) is
bounded and increasing, so is P(x) + f (a), and the corollary follows.

Note that since the negative of an increasing function is decreasing,
Corollary 2.7 may be rephrased to say that f is of bounded variation if
and only if it is the sum of a bounded increasing function and a bounded
decreasing function.

We remark here that there exist continuous functions of bounded variation
that are not monotone in any subinterval. See Exercise 27 of Chapter 3.

In the next theorem, we consider a continuity property of functions of
bounded variation. We recall from Chapter 1 that a discontinuity is said to
be of the first kind if it is either a jump or a removable discontinuity.

Theorem 2.8  Every function of bounded variation has at most a countable number
of discontinuities, and they are all of the first kind.

Here, if f is of bounded variation on [4, b], we can clarify what it means to
say thatf has a discontinuity of the first kind at the endpoints a, b by extending
the definition of f outside [a, b] by setting f(x) = f(a) if x < a and f(x) = f(b)
if x > b and then using the usual notion.

Proof. Let f be of bounded variation on [a, b]. Suppose first that f is bounded
and increasing on [, b]. Then the only discontinuities of f are of the first kind;
in fact, they are all jump discontinuities. If D denotes the set of all discon-
tinuities of f, then D = [JiZ{x : f(x+) — f(x—) > 1/k}. Since f is bounded,
each set on the right is finite (or empty); therefore, D is countable. The general
case follows from this by using Corollary 2.7. Note that removable disconti-
nuities may arise by subtracting monotone functions; for example, consider
the function f in Example 3 and the corresponding monotone functions P(x)
and N(x). See also Exercise 25.

We now discuss a property of the variation of a continuous function. See
also Exercise 20.

Theorem 2.9  Iffis continuous on [a,b], then V = limr|.o Sr; that is, given M
satisfying M <V, there exists & > 0 such that Sr > M for any partition T of [a, b]
with |[T| < 9.

Proof. We remind the reader of the discussion following Example 3. Given
Mwith M <V, we must find 8 > 0 so that Sy > M if |["| < 3. Select u > 0 such
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that M+ < V, and choose a fixed partition ' = {¥; };‘:O such that Sp > M+ p.
Using the uniform continuity of f on [4, b], pick n > 0 such that

(i) [f() —fOND] < w/[2(k+ D] if [x — x| <.

Now let I' be any partition that satisfies

(ii) I <m,
(iii) |F| < min]- (J_C] — J_C]'_1) .

We claim that Sr > M, from which the theorem will follow by choosing 6 to
be the smaller of n and min;(¥; — Xj—1). Write I' = {x;}{” ; and

Sr= Y 1) —feil =Y+,

i=1

where >" is extended over all i such that (x;_1, x;) contains some X;j. By (iii),
any (x;_1,x;) can contain at most one X;, and therefore the number of terms
of Y"isat most k + 1. Let I' U T denote the partition formed by the union of
the points of I' and T'. Then I UT is a refinement of both I" and T'. Moreover,
Srur = 2 + Y., where £” is obtained from X" by replacing each term by
|f(xi) = f I+ (X)) — f(xi-1)], Xj being the point of I" in (x;_1, x;). By (i) and
(ii), each of these two terms is less than p/[2(k + 1)], and therefore

ko
20 +1)

Y <2k+1) "

Hence,

Z/ = Srur — ZW > Spup — W

so that Sp > Sy r — i Since ' UT is a refinement of T', S 5 > Sr. This gives
Sr > S — u > M and completes the proof.

Corollary 2.10  If f has a continuous derivative f' on [a, b], then

b b b
V=ﬂﬂﬂ,P=fMﬁM,N=erm
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Proof. By the mean-value theorem,

Sr =Y 1fe) —fximD)| = DI (EDI(xi — xi_1)

i=1 i=1

for appropriate &; € (x;_1,x;),i = 1,...,m. Hence, by Theorem 2.9,

T'|—0 T'|—0

m b
V= lim Sr = lim 3 |f'E)|6 - x1) = [ [F/0)ldx,
i=1 a

by definition of the Riemann integral. Moreover, by Theorem 2.6,

b b
P= %[v +fb) — f@)] = % [j If ()l dx + aff%x) dx}

b b
1
= Ej [If )]+ f'(x) ]dx = f [f' (o)1 dx.

a

The formula for N follows similarly from the fact that

1
N =1V —f®) +f @]

For an extension of Corollary 2.10, see Theorem 7.31. See also Exercise 22 of
Chapter 7.

In passing, we note that there are notions of bounded variation for open
or partly open intervals, as well as for infinite intervals. Suppose, for exam-
ple, that (4,b) is a bounded open interval. Let [4/,0'] C (4,b), and define
Ve(@a,b)=1mV[a', V] as a’ —a and ' - b. If V°(@a,b) <+ oo, we say f is
of bounded variation on (a,b). Similarly, if f is defined on (—o0,+00), let
V(—o00,+00) = lim V[a,b] asa — —oo and b — +o0. Analogous definitions
hold for [a, D), (a, +00), [a, +00), etc. See Exercise 8.

We may also consider the notion of bounded variation for complex-valued
f defined on an interval. The definition is the same as for the real-valued case,
and we leave it to the reader to show that a complex-valued f is of bounded
variation if and only if both its real and imaginary parts are as well.
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2.2 Rectifiable Curves

As an application of the notion of bounded variation, we shall discuss its
relation to rectifiable curves (initially, those in the plane). A curve C in the
plane is two finite real-valued parametric equations

JrEe® oy 2.11)
y=1y)

The graph of Cis {(x,y) : x = (t),y = P(t), a < t < b}. The graph may have
self-intersections and is not necessarily continuous or bounded. We think of
the curve itself as the mapping of [a, b] onto the graph.

LetI' ={a =1ty <t <--- <ty = b} be a partition of [g,b], and consider
the corresponding points P; = (¢(¢t;), b (t;)),i =0,1,...,m, on the graph of C.
Draw the polygonal (broken) line connecting Py to Py, P to Py,...,Py—1 to
P, in order, and let

Ir) = ij (16 @ — & (6 P+ [0 0 b (1))

denote its length. The length L of C is defined by the equation

L=L(C) =supl('). (2.12)
r

Thus, 0 < L < 4o0. If the graph of C is discontinuous, then as we move
along the graph, the length of every missing segment will contribute to L.
Moreover, the possibility that the graph may be traversed more than once,
that is, that the mapping t — (¢(#), P (t)),a < t < b, may not be one-to-one,
will add to L.

We say C is rectifiable if L < +o0.

Theorem 2.13  Let C be a curve defined by (2.11). Then C is rectifiable if and only
if both & and \p are of bounded variation. Moreover,

V), V) =L = V(D) + V().

Proof. We will use the simple inequalities

1/2
jal bl < (o +8%) " < lal + b
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for real a and b. Thus, if C is rectifiable and I = {¢#;} is any partition of [a, b],
the inequality

1) = Y ([0 @0 — o ()P + [0 60— ()P) - <L

implies Y~ | () — ¢ (ti—1)| < Land Y~ [ (t) — ¥ (t;i—1) | < L. Hence, V(¢),
V(@) < L. On the other hand, for any C,

) < Z b @) — b (tifl) |+ Z W) - (tifl) | < V(b)) + V).
Hence, L < V(¢) + V(), which completes the proof.

It follows that if ¢(t) is any bounded function that is not of bounded
variation on [g, b] (see Example 5 and Exercise 1), then the curve given by
x =y = ¢(f),a <t < b,isnot rectifiable, even though its graph lies in a finite
segment of the line y = x. Thus, the length of the graph of a curve is not
necessarily the same as the length of the curve.

In the special case that C is given by a function y =f(x), Theorem 2.13
reduces to the simple statement that C is rectifiable if and only if f is of
bounded variation.

Curves in R™ can be treated similarly, and we shall be brief. By a curve C in
R™, we mean a system x1 = ¢1(), ..., x, = ¢, (t), for t in some [a, b]. We con-
sider a partition I = {t;}" , of [a, b] and the length I(T") of the corresponding
polygonal line:

m m n 1/2
(r)= Zpi—lpi = Z (Z [d) () — b (fi—1)]2) .
i=1

i=1 \j=1

The quantity L = sup [(T") is called the length of C, and if L < +o00, C is said to
be rectifiable. As seen from the definition of I(I"), exactly as in the case n = 2,
C is rectifiable if and only if each ¢; is of bounded variation.

2.3 The Riemann-Stieltjes Integral

Let f and ¢ be two functions that are defined and finite on a finite interval
[,b]. UT ={a=xp < x1 < --- < x5 = b} is a partition of [a, b], we arbitrarily
select intermediate points {&;}}" ; satisfying x;_1 < &; < x; and write

Rr = Zf &) [d () — b (xi-1)] - (2.14)

i=1
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Rr is called a Riemann—Stieltjes sum for I' and of course depends on the points
&;, the functions f and ¢, and the interval [g, b], although we shall usually not
display this dependence in our notation.

If

I= lim Rr (2.15)
IT|—0

exists and is finite, that is, if given ¢ > 0 thereis a 6 > 0 such that |- Rr| < ¢
for any I' satisfying |I"| <& and for any choice of intermediate points, then
Iis called the Riemann—Stieltjes integral of f with respect to ¢ on [a, b] and denoted

b b
I= [ f@)doe) = fdb.

A necessary and sufficient condition for the existence of jab fdd is the fol-
lowing Cauchy criterion: given ¢ > 0, there exists 6 > 0 such that |[Rr —Rp/| <
eif ||, |T’| < 8. See Exercise 11.

We list four preliminary remarks about this integral.

1. If p(x) =x, fub fdd is clearly just the Riemann integral fab fdx. In this case,
Theorem 5.54 in Chapter 5 gives a necessary and sufficient condition on f
for the existence of the integral.

2. Iff is continuous on [4, b] and ¢ is continuously differentiable on [4, b], then

fab fdo = fﬂb f¢' dx. (See also Theorem 7.32.) In fact, by the mean-value
theorem,

Rr =Y fE) [0 )= (xii1)] =D _fE) O M) (xi —xi1),
with x;_1 < &;,m; < x;. Using the uniform continuity of ¢’, we obtain
lim““_)() Rr = fabfd)/ dx.
3. Let ¢(x) be a step function; that is, suppose there are points 4 = &y <

] < -+ < &y = bsuch that ¢ is constant on each interval (o;_1, ;).
Let

d(oi+) = lim dx), i=0,1,...,.m—1,
X— X+
and

d)((xl_) = ¥ hm_d)(x)/ i= 1/ ce.,m,
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denote the limits from the right and left at «;, and let d; = ¢(o;+) —

Pai—),i=1,...,m—1,dy = d(oxo+) — (exp), and dy = P(x) — P (X —)
denote the jumps of ¢. Then, for continuous f,

b m
[fdo =" f(and:

a i=0

The existence of the integral can be verified directly or by appealing to
Theorem 2.24. See also Exercise 29.

For example, if ¢ (x) is chosen to be the Heaviside function H(x) defined
by H(x) = 0 when x < 0 and H(x) = 1 when x > 0, then

1

| faH=f0

-1

if f is continuous at x = 0.

. In definition (2.15), no condition other than finiteness is imposed on f or
¢, but we shall see later that the most important applications occur when
¢ is monotone or, more generally, of bounded variation. We note now that

if fub fdo exists, then f and ¢ have no common points of discontinuity. To
prove this, suppose that both f and ¢ are discontinuous at x,a < ¥ <
b. Suppose first that the discontinuity of ¢ is not removable. Then there
is a fixed 1 > 0 such that, for every ¢ > 0, there exist points X; and X,
withX — £ <¥1 <X <X <X+ 5 and [p(X2) — p(X1)| >n. Let I = {x;} be a
partition of [a, b] with |I'| < ¢ such that x;,_1 = X1 and x;, = X, for some ij.
Choose a point &; € [x;_1, x;] for i # ig and two different points &;, and E;O in
[xi,—1,Xj,]. Let R be the Riemann-Stieltjes sum using &; in each [x;_1, x;],
and let R}, be the sum using &; in [x;_1, x;] for i # iy and &;0 in [xj,—1, X, 1.
Then, clearly,

IRr = Rp| = 1f (&) — F(Ei)1 1P (xi) — b (xip-1) |
>nlf (&) —f(&)I-

Since f is discontinuous at X, we can choose &;, and E;O subject to the restric-
tions earlier and such that | f(&;)) — f (E,;O)l > u for some p > 0 independent
of ¢. It follows that |[Rr — Rj-| exceeds a positive constant independent of
¢, contradicting the assumption that Rr — R — O as ||, |T’| — 0.

If the discontinuity of ¢ at X is removable, a similar argument can be
given. The main difference is that we consider I with X as a partitioning
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point x;, and argue for either [x;,_1, X] or [X, x;,41], depending on the nature
of the discontinuity of f at X. The arguments in the case where X is either a
or b are similar.

In the theorem that follows, we list some simple properties of the
Riemann-Stieltjes integral. The proofs are left as an exercise.

Theorem 2.16

@) If fab fdo exists, then so do fab cf db and J"ab f d(cd) for any constant c, and

b b b
J o= [faep) =c[fdo.

a a

(i) If jab frdd and J"ab f2dd both exist, so does fab (fi +f)dd, and
b b b
j i+f)dd = jfl dd + ffz dd.

(iii) If [7fddy and ["f ddpy exist, so does [ f d(dr + o), and

b b b
[Fd@r+ o) =[ fddr + [ fddn.

a

The additivity of the integral with respect to intervals is given by the
following result. See also Exercise 14.

Theorem 2.17 Iffff do exists and a < ¢ < b, then [, fdd and fchf d¢ both
exist and

b c b
[fdo = [fdo+ [fdo.

Proof. In the proof, Rr[a, b] will denote a Riemann-Stieltjes sum correspond-
ing to a partition I" of [4, b]. To show that [, f d¢ exists, it is enough to show
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that given ¢ > 0, there exists 5 > 0 so that if I'; and I'; are partitions of [a, c]
with |I'1], |T2| < §, then

IRr,[a,c] — Rr,la,cl| < e. (2.18)

Since fah f do exists, there is a 6 > 0 so that for any partitions Fi and I'; of [a, b]
with [T}|, || < &, we have

IR [a,b] = Ryla, b]| < e. (2.19)

Let I'1 and I'p be partitions of [a, c] with given sets of intermediate points.
Complete I'1; and T’z to partitions I'; and T} of [a,b] by adjoining the same
points of [c, b]; that is, let I'" be a partition of [c, b] and let Fi =M ur,r, =
[, UT". Select a set of intermediate points in [c, b] for I/, and let the interme-
diate points of I'] and I'; consist of these together with the sets for 'y and I'y,
respectively. Then

Ry la,b] = Rryla, c] + Rpv[c, b]
(2.20)
Rl‘é [a/ b] = RFZ [ar C] + RF/ [C/ b]

If we now assume that ||, |T"2| <d and choose I'V so that || <§, then
IT71,1T5] <8, and (2.18) follows from (2.19) by subtracting the equations
in (2.20).

The proof of the existence of jch fddo is similar. The fact that

b c b
[fap = [fdo+ [fdo

a

follows from (2.20). This completes the proof. See also Exercise 19.

The next result is the very useful formula for integration by parts.

Theorem 2.21  If fab f do exists, then so does fﬂh b df, and

b b
[fdo = f®o®) - F@d@] - [ ddf.
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Proof. LetT' ={a=xp<x1 <-- <Xy =b}and xj_1 < &; < x;. Then

Rr =) fE)[da)—b(xic)] =D fEId @) — D f(E) b (xi1)

i=1 i=1 i=1
m—1
= Zf(&»d:(xl) — Y F (&) & ()
i=1 i=0

=—Z¢<x1 f(&ir1) = f ED] +f Em) d) — f (E1) (@)

since x;; = band xyp = a. If we subtractand add ¢ (@)[f (&1) —f @)1+ S D) f(b) —
f(&n)] on the right side of the last equality and cancel like terms, we obtain
Rr = —Tr + [f()$ () — f(@)$(@)], where

Tr = Z & () [f (Eiv1) —f ED]+ 0@ [f (D) = f@] + b ®) [f(B) —f (&m)]-

Since the §; straddle the x; (successive E,;s may be equal), Tt is a Riemann-
Stieltjes sum for fab ¢ df. Observing that the roles of ¢ and f can be inter-
changed, and taking the limit as [I'| — 0, we see that Lb fdd exists if and

only if [* ¢ df exists and that ["fdd = [fB)D®) — f@d@)] — [° ddf. This

completes the proof.

Now let f be bounded and ¢ be monotone increasing on [a,b]. If I'=
{xl’}:‘io/ let

m; = inf f(x), Mj= sup f[f(x),

Xji-1 =X =X Xi_] <X <X

Lr = Zmi [& () — b (xiz1)],

i=1

Ur = iMi [¢ @) = & (xi-1)] -

i=1
Since —oo < m; < M; < 400 and ¢(x;) — d(x;_1) > 0, we see that

Lr < Rr < Ur. (2.22)
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Lr and Ur are called the lower and upper Riemann—Stieltjes sums for T, respec-
tively. The behavior of Lr and Ur is somewhat more predictable than that of
Rr, as we now show.

Lemma 2.23  Let f be bounded and ¢ be increasing on [a, b].

(i) If T is a refinement of T, then Ly > L and Uy < Ur.
(i) If T'1 and Ty are any two partitions, then Lr, < Ur,.

Proof. To see (i) for upper sums, suppose that I’ has only one point x" not
in I". If ¥’ lies between x;_1 and x; of ", then SUPpy, ¢ f (%), SuPpy 1 f(X) <M,
so that

sup f(x) [d(x) — b (xi-1)]

[xi—1,x']

+ supf(0) [d () — b (x) ] < Mi[d () — b (xi-1)] -

[x'xi]

Hence, Ur < Ur. Since I'’ can be obtained by adding one point at a time to
I', an extension of this reasoning proves (i) for upper sums. The argument for
lower sums is similar.

To show (ii), note that I'; UT; is a refinement of both I'; and I';. Hence, by
part (i) and (2.22), we obtain Ly, < Lr,ur, < Ur,ur, < Ur,, which completes
the proof.

We now come to an important result that gives sufficient conditions for the
existence of fab fdd. See also Exercise 23.

Theorem 2.24  If fis continuous on [a,b] and § is of bounded variation on [a, b],
then fab f do exists. Moreover,

b
[fde

< (sup|f|> Vid;a,b].
[a,b]

Proof. To prove the existence, we may suppose by Corollary 2.7 and Theorem
2.16(iii) that ¢ is monotone increasing. Then, by (2.22), Lr < Rr < Ur, and it
is enough to show that lim |0 Lt and lim|r_,o Ur exist and are equal. This
is clear if ¢ is constant on [a, b]. If ¢ is not constant, let I' = {x;} and note that
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given ¢ > 0, the uniform continuity of f implies there exists & > 0 such that
if IT'| < §, then M; — m; < ¢/[d(b) — ¢p(a)]. Hence, if [T'| < 6,

0<Ur—Lr= Z (M —m) [ (x) — b (xi-1)] < e (2.25)
Therefore,
|1li\r—r>10 (Ur —Lr) =0, (2.26)

and it is enough to show that limr|_,o Ur exists. This is immediate since oth-
erwise there would exist an ¢ > 0 and two sequences of partitions, {I';} and
{I"/}, with norms tending to zero such that Ur; — Uy > & Inview of (2.26),

we would then have, for k large enough, LF;@ — Url/{/ > ¢/2 > 0, contradicting
the fact that Lp» < Up» for any I'" and I'” (Lemma 2.23).

To complete the proof, note that the inequality |fab fddl < (sup@p If)
VId;a, b] follows from a similar one for Rr by taking the limit.

Combining Theorems 2.21 and 2.24, we see that fub f do exists if either f or
¢ is continuous and the other is of bounded variation.

Theorem 2.27 (Mean-Value Theorem) If f is continuous on [a,b] and ¢ is
bounded and increasing on [a, b], there exists & € [a, b] such that

b
[ Fdd = FEd®) ~ b@)].

a

Proof. Since ¢ is increasing, we have
(r[{;ibr]lf) [¢() — d@)] < Rr = (ﬁﬁ) [b®) — b@]
for any Rr. Since fab f dd exists (see Theorem 2.24), it must satisfy
b
(r{g;f) [bb) — d@)] < affdcb < (I};ﬁf) [bb) — d@].

The result now follows immediately from the intermediate value theorem
for continuous functions.
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In passing, we note that Riemann-Stieltjes integrals can also be defined, in
the improper sense, on open or partly open bounded intervals and on infinite
intervals. If f and ¢ are defined on (4, b), for example, let a <a’ <b’ <b and
define

oo free
a ySb @

provided the limit exists in the sense that it is independent of how 4’ — g and
V' — b. Similarly, let

+o00 b
J fab = tim_[fdo
—00 b—+o0 2

if the limit exists. Analogous definitions can be given for [a,b), (4, +00),
[a, +00), etc. See Exercise 24.

2.4 Further Results about Riemann-Stieltjes Integrals

We will discuss a variant of the definition of J:lb fdd in the case where f
is bounded and ¢ is increasing. Note that it then follows from part (ii) of
Lemma 2.23 that —oco < supp Lr < infr Ur < +o0. It is natural to ask if the

existence of fab fdd in this case is equivalent to the statement that

sup Lr = inf Uy, (2.28)
r r

which we know to be an equivalent definition in the case of Riemann inte-
grals (see (1.20)). Unfortunately, the answer in general is no, as the following
example shows. Let [a,b] = [—1,1] and

0 if —1<x<0
f(x)_il if 0<x<1,

0 if —1<x<0
o) = {1 i 0<x<l.
Since f and ¢ have a common discontinuity, Lll fdd does not exist. In fact, if

I straddles 0, that is, if x;,_1 <0 < x;, for some iy, then Rr =f(;,) for xj,_1 <
&iy < xj,. Hence, Rr may be 0 or 1 and thus cannot have a limit. On the other
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hand, it is easy to check that Ur = 1 for any I" and that Lr = 0if I" straddles 0
and Lr = 1 otherwise. Hence, neither limr|_,o Rr nor limr|_,¢ Lr exists, but
SuprLr = il‘lfrUr =1.

In the following two theorems, we explore relations between (2.15)
and (2.28).

Theorem 2.29  Let f be bounded and & be monotone increasing on [a, b]. If f: fdo
exists, then limr|—.o Lr and limr|—.o Ur exist, and

i Lr = lim Ur = supLr = inf Ur = j fdd.

Proof. We may assume that ¢ is not constant on [, b] since the result is obvi-

ous otherwise. Let I = fah fdd. By hypothesis, given € >0, thereisa 6 >0
such that | -Rr| < ¢ for any Rr with || < 8. Given " = {x;}]", with |[['| <,
choose &; and n; in [x;_1,x;],i =1,...,m, such that

0<M;—f(&) < and 0<f(m;)—m; <

£
dD(b) $(a) o) — d@)’

Let Rp. = Y f (&) [¢ (x) — ¢ (xi—1)] and RE = Y f ) [d (x)) — & (xi-1)] .-
Then |I R’ | <& |l =RY| <e¢,

0<Ur—Rp <)’ [ ) — ¢ (xim1)] =¢,

d)(b) $@)

and
€
0<R}-L —_— i) — i—1)| = €.
= Kp r = Z d)(b) — Cb(ﬂ) [d) (%) d)(xz l)] €
Combining inequalities, we obtain
[Ur —I| < |Ur —Rp|+ IRp —I| < e+ € =2¢
and

ILp —I| < |Lr —RL| + R} — 1] < e 4 € = 2e.
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Hence, lim|r|—,o Ur = limjr|— Lr = I. Since, by Lemma 2.23, Lt < suprLr <
infrUr < Ur, the theorem follows.

Theorem 2.30 Let f be bounded, and let & be monotone increasing and continuous
on [a,b]. Then limr|—.o Lr and limr|o Ur exist, and

lim Ly =supLp, lim Ur =inf Ur.
IT|—0 r IT|—0 r

In particular, if in addition supr Lr = infr Ur, then J;be do exists, and

b
5111er = 1rl}f Ur = affdd).

Proof. The proof is similar to that of Theorem 2.9. It is enough to show that
im0 Lr = supr Lr and lim|r|—.o Ur = infr Ur since the last assertion of
the theorem will then follow by (2.22). We will give the argument for the
upper sums; the one for the lower sums is similar. Let infr Ur = U. Given
e > 0, we must find § > 0 such that Ur < U+eif || < 8. Choose I' = (¥}
such that Ur < U + 5, and let M = supy,; | f|. By the uniform continuity of
¢, there exists 1 > 0 such that

, I3
[d(x) — d(x)| < m

if |x — x| <.
Now let I' = {x;}{” , be any partition for which |T'| <nand |T'| < min;(x; —
Xj_1). Itis enough to show that Ur < U + e. Write

m

Ur =Y Mo -0 @)=+,

i=1

where Y is as in the proof of Theorem 2.9. Then Up =Y +Y",
where >~ is obtained from Y " by replacing each of the terms M;[¢p(x;) —
b(xi—1)1 by

sup f() [ (%)) — & (xiz1)] + supf0) [b (x) — & (X)], (2.31)

[xi_l,y_c]'] [X/',x,‘]
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X; being the point of I in (x;_1, x;). Hence, Up — U r = Y. — Y. At least
one of SUD[y, | 5] f and SUDz, x;] f equals M;. If it is the first, the difference
between M;[d(x;) — (xi_1)] and (2.31) is easily seen to be

(M; — sup Hd(xi) — dx))].

(%]

If it is the second, the difference is

(Mi — sup HIIE) — dxi-1)].

[xi—1,%1

In either case, the difference is at most 2Me/[4(k + 1)M] = ¢/[2(k + 1)] in
absolute value. Hence, Ur — Up i < (k+ De/[2(k + 1)] = %e. Moreover,
Upr < Up < U+ %e. Therefore, Ur < U+ %H— %s = U+ ¢, and the theorem
follows.

Exercises

1.

Let f(x) = x sin (1/x) for 0 < x <1 and f(0) = 0. Show that f is bounded
and continuous on [0, 1], but that V[f;0,1] = +oco0.

Prove Theorem 2.1.

If [@/,V']is a subinterval of [a, b], show that P[4/, b'] < Pl[a,bland N[a’, V'] <
Nia, b].

Let {fx} be a sequence of functions of bounded variation on [g,b]. If
VIfr;a,b] < M < +oo for all k and if fy — f pointwise on [4, b], show
that f is of bounded variation and that V[f;a,b] < M. Give an example
of a convergent sequence of functions of bounded variation whose limit
is not of bounded variation.

Suppose f is finite on [g,b] and of bounded variation on every interval
[a+¢,b], € > 0, with V[f;a+¢,b] < M < 4o00. Show that V[f;a,b] < +o0.
Is V[f;a,b] < M? If not, what additional assumption will make it so?
Letf(x) = x%sin (1/x) for0 < x <1 and f(0) = 0. Show that V[f;0,1] <
+o00. (Examine the graph of f, or use Exercise 5 and Corollary 2.10.)
Suppose f is of bounded variation on [4, b]. If f is continuous at a point ¥,
show that V(x), P(x), and N(x) are also continuous at x. In particular, if f
is continuous on [g, b], then so are V(x), P(x), and N(x). (If ' = {x;}, note
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that V[x;_1,x;] — [f(xi—1) — f(x;))| < Vla,b] — Sr. Recall that Sr increases
when T’ is refined.)

8. The main results about functions of bounded variation on a closed
bounded interval remain true for open or partly open intervals and
for infinite intervals. Prove, for example, that if f is of bounded varia-
tion on (—oo, 4+00), then f is the difference of two increasing bounded
functions.

9. Let C be a curve with parametric equations x = ¢(t) and y = P(t), a
t<b.
(a) If ¢ and P are of bounded variation and continuous, show that L =
limm_)() I(F)
(b) If ¢ and P are continuously differentiable, show that L = fab (¢’ (t)]2+
[/ ()1 2dt.
10. If A7 < Ay < --- < Ay is a finite sequence and —co < s < 400, write
> ake~*M as a Riemann-Stieltjes integral. (Take f(x) = e™%, ¢ to be an
appropriate step function and [g, b] to contain all the A in its interior.)

IA

11. Show that J;Zb f d exists if and only if given € > 0, there exists > 0 such
that |[Rpr — Rp/| < e if [T, [T| < .

12. Prove that the conclusion of Theorem 2.30 is valid if the assumption that
¢ is continuous is replaced by the assumption that f and ¢ have no com-
mon discontinuities. (Instead of the uniform continuity of ¢, use the fact
that either f or ¢ is continuous at each point ¥; of I'".)

13. Prove Theorem 2.16.
14. Give an example that shows that for a <c<b, [, fd¢d and fcb fd¢o may

both exist but fab fdd may not. Compare Theorem 2.17. (Take [a,b] =
[-1,1], c =0, and f and ¢ as in the example following (2.28).)

15. Suppose f is continuous and ¢ is of bounded variation on [a, b]. Show
that the function P (x) = J;Zx fddo is of bounded variation on [g, b]. If g is

continuous on [4, b], show that fab gdp = fﬂb gf do.

16. Suppose that ¢ is of bounded variation on [g, b] and that f is bounded and
continuous except for a finite number of jump discontinuities in [a, b]. If
¢ is continuous at each discontinuity of f, show that fab fdd exists.

17. If ¢ is of bounded variation on (—oo, +00), f is continuous on (—oo, +00),
and limjy|— 400 f (x) = 0, show that fjocf fdo exists.

18. Letf(z) = Y rop 1k be a power series. Show that if ) |ag| < 400, then
f(z) is of bounded variation on every radius of the circle |z| = 1. (If, e.%.,
the radius is 0 < x < 1 and the g are real, then f(x) = ) a,jxk -> a, xt.)

19. Letf and ¢ be finite functions on [4, b]. If [4/, V'] C [a,b] and fab fdo exists,
show that ff, f do exists.
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20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Let f be finite on [a,b]. If lim o Sr[f;a,b] exists, show that it equals
VIf;a, bl

If V[$;a,b] = 400, show that there is a point xg € [a, b] such that either
VI, 11 =+ oo for every subinterval I of [, b] having xj as left-hand end-
point or V[$;I] = +oo for every subinterval I of [g,b] having xj as
right-hand endpoint. (Note that for any xg,4’, V" such thata <a’ < xp <
b <b, Vip;a, V'] < +oo if both V[d; ', x0], VId; x0,b'] < +00.)

If V[d;a,b] = +oo, show that there exist xg € [4,b] and a monotone
sequence {xx}{° in [a, b] such that x; — xo and Yo b (k1) — x| =
+00. (Use the results in Exercises 21 and 5.)

If V[d;a,b] = 400, show that there is a continuous f on [, b] such that
fab fdd does not exist. (Use the result in Exercise 22 together with the
following fact: if {o} is a sequence of positive numbers with ) og =
+00, then there is a sequence {¢x} of positive numbers with ¢ — 0 and
> egoy = 400.)

Let f be continuous and ¢ be of bounded variation on [, b], and recall
that the Riemann-Stieltjes integral fab fdd then exists by Theorem 2.24.
Show that lim¢_, ot f;“ fdd = 0if and only if either f(a) = 0 or ¢ is
continuous at a. Deduce that the formula fab fdd = lime_ o4 J:’Jr Sdo
may not hold.

Construct a bounded nondecreasing function on (—oo, c0) which is con-
tinuous at every irrational number and discontinuous at every rational
number. (Let {r¢};2, be an enumeration of the rational numbers and
consider the function f(x) = 3 ., < 27k)

Let f(x) = sinx. Sketch the graphs of its variations P(x), N(x), V(x) for
0 < x < 2w, and use Corollary 2.10 to find explicit formulas for these
variations on [0, 27].

If f is an even function on [—1,1], verify the formulas V[f;-1,1] =
Let f be Lipschitz continuous on an interval [4,b]. Show that
VIf;a,b] is strictly less than the length of the graph of f over
[a,b].

Use Theorem 2.17 to verify the formula for fab fdd given in remark 3 in
Section 2.3.

Let f and ¢ be real-valued functions on [a, b].

(a) If fab fdd exists and ¢ is not constant on any subinterval of [a, D],
show that f is bounded on [g, b].

(b) If fab fd¢ exists and ¢ is increasing, show that Lp < fab fdé < Ur for
every partition I' of [4,b], where Lr and Ur are the corresponding
lower and upper sums.
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31.

32.
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Show that for any real-valued function f on [4,b], the Riemann-
Stieltjes integral fab df exists and equals f(b) — f(a). If f exists and is
Riemann integrable on [4,b], show that fﬂb f(x)dx = fub df, and conse-
quently fab f'(x)dx =f(b) —f(a).

Let f be a function of bounded variation on an interval [g,b]. Show
that f is Riemann integrable on [4,b]. (This follows from Theorems

554 and 2.8, but it can be derived solely from the results in this
chapter.)
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Lebesgue Measure and Outer Measure

In this chapter, we will define and study the Lebesgue measure of sets in R".
This will be the foundation for the theory of integration to be developed later.
We will base the presentation on the notion of the outer measure of a set.

3.1 Lebesgue Outer Measure and the Cantor Set

We consider closed n-dimensional intervals I = {x: a; < x; < b]-, ji=1,...,n}
and their volumes v(I) = ]_[}1:1 (bj — a)). (See p. 7 in Section 1.3.) To define the
outer measure of an arbitrary subset E of R", cover E by a countable collection S
of intervals I, and let

o(S) = Z o(ly).

IkES
The Lebesgue outer measure (or exterior measure) of E, denoted |E|,, is defined by
|E|, = inf o(S), (3.1)

where the infimum is taken over all such covers S of E. Thus, 0 < |E|, < 4+00.

Theorem 3.2  For an interval 1, |I|, = v(I).

Proof. Since I covers itself, we have |I|, < v(I). To show the opposite inequal-
ity, suppose that S = {[}72, is a cover of I. Given ¢ > 0, let [} be an interval
containing Iy in its interior such that o(I})) < (1 + €)v(Iy). Then I C [, (I})°,
and since I is closed and bounded, the Heine-Borel Theorem 1.9 implies there
is an integer N such that I ¢ Y, I;. Therefore, v(I) < YN o(If) by a
basic property of the volume of intervals (see p. 8 in Section 1.3). Hence,
o) < (1+¢) Zszl v(lx) < (1+¢€)o(S). Since € can be chosen arbitrarily small,
it follows that v(I) < o(S) and, therefore, that v(I) < |I|,. This completes the
proof.

Note that the boundary of any interval has outer measure zero. Compare
Exercise 22 of Chapter 1.

41
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The following two theorems state simple but basic properties of outer
measure.

Theorem 3.3 IfE; C Ep, then |Eqle < |Ez|e.

The proof follows immediately from the fact that any cover of E; is also a
cover of Ej.

Theorem 3.4 IfE = | Ey is a countable union of sets, then |E|, < Y |Egle.

Proof. We may assume that |Ex|, < +oco foreachk =1,2,..., since otherwise
the conclusion is obvious. Fix ¢ > 0. Given k, choose intervals I;k) such that

Er C U]- I](k) and Z]- v(I;k)) < |Exle + €27%. Since E C U]-,k Ij(k), we have |E|, <
Z]-’k v(lj(k)) =>4 Z]- v ;k) ). Therefore,

Ele <Y (Exle+ €27 =) " |Exle + ¢,
k k

and the result follows by letting ¢ — 0.

We see in particular that any subset of a set with outer measure zero
has outer measure zero and that the countable union of sets with outer
measure zero has outer measure zero. Since any set consisting of a single
point clearly has outer measure zero, it follows that any countable subset of
R™ has outer measure zero. For example, the set consisting of all points each
of whose coordinates is rational has outer measure zero, even though it is
dense in R™.

There are sets with outer measure zero that are not countable. As an illus-
tration, we will construct a subset of the real line with outer measure zero
that is perfect, and therefore uncountable, by Theorem 1.9. Variants of the
construction and analogues for R",n > 1, are given in the exercises.

Consider the closed interval [0, 1]. The first stage of the construction is to
subdivide [0, 1] into thirds and remove the interior of the middle third; that
is, remove the open interval <%, %) Each successive step of the construction
is essentially the same. Thus, at the second stage, we subdivide each of the
remaining two intervals [0, %] and [%, 1] into thirds and remove the interiors,

(%, %) and (g, g) , of their middle thirds. We continue the construction for

each of the remaining intervals. The sets removed in the first three successive
stages are indicated in the following illustration by darkened intervals:
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The subset of [0, 1] that remains after infinitely many such operations is
called the Cantor set C: thus, if C; denotes the union of the intervals left at the
kth stage, then

c=ec (35)
k:1

Since each Cj is closed, it follows from Theorem 1.7 that C is closed. Note
that Cy consists of 2 closed disjoint intervals, each of length 37%, and that C
contains the endpoints of all these intervals. Any point of C belongs to an
interval in Cy for every k and is therefore a limit point of the endpoints of
the intervals. This proves that C is perfect. Finally, since C is covered by the
intervals in any Cy, we have |C|, < 2%3=k for each k. Therefore, |C|, = 0.

We now introduce a function associated with the Cantor set that will be
useful later. If Dy = [0,1] — Cy, then Dy consists of the 25 — 1 open intervals
I]]f (ordered from left to right as j proceeds from j = 1 to j = 2% — 1) removed
in the first k stages of construction of the Cantor set. Let f; be the continuous
function on [0, 1] which satisfies f¢(0) = 0, fr(1) = 1, fr(x) = jZ_k on I]k, j=

1,...,2F — 1, and which is linear on each interval of Cy. The graphs of f; and
f» are shown in the following illustration:

o
T

Ay
A

(S

o[

o
|~
o
Wl
Wl
ol
oo

—




44 Measure and Integral: An Introduction to Real Analysis

By construction, each f; is monotone increasing, fx+1 =fr on I]]f, ji=1...,

2k — 1, and Ifc — fir1l < 27k Hence, > (fx — fre1) converges uniformly
on [0, 1], and therefore {fx} converges uniformly on [0, 1]. Let f = limy_,  f-
Then f(0)=0,f(1)=1,f is monotone increasing and continuous on [0, 1],
and f is constant on every interval removed in constructing C. This f is
called the Cantor-Lebesgue function. Its graph is sometimes called the Devil’s
staircase.

The next two theorems give useful relations between the outer measure of
a set and the outer measures of open sets and Gs sets (see p. 6 in Section 1.3)
that contain it.

Theorem 3.6 Let E C R™. Then given ¢ > 0, there exists an open set G such that
E C Gand |G|, < |E|e + €. Hence,

|Ele = inf |Gle, (3.7)

where the infimum is taken over all open sets G containing E.

Proof. Given ¢ > 0, choose intervals [y with E C (g2 Ix and Y ;2 v(ly) <
|Ele+ %z. Let I} be an interval containing I in its interior (I})° such that v(I}) <
o) + 271G = UJ})°, then G is open and contains E. Furthermore,

oo oo

o0
1 1
IGle <Y o) <> vl +ey 2781 < |E + se+se=IEle+e.
k=1 k=1 k=1

This completes the proof.

Theorem 3.8 If E C R", there exists a set H of type Gg such that E C H and
|Ele = [Hle-

Proof. By Theorem 3.6, there is for every positive integer k an openset Gy O E
such that |Gk, < |Ele + 1/k. If H = (32 Gk, then H is of type Gs and H D E.

Moreover, for every k, |[E|. < |H|e < |Gkle < |E|. + 1/k. Thus, |E|. = |H|.. Note
that each |Gy, < o0 if |E|, < o0.

The significance of Theorem 3.8 is that the most general set in R™ can be
included in a set of relatively simple type, namely, G5, with the same outer
measure.

In defining the notion of outer measure, we used intervals I with edges
parallel to the coordinate axes. The question arises whether the outer mea-
sure of a set depends on the position of the (orthogonal) coordinate axes.
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The answer is no, and to prove this, we will simultaneously consider the
usual coordinate system in R™ and a fixed rotation of this system. Notions
pertaining to the rotated system will be denoted by primes. Thus, I’ denotes
an interval with edges parallel to the rotated coordinate axes, and |E|, denotes
the outer measure of a subset E relative to these rotated intervals:

|El, = inf ) " o(p), (3.9)

where the infimum is taken over all coverings of E by rotated intervals I;.
The volume of an interval is clearly unchanged by rotation. (See p. 8 in
Section 1.3.)

Theorem 3.10 |E|; = |E|, for every E C R™

Proof. We first claim that given I’ and ¢ > 0, there exist {I;} such that I’ C
U I, and Y o)) < v(I') + ¢. To see this, let I} be an interval containing I
in its interior such that v(I}) < v(I') 4 ¢. By Theorem 1.11, the interior of I}
can be written as a union of nonoverlapping intervals I;. Hence, I' C | I;.
Moreover, since the I; are nonoverlapping and U%i 111 C I for every positive
integer N, we have ) fi 1o < v(I}) by a property of volume listed on p. 8 in
Section 1.3. Therefore, ) | °,v(I)) < v(I}) < v(I') + ¢, which proves the claim.
A parallel result is that given I and ¢ > 0, there exist {I}} such that I c |J I
and ) o(l)) < o(l) + ¢.

Let E be any subset of R™. Given ¢, choose {Iy : k = 1,2,...} such that
EcU Ikand Y v(y) < |E|l.+ %5. For each k, choose {I,/(,l} such that [, C |, Il/c,l
and ) ; v(I,’(,l) <o) + €271, Thus,

/ 1
Y o) <> ol + SESIEl+e

k1 k

Since E C [y, I} ;, we obtain |E|, < |E|. + ¢. Hence, |E[, < |E|, and by symme-
try, |El; = |Ele.

For related results, see Exercise 22.

3.2 Lebesgue Measurable Sets

A subset E of R" is said to be Lebesque measurable, or simply measurable, if
given ¢ > 0, there exists an open set G such that

EcGand |G—E|, <¢.
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If E is measurable, its outer measure is called its Lebesgue measure, or simply
its measure, and denoted |E|:

|E| = |E|,, for measurable E. (3.11)

The condition that E be measurable should not be confused with the con-
clusion of Theorem 3.6, which states that there exists an open G containing E
such that |G|, < |E|, + €. In general, since G = E(J(G — E) when E C G, we
only have |G|, < |E|. + |G — E|¢, and we cannot conclude from |G|, < |E|, + ¢
that |G — E|, < ¢.

We now list two simple examples of measurable sets. A nonmeasurable
set will be constructed in Theorem 3.38.

Example 1 Every open set is measurable.
This is immediate from the definition.

Example 2 Every set of outer measure zero is measurable.
Suppose that |[E|, = 0. Then given ¢ > 0, there is by Theorem 3.6 an open G
containing E with |G| < |E|, + ¢ = ¢. Hence,

|G —Ele = |G| <.

Theorem 3.12  The union E = | J E of a countable number of measurable sets is
measurable, and

El <) |Exl.

Proof. Lete>0.Foreachk=1,2,...,choose an open set G such that Ex C Gy
and |Gy — Exle < €27%. Then G = |J Gk is open and E C G. Moreover, since
G — E Cc |J (Gx — Ex), we have

IG—Ele < | JG— E0| =) 1Gk—Edle <&

This proves that E is measurable. The fact that |E| < ) |Ei| follows from
Theorem 3.4.

Corollary 3.13  An interval I is measurable, and |I| = v(I).
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Proof. 11is the union of its interior and its boundary. Since its boundary has
measure zero, the fact that I is measurable follows from Theorem 3.12 and the
results of Examples 1 and 2. Theorem 3.2 shows that |I| = v(]).

Theorem 3.14  Every closed set F is measurable.

In order to prove this, we will use Theorem 1.11 and the next two lemmas.

Lemma3.15 If {Ik}kN:1 is a finite collection of nonoverlapping intervals, then | J I
is measurable and || Ix] = Y k|-

Proof. The fact that | Ix is measurable follows from Corollary 3.13. The rest
of the lemma is a minor extension of Theorem 3.2, and its proof is left as an
exercise. The reader should note the important role played by the Heine—
Borel theorem in the proof.

We recall from Chapter 1 that the distance between two sets E; and E; is
defined as d(E1, Ez) = inf{|X1 — X2| X1 € E],Xz S Ez}.

Lemma 3.16 Ifd(Eq,Ep) > 0, then |[E1 U Eale = |E1le + |E2le.

inequality, suppose ¢ > 0, and choose intervals {I;} such that E1 U E, C |J Ix
and ) |Ix] < |E1U Ez|. + €. We may assume that the diameter of each Iy is less
than d(E1, Ep). (Otherwise, we divide each I into a finite number of nonover-
lapping subintervals with this property and apply Lemma 3.15.) Hence, {I;}
splits into two subsequences {I; } and {I}, the first of which covers E; and the
second, E;. Clearly,

Proof. By Theorem 3.4, |E; U E|, < |Eile + |Ezle. To prove the opposite

|E1le + |E2le < D Il + D11 = |kl < |Eq1U Ele + e

Therefore, |E1]. + |E2|e < |E1 U Ej|e, which completes the proof.

A special case of this result will be used in the proof of Theorem 3.14. If
E; and E; are compact and disjoint, then d(Eq,E2) > 0 by Exercise 1(l) of
Chapter 1; therefore, |E; U Ez|, = |E1le + |Ez2le if E1 and E; are compact and
disjoint.

Proof of Theorem 3.14. Suppose first that F is compact. Given ¢ > 0, choose an
openset G such that F C Gand |G| < |F|,+¢. Since G—F is open, Theorem 1.11
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implies there are nonoverlapping closed intervals I,k = 1,2,..., such that
G—F = | Ik. Therefore, |G—F|, < Y |I¢|, and it suffices to show that ) |Ix| <
e. Wehave G =FU ((JIx) D FU (UkN:1 Iy) for every finite number {Ik}kl\]:1 of

the Ii. Therefore,
N N
FuU ( U 1k> < U 1k>
k=1 k=1

by Lemma 3.16, F and |}, I being disjoint and compact. Since | [}, Iile =
Zi\il |Ix| by Lemma 3.15, we obtain Zszl Ikl < |G| — |Fle < ¢ for every N,
so that ) |Ix] < ¢, as desired. This proves the result in the case when F is
compact.

To complete the proof, let F be any closed subset of R™ and write F = | J Fy,
where Fy = FN{x: |x| <k}, k =1,2,.... Each Fi is compact and, therefore,
measurable. Hence, F is measurable by Theorem 3.12.

IGl = = |Fle +

e e

Theorem 3.17  The complement of a measurable set is measurable.

Proof. Let E be measurable. For each positive integer k, choose an open set
Gy such that E € Gy and |Gg — E|, < 1/k. Since CGy is closed, it is measurable
by Theorem 3.14. Let H = | J; CGy. Then H is measurable and H C CE. Write
CE =HU Z,where Z = CE— H. Then Z C CE — CGy = Gy — E, and therefore
|Z|e < 1/k for every k. Hence, |Z|, = 0 and, in particular, Z is measurable.
Thus, CE is measurable since it is the union of two measurable sets.

The following two theorems are corollaries of Theorems 3.12 and 3.17.

Theorem 3.18  The intersection E = (), Ex of a countable number of measurable
sets is measurable.

Proof. Since Ej is measurable, CEy is measurable by Theorem 3.17. However,
CE = C(" Ex) = Uy CEk, and hence CE is measurable. Therefore, by another
application of Theorem 3.17, E is measurable.

Theorem 3.19  If Eq and Ey are measurable, then E1 — Ey is measurable.

Proof. Since E; — E; = E1 N CEy, the result follows from Theorems 3.17
and 3.18.

As a consequence of Theorems 3.12, 3.17, 3.18, and 3.19 it follows that the
class of measurable subsets of R™ is closed under the set-theoretic operations
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of taking complements, countable unions, and countable intersections. Such
a class of sets is called a o-algebra; that is, a nonempty collection ¥ of subsets
E of some universal set U is called a o-algebra of sets if it satisfies the following
two conditions:

(i) CEeXifEe x.

(i) Uy Exe DifFre S,k=1,2,....
Note that it follows from the relation C((); Ex) = Uy CEx that [ Ex € Zif
is a o-algebra and Ex € ¥,k = 1,2,.... Moreover, it is easy to see that if X is

a o-algebra, then the universal set U and the empty set ¥ belong to .

The following result is just a reformulation of Theorems 3.12 and 3.17.

Theorem 3.20  The collection of measurable subsets of R™ is a o-algebra.

Note, for example, that if {Ex};2, are measurable, then limsup Ex and
lim inf E; are measurable since

X o0 o0 0
limsup By = ()| JEx and liminf Ex = J( ) Ex.
j=1k=j j=1k=j

If 41 and %; are two collections of sets, we say that %) is contained in %
if every set in 4 is also in 6. If .% is a family of o-algebras ¥, we define
(Nxecz T tobe the collection of all sets E that belong to every X in .%. Itis easy
to check that (5. # X is itself a o-algebra and is contained in every X in .%.

Given a collection € of subsets of R", consider the family # of all
o-algebras that contain ¢, and let & = (5.4 =. Then & is the smallest
o-algebra containing ¢’; that is, & is a o-algebra containing ¢, and if ¥ is any
other o-algebra containing ¢, then X contains &.

The smallest o-algebra of subsets of R" containing all the open subsets of
R" is called the Borel o-algebra %8 of R", and the sets in % are called Borel
subsets of R™. Sets of type Fy, Gs, Fos5, Gso (see p. 6 in Section 1.3), etc., are
Borel sets.

Theorem 3.21  Every Borel set is measurable.

Proof. Let ./ be the collection of measurable subsets of R". By Theorem 3.20,
# is a o-algebra. Since every open set belongs to .#, and # is the smallest
o-algebra containing the open sets, % is contained in .#.

The converse of Theorem 3.21 is false: see Exercise 31.
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3.3 Two Properties of Lebesgue Measure

The next two theorems give properties of Lebesgue measure that are of
fundamental importance. To prove them, we first need the following char-
acterization of measurability in terms of closed sets.

Lemma 3.22 A set E in R" is measurable if and only if given e > 0, there exists
a closed set F C E such that |E — F|, < e.

Proof. E is measurable if and only if CE is measurable, that is, if and only if
given ¢ > 0, there exists an open G such that CE C G and |G — CE|, < e.
Such G exists if and only if the set F = CG is closed, F C E, and |[E — F|, < ¢
(since G—CE =E —F).

Theorem 3.23  If {Ey} is a countable collection of disjoint measurable sets, then

B =3 1B
k k

Proof. First, suppose each Ei is bounded. Given ¢ > Oand k = 1,2,...,
use Lemma 3.22 to choose a closed Fx C Ej with |[Ex — Fx| < €27%. Then
|Ex| < |Fy|+ €27k by Theorem 3.12. Since the Ej are bounded and disjoint, the
Fy are compact and disjoint. Therefore, by Lemma 3.16, | | J{_; Fx| = Yy |Fk|
for every finite number {Fy};L; of the Fy. The fact that Ukt Fr € Uy Ex then
implies that Y} ; |F| < | U Exl- Hence,

WUE = D IRl =) (Bl =27 =) IEd — ¢,
k k k k

so that | Uy Ex| = ) i |Ek|. Since the opposite inequality is always true, the
theorem follows in this case.

For the general case, let L,j = 12,..., be a sequence of intervals
increasing to R", and define 51 =1I; and Si=1l — i for j>2. Then the
sets Exj=Ex N S;,k,j=1,2,..., are bounded, disjoint, and measurable; Ex =
U;Ek; and UiEx = Uy, Ex,;- Therefore, by the case already established,

we have

ILkJEki = }yEk,j

k

=2 1Bkl =2 (Z |Ek,]~|) = [Exl.
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Corollary 3.24  If {Ii} is a sequence of nonoverlapping intervals, then || I| =
> gl

Proof. Ttis clear that | JIx| < ) |Ik|. On the other hand, the (Ix)° being dis-

joint, we have | ULl = [UWn°l = 2 1U)°1 = X lkl- Thus, [U Ikl = 3 Il
An alternate proof not using Theorem 3.23 can be obtained from Lemma 3.15.

Corollary 3.25 Suppose E1 and Ej are measurable, Ey C Eq, and |Ez| < +o0.
Then |E1 — E3| = |E1| — |E2].

Proof. Since E1 = E» U (E1 — Ep), Theorem 3.23 gives |E1| = |Ez| + |E1 — Ez.
The corollary now follows from the assumption that |E>| < +o0.

The second basic property of Lebesgue measure concerns its behavior for a
monotone sequence of sets.

Theorem 3.26  Let {Ey}p2; be a sequence of measurable sets.

(1) IfEk / E/ then liInk%oo |Ek| = |E|
(ii) If Ex "\ E and |Ex| < +oo for some k, then limy_, o, |Ex| = |E|.

Proof. (1) We may assume that |[Ex| < +oco for all k; otherwise, both
limy_, o |Ex| and |E| are infinite. Write

E=E1UE,—E)DU---UE—E_1)U---.

Since the terms in this union are measurable and disjoint, we have by
Theorem 3.23 that

|E| = |E1l + |E2 — Eq| + -+ 4+ |Ex — Eg—al +---
By Corollary 3.25,

|El = |E1l + (IE2| — [E1) + --- + (|Ekl — |[Exg—1D) + --- = lim |[E].
k—o0

(ii) We may clearly assume that |E{| < +oo. Write

Ey=EU(E—E)U---U(Er—Exp)U---.
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Since the terms on the right are disjoint measurable sets, and since each Ej
has finite measure, we have

|E1] = |El + (IE1] = |E2]) + -+ - + (IEx| = |Ega) + -+
= |E| + |E1] — lim |Eg|.
k—o00

Therefore, |E| = limy_,  |Ex|, which completes the proof.

The restriction in (ii) that |[Ex| < +oo for some k is necessary, as the fol-
lowing example shows. Let Ej be the complement of the ball with center 0
and radius k. Then |Ex| = +o0 for all k and Ej \ ¥, the empty set. Therefore,
limy_, o |Ex| = +00, while |@] = 0.

Although we are interested almost exclusively in measurable sets, prov-
ing the measurability of a given set is occasionally difficult in practice, and
it may be desirable to apply theorems about outer measure. A particularly
useful result is the following modification of part (i) of Theorem 3.26. The
corresponding modification of part (ii) of Theorem 3.26 does not generally
hold; see Exercise 21.

Theorem 3.27 IfEx /' E, then limy_,  |Ekle = |Ele.

Proof. For each k, let Hy be a measurable set (e.g., a set of type Gs) such that
Ex C Hy and |Hy| = |Egle. Form = 1,2,..., let Vy, = (g, H. Since the V,,
are measurable and increase to V = | ] V,, it follows from Theorem 3.26 that
limy; 00 |Vl = |V|. Since E,,;, C V,,, C Hy,, we have |Eyle < |Vl < |Hp| =
|Emle- Hence, |Viy| = |Eple and limy,— o |Ele = |V]. However, V = |J Vyy D
U Ewm = E, and therefore, lim;;—, o |[Emle > |Ele. The opposite inequality is
obvious since E;;, C E, and the theorem follows.

3.4 Characterizations of Measurability

Lemma 3.22 characterizes measurability in terms of closed subsets of a set.
The next three theorems give some other characterizations. The first one
states that the most general measurable set differs from a Borel set by a set of
measure zero.

Theorem 3.28

(i) E is measurable if and only if E = H — Z, where H is of type G5 and |Z| = 0.
(i) E is measurable if and only if E = H U Z, where H is of type F s and |Z] = 0.
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Proof. If E has the representation expressed in either (i) or (ii), it is measurable
since H and Z are.

Conversely, to prove the necessity in (i), suppose that E is measurable. For
eachk=1,2,..., choose an open set Gi such that E C Gy and |Gy — E| < 1/k.
Set H = () Gx. Then H is of type Gs,E C H,and H — E C Gy — E for every k.
Hence, [H — E| =0, and (i) is proved.

The necessity of (ii) follows from that of (i) by taking complements: if E is
measurable, so is CE, and therefore CE = (| G, — Z, where the Gy are open
and |Z| = 0. Hence, E = ((JCGy) U Z, which completes the proof.

Theorem 3.29  Suppose that |E|, < +oo. Then E is measurable if and only if
given € > 0, E = (S U N1) — Ny, where S is a finite union of nonoverlapping intervals
and |N1le, [N2le < €.

The proof is left as an exercise.

Our final characterization of measurability states that the measurable sets
are those that split every set (measurable or not) into pieces that are addi-
tive with respect to outer measure. This characterization will be used in
Chapter 11 to construct measures in abstract spaces.

Theorem 3.30 (Carathéodory) A set E is measurable if and only if for every
set A

|A|e = |A N E|e + |A - E|e-

Proof. Suppose that E is measurable. Given A, let H be a set of type G5 such
that A ¢ H and |Al, = |H|. Since H = (HNE) U (H — E), and since HN E
and H — E are measurable and disjoint, [H| = |[H N E| 4 |H — E|. Therefore,
|Ale =|HNE|+ |H—E| > |ANE|. 4+ |A — E|.. Since the opposite inequality is
clearly true, we obtain |Al|, = |[ANE|. + |A — El..

Conversely, suppose that E satisfies the stated condition for every A. In
case |E|, < 4+00, choose a Gg set H such that E C H and |H| = |E|.. Then H =
EU(H —E), and by hypothesis, |H| = |E|. + |H — E|,. Therefore, |H — E|, = 0;
so the set Z = H — E is measurable, and consequently, E is measurable.

In case |E|, = +00, let By be the ball with center 0 and radius k,k =1,2,...,
and let Ex = E N Bg. Then each Ej has finite outer measure and E = | J E;.
Let Hy be a set of type Gs containing E; with |[Hx| = |Ek|.. By hypothesis,
|Hx| = |Hx N E|e + |Hx — Ele > |Ele + |Hx — Ele. Therefore, |Hy — E| = 0.
Let H = |J Hi. Then H is measurable, E C H,and H — E = |J(Hy — E). In
particular, H— E has measure zero, and since E = H— (H—E), E is measurable.
This completes the proof.



54 Measure and Integral: An Introduction to Real Analysis

As a special case of Carathéodory’s theorem, we obtain the following
result.

Corollary 3.31  If E is a measurable subset of a set A, then |Al, = |E| + |A — E|e.
Hence, if |E| < +00,|A — El, = |Al. — |E|.

We can now prove a stronger version of Theorem 3.8.

Theorem 3.32  Let E be a subset of R™. There exists a set H of type Gg such that
E C H and for any measurable set M, |EN M|, = |HN M| .

If M = R", this reduces to Theorem 3.8.

Proof. Consider first the case when |E|, < +oo. Let H be a set of type Gs
such that E C H and |E|, = |H|. If M is measurable, then by Carathéodory’s
theorem |E|, = |EN M|, + |E — M|, and |H| = |H N M| + |H — M|. Therefore,

IENM|e 4 |E = M|, = |HNM]| + |H — M|.

Since all these terms are finite, and since the inclusion E—M C H —M implies
that |E — M|, < |H — M|, we have |EN M|, > |[HNM]|. The opposite inequality
is also true since ENM C H N M, and the theorem follows in this case.

In case |E|, = +o00, we write E = | J Ej with |Ek|, < 400 and Ex ' E. For
example, Ej could be the intersection of E with the ball of radius k centered
at the origin. By the case already considered, there is a set Uy of type G5 such
that Ex C Uy and |Ex N M|, = |Ux N M| for any measurable M. Let Hy =
Miek Um- Then Hy is measurable (in fact, Hy is of type Gs), Hx /' H = |J Hy,
and Ex € Hy C Ug. Hence, ExNM C H.NM C U N M, and therefore,
|Ex N M|, = |Hx N M| for measurable M. Since E; ' E and Hy / H, we have
ExNnM /" ENMand H,NM /" HNM. By Theorem 3.27, |[EN M|, = |[HNM]|
for measurable M.

Note that our set H is of type G . To obtain a set of type G5, use Theorem
3.28 to write H = Hy — Z, where Hj is of type Gs and |Z| = 0. Then E C H;.
Moreover, Hi "M = (HNM) U (ZNM), and since |Z| = 0, we have |H1 "M| =
|[H N M], so that |E N M|, = |[H; N M|. This completes the proof.

3.5 Lipschitz Transformations of R"

Theorem 3.10 shows that the notion of outer measure is independent of
the orientation of the coordinate axes. Since measurability and measure are
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defined in terms of outer measure, it follows that these too are independent
of rotation of the axes. We wish to study the effect of other transformations
of R™ on the class of measurable sets; that is, we seek a condition on a trans-
formation T: R®™ — R™ such that the image TE = {y : y = Tx, x € E} of every
measurable set E is measurable. We note that a continuous transformation
may not preserve measurability: see Exercise 17 of this chapter, as well as
Chapter 7, Exercise 10.

A transformation y = Tx of R™ into itself is called a Lipschitz transformation
if there is a constant ¢ such that

|Tx — TX'| < c|x = X|.
The smallest such constant ¢, namely, the number

|Tx — TX|
c= sup ——

XX ;XX [x — x|

is called the Lipschitz constant of T. I y; = fi(x),j = 1,...,n, are the coordinate
functions representing T (see p. 12 in Section 1.7), it follows that T is Lipschitz
if and only if each f; satisfies a Lipschitz condition [f;(x) —f;(x')| < ¢j|x—x|. For
example, a linear transformation of R™ is clearly a Lipschitz transformation;
see Exercise 29. More generally, a mapping Y= ﬁ(x), j=1,...,n, for which
each f; has bounded first partial derivatives in R" is a Lipschitz mapping.

Theorem 3.33 Ify = Tx is a Lipschitz transformation of R", then T maps
measurable sets into measurable sets.

Proof. We will first show that a continuous transformation sends sets of type
Fs into sets of type Fs. A continuous T maps compact sets into compact sets
by Theorem 1.17; therefore, since any closed set can be written as a count-
able union of compact sets, T maps closed sets into sets of type Fs. Here, we
have used the relation T (| Ex) = |J TEx, which holds for any T and {E}. It
follows that a continuous T preserves the class of F sets.

We will next show that a Lipschitz transformation T sends sets of measure
zero into sets of measure zero. Since |Tx — Tx'| < ¢|x — X/|, the image of a
set with diameter d has diameter at most cd. It follows (see Exercise 28) by
covering with cubes that there is a constant ¢’ such that |TI| < ¢'|I| for any
interval I; note that TI is measurable since I is closed. If |Z| = 0 and ¢ > 0,
choose intervals {Ix} covering Z such that ) |Ix| < ¢. Since TZ C |J TIi, we
have |TZ|, < Y |TIk| < ¢’ > |Ik| < c’e. Hence, |TZ| = 0.

If E is a measurable set, we use Theorem 3.28 to write E = HU Z, where H
is of type F and |Z| = 0. Since TE = THU TZ, TE is measurable as the union
of measurable sets. This completes the proof.



56 Measure and Integral: An Introduction to Real Analysis

For an extension of Theorem 3.33 in case n = 1, see Exercise 10 of
Chapter 7.

In the special case that T is a linear transformation of R", we will derive
a formula for the measure of TE. By elementary linear algebra, such T has a
unique 7 X n matrix representation with respect to every given basis of R",
and the value of the determinant of every matrix representation of T is the
same. The common value is denoted det T and called the determinant of T.
For the sake of definiteness, we may think of T as identified with its matrix
representation with respect to the standard orthonormal basis of unit vectors
along the coordinate axes. Then Tx is the vector resulting from the matrix
action of T on x.

If P is a parallelepiped (see p. 7 in Section 1.3), arguments like those used
in proving Theorems 3.2 and 3.10 show that

IP| = v(P) (3.34)

(see Exercise 16). Hence, by p. 7 in Section 1.3, |P| is the absolute value of the
n x n determinant whose rows are the edges of P.

Theorem 3.35 Let T be a linear transformation of R", and let E be measurable.
Then |TE| = 8|E|, where b is the absolute value of the determinant of T.*

Proof. Letd = |det T|. Then for any interval I, |TI| = || by p. 8 in Section 1.3.
If E is any measurable subset of R™ and ¢ > 0, choose intervals {I;} covering
Ewith ) |Ix| < |E|+¢. Then |TE| < 3 |TIk| = 8> |Ix| < 8(|E| + ¢). Note here
that if 5 = 0, then |TI| = 0 for every k and consequently the first inequality
|TE| < )" |TI| yields |TE| = 0 even when |E| = oco. Therefore,

ITE| < 8]|E]|, (3.36)
where we interpret 0 - 0o as 0. To see that |TE| = §|E|, we may assume that
5 > 0by (3.36). Then T has an inverse T~ thatis also linear, and E = T~!(TE).
Therefore, by (3.36) applied to T~! and the set TE,

|E| < |det (T |TE| = §7'|TE|,

or |TE| > §|E|. Hence, by (3.36), §|E| = |TE|. We leave it as an exercise to show
that |TE|, = 8|E|. for any set E.

* Here 0 - 0o should be interpreted as 0.
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The following special case of Theorem 3.35 deserves mention: if E is a
measurable set in R™ and A is a real number, then the set AE defined by
AE = {Ax : x € E} is measurable with measure |AE| = |A|"|E|. In fact, AE
is the image of E under the matrix AZ, where 7 is the identity matrix on R™.

3.6 A Nonmeasurable Set

We will now construct a nonmeasurable subset of R1; the construction in
R", n > 1, is similar. We will need the axiom of choice in the following form.

Zermelo’s Axiom: Consider a family of arbitrary nonempty disjoint sets indexed by
aset A, {Ex: « € A}. Then there exists a set consisting of exactly one element from
each Ey, o € A.

We also need the following lemma.

Lemma 3.37 Let E be a measurable subset of R* with |E| > 0. Then the set of
differences {d : d = x — y,x € E,y € E} contains an interval centered at the origin.

Proof. Given ¢ > 0, since |[E| > 0, there exists an open set G such that E C
G and |G| < (1 + ¢)|E|. By Theorem 1.11, G can be written as a union of
nonoverlapping intervals, G = | J Ix. Letting Ex = E N I, it follows that E =
| Ex, that the Ej are measurable, and that two different E;’s have at most one
point in common. Therefore, |G| = >_ |Ix| and |E| = }_ |Eg|. Since |G| < (1 +
¢)|E|, wemust have |Ii,| < (14¢)|Ej,| for some ky. Choosing ¢ = % and letting
I'and & denote the sets I;,, and E,, respectively, we have & C Iand |£'| > %|I |
We claim that if & is translated by any number d satisfying |d| < %|I |, the
translated set &; has points in common with &. Otherwise, since & U &j is
contained in an interval of length |I| +|d|, we would have |&'| +|&;| < |I|+1d|,
or 2|&| < |I| + |d|. [Here, we have used the fact that &; is measurable and
|&4] = |&| (see Exercise 18).] However, the last inequality is false if |d| < %|I |
since |&| > %ll |. This proves the claim and thus the lemma. See Exercise 30 in
Chapter 7 for a related fact.

Theorem 3.38 (Vitali) There exist nonmeasurable sets.

Proof. We define an equivalence relation on the real line by saying that x and
y are equivalent if x—y is rational. The equivalence classes then have the form
Ex = {x+r: ris rational}. Two classes Ey and E, are either identical or disjoint;
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therefore, one equivalence class consists of all the rational numbers, and the
other distinct classes are disjoint sets of irrational numbers. The number of
distinct equivalence classes is uncountable since each class is countable but
the union of all the classes is uncountable (this union being the entire line).
Using Zermelo’s axiom, let E be a set consisting of exactly one element
from each distinct equivalence class. Since any two points of E must differ by
an irrational number, the set {d : d = x — y,x € E,y € E} cannot contain an
interval. By Lemma 3.37, it follows that either E is not measurable or [E| = 0.
Since the union of the translates of E by every rational number is all of R?, R
would have measure zero if E did. We conclude that E is not measurable.

Corollary 3.39  Any set in R with positive outer measure contains a non-
measurable set.

Proof. Let A satisfy |Al. > 0, and let E be the nonmeasurable set of Theo-
rem 3.38. For rational 7, let E, denote the translate of E by r. Then the E, are
disjoint and | J E; = (=00, 400). Thus, A = [ J(ANE,;) and |Al, < Y [ANE;|e.
If AN E, is measurable, then |A N E;| = 0 by Lemma 3.37, using the fact that
foreveryr, {x—y:x,y € ANE,}isasubset of {x —y : x,y € E} and so contains
no interval. Since |A|, > 0, it follows that there is some r such that A N E; is
not measurable. This completes the proof.

Exercises

1. There is an analogue for bases different from 10 of the usual decimal
expansion of a number. If b is an integer larger than 1and 0 < x < 1,
show that there exist integral coefficients c,0 <cx <b, such that x =
3% cxb7*. Show that this expansion is unique unless x = cb™*,c =
1,...,b" — 1, in which case there are two expansions.

2. When b = 3 in Exercise 1, the expansion is called the triadic or ternary
expansion of x.
(a) Show that the Cantor set C consists of all x such that x has some triadic
expansion for which every ¢ is either 0 or 2.

(b) Let f(x) be the Cantor—Lebesgue function: see p. 43 in Section 3.1.
Show thatif x € Cand x = ) cx37%, where each ¢ is either 0 or 2,
then f(x) = Z(%ckﬂ_k.

3. Construct a two-dimensional Cantor set in the unit square {(x,y) : 0 <
x,y < 1} as follows. Subdivide the square into nine equal parts and
keep only the four closed corner squares, removing the remaining region
(which forms a cross). Then repeat this process in a suitably scaled
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version for the remaining squares, ad infinitum. Show that the resulting
set is perfect, has plane measure zero, and equals C x C.

Construct a subset of [0,1] in the same manner as the Cantor set by
removing from each remaining interval a subinterval of relative length
0,0 < 0 < 1. Show that the resulting set is perfect and has measure zero.

Construct a subset of [0, 1] in the same manner as the Cantor set, except
that at the kth stage, each interval removed has length §37%,0 < § < 1.
Show that the resulting set is perfect, has measure 1 — §, and contains no
intervals.

Construct a Cantor-type subset of [0, 1] by removing from each interval
remaining at the kth stage a subinterval of relative length 6,0 <6 < 1.
Show that the remainder has measure zero if and only if > 6, =
+00. (Use the fact that for ax > 0, []r2; ax converges, in the sense that
limy_ o0 Hszlﬂk is finite and not zero, if and only if > 72, logax con-
verges.)

7. Prove Lemma 3.15.

8. Show that the Borel o-algebra % in R" is the smallest o-algebra contain-

10.
11.

12.

13.

14.
15.

16.
17.

ing the closed sets in R™.

If {Ex}p2, is a sequence of sets with }  [Ex|, < 400, show that lim sup Ex
(and so also lim inf E) has measure zero.

If E1 and E; are measurable, show that |[E1 U Ep| + |E1 NEp| = |E1| + |E2|.

Prove Theorem 3.29. (For the sufficiency, pick open sets G and G; with
Sc G Ny C Gy, |G=S8| < ¢, and |G1| < |Nile + ¢ < 2¢. Estimate
(GUG1) — Ele.)

If E; and E, are measurable subsets of R1, show that Eq x E; is a measur-
able subset of R? and |E; x E3| = |E1||Ea|. (Interpret 0 - oo as 0.) (Hint:
Use a characterization of measurability.)

Motivated by (3.7), define the inner measure of E by |E|; = sup |F|, where
the supremum is taken over all closed subsets F of E. Show that (i) |E|; <
|Ele, and (ii) if |[E|, < 400, then E is measurable if and only if |E|; = |E|..
(Use Lemma 3.22.)

Show that the conclusion of part (ii) of Exercise 13 is false if |E|, = +o00.

If E is measurable and A is any subset of E, show that |[E| = |Al; + |E —
Ale. (See Exercise 13 for the definition of |A[;.) As a consequence, using
Exercise 13, show thatif A C [0,1] and |A|. + |[0,1] — Al = 1, then A is
measurable.

Prove (3.34).

Give an example that shows that the image of a measurable set under
a continuous transformation may not be measurable. (Consider the
Cantor-Lebesgue function and the pre-image of an appropriate nonmea-
surable subset of its range.) See also Exercise 10 of Chapter 7.
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18.

19.

20.

21.

22,

23.

24.

25.

26.
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Prove that outer measure is translation invariant; that is, if E, = {x +
h : x € E} is the translate of E by h, h € R", show that |[Ey|. = |E|.. If
E is measurable, show that Ey, is also measurable. (This fact was used in
proving Lemma 3.37.)

Carry out the details of the construction of a nonmeasurable subset of
R n > 1.

Show that there exist disjoint Ej,Ey,...,Ek, ... such that ||J E¢le <
> |Ekle with strict inequality. (Let E be a nonmeasurable subset of [0, 1]
whose rational translates are disjoint. Consider the translates of E by all
rational numbers 7,0 < r < 1, and use Exercise 18.)

Show that there exist sets E1, Ey, ..., E,...such that Ex \( E, |Eg|, < 400,
and limy_, o |Exle > |E|. with strict inequality.

(a) Show that the outer measure of a set is unchanged if in the definition
of outer measure we use coverings of the set by cubes with edges
parallel to the coordinate axes instead of coverings by intervals.

(b) Show that outer measure is also unchanged if coverings by paral-
lelepipeds with a fixed orientation (i.e., with edges parallel to a fixed
set of n linearly independent vectors) are used rather than coverings
by intervals.

Let Z be a subset of R! with measure zero. Show that the set {x*: x € Z)
also has measure zero.

Let 0.x1x7 ... be the dyadic development of any x in [0, 1], that is, x =
00127t + 0272+ .- with &; =0, 1. Let ky, ko, . .. be a fixed permutation
of the positive integers 1,2,..., and consider the transformation T that
sends x = 0.1y --- to Tx = 0.0, X, . ... If E is a measurable subset
of [0, 1], show that its image TE is also measurable and that |TE| = |E|.
(Consider first the special cases of E a dyadic interval [s27%, (s + 1)27F],
s=0,1,...,25~1, and then of E an open set [which is a countable union of
nonoverlapping dyadic intervals]. Also show that if E has small measure,
then so has TE.)

Construct a measurable subset E of [0, 1] such that for every subinterval ],
both E NI and I — E have positive measure. (Take a Cantor-type subset
of [0, 1] with positive measure [see Exercise 5], and on each subinterval
of the complement of this set, construct another such set, and so on. The
measures can be arranged so that the union of all the sets has the desired
property.) See also Exercise 21 of Chapter 4.

Construct a continuous function on [0, 1], which is not of bounded vari-
ation on any subinterval. (The construction follows the pattern of the
Cantor-Lebesgue function with some modifications. At the first stage,
for example, make the corresponding function increase to 2/3 (rather
than 1/2) in (0, 1/3), then make it decrease by 1/3 in (1/3, 2/3), and
then increase again 2/3 in (2/3, 1). The construction at other stages is
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27.

28.

29.

30.

31.

32.

33.

34.

similar, depending on whether the preceding function was increasing or
decreasing in the subinterval under consideration.)

Construct a continuous function of bounded variation on [0, 1] which is
not monotone in any subinterval. (The construction is like that in the pre-
ceding exercise, except that the approximating functions are less steep.
For example, at the first stage, let the function increase to 1/2 + ¢, then
decrease by 2¢, and then increase again by 1/2 4 ¢. Choose the ¢’s at each
stage so that their sum converges.)

Prove the following assertion that is made in the proof of Theorem 3.33:

If T : R* — R"is a Lipschitz transformation, then there is a constant

¢’ > 0 such that |TI| < c’|I| for every interval I. (Consider first the case

when I is a cube Q, noting that TQ is contained in a cube with edge length

cdiam Q where c is the Lipschitz constant of T. The case of general I can

then be deduced by applying Theorem 1.11 to the interiors J° of intervals

JwithI cJ°.)

Let T : R™ — R™ be a linear transformation.

(@) If T has matrix representation (t;) and t = (Zi,], tiZj)l/Zr show that
|Tx —Ty| < t|x—y| forall x,y € R™. (Use (1.2).) The number ¢ is called
the Hilbert—Schmidt norm of (t;).

(b) Prove the fact mentioned at the end of the proof of Theorem 3.35 that
ITE|, = §|E|, for every E C R™, where 6 = |det T|.

Let f : R® — R! be continuous. Show that the inverse image f “1(B) of a

Borel set B is a Borel set; see p. 64 in Section 4.1 for the definition of the

inverse image of a set. (The collection of sets {E : f ~1(E) is a Borel set} is

a o-algebra and contains all open sets in R1; cf. Exercise 10 of Chapter 4

and Corollary 4.15.) See also Exercise 22 of Chapter 4.

Construct a Lebesgue measurable set that is not Borel measurable. (If
f is the Cantor-Lebesgue function, then the function g(x) =x + f(x) is
strictly increasing and continuous on [0, 1]. Consider the set g_l(E) for
an appropriate E C g(C), where C is the Cantor set.)

Let E be a set in R™ with |E|, >0 and let 6 satisfy 0 <8 <1. Show that
there is a set Eg C E with |Eg|, = 0|E|. and that Eg can be chosen to be
measurable if E is measurable. (If Q(r) denotes the cube with edge length
r centered at the origin, 0 < r < oo, then |[E N Q(r)|, is a continuous
monotone function of r.)

Let E be a measurable set with 0 < |E| < oco. Show that there are infinite
collections {A}, {B;} of measurable subsets of E with the following prop-
erties: 0 < |Aj|, [Bj| < 0o, AjNA; = @ifj #1,Bj;1 C Bj, and |Bj| — 0.
See the end of Section 8.5 for an application. (This can be proved in many
ways, for example, by using the Exercise 32.)

Let E and Z be sets in R™ and |Z| = 0. If E U Z is measurable, show that E
is measurable and that |[E| = |E U Z|. See Exercise 2 of Chapter 10.






4

Lebesgue Measurable Functions

We will use the concept of Lebesgue measure to introduce a rich class of func-
tions and a method of integrating these functions. In this chapter, we describe
the class of functions.

Let E be a measurable set in R™. Let f be a real-valued (in the usual
extended sense) function defined on E, that is, —co < f(x) < 400, x € E.
Then, f is called a Lebesgue measurable function on E, or simply a measurable
function, if for every finite a, the set

{xe E:f(x) > a}

is a measurable subset of R™. In what follows, we shall often use the abbrevi-
ation {f > a} for {x € E : f(x) > a}. Note that the definition of measurability of
a function on a set E presupposes that E is measurable. Since

E={f=—oo}U<U{f>—k}>,

k=1

the measurability of E implies that of {f = — oo} if we assume that f is
measurable.

As a varies, the behavior of the sets {f > a} describes how the values of f
are distributed. Intuitively, it is clear that the smoother f is, the smaller the
variety of such sets will be. For example, if E = R" and f is continuous in
R", then {f > a} is always open. A function f defined on a Borel set E is said
to be Borel measurable if {f > a} is a Borel set for every a. Thus, every Borel
measurable function is measurable. See also Exercise 24.

One further comment will be helpful later. Let .# denote the class of mea-
surable subsets of R™. Much of the development of measurable functions
given in this chapter depends only on the c-algebra structure of .# and the
properties of Lebesgue measure. Thus, a measurable function inherits its ele-
mentary properties from those of measurable sets. It is reasonable to expect,
therefore, that many of the methods of this chapter can be used to develop
results in more general settings, for spaces other than R™ and o-algebras other
than .# . This will be done in Chapter 10. To save too much repetition there,
it will be helpful if the reader notices which properties of .# and Lebesgue
measure are used in the proofs here. These will be discussed at the end of the
chapter.

63
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4.1 Elementary Properties of Measurable Functions

Theorem 4.1 Let f be a real-valued function defined on a measurable set E. Then f
is measurable if and only if any of the following statements holds for every finite a:

(i) {f = a} is measurable.
(ii) {f < a} is measurable.
(iii) {f < a} is measurable.

Proof. Since {f > a} = (21{f > a — 1/k}, the measurability of f implies (i).
Since {f < a}is the complement of {f > a}, it follows that (i) implies (ii). Since
{f <a} =y {f < a+1/k}, we see that (ii) implies (iii). Finally, since { f > a}
is the complement of {f < a}, it follows that f is measurable if (iii) holds.

The proof of the following is left as an exercise.

Corollary 4.2  Let f be defined on a measurable set E. If f is measurable, then
{f > —oo}, {f < 400}, {f = +o0}, {a < f < b}, {f = a}, etc., are all measurable.
Moreover, for any f, if either {f = +oo} or {f = —oo} is measurable, then f is
measurable if {a < f < +o0} is measurable for every finite a.

Also, observe that {a < f < b} = {f > a} — {f > b).
Let f be defined in E. If S is a subset of R, the inverse image of S under f is
defined by

fYS) ={xeE :f(x) €S}

Theorem 4.3  Let f be defined on a measurable set E. If f is measurable, then
for every open set G in RY, the inverse image f~'(G) is a measurable subset of R™.
Conversely, f is measurable if f~1(G) is measurable for every open set G in R™ and
either {f = 400} or {f = —oo} is measurable.

Proof. Suppose that f is measurable and let G be any open subset of R. By
Theorem 1.10, G can be written as G = |J,(ax, bx). But f’l((ak, by)) equals
{ax < f < by} and is therefore measurable. Since f‘l(G) = ka_l((ak, by)),
it follows that f —1(G) is measurable too. To prove the converse, note that if
G = (a,+0), thenf‘l(G) = {a < f < +o0} and apply the second part of
Corollary 4.2.
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This result shows that a finite function f defined on a measurable set is mea-
surable if and only if f~1(G) is measurable for every open G C R!. Similarly,
a finite f defined on a Borel set is Borel measurable if and only if f~1(G) is
Borel measurable for every open G C R

Theorem 4.4  Let A be a dense subset of RY. Then f is measurable if {f > a} is
measurable for all a € A.

Proof. Given any real a, choose a sequence {a;} in A that converges to a
from above: ax € A, ax > a,limy_, oo ax =a. Then {f > a} = J{f > ax}, and the
theorem follows.

A property is said to hold almost everywhere in E or, in abbreviated form,
a.e., ifitholds in E except in some subset of E with measure zero. For example,
the statement “f = O a.e. in E” means that f(x) = 0 in E, with the possible
exception of those x in some subset Z of E with |Z| = 0.

The next few theorems give some simple properties of the class of measur-
able functions.

Theorem 4.5 If f is measurable and if ¢ = f a.e., then g is measurable and

Hg>a}l = I{f >a}l.

Proof. If Z={f#g}, then |[Z|=0and {g>a} UZ={f > a} U Z. Therefore, f
being measurable, {g > a2} UZ is measurable, and since this differs from {g > a}
by a set of measure zero, g is measurable (cf. Exercise 34 of Chapter 3 and
Exercise 2 of Chapter 10). Finally,

Hg>al =g >atUZ| = [{f > a} UZ| = [{f > a}l.

In view of the previous theorem, it is natural to extend the definition of
measurability to include functions that are defined only a.e. in E, by saying
that such an f is measurable on E if it is measurable on the subset of E where
it is defined. Note also that if f is measurable on E, then it is measurable on
any measurable E; C Esince {x € E1 : f(x) > a} = {x € E: f(x) > a} N E;.

If ¢ and f are finite measurable functions defined on R! and R", respec-
tively, their composition ¢ (f(x)) may not be measurable (see Exercise 5). If ¢
is continuous, however, we have the following result.

Theorem 4.6  Let ¢ be continuous on R and let f be finite a.e. in E, so that, in
particular, &(f) is defined a.e. in E. Then &(f) is measurable if f is.
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Proof. We may assume that f is finite everywhere in E. We will use the
familiar fact that since ¢ is continuous, the inverse image ¢—!(G) of an
open set G is open (cf. Corollary 4.15 and Exercise 10). By Theorem 4.3, it
is enough to show that for every open G in RY, {x : ¢(f(x)) € G} is mea-
surable. However, {x : ¢(f(x)) € G} = f_l(d)_l(G)), and since ¢~1(G) is
open and f is measurable, f‘l(d)_l(G)) is measurable by Theorem 4.3. See
also Exercise 22(b).

Remark: The cases that arise most frequently are ¢(t) = |t], [t (p > 0), ect,
etc. Thus,

Ifl, Iff(p>0), ef

are measurable if f is measurable (even if we do not assume that f is finite
a.e., as is easily seen). Another special case worth mentioning is that of

f*=max{f,0}, f~ =—min{f,0).

It is enough to observe that the functions x™ and x~ are continuous.

Theorem 4.7  Iff and g are measurable, then {f > g} is measurable.

Proof. Let {ry} be the rational numbers. Then,
fg=UJtr>n>g=Jwf>ninig<nh,
k k

and the theorem follows.

Theorem 4.8  If f is measurable and A is any real number, then f + A and Af are
measurable.

The proof is left as an exercise. We interpret 0 - +c0 to be 0.

Note that the sum f + g of two functions f and g is well defined wherever it
is not of the form +00 + (—o0) or —oo + 00. In the next theorem, we assume for
simplicity that f 4 g is well defined everywhere. See Exercise 6 for extensions.

Theorem 4.9 Iff and g are measurable, so is f + g.
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Proof. Since g is measurable, so is a — g for any real a, by Theorem 4.8. Since
{f +g>a}={f >a— g}, the result follows from Theorem 4.7.

A corollary of Theorems 4.8 and 4.9 is that a finite linear combination
A1f1 + - - + Anfn of measurable functions fi, . . ., fy is measurable provided
it is well defined. Thus, the class of measurable functions on a set E that are
finite a.e. in E forms a vector space; here, we identify measurable functions
that are equal a.e.

In the theorem that follows, we consider products of functions. In addition
to the familiar conventions about products of infinities, we adopt as usual the
convention that 0 - 00 = +00 - 0 = 0. Also, if —co < & < +00, we interpret
«/(£oo) = a-0=0.

Theorem 4.10 If f and g are measurable, so is fg. If g #0a.e., then f/g is
measurable.

Proof. By Theorem 4.6 and the remark following it, f?(= |f|?) is measurable
if f is. Hence, if f and g are measurable and finite, the formula fg = [(f + )% —
(f —£)?1/4 implies that fg is measurable. The proof when f and g can be infinite
and the proof of the second statement of the theorem are left as exercises.

Theorem 4.11  If {fy(0)}2, is a sequence of measurable functions, then
supy fx(x) and infy fr(x) are measurable.

Proof. Since infy fy = —sup(—fx), it is enough to prove the result for supy fi.
But this follows easily from the fact that {supy fx > a} = (Ji{fx > a}.

As a special case of the preceding theorem, we see that if f,...,fy are
measurable, then so are maxyfy and minf. In particular, if f is measur-
able, then so are f* = max{f,0} and f~ = —min({f, 0}, a fact we have already
observed in the remark following Theorem 4.6.

Theorem 4.12  If {fi} is a sequence of measurable functions, then lim sup fi and
k—o00

lim inf fi are measurable. In particular, if lim fi exists a.e., it is measurable.
k—o00 k— 00

Proof. Since

k— o0

limsup fr = inf{supfr}, liminf fy = sup{inffy},
] k=) k—o00 j k=i
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the first statement is a corollary of Theorem 4.11. The second statement
then follows by Theorem 4.5 since wherever limy_,  fy exists, it equals

lim supy_ o f.

The characteristic function, or indicator function, x4 (x), of a set A is defined by

1 ifxeA
XA =00 itx g A,
Clearly, x4 is measurable if and only if A is measurable. x4 is an example
of what is called a simple function on R™: a simple function on a set EC R™ is
one that is defined on E and assumes only a finite number of values on E,
all of which are finite. If f is a simple function on E taking (distinct) values

ai,...,an on (disjoint) subsets Eq, ..., EN of E, E = Uszl Ej, then

N
fx) = Zakxgk(x), x € E.
k=1

We leave it as an exercise to show that such an f is measurable if and only if
E1,...,En are measurable.

Theorem 4.13

(i) Every function f can be written as the limit of a sequence {f} of simple
functions.

(ii) Iff = O, the sequence can be chosen to increase to f, that is, chosen such that
fr =< frt1 for every k.

(iii) If the function f in either (i) or (ii) is measurable, then the fy can be chosen to
be measurable.

Proof. We will prove (ii) first. Thus, suppose that f > 0. For each k,k =
1,2,..., subdivide the values of f that fall in [0, k] by partitioning [0, k] into
subintervals [(j — 1)2’]‘,]‘2”‘],]' =1,...,k2K Let
-1 . j-1 L . k
=1 2k if = <f(x) < 2,{,]_1,...,k2

k if f(x) > k.

Each fy is a simple function defined everywhere in the domain of f. Clearly,
fr < fk41 since in passing from f; to fr+1, each subinterval [(j — 127k j2_k] is
divided in half. Moreover, f; — f since 0 < f — f; < 27 for sufficiently large
k wherever f is finite, and fy = k — +o00 wherever f = +o00. This proves (ii).
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To prove (i), apply the result of (ii) to each of the nonnegative functions f*
and f~, obtaining increasing sequences {f;} and {f,} of simple functions such
thatf] — f* andf{’ — f~. Then f; — f/ is simple and f| — f{ — f* —f~ =F.

Finally, it is enough to prove (iii) for f > 0 since otherwise we may consider
f* and f. In this case, however,

Kok .

j—1
fe=2 ok X(G-D/2 <f <j2y HRX 2R
=1

This is measurable if f is since all the sets involved are measurable.
Note that if f is bounded, the simple functions earlier will converge
uniformly to f.

4.2 Semicontinuous Functions

We now study classes of functions f whose continuity properties on a set can
be characterized by the topological nature of { f > a} or {f < a}. Measurability
of such functions will consequently be easy to establish. We will encounter
a particularly important example when we study the Hardy-Littlewood
maximal function in Chapter 7.

Let f be defined on E, and let xg be a limit point of E that lies in E. Then f
is said to be upper semicontinuous at xo if

limsup f(x) < f(xp).

Xx—Xq;X€E

We will usually abbreviate this by saying that f is usc at xg. Note that if f (xg) =
+o0, then f is automatically usc at xq; otherwise, the statement that f is usc
at xo means that given M > f(xp), there exists > 0 such that f(x) < M for all
x € E that lie in the ball [x — xp| < 8. Intuitively, this means that near xp, the
values of f do not exceed f(xg) by a fixed amount.

Similarly, f is said to be lower semicontinuous at xg, or Isc at x, if

liminf f(x) > f(xo).

X—Xq;XEE

Thus, if f (xg) = —o0, f is Isc at xg, while if f(xg) > —o0, the definition amounts
to saying that given m < f(xp), there exists 6 > 0 such that f(x) > mif x € E
and |x — xg| < 8. Equivalently, f is Isc at xg if and only if —f is usc at xo.

It follows that f is continuous at xg if and only if |[f(xp)| < +o0 and f is both
usc and Isc at x. As simple examples of functions that are usc everywhere in
R! but not continuous at some xp, we have
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0 ifx <x 0 ifx+#x
11 (x) = =% uz(x)={ # X

1 if x> xg, 1 if x =xg.

Hence, —u; and —uy are Isc everywhere in R1. The Dirichlet function of
Example 4 in Chapter 2 is usc at the rational numbers and Isc at the irrationals.
A function defined on E is called usc (Isc, continuous) relative to E if it is
usc (Isc, continuous) at every limit point of E that is in E. The next theorem
characterizes functions that are semicontinuous relative to a set.

Theorem 4.14

(i) A function f is usc relative to E if and only if {x € E : f(x) > a} is relatively
closed [equivalently, {x € E : f(x) < a} is relatively open] for all finite a.

(if) A function f is Isc relative to E if and only if {x € E : f(x) < a} is relatively
closed [equivalently, {x € E : f(x) > a} is relatively open] for all finite a.

Proof. Statements (i) and (ii) are equivalent since f is usc if and only if —f is
Isc. It is therefore enough to prove (i). Suppose first that f is usc relative to E.
Given g, let xg be a limit point of {x € E : f(x) > a} that is in E. Then there
exist x; € E such that x; — xgp and f(xx) > a. Since f is usc at xg, we have
f(x0) > limsupy_, o f(xx). Therefore, f(xg) > a, so thatxg € {x € E : f(x) > a}.
This shows that {x € E : f(x) > a} is relatively closed.

Conversely, let xq be a limit point of E that is in E. If f is not usc at x¢, then
f(xp) < 400, and there exist M and {xx} such that f(xg) < M, xx € E, xx — Xo,
and f(xx) > M. Hence, {x € E : f(x) > M} is not relatively closed since it does
not contain all its limit points that are in E.

Corollary 4.15 A finite function f is continuous relative to E if and only if all
sets of the form {x € E:f(x) > a} and {x € E: f(x) <a} are relatively closed [or, equiv-
alently, all {x € E : f(x) > a} and {x € E : f(x) < a} are relatively open] for finite a.

Corollary 4.16 Let E be measurable, and let f be defined on E. If f is usc (Isc,
continuous) relative to E, then f is measurable.

Proof. Let f be usc relative to E. Since {x € E : f(x) > a} is relatively closed,
it is the intersection of E with a closed set. Hence, it is measurable, and the
result follows from Theorem 4.1.

The previous three results deserve special attention in certain cases.
Suppose, for example, that E=R" and f is usc everywhere in R™.
Since {f > a} = U1 {f = a + 1/k}, it follows from Theorem 4.14 that {f > a}
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is of type F. Since an F set is a Borel set, we see that a function that is usc
(similarly, Isc or continuous) at every point of R™ is Borel measurable.

4.3 Properties of Measurable Functions and Theorems of Egorov
and Lusin

Our next theorem states in effect that if a sequence of measurable functions
converges at each point of a set E, then, with the exception of a subset of E
with arbitrarily small measure, the sequence actually converges uniformly.
This remarkable result cannot hold, at least in the form just stated, with-
out some further restrictions. For example, if E=R" and fi = Xx|x <k}, then
fx converges to 1 everywhere but does not converge uniformly outside any
bounded set. Again, if the fi are finite but the limit f is infinite in a set of pos-
itive measure, then |fy — f] is also infinite in this set. The difficulties in these
examples can be easily overcome: the missing ingredient in the first case is
that |E| < 400 and in the second that | f| < +o00 a.e. Adding these restrictions,
we obtain the following basic result.

Theorem 4.17 (Egorov’s Theorem) Suppose that {fi} is a sequence of measur-
able functions that converges almost everywhere in a set E of finite measure to a finite
limit f. Then given € > 0, there is a closed subset F of E such that |E — F| < € and
{fx} converge uniformly to f on F.

In order to prove this, we need a preliminary result that is interesting in its
own right.

Lemma 4.18  Under the same hypothesis as in Egorov’s theorem, given €,m > 0,
there is a closed subset F of E and an integer K such that |E — F| < n and |[f(x) —
firX¥)| < eforx € Fand k > K.

Proof. Fixe,m > 0.Foreachm,letE; = {|f —fx| < e forallk > m}. Thus, E;, =
Mk=m{lf —fkl < €}, so that E;, is measurable. Clearly, E,; C E,,41. Moreover,
since fx — f a.e.in E and f is finite, E,;, / E — Z,|Z| = 0. Hence, by Theorem
3.26, |Ey| — |E—Z| = |E|. Since |E| < +o0, it follows that |E — E;;| — 0.
Choose my so that |E — E;| < %n, and let F be a closed subset of E;;, with
|[Emg — F| < %n.Then |E—F| <mn,and |[f — fx| < ein Fif k > my.

Proof of Egorov’s theorem. Given ¢ > 0, use Lemma 4.18 to select closed
F,, C E,m > 1, and integers K;;, ¢ such that |E — Fj,| < e27" and |[f —fx| < 1/m
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in Fy, if k > Ky e. The set F = (), Fi is closed, and since F C F, for all m, f
converges uniformly to f on F. Finally, E — F = E — (| F;, = |J(E — F) and,
therefore, |E — F| < )" |E — Fj| < e. This completes the proof.

See Exercises 13 and 14 for an analogue of Egorov’s theorem in the
continuous parameter case, that is, in the case when fy(x) — f(x) as
¥ = Yo-

We have observed that a continuous function is measurable. Our next
result, Lusin’s theorem, gives a continuity property that characterizes mea-
surable functions. In order to state the result, we first make the following
definition. A function f defined on a measurable set E has property ¢ on E if
given ¢ > 0, there is a closed set F C E such that

(i |[E-Fl<e¢
(ii) f is continuous relative to F

We recall that condition (ii) means that if xg and {x;} belong to F and xx — xo,
then f(xp) is finite and f(xx) — f(xp). In case F is bounded (and, therefore,
compact), (ii) implies that the restriction of f to F is uniformly continuous
(Theorem 1.15).

Lemma 4.19 A simple measurable function has property €.

Proof. Suppose that f is a simple measurable function on E, taking distinct
values a1,...,any on measurable subsets Eq,...,En. Given ¢ > 0, choose
closed F; C Ej with |E; — Fj| < ¢/N. Then the set F = sz\il F; is closed, and
since E— F = (JE; — UF; C U(E; — Fj), we have |E — F| < 3 |E; - Fj| < e.
It remains only to show that f is continuous on F. Note that each F; is rela-
tively openin F, in fact, F; = FN C( Uy Fk), so the only points of F in a small
neighborhood of any point of F; are points of F; itself. The continuity on F of
f follows from this since f is constant on each F;.

Property % is actually equivalent to measurability, as we now show.

Theorem 4.20 (Lusin’s Theorem) Let f be defined and finite on a measurable set
E. Then f is measurable if and only if it has property € on E.

Proof. 1ff is measurable, then by Theorem 4.13, there exist simple measurable
fr,k =1,2,..., which converge to f. By Lemma 4.19, each f; has Eroperty €,
so given ¢ > 0, there exist closed Fy C E such that |[E — F| < €2~ —1 and fy is
continuous relative to Fy. Assuming for the moment that |E| < 400, we see
by Egorov’s theorem that there is a closed Fy C E with |[E—Fy| < %e such that
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{fx} converges uniformly to f on Fy. If F = Fy N (g Fx), then F is closed,
each fi is continuous relative to F, and {fi} converges uniformly to f on F.
Hence, f is continuous relative to F by Theorem 1.16. Since

ac 1 1
|E—F|§|E—FO|+;|E—FH<§€+§€=€,

it follows that f has property ¢ on E. This proves the necessity of property ¢
for measurability if |[E| < 4o0.

If |E| = +oo, write E = (g2 Ex, where Ej is the part of E in the ring
{x : k—1 < |x| < k}. Since |Ex| < 400, we may select closed Fy C Ei such
that |[Ex — F| < €27k and f is continuous relative to Fy. If F = [Jg2 Fy, it
follows that |[E — F| < Y |Ex — Fx| < ¢ and that f is continuous relative to F.
Different Fy lie in different rings, and the distance d(Fy, F;) between Fy and F;
is positive if k # I. A simple argument shows that F is closed, and therefore f
has property ¢ on E.

Conversely, suppose that f has property ¢ on E. For each k,k = 1,2,...,
choose a closed Fy C E such that |E — F| < 1/k and the restriction of f to Fy is
continuous. If H = [ J{2; Fx, then H C E and the set Z = E — H has measure
zero. We have

xeE:fx)>al={xeH:f(x) >alU{xeZ:f(x) > a}

=JixeF:f0 >a)UixeZ:f(x) > a}.

k=1

Since {x € Z:f(x) > a} has measure zero, the measurability of f will follow
from that of each {x € Fy:f(x) > a}. However, since f is continuous relative to
Fy and Fy is measurable, {x € Fy : f(x) > a} is measurable by Corollary 4.16.
This completes the proof of Lusin’s theorem.

4.4 Convergence in Measure

Let f and {fr} be measurable functions that are defined and finite a.e. in a
set E. Then { fi} is said to converge in measure on E to f if for every ¢ > 0,

lim |{x € E: [f(x) — fe(®)| > ¢}| = 0.
k—o00
We will indicate convergence in measure by writing

fe = f.
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This concept has many useful applications in analysis. Here, we will dis-
cuss its relation to ordinary pointwise convergence; the first result is basically
a reformulation of Lemma 4.18.

Theorem 4.21 Let f and fi,k = 1,2,..., be measurable and finite a.e. in E. If
fe — fae onEand |E| < 400, then fy —> f on E.

Proof. Given ¢,1 > 0, let F and K be as defined in Lemma 4.18. Then if k >
K, {x € E: |f(x) —fx(x)| > ¢} C E—F, and since |E — F| < 1, the result follows.

We recall that this conclusion may not hold if |E| = 400, as shown by the
example E = R", fi = X{x|x|<k}, and f = 1.

Convergence in measure does not imply pointwise convergence a.e., even
for sets of finite measure. To see this, take n =1 and let {Iy} be a sequence of
subintervals of [0,1] satisfying the following conditions:

(i) Each point of [0,1] belongs to infinitely many I.
(i) limg— oo [kl = 0.

For example, let the first interval be [0,1], the next two be the two halves
of [0,1], and the next four be the four quarters, and so on. Then if f; = x;,, we

have fi % 0, while fr diverges at every point of [0,1].
There is, however, the following partial converse to Theorem 4.21.

Theorem 4.22 If fy —> f on E, there is a subsequence fi; such that fi, — f
ae. in E.

Proof. Since fy — f, givenj=1,2,... there exists k; such that

frn-)

for k > kj. We may assume that k; . Let E; = {|f —fk/.| > 1/j}, and Hy, =
U2 Ej- Then |Ej| < 277 |Hpy| < pRram 277 =27+ and |f — fisl < 1/jin
E —E;. Thus, if j > m, lf—fkj| <1/jinE - Hy, so thatfk], — fin E — Hy,. Then
fk], — fin|J(E —Hy,) = E—()Hp. Since |Hy;| — 0, it follows that | () Hy,| =0
and fi; — f a.e.in E. This completes the proof.

1
< =

2

The next theorem gives a Cauchy criterion for convergence in measure.
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Theorem 4.23 A necessary and sufficient condition that { fi} converge in measure
on E is that for each ¢ > 0,

lim [{x € E: |fi(x) —fi(x)| > €}] =0.
kl—o00
Proof. The necessity follows from the formula

Wi=fi = eh < {ifc=n = gefulus-n = 5}

and the fact that the measures of the sets on the right tend to zero as k,/ — oo
if fp —> f.

To prove the converse, choose N;,j =12,...,80 that if k,I > N;, then
I{Ife —fil > 277}] < 277. We may assume that N; /. Then [fN].+l —fle <27
except for a set Ej, IEj| < 27). LetH; = Uf’il Ej,i=1,2,....Then

[fNjH(x) —fN],(x)| <27 forj>iand x ¢ H;.

It follows that Z(.fNj o fNj) converges uniformly outside H; for every i
and, therefore, that {fy;} converges uniformly outside every H;. Since [H;| <
Dz 277 = 271 we obtain that { fnj} converges a.e. in E and, letting f =

lim fer that fNj LN f on E. In order to show that f; LN f on E, note that

=11 b < {15 =t = gefu iy -1 = 5]

for any N;. To show that the measure of the set on the left is less than a pre-
scribed n > 0 for all sufficiently large k, select N; so that the first term on the

right has measure less than %n for all large k (here, we use the Cauchy condi-
tion) and so that the measure of the second term on the right is also less than
%n. This completes the proof.

As pointed out at the beginning of the chapter, many of the results of the
chapter depend on only a few basic properties of Lebesgue measurable sets
and Lebesgue measure. This is especially true for the elementary properties
of measurable functions (Corollary 4.2, Theorems 4.1 and 4.3 through 4.12)
and the section about convergence in measure, which use only the fact that
the class of measurable subsets of R" is a o-algebra and, in Theorem 4.5, that
subsets of a set of measure zero are measurable. Egorov’s theorem uses two
additional facts: the fundamental result Theorem 3.26 concerning monotone
sequences of sets and Lemma 3.22 about the approximability of measurable
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sets by closed sets. Actually, even Lemma 3.22, which is a topological prop-
erty of Lebesgue measure, is not needed in the proof of Egorov’s theorem if
instead of requiring that F be closed, we merely require that it be measurable.

The rest of the chapter, namely, the material on semicontinuous functions
and Lusin’s theorem, uses somewhat more restrictive topological proper-
ties of R" and Lebesgue measure. For example, about R", we have used
metric properties, and about Lebesgue measure, we have used Lemma 3.22
(e.g., in Lemma 4.19) and the fact that Borel sets are measurable (e.g., in
Corollary 4.16).

Exercises

1. Prove Corollary 4.2 and Theorem 4.8.

2. Let f be a simple function, taking its distinct values on disjoint sets
Ei,...,EN. Show that f is measurable if and only if Ej,...,Ey are
measurable.

3. Theorem 4.3 can be used to define measurability for vector-valued (e.g.,
complex-valued) functions. Suppose, for example, that f and g are real-
valued and finite in R", and let F(x) = (f(x),g(x)). Then F is said to be
measurable if F~!(G) is measurable for every open G C R2. Prove that
F is measurable if and only if both f and g are measurable in R™.

4. Letf be defined and measurable in R™. If T is a nonsingular linear trans-
formation of R™, show that f(Tx) is measurable. (If E; = {x : f(x) > a}
and E; = {x: f(Tx) > a}, show that E; = T-1Ey)

5. Give an example to show that ¢(f(x)) may not be measurable if ¢ and
f are measurable and finite. (Let F be the Cantor-Lebesgue function and
let f be its inverse, suitably defined. Let ¢ be the characteristic function
of a set of measure zero whose image under F is not measurable.) Show
that the same may be true even if f is continuous. (Let g(x) = x + F(x),
where F is the Cantor-Lebesgue function, and consider f=g¢~!.) Cf.
Exercise 22.

6. Let f and g be measurable functions on E:
(a) If f and g are finite a.e. in E, show that f + g is measurable no matter
how we define it at the points when it has the form 400 + (—o0) or
—00 + Q.

(b) Show that fg is measurable without restriction on the finiteness of f
and g. Show that f + g is measurable if it is defined to have the same
value at every point where it has the form +o0 + (—00) or —oo + oc.
(Note that a function & defined on E is measurable if and only if both
{h = +o00} and {h = —o0} are measurable and the restriction of % to
the subset of E where 4 is finite is measurable.)
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10.

11.

12.

13.

14.

Let f be usc and less than +oo on a compact set E. Show that f is bounded
above on E. Show also that f assumes its maximum on E, that is, that
there exists xg € E such that f(xg) > f(x) forall x € E.

(a) Let f and g be two functions that are usc at xg. Show that f + g is usc
at xo. Is f — g usc at xo? When is fg usc at x¢?

(b) If { fx} is a sequence of functions that are usc at xg, show that infy f(x)
is usc at xq.

(c) If {fx} is a sequence of functions that are usc at xp and converge
uniformly near xp, show that lim f; is usc at xg.

(a) Show that the limit of a decreasing (increasing) sequence of functions
usc (Isc) at xp is usc (Isc) at xp. In particular, the limit of a decreasing
(increasing) sequence of functions continuous at xg is usc (Isc) at xg.

(b) Letf be usc and less than 400 on [a, b]. Show that there exist contin-
uous fx on [, b] such that f; \ f. (First show that there are usc step

functions fr \ f.)

(a) Iff is defined and continuous on E, show that {a < f < b} is relatively
open and that {a < f < b} and {f = a} are relatively closed.

(b) Let f be a finite function on R™. Show that f is continuous on R™ if
and only if f~1(G) is open for every open G in R}, or if and only if
f~1(F) is closed for every closed F in R1.

Let f be defined on R™ and let B(x) denote the open ball {y : |[x — y| < r}

with center x and fixed radius r. Show that the function g(x) = sup{f(y) :

y € B(x)} is Isc and that the function h(x) = inf{f(y) : y € B(x)} is usc on

R™. Is the same true for the closed ball {y : |x — y| < r}?

If f(x),x € R}, is continuous at almost every point of an interval [a, ],
show that f is measurable on [4, b]. Generalize this to functions defined
in R™. (For a constructive proof, use the subintervals of a sequence
of partitions to define a sequence of simple measurable functions
converging to f a.e. in [a,b]. Use Theorem 4.12. See also the proof of
Theorem 5.54.)

One difficulty encountered in trying to extend the proof of Egorov’s the-
orem to the continuous parameter case f,,(x) — f(x) asy — yo is showing
that the analogues of the sets E;; in Lemma 4.18 are measurable. This dif-
ficulty can often be overcome in individual cases. Suppose, for example,
that f(x,y) is defined and continuous in the square 0 <x < 1,0 <y <1
and that f(x) = lim,,of(x,y) exists and is finite for x in a measurable
subset E of [0,1]. Show that if ¢ and & satisfy 0 < ¢,5 < 1, the set E¢ 5 =
{xe E:|[f(x,y)—f(x)| < eforally < d}ismeasurable. Ifyx, k=1,2,...,1is
a dense subset of (0, 8), show that E; 5 = [, {x € E : |f(x, yx) —f(X)| < €}.)
Let f(x,y) be as in Exercise 13. Show that given ¢ > 0, there exists a closed
F C E with |[E — F| < ¢ such that f(x,y) converges uniformly for x €
Fto f(x) asy — 0. (Follow the proof of Egorov’s theorem, using the
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16.
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23.
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sets E¢ 1/, defined in Exercise 13 in place of the sets E;; in the proof of
Lemma 4.18.)

Let { fx} be a sequence of measurable functions defined on a measurable
E with |E| < 4o00.If |fk(x)] < Mx < +oo for all k for each x € E, show that
given ¢ > 0, there is a closed F C E and a finite M such that [E — F| < ¢
and |[fx(x)| < M for all kand all x € F.

Prove that fy — f on E if and only if given ¢ > 0, there exists K such that
HIf — fxl > €}| < e if k > K. Give an analogous Cauchy criterion.

Suppose that f; LN fand g LN g on E. Show that f; + gx BN f+gon
E and, if |E| < 4o, that figx —> fg on E. If, in addition, gy — g on E, g #
O a.e.,, and |E| < 400, show that f;/gk N f/g on E. (For the product frgx,
write figx —f¢ = (fk — )k — ) +f Sk — ) +3(fr — f). Consider each term
separately, using the fact that a function that is finite on E, |[E| < +00 is
bounded outside a subset of E with small measure.)

If f is measurable on E, define ws(a) = |{f > a}| for —oco <a < +oo. If
fx /' f, show that wg 7 wy. If fi L f, show that wy, — wy at each

point of continuity of wy. (For the second part, show that if fi BN 1
then limsupy_, o, w4 (@) < wy(@ — ¢) and liminfy ., oo wj (@) > wr(a+ ¢)
for every ¢ > 0.)

Let f(x,y) be a function defined on the unit square 0 <x < 1,0 <y <1
which is continuous in each variable separately. Show that f is a mea-
surable function of (x,y). Is the same true if f is only assumed to be
continuous in x for each y?

If f is measurable and finite a.e. on [4, b], show that given ¢ > 0, there is
a continuous g on [a, b] such that [{x : f(x) # g(x)}| < €. (See Exercise 18
of Chapter 1.) Formulate and prove a similar result in R™ by combining
Lusin’s theorem with the Tietze extension theorem.

Show that the necessity part of Lusin’s theorem is not true for ¢ = 0, that
is, find a measurable set E and a finite measurable function f on E such
that f is not continuous relative to E — Z for any Z with |Z| = 0. (Consider,
e.g., Xe for the set E in Exercise 25 of Chapter 3.)

(a) Show that if f is measurable and B is a Borel set in R?, then f “1(B)is
measurable. (Recall that the Borel sets form the smallest o-algebra
that contains the open sets. Consider the collection of sets {E :
f ~1(E) is measurable}.) Cf. Exercise 30 of Chapter 3.

(b) If ¢ is a Borel measurable function on R! and f is finite and measur-
able on R", show that ¢(f(x)) is measurable on R™. Cf. Theorem 4.6
and Exercise 5.

Let { fk}]‘zil be a sequence of measurable functions defined on a mea-

surable set E. Show that the sets {x : limf(x) exists and is finite}, {x :

lim fg(x) = +o0}, {x: limfx(x) = —oo} are measurable.
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24. Let f be a (Lebesgue) measurable function defined on a (Lebesgue) mea-
surable set E. Show that there is a Borel set H C E and a Borel measurable
function & on H such that |E| = |H| and f = h on H. (This can be deduced
from Lusin’s theorem.) In case E is a Borel set, and consequently the
exceptional set Z = E — H is also a Borel set, show that f can be redefined
on Z so that the resulting function is Borel measurable on E.






5

The Lebesgue Integral

5.1 Definition of the Integral of a Nonnegative Function

There are several equivalent ways to define the Lebesgue integral and
develop its main properties. The approach we have chosen is based on the
notion that the integral of a nonnegative f should represent the volume of
the region under the graph of f.

We start then with a nonnegative function f, 0 <f <+o0, defined on a
measurable subset E of R". Let

(B = {(xf0) € R i x € Ef(x) < +o00},
R(F,E) ={(xy) e R™1ix e E,0 <y < (0 iff0 < +00,

and 0<y <400 iff(x):+oo}.

I'(f,E) is called the graph of f over E and R(f, E) the region under f over E.
If R(f, E) is measurable (as a subset of R**1), its measure |R(f, B+ is
called the Lebesgue integral of f over E, and we write

IR(f, E)ln41) = ff(x) dax.
E

Usually, one of the abbreviations

ffdx or ff

E E

is used, and at times the lengthy notation
IE ff(xl, ceXn)dxy . dxy

is convenient. We stress that the definition applies only to nonnegative f; a
definition for functions that are not nonnegative will be given in Section 5.3.

81
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We also note that the existence of the integral is equivalent to the measura-
bility of R(f, E) and does not require the finiteness of |R(f, E)|(;+1). The next
theorem is of basic importance.

Theorem 5.1 Let f be a nonnegative function defined on a measurable set E. Then
Je f exists if and only if f is measurable.

We will show here only that the integral exists if f is measurable, postpon-
ing a proof of the converse until Theorem 6.11. We need several lemmas, the
first of which proves the theorem for functions that are constant on E. In this
case, R(f,E) is a cylinder set; that is, it has one of the forms {(x,y) : x € E,
O<y<a},0<a<+oo,or{(xy):xeE 0=<y < +oo}.

Lemma 5.2 Let E be a subset of R®, 0 < a < +o0, and define E; = {(x,y) :
x € E,0 <y <a}forfiniteaand Ec = {(x,y) : x € E, 0 <y < +oo}. If
E is measurable (as a subset of R®), then E, is measurable (as a subset of R™1) and
|Eal (1) = alEl@m).*

Proof. The result follows from a series of simple observations. First, assume
that a is finite. If |[E| = 0 or if E is an interval that is either closed, partly open,
or open, the result is clear. Next, if E is an open set, then by Theorem 1.11, it
can be written as a disjoint union of partly open intervals, E = [ Ir. Therefore,
E; = U, and since I, are measurable and disjoint, E, is measurable and
|Eal =) ’Ik,a| = > ally| =alE|.

Let E be of type Gs, E = (o Gk, with |G1| < +00. We may assume that
Gr \{ E by writing E = G; N (G1 N G2) N (G1 N G2 N G3) N - -. Therefore, by
Theorem 3.26, |Gx| — |E| as k — oo. Moreover, Gy, is measurable, Gk,a| =
a|Gkl, and Gy, \( Eq. Therefore, E, is measurable and |E| = limy_, o |Gga| =
alimy_, o |G| = alE|.

If E is any measurable set with |E| < 400, then by Theorem 3.28, E=H - Z,
where |Z| = 0, H is a set of type Gs, H = ;2 Gk, and |G1| < +o0. Since
E, = H, — Z,, we see that E, is measurable and |E,| = |H,| = a|H| = a|E|.
Finally, if |E| = 400, the result follows by writing E as the countable union
of disjoint measurable sets with finite measure. This completes the proof in
case a is finite. If 2 = 400, choose a sequence {ai} of finite numbers increasing
to 4+-00. The conclusion then follows easily from the fact that E;, /" Eco.

As is easily seen (e.g., by using the same proof as above), the conclusion of
Lemma 5.2 holds with E, replaced by {(x,y) : x € E,0 <y <a},0 <a < +oo0.

* Here and in the following text, 0 - co and oo - 0 should be interpreted as 0.
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Lemma 5.3 Iff is a nonnegative measurable function on E, 0 < |E| < +o0, then
[ (f, E) has measure zero.

Proof. Givene>0andk=0,1,...,let Ex={ke <f < (k+ 1)e}. The Ey are dis-
joint and measurable, and their union is the subset of E where f is finite.
Hence, I'(f,E) = UT (f, Ex). Since |I'(f,Ep)|, < ¢|Ex| by Lemma 5.2, we
obtain

I E)le < ) |7 (f Ex)|, < € ) IEkl < €lEl.

If [E| < 4o0, this implies that I'(f, E) has measure zero. If |E| = +o0o,
write E as the countable union of disjoint measurable sets with finite measure.
Then I'(f, E) is the countable union of sets of measure zero, and the lemma
follows.

Proof of the sufficiency in Theorem 5.1. Let f be nonnegative and measurable
on E. We must show that R(f, E) is measurable. By Theorem 4.13, there exist
simple measurable fy /' f. Therefore, R (fi, E) UT'(f,E) / R(f,E), and since
I'(f,E) is measurable (with measure zero), it is enough to show that each
R (fi, E) is measurable. Fix k and suppose that the distinct values of f; are
ai,...,an, taken on measurable sets Ey, . . ., E, respectively. Then R (f, E) =
Ujlil Ejq;- Therefore, R (fx, E) is measurable by Lemma 5.2, and the proof is
complete.

Corollary 5.4 If f is a nonnegative measurable function, taking constant values
ai,a,. .. (possibly +o00) on disjoint sets Eq, Ey, . . ., respectively, and if E = | JEj,
then

ffZZﬂj|Ef|-

Proof. Clearly R(f,E) = |, Ej4- Since the E; are measurable and disjoint, so
are the E; ;.. Therefore, ef=> ‘Ej,aj ), and the corollary follows from the fact
that ‘Efrﬂj

Note that Corollary 5.4 applies in particular to nonnegative simple mea-
surable functions.

=a; |Ej|.



84 Measure and Integral: An Introduction to Real Analysis

5.2 Properties of the Integral
Theorem 5.5

(i) Iff and g are measurable and if0 < g < f on E, then [p g < [ f. In particular,
Je(nff) < [pf.

(ii) If f is nonnegative and measurable on E and if [ f is finite, then f <+o0
ae. inE.

(iii) Let Eq1 and Ey be measurable and E1 C Ey. If f is nonnegative and measurable
on Ey, then [p f < [p f.

Proof. Parts (i) and (iii) follow from the relations R(g,E) C R(f,E) and
R (f,E1) C R(f,Ey), respectively. To prove (ii), we may assume that |E| > 0.
If f = 400 in a subset E; of E with positive measure, then by (iii) and (i), we
have [pf = [p f = [g, a = a|E1l, no matter how large a is. This contradicts
the finiteness of [, f.

Theorem 5.6 (Monotone Convergence Theorem for Nonnegative Func-
tions) If { fx} is a sequence of nonnegative measurable functions such that f, /' f

on E, then
[fi— .
E E

Proof. By Theorem 4.12, f is measurable. Since R (fi, E) UT'(f,E) / R(f,E)
and I'(f, E) has measure zero, the result follows from Theorem 3.26.

Theorem 5.7 Suppose that f is nonnegative and measurable on E and that E is the
countable union of disjoint measurable sets Ej, E = | J E;. Then

Jr=%]r
E E;
Proof. The sets R(f,E;) are disjoint and measurable. Since R(f,E)=

UR ( f, E]'), the result follows from Theorem 3.23.

The next four theorems are corollaries of the results just proved. The first
one provides an alternate definition of the integral that will be useful in
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Chapter 10 as a motivation for defining integration with respect to abstract
measures.

Theorem 5.8 Let f be nonnegative and measurable on E. Then
jf:supz inf f(x) |Ej|,
E ] XEE]‘

where the supremum is taken over all decompositions E = U]- E; of E into the union
of a finite number of disjoint measurable sets E;.

The reader will observe that the formula resembles the definition of the
Riemann integral if the E; are taken to be subintervals. We note however that
the roles of sup and inf cannot be interchanged; see Exercise 25.

Proof. IfE = Ujl\il E; is such a decomposition, consider the measurable func-
tion g taking values 4; = infyer f(y) on Ej, j =1,...,N.Since 0 < g < f, we
have by Corollary 5.4 and Theorem 5.5 that Z]Iil a |Ej| < Jpf- Therefore,

supZ (inff)|Ej| < jf
i B E

To prove the opposite inequality, consider for k=1,2,..., the sets
[E©).j=0.1,... k2, defined by

:_1 ; .
E = {]zk‘ <f< %} j=1. k2 B =2k,

and the corresponding measurable functions

fk= Z (inff)XE(k).

: (k) ]
VA

(Compare the simple functions in Theorem 4.13(ii).) Then 0<f,  f,
and by the monotone convergence theorem, [.fi— [pf. Since [.fi=

N inf g Egk) by Corollary 5.4, it follows that
] Ej. ] y y
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sup Y (nff) IEj| = [ f,
i K E

which completes the proof.

Theorem 5.9 Let f be nonnegative on E. If |[E| = 0, then [ f = 0.

This can be proved in many ways; for example, it follows immediately
from the last result. Measurability of f is automatic since |E| = 0.
We can now slightly strengthen the statement of part (i) of Theorem 5.5.

Theorem 5.10 If f and g are nonnegative and measurable on E and if g < f a.e.

inE, then [ g < [-f.
In particular, if f and g are nonnegative and measurable on E and if f = ga.e.

inE, then [pf = [ 8.

Proof. Write E = AU Z, where A and Z are disjoint and Z = {g > f}. Then
|Z| = 0. Therefore, by Theorems 5.7 and 5.9, [ f = [,f + [,f = [4f- Since
the same is true for g, and since f > g everywhere on A, the result follows.

In defining [ f, we assumed that f was defined everywhere in E. In view
of Theorem 5.10, [ f is unchanged if we modify f in a set of measure zero.
Hence, we may consider integrals [ f where f is defined only a.e. in E, by
completing the definition of f arbitrarily in the set Z of measure zero where
it is undefined. As a result of Theorem 5.9, this amounts to defining [. f to be
Jg_,f- Similarly, we may extend the definition of the integral and the results
earlier to measurable functions that are nonnegative only a.e. in E.

Theorem 5.11 Let f be nonnegative and measurable on E. Then [pf = 0 if and
onlyif f =0a.e. inE.

Proof. If f =0a.e.inE, then [, f = 0 by Theorem 5.10. Conversely, suppose
that f is nonnegative and measurable on E and that [, f = 0. For « > 0, we
have by Corollary 5.4 and Theorem 5.5 that

dixeE:fo>all = [ f=[f=0.

{xeE:f (x)>«} E

Therefore, {x€E : f(x) > o} has measure zero for every o > 0. Since the set
where f > 0 is the union of those where f > 1/k, it follows that f =0 a.e. in E.

This proof also establishes the following useful result.
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Corollary 5.12 (Tchebyshev’s Inequality) Let f be nonnegative and measurable
on E. If x > 0, then

1
x € E:f(x) > a}| < &Eff.

The significance of Tchebyshev’s inequality is that it estimates the size of
f in terms of the integral of f.

The next two theorems establish the linear properties of the integral for
nonnegative functions.

Theorem 5.13 If f is nonnegative and measurable, and if ¢ is any nonnegative

constant, then
j of =c j f.
E E

Proof. 1f f is simple, then so is cf, and the theorem follows in this case from
the formula for integrating simple functions (see Corollary 5.4). For arbitrary
measurable f > 0, choose simple measurable f; with 0 < f ' f. Then 0 <
cfr / cf and

J o = lim [ofi=lmec]fi=c|f
E E E E

Theorem 5.14 If f and g are nonnegative and measurable, then

[F+o=[f+]s
E E E

Proof.  First, suppose that f and g are simple: f= Zf\i 14ixa, and g¢=
Zj]\il b]-xgj, where E = | J; A; = U]« B; and all A; and Bj are measurable. Then,
f+gisalsosimple, taking values a;+b;on A;NB; : f+g = 3= (ai + bj) xain ;-
Thus,

f(f+g) Z(“z+b ) |Ai ﬂB|—ZaZZ|A mB|+Zb Z|A N B|
—Z“JA'JFZb |B|—ff+fg
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For general nonnegative measurable f and g, choose simple measurable
frand gx such that 0 < fx / fand 0 < g ' g. Then f; + gk is simple and
0 <fx + 8k /' f + & Therefore,

J+o = lim [ (fitg) = lim (ffk+fgk) =[f+ s
E E E E E E

which completes the proof.

Corollary 5.15 Suppose that f and ¢ are measurable on E,0 < f < &, and [ f is
finite. Then

f@-p=[o-r

E E E

Proof. By Theorem 5.14, we have [.f + [p(d —f) = [ ¢. Since [ f is finite,
the result follows by subtraction.

Theorem 5.16 If fx, k =1,2,..., are nonnegative and measurable, then

(2)-Ep

E k=1E

Proof. The functions Fy defined by Fy = Zszl f are nonnegative and mea-
surable and increase to > ;2 ; fx. Hence,

[e%9) N oo
J(55) - s 3 -5
k=1 E k= E

E =1 E k=1

Note that the preceding theorem is essentially a corollary of the Monotone
Convergence Theorem 5.6. Conversely, Theorem 5.6 can be deduced from
this result. Verification is left to the reader.

The monotone convergence theorem gives a sufficient condition for inter-
changing the operations of integration and passage to the limit: [ limf; =
lim [ fy. It is an important problem to find other conditions under which this
is true. First, we show that some restriction other than the mere convergence
of fi to f is necessary. Let E be the interval [0,1], and for k = 1,2,..., let fi
be defined as follows: when 0 < x < 1/k, the graph of f; consists of the sides
of the isosceles triangle with altitude k and base [0, 1/k]; when 1/k < x <1,
fr(x) = 0.
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1/k 1

Clearly, fy —> 0 on [0, 1], but fol fi= %(1 /k) (k) =1 for all k. Hence, fol limf <

lim f()l fx. For any nonnegative measurable {f;} such that i —f and [fi
converges, the fact that [ f < lim [ f; is a consequence of the next theorem.

Theorem 5.17 (Fatou’s Lemma) If {f} is a sequence of nonnegative measurable
functions on E, then

J (lim nffk) < liklggf Ejfk

i
E k—o00

Proof. First, note that the integral on the left exists since its integrand is
nonnegative and measurable. Next, let g = inf { fi, fi+1, . . .} for each k. Then,
gk /" liminf fy and 0 < gi < fi. Therefore, by Theorems 5.6 and 5.10,

Jgk — J(lim inf fy), ng < ffk,
E E E E

so that

f(hm inf f) = lim fgk < liminf j fe.
E E E

Corollary 5.18 Let fi,k = 1,2, ..., be nonnegative and measurable on E, and let
fe > fae inE.If [ fi <M forallk, then [pf < M.

Proof. By Fatou’s lemma, [; (liminff;) < M. Since liminf fy = limfi = f a.e.
in E, the conclusion follows.

We now prove a basic result about term-by-term integration of convergent
sequences.
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Theorem 5.19 (Lebesgue’s Dominated Convergence Theorem for Nonneg-
ative Functions) Let {f} be a sequence of nonnegative measurable functions on
E such that fy — f a.e. in E. If there exists a measurable function ¢ such that
fx < b ace. forall kand if [ ¢ is finite, then

J = [ f
E E
Proof. By Fatou’s lemma,
ff = flim inf fy < liminf ffk,
E E E
and the theorem will follow if we show that

ff > lim sup jfk
E E

To prove this inequality, apply Fatou’s lemma to the nonnegative functions
¢ — fx, obtaining

jhm inf (¢ — fi) < liminf j(qp —fo.
E E

Since fx — f a.e., the integrand on the left equals ¢ —f a.e., so that the integral
on the leftis [, ¢ — [ f by Corollary 5.15. The right-hand side equals

lim inf (f ¢ — _[fk) = fd) — lim sup jfk
E E E E

Combining formulas and cancelling [ ¢, we obtain the inequality [.f>
lim sup [ fk, as desired.

5.3 The Integral of an Arbitrary Measurable f

Let f be any measurable function defined ona set E. Thenf = f* — f~ and, by
the comments following Theorem 4.11, f* and f~ are measurable. Therefore,
the integrals [, f*(x)dx and [; f~(x) dx exist and are nonnegative, possibly
having value +oco. Provided at least one of these integrals is finite, we define

[foodax= [froodx— [f o0 dx
E E E
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and say that the integral [ f(x) dx exists. If f > 0, then f = f*, and this defini-
tion agrees with the previous one. As in the case when f > 0, we will use the
abbreviations [ fdx and [ f.

The definition clearly applies if f is defined only a.e. in E, as in the case
when f > 0 (see p. 86 in Section 5.2). For the sake of simplicity, we shall
usually assume that f is defined everywhere in E.

If [, f exists then, of course, —oo < [ f < +o0.If [, f exists and is finite, we
say that f is Lebesgue integrable, or simply integrable, on E and write f € L(E).
Thus,

L(E) = {f:ffis finite}.

E

If [ f exists, then

[ f

E

= [+ =[Ur+r).
E E E
by Theorem 5.14. Since f* + f~ = |f|, we obtain the inequality

ffdx

E

< f Ifl dx. (5.20)
E

Theorem 5.21 Let f be measurable on E. Then f is integrable over E if and only
1L s,

Proof. If |f| € L(E) then f*, f~ € L(E), and consequently [..f exists and is
finite. If f € L(E), then the difference [, f™ — [.f~ is finite, and therefore,
since at least one of [, f* or [.f~ is finite, both must be finite. Hence, their

sum is finite. Since this sum is [ (f* +f~) = [ |f], it follows that |f| € L(E).

The simple properties of [;f for general f follow from the results already
established for f > 0. As a first example, we have the following theorem.

Theorem 5.22 Iff € L(E), then f is finite a.e. in E.

Proof. 1ff € L(E), then |[f| € L(E), and the result follows from Theorem 5.5(ii).
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Theorem 5.23

(i) If both [pf and [ g exist and if f < ga.e. in E, then [.f < [.g. Also, if f
and g are functions with f = g a.e. in E and if [ f exists, then [ g exists and

Jef = Je g

(it) If sz f exists and Eq is a measurable subset of Ey, then fE1 f exists.

Proof. (i) The fact that f <ga.e. implies that 0<f* <g* and 0<g™ <

f~ ae. in E. By Theorem 5.10, we then have [ f* < [p¢Tand [.f~ = [rg~,
and the first part of (i) follows by subtracting these inequalities. The proof of
the second part of (i) is similar; note that measurability of f is equivalent to
that of g when f =g a.e.

(ii) If sz f exists, at least one of sz ftor sz f~ is finite. If E1 C Ep, then by
Theorem 5.5(iii), at least one of [ f* or [ f is finite. Therefore, [; f exists.

Theorem 5.24 If [.f exists and E = |J; Ex is the countable union of disjoint
measurable sets Ey, then

£f=2ff.

k Ex

Proof. Each fEk f exists by Theorem 5.23(ii). We have
[r=]r=Jr=2]r -2
E E E Ex Ei

by Theorem 5.7. Since at least one of these sums is finite, we obtain
Jr=2\lr-Jr)=E]s
E Ex Ex Ex

Theorem 5.25 If |[E| =0oriff =0a.e. inE, then [, f = 0.

Proof. The theorem follows by applying Theorem 5.9 or 5.11 to f* and f~.

The next few results deal with linearity properties of the integral.

Lemma 5.26 If [, f is defined, then so is [p(—f), and [o(—f) = — [ f.
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Proof. Since (—f)* =f~ and (—f)” =f*, and at least one of [ f~ or [.f*is
finite, we have [p(—f) = [of~ — [ofT = — Jf-

Theorem 5.27 If [ f exists and c is any real constant, then [;(cf) exists and
j(cf) =c J f.
E E

Proof. Ifc > 0, (¢/)t = ¢f " and (¢f)~ = ¢f . Therefore, by Theorem 5.13,
JeeHt =cfpfTand [p(cf)~ =c [pf.Itfollows that [ (cf) existsand [;(cf) =
c(Jef T = Jgf ) = c Jpf. If ¢ = —1, the theorem reduces to Lemma 5.26. For
any ¢ < 0, we have ¢ = (—1)(|c|), and the result follows from the cases c = —1
and ¢ > 0.

Theorem 5.28 If f,g € L(E), then f + g € L(E) and
[F+9=[f+]s
E E E

Proof. Since |f + gl < |f| + Igl, we have from Theorems 5.23(i) and 5.14 that

[1r+g1= [ari+1gn = [1f1+ [ 1gl < +oo.
E E E E

Hence, f + ¢ € L(E).

To prove the rest of the theorem, first note that if ¢ = 0 everywhere in E,
then the formula [ (f +¢) = [pf + J; g is obvious by Theorem 5.25. Thus, by
writing E = (EN {g = 0}) U (E N {g # 0}) and using Theorem 5.24 for each
of the three integrals in the formula, it is enough to prove the formula with
E replaced by E N {g # 0}. Hence, because of similar considerations for f, it
suffices to prove the formula under the extra assumption that f and g never
vanish on E. To do so, we begin by considering the following six cases, in
which each inequality is assumed to hold everywhere in E: (1) f > 0, g > 0
(sothatf +¢>10);,2)f>0,¢g<0,f+g>0;,38)f>0,9<0,f+g<0;4)
f<0,9g>0,f+g>0,5f<09g>0f+g<0;6)f <0, g <0 (so that
f + g < 0). Note that these possibilities are mutually exclusive. The result in
case 1 is just Theorem 5.14. Cases 26 are all similar, and we shall consider
only case 2. Thenf > 0, —¢g > 0, f + g > 0, and since by Theorem 5.22 each
function is finite a.e., (f + g) + (—g) = f a.e. Hence, by Theorems 5.23(i) and
5.14, we have [.(f+ ) + [r(—g) = [pf. The result in case 2 now follows from
Lemma 5.26 and the fact that all the integrals involved are finite.
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For arbitrary f and g in L(E) that never vanish in E, we subdivide E into
at most six measurable sets, Ey, ..., Es, where possibilities (1), ..., (6) hold,
respectively. Since E; and E; are disjoint for i # j, we have

f(f+g) Zf(erg) (ff+jg)=jf+jg.

J=1E;

This completes the proof.

It follows that if fy € L(E),k = 1,...,N, and if a; are real constants, then
SN afi € L(E) and

f (kNl ﬂkfk) i ar Effk

E k=1

Corollary 5.29 Let f and ¢ be measurableon E, f > ¢ a.e., and ¢ € L(E). Then,

[r=or=[f-[o
E E E

Proof. First, note that [, f exists since f~ < ¢~ a.e. implies that [ f~ is finite.
Next, fE (f — ) exists since f —¢d > 0 a.e. If f € L(E), the corollary follows from
Theorem 5.28. If f ¢ L(E), then since f~ € L(E), we must have fEf = +o00. The
fact that ¢ € L(E) implies that f — ¢ ¢ L(E), so that fE(f — ¢) = +o0o since
f — & = 0 a.e. This completes the proof.

In Chapter 8, we will study conditions on f and g that imply that fg € L(E).

For now, we have the following simple result.

Theorem 5.30 If f € L(E), g is measurable on E, and there exists a finite con-
stant M such that |g| < M a.e. in E, then fg € L(E) and [ |fg| <M [¢ |f|.

Proof. Since |fg| <M|f|a.e. in E, we have by Theorems 5.10 and 5.27 that
Je Ifgl < Jp MIf| = M [ |f|. Hence, fg € L(E).

Corollary 531 Iff € L(E), f = Oa.e., and there exist finite constants « and f3
such that x < g < 3 a.e. in E, then

«[f=[fe=8]f.
E E E
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Proof. By Theorem 5.30, fg € L(E). Since f > 0 a.e., we have of < fg < 3f a.e.
in E, and the conclusion follows by integrating.

We now study conditions that imply that [ fi — [;fiffy — fin E. Most
of the results are extensions of those we derived for nonnegative functions.

Theorem 5.32 (Monotone Convergence Theorem) Let {fi} be a sequence of
measurable functions on E:

() If fx / f a.e.on E and there exists ¢ € L(E) such that fi > ¢ a.e. on E for all k,
then [¢fr — [f.

(i) If fr \\f a.e. on E and there exists ¢ € L(E) such that fy < ¢ a.e.on E for all k,
then [¢fi — [ f.

Proof. To prove (i), we may assume by Theorem 5.25 that f; ' f and fx > ¢
everywhere on E. Then 0 < fy — ¢  f — ¢ on E, so that by Theorem 5.6,
Je (f = &) = Jz(f—d). Therefore, by Corollary 5.29, [ fi—[r & = [cf—Jz b,
and since ¢ € L(E), the result follows.

We can deduce (ii) from (i) by considering the functions —f;. Details are
left to the reader.

Theorem 5.33 (Uniform Convergence Theorem) Let fy € L(E) fork=1,2,...,
and let {fi.} converge uniformly tof on E, |E| < +oo. Then f € L(E) and [ fx — [¢f.

Proof. Since |f| < |fi| + |f — f¢| and {fi} converge uniformly to f on E, we
have [f| < lfk’ +1 on E if k is sufficiently large. Since |E| < 400, it follows that
f € L(E). From Theorem 5.28 and (5.20), we obtain

Eff - Effk

The last integral is bounded by (supycg [f(X) — fe(%)|) |E|, which by hypothesis
tends to 0 as k — oo. This proves the theorem.

[F=fo = [IF-Al.
E E

Theorem 5.34 (Fatou’s Lemma) Let { fi} be a sequence of measurable functions
on E. If there exists & € L(E) such that fi > ¢ a.e. on E for all k, then

[ (imintfy) < lim in ! fie

E k—o00
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Proof. The result follows by first applying Theorem 5.17 to the sequence
{fx — &} of nonnegative functions, and then using Corollary 5.29. Details are
left to the reader.

Corollary 5.35  Let { fi} be a sequence of measurable functions on E. If there exists
& € L(E) such that fy < & a.e. on E for all k, then

f (lim supfk) > lim sup ffk
E

E k—o00 k—o0

Proof.  This follows from Fatou’s lemma since —f;> —¢da.e. and
lim inf (—fk) = — lim sup (fk)

Theorem 5.36 (Lebesgue’s Dominated Convergence Theorem) Let {fi} be
a sequence of measurable functions on E such that fi — f a.e. in E. If there exists
& € L(E) such that |f| < ¢ a.e. in E for all k, then [ fi — [f.

Proof. By hypothesis, —¢ < fr < ¢ a.e. in E. Therefore, 0 < fy + ¢ < 2 a.e.
in E. Since 2¢ € L(E), we conclude from Theorem 5.19 that [ (fi + ¢) —
Je(f + ¢). Since ¢, f, and all the f; are integrable on E, the result follows from
Theorem 5.28.

See Exercises 23 and 26 for two useful variants of Theorem 5.36, one about
weakening the assumption that |[fy| < ¢ and the other about replacing the
hypothesis of pointwise convergence of {fi} by convergence in measure.

The following special case of the dominated convergence theorem is often
useful if E has finite measure.

Corollary 5.37 (Bounded Convergence Theorem) Let {fi} be a sequence of
measurable functions on E such that fy — f a.e. in E. If |E| < 400 and there is a
finite constant M such that |fy| < M a.e. in E, then [ fx — [ f.

In later chapters, we will consider the integrals of complex-valued func-
tions. Here, we mention only the definition. (See p. 183 in Section 8.1 for
some further remarks.) If f = f; + if, with f; and f, real-valued, we define

ff = jfl + iffz,
EE E
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provided the integrals on the right exist and are finite. (For the measurability
of such f, see Exercise 3 Chapter 4.) Many basic properties of the ordinary
integral are valid in this case.

5.4 Relation between Riemann-Stieltjes and Lebesgue Integrals,
and the L” Spaces, 0 < p < o0

It turns out that there is a remarkably simple and useful representation of
Lebesgue integrals over subsets of R™ in terms of Riemann-Stieltjes integrals
(over subsets of R1, of course). In order to establish this relation, we must first
study the function

w(e) = wrp(e) = |{x € E:f(x) > ],

where f is a measurable function on E and —oo < & < +00. We call wy g the
distribution function of f on E.

Some properties of w were given in Exercise 18 of Chapter 4. Clearly, it is
not affected by changing f in a set of measure zero, and it is decreasing. As
« /400,

{(xeE:f(x) > o} \({x € E:f(x) =+o0};
hence, assuming that f is finite a.e. in E, by Theorem 3.26(ii),

cxlau?kloo w(e) =0,

unless w(x) = 4oc0. Similarly,

lim w(x) = |E|.
X——0Q0

We will assume from now on that |E| < +o00. This insures that w is bounded,
that limy 100 w(x) = 0, and that w is of bounded variation on (—o0, +00)
with variation equal to |E|. The assumption is made only to simplify the prop-
erties of w, and is not entirely necessary (see, e.g., Exercise 16); in fact, the case
|E| = 400 is often important.

In the following results, we assume that f is a measurable function that is
finite a.e. in E, |E| < +00, and we write

w(a) = wrEe(x), {f >a}={xeE:f(x) > o}, etc.

Lemma 538 Ifx < 3, then [{x < f < B} = w(x) — w(P).
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Proof. Wehave {f > B} C{f >ajand{a <f < B} ={f > o} — {f > B}
Since [{f > B}| < 400, the lemma follows from Corollary 3.25.

Given «, let

w(a+) = lim w(x + ¢€), w(ax—) = lim w(x — €)
e\0 eNo0

denote the limits of w from the right and left at .

Lemma 5.39

(@) w(a+) = w(w); that is, w is continuous from the right.

(b) wlo—) =[{f = a}l.

Proof. If ¢x\0, then {f>a + e} /{f>a} and {f > — g} \{f = «}.
Since these sets have finite measures, it follows from Theorem 3.26 that
w(a+ er) = w(e) and w(x — e¢) — |{f > «}|. This completes the proof.

We now know that w is a decreasing function that is continuous from the
right. It may have jump discontinuities, with jumps w(x—) — w(e), and inter-
vals of constancy. These possibilities are characterized by the behavior of f
stated in the following result.

Corollary 5.40

(@) w(a—) —w(x) = |{f = a}|; in particular, w is continuous at o if and only if
Hf =a}l=0.

(b) w is constant in an open interval (o, B) if and only if |{x < f < B} = 0O, that
is, if and only if f takes almost no values between o and f3.

Proof. Since |{f > o}| = [{f > o}| + |[{f = «}|, part (a) follows immediately
from Lemma 5.39(b). To prove part (b), note that [{x <f <} =|{f > «}| —
{f = B} = w(x) — w(p—). This is zero if and only if w is constant in the
half-open interval [«, ). However, since w is continuous from the right, it is
constant in (e, ) if and only if it is constant in [e, (3).

The rest of the theorems in this section give relations between Lebesgue
and Riemann-Stieltjes integrals. As always, f is measurable and finite a.e. in
E |E| < +ooand w = wyE.
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Theorem 5.41 Ifa < f(x) < b (aand b finite) for all x € E, then

b
ff = — f adw (o).

E

Proof. The Lebesgue integral on the left exists and is finite since f is bounded
and |E| < +4oo. The Riemann-Stieltjes integral on the right exists by The-
orem 2.24. To show that they are equal, partition the interval [2,b] by a =
x <&y <--- < o =bandlet Ej = {&_1 <[ < «}. The E; are disjoint and
E= U;-‘zl E;. Hence, Jef = Z}‘:l ij f and, therefore,

k k
PILEN N VED LT =T
j=1 E j=1

By Lemma 5.38,

these sums are Riemann-Stieltjes sums for —fﬂb o d w(e). Since these sums

Ejl =w (oj-1) — @ (o) = — [w () — w (e-1)]. Hence,

must converge to —fab o d w(er) as the norm of the partition tends to zero, the
conclusion follows.

Theorem 5.41 can be extended to the case when f is not bounded on E as
follows.

Theorem 5.42  Let f be any measurable function on E, and let E;y = {x € E:a <
f(x) < b} (aand b finite). Then,

b
Jf = —jocdw(oc).
Egp a

Proof. Let wgp(o) = ]{x €Ep:f(x) > oc}‘. Then wyy, is the distribution func-
tion of f on Egp. By Theorem 5.41, we have fEabf = - fb & dwgy (). We claim

a
that the last expression equals — fab adw(x). By taking limits of Riemann—
Stieltjes sums that approximate the integrals, we only need to show that
Wap(0) — wep(P) = w(o) — w(PB) fora < o« < B < b. By Lemma 5.38, this is
equivalent to showing that |{x € Egp: « <f(x) < B}| = l{x € E: &« < f(x) <
B}] for such « and (3. However, by the definition of E;;, and the restrictions on
xand B, {x € Ep: a <f(x) < B} = {x € E: a < f(x) < B}. This proves the
claim and the theorem too.
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In both Theorems 5.41 and 5.42, the integrals of f are extended over sets
where f is bounded. This restriction is removed in the next theorem, where
we define (see p. 34 in Section 2.4)

400 b

j adw(x) = lim jocdw(oc),
a——00
—00

b—+o00 @

if the limit exists.

Theorem 5.43  If either [ f or [*2° adw(w) exists and is finite, then the other
exists and is finite, and

+0oo

ff: - j odw(x).

E

Proof. By Theorem 542, [ f= — f: adw(e). If f € L(E), then [ f —
Jpf asa — —oo, b — 400 since this holds for both f* and f~. Therefore,
limg—s o0, b 400 [— f: ocdw(oc)] exists and equals [ f, which proves half of
the theorem.

Now suppose that jf;o axdw(o) exists and is finite. Then J"OOO ocdw (o)
is finite, and we claim that [;f*= — [ «dw(x). By Theorem 5.42, for
b>0, Jg,f=— fob adw(e). Therefore, as b — +0o, [ f — — [ adw(x).
On the other hand, as b increases to +00, Eqy /' {0 < f < +00}. Therefore,

Jr=Jr= 1 f*=£f+,

Eop Eop {0<f <400}

due to our standing assumption that f is finite a.e. in E, and the claim follows.
A similar argument, using the sets E, with a— — oo, shows that [ f~ =

fi) « adw(x). Since all the integrals are finite, it follows that [ f = [f* —
Jef~ == 1% adw().

Two measurable functions f and g defined on E are said to be equimeasur-
able, or equidistributed, if

wf,E(00) = Wg,E(00) for all «.

In case n = 1, simple examples of equimeasurable functions are x and —x on
[-1,1],orxand 1—xon [0, 1]. If n > 1 and f is measurable on R™, then f (x) and
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f(Tx) are equimeasurable on {x : |x| < 1} for any orthogonal transformation
T of R™ (recall Theorem 3.35). See also Exercise 27.

We may intuitively think of two equimeasurable functions as being rear-
rangements of each other. For such functions, we have

Ha<f=bll=Wa<g=b}, {f =a})l ={g=a}l, etc.

We also have the following immediate corollary of Theorem 5.43.

Corollary 5.44 If f and g are equimeasurable on E and f € L(E), then g€
L(E) and

Jr=]s

E E

The method used to derive Theorems 5.41 through 5.43 illustrates a basic
difference between Riemann and Lebesgue integrals. The Riemann integral
is defined by a limiting process whose initial step involves partitioning the
domain of f. On the other hand, we saw in the proof of Theorem 5.41 that the
Lebesgue integral can be obtained from a process that partitions the range of f.
In order to define this process more clearly, let f be a nonnegative measurable
function that is finite a.e. in E, |E| < +o00. LetI' = {0 =g < 1 < ---} be a
partition of the positive ordinate axis by a countable number of points o, —
400, and let [I'| = supy (k41 — k). Let Ex = {o < f < g1} and Z = {f =
+o0}. Then the Ei are measurable and disjoint, |Z| = 0 and E = (U Ek) Uz,
so that |[E| = Y |Eg|. Let

st=Y oxlExl,  Sr=)_ o lEl.

Theorem 5.45 Let f be a nonnegative measurable function that is finite a.e. in E,
|E| < 4+00. Then

If: lim spr = lim Sr.
2 IT|—>0 IT|—0

Proof. We may assume that f is finite everywhere, since changing it in a set
of measure zero does not affect the expressions above. Given I' with |T'| <
+o00, define functions ¢r and YPr by setting dr = o in Ex and Pr = x¢41 in
Er,k=0,1,....Then0 < ¢r <f < r, [p dr =sr,and [ Pr = Sr. Hence,

Srffffsr-
E
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If sp < 400, then
0<Sr—sr=) (a1— o) Exl < ITIIEI,

so that St < +oo for the same I', and therefore fE f < 4o00. Thensr and Sr are
finite for all I" with |T'| < 400, and St — s — 0 as [I'| — 0. The conclusion
of the theorem now follows easily in case [ f < +o0. On the other hand,
if fE f = +oo, then all Sy = 400, and therefore also all sr = +o00, which
completes the proof.

Theorem 5.45 is the origin of an anecdote that compares the methods that
Lebesgue and Riemann might have used to count coins. The story goes that
Lebesgue would have been a better bank teller. To see why, imagine coins
placed at various points along the x-axis (there may be coins of equal value at
different points), and think of f(x) as the value of the coin at x. Suppose that
we want to determine the total value of all the coins. In Lebesgue’s method,
partitioning the ordinate axis and forming the sets Ej corresponds to sort-
ing the coins according to value; computing |Eg| corresponds to counting the
number with a given value. Thus, Y o |[Ex| = [ f represents the total value.
Riemann’s method is less efficient; it approximates the total by arbitrarily
grouping the coins (partitioning the x-axis) and then summing the products
of the number of coins in a given group by the value of any chosen coin in
the group.

The relation between Lebesgue and Riemann-Stieltjes integrals can be
extended in a useful way to give Riemann-Stieltjes representations for inte-
grals of the form [; ¢(f), where f and E are subject to the usual restrictions
(see p. 97 in Section 5.4), and ¢ is assumed to be continuous. This last
assumption assures the measurability of ¢(f) by Theorem 4.6.

Theorem 5.46 Ifa <f <b (aandb finite) in E and ¢ is continuous on [a, b], then

b
[oh = [ d@dwi.

E

Proof. Since ¢ is bounded and E (as always) has finite measure, we see
that ¢(f) € L(E). Since ¢ is continuous, the Riemann-Stieltjes integral
exists by Theorem 2.24. Write f as the limit of simple measurable f; with

a < fx < b as follows: for k=1,2,...,letazocgk)<oc§k)<---<oc,(ff£=b

be partitions of [4,b] with norms tending to zero, and let fx(x) = oc](k) when

oc;i)l <f(x) < cx;k). Then ¢ (fx) — ¢(f) in E. Since the ¢ (fi) are uniformly
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bounded and |E| < 400, it follows from the bounded convergence theorem
that [ ¢ (fc) > [z (). However, ¢ (f¢) is simple, taking values ¢ (oc](k)) on
{oc;ﬁ)l <f< oc](k) } Therefore, by Lemma 5.38,

[0t =T () [o (o) - ()]

E

so thatask — oo, [r & (fx) > — fab ¢ (x) dw(x). This completes the proof.

In the next theorem, let

+00 b
[ d@dw@ = lim_ [ @ dw@,

b—+4o00 4

if the limit exists (cf. p. 34 in Section 3.4).

Theorem 5.47 Let ¢ be continuous on (—oo,+00). If &d(f)€L(E), then
fj;o b(x) dw(x) exists and

[oH=- +jood><a> duw(e).
E —00

Proof. Since the proof is similar to that of part of Theorem 5.43, we shall
be brief. For finite a and b, a < b, let E;; and wg, be as in Theorem 5.42.

By Theorem 5.46, fEab o(f)= — fub b () dwgp (o). Therefore, as in the proof of

Theorem 5.42, fEab o(f)= — fab $(x)dw(x). The result now follows by letting
a—> —ooand b — +o0.

We remark that if ¢ is continuous and nonnegative, then the equality
+o00
[oh == [ d@dwe
E —00

holds without restriction on the finiteness of either side. To see this, simply
leta — — 00, b — 400 in the equation IEab d(f) = — fub d(x) dw(x).
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Thus, for any continuous ¢, we have

+00
[16H1=— [ 1b@lda(w.
E —00

Taking ¢(x) = |«|P, 0 < p < o0, it follows that

+00
(117 =~ [ 1at? dow(e.

E
If f is nonnegative, we obtain

o]

ff” =— f of dw (). (5.48)

E 0

Hence, for any measurable f,

j IfIf = — Tocp dwif (o).
E 0

Given ¢ > 0, let Ly (E) denote the class of measurable f such that ¢(f) €
L(E). If ¢(or) = |x|F, 0 < p < o0, the standard notation is

L”(E):{f:f[f|p<+oo},0<p<oo.
E

Note that L' (E) = L(E). We will systematically study the L? classes in Chap-
ter 8. For now, we only want to complete (5.48) by integrating its right side
by parts. To do so, we will borrow some facts (Theorems 5.52 and 5.54) from
the Section 5.5.

First, note that for measurable f, there is an L” version of Tchebyshev’s
inequality:

1
w (o) < — ff P, a>0. (5.49)
(f>al

The proof is left as an exercise. Hence, if f is in L”(E), then o w(x) remains
bounded as « — + co. A stronger result is actually true.
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Lemma 5.50 If0 <p < ocoand f € LP(E), then

lim ofw(x)=0.
xX— 400

Proof. This will be a corollary of (5.49) if we show that f{ foo fP— 0Oas
o — +o00. We may suppose that o runs through a sequence oy — +oo. Let
fe = f wherever f > o and fi = O elsewhere. Then [, f¥ = [¢ fV. Sincef is

finite a.e., fy — 0 a.e. Moreover, 0 < flf < |fI” € L(E), and the result follows
from the dominated convergence theorem.

In the next theorem, we use Lemma 5.50 to integrate the Riemann—Stieltjes
integral in (5.48) by parts.

Theorem 5.51 If 0 <p <oo,f > 0,and f € LP(E), then

[fr=- Toc” dw(e) =p To&’*l w(oda,
E 0 0

where the last integral may be interpreted as either a Lebesque or an improper
Riemann integral.

Proof. The first equality is just (5.48). For the second, if 0 < a < b < +o00, we
have

b b
— f of dw(o) = —bPw(b) + AP w(@a) +p j o’ Tw(e) de,

by Theorem 2.21 and the fact that o is continuously differentiable on [a, D].
Here, together with Theorem 2.21, we use the fact that for partitions I' =
{o} of [a,b] and intermediate points {fx} satisfying oy < Px < k41 and

-1
‘XIZH - O‘i = Pﬁ'i ((Xk+1 - ock), we have

b
Jw@ad(@) = lim 37w B ppy (e — o)
a k

b
=p f o’ Tw(x)da.
a
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The last integral exists in the Riemann sense by Theorem 5.54 since the
number of discontinuities of w is at most countable. By Theorem 5.52, the
last integral may also be interpreted in the Lebesgue sense.

Nowleta — 0Oand b — +oo. Then b’ w(b) — 0by Lemma 5.50, a’ w(a) — 0
since |E| < 400 (see also Exercise 14), and the theorem follows. Note that in
case 1 < p < oo, the proof works with a = 0 and no other changes.

For an extension of Theorem 5.51, see Exercise 16. See also Exercise 5 of
Chapter 6. In practice, the representation of [;[f|V as a Riemann-Stieltjes
integral provides a powerful tool for determining whether or not f € LP(E).

5.5 Riemann and Lebesgue Integrals

We now study a relation between Lebesgue and Riemann integrals over finite
intervals [4,b] in R and give a characterization of those bounded functions
that are Riemann integrable. The Lebesgue integral f[u pf will be denoted by

fﬂb f and the Riemann integral by (R) fab f.

Theorem 5.52  Let f be a bounded function that is Riemann integrable on [a, b].
Then f € L[a, b] and

b b
[f=w (.

Proof. Let {T'x} be a sequence of partitions of [4,b] with norms tending to

zero. For each k, define two simple functions as follows: if xgk) < xék) < ... are

the partitioning points of I, let [x(x) and ux(x) be defined in each semiopen

Ek),xl(i)l fk) ,xl@l], respectively. Then
Iy and uy are uniformly bounded and measurable in [4,b), and if Ly and U

denote the lower and upper Riemann sums of f corresponding to I'y, we have

interval [x ) as the inf and sup of f on [x

b b
flkZLk/ fukzuk.
a

a

Note also that [y < f < u on the half-open interval [4,b) and, if we assume
that I’y 1 is a refinement of T, that Iy /" and u \. Let | = limg_, o Ix and
u = limg_, o tx. Then I and u are measurable, | < f < u on [4,]), and, by

the bounded convergence theorem, Ly — Lbl and U — fab u. But since
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f is Riemann integrable, Ly and U both converge to (R) fub f by Theorem 2.29.
Therefore,

b
fu
a

Since u — I > 0, Theorem 5.11 implies that | = f = u a.e. in [4, b]. Therefore, f

b b
® [f=[1

a

is measurable and (R) fab f= fab f, which completes the proof.

Theorem 5.52 says that any function that is Riemann integrable is also
Lebesgue integrable and that the two integrals are equal. There are, of course,
bounded functions that are Lebesgue integrable but not Riemann integrable.
One such is the Dirichlet function defined for 0 < x < 1by letting f(x) = 1ifx
is rational and f(x) = 0 if x is irrational. Since f = 0 except for a subset of [0,1]
of measure zero, its Lebesgue integral is 0. On the other hand, its Riemann
integral does not exist since every upper Riemann sum is 1 and every lower
Riemann sum is 0.

The practical value of Theorem 5.52 is that it allows us to compute the
Lebesgue integral of Riemann integrable (e.g., continuous) functions.

Using the monotone convergence theorem, we can easily extend Theorem
5.52 to include improper Riemann integrals of nonnegative functions. Special
as it is, the following result is useful in applications.

Theorem 5.53  Let f be nonnegative on a finite interval [a, b] and Riemann inte-
grable (so, in particular, bounded) over every subinterval [a+ €, b], € > 0. Define the
improper Riemann integral

b
I=lm® [f,
a+e

0 < I < +oo. Then f is measurable on [a, b] and

b

[f=1

a

Proof. Observe that by Theorem 5.52, for every ¢ >0, f is measurable on
[a+¢,b]and Iab+ JS=R) I:Jr .f- Measurability of f on [a, b] follows easily from

Theorem 4.12 by letting ¢ — 0. The formula fab f = I follows similarly from
the monotone convergence theorem.
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Similar results hold for improper Riemann integrals over infinite intervals.
For example, if a € (—00,00) and f is nonnegative on [4,00) and Riemann
integrable on every [4,N], a < N < oo, then f is measurable on [4, 00) and
fﬂoo f = limyooo (R) fuN f. Verification is left to the reader; note that since

R faN f increases with N, the limit exists but may be +o0.

We note in passing that the finiteness of the improper Riemann integral of
an f that is not nonnegative does not in general imply that f is integrable (see
Exercise 7).

Our final result is a characterization of those bounded functions that are
Riemann integrable.

Theorem 5.54 A bounded function is Riemann integrable on [a, b] if and only if
it is continuous a.e. in [a, b].

Proof. Suppose that f is bounded and Riemann integrable. Let Iy, Ik, u, etc.,
be as in the proof of Theorem 5.52. Let Z be the set of measure zero outside
which I = f = u. We claim that if x is not a partitioning point of any I'y and if
x ¢ Z, thenf is continuous at x. In fact, if f is not continuous at x and x is never
a partitioning point, there exists ¢ > 0, depending on x but not on k, such that
u(x) —lx(x) > €. This implies that u(x) —I(x) > ¢, which is impossible if x ¢ Z.
Therefore, f is continuous a.e. in [4, b].

To prove the converse, let f be a bounded function that is continuous a.e.
in [a,b]. Let {I';} be any sequence of partitions with norms tending to zero,
and define the corresponding [}, u;, L;, and U as in Theorem 5.52. Note that
{I.} and {u}} may not be monotone since I';; may not be a refinement of
I, However, by the continuity of f, both [; and u; converge a.e. to f. Hence,

by the bounded convergence theorem, fab I, and fab u; both converge to fab f.

Since L = fah [, and U} = fab uy, it follows that the upper and lower Riemann
sums converge to the same limit. Therefore, f is Riemann integrable.

Exercises

1. If f is a simple measurable function (not necessarily nonnegative) tak-
ing values ajonkE;,j=12..,N, show that fEf = Z]I\il a; |Ej|. (Use
Theorem 5.24.)

2. Show that the conclusions of Theorem 5.32 are not generally true without
the assumption that ¢ € L(E). (In part (ii), for example, take fy = X(x,00).)

Show that Theorem 5.33 fails without the assumption that |E| < co.
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10.
11.
12.

13.

14.

15.

16.

Let { fi} be a sequence of nonnegative measurable functions defined on E.
If fi — f and fi < f a.e. on E, show that [fy — [;f.

If f € L(0,1), show that xkf(x) € LO,1) fork = 1,2,..., and that
Jo ¥ () dx — 0.

Use Egorov’s theorem to prove the bounded convergence theorem.
Letf(x,y),0 < x,y <1, satisfy the following conditions: for each x, f (x, y)
is an integrable function of y, and (3f (x, y)/9x) is a bounded function of
(x, ). Show that (3f (x, y)/dx) is a measurable function of y for each x and

d Lo
— | f,pdy=| —f(x,ydy.
de 5 0

Give an example of an f that is not integrable, but whose improper
Riemann integral exists and is finite.

Prove (5.49).

Ifp > 0and [.|f — /|’ — 0ask — oo, show that fy——f on E (and thus
that there is a subsequence fi;, — f a.e. in E).

Ifp>0, [ |f —fk‘p — 0,and [, [fk}p < M for all k, show that [ [f|P < M.
For which p > 0 does 1/x € LF(0,1)? LP(1,00)? LF(0, c0)?

Give an example of a bounded continuous f on (0,00) such that
limy, oo f(x) = 0but f ¢ LF(0, 00) for any p > 0.

(a) Let { fk} be a sequence of measurable functions on E. Show that }_ fi

converges absolutely a.e. in Eif Y [ |fi| < +oc. (Use Theorems 5.16
and 5.22.)

(b) If {r¢} denotes the rational numbers in [0,1] and {a;} satisfies Y |ax| <
+00, show that > ay |x — rel 7172 converges absolutely a.e. in [0,1].

Prove the following result (which is obvious if |[E| < 4-00), describing the
behavior of @’ w(a) asa — 0+. If f € LP(E), then lim, o4 a’w(a) = 0. (If
f=>0,¢e>0,choose § > 0so that f{ffé}fp < ¢. Thus, a’[w() — w(d)] <

Jia<f<e)fV < efor0 <a <5 Nowleta — 0.)

Suppose that f is nonnegative and measurable on E and that w is
finite on (0, c0). If J"OOO o’ Tw(x)du is finite, show that lim,_, o4 a”w(a) =

limg. .00 bPw(b) = 0. (Consider [, and [7,.)

Suppose that f is nonnegative and measurable on E and that w is finite
on (0, c0). Show that Theorem 5.51 holds without any further restrictions
(i.e., f need not be in LP(E) and |E| need not be finite) if we inter-

pret [ ofdw(e) = lim 404 ;. (For the first part, use the sets Egp
b—0+00
to obtain the relation [pf¥ = — [~ o dw(e). If either [;° o dw(x) or
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fooo o’~1 w(x)d« is finite, use Lemma 5.50 and the results of Exercises 14
or 15 to integrate by parts.)

17. If f > 0 and w(x) < c(1 + )P forall « > 0, show thatf € L",0 < r < p.

18. If f > 0, show that f € L7 if and only if 3}/ 2% w (2¥) < +o0. (Use
Exercise 16.)

19. Derive analogues of Theorems 5.52 and 5.54 for integrals over intervals
inR", n > 1.

20. Let y = Tx be a nonsingular linear transformation of R™. If [.f(y)dy
exists, show that

ff(y)dy= | det T| f F(Tx) dx.
E

T-1E

(The case when f = xg,, E1 C E, follows from integrating the formula
Xe, (TX) = X7-1E ,(x) over T~1E and then applying Theorem 3.35.)

21. If [, f =0 for every measurable subset A of a measurable set E, show
thatf = 0a.e.in E.

22. Show that the conclusion of the Lebesgue dominated convergence theo-
rem can be strengthened to [ |fy — f| — 0.

23. Prove the following fact, sometimes referred to as the Sequential (or Gener-
alized) Version of the Lebesgue Dominated Convergence Theorem. Let { f¢} and
{$x} be sequences of measurable functions on E satisfying fy — f a.e. in
E, o > dpae inE, and |f| < ¢rae inE. If ¢ € L(E) and [ dx — [z b,
then [; |y —f| — 0. (In case f = 0 and all f; > 0, apply Fatou’s lemma
to {¢x — fk}.) An application is given in Exercise 12 of Chapter 8; for
example, if fi > 0,fi — fae inE, f € L(E), and [pfx — [pf, then
Je lfe=fl = 0.

24. A measurable function f on E is said to belong to weak L7 (E), 0 < p < oo,
if there is a constant A > 0 such that ws (o) < Aa™? forall o > 0 (cf. (7.8)
incasep = 1):

(a) Show that if f € LP(E), then f belongs to weak L”(E), but that the
converse is generally false.

(b) Show thatif 1 < p < r < oo and f belongs to both weak L!(E) and
weak L"(E), then f € LP(E).

(c) Show that if f belongs to weak L!(E) and f is bounded on E, then
felP(E)foralll <p < oo.

25. Give an example to show that the analogue of Theorem 5.8 with the roles
of sup and inf interchanged is false.

26. Prove the following variant of Lebesgue’s dominated convergence theo-
rem: if { i} satisfies fy—>f on E and fe| < & € L(E), then f € L(E) and
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27.

28.

29.

Jefc = Jpf- (Show that every subsequence of {fi} has a subsequence
{fi;} such that [ fi, — [pf)

The notion of equimeasurability of functions can be extended to different
sets E1 and Ej, even in different dimensions, by saying that two measur-
able functions f, f> defined on Ej, E, respectively, are equimeasurable if

{x e E1:fi0) > a}| =|{y € E2:fo(y) > a}| forall e

(a) Show that if f is measurable and finite a.e. in E and wy is strictly
decreasing and continuous, then f and the inverse function of wy are
equimeasurable (on E and (0, |E|), respectively).

(b) Let f be measurable and finite a.e. in E, and suppose that wy is
finite. Define f*(t) = inf {ot > 0 : wf(x) < t}, t > 0. Show that f and
f* are equimeasurable on E and (0, o), respectively. (The function
f* is called the nonincreasing rearrangement of f.)

Let E be a measurable set in R™ with |E| < co. Suppose that f > 0 a.e. in
Eandf,logf € LY(E). Prove that

1/p
. 1 1

E

(Start by using Theorem 5.36 to show that [ f¥ — |E| as p — 0+. Note
that (¥ —1) /p — logf.)

Let f be measurable, nonnegative, and finite a.e.in a set E. Prove that for
any nonnegative constant c,

o0
jeCf()de = |E| + cfec“wf(oc) do.
E 0

Deduce that ¢ € L(E) if |E| < oo and there exist constants C; and ¢;
such that ¢; > ¢ and wg(ax) < C1e71* for all & > 0. We will study such
an exponential integrability property in Section 14.5.
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Repeated Integration

Let f(x,y) be defined in a rectangle
I={(xy):a<x<bc=<y=d}.
If f is continuous, we have the classical formula

b

[] £ (xy)dxay = | Df (%) dy} dx,

a

and there is an analogous formula for functions of # variables.

Sections 6.1 and 6.2 extend this and related results on repeated integra-
tion to the case of Lebesgue integrable functions. Section 6.3 contains some
applications.

6.1 Fubini’s Theorem

We shall use the following notation. Let x=(xy,...,x;) be a point of an
n-dimensional interval Iy,

Il = {XZ (xl/--~/xn)5ai le S bl/ i=1/”-rn}/
and let y be a point of an m-dimensional interval I,
L={y= (Vi - ym) ¢ <y Sd]-,jzl,...,m}.

Here, I and I; may also be partly open or unbounded, such as all of R™ and
R™, respectively. The Cartesian product I = I x I, is contained in R*™™ and
consists of points (x1, ..., Xu, Y1, . - ., Yym). We shall denote such points by (x,y).
A function f(x1,...,Xn, Y1, .., Ym) defined in I will be written f(x,y), and its
integral [; f will be denoted by [[, f(x, y) dxdy.

113
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Theorem 6.1 (Fubini’s Theorem) Let f(x,y) € L(I), =11 x Ip. Then

(i) For almost every x € I1, f (x,y) is measurable and integrable on I as a function
of y;
(if) As a function of x, fh f(x,y)dy is measurable and integrable on I, and

| {ff(x, y) dy} dx.

L L

jj f(x,y)dxdy =
i

Setting f = 0 outside I, we see that it is enough to prove the theorem when
I =R", I = R™, and I = R™™. For simplicity, we then drop I, I, and I from
the notation and write [ f(x,y) dx for fh f(x,y)dx, L(dx) for L(I1), L(dxdy) for
L), etc.

We will prove the theorem by considering a series of special cases. The
first two lemmas below will help in passing from one case to the next. In
these lemmas, we say that a function f in L(dxdy) for which Fubini’s theorem
is true has property Z.

Lemma 6.2 A finite linear combination of functions with property F has
property F.

This follows immediately from Theorems 4.9 and 5.28.

Lemma 6.3 Let f1,f2,...,fx, ... have property F. If i /' f or fr \ f, and if
f € L(dxdy), then f has property Z.

Proof. We will concentrate on integrability properties, leaving questions of
measurability to the reader. Changing signs if necessary, we may assume that
fx /' f. For each k, there exists by hypothesis a set Zj in R™ with measure zero
such that fx(x,y) € L(dy) if x ¢ Zx. Let Z = |, Z, so that Z has R"-measure
zero. If x ¢ Z, then fi(x,y) € L(dy) for all k, and therefore, by the monotone
convergence theorem applied to {f¢(x,y)} as functions of y,

) = [fixydy 7 ho = [foxydy  x ¢ 2).

By assumption, we have hx(x) € L(dx), fi € L(dxdy), and [[ fi(x,y) dxdy =
[ hi(x) dx. Therefore, another application of the monotone convergence the-
orem gives [[f(x,y)dxdy = [h(x)dx. Since f € L(dxdy), it follows that
h € L(dx), which implies that / is finite a.e. This completes the proof.

The next three lemmas prove special cases of Fubini’s theorem.



Repeated Integration 115

Lemma 6.4 If E is a set of type Gs, namely, E = (\peq Gk, and if Gy has finite
measure, then g has property .

Proof. Case 1. Suppose that E is a bounded open interval in R*™: E = ]} x ],
where J1 and ], are bounded open intervals in R™ and R", respectively. Then
|E| = |J1ll]2|, where |J1| and |]»| denote the measures of J; and J, in R™ and
R™. For every X, Xe(X,y) is clearly measurable as a function of y. If h(x) =
[ xeE(x,y) dy, then h(x) = |]2| for x € J1, and h(x) = 0 otherwise. Therefore,
[ h(x)dx = |[11|]2|. But also, [ xe(x,y)dxdy = |E| = |[1l|]2], and the lemma is
proved in this case.

Case 2. Suppose that E is any set (of type Gs or not) on the boundary of
an interval in R™™. Then for almost every x, the set {y : (x,y) € E} has R"-
measure zero. Therefore, if h(x) = [ xe(x,y) dy, it follows that h(x) = 0 a.e.
Hence, [ h(x) dx = 0. But also, [[ Xg(x,y) dxdy = |E| = 0.

Case 3. Suppose next that E is a partly open interval in R**™. Then E is the
union of its interior and a subset of its boundary. It follows from cases 1 and
2 and Lemma 6.2 that X has property .&.

Case 4. Let E be an open set in R™™™ with finite measure. Write E = J I},

where the I; are disjoint, partly open intervals. If Ex = U;'C=1 Ij, then xg, =

Z;‘:l X1, SO that xg, has property .# by case 3 and Lemma 6.2. Since xg,
XE, XE has property .% by Lemma 6.3.

Case 5. Let E satisfy the hypothesis of Lemma 6.4. We may assume that
Gr \( E by considering the open sets G1, G1 N G2, G1 N G2 N G3, etc. Then
XG;, \ XE, and the lemma follows from case 4 and Lemma 6.3.

Lemma 6.5 If Z is a subset of R™™ with measure zero, then Xz has
property #. Hence, for almost every xeR™, the set {y:(x,y)€Z} has
R™-measure zero.

Proof. Using Theorem 3.8, select a set H of type Gs such that ZC H and
|[H| = 0. If H = [ Gk, we may assume that G; has finite measure, so that
by Lemma 6.4,

j U XH(,Y) dY] dx = ff XH(X,y) dxdy = 0.

Therefore, by Theorem 5.11, |{y : (x,y) € H}| = [xu(x,y)dy = 0 for almost
every x. If {y : (x,y) € H) has R"-measure zero, so does {y : (x,y) € Z} since
Z C H. It follows that for almost every x, xz(x,y) is measurable in y and
[xz(x,y)dy = 0. Hence, [[[xz(x,y)dyldx = 0, which proves the lemma
since [[ xz(x,y) dxdy = |Z| = 0.
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Lemma 6.6 Let E C R™™. If E is measurable with finite measure, then Xg has
property F.

Proof. Using Theorem 3.28, write E = H — Z, where H is of type G5 and Z
has measure zero. If H = (") G, choose G; with finite measure (see the proof
of Theorem 3.28). Since Xxg = Xy — Xz, the result follows from Lemmas 6.2,
6.4, and 6.5.

Proof of Fubini’s theorem. We must show that every f € L(dxdy) has property
Z.Since f = fT — f~, we may assume by Lemma 6.2 that f > 0. Then, by
Theorem 4.13, there are simple measurable fi ' f,fr > 0. Each f; € L(dxdy),
and by Lemma 6.3, it is enough to show that these have property .%. Hence,
we may assume that f is simple and integrable, say f = Z]I\i 1UjXE;- Since each
E; for which v; # 0 must have finite measure, the result follows from Lemmas
6.2 and 6.6.

If f € LAR™™), then by Fubini’s theorem, f(x,y) is a measurable function
of y for almost every x € R". We now show that the same conclusion holds if
f is merely measurable.

Theorem 6.7  Let f(x,y) be a measurable function on R*™. Then for almost every
x € R", f(x,y) is a measurable function of y € R™.
In particular, if E is a measurable subset of R™™, then the set

Ex={y: (x,y) € E}

is measurable in R™ for almost every x € R™

Proof. Note that if f is the characteristic function Xg of a measurable E C
R™™, then the two statements of the theorem are equivalent. To prove the
result in this case, write E = H U Z, where H is of type Fs in R*™ and
|Z]y4m = 0. Then Ex = Hyx U Zy, Hy is of type F in R™, and for almost every
x € R, |Zy|m = 0 by Lemma 6.5. Therefore, Ey is measurable for almost
every X.

If f is any measurable function on R*™, consider the set E(a) = {(x,y) :
f(x,y) > a}. Since E(a) is measurable in R™™, the set E(@)x = {y : (x,y) €
E(a)} is measurable in R” for almost every x € R". The exceptional set of
R™-measure zero depends on a. The union Z of these exceptional sets for all
rational a still has R"-measure zero. If x ¢ Z, then {y : f(x,y) >a} is mea-
surable for all rational a and so for all a by Theorem 4.4. This completes
the proof.

We will now extend Fubini’s theorem to functions defined on measurable
subsets of RM™,
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Theorem 6.8  Lef f(x,y) be a measurable function defined on a measurable subset
E of R™™ and let Ex = {y : (x,y) € E}.

(i) For almost every x € R™, f(x,y) is a measurable function of y on Ex.

(i) If f(x,y) € L(E), then for almost every x € R", f(x,y) is integrable on
Ex with respect to y; moreover, [ f(x,y)dy is an integrable function of
x and

Rn

Ex

[ fouyydxdy = | {ff(x, y) dy} dx.
E

Proof. Let f be the function equal to f in E and to zero elsewhere in R™™.
Since f is measurable on E, f is measurable on R™™, Therefore, by Theorem
6.7, f(x,y) is a measurable function of y for almost every x € R™. Since Ey is
measurable for almost every x € R", it follows that f(x,y) is measurable on
almost every E. This proves (i).

If f € L(E), then f € L(R™™) and

fjf(x, y) dxdy = ff f(x,y) dxdy = f |: ff'(x, y) dy:| dx.
E Rn LR

Rn+m

Since EX_ is measurable for almost every x, we obtain by Theorem 5.24
that g f(x,y)dy = [¢_f(x,y)dy for almost every x € R™. Part (ii) follows by
combining equalities.

6.2 Tonelli’s Theorem

By Fubini’s theorem, the finiteness of a multiple integral implies that of the
corresponding iterated integrals. The converse is not true, even if all the
iterated integrals are equal, as shown by the following example.

Example 6.9 Let n = m = 1 and let I be the unit square and {I;} be the
infinite sequence of subsquares shown in the following illustration:
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1,1)
Zn

o=

|~
—

Subdivide each I into four equal subsquares by lines parallel to the x- and
y-axes.

i 1153)

Iy

For each k, let f = 1/|Ix| on the interiors of I]((D and If’) and let f = —1/|I|
on the interiors of I}gz) and I]£4). Let f = 0 on the rest of I, that is, outside [ I
and on the boundaries of all the subsquares. Clearly, 101 f(x,y)dy = 0 for all
x, and fol f(x,y)dx = 0 for all y. Therefore,

1

11 1
j |:jf(x, ) dy:| dx = j |:ff(x, ) dx:| dy = 0.
0 Lo 0

0

However,

ﬂfﬂx,y) dxdy = Z Hf+(x,y) dxdy = Z% oo
I kI .
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Similarly, [{,f~ dxdy = +oo. Hence, finiteness of the iterated integrals of f
does not in general imply either the existence of the multiple integral of f or
the finiteness of the multiple integral of | f|. However, for nonnegative f, we
have the following basic result.

Theorem 6.10 (Tonelli’s Theorem) Letf(x,y) be nonnegative and measurable on
an interval I = I x I of R™*™. Then, for almost every x € I, f(x,y) is a measurable
function of y on I. Moreover, as a function of x, j}z f(x,y) dy is measurable on Iy, and

Hf (x,y) dxdy = f |:f fx,y) dy:| dx.

I L | I

Proof. This is actually a corollary of Fubini’s theorem. For k = 1,2,..., let
frx,y) = 0if [(x,y)| > k and fr(x,y) = min{k,f(x,y)} if |(x,y)| < k. Then
fk =0, fkx / fonl, and fx € L) (fx is bounded and vanishes outside a
compact set). Hence, Fubini’s theorem applies to each f. The statement con-
cerning the measurability of flz f(x,y) dy then follows from its analogue for fj;
in fact, by the monotone convergence theorem, fIz fix,ydy S flz fx, y)dy.
(The measurability of f(x,y) as a function of y was proved in Theorem 6.8.)
By the monotone convergence theorem again,

[[ fexyraxdy > [[foxy)dxdy, and
I I

) {f fitx,y) dY} ax— | Df(x, y) dy} dx.

L | b L [ b

Since fx € L(I), the left-hand sides in the last two limits are equal. Therefore,
so are the right-hand sides, and the theorem follows.

An extension of Tonelli’s theorem to functions defined over arbitrary
measurable sets E is straightforward.

Since the roles of x and y can be interchanged above, it follows that if f is
nonnegative and measurable, then

f [ [fouy dy} = | { [fooy) dx} o

L b L | h

| Foxy axdy =
I

In particular, we obtain the important fact that for f > 0, the finiteness of any one
of Fubini’s three integrals implies that of the other two. Hence, for any measurable
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f, the finiteness of one of these integrals for |f| implies that f is integrable and
that all three Fubini integrals of f are equal.
An easy consequence of Tonelli’s theorem is that the conclusion

| {ff(x, y) dy} dx

L LI

jf fx,y)dxdy =
i

of Fubini’s theorem (including the existence and measurability of the inner
integral on the right-hand side) holds for measurable f even if [[,f = do0
(i.e., itholds if [[; f merely exists). In fact, if [[;f = +o0, we have [f;f* = 400
and f~ € L(I). By Tonelli’s theorem,

Ir=] (way)dx, JJ = j( jf—dy)dx.

L \L I \h

Since Hl f~ is finite, the desired formula follows by subtraction.

6.3 Applications of Fubini’s Theorem

We shall derive several important results as corollaries of Fubini’s and
Tonelli’s theorems. The first one is the necessity of the condition in Theorem
5.1. Using the notation of Chapter 5, we will prove the following result.

Theorem 6.11  Let f be a nonnegative function defined on a measurable set E C
R™. If R(f, E), the region under f over E, is a measurable subset of R™*1, then f is
measurable.

Proof. For 0 <y < 400, we have

xeE:f(x) 2y} ={x: (x,y) € R(f,E)}.

Since R(f,E) is measurable, it follows from Theorem 6.7 that {x € E : f(x) > y}
is measurable (in R") for almost all (linear measure) such y. In particular,
{x € E : f(x) > y} is measurable for all y in a dense subset of (0, 00). If y is
negative, then {x € E : f(x) > y} = E, which is measurable. We conclude that
f is measurable (cf. Theorem 4.4).

As a second application of Fubini’s theorem, we will prove a result about the
convolution of two functions. More general results of this kind will be proved
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in Chapter 9. If f and g are measurable in R", their convolution (f * g)(x) is
defined by

(f 900 = [ fox—bgmdt,

Rl‘l

provided the integral exists.
We first claim that f x ¢ = g * f, that is, that

[ fox—tgwat= [ fogx— vt (6.12)
R0 Rn

This is actually a special case of results dealing with changes of variable. In
this simple case, however, it amounts to the statement that if x € R", then

[rydt= [ roc— (6.13)

Rn Rn

when r(t) = f(x — t)g(t). For fixed x, x — t ranges over R" as t does. Therefore,
for any measurable r > 0, (6.13) follows from the geometric interpretation of
the integral. (See Theorem 5.1 and the definition of the integral of a nonneg-
ative function.) For any measurable r, it follows by writing r = r* — r~. (For
the effect of a linear change of variables, see Exercise 20 of Chapter 5, and
see Exercise 18 of Chapter 3 for the effect of translations. Measurability of
r(x — t) as a function of t can then be deduced from that of 7(t).)
The result we wish to prove for convolutions is the following.

Theorem 6.14 Iff € L(R™) and g € L(R™), then (f ) (x) exists for almost every
x € R™ and is measurable. Moreover, f x ¢ € L(R™) and

[1fglax < (j wdx) (j IgIdX>,
R" R® R"
f(f*g)dx: (Ifdx) (Igdx).
RN R0 R0
In order to prove this, we need a lemma.

Lemma 6.15 If f(x) is measurable in R™, then the function F(x,t) = f(x — t) is
measurable in R® x R® = R2",
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Proof. Let F1(x,t) = f(x). Since f is measurable, it follows as in Lemma 5.2
(or by n-fold iteration of the conclusion of Lemma 5.2) that F; (x, t) is measur-
able in R2™: in fact, the set {(x,t) : F1(x,t) > a}, which equals {(x,t) : f(x) >
a,t € R"}, is a cylinder type set with measurable base {x : f(x) > a) in R™.
For (§,1) € R2" consider the transformation x = § — 1, t = £ + 1. Thisis a
nonsingular linear transformation of R and therefore, by Theorem 3.33 (see
Exercise 4 of Chapter 4), the function F, defined by F2(§,1) = F1(§—n, £+1)
is measurable in R?. Since F»(£,1) = f(& — 1), the lemma follows.

Proof of Theorem 6.14 Suppose first that both f and g are nonnegative on R".
By Lemma 6.15, f (x — t)g(t) is measurable on R™ x R" since it is the product
of two such functions. Hence, the integral

1= [[ fox — bt dtdx

is well defined. By Tonelli’s theorem and (6.13),

= U F(x — gt dt]dx
= f 0 U fx—1t) dx] dt = U fx) dx] U O dt] .

The first of these equations can be written I = [(f * g)(x) dx, where measura-
bility of f * g is guaranteed by Tonelli’s theorem, so that

[(F+8) ax=[ [ fooax] [ [ scoax].

This proves the theorem for f > 0 and g > 0. For general f,g € L(R™), it
follows that

[ 1f = vlIgldtax = [ (|f]*[])dx = (f K dx) (j 8] dx) < .

Hence, f(x — t)g(t) € L(dtdx). By Fubini’s theorem, [ f(x — t)g(t) dt exists for
a.e. x and is measurable and integrable; also,

[[ foc—g®atix= [ [ [ foc—vgmydt]ax=[ [ fooax] [ [ g0 ax].

In particular, f * g is well-defined a.e. and measurable (even integrable), and

foen- (1) (J5)
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Finally, since | f*g| < | f|*|g| wherever fxg exists, we obtain by integration that

[1fxgi = fas=1gn=([17)([181),

and the proof is complete.
See Exercise 21 of Chapter 9 for a criterion which guarantees measurability

of f xg.

In the proof of Theorem 6.14, we showed the following useful fact.

Corollary 6.16 If f and g are nonnegative and measurable on R™, then f x g is
measurable on R™ and

Rjn(f*g)dxz (Rjnfdx) (angdx>.

Our final application of Fubini’s theorem is an important result due to
Marcinkiewicz concerning the structure of closed sets. For simplicity, we will
restrict our attention to the one-dimensional case. Given a closed subset F of
R! and a point x, let

§(x) =8 F)=min {[x—y|: y € F}

denote the distance of x from F. Thus, 5(x) = 0 if and only if x € F. By Theorem
1.10, the complement of F is a union [ J; (ax, bx) of disjoint open intervals. At
most, two of these intervals can be infinite. The graph of (x) is thus an irreg-
ular sawtooth curve: over any finite interval [ag, bx], the graph is the sides
of the isosceles triangle with base [ay, by] and altitude % (bx — ay) ; outside the
terminal points of F, the graph is linear. If we move from a point x to a point
y, the distance from F cannot increase by more than |x — y|. Hence,

7

@ -8y =<lx-y

that is, 6 satisfies a Lipschitz condition.
We shall prove the following theorem. (See also Exercises 7 through 9 and
Theorem 9.19.) The result will be used in the proof of Theorem 12.67.

Theorem 6.17 (Marcinkiewicz) Let F be a closed subset of a bounded open
interval (a,b), and let 5(x) = 8(x, F) be the corresponding distance function.
Then, given A > 0, the integral
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b A
)
My (x) = My (5 F) = fﬁdy

is finite a.e. in F. Moreover, M) € L(F) and

[ My <2 al,
F

where G = (a,b) — F.

Before the proof, we note that what makes the finiteness of M (x) remark-
able is the singular behavior of §* (y)/|x — y|'** as y — x. Since 5(y) — 5(x)
as y — x, it follows that M (x) = o0 if x ¢ F (see Exercise 9). If x € F, then
5(x) = 0, but the mere Lipschitz character of § in the estimate

) _Pw-s@ _ -yt 1
|x —y] -y T -yl

T+A AT x—y

is not enough to imply that M (x) is finite since fah dy/lx — y| = +o0c. The key
to the convergence of M), at a point x is the fact that 5(y) vanishes not only
at x but also at every y € F. Thus, roughly speaking, the finiteness of M (x)
means that F is very dense near x. In this regard, see also Exercise 9(b).

Proof. Measurability of M, follows from Corollary 6.16. Since = 0in F,
integration in the integral defining M can be restricted to the set G = (a,b)—F
without changing M. Thus,

prva o 4o

F

the change in the order of integration being justified by Tonelli’s theorem. To
estimate the inner integral, fix y € G and note that for any x € F, we have
|x —y| = 8(y) > 0. Thus,

o]

dx dx dt _ A
IWS J szftm:”lf’(y) :
FIX=Y l—yl=s(y) XY 5(y)
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In particular,

[My@dx = {8 (y) [2A7"5 (n) M dy =227"1GI < +oo.
F G

Exercises

1. (a) Let E be a measurable subset of R? such that for almost every x € R1,
{y: (x,y) € E) has Rl-measure zero. Show that E has measure zero
and that for almost every y € R!, {x: (x, ) € E} has measure zero.

(b) Let f(x,y) be nonnegative and measurable in R2. Suppose that for
almost every x € R}, f(x,y) is finite for almost every y. Show that for
almost every y € R, f(x,y) is finite for almost every x.

2. If f and g are measurable in R", show that the function i(x,y) = f(x)g(y)
is measurable in R™ x R™. Deduce that if E; and E, are measurable subsets
of R", then their Cartesian product E; x E; = {(x,y) : x € E1,y € Ep} is
measurable in R® x R®, and |E1 x E»| = |E1]|E2|. As usual in measure
theory, 0 - co and oo - 0 are interpreted as 0.

3. Letf be measurable and finite a.e. on [0,1]. If f (x) —f (y) is integrable over
thesquare 0 <x <1,0 <y <1, show thatf € L[0, 1].

4. Let f be measurable and periodic with period 1: f(t + 1) = f(t). Suppose
that there is a finite c such that

1
[lf@a+n—fo+pla=c
0

for all @ and b. Show that f € L[0,1]. (Seta = x,b = —x, integrate with
respect to x, and make the change of variables & = x4+t ,n = —x+1t)
5. (a) If f is nonnegative and measurable on E and w(y) = |[{x € E : f(x) >
v}, v > 0, use Tonelli’s theorem to prove that [f = [5° w (v)dy.
(By definition of the integral, [.f = [R(f,E)| = [[z B dxdy. Use the
observation in the proof of Theorem 6.11 that {x € E : f(x) > y} = {x:
(x,y) € R(f,E)}, and recall that w(y) = |{x € E : f(x) > y}| unless y is
a point of discontinuity of w.)

(b) Deduce from this special case the general formula

[fr=p [y w@)dy (Fz0,0<p<o0).
E 0
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6. For f € L(RY), define the Fourier tmnsformfof f by

-~

Fo = %T Tof (e~ dt (x e R1> .

(For a complex-valued function F = Fy + iF1 whose real and imaginary
parts Fo and Fj are integrable, we define [ F = [ Fy+i | F;.) Show that if
f and g belong to L(R), then

F % Q) = 21 f(OFX).

7. Let F be a closed subset of R! and let 5(x) = 5(x, F) be the corresponding
distance function. If A > 0 and f is nonnegative and integrable over the
complement of F, prove that the function

[ T,

THA
R! |x - 3/|

is integrable over F and so is finite a.e. in F. (In case f = X (4, this reduces
to Theorem 6.17.)

8. Under the hypotheses of Theorem 6.17 and assuming that b—a < 1, prove
that the function

b

1 11
Mo(x)=J|:10g @} x —yl ' dy

is finite a.e. in F.
9. (a) Show that M) (x;F) = +ooif x ¢ F, A > 0.
(b) Let F = [c,d] be a closed subinterval of a bounded open interval
(a,b) C R, and let M, be the corresponding Marcinkiewicz integral,
A > 0. Show that M, is finite for every x € (c,d) and that M (c) =
M (d) = co. Show also that fF My < A1 G|, where G = (a,b) — [c, d].
10. Let v, be the volume of the unit ball in R". Show by using Fubini’s
theorem that

1
on =20, [(1-£)""at,
0

(We also observe that by setting w = 2, the integral is a multiple of a
classical 3-function and so can be expressed in terms of the I'-function:
I(s) = fooo et ldt, s > 0.)
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11. Use Fubini’s theorem to prove that

2
f e X dx = 7"/2,
Rn

(Forn = 1, write ([ e*’(zclx)2 = [Tt e="~¥dxdy and use polar

. _1xl2 42 A2 . .
coordinates. For n > 1, use the formula e X" = ¢™1 ... ¢~ and Fubini’s

theorem to reduce to the case n = 1.)
12. (a) Give an example that shows that the projection onto the x-axis of a
measurable subset of the plane may not be linearly measurable.
(b) Show that if E is either an open or closed set in the plane, then its
projection onto the x-axis is linearly measurable.
(For (b), the projection of an open set is open, and the projection of a com-
pact set is compact. Any closed set is a countable union of compact sets.)

13. Letf € L(—00,00), and let & > 0 be fixed. Prove that

00 x+h

| % [ fapdy | dx= ff(x)dx.
x—h —00

—0o0
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Differentiation

The main results in this chapter deal with questions of differentiability. A
variety of topics is considered, but for the most part, the results are related to
the analogue for Lebesgue integrals of the fundamental theorem of calculus
and to the differentiability a.e. of functions that are Lipschitz continuous.

7.1 The Indefinite Integral

If f is a Riemann integrable function on an interval [4,b] in R!, then the
familiar definition of its indefinite integral is

Fx) = ff(y)dy, a<x<bh.

The fundamental theorem of calculus asserts that F' =f if f is continuous. We
will study an analogue of this result for Lebesgue integrable f and higher
dimensions.

We must first find an appropriate definition of the indefinite integral. In
two dimensions, for example, we might choose

X1 X2

Ferx) = [ [ f (yu2) dyidy,.

ay a

It turns out, however, to be better to abandon the notion that the indefinite
integral be a function of point and adopt the idea that it be a function of set.
Thus, given f € L(A), where A is a measurable subset of R", we define the
indefinite integral of f to be the function

FE = [f,
E

where E is any measurable subset of A.

129
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F is an example of a set function, by which we mean any real-valued
function F defined on a o-algebra ¥ of measurable sets such that

(i) F(E) is finite for every E € X.

(ii) F is countably additive; that is, if E = | Ex is a union of disjoint Ex € %,
then

F(E) = Z F (Ep).
k

By Theorems 5.5 and 5.24, the indefinite integral of an f € L(A) satisfies (i)
and (ii) for the o-algebra of measurable subsets of A. We shall systematically
study set functions in Chapter 10.

We now discuss a continuity property of the indefinite integral. Recall
(from p. 5 in Section 1.3) that the diameter of a set E is the value

sup{|x —y| : x,y € E}.

A set function F(E) is called continuous if F(E) tends to zero as the diameter
of E tends to zero; that is, F(E) is continuous if, given ¢ > 0, there exists > 0
such that |F(E)| < € whenever the diameter of E is less than 8. An example of
a set function that is not continuous can be obtained by setting F(E) = 1 for
any measurable E that contains the origin, and F(E) = 0 otherwise.

A set function F is called absolutely continuous with respect to Lebesgue mea-
sure, or simply absolutely continuous, if F(E) tends to zero as the measure of E
tends to zero. Thus, F is absolutely continuous if given ¢ > 0, there exists
8 > 0 such that |F(E)| < ¢ whenever the measure of E is less than 6.

A set function that is absolutely continuous is clearly continuous. The con-
verse, however, is false, as shown by the following example. Let A be the unit
square in R?, let D be a diagonal of A, and consider the o-algebra of measur-
able subsets E of A for which EN D is linearly measurable. For such E, let F(E)
be the linear measure of E N D. Then F is a continuous set function. How-
ever, it is not absolutely continuous since there are sets E containing a fixed
segment of D whose R?>-measures are arbitrarily small.

Theorem 7.1 Iff € L(A), its indefinite integral is absolutely continuous.

Proof. We may assume that f > 0 by considering f* and f~. Fix k and write
f = g+ h, where ¢ = f whenever f < k and g = k otherwise. Given ¢ >0,
we may choose k so large that 0 < fA h < %s and, a fortiori, 0 < fE h < %e
for every measurable E C A. On the other hand, since 0 < g < k, we have
0<[-g<kIE|l < %e if |[E| is small enough. Thus,
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Ogjf:fg+fh<%s+%e:e
E E E

if |E| is small enough. This completes the proof.

We remark here that Theorem 7.1 has the following converse: If F(E) is a set
function that is absolutely continuous with respect to Lebesgue measure, then
there exists an integrable f such that F(E) = [, f for measurable E. A proof of
this fact, known as the Radon-Nikodym theorem, is given in Chapter 10.

In the case of the real line, there is an alternate notion, also termed absolute
continuity, which pertains to ordinary functions. This notion and its relation
to the integral [ f(y) dy are discussed in Section 7.5.

7.2 Lebesgue’s Differentiation Theorem

We now come to a fundamental theorem of Lebesgue concerning differentia-
tion of the indefinite integral. For f € L(R™), let F be the indefinite integral of f,
and let Q denote an n-dimensional cube with edges parallel to the coordinate
axes. Given x, we consider those Q centered at x and ask whether the average

FQ)
o Tl ff( )y

converges to f(x) as Q contracts to x. If this is the case, we write

and say that the indefinite integral of f is differentiable at x with derivative
f(x). In case n = 1, the question is whether

1 x+h
hm — f fydy =fx),
which we shall later see is essentially equivalent to

x+h

hm ff(y) dy =f(x),

that is, to d/dx [’ f(y) dy = f(x).
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Since f can be changed arbitrarily in a set of measure zero without affecting
its indefinite integral, the best we can hope for is that F is differentiable to f
almost everywhere. This is actually the case.

Theorem 7.2 (Lebesgue’s Differentiation Theorem) Iff € L (R"), its indefi-
nite integral is differentiable with derivative f (x) at almost every x € R™.

The proof of this basic result is difficult and requires several new ideas with
wide applications. One of them is to consider the function

1

Fr00 =sup— [ If(yldy,
QI
Q
where the sup is taken over all Q with center x. This function plays an
important role in analysis.

Let us first observe that the theorem is easy to prove for continuous
functions. In fact, if f is continuous at x and Q is a cube with center x, then

1 1
— | fydy —f0)| = |—= | [f(y) —f®]dy
IQIg IQIg

1

= = [ Ify) —feoldy < swp [f(y) — fl,
QI 0 yeQ

which tends to zero as Q shrinks to x.

The strategy of the proof is to approximate a given f € L (R") by continu-
ous functions Cy. This approximation is stated in Lemma 7.3 and is global in
nature. Hence, it will be necessary to find a way to control the local behavior
(i.e., the averages) of f — Ci by this global estimate. This step is carried out in
Lemma 7.9 and consists of estimating the size of f* in terms of [ |f|. Lemma
7.4 is a crucial covering lemma used to prove Lemma 7.9.

Lemma 7.3 Iff € L(R™), there exists a sequence {Cy} of continuous functions
with compact support such that

f‘f—Ck]dx—>0 as k — oo.
Rn

Proof. If f is an integrable function for which the conclusion holds, we
will say that f has property /. We will prove the lemma by considering a
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series of special cases. To help in passing from one case to the next, we first
show that

(1) A finite linear combination of functions with property </ has prop-
erty 7.

(2) If { fi} is a sequence of functions with property <7, and if [zn |f — fi| = 0,
then f has property 7.

To prove (1), it is enough to show that any constant multiple, af, of a
function with property </ has property &/ and that the sum, f; + f», of
two functions with property </ has property <. These facts follow easily
from the relations

[ laf —aCl=1al [1f -Cl,
f|(f1+f2)—(C1+Cz)| §j|f1—C1|+f|f2—C2|.

To prove (2), let {fi} and f satisfy the hypotheses of (2). First note that
since fi is integrable and [|f| < [ |f —fi| + || fi| it follows that f is inte-
grable. Next, given ¢ > 0, choose kg so that [ |f — fi,| < €/2. Then choose a
continuous C with compact support such that [ |fi, — C| < ¢/2. Since

f|f—C|§f|f—fko}+f|fk0—C| <ef24¢ef2=7¢

we see that f has property .«7.

To prove the lemma, let f € L (R™). Writing f = f* — f~, we may assume
by (1) that f>0. Then, by Theorem 4.13, there exist nonnegative simple
fx / f. Thus, fre L(R™) and [ |f —fk| — 0, so that by (2), we may suppose
that f is an integrable simple function. Hence, by (1), we may assume that
f = xg for a set E with |[E| < + oo. Given ¢ > 0, choose an open G such that
E c Gand |G — E| < €. Then

[Ixc —xel =1G-El <&,

so we may assume that f = x¢ for an open G with |G| < +o00. Using Theorem
1.11, write G = | I, where the I are disjoint, partly open intervals. If we let
fn be the characteristic function of |, I, we obtain

[1f=fl= > =0
k=N+1

since Y 2, lIx| = |G| < +o00. By (2), it is thus enough to show that each fy has
property «7. But fy is the sum of x;,,k =1, ..., N, so it suffices by (1) to show
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that the characteristic function of any partly open interval I has property <.
This is practically self-evident: if I* denotes an interval that contains the clo-
sure of [ in its interior and that satisfies |I* — I| < ¢, then for any continuous
C,0 <C < 1,whichis1in I and 0 outside I*, we have

[a-cr=ir-1<e

This completes the proof of Lemma 7.3. The proof also shows that the func-
tions {Cy} can be chosen to be finite linear combinations of characteristic
functions of intervals (i.e., step functions) instead of continuous functions.

The lemma that follows is a preliminary version of a covering lemma due
to Vitali (Theorem 7.17) and has many applications.

Lemma 7.4 (Simple Vitali Lemma) Let E be a subset of R™ with |E|, < 400,
and let K be a collection of cubes Q covering E. Then there exist a positive con-
stant (3, depending only on n, and a finite number of disjoint cubes Q1,...,Qn in K
such that

N
> 1Qj] = BIEL.

j=1

Proof. We will index the size of a cube Q € K by writing Q = Q(t), where t is
the edge length of Q. Let K; = K and

t] =supf{t: Q=0Q() € Kq}.

If t] = 400, then Kj contains a sequence of cubes Q with |Q] — +o0. In this
case, given 3 > 0, we simply choose one Q € Ky with |Q] > B|E|. If ] < 400,
the idea is still to pick a relatively large cube: choose Q1 = Q1 (t1) € Kj such
that t; > %tf Now split K1 = K U K}, where K3 consists of those cubes in
Kj that are disjoint from Q1, and K/, of those that intersect Q1. Let Qf denote
the cube concentric with Q; whose edge length is 5¢;. Thus, Qﬂ = 5"10Q11,
and since 2t; > t}, every cube in K, is contained in Q7.

Starting with j=2, continue this selection process for j=2,3,..., by
letting

t;f:sup {t:Q=0QW €Kj},

choosing a cube Q;=Q; () €K; with t; > %t}", and splitting Kj=Kj 1 UK] ,

where Kj 1 consists of all those cubes of K; that are disjoint from Q;. If Kj 1 is

empty, the process ends. We have t]’?‘ > t]’." "1, moreover, foreachj, theQy,..., Q]-
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are disjoint from one another and from every cube in Kj1, and every cube in
K]/ 41 is contained in the cube Q]?‘ concentric with Q; whose edge length is 5¢;.
Note that ‘Q]* =5" |Q]~‘.

Consider the sequence t] > t5 > ---. If some Ky41 is empty (i.e., if t;.‘ =0
forj > N + 1), then since

K; =K2UK/2="-ZKN_HUK;\[_,’_lU-”UK/z,

and E is covered by the cubes in Kj, it follows that E is covered by the cubes

in KE\I+1 U---UK). Hence, E C U]I\il Q]T", so that

N N
Ele =Y |Q=5"Ylal.
j=1 j=1

This proves the lemma with 3 = 57".
On the other hand, if no t]’." is zero, then either there exists a 6 > 0 such that

t;.‘ > § for all j, or t;.‘ — 0. In the first case, tp > %6 for all j and, therefore,

Z]I\i 1]Qj| > +o0as N — oo. Given any B > 0, the lemma follows in this case
by choosing N sufficiently large.

Finally, if t;.‘ — 0, we claim that every cube in K; is contained in U]- Q;.‘.
Otherwise, there would be a cube Q = Q(#) not intersecting any Q. Since this
cube would belong to every Kj t would satisfy t < t]’." for every j and, therefore,
t = 0. This contradiction establishes the claim. Since E is covered by the cubes
in K1, it follows that

Ele <) ‘Q}‘ =5"Y 1Q-
j j

Hence, given  with 0 < 3 <57", there exists an N such that Z]Ii 1 |Q]'} > B|E|e.
This completes the proof.

We stress that Lemma 7.4 does not presuppose the measurability of E and
that the proof can be shortened if E is measurable. In fact, if E is measur-
able, we can suppose it is closed and bounded (see, e.g., Lemma 3.22). Hence,
assuming as we may that the cubes in K are open (by slightly enlarging each
cube concentrically), it follows from the Heine—-Borel Theorem 1.12 that E can
be covered by a finite number of cubes. For Q1, we then choose the largest
cube; similarly, in subsequent steps, we take Q; to be the largest cube disjoint
from Qq,...,Qj—1. Thus, EC | Q]*, and the lemma follows.

See Exercise 18 for a more set-theoretic version of Lemma 7.4.
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Before stating the final lemma, we make a definition and a few remarks.
If f is defined on R™ and integrable over every cube Q, let
" 1
fr0 =sup— [ If(y)ldy, (7.5)
Q12

where the supremum is taken over all Q with edges parallel to the coordinate
axes and center x. The function f*, called the Hardy-Littlewood maximal func-
tion of f, is a gauge of the size of the averages of | f| around x. It clearly satisfies
the following:

@ 0 =f"( = +oo,
(ii) F+ 0 <f*x+g* X, (7.6)
(i) () () = [c|fF ().

If f* (x0) > « for some xg € R™ and « > 0, it follows from the absolute
continuity of the indefinite integral that f*(x) > « for all x near xg. Hence,
according to Theorem 4.14, f* is lower semicontinuous in R™. In particular, it
is measurable.

We now investigate the size of f*. For any measurable E,

I[ENQI
1Q

XE(X) = sup { : Q has center x} )

If E is bounded and Q* denotes the smallest cube with center x containing E,
then

ENQY _ IE|
1 I

It follows that there are positive constants c; and ¢y such that

|E| |E|
ch <xXpx) < CZW for large |x|. (7.7)

In particular, if |[E| > 0, X} is not integrable over R". We leave it as an exer-
cise to show that for any measurable f that is different from zero on a set of
positive measure, there is a positive constant ¢ such that

x> # for x| > 1.

Therefore, f* is never integrable over {x : |x| > 1} unless f = 0 a.e. This failure
of integrability of f* is due to its size when [x] is large. On the other hand,
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f* is not integrable over bounded sets for some f € L (R™). For example, in
case n = 1, the function

f)

x| (log [x)? Xix:lxl<1/2) (X)

belongs to L(RY), but for all x with 0 < |x| < 1/4,

2y 1

() > — = ,
f 2|x] OIJ/(IOg}/)2 2|x| | log 2|x||

and consequently, f* is not integrable over any neighborhood of the origin.
However, we will see later that f* is integrable over bounded sets if
feLP (R™) for some p>1, or even if |f| (1 +log™ |f|) €L! (R"); see Theorem
9.16 and Exercise 22 of Chapter 9.
To find a way to estimate the size of f* when f €L (R"), recall that by
Tchebyshev’s inequality,

xR ] > af] <

QI

f [feoldx, o> 0.
Rn

Hence, if f € L (R"), there is a constant ¢ independent of « such that

{xeR": [f0)|>a}| <=, a>0. (7.8)

c
o
Any measurable f, integrable or not, for which (7.8) is valid is said to belong
to weak L(R™). Thus, any functionin L (R™) is also in weak L (R™). The function

|x|~" is an example of a function in weak L (R™), which is not in L (R™") (see
also Exercise 24 in Chapter 5).

Lemma 7.9 (Hardy-Littlewood) If f € L (R"), then f* belongs to weak L (R™).
Moreover, there is a constant ¢ independent of f and o such that

N c
[{xeR":f (x)>oc}|§o(an[f|, o> 0.

Proof. Fix o > 0 and let

E={f">«af.



138 Measure and Integral: An Introduction to Real Analysis

If x € E, then by the definitions of E and f*, there is a cube Qx with center x
such that |Qy| Jo, IfI > o Equivalently,

1
Q<= [ 1Al
Qx

The collection of such Qx covers E. For k = 1,2,..., the sets Ey defined by
Ex = EN{x: |x| < k} are also covered and have finite measure. By Lemma 7.4
applied to each Ej, there exist 3 > 0 (depending only on 1) and a finite number

of points | x®'! ¢« E such that the cubes Q_w are disjoint in j (for each k) and
p % j x ] ]

|Ex| < B! > |Q | Therefore,
j
11 1 1
E — — e _
Bl<gg | =gy | =gz |1
] Qx(.k) U] ngk) R

which proves the lemma with ¢ = 1.

Proof of Lebesgue’s theorem. Given f € L(R™), there exists by Lemma 7.3 a
sequence of continuous integrable Cy such that [z |f — Cx| — 0. Let F(Q) =
fo and Fx(Q) = fQ Ck . Then for any k,

FQ  F©Q
li — li
T§?|@ fo| = limsup |75 = =)
+timsup |22 _ 0 + |Cr(0) —
ON\x |Q|

where the lim sup is taken for cubes with center x that shrink to x. Since Cy is
continuous, the second term on the right is zero. Moreover,

FQ  F(Q
Q ~ IQl

1
<— | lf-G| =(f-C)" ™,
Ing
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and therefore, the first term on the right is majorized by ( f— Ck)* (x). Hence,
for every k,

(f = Ci)" 00+ [f0 — k)] . (7.10)

lim sup
Q\x

W —f| <

Given ¢ >0, let E; be the set on which the left side of (7.10) exceeds ¢.
By (7.10),

Eec{ (f—C)* (x)>-} { f(x) — Ck(x)|>—}.

Applying Lemma 7.9 to the first set on the right and Tchebyshev’s inequality
to the second, we obtain

IElesc() f|f Ck|+() f|f Cil-

Since c is independent of k, it follows by letting k — oo that |E¢|, = 0. Let E
be the set where the left side of (7.10) is positive. Then E = | J; E¢, for any
sequence ¢ — 0, and therefore |E| =0. This means that limg\ x F(Q)/|Q|
exists and equals f(x) for almost every x, which completes the proof.

We now list several extensions and corollaries of Lebesgue’s theorem.

(I) A measurable function f defined on R" is said to be locally integrable on
R™ if it is integrable over every bounded measurable subset of R™. This is
easily seen to be equivalent to the integrability of f over every compact set.

Theorem 7.11  The conclusion of Lebesgue’s theorem is valid if, instead of being
integrable, f is locally integrable on R™.

Proof. It is enough to show that the conclusion holds a.e. in every open ball.
Fix a ball and replace f by zero outside it. This new function is integrable
over R", its integral is differentiable a.e., and since differentiability is a local
property, the initial function f is differentiable a.e. in the ball. This completes
the proof.

(IT) For any measurable E, note that
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By Theorem 7.11, the left-hand side tends to xg(x) a.e. as Q \ x; that is,

i [ENQ|
x Q]

=xp(x) a.e. (7.12)

A point x for which this limit is 1 is called a point of density of E, and a point
for which it is zero is called a point of dispersion of E. Since

IQNEl  IQNCEl _1Ql _
Ql Q- Tl

every point of density of E is a point of dispersion of CE, and vice versa.
Formula (7.12) can be restated as follows.

Theorem 7.13  Let E be a measurable set. Then almost every point of E is a point
of density of E.

Thus, roughly speaking, a set clusters around almost all of its points.

(IT1) The formula limg~ x(1/]Q/) fQ f(y)dy = f(x) can be written

hm@j[f(y) —~feo1dy =0

and is valid for almost every x if f is locally integrable. A point x at which the
stronger statement

lim o j fy) —fOoldy =0 (7.14)

is valid is called a Lebesgue point of f, and the collection of all such points is
called the Lebesgue set of f.

Theorem 7.15 Let f be locally integrable in R™. Then almost every point of R
is a Lebesgue point of f; that is, there exists a set Z (depending on f) of measure zero
such that (7.14) holds for x ¢ Z.

Proof. Let {r¢} be the rational numbers, and let Z; be the set where the formula

Jim @j}f(y) — 1| dy = [ () — 7|
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is not valid. Since | f(y) — r¢| is locally integrable, we have |Z;| = 0. Let Z =
U Zi; then |Z] = 0. For any Q, x, and ry,

1 1
= [y —nldy+ = [ |fo0 —ndy

1
= [ Ify —fooldy =
Q19 Q15

1Ql 2

1
=151 @ =rddy +f60 —n.
Q
Therefore, if x ¢ Z,

hm sup @ f F(y) — FoO| dy < 2f(x) — |

for every r¢. For an x at which f(x) is finite (in particular, almost everywhere),
we can choose 7, such that | fx) — rk| is arbitrarily small. This shows that the
left side of the last formula is zero a.e. and completes the proof.

(IV) So far, the sets contracting to x have been cubes centered at x with

edges parallel to the coordinate axes. Many other sets can be used. A family
{S} of measurable sets is said to shrink regularly to x provided

(i) The diameters of the sets S tend to zero.

(i) If Q is the smallest cube with center x containing S, there is a constant k
independent of S such that

|QI < kIS|.

The sets S need not contain x.

Theorem 7.16  Let f be locally integrable in R™. Then at every point x of the
Lebesgue set of f (in particular, almost everywhere),

1
5 Sf ) —f 00l dy 0
for any family {S} that shrinks regularly to x. Thus, also

1
E jf(y) dy — f(x) ae.
S
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Proof. If S C Q, we have

{1y —fooldy < [ Iy — ool dy.
S Q

Hence, if {S} shrinks regularly to x and Q is the least cube with center x
containing S, then

QI 1

1
— _ dv < =l =
|S|Sflf(y) Tl = g/7g)

[ 1 - fooldy
Q

1
k— — dy.
< |Q|glf(y) FO0|dy

If x is a Lebesgue point of f, the last expression tends to zero, and the theorem
follows.

In particular, for functions of a single variable, we obtain (cf. p. 131 in
Section 7.2)

1 x+h
Jlim - xjf(y) dy=f@) ae.

7.3 Vitali Covering Lemma

The theorem that follows is a refinement of the simple Vitali Lemma 7.4.
Given a set and a collection of cubes, we will now assume that each point of
the set is covered not just by a single cube in the collection but by a sequence
of cubes in the collection with diameters tending to zero. In this case, it turns
out that we can cover almost all points of the set by a sequence of disjoint cubes
in the collection. The result will be essentially a corollary of Lemma 7.4.

A family K of cubes is said to cover a set E in the Vitali sense if for every
x€E and >0, there is a cube in K containing x whose diameter is less
than .

Theorem 7.17 (Vitali Covering Lemma) Suppose that E is covered in the Vitali
sense by a family K of cubes and that 0 < |E|, < +oo. Then, given € > 0, there is a
sequence {Q;} of disjoint cubes in K such that

E-JQ
j

=0 and ) |Qj] <@+ e)El.
j
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Proof. The second relation is automatically satisfied if we choose an open
set G containing E with |G| < (1+¢)|E|, and consider only those Q in K which
liein G.

By Lemma 7.4, there exist a constant 3,0 <f3 <1, depending only on
the dimension, and disjoint Q1,...,Qp, in K such that Zszll 1Qjl > BIEl-
Therefore,

N1 Ny Ny
E-Jo| =|6-UQ|=1G1->_|Q] < [El+e~p).
j=1 j=1 j=1

e

Hence, by considering from the start only those ¢ with 0 < ¢ < 3/2, we have

N7 B
E—UQ]- < |E|g<1—5>.
=1 |,

Thus, the part of E not covered by the cubes obtained from the simple Vitali
lemma has outer measure less than |E[.(1 — 3/2). We now repeat the pro-

cess for the set Ej =E — U]N:H Qj, which is still covered in the Vitali sense by

those cubes in K that are disjoint from Qy, ..., Qn; . We obtain Qn, 41, ..., QN,,
disjoint from each other and from Qj, ..., Qn;, such that

N Ny B B >
e-UJo| =B- U ¢ <|E1|B<l—§><|E|e(1_§> .
j=1 e j=N1+1 e

Continuing in this way, we obtain at the mth stage disjoint Qy,...,Qn,, in K
such that

N B m
E—UQ]- <|E|g(1—§> )
=1 |,

Since (1 — $/2)"™ — 0 as m — oo, there is a sequence of disjoint cubes in K
with the desired properties.

Corollary 7.18  Suppose that E is covered in the Vitali sense by a family K of cubes
and 0 < |E|, < +o00. Then, given ¢ > 0, there is a finite collection Q1,...,On of
disjoint cubes in K such that
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N
<e and Y |Qj| < A+ e)lEL.
j=1

E-JQ

=

1

J e

This is part of the proof of Vitali’s lemma.
Note by Carathéodory’s theorem that

|E|e = +

e

N
EnlJQl .

j=1

N
E-J9Q

=1

e

so that for E and {Qj}jl\il as in Corollary 7.18, we have

N
Ele —e < [EN|JQ (7.19)
=1,
In particular,
N
Ele—e <Y _|Ql. (7.20)
j=1

7.4 Differentiation of Monotone Functions

As an application of Vitali’s covering lemma, we will prove a basic result
concerning the differentiability of monotone functions on R If fx), x e R1,
is a real-valued function defined and finite in a neighborhood of x¢, consider
the four Dini numbers (or derivates)

Dif (xp) = lim Supf(x0 +h _f(xO),

h—0+ h
Iy —
Dof (x0) = lhigl%)nff(xo + })l f(xo)’
Dsf (x9) = limsupf(xo +h) _f(xO)’
h—0— h
_ o f o+ ) — f (x0)
Daf () = imnf =22 —
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Clearly, Dof < Dif and Dyf < Dsf. If all four Dini numbers are equal, that
is, if limy_,o [f (x0 + h) — f (x0)] /}h exists, finite or infinite, we say that f has
a derivative at xy and call the common value the derivative f' (xg) at xp. Thus,
—00 < f'(xg) < +o0if f'(xp) exists.

Theorem 7.21  Let f be monotone increasing and finite on an open interval (a, b) C
RY. Then f has a measurable, nonnegative, finite derivative f' almost everywhere in
(a,b). Moreover,

b
0< j F < fb—) —fa+). (7.22)

Proof. We may assume that (g, b) is finite; the general case follows from this
by passage to the limit. We will show that the set {x € (a,b) : Dif (x) > Dyf (x)}
has measure zero. A similar argument will apply to any two Dini numbers of
f.Itis enough to show that each set

Ars ={x € (a,b) : Dif(x) > r > s > Duf (1)}

has measure zero since the original set is the union of these over rational r
and s. We may assume 7, s > 0 since f is increasing.

Fix r and s with r>s>0, write A=A,s, and suppose that |[Al.>0. If
x € A, the fact that Dyf (x) <s implies the existence of arbitrarily small & >0
such that

famh—fw

By Corollary 7.18 and (7.19), given &>0, there exist disjoint intervals
[xj — hj,xj],j =1,...,N, such that

(i) f(x]) —f(x]- - h]) < Sh]', ] =1,...,N,
) [ANUY [y —lyx]| > 1Al -,
(i) 3711y < (14 €)|Al.
Combining (i) and (iii), we obtain
(iv) Z]lil [f (x) = f (xj — Bj)] < s+ &)|Al.

LetB=AN U]Iil [xj — hj, xj]. By (ii), | Bl > |Alo — €. For every y € B that is not
an endpoint of some [x]- —hj, xj], the fact that D1f(y) > r implies that there
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exist arbitrarily small k > 0 such that [y, y + k] lies in some [x; — h;, x;] and

f(y+klz —f) _,

Hence, by Corollary 7.18 and (7.20), there exist disjoint [y;,y; + ki],
i=1,...,M, such that

(v) Each [y;,y; + ki lies in some [x; — hj, x;],

™) fyi+k)—f (i) >k, i=1,...,M,

(vii) M ki > |Ble — ¢ > |Al, — 2¢ [by (ii)].

Therefore,

(vi)) 302 [f (vi + ki) = f ()] > r (Al = 20).
Since f is increasing, it follows from (v) that

N

Z flyi+k) —=f i) <D [f () = f (= hy)].

i=1 j=1

Combining this inequality with (iv) and (viii), we obtain r (|Al, —2¢) <s
(1 + ¢)|Al,. Since € > 0 is arbitrary, this gives r <s, which is a contradiction.
Hence, |Al. = 0.

Since an analogous argument applies to any two Dini numbers, it follows
that f’(x) exists for almost every x in (4, b). Extend the definition of f to (a, 00)
by setting f(x) = f(b—) for x > b, and let

fat+h —fx 1
f( ) - h 4 h - k/
forx € (a,b) and k = 1,2,.... Each f; is nonnegative and measurable, and

fx = f ae.in (a,b). Hence, f’ is measurable on (4, b), and by Fatou’s lemma,

b b
J7 <t 5.
If f(b—) is finite (otherwise, (7.22) is obvious), we have
b+h b
fﬂ—- jf— [f
u+h a

b+h u+h a+h

=i Jreg [r=reo— s
b
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Since f(a+) < (1/h) faﬁhf < f(a +h), we obtain
b b b
ﬂj f < liminf j fi= lim f fe =f0—) — fab),

which proves (7.22). It remains to show that f’ is finite a.e. in (4, b). This fol-
lows from (7.22) if f(b—) — f(a+) < oo since then f’ € L(a, b). Since f is finite
on (a,b), it follows in any case by applying (7.22) to a sequence of intervals
(ax, by) increasing to (a,b), a < ax < by < b, and the proof is complete.

The inequality in formula (7.22) cannot in general be replaced by equal-
ity, even if f is continuous on [a, b]. To see this, let f be the Cantor-Lebesgue
function on [0, 1] (p. 43 in Section 3.1). Then f is continuous and monotone
increasing on [0, 1], f(0) = 0, f(1) = 1, and since f is constant on every inter-
val removed in constructing the Cantor set, f' = 0 a.e. Thus, fol f =0, while
f(1) — f(0) = 1. We shall return in Theorem 7.29 to the question of equality
in (7.22).

By Corollary 2.7, any function of bounded variation can be written as the
difference of two bounded monotone increasing functions. Hence, we obtain
the following result (see also Exercise 9).

Corollary 7.23  If f is of bounded variation on [a,b], then f exists a.e. in [a, b],
and f’ € L[a, b].

If f is of bounded variation on [4,b] and V(x) denotes its (total) variation
on [g,x],a < x < b, then V is monotone increasing by Theorem 2.2. The next
result gives an important relation between V’ and f'.

Theorem 7.24  Iff is of bounded variation on [a, b] and V (x) is the variation of f
ona,x],a <x <b, then

V'(x) = |f'(x)| for a.e. x € [a, b].

We will prove this with the help of the next lemma, which is of independent
interest.

Lemma 7.25 (Fubini) Let {fi} be a sequence of monotone increasing functions on
[a, b]. If the series s(x) = Y_ fx(x) converges on [a, b] (equivalently, if s(a) and s(b)
are finite), then

s'(x) = Zf,é(x) a.e. in [a,b].

In particular, f]é — Qa.e. in[a,b].
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Proof. Letsy = Y y_qfiand 1y = Y p=,,.11fk- Thens,, and r,, are monotone
increasing functions and s = s, + ;. With the exception of a set Z,, |Z,,| = 0,
these three functions together with fi, . .., fi; are differentiable and s’ = s),, +
1, In particular, s > s;, = >}, f] except in Zy,. It follows that

exceptinZ = Up_1 Zm, 1Z| = 0.

To prove that in the last inequality we actually have equality a.e., it is
enough to show that 7, — 0 a.e. for m running through a sequence of values
my < my < ---. Select {m;} increasing so rapidly that )" Tm;(x) converges at
both x =4 and x =b. This implies the convergence of {rm]. b) — Tmj (a)} and
also, in view of the monotonicity of 7, of - { T (b=) — Tm, (a+)}. By (7.22),
we have

0

IA

b b
oL oy L T

Thus, Y 7/ isintegrable over (4, b), and therefore, it is finite a.e. in (4, b). Thus,
mj &

/

1,,. — 0 a.e., and the proof is complete.

mj

Proof of Theorem 7.24. Let f be of bounded variation on [4,b] and let V(x) =
Vla, x] be its variation on [4,x], a < x < b. Then V(a) = 0 and V(b) is the
variation of f on [a, b]. Select a sequence {Fk T = {x;‘} } of partitions of [a, b]

such that 0 < V(b) — 5, < 27k where

Sr = 0|/ —£6f)].
]

For each k, define a function f; on [4, b] as follows: if x € [x}‘_l, x;‘], let

fOo + i f(xf) = f(xf ),

fiw) =
¢ —f) + i F() < (),
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where the c;‘ are constants chosen so that f¢(a) = 0 and f; is well-defined (i.e.,

single-valued) at x;‘ for every j. Then, for all k and j,

7

fil) = filek ) = | £ = ()
so that

S = 2 [flef) Sl | = £,

]

Hence, for any k, we obtain 0 < V(b) — fx(b) < 2k,

We will show that each V(x) — fx(x) is an increasing function of x. This
amounts to showing thatif x <y, then fr () —fr(x) < V(y)—V (x).If x and y both
belong to the same partitioning interval of Iy, then fi () —fr (x) < |f(y) —f ()],
and therefore,

) —frx) < Vix,yl = V(y) — V().

In the general case, if x;‘,xﬁl,...,xl,‘n are the points of I'y between x

and y, the result follows by adding the inequalities for the intervals
[x, x;‘] , [xé‘,x’l‘ﬂ] e, [x’,§1,y]. Since V(a) = fi(a) = 0 and V(b) — fi(b) < 27K, it
follows that 0 < V(x) — fy(x) < 2% for all x € [a, b]. Hence,

Y IVE@ —fi@w] < Y 27F < +oo

for x € [a,b], so that by Lemma 7.25 the series ) [V’ x) —f; (x)] converges a.e.
in [a,b]. Hence, f{ — V' a.e. However, |f/| = |f'| ae., so that |f'| = |V| a.e.
The theorem now follows from the fact that V' is nonnegative wherever it
exists.

7.5 Absolutely Continuous and Singular Functions

We now turn to the question of equality in formula (7.22). As we know, the
Cantor-Lebesgue function is an example of an increasing continuous f whose
derivative is integrable on [0, 1], but for which fol 1 #f1) —£(0).

In Section 7.1, the notion of absolute continuity of set functions was
defined. We now introduce a related notion for functions of a single variable.
A finite function f on a finite interval [a, b] is said to be absolutely continuous
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on [a, b] if given ¢ > 0, there exists 6 > 0 such that for any collection {[ai, bi]}
(finite or not) of nonoverlapping subintervals of [g, b],

SOIf) —f@)| <eif Y (bi—ap) <5

For example, if g is integrable on [, b] and f(x) = [, g fora < x < b, then

Ylfeo—fal= [ gl

Ula; bi]

for any nonoverlapping [a;, b;]. By Theorem 7.1, [;|g] is an absolutely con-
tinuous set function, and therefore, f is an absolutely continuous function
on [a,b]. One of the main results proved below (Theorem 7.29) is that
every absolutely continuous function f has the form f(x) =f(a) + fax g for an
integrable g.

Another example of an absolutely continuous function is any f that
satisfies a Lipschitz condition:

f) —f| <Clx—y| forallx,y e [a,b] (7.26)

and some constant C > 0.

On the other hand, the Cantor-Lebesgue function f is an example of a con-
tinuous function that is not absolutely continuous, since if C; = U]' [a}‘, b;‘]
denotes the intervals remaining at the kth stage of construction of the Cantor
set, then |Cy| — 0, while

I GEGIES

j

for every k.

It is simple to see that a linear combination of absolutely continuous func-
tions is absolutely continuous and that an absolutely continuous function is
continuous. Moreover, if f is absolutely continuous on [4, b], then f” exists a.e.
in [a,b] and f" € L[a, b]. This follows immediately from Corollary 7.23 and the
next theorem.

Theorem 7.27 If f is absolutely continuous on [a,b], then it is of bounded
variation on [a, b].

Proof. Choose 6 so that ) | f)—f (ai)| <1 for any collection of nonover-
lapping intervals with ) (b; —a;) <98. Then the variation of f over any
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subinterval of [a,b] with length less than 6 is at most 1. Hence, if we split
[a,b] into N intervals each with length less than 5, then V[a,b] < N.

A function f for which f' is zero a.e. in [4, b] is said to be singular on [a, b].
The Cantor-Lebesgue function is an example of a nonconstant, singular
function on [0, 1].

Theorem 7.28  If f is both absolutely continuous and singular on [a, b], then it is
constant on [a, b].

Proof. It is enough to show that f(a) = f(b) since this result applied to any
subinterval proves that f is constant. Let E be the subset of (4, b) where f' =0,
so that |[E| = b — a. Given ¢ >0 and x € E, we have [x,x + h] C (a,b) and
|f(x +h) — f(x)| < eh for all sufficiently small 7 > 0. Let 6 be the number
corresponding to ¢ in the definition of the absolute continuity of f. By Corol-
lary 7.18 and (7.20), there exist disjoint Q; = [x]-, xj + hj], j=1,...,N,in (a,b)
such that

@ |f (g +h) —f ()] < ehy,
i) XN Q] > b —a) -5

By (i),

N
f(xj+h) - x]-)|<£Z|Qj|§£(b—a).
j=1

||Mz

Moreover, since by (ii) the total length of the complementary intervals is less
than o, the sum of the absolute values of the increments of f over them is less
than e. Thus, the sum of the absolute values of the increments of f over the Q;
and the complementary intervals is less than e (b—a)+¢. Hence, | f (b)) —f (a)| <
e(b —a) + ¢, so that f(b) = f(a). This completes the proof.

Theorem 7.29 A function f is absolutely continuous on [a,b] if and only if f'
exists a.e. in [a, b, f' is integrable on [a, b], and

ﬂ@—ﬂm=ff,a§x5b
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Proof. We have already observed (see p. 150 in Section 7.5) that any function
of the form G(x) = fax g, g € L[a, b], is absolutely continuous on [4, b]. Hence,
the sufficiency part of the theorem follows.

Conversely, if f is absolutely continuous, let F(x) = [’ f. F is well-defined
by virtue of Theorem 7.27 and Corollary 7.23. Moreover, by Theorem 7.16,
F'=f"a.e.in [a, b]. It follows that F(x) —f (x) is both absolutely continuous and
singular on [a, b]. Hence, by Theorem 7.28, we obtain F(x) —f (x) = F(a) — f(a)
for x € [a, b]. Since F(a) = 0, the proof is complete.

Theorem 7.30  Iff is of bounded variation on [a, b], then f can be written f = g+h,
where g is absolutely continuous on [a, b] and h is singular on [a, b]. Moreover, g and
h are unique up to additive constants.

Proof. Letg(x) = [f'andh =f—g Thenl' =f —¢ =f —f =0ae.
in [a,b], so that h is singular, and the formula f = g + h gives the desired
decomposition. If f = g1 + k1 is another such decomposition, then g — g1 =
hy — h. Since g — g1 is absolutely continuous and h; — & is singular, it follows
from Theorem 7.28 that § — g1 = h; — h = constant, which completes the
proof.

In view of Theorems 7.30 and 7.27, it is natural to ask if every bounded sin-
gular function is of bounded variation, as is the case, for example, with the
Cantor-Lebesgue function. The answer is #0, and an example is the charac-
teristic function x¢ of the Cantor set C. In fact, since xc is zero on every (open)
interval in the complement of C, then (x¢)’ = 0 there, and so (xc)' = O a.e.
in [0, 1]. However, xc does not belong to BV[0, 1] since it equals 1 at the
endpoints of every interval removed during the construction of C.

The next theorem, which is an extension of Corollary 2.10, gives formulas
for the variations of an absolutely continuous function.

Theorem 7.31  Let f be absolutely continuous on [a, b] and let V (x), P(x) and N (x)
denote its total, positive, and negative variations on [a,x], a < x < b. Then V, P,
and N are absolutely continuous on [a, b], and

V(x>=jxtf’|, P(x)=jx{f’}+, and N<X>=fx{f’}_

Proof. We will first show that V is absolutely continuous. If [«, 3] is a
subinterval of [a,b] and " = {x;} is a partition of [«, 3], then
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V(B) = V(o) = Viet, Bl =sup 3 | f (xi) — f (x-1)|

|

k-1

= s[rlpz

B
< |If'l.
x

Hence, if { [ei, B } is a collection of nonoverlapping subintervals of [a, b], then

Sy -vel= [ Ifl.
Ul B4l

From this inequality and Theorem 7.1, it follows that V is absolutely continu-
ous on [a, b]. Therefore, by Theorem 7.29 and the fact that V(2) = 0, we have
V(x) = [’V .Since V' = |f'| a.e. by Theorem 7.24, we obtain V(x) = [ | f/|.

The fact that P and N are absolutely continuous and the formulas for P
and N now follow from the relations V(x) = fux | . f=f@) + J;Zx f,P(x) =
V@) +f(x) — f@], and N(x) =3 [V(x) — f(x) + f(@)]. (See Theorem 2.6.)
This completes the proof.

On p. 27 in Section 2.3, we proved that if g is continuous on [4, b] and f is
continuously differentiable on [4, b], then

b b
[ gdf = [ gfax.

This is a special case of the first part of the following theorem.

Theorem 7.32 (Integration by Parts)

(i) If g is continuous on [a, b] and f is absolutely continuous on [a, b], then
b b
f gdf = f ¢f " dx.
a a
(ii) If both f and g are absolutely continuous on [a,b], then
b

b
[ g dx = gyf ) - g@f@ — [ gfax.

a
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Proof. To prove (i), first note that the integrals in the conclusion exist and are
finite by Theorems 2.24 and 5.30. Let I" = {x;} be a partition of [4, b] with norm
IT|. Then

fgfdx—ZJgfdx—Zg Xi_ 1 jf(x)dx

Xi-1 Xi-1

+ f [§(0) — g (xi—1)]f (x) dx.

Xi-1

The first term on the right equals Y g (x;_1) [f (x;) — f (xi_1)], which con-

verges to fab gdf as [T'| — 0. The second term on the right is majorized in
absolute value by

[l sup |g0) — g(wl} > f [f'| dx = [ s |g(0) — g(y)|] [ 1F1ax.
X Xi-1
Since g is uniformly continuous on [a,b], the last expression tends to 0 as
IT'| — 0. This proves (i).

We can easily deduce (ii) from (i) by using Theorem 2.21. In fact, if f and g

are absolutely continuous, then

b b

b
[ sf'dx = [ gdf = g)f(0) — g@f@ — [ fdg

b
= gb)f (b) —g@)f (@ — j fg'dx.

This proves (ii).

For a generalization of part (i) of the theorem, see Lemma 9.14.

7.6 Convex Functions

Let ¢ be defined and finite on an open interval (a,b), possibly of infinite
length. Then ¢ is said to be convex in (a, b) if for every [x1, x| in (4,b), the
graph of ¢ on [x1, x2] lies on or below the line segment connecting the points
(x1, ® (x1)) and (x2, d (x2)) of the graph of ¢.
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o)
\-‘
(x1,¢(x1))
a X X2 b

Let y=L(x) be the equation of this line segment. Then since every
X € [x1, x2] can be written x =0x7 + (1 — 8)x, for appropriate 6,0 <6 <1, the
condition for convexity is
b (0x1 + (1 —0)xp) <L (Ox1+ (1-0)x2)
for [x1,x2] C (4,b) and 0 < 6 < 1. Since
L(0x1+ (1 —=0)x2) =06L(x1) + (1 —0)L(x2) =0 (x1) + (1 = 0)P (x2),
it follows that ¢ is convex in (g, b) if and only if

G Ox1 + (1 —0)x2) <0 (x1) + (1 — )P (x2) (7.33)

fora<x; <xp <b,0 <6 < 1. Equivalently, ¢ is convex in (4, b) if and only if

<P1x1 + szz) _ 1o () +pad (x2) (734)
p1+p2 B p1+p2 '

fora <x; <xp <b,p1 >0, p2>0,p1+p2>0.

Theorem 7.35 (Jensen’s Inequality) Let ¢ be convex in (a,b). Let {x; }]Iil be

points of (a,b) and {pj}jlil satisfy pj > 0 and Y p; > 0. Then

o (ZW@') _Xpb )
v )~ Xpo

The proof follows by repeated application of (7.34).
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The slope of the chord connecting two points («, ¢(er)) and (3, (j3)) of the
graph of ¢ is [¢(B) — d(x)]/(B — o). We leave it as an exercise to verify the
following simple relations between the convexity of ¢ and the slopes of its
chords: if ¢ is convex in (g, b), then for all x,x1,xp witha <x1 <x <xp <b,

W — P () _ b)) — b)) _ b (x) — d().

X —X1 X2 — X1 Xy — X
conversely, if for every such x,x1,x2, either one of these two inequalities
holds, then ¢ is convex in (g, b).
Theorem 7.36

(i) If &1 and ¢y are convex in (a,b), then b1 + b2 is convex in (a, b).
(i) If & is convex in (a,b) and c is a positive constant, then c is convex in (a,b).

(iii) If ok, k=1,2,...,are convex in (a,b) and ¢ — ¢ in (a,b), then ¢ is convex
in (a,b).

The proof is left as an exercise.

Theorem 7.37  If ¢’ exists and is monotone increasing in (a, b), then ¢ is convex
in (a,b). In particular, if &" exists and is nonnegative in (a,b), then ¢ is convex
in (a,b).

Proof. We shall use the following inequality: If by, by > 0, then

N ) a1 +az ap az
ol < L2 7.38
mm{bl bz}_b1+b2_max{b1 bz} (7.38)

To prove the first inequality in (7.38), let m = min {a1/b1,a2/by}. Then mb; <
a1 and mby <ap, so that m (b1 4+ by) <ai + a». This is the desired result. The
second inequality is proved similarly.

To prove that ¢ is convex, we will show thatifa < x; < x < xp < b, then

b)) = o0 90— b))

X2 — X1 - X — X1
Write

b)) = b @) _ [d (x2) — ()] + [d(x) — b (X1)]'

Xy — X1 [x2 — x] + [x — xq]
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Since ¢’ exists in (a,b), the mean-value theorem implies that there are
&1 € (x1,x) and &, € (x, xp) such that

d(x) — b (x1)

X —X1

=¢' (&) .

ey, 202 0
Xy —

Since ¢’ is increasing, ¢’ (&1) < ¢’ (&), and it follows from the first inequality
in (7.38) that

¢ (x2) — & (x1) - bx) — d)(xn'

X2 — X1 X —X1

This completes the proof.
As a corollary of Theorem 7.37, we see that

(i) xPisconvexin (0,00)ifp>1orifp <0
(i) €™ is convex in (—o0, 00) (7.39)

(iii) log(1/x) = —logx is convex in (0, co0)

Theorem 7.40 If ¢ is convex in (a,b), then ¢ is continuous in (a, b). Moreover,
¢’ exists except at most in a countable set and is monotone increasing.

Proof. Since ¢ is convex, the slope [p(x+h) —d(x)]/h, h > 0, decreases with h.
Hence, the derivative on the right,

D+d)(x) — lim d)(x—l—h)—cb(x),
h— 0+ h

exists and is distinct from +oo in (g, b). Similarly, the derivative on the left,

dx) — d(x—h)

D = iy S

exists and is distinct from —oo in (a,b). Since [b(x) — ¢(x — h)]/h < [d(x +
h) — &(x)]/h, h > 0, we obtain

—00 < D™ d(x) < DTd(x) < +o0. (7.41)
This shows in particular that ¢ is continuous in (a, b). We next claim that

Do) <D ¢px)ifa <y <x <b. (7.42)
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In fact, if y < x, then as seen from the discussion earlier in the proof, we have

d(x) — d(y) _
T <D ¢).

D¢y <

This proves the claim. We therefore obtain D" ¢(y) <D~ ¢p(x) <D dp(x) if
y <x, which shows that D" ¢ is monotone increasing. Similarly, D~ ¢ is
monotone increasing.

To complete the proof of the theorem, note that (cf. Theorem 2.8) D" ¢ can
have at most a countable number of discontinuities since it is monotone and
finite on (g, ). If x is a point of continuity of D" ¢, then letting y — x— in the
last inequalities, we obtain D" ¢ (x) = D~ ¢(x). Therefore, ¢’ exists at every
point of continuity of D" ¢, and the theorem follows.

Theorem 7.43  If ¢ is convex in (a,b), then it satisfies a Lipschitz condition on
every closed subinterval of (a,b). In particular, ifa < x1 < x < b, we have

() — & () = [ @

X1

Proof. Let [x1,x2] be a closed subinterval of (a,b) and let x; <y < x <xp. Then
as before

Dt () <

d(x) — d(y) _
v <D ¢,

so that, since DT ¢ and D~ ¢ are monotone increasing,

Dt (x1) < <D ¢ (x2).

b)) — d)
X—=y
Hence, |¢(x) — ¢@)| <C|x — y|, where C is the larger of |D+c|>(x1)| and
|D’<|) (x2) | This shows that ¢ satisfies a Lipschitz condition on [x1, x2], and

the rest of the theorem follows since Lipschitz functions of a single variable
are absolutely continuous.

The next result is a useful version of Jensen’s inequality for integrals. We
shall need the notion of a supporting line: If ¢ is convex on (a,b) and xq € (4, b),
a supporting line at xg is a line through (xq, ¢ (x¢)) that lies on or below the
graph of ¢ on (g, b). It follows from the discussion preceding (7.41) that any
line through (xo, ¢ (x0)) whose slope m satisfies D~ ¢ (xg) < m < D¢ (x) is
a supporting line at xo.
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Theorem 7.44 (Jensen’s Integral Inequality) Lef f and p be measurable func-
tions finite a.e. on a measurable set A C R™. Suppose that fp and p are integrable on
A, that p > 0, and that [, p > 0. If ¢ is convex in an interval containing the range
of f, then

()i

Proof. By hypothesis, f is finite a.e. in A. Choose (a,b), —00 <a < b < 400,
such that ¢ is convex in (4,b) and a < f(x) < b for every x at which f(x) is
finite. The number vy defined by

_dalt
v Jap

is finite and satisfies a <y < b. If m is the slope of a supporting line at y and
a<t<b, then (y) + m(t —v) < ¢(t). Hence, for almost every x € A,

dy)+mlf(x) —v] = df(x)).

Multiplying both sides of this inequality by p(x) and integrating the result
with respect to x, we obtain

fb(v)prrm (ffp—VfP) Sfcb(f)p-
A A A A

Here the existence of [, ¢(f) p follows from the integrability of p and fp. (The
continuity of ¢ implies that ¢(f) is measurable.) Since [, fp —v [, p = 0, the
last inequality reduces to

o [p=[opp,
A A

which is the desired result.

In passing, we mention that a functionf is called concave in (a, b) if —f is con-
vex on (a,b). Properties of concave functions are easily deduced from those
of convex functions.
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7.7 The Differential in R™

The principal fact to be proved in this section is the Rademacher-Stepanov
theorem stating that a function that is locally Lipschitz continuous in an open
set in R", n > 1, has a first differential (or tangent plane) almost everywhere
in the set. The result is somewhat surprising in view of the fact that the graph
of a Lipschitz function may have corners and edges. The analogous result in
case n = 1 follows by combining Theorem 7.27 and Corollary 7.23. We will
also derive a result in which the assumption of Lipschitz continuity is
replaced by a weaker condition involving the second difference of a function,
and we will study a simple way to extend Lipschitz continuous functions on
subsets of R™ to all of R™.

We begin by defining the notion of the first differential of a function. A
finite real-valued function f defined in a neighborhood of a pointx € R", n >
1, is said to have a total first differential at x if there exists A = (a1, ...,a,) € R"
such that

fx+h)—f(x) —A-h=o(h|) ash—0. (7.45a)

Here, A - h denotes the dot product of A and h, that is,
n
A-h=) ah, h=(n,.. h),
i=1

and the notation “o(|h|) as h — 0” in (7.45a) means that

limf(x+h) —fx)—A-h _o.
h—0 |h|

(In general, for any finite real-valued function F(h) defined in a deleted

neighborhood of the origin, the notation F(h) =o(|h|) as |h| - 0 means that

limp,_o F(h)/[h| = 0.)

Sometimes, we will just say that such an f has a first differential at x, or
simply a differential at x. When n=1, (7.45a) means only that f has a first
derivative at x.

If f satisfies (7.45a), then f is clearly continuous at x. By choosing h=
o,...,0,h;0,...,0),i=1,...,n,in (7.45a), we also have

. f(x1/~--/xifllxi+hi/xi+1/~-~/x1’l) _f(x1/~~-/xi’l)
lim = a;.
hi—>0 hl
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Thus, A is unique if it exists, and a function f that has a differential at x has
(first) partial derivatives df /dx; atx,i=1,...,n, and

d
A= ( f( ),.--laf (X))~
Xn

Consequently, (7.45a) is the same as

fu+m=ﬂm+2£%mm+mm)%hzmhnmmau (7.45b)
i=1 !

If f has a differential at x, then the graph of the linear function Ly(y)
defined by

"9
L(y) =f(0) + Y a—i(X) (yi—xi), y= ..., yn) €R", (7.46)
i=1 !

is called the tangent plane (or tangent line if n = 1) to f at x. By choosing h =
y — x in (7.45b), we obtain

f(y) = Lx(y) +o(ly —x|) asy — x. (7.47)

When n > 1, a standard alternate terminology for (7.45b) is to say that f has a
tangent plane at x.
If f is any function whose partial derivatives df /dx; all exist at x, we write

szQiuw.W )

and call Vf(x) the gradient of f at x.

When n > 1, the mere existence of Vf at a point x does not imply that f has
a tangent plane at x even if f is continuous at x. For example, in case n = 2,
the function

2 2 2 if , 0,0
f ) = {x1x2/ [x] +x3] if (v, x2) # (0,0) 7.48)
0 if (x1,x) =(0,0)

is continuous and has first partial derivatives everywhere in R?, but f
does not have a tangent plane at (0,0) since f(0,0) =0, Vf(0,0) = (0,0), and
f(h1, ) J/hy = 1/2if iy # 0. We leave it as an exercise to show that f satisfies
the Lipschitz condition

fx) —fyI<Clx—yl, xyeR?

for some constant C that is independent of x and y.
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We now define a weaker notion of differentiability that will play a role in
the proof of the Rademacher-Stepanov theorem. Let x e R", nn > 1, be a finite
real-valued function defined in a measurable set that contains x and has x as
a point of density. Equivalently, suppose that f(x + h) is defined and finite
for all h in a measurable set H C R" containing 0 and having 0 as a point of
density. We say that f has an approximate first differential at x, or simply an
approximate differential at x, if there exists A € R", depending on x, such that

fx+h)=fx)+A-h+o(h)), heH, h-—o. (7.49)
When n = 1, the standard terminology for (7.49) is that f has an approximate
derivative at the point in question.

The vector A in (7.49) is unique in the following sense. If f satisfies (7.49)
as well as

f(x+h)=fx)+A"-h +o(|h

), heH, h—>0

for some A’ and some measurable set H’ that has 0 as a point of density, then
A’ = A (see Exercise 27).

A function that has a total differential at a point clearly has an approximate
differential there, but the converse is false even if the function is continuous.
For example, let f (x1, x2) be a function on R? with the properties

(i) f (1, x) =0if |xa| >,

(i) f(x1,0) =x forall x; € (—o0, 0),

(iii) f is continuous on R2.

Then f has an approximate differential at (0,0) since it satisfies (7.49) at
x = (0,0) with f(0,0) = 0 and A = (0,0) for the set H = {(x1,x) : Ixo| > x3}.
However, f does not have a total differential at (0,0) since f(0,0)=0,
V£(0,0) = (1,0), and, for example, the estimate

1/2
f(xl,x%> =x14o0 <{x%+x‘11} > asx; — 0

is false due to the fact that f (x1,x7) = 0 for all xy.

We leave it as an exercise to show that the function f in the example above
cannot be redefined in any set of measure zero so that the resulting function
has a total differential at (0, 0).

On the other hand, the next theorem shows that a Lipschitz continuous
function (see the following definition) has a total differential at every point
where it has an approximate differential.
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A finite real-valued function f defined in an open set G C R" is said to be
Lipschitz continuous in G if there is a constant C such that

Ifx) —f(y)l <Clx—y| forallx,yeG.

We then write f € Lip(G). Similarly, for any finite f defined on G, we write f €
Lipy,c(G) and say that f is locally Lipschitz continuous in G if for every compact
set K C G, there is a constant Cg such that

lfx) —f(y)| < Cklx—y| forallx,yeK.

If f € Lip(G), then f € Lip;,.(G), but the converse is false. For example, in
R?, the function fx1,x) =~0- x1) " Lis locally Lipschitz continuous on the
open unit ball centered at (0,0), but it is not Lipschitz continuous there. In
fact, for all (x1,x2), (y1,¥2) in the ball, we have

[x1 =
faux) =fyp)| = ——F7"——-
We leave it as an exercise to construct a function that is bounded, uniformly
continuous and locally Lipschitz continuous on the open unit ball in R? but
not Lipschitz continuous there.

Theorem 7.50 Let xo € R™ and f be a function that is Lipschitz continuous in
a neighborhood of xo. If f has an approximate differential at xo, then f has a total
differential at xg.

Proof. Suppose that f is Lipschitz continuous near xq and that
fxo+h) =f(xo) +A-h+o(h]), h—0heH,

for some A and some measurable set H C R™ that has 0 as a point of density.
We will prove the theorem by showing that the same asymptotic formula
holds for all h — 0 without the restriction that h € H.

By considering the function g(x) = f (xo + x) —f (xo) —A-x, we may assume
that xp = 0, f(0) = 0, and A = 0, that is, we may assume that f is Lipschitz
continuous near 0 and

lim @ =0.

7.51
h—0heH |h]| ( )

Our goal is then to prove that f(h)/|h| — O as [h| — 0.
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Foranyy e R"and t > 0, let
B(y;t) = {x e R": [x —y| < t}
denote the open ball with center y and radius ¢t. Choose C,r > 0 such that
fo0 —fl = Clx—yl ifxyeB@n.

Fix ¢ > 0 and let (3, y satisfy

0O<p<1, O<y<1—8, y+1—[5<%. (7.52)

Note that when ¢ is small, then 3 is near 1 and vy is small.
For any h € R™* — {0}, let

Dp = B(B h;y [h).

The triangle inequality and (7.52) imply that
€
Di € B(O; Ih)) N B (b; f|1n|) .

Now choose a such that 1 —y" < o« < 1. Since 0 is a point of density of H, there
exists & > 0 such thatif 0 < |h| < & then

«[B(0; [h])| < |B(0; [h]) N H]
< |Dn NH| + |B(0; |h|) — Dy|
= |Dn N H| + |B(0; [h|)| — |Dnl
= |Dn NH| + (1 —v") [B(0; |h])].

Since « > 1 — v", it follows that [Dy, N H| > 0 and in particular that D, N H
is not empty. Thus, for every h with 0 < |h| <9, there is a point h; € H such
that |hq| < |h| and |h — hy| < {¢/(2C)}|h|. ~

We may also choose 6 so small that 6 <r and, by (7.51), so that |[f(h)| <
(e/2)|ﬁ| ifh e Hand |ﬁ| < 8. Note that & depends ultimately only on ¢, H, f,
and 7. If 0 < |h| < 8 and h; is chosen as above, we obtain
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F)] < [fh) — f (hp)| + | f (hy)]
5cm—hn+§mn

€ €
C—h|+ -|h| =¢|h
= Coglhl+ Slhl = elh],

which completes the proof.

The next theorem is the main result of this section.

Theorem 7.53 (Rademacher-Stepanov) Let G be an open set in R®, n > 1, and
let f € Lipi,c(G). Then f has a total first differential a.e. in G. The partial derivatives
af /ox;, i =1,...,n, are measurable in G and bounded a.e. in every compact subset
of G. Furthermore, if f € Lip(G), then all 3f /dx; are bounded a.e. in G.

The proof will use Theorem 7.50 together with Lusin’s theorem and the
next four lemmas. It will also use the one-dimensional version of Theorem
7.53, which is included in Corollary 7.23.

We begin by showing that the derivative (from the right) of a Lipschitz
function of one variable can be defined in terms of a certain sequential (as
opposed to ordinary) limit of difference quotients, a fact that will be useful in
proving measurability of the partial derivatives in Theorem 7.53.

Lemma7.54  Let f be Lipschitz continuous in a half-open interval [a, b) in R and
letk=1,2,...1If

. fla+1/k) —f@

1
kglgo 1/k
exists, then so does
lim fla+h —f(ﬂ),
h—0+ h

and the two limits are the same.
Proof. Denote

L f@+ 1R —f@
k—o0 1/k
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Note that L is finite since f is Lipschitz continuous in [4, b). Given ¢ > 0, choose
a positive integer K, such that

fa+1/k) — f(a) 3

1/k b

<e¢ ifk>K;.

Let h satisfy 0 < h < 1/K, and choose k > K, such that1/(k+1) <h < 1/k.
Then by the triangle inequality,

fla+h) —f(a) —L' - ‘f(a—l—h) —f@ fa+1/k) —f@ L
h h 1/k
- ‘[f(a+h) —f@1—Ifla+1/k) —f@]
- h
+ |fa+1/k) —f(a)|<%—k>+e
:I+II+ E/

say. Since 0 < (1/h) —k <1, we have
II<|fa+1/k) —f@| — 0 ask — oo.
Also,

fa+h)—f@a+1/k)
h 7

I =

and therefore, by the Lipschitz character of f, there is a constant C indepen-
dent of h and k such that

< Clh—A/ol _ ~Yikk+ DI _ -

1
! R TS

Combining estimates, we obtain

o f@h —f@ _

L,
h—0+ h

and the proof of the lemma is complete.

Lemma 7.55 Let G be an open set in R®, n>1. If f € Lip;o.(G), then f has
measurable first partial derivatives of /dx;a.e.inG,i=1,...,n.
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Proof. Fix G and f as in the hypothesis. Consider, for example, the case i = 1
and denote points of R" by

(x,y), withx e (—o0,00) andy € R*1. (7.56)
Also, denote the difference quotient of f in the first variable by

Dyf(x,y) = fath, y’z —f&y , h#0, (7.57)

provided (x,y), (x + h,y) € G.
Let E be the set defined by

E = {(x,y) eG: g—];(x,y) = A%th(x,y) exists} .

The derivative df/dx is automatically finite in E since f is locally Lipschitz
continuous in G. Our goal is to show that E is measurable in R", that |G—E| =
0, and that (3f/dx)(x,y) is a measurable function on E. Let

D*f(x,y) = lim D,f(x,y) and D f(x,y) = lim Djf(x,y)
h—0+ h—0—

atany (x,y) € G where these limits exist, and define sets E* and E~ by

E* ={(x,y) € G: DTf(x,y) exists},
E™ ={(x,y) € G: D f(x,y) exists} .

Note that
E={(,y) e EYNE :D*f(x,y) =D f(x,y)}. (7.58)
Moreover, by Lemma 7.54, E™ can be expressed in terms of a sequential limit:

ET = {(x, y) eG: klim Dy f(x,y) exists} ,
— 00

and by similar reasoning,

E~ = {(x,y) eG: klim D_l/kf(x,y) exists} .
— 00
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In order to have a difference quotient that is well-defined for all i # 0 when
(x,y) € G, we extend f to be zero outside G. Thus, let

P finG
0inR™ - G.

Then f is measurable in R™, and consequently, Djf is defined and measurable
in R™ for all i1 # 0. In particular, both D4 /kf and D_; /kf are measurable in R®
forallk =1,2,.... Since G is open, for every (x,y) € G, we have D /k/; (x,y) =
D1 kf (x,y) for all large k. Therefore,

ET = {(x,y) eG: klim Dl/kf(x, Y) exists} ,
—00

and a similar representation holds for E~ with Dy replaced by D_q . It
follows that E* and E~ are measurable in R™ (cf. Exercise 23 in Chapter 4)
and that D*f is measurable on E* and D~ f is measurable on E~. Then (7.58)
implies that E is a measurable set in R™ and df/dx is a measurable function
onE.

Since G is open, for every y € R*1, the one-dimensional set Gy defined by

Gy = {x € (—00,00) : (x,y) € G}

is open (possibly empty) in R!. Also, f(x,y) considered as a function of x
is locally Lipschitz continuous in Gy for every y. Hence, by Corollary 7.23,
(9f /9x)(x,y) exists for a.e. (linear measure) x € Gy. Defining Ey in the same
manner as Gy, we have from Tonelli’s theorem and the measurability of E
that for a.e.y € R*1, Ey is linearly measurable, |Ey| = |Gy| (linear measure
again), and

El= | |Eyldy= [ |Gy|dy=IGl.
Rn-1 Rn-1

In case G has finite measure, it follows that |G — E| = 0, and we have accom-
plished our goal. The same is true if |G| = oo by intersecting G and E with a
sequence of open balls increasing to R™. Finally, a similar argument holds for
every coordinate x;, i = 1,...,n, and the proof of Lemma 7.55 is complete.

Before proceeding, we remark that if f is any measurable function in an
open set G and if df/9x; exists a.e. in a measurable set E C G for some 7,
then 9f/dx; is measurable in E. If i = 1, for example, this follows by con-
sidering the extension f in the proof of Lemma 7.55 and using the fact that
Dy, f is measurable in R™ and converges a.e. in E to df/dx; for any fixed
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sequence fiy — 0. While this fact is generally useful, we did not use it in
the proof of Lemma 7.55 because the existence of the first partial derivatives
of f a.e. in G was not guaranteed in advance.

The next lemma establishes a fact about uniform convergence of difference
quotients. Its proof is similar in spirit to the proof of Egorov’s theorem (see
also Exercise 13 of Chapter 4). We will continue to use the notations in (7.56)
and (7.57) for points in R™ and the difference quotient in the first variable.

Lemma 7.59 Let G be an open set in R™, n > 1, and E be a measurable subset of G
with |E| < co. Let f be a continuous function on G such that of /9x exists and is finite
in E. Then given € > 0, there exist a closed set F C E and 6 > 0 such that |E — F| <z,
the set {(x +h,y):(x,y) €F,|h < 6} is contained in G, and Dyf (x,y) converges
uniformly to (3f /9x)(x,y) in F as h — 0. A similar result holds for the difference
quotient of f in each of the other coordinate variables.

Proof. Fix G, E, and f as in the hypothesis. For m,k =1,2,.. ., let

Em,k

1 1
= {(x,y) €E:(x+hy) € Gand |Dyf(x,y) — g—];(x,y) < p” if0 < || < E}

To see why each E,;, x is measurable, first define
G ={(x,y) € G: (x+s,y) e Gif|s| <|r]}, reR'—{0}.

Thus, G(r) consists of all points (x, y) of G such that the closed line segment of
length 2|7| centered at (x,y) and parallel to the x-axis lies in G. Since the dis-
tance from any compact line segment in G to the complement of G is positive
(cf. Exercise 12(b) of Chapter 1), it follows that G(r) is open and therefore that
the set E(r) = G(r) N E is measurable. Next, using the continuity of f on G,
and letting Q denote the collection of all rational numbers, we can represent
E,. x as a countable intersection as follows:

i)

<—t.
m

Consequently, E,, x is measurable since each set in the intersection is measur-
able; in fact, by the remark following the proof of Lemma 7.55, 9f /dx is mea-
surable on E, and so also on E(r), and D,f is measurable (even continuous)
on E(r).

d
Emi= () {(x,y)eE(r):‘Drf(x,y)—a—{c(x,y)

reQ
0<|r|<1/k
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Since df /0x exists and is finite in E, then for each m, we have E,, /' E as
k / oo. Hence, for each m,

lim |Ey | = |EI,
k— o0

and |E — E, x| — 0ask — oo since |E| < oo. It follows that for every ¢ > 0
and m=1,2,..., there is a measurable set H,, = H}, C E and an index k;, = k,
such that |E — Hy,| < €27 1 and

9 1 1
Dpf(x,y) — a—{c(x,y) p” if (x,y) e Hyand 0 < || < o
m

=

Let H= (N{°Hy and 8=1/k;. Note that if (x,y)€H and |h| <§ then (x +
h,y) € G. Also, Dy,f converges uniformly to df /dx in H ash — 0, and

o0

£ £
E-HI<) mmm=7
1

Now choose a closed set F = F¢ ¢ H with |[H — F| < ¢/2. Then |E — F| < ¢,
(x+h,y) € Gif (x,y) € Hand || < §, and Dyf converges uniformly in F as
h — 0. This proves Lemma 7.59.

The final fact that we will use to prove Theorem 7.53 is given in the next
lemma.

Lemma 7.60 Let G be an open set in R™, n > 1, and E be a measurable subset of G.
Let f be a continuous function on G all of whose first partial derivatives exist and are
finite in E. Then f has an approximate differential a.e. in E.

Proof. The proof is by induction on n. Let G, E, and f satisfy the hypothesis.
Fix n > 2 and assume that the result is true for dimensionn —1. Incasen = 2,
this inductive assumption is true since a function of a single variable has an
approximate derivative at every point where it has a derivative.

We will again use the notation (x, y) and Dyf (x,y) in (7.56) and (7.57). With-
out loss of generality, we may assume that |[E| < oo. Let ¢ > 0 and choose 5
and F as in Lemma 7.59. Then (x + h,y) € Gif (x,y) € Fand |h| <, |[E—F| <
¢, and Dyf converges uniformly to df/9x in F. We may also assume that
|F| > 0 and, by Lusin’s theorem, that df/dx is continuous on F relative to F.
Fix any xg € (=00, 00) for which the set Fy, defined by

Fy, = {y eR" 1 : (x0,y) € F}
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has positive (n — 1)-dimensional measure. Note that a.e. (linear measure) xg
such that Fy, is not empty has this property by Fubini’s theorem. Similarly,
define

Gy, = {y eR™1: (x0,y) € G}, Ey, = {y eR™1: (xg,y) € E}.

Then Gy, is open in R™1 and E,, is measurable in R™1 for a.e. xg. Also,
f (x0,y) considered as a function of y is continuous in Gy,, and since f has
finite first partial derivatives a.e. in E (by hypothesis), we may assume that
f (x0,y) has finite first partial derivatives with respect to y for a.e.y € Ey,.
Thus, by our inductive hypothesis, f (xo,y) has an approximate differential
iny a.e. ((n — 1)-dimensional measure) in Ey; and so a.e. in Fy,.

Now fix any yg € Fy, such that y is an (1 — 1)-dimensional point of density
of Fy, and such that f (xo,y) has a differential in y at y = yo, that is, so that

f (x0,y) =f (x0,y0) + A (x0,0) - (y = yo) +0(ly —yol) asy— yo, (7:61)
where A (x0,y0) is a vector in R™1. Almost every point of Fy, has these
properties.

We claim that f has an approximate differential (relative to R™) at (xo, yo).
With 6 as above, let H C R™ be the Cartesian product [xg — 8, xp + 8] x Fy,:
H={(xy) eR":|x— x| <8,y €Fy}.

Then H C G, and (o, yo) is an n-dimensional point of density of H since y
is an (n — 1)-dimensional point of density of Fy,. Let (x,y) € H and write

0

A (x0,y0) = (% (x0,y0), A (xo,y0)> ,

Then A(xp,yop) is a vector in R™ and

@, y) —f (x0,y0) — A (x0,¥0) - (x — X0,y — yo)
= [fe,y) —f (x0,¥)] + [f (x0,¥) = f (x0,50) — A (x0,¥0) - (x — X0, 5 — y0)]

= [y s ) - Ly =0
+ [% (x0,y) — % (xo,yo)} (x — xp)

+ | (x0,%) = (v0,0) = A (x0,0) - (y ~ ¥0) |
=1+ 1411,
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say. Our claim will be proved by showing that each of ||, |II|, and |III| has
size o (Ix — xol + |y — yo|) if (x,y) € Hand (x,y) — (xo, y0)-

Letn > 0. Since Dyf converges uniformly to 3f/dx in F, there exists v >
0 such that |Dyf — 9f/dx| <n in F if 0 < |h] <v. We may assume that v <.
Hence, since

1= | (Deesf) (0¥) ~ £ (y) | =30,

we obtain
I <mnlx—xg| if [x —x9| < vand (x,y) € H.

Also, if (x,y) € H, then (xo,y) € F, and consequently by using the continuity
of 3f /dx on F relative to F, we see that there exists v > 0 independent of (x, y)
such that

Il <nlx—xo| if|y—yo| <V and (x,y) € H.

Finally, by (7.61), we have |III| <1 |y — yo| when |y — yy| is sufficiently small.
Our claim follows by combining estimates.

Since a.e. point in F shares the properties of the point (xg,yo) above, we
conclude that f has an approximate differential relative to R™ a.e. in F. Recall
that the value of ¢ > 0 can be arbitrarily small and that the set F = F¢ satisfies
F c Eand |E —F| < e. Now let ¢ — 0 through a sequence {¢;;}. Then f has an
approximate differential a.e. in the set |, F*", which is a subset of E of full
measure. This completes the proof of the Lemma 7.60.

Proof of Theorem 7.53. Let G be an open set in R™,n > 1, and f € Lip;,.(G). By
Lemma 7.55, f has measurable first partial derivatives a.e. in G. The fact that
these derivatives are bounded a.e. on every compact subset of G follows from
their definitions as limits of difference quotients since f € Lipj,-(G). In fact, if
{Gj:j=1,2,...} is a sequence of bounded open sets with closures contained
in G such that G /G, for example,

Gi={xeG: x| <jandd(x,CG) > 1/j}, j=12,...,

thenf € Lip (Gj) for each j, and every compact set in G lies in some G;. Clearly,
the first partial derivatives of a function that is Lipschitz continuous in an
open set are bounded a.e. in that set.
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Thus, it remains only to show that f has a total first differential a.e. in G.
However, this is an immediate consequence of Lemma 7.60 and Theorem 7.50,
which completes the proof of the Rademacher-Stepanov theorem.

An examination of the proof of Theorem 7.53 shows that the assumption
of local Lipschitz continuity of f is used in two key ways, first in order to
show that f has measurable partial derivatives a.e. in G and again in order
to conclude that f has a total differential wherever it has an approximate one
(Theorem 7.50). Note that the part of the proof showing that f has an approx-
imate differential a.e. in G (Lemmas 7.59 and 7.60) does not require Lipschitz
continuity, although it uses continuity of f in G and relies on the existence of
the first partial derivatives of f a.e. in G. In order to transfer some of the proof
technique to other situations, we can bypass the first way that Lipschitz con-
tinuity is used by simply assuming that all 3f /9x; exist and are finite. With this
assumption, the next result gives a condition different from Lipschitz conti-
nuity that implies total differentiability. The condition is stated as follows in
terms of the size of the second difference of f.

We say that a function f that is defined and finite in a neighborhood of a
point x € R™ is smooth at x if

f(x+h) +f(x—h) —2f(x) =o(h]) ash| - 0. (7.62)

The intuitive reason for calling such an f smooth at x arises from the
one-dimensional situation, noting that

foetm+fxe—m=2f) _fax+m—f@) fox=h—f&

7 I " h#0,

and consequently, if f is smooth and has a finite derivative from either side
at x, then it has a derivative from both sides at x, and the two are the same.
Thus, the graph of a function that is smooth at a point cannot have a corner
there.

Theorem 7.63  Let G be an open set in R", n > 1, and E be a measurable subset
of G. Let f be a continuous function on G such that

(i) f has finite partial derivatives of /ox; inE,i=1,...,n,
(ii) f satisfies the smoothness condition (7.62) at every x € E.

Then each 9f /9x; is measurable on E, and f has a total first differential a.e. in E.

Proof. We will be brief. Fix G, E, and f as in the hypothesis. The measurabil-
ity on E of the derivatives 9f/dx; follows from the remark after the proof of
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Lemma 7.55. It remains to show that f has a total first differential a.e. in E. For
m,k=1,2,...,define

cE: [fx+h) +f(x—h) - 2f(x)| -

1. 1
Em’k:{x |h| alf0<|h|§%}

By (7.62), for every m, E,, . /' E ask /' oo. Every E,, x is measurable since the
continuity of f in G gives

where Q" denotes the (countable) collection of all points of R™ with rational
coordinates. Assuming as we may that |E| < 0o, we obtain that |E — Em,k| -0
as k — oo for every m. Given ¢ > 0, it follows (cf. the proof of Lemma 7.59)
that there is a measurable set H C E with |E — H| < ¢ such that

fx+0+fx=1=2f(] _

||

Sl

Emk= () {(x,y)eE:
reQ"
O<|r|<1/k

[f(x+h) +f(x—h) —2f(x)]
hj

— 0 uniformly in H as |h| — 0.

To complete the proof of the theorem, it is enough to show that f has a
total differential a.e. in H. By Lemma 7.60, f has an approximate differential
a.e. in E and therefore also a.e. in H. Let xo € H be a point of density of H
where f has an approximate differential. It suffices to prove that f has a total
differential at xp. By the definition of an approximate differential, there is a
vector Ag € R" and a measurable set, which we may assume is the same as
the set H, having x¢ as a point of density such that

f(xo+h)—f(x0) —Ag-h=o0(h|), heH, as|h| - 0.

Without loss of generality, we may assume thatxp = 0, f (x9) = 0, and Ag = 0.
Thus, givenn > 0, there exists pg > 0 such that both

sup  |[f(x+h)+f(x—h) =2f(x)| <np if0<p=<pg
Jh
XEH)fIh\SP

and
[f(h)| <mfh| ifheHandO0 < |h| < po.

If p is sufficiently small, then every u € R™ satisfying |u| < p can be expressed
in the form u=x + h with x — h,xe H and |x|, |h| < p (see Exercise 30).
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Combining estimates, we then obtain that for all sufficiently small p > 0 and
all u with |u| <p,

fw|=|fx+h)| < |f(x+h)+f(x—h) =2f0)| + |f(x —h)| + 2|f )|
<np+n2p+2np =>5np,
and the theorem follows.

In passing, we will derive an interesting result about extending a Lipschitz
function from a set to the entire space in such a way that the extended function
remains Lipschitz continuous. The result is not limited to functions defined
in open sets. If E is any set in R™ and f is a finite real-valued function defined
on E, then f is said to be Lipschitz continuous on E if there is a constant C
such that

fx) —f(y)l <Clx—yl, xyeE.

The smallest such C, namely, the constant

Cpr = s LSO
x,yeE Ix — Y|
x£y

is called the Lipschitz constant of f on E.
We have the following extension result for such functions.

Theorem 7.64 Let f be Lipschitz continuous on a set E C R™. Then f can be
extended to R™ as a Lipschitz function with the same Lipschitz constant, that is,
there is a function f; € Lip (R") such that fy = f on E and Cy, gn = Cf .

Proof. Part of the proof will be left as an exercise. Let f and E be as
in the hypothesis and denote C=Cyr. Note that if y,yo€E and xeR",

then f (yo) — C[x—yo| <f(y) + Clx — yl since f (yo) = f(y) =C|yo—y| <
C (|x — yo| + |[x — y|). Therefore, the conical functions yy(x) defined fory € E
and x € R™ by

Yy() = vy 00 =f(y) + Clx —yl

satisfy

inf vy 2 f (yo) = C|x=yo| > =00 (yo € E)
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for all x € R™. Also, for any yg € E, infyeg vy (%) < vy, (x) < +00. Define

A = }171612 Yy(x), xeR" (7.65)

Then (see Exercise 32) f1(x) = f(x) ifx € E, fy € Lip (R") and Cf, pn = C = Cg.

Exercises

1. Let f be measurable in R™ and different from zero in some set of positive
measure. Show that there is a positive constant ¢ such that f*(x) > c|x|™"
for |x| > 1.

2. Let ¢(x),x € R™, be a bounded measurable function such that ¢p(x) = 0
for |x| > 1and [ ¢ =1.For e > 0,let ¢ (x) = ¢ ""d(x/¢). (d¢ is called an
approximation to the identity.) If f € L(R™), show that

ahino (f* de) (1) =f(0
in the Lebesgue set of f. (Note that [ ¢. =1, € > 0, so that

(f * be) 00 =00 = [Ifx—y) = FO1de (1) dy.

Use Theorem 7.16.)

3. Show that the conclusion of Lemma 7.4 remains true for the case of two
dimensions if instead of being squares, the sets Q covering E are rectan-
gles with x-dimension equal to & and y-dimension equal to #2. (Of course,
h varies with Q and the rectangles have edges parallel to the coordinate
axes.) Show that the conclusion of Theorem 7.2 remains valid for n = 2 if
the cubes Q are replaced by rectangles of this type that are centered at x
and with h — 0.

Show that the same conclusions are valid for rectangles whose x-
dimension is 1 and whose y-dimension is any fixed increasing function
of h. Generalize this to higher dimensions.

4. If E; and E, are measurable subsets of R! with |E;| >0 and |E;| >0,
prove that the set {x : x = x; — x2,x1 € E1,x2 € E3} contains an interval.
(cf. Lemma 3.37.)
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5.

10.

11.

Let f be of bounded variation on [, b]. If f = g + h, where g is absolutely
continuous and / is singular, show that

b b b
[odf = [of dx+ [pdn

for any continuous ¢.

Show that if o > 0, then x* is absolutely continuous on every bounded
subinterval of [0, c0).

Prove that f is absolutely continuous on [g, b] if and only if given € > 0,
there exists & > 0 such that |} [f (b)) —f (1))]| < ¢ for every finite collec-
tion {[a;, b;]} of nonoverlapping subintervals of [a, b] with }_ (b; — a;) <3.
Prove the following converse of Theorem 7.31: If f is of bounded variation
on [a,b], and if the function V(x) = V[a, x] is absolutely continuous on
[a,b], then f is absolutely continuous on [a, b].

If f is of bounded variation on [g, b], show that

b
[1f] = Via,b1.

Show that if equality holds in this inequality, then f is absolutely contin-
uous on [4, b]. (For the second part, use Theorems 2.2(ii) and 7.24 to show
that V(x) is absolutely continuous and then use the result of Exercise 8.)

(a) Show that if f is absolutely continuous on [g,b] and Z is a subset of
[a,b] of measure zero, then the image set defined by f(Z) = {w :
w = f(z),z € Z} also has measure zero. Deduce that the image
under f of any measurable subset of [4, b] is measurable. (Compare
Theorem 3.33.) (Hint: use the fact that the image of an interval [4;, b;]
is an interval of length at most V (b;) — V (a;).)

(b) Give an example of a strictly increasing Lipschitz continuous func-
tion f and a set Z with measure 0 such that f —1(Z) does not have
measure 0 (and consequently, f~! is not absolutely continuous). (Let
f‘l(x) = x 4+ C(x) on [0,1], where C(x) is the Cantor-Lebesgue
function.)

Prove the following result concerning changes of variable. Let g(f) be mono-

tone increasing and absolutely continuous on [, 3] and let f be integrable

on|a,bl,a = g(e),b = g(B). Then f(g(#))g (t) is measurable and integrable
on [, B], and

b B
f f)dx = f F(Q(B)G (1) dt.
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(Consider the cases when f is the characteristic function of an interval, an
open set, etc.)

12. Use Jensen’s inequality to prove thatifa,b > 0,p,g > 1, 1/p)+(1/q9) =1,
then

More generally, show that

where a; > 0, p; > 1, Zjl\il(l/pj) = 1. (Write a; = ¢%/Pi and use the
convexity of e*.)
13. Prove Theorem 7.36.

14. Prove that ¢ is convex on (4, b) if and only if it is continuous and

o <x1 +x2) - ¢ (x1) + ¢ (x2)
2 2

for x1,x, € (a,b).

15. Theorem 7.43 shows that a convex function is the indefinite integral of a
monotone increasing function. Prove the converse: If ¢(x) = [3f(Hdt +
¢ (a) in (4, ) and f is monotone increasing, then ¢ is convex in (g, b). (Use
Exercise 14.)

16. Show that the formula

+00 +00
[ == [rs

for integration by parts may not hold if f is of bounded variation on
(—00,+00) and g is infinitely differentiable with compact support. (Let
f be the Cantor-Lebesgue function on [0, 1], and let f = 0 elsewhere.)

17. A sequence {¢} of set functions is said to be uniformly absolutely con-
tinuous if given € >0, there exists 6 >0 such that if E satisfies |E| <,
then |px(E)| <¢ for all k. If { k} is a sequence of integrable functions
on (0,1) which converges pointwise a.e. to an integrable f, show that

fol |f = fi| = 0if and only if the indefinite integrals of the f; are uniformly
absolutely continuous. (cf. Exercise 23 of Chapter 10.)
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18.

19.
20.

21.

22.

23.

24.

25.

26.
27.

Prove the following set-theoretic result related to the simple Vitali cov-
ering lemma. If ¥ = {Q} is a collection of cubes all contained in a fixed
bounded set in R®, then there is a countable subcollection {Qy} of dis-
joint cubes in ¢’ such that every Q € ¢’ is contained in some Qj, where Qj
denotes the cube concentric with Qy of edge length 5 times that of Q.
Deduce the measure-theoretic consequence (cf. Lemma 7.4) that if a
set E is covered by such a collection ¢ of cubes, then there exist 3 > 0,
depending only on 7, and a finite number of disjoint cubes Q1, ..., Qn in

¢ such that B|E|, < Zszl |Qkl.

Formulate analogues of these facts for a collection of balls in R™.
Use Exercise 18 to prove Lemma 7.9.

(a) Let f(x) be defined for all x € R™ by f(x) = 0 if every coordinate of x
is rational, and f(x) = 1 otherwise. Describe the set of all x at which
Il@ fQ f has a limit as Q \, x and describe all Lebesgue points of f.

(b) Give an example of a bounded function f on (—oo,00) with the
following properties: f is continuous except at a single point xo;
(d/dx) fox f = f(x) for all x (in particular when x = xp); xp is not a
Lebesgue point of f.

For x € R"and 0 < o < n, define f(x) = |x|™%x(xj<1}(X). Show that
its maximal function f*(x) is bounded both above and below by positive
constants (depending only on « and #) times (|x|* + |x|”)_1.
In order to better understand Theorem 7.24 and its proof on an intuitive
level, it may be helpful to sketch the graphs of a particularly simple con-
tinuously differentiable function f(x) and its variation V(x) on the same
set of axes, and then to compare f’ and V’'. Draw both graphs for f(x) =
sinx on [0, 271] or more generally for any f defined on a closed interval of
finite length whose graph is a finite union of smooth monotone arcs.

Show that a convex function on (4, b) cannot attain a maximum on (a, b)
unless it is constant. Is the same true for a local maximum?

Suppose that ¢ is continuous on (4,b), ¢’ exists and is finite on (4, b)
except at a single point &, and ¢’ is increasing on (a,&) U (&,b). Show
that ¢ is convex on (4, b).

Let 1 < p < oo. Show that " log(1 + x) and x* (1 + log™ x) are convex
on (0, 00). (For the second function, Exercise 24 may be helpful.) See also
Exercise 28 in Chapter 8.

Show that the function defined in (7.48) is Lipschitz continuous on R2.
Verify the uniqueness of A in (7.49) in the sense described immediately
after (7.49). (Show that if 0 is a point of density of a measurable set E C R"
and B is a nonzero vector in R", then there is a sequence {h;} C E such
that |h]-| -0, hj‘ # 0, and the angle between h; and B is bounded away
from 7t/2 uniformly in j.)
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28. Letf € Lip (R™) and T be a nonsingular linear transformation of R". Show
that the function f o T defined by (f o T)(x) = f(Tx) belongs to Lip (R™)
and that for a.e. x € R", V(f o T)(x) = T* ((Vf)(Tx)), where T* denotes
the adjoint (transpose) of T.

29. (a) In one dimension, give an example of a Lipschitz function f that
satisfies the smoothness condition f (xo + k) + f (xo — h) — 2f (xp) =
o(lh]) as h — 0 at a point x¢ but for which f’(xg) does not exist.

(b) Show that any (finite) f that satisfies the smoothness condition in part
(a) at a point xg where f has a local extremum is differentiable at x
and f’ (xg) = 0. (Express the ratio [f (xo + h) + f (xo — h) — 2f (x0)] /h
in terms of right- and left-hand difference quotients of f at xg.)

(c) Suppose that a function f satisfies the smoothness condition in part
(a) for every x in an interval (a4, b) of the real line and that f is also
continuous in (a,b). Show that f’ exists and is finite in a dense subset
of (a,b). If [@,V'] C (a,b), apply the result in part (b) to the function
f(x) — L(x) where L is the chord equal to f atx = 4/, V'.)

(d) Prove the following generalization of the classical mean value theo-
rem: if f is continuous in an interval [4,b] C (—o0, 00) and smooth
(in the sense of part (a)) in (4, b), then there exists ¢ € (4, b) such that
f®) —f@ =f'(c) (b—a).

30. Let H be a measurable set in R™ that has 0 as a point of density. For p > 0,

let H,, be the intersection of H with the ball B, of radius p centered at 0.

(a) Show that the set {2x -y:x,yeH p} covers B, if p is sufficiently
small. Deduce that the set {x +h:x,x—heHyhe R“} covers B,
if pis small. (For the first part, compare Lemma 3.37. Recall from The-
orem 3.35 that if E is a measurable set in R", then the set 2E defined
by 2E = {2x : x € E} has measure |2E| = 2"|E|. Note that 2H, and
the set obtained by translating H, by any fixed point in B, are both
subsets of By,.)

(b) While the result in part (a) is adequate for the purpose of proving
Theorem 7.63, it can be improved and generalized. If r,s are real
numbers with 0 < |s| < |r|, show that the set {rx +sy:x,ye€ Hp}
covers Byjp if p is sufficiently small. (Argue as for part (a), but
consider only translations of an appropriate subset of —sH,,.)

31. Let f be a finite measurable function on R" that satisfies f(x + h) +
f(x—h) —2f(x) = O(1) uniformly in x, h for |h| < §, that is, there are pos-
itive constants A, 6 such that [f(x + h) + f(x —h) —2f(x)| < Aif x,h € R"
and |h| < §. Show that f is bounded on every bounded set in R™. (First
show that f is bounded on some ball in R™. To do so, note that there is
a measurable set E with |[E| > 0 on which f is bounded. Pick a point of
density of E and apply Exercise 30.) Generalize the result to functions f
that satisfy f(x + ay) + f (x + by) — 2f (x) = O(1) for fixed real a,b # 0.
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32. Complete the proof of the extension Theorem 7.64 by verifying the
properties listed in the last line of its proof for the function f; defined
in (7.65).

33. Let f be defined and Lipschitz continuous on a measurable set E C R™.
Show that f has an approximate differential relative to E at almost every
point of E.






8

LP Classes

8.1 Definition of L?

If E is a measurable subset of R™ and p satisfies 0 < p < oo, then L” (E) denotes
the collection of measurable f for which [, |f|P is finite, that is,

U’(E):{f:j|f|p<+oo}, 0<p<oo.
E

Here, f may be complex-valued (see Exercise 3 of Chapter 4 for the definition
of measurability of vector-valued functions). In this case, if f = f; + if; for
measurable real-valued f; and fo, we have |f|* = f? + fZ, so that

Al A < I1fI < [A] +f]-

It follows that f € LP(E) if and only if both f1,f> € LP(E). See Exercise 1.
We shall write

7

1/p
1 £llpe = (flfl”) , 0<p<oo;
E

thus, LF(E) is the class of measurable f for which || ||, £ is finite. Whenever it
is clear from context what E is, we will write L¥ for LF(E) and || f||, for || f|p,E-
Note that L! = L.

In order to define L*°(E), let f be real-valued and measurable on a set E
of positive measure. Define the essential supremum of f on E as follows: If
| {x€E:f(x) > a}| >0 forall real w, let essg supf = +o0; otherwise, let

esssupf = inf{ax: |{x € E: f(x) > «}| = 0}.
E

Since the distribution function w(e) = [{x € E : f(x) > «}| is continuous
from the right (see Lemma 5.39), it follows that w(essg supf) =0 if essg sup f

183
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is finite. Therefore, essg sup f is the smallest number M, —co <M < + o0, such
that f(x) < M except for a subset of E of measure zero.

In the definition of essg supf, we have assumed that |E| # 0. If the same
definition were used when |E| =0, then essgsupf would be —oco for every
real-valued f defined on E, resulting in incorrect or awkward statements of
results such as Theorem 8.1. We will avoid technical difficulty of this type by
adopting the convention that essg sup f is 0 when |E| = 0. This may be consid-
ered an analogue of the fact that /¢ f = 0 when |E| = 0. In practice, we will
use the convention only when f > 0 and |E| = 0.

A real- or complex-valued measurable f is said to be essentially bounded,
or simply bounded, on E if essg sup | f| is finite. By convention, if |[E| = 0, then
every function is essentially bounded on E and has essential supremum equal
to 0. The class of all functions that are essentially bounded on E is denoted by
L*°(E). Clearly, f belongs to L*°(E) if and only if its real and imaginary parts
do. We shall write

1 flloe = 11 floo,E =eSSESUP|f|-

Thus, || f]lco is the smallest M such that | f| < M a.e.in E, and
L® =L%(E) = {f : l|fllc <400}

The following theorem gives some motivation for this notation.

Theorem 8.1 If |E| < 400, then || f|loo = limp—oo || fllp-

Proof. We may assume that |E| > 0 since ||f|lc and ||f||, are both 0 if |[E[ =0.
Let M= |flloc. If M' <M, then the set A={x€E : |f(x)|>M'} has posi-

tive measure. Moreover, ||f|l,> ([, |f|7”)1/p > M'|A|'P. Since |A|'P -1 as
p— oo, it follows that liminf, . || f|l; > M’ and therefore that liminf, .

Ifll,>M. However, we also have ||fll, < (/g M”)l/p =MI|E|/P. Hence,
limsup,_, o || fllp < M, which completes the proof.

Remark: This result may fail if |[E| = +oc0. Consider, for example, the con-
stant function f(x) = ¢, ¢ # 0, in (0,00). Clearly, f € L* but f ¢ L? for
0 < p < o0. See also Exercise 26.

We will now study some basic properties of the L7 classes.

Theorem 8.2 If0 < p; < pp < ooand |E| < +oo, then LP* C LF1.
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Proof. Write E = E; U Ep, Eq being the set where |f| < 1 and E; the set where
[f] > 1. Then

(1= 1+ [1fr, 0<p<oe.
E Eq E,

The first term on the right is majorized by |E1|; the second increases with
p since its integrand exceeds 1. It follows that if f € L2, p, < oo, then f € L1,
p1 <p2.lf p1 <pr =00 and f € L™ thenf is a bounded function on a set of finite
measure and so belongs to L.

Remarks

(i) In Theorem 8.2, the hypothesis that E have finite measure cannot be
omitted: for example, x~1/m belongs to LF2(1, oo) if pp > p1 but does not
belong to LP1(1, 00). Again, any nonzero constant is in L*, but is not in
LPI(E) if |E| = +o0 and p1 < o0.

(ii) A function may belong to all LP* with p; < p> and yet not belong to L"2.
In fact, if py < 00, x~1/p2 belongs to L1 (0, 1), p1 < p2, but does not belong
to LP2(0, 1); log(1/x) is in LP1(0, 1) for py < oo, but is not in L*(0, 1).

(iii) We leave it to the reader to show that any function that is bounded
on E (|JE| <+oo or not) and that belongs to LP1(E) also belongs to
LP2(E), p2 > p1.

The next theorem states that the L classes are vector (i.e., linear) spaces.
Its proof is left as an exercise.

Theorem 8.3 Iff,g € LP(E),p > 0, then f + g € LP(E) and c¢f € LP(E) for any
constant c.

8.2 Holder’s Inequality and Minkowski’s Inequality

In order to discuss the integrability of the product of two functions, we will
use the following basic result.

Theorem 8.4 (Young's Inequality) Lety = $(x) be continuous, real-valued, and
strictly increasing for x > 0 and let $(0) = 0. If x = W (y) is the inverse of &, then
fora,b >0,
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a b
ab < fcb(X) dx + fll)(y) dy.
0 0

Equality holds if and only if b = ¢ (a).

Proof. A geometric proof is immediate if we interpret each term as an area
and remember that the graph of ¢ also serves as that of 1 if we interchange
the x- and y-axes. Equality holds if and only if the point (g, b) lies on the graph

of ¢.

¥ =60

If ¢(x)=x% >0, then P(y) = yl/ %, and Young’s inequality becomes
ab < a'™*/(1 + o) + b1/ % /(1 +1/w). Setting p=oc+1and p’' =1+ 1/, we
obtain

!

aP [ 1 1
ab < —+ —ifa,b >0,1 <p<oo,and - + = =1. (8.5)
p P pp

Two numbers p and p’ that satisfy 1/p + 1/p'=1,p,p’ > 1, are called conju-
gate exponents. Note that p’ = p/(p — 1), and that 2 is self-conjugate. We will
adopt the conventions that p’ = coif p =1,and p’ = 1if p = o0.

Theorem 8.6 (Holder’s Inequality) If 1<p<oo and 1/p + 1/p' =1, then
/gl = [1fIplIglly; that is,

/

1/p 1/p
IE (flfl’”) (f Iglp/> ; I<p<oo
E E E
[ (essEsup |f|) [t
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Proof. The last inequality, which corresponds to the case p = oo, is obvious.
Let us suppose then that 1 <p <oo. In case ||f||, = [Iglly = 1, (8.5) implies

that
b\ AL il
fmﬂ<f m LB W TE
P P p

E

1 1
= E + }7 =1= ||f||p||g||p’
For the general case, we may assume that neither || f||, nor ||g||,s is zero;
otherwise, fg is zero a.e. in E, and the result is immediate. We may also
assume that neither ||f[[, nor ||g||, is infinite. If we set fi =f/||fll, and
=g/11glly, then || fi]|, =1Ig1]ly = 1. Therefore, by the case already consid-
ered, we have [ |fig1| < 1; thatis, [; [fg] < 1 f1lplIgll,, as desired.

See Exercise 4 concerning the case of equality in Holder’s inequality.

The case p = p’ = 2 of Holder’s inequality is a classical inequality:
p=p q y q y

Corollary 8.7 (Schwarz’s Inequality)

gstVﬂmgmﬁ

1/2

The theorem that follows is usually referred to as the converse of Holder’s
inequality (see also Exercise 15 in Chapter 10).

Theorem 8.8  Let f be real-valued and measurable on E, and let 1 <p < oo and
1/p+1/p" =1. Then

£l =sup [ 3, (8.9)
E

where the supremum is taken over all real-valued g such that gy <1 and [;fg
exists.

Proof. That the left-hand side of (8.9) majorizes the right-hand side follows
from Holder’s inequality. To show the opposite inequality, let us consider first
thecaseof f > 0,1 < p < 0.

If ||flly = 0, then f = O a.e. in E, and the result is obvious. If 0 < ||f]|, <
+00, we may further assume that ||f||, = 1 by dividing both sides of (8.9)
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by [|fllp- Now let ¢ = f”/p/. It is easy to verify that ||g]|,, = 1 and fEfg =1,
which completes the proof in this case.
If || fIlp = +o0, define functions f; on E by setting
frx) =01if x| > k,  fr(x) = min{f(x), k} if |x| < k.
Then each f; belongs to LV and || fk|l, — |Ifll, = +o0. By the case already

considered, we have || ||, = fE fx8k for some gx > 0 with [[gx[[,y = 1. Since
f = fx, it follows that

ffgk > ffkgk — +o00.
E E

This shows that

sup ffg: +oo = [Ifllp-

lglly =17

To dispose of the restriction f > 0, apply the result above to | f|. Thus, there
exists gx with ||gk|l,y = 1 such that

[1llp = lim [ 11 g = lim [ £,
E E

where g = gx (sign f). (By sign x, we mean the function equal to +1 for x > 0
and to —1 for x < 0.) Since || 2k|,, =1, the result follows.

p/
The cases p = 1 and oo are left as exercises.

We leave it to the reader to check that (8.9) is true if the supremum is taken
only over those real-valued g with ||g||,y =1 for which [ fg exists. Also, if
1<p<oo, then a measurable function f belongs to LP(E) if fg € LY(E) for
every g € [V (E), 1/p + 1/p’ = 1. See Exercise 2.

We have already observed that the sum of two L functions is again in L.
The next theorem gives a more specific result when 1 < p < oco.

Theorem 8.10 (Minkowski’s Inequality) If 1<p<oo, then |f + glly <
Iflly + g lp; that is,

1/p 1/p 1/p
(f|f+gl”> 5(f|f|”> +<f|g|”) , 1<p<oo,
E E E

esssup | f + gl < esssup |f| + esssup |g].
E E E
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Proof. If p = 1, the result is obvious. If p = oo, we have |f| < ||f|lec a.€.in E
and [g] < |Igllec a.€. in E. Therefore, |f + g| < |Iflloo + 11glloo a.€. in E, so that

I1f + &lloo = 11 flloc + 118]loo-

Forl <p < oo,
If+gllp=[1f+8lP = [If +&PIf +3l
E E

< [1f+arfi+ [1f +gP gl
E E

In the last integral, apply Holder’s inequality to |f + g[P~! and |g| with
exponents p’ = p/(p — 1) and p, respectively. This gives

[1f +glP 118l < 11f + gy 1181l
E

Since a similar result holds for [ |f + glpfllfl, we obtain ||f + g||5 <|If+
gl Ig_l(l |f1lp + 11gllp), and the theorem follows by dividing both sides by || f +

g |£_1. (Note thatif || f +g||, = 0, there is nothing to prove; if || f +g]I, = +00,
then either |[f||p = 400 or ||g||p = +oo by Theorem 8.3, and the result is
obvious again.)

See Exercise 27(a) concerning a version of Minkowski’s inequality for
infinite series.

Remark: Minkowski’s inequality fails for 0 < p < 1. To see this, take E = (0, 1),
f= X©,1) and g = X1y Then ||f + gllp = 1, while ||f[l, + lIgll, = 2717 +
271/P = 2171/P < 1. See also (8.17) and Exercise 27(b).

8.3 Classes I7

Let a = {ax} be a sequence of real or complex numbers, and let
1/p
Wﬁ«ZW@ /0<p <00 llalleo = suplay.
k

Then a is said to belong to I7, 0 < p < oo, if ||a|, < 400, and to belong to [*°
if ||a]lc < +00. We will sometimes also denote |||, by [|al|;».
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Letus show thatif 0 < p; < pp < oo, then?1 C IP2. (The opposite inclusion
holds for LP(E), |[E| < +o0 , by Theorem 8.2.) For py = oo, this is clear, and for
p2 < 00, it follows from the fact that if |a;| < 1, then |ax|F? < |a,|"'. Moreover
(see Exercise 31),

llallp < llall1 if 1 <p < oo, and |lall, < |lallyif0 <q <p < oo.

An example of a sequence that is in 72 for a given p; < oo but that is not in
1/p
IPr for p1 <py is (1/k log? k) ? 1k > 2}. Any constant sequence {ai}, ax =

c # 0, belongs to [°° but not to I for p < oo. The same is true for {1/logk :
k > 2}, whose terms even tend to zero.

Theorem 8.11 Ifa = {ax} belongs to I¥ for some p < oo, then limy . llall, =
llalloo -

Proof. Ifa € 1P, thena € [P for pp < p < oo. Since |ag] — 0, there is a
largest |a|, say |ak,|. Thus, ||a|lcc = lak,|. Write D |ax|P = |ak, |V D lax/ak, P
Since |ax/ak,| < 1, we see that ) |ax/a, |’ decreases (and so is bounded) as
p /' oo. Hence, there is a constant ¢ > 0 such that |y, |V < ||a||g < clag,|P for
all large p. Since c!/7 — 1 asp — oo, the theorem follows.

The next two results are analogues for series of Holder’s and Minkowski’s

inequalities. Their proofs are left as exercises. If 2 = {ax} and b = {by}, we use
the notation

ab = {ayby}, a+b={a+0by}, etc.

Theorem 8.12 (Holder’s Inequality) Supposethatl <p <oo,1/p+1/p =1,
a = {ax}, b = {by}, and ab = {axb}. Then ||ab||y < |lallp|blly; that is,

S tatel = (Xwa) " (Do), 1 <p <o
D byl < (suplagh) D Ibgl -

Theorem 8.13 (Minkowski’s Inequality) Suppose that1 < p < oo, a = {ay},
b = {bx}, and a + b = {ax + bx}. Then ||la + b||p < |lall, + [|bll,; that is,

(S +0er) " < (Ciar)” + (D), 1<p <o

sup |ax + by| < sup |ax| 4 sup |by] .
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Even though Minkowski’s inequality fails when p < 1 (see Exercise 3), I[P
is still a vector space for 0 < p < 1; thatis, a+b € I? and aa = {a} € 17 if
a,b € IP and o is any constant.

8.4 Banach and Metric Space Properties

We now define a notion that incorporates the main properties of L¥ and [”
when p>1. A set X is called a Banach space over the complex numbers if it
satisfies the following three conditions:

(B1) X is a linear space over the complex numbers C; that is, if x,y € X and
ax e C, thenx+y e Xand ox € X.

(B2) Xis a normed space; that is, for every x € X there is a nonnegative (finite)
number ||x|| such that
(@) |lx|] = 0if and only if x is the zero element of X,

(b) |lax|| = ||||x|| for x € Cand x € X,

© lx+yll < lIxl + vl
If these conditions are fulfilled, ||x|| is called the norm of x.

(B3) X is complete with respect to its norm; that is, every Cauchy sequence
in X converges in X, or if ||xx — x;|| — 0 as k,m — oo, then there is an
x € X such that ||x; — x|| — 0.

A set X that satisfies (B1) and (B;), but not necessarily (B3), is called a
normed linear space over the complex numbers. A sequence {x;} such that
[lxx — x|] = 0 as k — oo is said to converge in norm to x.

Restricting the scalars « in (B1) and (B;) to be real numbers, we obtain
definitions for a Banach space over the real numbers and for a normed linear
space over the real numbers. Unless specifically stated to the contrary, we
will take the scalar field to be the complex numbers.

If X is a Banach space, define d(x,y) = ||x — y|| to be the distance between x
and y. Then,

Myp) dx,y) =0;d(x,y) =0ifand only if x =y,

Mp) d(x,y) = d(y,x),
M3) d(x,y) <d(x,z) +d(z,y) (triangle inequality).

Any set that has a distance function d(x, y) satisfying (M1), (M2), and (M3)
is called a metric space with metric d. Therefore, a Banach space is a metric
space whose metric is the norm. Moreover, by (B3), a Banach space X is a
complete metric space; that is, if 4 (xi, x,) — 0 as k,m — oo, then there is an
x € X such that d (x;,x) — 0.
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Theorem 8.14 For 1 < p < oo, LP(E) is a Banach space with norm ||f|| =
1 f1p,E-

Proof. Parts (B1) and (Bp) in the definition of a Banach space are clearly ful-
filled by L?(E), parts (a) and (c) of (B;) being Theorem 5.11 and Minkowski’s
inequality, respectively. (Regarding part (a), we do not distinguish between
two L? functions that are equal a.e.; thus, the zero element of LV (E) means any
function equal to zero a.e. in E.)

To verify (B3), suppose that { fi} is a Cauchy sequence in L/ (E). If p = oo,
then |fi — fu| < |lfc — fulloo except for a set Z,, of measure zero. If Z =
Uk, Zk,m, then Z has measure zero, and | fc = fin] < lIfx — finlloo outside Z for
all k and m. Hence, { fi} converges uniformly outside Z to a bounded limit f,
and it follows that || fy —fllcc — 0. (Note that convergence in L* is equivalent
to uniform convergence outside a set of measure zero.)

In case 1 < p < oo, Tchebyshev’s inequality (5.49) implies that

|{er:|fk(x) — fn ()| > €}| < £_pj|fk—fm|p-
E

Hence, {fi} is a Cauchy sequence in measure. By Theorems 4.22 and 4.23,
there is a subsequence { fk].} and a function f such that fy, — f a.e. in E. Given
¢ > 0, there is a K such that

1/p
p .
(f | — | ) = llfi, — fillp < e if ki, k > K.
E

Letting kj — oo, we obtain by Fatou’s lemma that ||f — fll, < eifk > K.
Hence, || f—fill, — 0ask — oo. Finally, since |[f|[, < || f—fellp+II fillp < 400,
it follows that f € LP(E), which completes the proof.

A metric space X is said to be separable if it has a countable dense subset;
thatis, X is separable if there exists a countable set {x;} in X with the property
that for every x € X and every ¢ > 0, there is an xx with d (x,xx) < e. In the
next theorem, we will show that L? is separable if 1 <p < co. Note that L™ is
not separable: take L°°(0, 1), for example, and consider the functions f;(x) =
X,t) (%), 0 <t < 1. There are an uncountable number of these, and || f; —fr ||c0c =
1if t # t' (see also Exercise 10).

Theorem 8.15 If1 <p < oo, L (E) is separable.

Proof. Suppose first that E = R™, and consider a grid of dyadic cubes in R™.
Let D be the set of all (finite) linear combinations of characteristic functions
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of these cubes, the coefficients being complex numbers with rational real and
imaginary parts. Then D is a countable subset of L’ (R™). To see that D is dense,
use the method of successively approximating more and more general func-
tions: First, consider characteristic functions of open sets (every open set is
the countable union of nonoverlapping dyadic cubes by Theorem 1.11), of G5
sets, and of measurable sets with finite measure; then consider simple func-
tions whose supports have finite measure, nonnegative functions in L” (R™),
and, finally, arbitrary functions in LP (R™). The details are left to the reader
(cf. Lemma 7.3). This proves the case E = R™.

For an arbitrary measurable E, let D" denote the restrictions to E of the
functions in D. Then D’ is dense in LP(E), 1 <p <oo. In fact, given p and
felP(E),letfy =fonEandf; = 0off E. Thenf; € L7 (R"), so thatgiven ¢ > 0,

there exists g€ D with (fRn |1 —g|P)1/p < ¢. Therefore, (IE |f _g|P)1/7’ <.
This shows that D’ is dense in L?(E) and completes the proof.

As we have already noted, Minkowski’s inequality fails when 0 <p < 1.
Therefore, || - ||pe is not a norm for such p. However, we still have the
following facts.

Theorem 8.16 If 0<p<1, LP(E) is a complete, separable metric space, with
distance defined by

df,g) = 1f =gl g

Proof. With d(f, g) so defined, properties (M;) and (M3) of a metric space are
clear. To verify (M3), which is the triangle inequality, we first claim that

(@a+bf <a’ +Wifa,b>0,0<p<1.

If both a and b are zero, this is obvious. If, say, a # 0, then dividing by a7, we
reduce the inequality to (1 + )? <1+, > 0 (t = b/a). This is clear since
both sides are equal when ¢t = 0 and the derivative of the right side majorizes
that of the left for t > 0.

It follows that | f(x) — gX)|P < [f(x) — k()P + |h(x) —g(x)IP if 0 < p < 1.
Integrating, we obtain ||f — g||5 < |If - hll,r; + ||h — g||§, which is just the
triangle inequality. The proofs that L? is complete and separable with respect
to || - || are the same as in Theorems 8.14 and 8.15.

It is worth noting that in case 0 < p <1, the triangle inequality is equivalent
to the basic estimate
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IfF -+l <lIfllp+1gll, O <p<D. (8.17)

See also Exercise 27(b).
The analogous results for series are listed in the next theorem.

Theorem 8.18

(@) If1 < p < oo, IV is a Banach space with ||a|| = |lallp. For 1 < p < oo, [P is
separable; I°° is not separable.

(ii) If0 < p < 1, IP is a complete, separable metric space, with distance d(a,b) =
lla = b},

Proof. We will show that I? is complete and separable when 1 < p < oo and
that /°° is not separable. The rest of the proof of (i) and the proof of (ii) are left
to the reader. .

Supposethat1 <p < oo, a?) = {a]((l)} elPfori=1,2,...,and [[a? —a® I, —

0asi,j — oo. Since [a® —a® || ‘ ©_ (])‘ for every k, it follows that

‘al({i) (])) — 0 for every kasi,j — oo. Let ar = lim;_, o ak )and a = {ar}. We

will show thata €1 and a® —a ||p — 0. Given ¢ > 0, there exists N such that

1/p
] ] p | / . ..
(Z ’11(;) - ’11(3) ) = a® —aP|, <& ifij>N.

k

Restricting the summation to k < M and letting j — oo, we obtain

1/p
( ‘a,(cl) —ak’p) <e¢ forany M, ifi> N.

Letting M — oo, we get [a® —a|, <eifi>N;
fact that al|, <

To prove that [ is separable when p < oo, let D be the set of all sequences
{di} such that (a) the real and imaginary parts of dy are rational, and
(b) dx=0 for k>N (N may vary from sequence to sequence). Then D
is a countable subset of IP. If a= {a;} €I” and ¢ >0, choose N so that
Z,‘?‘;NH laglP < ¢/2. Choose dy, . . ., dn with rational real and imaginary parts
such that Zszl lax — dilP <¢e/2. Thend= {dy,...,dn,0,...} belongs to D and
la—d ||§ < e. It follows that D is dense in [” and therefore that I” is separable.

To see that [°° is not separable, consider the subclass of sequences a = {ay}
for which each g is 0 or 1. The number of such sequences is uncountable,

a® — aHp — 0. The

a—a® ||p + [a® ||p shows that a € IF. Hence, [? is complete.
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and |la — a'||c = 1 for any two different such sequences. Hence, [°*° cannot be
separable.

We know from Lusin’s theorem that measurable functions have continuity
properties. The next theorem gives a useful continuity property of functions
in LP.

Theorem 8.19 (Continuity in I”) Iff € LP(R"), 1 <p < oo, then

Jim 16+ ) = 09l = 0.

Proof. Let C, denote the class of f € L? such that [|f(x +h) — f(x)|l, — 0 as
[h| — 0. We claim that (a) a finite linear combination of functions in C, is in
Cp,and (b)iffy € Cpand || fi — f Hp — 0,thenf € Cp. Both of these facts follow

easily from Minkowski’s inequality; for (b), for example, note that

Ifx+h) —fG)llp
= |foxc+ 0 =i+ W |, + [ fetx+ ) =00, + [ fi0 —f0],
= [ fex+1) —£00 ], +2 | 0 = f -

Since f; € Cp, we have lim sup ¢ I f(x +h) = [y < 2 fx(x) —f()|lp, and
(b) follows by letting k — oo.

Clearly, the characteristic function of a cube belongs to Cp. Hence, in view
of the fact that linear combinations of characteristic functions of cubes are
dense in LP (R™) (see the proof of Theorem 8.15), it follows from (a) and (b)
that LF (R") is contained in Cp, and the proof is complete.

We remark without proof that Theorem 8.19 is also true for 0 <p < 1. (Use
the same ideas for || - ||z.) It fails, however, for p=o00, as shown by the
function X =%(0,00)(x) on (—oo, +00). In fact, x €L*(—o0,+00) but [x
(x+h) —x()|leo =1forall i # 0.

8.5 The Space L2 and Orthogonality

For complex-valued measurable f, f = f; + if, with f; and f, real-valued and
measurable, we have [.f = [.fi + i [;f> (see p. 96 in Section 5.3). We will
use the fact that | [ f| < [ |f| (see Exercise 1).
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Among the L? spaces, L2 has the special property that the product of
any two of its elements is integrable (Schwarz’s inequality). This simple fact
leads to some important extra structure in L?, which we will now discuss.

Consider L2 = L%(E), where E is a fixed subset of R™ of positive measure,
and write ||fl| = || fllo,g, [of = [f, etc. For f,g € L?, define the inner product
of f and g by

(.9 =1z (8.20)

where g denotes the complex conjugate of g. Note that by Schwarz’s
inequality,

1F, 1 < IFIL I

Moreover, the inner product has the following properties:

@) &) =18,

®) (i +/2,.8) = f1.8) +{f2.8), If.g1 + &) = {f.81) + {f. 82),
(©) (of,g) = olf,8), {f, ag) =w(f,g), x € C,

@ £.HY* =11l

If (f,g)=0, then f and g are said to be orthogonal. A set {du}yea is
orthogonal if any two of its elements are orthogonal; {¢«} is orthonormal if
it is orthogonal and [|¢«|| = 1 for all «. Note that if {¢«} is orthogonal and
ld«ll # O for every o, then {¢«/ [P« ll} is orthonormal. Henceforth, we will
assume that [|¢p«|l # 0 for all « for an orthogonal system {¢«}. This implies
that no element is zero. Furthermore, since for « # f3,

[ 6o — 0617 = [ (b — dp) (Be — B5) = Ibal® + |05 #0,

it implies that no two elements are equal.
A simple example of an infinite orthogonal system in L%(E) is {XEj}

where {E;} is an infinite collection of disjoint measurable subsets of E with
0 < |Ej| < oo (cf. Exercise 33 of Chapter 3. See also Exercise 24 of this chapter).

Theorem 8.21 Any orthogonal system {{ ) in L? is countable.

Proof. We may assume that {¢ «} is orthonormal. Then for « # 3, as above,

[ba — 081" = [ (ba — dp) (Pa — Bp ) = Ibal® + |05 > =2,
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so that |« — dp|| = /2. Since L? is separable, it follows that {(«} must be
countable.

A collection P, . ..,y is said to be linearly independent if Zszl abr(x) =0
(a.e.) implies that every ay is zero. Any collection of functions is called linearly

independent if each finite subcollection is linearly independent. No function
in a linearly independent set can be zero a.e.

Theorem 8.22 If {\x} is orthogonal, it is linearly independent.

Proof. Suppose that a1\g1 + - - - + ank, = 0. Multiplying both sides by Vi
and integrating, we obtain by orthogonality that a; = 0. Similarly,ap = --- =
aN = 0.

The converse of Theorem 8.22 is not true. However, the next result shows

that if {\x} is linearly independent, then the system formed from suitable
linear combinations of its elements is orthogonal.

Theorem 8.23 (Gram-Schmidt Process) If (\x} is linearly independent, then
the system {{py} defined by

b1 =11
G2 = a1 +U2

bk = a1 + - - + A1 Wr—1 + Px

is orthogonal for proper selection of the a;;.

Proof. Having ¢1 =11, we proceed by induction, assuming that ¢4, ..., dg_1
have been chosen as required. We will determine constants by, ..., bxx_1 so
that the function ¢ defined by

Gr = brad1 + -+ + b p—1Pr—1 + i

is orthogonal to ¢1, ..., dr_1. Ifj <k,

bk, bj) = bij (7, Pj) + {Wr, Py)
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by orthogonality. Since (¢;, ¢;) # 0, byj can be chosen so that (dx, ¢;) = 0, j < k.
Since each ¢; with j < k is a linear combination of ¥y, ..., 1, the theorem
follows.

When the ¢ are selected by the Gram-Schmidt process, we shall say
that they are generated from the ;. Note that the triangular character of the
matrix in Theorem 8.23 means that each 1\, can also be written as a linear
combination of the b, j<k

We call an orthogonal system {¢y} complete if the only function that is
orthogonal to every ¢y is zero; that is, {{x} is complete if (f, ¢x) = 0 for all k
implies that f = 0 a.e. Thus, a complete orthogonal system is one that is max-
imal in the sense that it is not properly contained in any larger orthogonal
system.

The span of a set of functions {1} is the collection of all finite linear com-
binations of the . In speaking of the span of {1x}, we may always assume
that {1} is orthogonal by discarding any dependent functions and applying
the Gram-Schmidt process to the resulting linearly independent set.

A set {{y} is called a basis for L? if its span is dense in L2; that is,
{Ux} is a basis if given f € 12 and ¢ > 0, there exist N and {ak}szl such that

H f- Z,Ijzl lell)kH < ¢. The ar can always be chosen with rational real and

imaginary parts. Any countable dense set in L? is of course a basis. It follows
that L? has an infinite orthogonal basis.

Theorem 8.24 Any orthogonal basis in L? is complete. In particular, there exists
a complete orthonormal basis for 2.

Proof. Let {1{p¢} be an orthogonal basis for L2. We may assume that {1x} is
orthonormal. To show that it is complete, let ( 1, lj)k) =0forallk. Then (f,f) =

< f.f- Zszl aklbk> for any finite sum Zszl aPg. By Schwarz’s inequality,
O < IS Hf — Z,il aktl)kH, and so, since the term on the right can be

chosen arbitrarily small, {f,f) = 0. Therefore, f = 0 a.e., which completes the
proof.

Let us show that every complete orthogonal system in L?(E) is infinite if
(as always) |E| > 0. If not, there is a set E with |E| > 0 and a complete orthog-
onal system {cl)k}kl\]:1 in L2 with N finite. Assuming as we may that the system
is orthonormal, its completeness implies that for every f € L?(E), we have

f =M1 {f, &) bk ae. in E, and consequently,

N
(f,8) = (f, &) (& bx) iff,g € LX(E).
k=1
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(In the next section, similar facts are derived in the limit case N = oco.) There-
fore, if f and g are any two orthogonal functions in L?(E), then the sequences
{{f, d)k)}kN=1 and {(g, ¢k>}kN=1/ considered as vectors, are orthogonal in the vec-
tor space CN of N-tuples of complex numbers. We observed on p. 198 in
Section 8.5 that there is an infinite orthogonal system {1])j} in L%(E). Hence,

there is an infinite collection [ {(w), cl)k)}kl\i1 } _of orthogonal vectors in the finite
-]
dimensional space CN, which is impossible.

From now on, we will consider only orthogonal systems in L? that are
(countably) infinite.

8.6 Fourier Series and Parseval’s Formula

Let {¢x} be any (infinite) orthonormal system in L. If f e L%, the numbers
defined by

e =c(f) =(f, i) = ffa

E

are called the Fourier coefficients of f with respect to {¢py}. The series ) ", cxdy is
called the Fourier series of f with respect to {¢x}, and denoted S[f] = D ckdr.
We also write

f~) b
k

The first question we ask is how well S[f], or more precisely, the sequence

of its partial sums, approximates f. Fix N and let L = ZkN:1 YkPk be a linear
combination of ¢+, . .., dn. We wish to know what choice of y1, . . ., Yy makes
|f — Ll a minimum. Note that since {¢} is orthonormal, ILI%2 = (L L) =

N
Y ket I'vk|?. Hence,

If-Li?= | (f— iYk‘bk) (f— ké%&)

k=1

N N
=117 =Y _Free +veao + Y vl

k=1 k=1

where the ci are the Fourier coefficients of f. Since

ek — Vil* = (ck — Vi) @ — ¥k) = lel* — ek + Yo + hvel?,
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we obtain
N N
IfF = LI = 1FIP+ ) lex —val? = D lekl.
k=1 k=1
Therefore,
N
i —LIP =117 = al?; 8.25
Jmin f = LI® = Il E Kl (8.25)

thatis, the minimum is achieved whenyy =c, fork=1,...,N, or equivalently,
when L is the Nth partial sum of S[f]. Writing sy = sn(f) = Zszl ckdr, we
have from (8.25) that

N

1 =sn[? =112 =D lexl?. (8.26)

k=1

Theorem 8.27 Let {{y} be an orthonormal system in L2 and let fe 12.

(i) Of all linear combinations le\] Ykbx with N fixed, the one that best approx-
imates f in L2 is given by the partial sum sy = le\’ ckbr of the Fourier
series of f.

(ii) (Bessel’s inequality) The sequence {cx} of Fourier coefficients of f belongs to I>
and

00 1/2
(Z |ck|2> < If1.
k=1

Proof. Part (i) has been proved. Note that since |f — SN”2 >0, Bessel’s
inequality follows from (8.26) by letting N — oo, which completes the proof.

If f is a function for which equality holds in Bessel’s inequality, that is, if

00 1/2
(Z |ck|2> = IIfll, (8.28)
k=1

then f is said to satisfy Parseval’s formula. From (8.26), we immediately obtain
the next result.
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Theorem 8.29  Parseval’s formula holds for f if and only if |sn — f|| — O, that is,
if and only if S[f] converges to f in L2 norm.

The following theorem is of great importance.

Theorem 8.30 (Riesz-Fischer Theorem) Let {{py} be any orthonormal system
and let {cx} be any sequence in 12. Then there is anf € L? such that SIf1 =D ckdx,
that is, such that {cy} is the sequence of Fourier coefficients of f with respect to {$x}.
Moreover, f can be chosen to satisfy Parseval’s formula.

Proof. Letty =Y N, ckdr. Thenif M < N,

N 2 N

2 2

ltn —tmll® = E ckdrl| = E [
M+1 M+1

The fact that {¢;} € I implies that {7} is a Cauchy sequence in 12.Since L2 is
complete, there is an f € L2 such that | f — ty| — 0. If N > k,

ffﬁZf(f—fN)ﬁ+ftNa=f(f—tN)ﬁ+Ck.

Since the integral on the right is bounded in absolute value by | f — ty|
Idxll = Hf— N |, we obtain by letting N — oo that ffﬁ = ¢¢. Thus,
S[f1 = > rckdr, so that ty = sn(f), and it follows from Theorem 8.29 that
Parseval’s formula holds for f. This completes the proof.

There is no guarantee that the Fourier coefficients of a function uniquely
determine the function. However, if {¢p} is complete, we can show that the
correspondence between a function and its Fourier coefficients is unique; that
is, if f and g have the same Fourier coefficients with respect to a complete
system, then f = g a.e. This is simple, since the vanishing of all the Fourier
coefficients of f — g implies that f — g = 0 a.e. An important related fact is the
following.

Theorem 8.31 Let {dg} be an orthonormal system. Then {$y} is complete if and
only if Parseval’s formula holds for every f € L2.

Proof. Suppose that {¢y} is complete. If f € L2, Bessel’s inequality implies that
its Fourier coefficients {cx} belong to I2. Hence, by the Riesz-Fischer theorem,
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1/2
there exists a gin L2 with S[gl = ckdrand |Igl = (Z |ck|2> .Sincef and g
have the same Fourier coefficients and {¢y} is complete, we see that f = g a.e.
1/2
Hence, || f] = lIgll = (Z |ck|2) , which is Parseval’s formula.

Conversely, suppose that Parseval’s formula holds with respect to {¢y} for

1/2
every f € L2 If (f, i) = O for all k, then || f|| = (Z (f, d)k)|2) = 0. Therefore,
f =0a.e, so that {¢y} is complete, which proves the result.

Suppose that {{} is orthonormal and complete and thatf, g € L2 Letc, =
(f, d)k), dy = (g, d)k>, ¢ ={cx}, d ={dy}, and (c,d) = >_ cx dx. We claim that

{f,8) = (c,d). (8.32)

To prove this, observe that by Parseval’s formula, (f + g,f +g) = (c + 4,
c+d), or

f./)+ (g8 +2Re(f,g) = (c,c) + (d,d) + 2Re (¢, d),

where Re z denotes the real part of z. Cancelling equal terms gives Re (f,g) =
Re (c,d). Applying this to the function if (x), we obtain Re (if, g) = Re (ic, d).
But Re (if, g) =Re[i{f, §)1= —Im {f, g). Similarly, Re (ic,d) = —Im (c, d). There-
fore, Im (f, g) = Im (¢, d), and (8.32) is proved.

Another corollary of Theorem 8.31 is given in the next result. First, we
make several definitions. Let X; and X, be metric spaces with metrics d; and
dy, respectively. Then X7 and X» are said to be isometric if there is a mapping
T of X7 onto X5 such that

di(f,8) = do(Tf, Tg)

forallf,g € X;.Such a T is called an isometry. Thus, an isometry is a mapping
that preserves distances. An isometry is automatically one-to-one, and two
isometric metric spaces may be regarded as the same space with a relabeling
of the points. For example, two 12 spaces, L2(E) and L%(E’), are isometric if
there is a mapping T of L?(E) onto L*(E’) such that || f — glor = IITf — Tgll2.&
forallf,g e L2(E). The isometries we shall encounter will be linear, that is,
will satisfy

T(f + Bg) = «If + BTg for all scalars «, 3.

If T is a linear map of L?(E) onto L?(E’), then since Tf — Tg = T(f — g), it
follows that T is an isometry if and only if

I flloe = ITfll2,E
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forallf € L2(E). Similarly, a linear map T of L2(E) onto 2 is an isometry if
and only if || fllo,r = || Tf 2 for all f € L?(E).

Theorem 8.33 All spaces L?(E) are linearly isometric with I?, and so with one
another.

Proof. For a given E, define a linear correspondence between L?(E) and />
by choosing a complete orthonormal system {¢y} in L?>(E) and mapping an
f € L2(E) onto the sequence {(f, ¢x)} of its Fourier coefficients. This map-
ping is onto all of /> by the Riesz-Fischer theorem and is an isometry by
Theorem 8.31.

8.7 Hilbert Spaces

A set H is called a Hilbert space over the complex numbers C if it satisfies the
following three conditions:

(H1) H is a vector space over C; thatis,iff,g € Hand x € C, thenf +ge H
and of € H. The zero element of H will be denoted by 0.

(Hp) Forevery pairf,g € H, there is a complex number (f, g), called the inner
product of f and g, which satisfies

@ N =(F9,

®) (A +f2.8) = (f.8) + (f.8),

(©) (af,g) = a(f,g) for e € C,

(d) (f,f) = 0,and (f,f) = 0if and only if f = 0.

Notice that (a), (b), and (c) imply that (f,g1 + g2) = (fig1) + (f,82), (f, «g) =
o (f,g),and (0,f) = 0. Define

Ifll = (N2
Before stating the third condition, we claim that
IE, O < IfIlIgll (SchwarzZ's inequality). (8.34)

If lgll = 0, this is obvious. Otherwise, letting A = —(f, g)/l g||2, we obtain

I(f, Q)17
Ign?

I(f, &)1 N I(f, 9)I?

= |IfI* -
gl g% f

0<(f+Agf+A)=IfII>—2
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and Schwarz’s inequality follows at once. This simple proof also shows that if
equality holdsin (8.34) and ||g]| # 0, then f is a constant multiple of g, namely,

.8
f = —)\g = g.
&8
We will show that || - || is a norm on H by proving the triangle inequality.

In fact,

If+81>= (¢ +8f+9 = IfI*>+2Re(f, 9 + lgl>

Since [Re (f,9)| < I(f,9! < lIfll ligll, it follows that the right side is at most
£+ ||g||)2. Taking square roots, we obtain | f + gl < |If]l + lIgll, as desired.
Hence, H is a normed linear space.

We also require

(H3) H is complete with respect to || - ||.

In particular, a Hilbert space is a Banach space.

As for L? spaces, a linear map T of a Hilbert space H onto a Hilbert space
H'is an isometry if and only if || f||g = || Tf|lg for all f € H.

A Hilbert space is called infinite dimensional if it cannot be spanned by a
finite number of elements; hence, an infinite dimensional Hilbert space has an
infinite linearly independent subset. The space L? with inner product (f,g) =
[ £ and the space > with (c,d) = Y cx di are examples of separable infinite
dimensional Hilbert spaces. In fact, there are essentially no other examples,
as the following theorem shows.

Theorem 8.35 All separable infinite dimensional Hilbert spaces are linearly iso-
metric with 1> and so with one another.

Proof. The proof is a repetition of the ideas leading to Theorem 8.33, so we
shall be brief. Let H be a separable infinite dimensional Hilbert space, and
let {e} be a countable dense subset. Discarding those ¢] that are spanned by
other eg, we obtain a linearly independent set {e;} with the same dense span as
{e,’(}. Since H is infinite dimensional, {¢} is infinite. Using the Gram-Schmidt
process, we may assume that {ex} is orthonormal: (e; ex) = 0 for i # k and
llexll = 1 for all k. It follows that {e} is complete; in fact, if (f, e) = O for all k,
then

2 N
=117+ lal® = 1 £11?

k=1

N
”f — > ae
k:1
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for N = 1,2,.... If f were not zero, the span of the e; could not be dense.

Hence, f = 0, which shows that H has a complete orthonormal system {e}.
Next, we will show that Bessel’s inequality and an analogue of the

Riesz—Fischer theorem hold for {e;}. Let f € H and ¢ = (f, ek). Then

N
0<|f=) crex

k=1

2 N
=17 =) lexl®.
k=1

1/2
Letting N — oo, we obtain Bessel’s inequality (Z |Ck|2) < | fll. In particu-

lar, {c} belongs to 2.
To derive the Riesz-Fischer theorem, let {yx} be a sequence in 12 and set

N = ZkN:1 Ykex. Then

N
ltn — tNN12 = Z il?— 0 asM,N — oo, M < N.
k=M+1

Since H is complete, there is a ¢ € H such that |g — ty| — 0. We have
(gex) = (g —tnex) + (tve) = (§— tnvex) + v (k < N).

Letting N — oo, it follows from Schwarz’s inequality that (g, ex) = vi. Hence,
2 . .

tv =321 (g ex)exand g — tn|” = Igl> — by [vkl?. Letting N — oo in the

1/2

last equation, we see that g satisfies Parseval’s formula ||g]| = (Z h/klz) .

This gives the analogue of the Riesz—Fischer theorem.
Now, let f € H and set ¢y = (f,e). Choose {yx} = {c} in the version
of the Riesz-Fischer theorem just derived, and let ¢ € H satisfy (g,ex) = ck

1/2
and ||g]] = (Z Ick|2> . We see by the completeness of {ex} that g = f, so
1/2
that Parseval’s formula holds: || f|| = (Z Icklz) . The fact that H is linearly

isometric with /2 now follows as in the proof of Theorem 8.33.

Exercises

1. For complex-valued measurable f,f = f1 + if, with f; and f, real-valued
and measurable, we have [.f = [.fi + i . f> by definition. Prove that
Jef is finite if and only if [;|f] is finite, and |[f| < [z |f]. (Note that
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|Jefl = [(fgfl)z + (fEfz)Z]l/z, and use the fact that (a2 +b2)1/2

)1/2

a cos a+bsin « for an appropriate o, while (a% + b?)"' > |a cos a+bsin «f

for all «.)

2. Prove the converse of Holder’s inequality for p = 1 and co. Show also that
for 1 < p < 00, a real-valued measurable f belongs to L*(E) if fg € L'(E)
for every g € LV (E), 1/p +1/p' = 1. The negation is also of interest: if
f ¢ LP(E), then there exists g € L7 (E) such that 13 ¢ LY(E). (To verify the
negation, construct g of the form ) axgy for appropriate a; and g, with
gk satisfying [; fer — +00.)

3. Prove Theorems 8.12 and 8.13. Show that Minkowski’s inequality for
series fails when p < 1.

4. Let f and g be real-valued and not identically 0 (i.e., neither function
equalsO a.e.),and let1 < p < oo. Prove that equality holds in the inequal-
ity | fg| < Ilfllpliglly if and only if fg has constant sign a.e. and |f| is a
multiple of |g|P, a.e.

IfIf+glp = IlIflly +lIglly and g # 0 in Minkowski’s inequality, show that
f is a multiple of g.
Find analogues of these results for the spaces I”.

5. For0 <p <ooand 0 < |E| < 400, define

1 1/p
NyIf] = (Ejm") :
E

where N[f] means |[f||«. Prove that if py < pa, then Ny, [f] < Np,|f].
Prove also that if 1 < p < oo, then Ny[f + gl < Nplf] + Nplgl, (1/|E|)

IE Ifgl < Nplf]Np/[g],l/p +1/p) = 1, and that limp%OONp[f] = | flloo-
Thus, Nj, behaves like || - ||, but has the advantage of being monotone in
p. Recall Exercise 28 of Chapter 5.

6. (a) Letl < p;,r < oo and Zi-;l ’}I_ = % Prove the following generaliza-
tion of Holder’s inequality:

I fell, = WAL, - 1A,

(See also Exercise 12 of Chapter 7.)
(b) Letl <p <r < g < ooand define 0 (0,1)by% = % +%.Prove
the interpolation estimate

IF1l < P g

In particular, if A = max{||f ||, [ ll4}, then |[f||, < A.
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7.

10.

11.

12.

13.

14.

Show that when 0 <p <1, the neighborhoods {f : | f|l, <&} of zero in
LP(0,1) are not convex. (Let f = X(,er), and § = X(er2¢7). Show that
Ifllp = Igllp = &, but that |3 + 38, > €.)

Prove the following integral version of Minkowski’s inequality for 1 < p < oo
and a measurable function f(x, y):

[[[[rosyia] ay]” = [ [[ 170 yray]” ax.

(For 1 <p <o0, note that the pth power of the left-hand side equals
1S |fzy)]| dz] -1 f(x,y)|dxdy. Integrate first with respect to y and
apply Holder’s inequality.)

If f is real-valued and measurable on E, |E| > 0, define its essential infimum
on E by

essEinff =sup{a:|{x € E: f(x) < «}| = 0}.

If f > 0, show that essg inf f = (essg sup 1/f)_1.

Prove that L*°(E) is not separable for any E with |E| > 0. (Construct a
sequence of decreasing subsets of E whose measures strictly decrease.
Consider the characteristic functions of the class of sets obtained by
taking all possible unions of the differences of these subsets.)

Iffy > fin P, 1 < p < oo, gk — g pointwise, and | gx| < M for all k,
prove that fygx — fgin LP.

Let f,{fc} € 17,0 < p < oo. Show that if |f _fk”p — 0, then
||fk Hp — || fllp- Conversely, if fy — f a.e. and ||kap = Ifllp, 0<p<oo,
show that | f — fk”p — 0. Show that the converse may fail for p = oc.
(For the converse when 0 <p < oo, note that |[f — |’ < c(fI" + |fi|]")

with ¢ = max {271, 1}; then apply, for example, the sequential version
of Lebesgue’s dominated convergence theorem given in Exercise 23 of
Chapter 5.)

Suppose that fi — f a.e. and that fi,f € P, 1<p=<oo. If | f Hp <M <

+00, show that [ fyg — [fg forallg € L¥',1/p + 1/p' = 1. Show that the
result is false if p = 1. (When p > 1, use Egorov’s theorem in case the
domain of integration has finite measure.)

Verify that the following systems are orthogonal:

(a) {%, cosXx,sinx,...,coskx,sinkx, .. } on any interval of length 2.

(b) {e2kx/C=m); k= 0,41,£2,...} on (a,b).
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15.

16.

17.

18.

19.

20.

21.

22,
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Iff € L2(0,27), show that
27 27t
klirgo 0ff(x) coskxdx = klglgo Ojf(x) sinkxdx = 0.

Prove that the same is true if f € L'(0,27). (This last statement is the
Riemann—Lebesgue lemma. To prove it, approximate f in L! norm by L?
functions. See Theorem 12.21.)

A sequence {f¢} in L7 is said to converge weakly in L¥ to a function f
(belonging to L?) if [fyg — [fg for all g € LF". Prove that if fy — f in
[F norm, 1 < p < oo, then {f;} converges weakly in L to f. Note by
Exercise 15 that the converse is not true. See Exercise 28 of Chapter 10.
Suppose that fi,f € L? and that [f,g — [fgforall g € L2 (ie., {fi}
converges weakly in L2 to f). If | fi||, — IIfll, show that fi — f in L?
norm. The same is true for L¥, 1 < p < 0o, by a 1913 result of Radon.

Prove the parallelogram law for L2:

ILf + 1>+ 1Lf — gl* = 21 FI* + 21gI1%

Is this true for L¥ when p # 2? The geometric interpretation is that the
sum of the squares of the lengths of the diagonals of a parallelogram
equals the sum of the squares of the edge lengths.

Prove that a finite dimensional Hilbert space is isometric with R for
some 1.

Construct a function in L} (—o0, 400) that is not in L?(a, b) for any a <b.
(Let g(x) = x~/2 on (0,1) and g(x) = 0 elsewhere, so that fj;o g =2
Consider the function f(x) = > axg (x — rx), where {ry} is the rational
numbers and {ax} satisfies ax > 0, >_ax < 400.)

Iff e P R™), 0 < p < oo, show that

. 1
lim o g fy) —feolPdy =0 ae.

Note by Exercise 5 that if this condition holds for a given p, then it also
holds for all smaller p.

Let {¢x} be a complete orthonormal system in L? and let m = {my} be
a fixed bounded sequence of numbers. If f € L2, f ~ 3" ccdy, define Tf
by Tf ~ Y myckdy. Such an operator is called a Fourier multiplier oper-
ator. Show that T is bounded on L?, that is, that there is a constant ¢
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23.

24.

25.

26.
27.

28.

independent of f such that ||Tf||> < c||f||2 forall f € L2. Show also that
the smallest possible choice for c is ||m]|.

Show that every subset A of a separable metric space (M, d) is separa-
ble. (Let D = {fi} be a countable dense set in M, and forj = 1,2,...,
define D; = {f € D :infaea dA,f) < 1/j}. If fy € Dj, pick Aj € A with
d (Aj fi) < 1/j and show that {Ay;} is dense in A.)

Let E be a measurable set in R with 0 < |E| < oo. Construct an orthog-
onal system {d)j}zo in L2(E) with ¢g = 1 everywhere in E. (Use Exercise
32 of Chapter 3 with 6 = 1/2, and choose ¢; for j > 1 to be appropriate
simple functions with values +1.)

If f is a measurable function on R", define (f) = supy.g&l{|f| > «},
and recall that f belongs to weak L!(RM) if and only if (f) < oo. Show
that weak L! (R™) has all the properties of a Banach space with respect to
(-) except the triangle inequality. Show however that there is a constant
k > 1such that the quasi-triangle inequality (f+g) < k({f)+(g)) holds for
all measurable f, g. (To show that k cannot be 1, consider the case of one
dimension and the functions f = X[0,1/21 +2X(1/2,11,§ = 2X[0,1/21 +X(1/2,1]-)
Show that liminf, . o [|fl|r £y = I|fllLe(E) even if |E| = oo

(a) Prove Minkowski’s inequality for infinite series:

(&),

(b) Show that in part (a), the opposite inequality holds if 0 < p < 1:

(&%)

(For (b), assuming that [fk| is positive and finite a.e., multiply and
divide each Vk|p in the summation on the left side of the inequality by

o0
<Y Ul 1<p <o
k=1

, O0<p<l

o
> Ifllp <
k=1

p

> Vk|)p P and apply Holder’s inequality with exponents g = 1/p and
q=1/1-p).)

Let ¢ (#) be a continuous function on [0, co0) that is positive, increasing,
and convex on (0,00) and that satisfies $(0) = 0,lim;_. o $(H) = o0,
and [p(2t)| < c|d(t)| for some constant ¢ independent of t. For exam-
ple, the function ¢(t) = (1 + log™ t) has these properties (see Exercise
25 of Chapter 7). If E is a measurable set in R", define the Orlicz space
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L¢ (E) to be the collection of all measurable f on E that are finite a.e. in E
and satisfy ¢(|f]) € L(E). Show that Lg (E) is a Banach space with norm

fllLy &) =inf{7\ >0: [ ¢ (Q) dx < 1}.
E

In case ¢p(t) = t(1+1log™t), the class is often denoted LlogL(E) (see
Exercise 22 of Chapter 9 for a result about functions in Llog L (R™)).

29. Let1 <p < ocoandf € LF (R"). Show that ||f(x +h) — f(x)||, (Where the
norm is taken with respect to x) is a uniformly continuous function of h.
Is the same true when 0 < p < 1?

30. Let1 < p < oo and E be a measurable set in R™.
(a) Prove thatif f1,f>, 81,42 are nonnegative and measurable on E, then

( J [ +£) + (51 +22)] dX) "

; U(ffwf;)dxr’ﬁU(fm};)dx}

(b) If the right side in part (a) is replaced by

1/p

1/p

Lf (ff +f§’) dx]l/p + [J (g’i +g§’) dx:| ,

is the resulting inequality true?
(c) If { f,-,j}?;:l are measurable functions on E, show that

1/p

Lf ; (Z lﬁf(x)l)p dx} ’ = Z Lf (; lfi,j(x)|p) dxi|

(For i=1,...,N (N finite), consider the sequences F; = {[ﬁ]}}] and

p\1/p
note that || SN, Fil|;p = (Zj (Zﬁil [fl-,]-|> ) )
31. Leta = {at} be a sequence of real or complex numbers. Show that [|a||, <
[lall1 if 1 < p < oo and more generally that ||a||, < [lal|;if0 < g <p < co.
(If 1 < p < oo, the inequality |a1]P + |a2/P < (lai| + laz|)P may be used
together with an induction argument.)
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32. For nonnegative measurable functions f and g on (0, 00), let
T (x dy
Fo = [f (—) gy, xe(0,0).
0 y Y
Also,if 1 <p < oo, set

AN
X
[fl, = (Ojﬂx)”;) ,

and if p = oo, define [f]oo = esssupf. Prove that for 1 < p < oo, [F]y <

(0,00)
1 8]y






9

Approximations of the Identity and
Maximal Functions

9.1 Convolutions

The convolution of two functions f and g that are measurable in R" is
defined by

(f % 9)(x) = f fHg(x—t)dt, x e RY,
R]’l

provided the integral exists.

In Theorem 6.14, we saw that if f,g € L1(R™), then f * g exists a.e. and is
measurable in R", and ||f * gll; < |Ifll;lIgll;. Moreover, according to Corollary
6.16, || f = gll; =1 fll1ligll; if f and g are nonnegative and measurable. In this
section, we will study some additional properties of convolutions, beginning
with the following theorem.

Theorem 9.1 Let1 < p < oo, f € LF(R®) and g € L'(R™). Then f x g €
LP(R™) and

1F *gll, < 11, gl
Proof. We may suppose that 1 <p < oo, since when p=1, the result is just

Theorem 6.14. Let us first prove the result in case f and g are nonnegative.
Then f * g is nonnegative and measurable on R™ by Corollary 6.16. If p = oo,

(200 = [ 1flgx—Hdt=Ifll [ gx—bdt=Ifllgl;.
Rn Rn

Therefore, || f % gl < IlflllIgll;, as claimed. If 1 < p < oo, we write
/ 1 1
(fx900 = [ [f(t)g(x - t)l/’”] gx—pWa, -—+==1.
n PP

213
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By Holder’s inequality with exponents p and p/,

1/p 1/p
(f *9x) < ( f fOFg(x—1) dt) ( f gx—1) dt)
Rn Rn

= (7 + 9P IgIn "V .

/

Now raise the first and last terms in this inequality to the pth power and

integrate the result. Since [pa(f¥ * ) dx=|f ||§||g||1 by Corollary 6.16, we
obtain

1+ @/p)
ILf = gllh < IFIbNgty =P = 1 fibigl?.

The theorem follows for f, g > 0 by taking pth roots.

For general f € LP(R™) and g € L}(R™), let us first show that f * g exists a.e.
and is measurable. By the case already considered, we have |f|x|g| € LP(R™).
Hence, |f] * |g] < oo a.e., so that f(x — t)g(t) € L1(dt) for a.e. x. Consequently,
f * g exists and is finite a.e. To show it is measurable, define

N =fxyx<ny, N=12,...,

and note that fy € L1(R™) for each N since f € LP(R™). By Theorem 6.14, each
fn * g is measurable since it is the convolution of functions in L' (R™). Also,

Jim fu(x = Hg(®) =f(x - g(t) and |finx—bg®| < |f(x—tgd)|.

Therefore, limy_, o (fn*g) =f *g a.e. by the Lebesgue dominated convergence
theorem. It follows that f * g is measurable. The rest of the proof is now an
immediate corollary of the inequality |f * g| < |f| * |g| and the result for
nonnegative functions.

See Exercise 21 for a useful sufficient condition that a convolution f * g be
measurable on R™, namely, that f, g are locally integrable on R™ and |f] * |g]
is finite a.e. in R™

Theorem 9.1 is an important special case of the next result, whose proof is
left to the reader. (See Exercise 2.)

Theorem 9.2 (Young’s Convolution Theorem) Let p and q satisfy 1 < p,q <
ocoand 1/p+1/q = 1, and let v be defined by 1/r =1/p +1/9 — 1. If f € LP(R™)
and g € L1(R"), then f x g € L"(R™) and

1F *gll, < 1£1, 18,
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Note that when g=1, Young’s theorem reduces to Theorem 9.1. See also
Exercise 3.

A convolution f * K with K fixed defines a transformation T : f — f % K,
which is called the convolution operator with kernel K. Theorem 9.1 states that
a convolution operator with an integrable kernel maps functions in L” into
the same L”. The next result shows an effect that convolution operators with
smooth kernels have on L7.

For a positive integer m, we denote by C™ the class of functions f(x), x €
R", whose partial derivatives up to and including those of order m exist
and are continuous. The subset of C" of functions with compact support is
denoted ng. Similarly, C* is the class of infinitely differentiable functions,
and C{° is the corresponding subset of functions with compact support. (For
the existence of such functions, see Exercise 4.) Finally, if a=(«y,..., &),
where the o are nonnegative integers, then the «th partial derivative of f is
denoted by

TR (v W (A
0100 = (54 ) 00 = (axm xanf) (0.

1 dxn

Theorem 9.3 If1 <p < oo, f € IF(R"Y), and K € Cff, then f x K € C" with
bounded partial derivatives of all orders at most m, and

D*(f « K)(x) = (f * D*K)(x)

fa=(x,...,0n)and &g + -+ + &y < m.

Proof. We first claim that if K is any continuous kernel with compact sup-
port, then f * K is bounded and continuous. In fact, if S denotes the support
of K, then

A

f f(x— HK(t)dt
Rll

< (flf(x—t)ldt) (max [K])
S

1/p
[1foc—prde] IS/ max|K)
S

IA

IA

I1f1lp ISIYP (max [K]) < oo,
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1/p+1/p’" = 1, which shows that f * K is bounded. Also,

[(f x K)(x +h) — (f * K)(x)|

jf(t)K(x +h-tdt— ff(t)K(x —bdt
Rn Rn

[ fox— DIKE+h) - K] dt
Rll

1/p
< ( [ 1fe—vr dt) < [ IK+n) - K(t)W’dt)
Rn Rn

= | fllpIK(t4+h) — K@)l

vy

The last expression tends to zero as |h| — 0 since K is uniformly continuous
and has compact support. (Note that in case p’ < oo, this also follows from
Theorem 8.19 since K € L7 . See also Exercise 3.)

Next, let K € Cif,m > 1. Fixi = 1,...,nand leth = (0,...,0,1,0,...,0),
where /1 is in the ith coordinate position. Note that

f*K(x+h) - (fxK)(x) K(x—t+h) — K(x—t)

9K )
:anf(t)a—xj(x —t+h)dt,

by the mean-value theorem, where h'=(0,...,0,/,0,...,0) for some I
depending on x and t which is between 0 and h. Hence, as h — 0, (0K/dx;)
(x —t+h') converges to (0K/dx;)(x — t) uniformly in t. Since K/dx; has com-
pact support, it follows that the last integral converges to [f * (3K/dx;)](x).
Therefore, [d(f * K)/3x;]1(x) exists and equals [f * (3K/dx;)](x), which is
bounded and continuous by our earlier remarks. The proof of the theorem
for m = 1 is now complete. The proof for m = 2,3, ... follows by repeated
application of the case m = 1.

It follows from Theorem 9.3 that f «x K € C*if f € LV, 1 < p < o0, and
K € C3°. If, in addition, f has compact support, then so has f x K. In fact, if S
is the support of K and S, is the support of f, then the formula (f * K)(x) =
fsz fK(x — t)dt implies that (f « K)(x) = 0 unless there are points t € S,
for which x — t € S1. Hence, the support of f * K is contained in {x : x =
s1+s2,81 € 51,82 € Sz} and so is bounded. An application of this fact is given
in Exercise 5.
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Theorem 9.4 If f € L(R™) and K is bounded and uniformly continuous on R",
then f * K is bounded and uniformly continuous on R™.

The proof is similar to the first part of the proof of Theorem 9.3 and is left
as an exercise. See also Exercise 3.

9.2 Approximations of the Identity
Given K(x) and ¢ > 0, let

Ke(x) ="K ()—:) =¢ "K (x—:, ., xf) .

For example, if K(x) =x{x/<13(X), then K¢ (x) =& "X{x<e}(X). In this case,
taking successively smaller values of ¢ produces kernels with successively
higher peaks and smaller supports. The effect on any positive K with compact
support is roughly the same.

In general, K has the following basic properties.

Lemma9.5 IfK e L'(R™) and e > 0, then

@) JgoKe = Jra K
(ii) I\X\>5 |Ke| — 0as ¢ — 0, for any fixed 5 > 0.

Proof. Part (i) follows immediately from the change of variables y = x/¢ (see
Exercise 20 of Chapter 5). For part (ii), fix 6 > 0, and let y = x/¢. Then

| Keoorax=e [ K (Z)|dx= [ iKkmldy.

|x|>& |x|>& lyl>0/¢

Since K € L and /¢ — +o00 as ¢ — 0, it follows that the last integral tends to
zero as ¢ — 0. This completes the proof.

Note that for K> 0, property (i) means that the areas under the graphs
of K and K. are the same, while (ii) means that for small ¢, the bulk of
the area under the graph of K, is concentrated in the region above a small
neighborhood of the origin.

For any K € L, we can expect from (ii) that the effect of letting ¢ — 0in the
formula (f * K¢)(x) = [ f(£)Ke (x — t)dt will be to emphasize the values of f(t)
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when t is near x. As a simple illustration, let Q. (x) denote the cube in R™ of
edge length ¢ centered at x and consider the kernel k(t) = xg, (o) (t). Then

ke(x— 1) = e "k((x — 1) /¢) = ¢ "X0. 0 (D),
and

1 1
(F # ke) () = S—HQ!(X) F(t)ydt = MQ!(X) F()dt.

In this case, the Lebesgue Differentiation Theorem 7.2 implies that (f k)
(x) = f(x) a.e as ¢ — 01if f is locally integrable.

The next four theorems show that (f « K¢ )(x) — f(x) in various senses (e.g.,
in norm or pointwise) as ¢ — 0if Kis suitably restricted. A family {K¢ : ¢ > 0}
of kernels for which f % K¢ — f in some sense is called an approximation of the
identity. See also Exercise 23(a).

In what follows, we shall use the notation f¢(x) for the convolution

(f * Ke)(x).

Theorem 9.6 Let fe = f * K¢, where K € L'(R™) and Jgn K=1.Iff € LP(R"),
1 <p < oo, then

Ife —fllp > 0ase — 0.

Proof. By Lemma 9.5(i),

f00 =f00 [ Ke®dt= [ foOKc Mt
Rn

RII

Therefore,

fe0) = fo0l = | [ [fx—b = fO0] Ke Bt
Rn

= [ 1fx=0 = FIK: 7 IK O]V dt,
Rn



Approximations of the Identity and Maximal Functions 219

where 1/p + 1/p'=1 (1/p’' =0 if p=1). Applying Holder’s inequality with
exponents p and p’ and then raising both sides to the pth power and integrat-
ing with respect to x, we obtain

[ 1fe 00 = fo0P dx
Rl‘l

p/y’
= f [I If (x —t) —f(x)lles(t)ldt} [f |K£(t)|dt] dx
R LRnN Rn

= IKI;" | [ [ 1fx=0 —foorIKe v dt} dx.

R LR"

Changing the order of integration in the last expression (which is justified
since the integrand is nonnegative), we obtain

1fe £ < IKIEY [ IKe®Id®at,
Rn

where ¢p(t) = IR“ [fx—t) —fOIPdx=|f(x—t) —f(x)||§. For 6 > 0, write

I = [ IKe®lo®dt= [ + [ =Acs+Begs.
Rn <5 [t=5

Givenn > 0, we can choose 6 so small that d(t) <nif |t| < d (note that p(t) — 0
as |t| — 0 by Theorem 8.19). Then

Aes = [ IKe®ldt <nlKil
|t|<d

for all . Moreover, ¢ is a bounded function by Minkowski’s inequality (note
that [[pllec < 2l fllp)P), and therefore B 5 is less than a constant multiple of
flt\z s IKe ()] dt, which tends to zero with e. This proves that [ — 0as ¢ — 0,
and the theorem follows.

We leave it as an exercise to show that Theorem 9.6 and the next corollary
are false when p = co.

Corollary 9.7 For1 <p < oo, Ci° is dense in LF (R™).

Proof. Letf € L, 1 < p < oo. Givenn > 0, write f = g + h where g has
compact support and ||1||, <n. Choose a kernel K € C° with [z K =1, and



220 Measure and Integral: An Introduction to Real Analysis

let g¢ = g * Ke. Then g € C3° and, by Theorem 9.6, ||g — gell, — 0. By
Minkowski’s inequality, [|f — gclly < lI§ — gellp + Ikl < lIg — gelly + M.
Choosing ¢ so that ||g — g¢ Il <, we obtain [|f —g¢|l, < 2n, and the corollary
follows.

The next result is a substitute for Theorem 9.6 in case f € L.

Theorem 9.8  Let fo = f x K., where K € L'(R™) and [zo K = 1. If f € L*(R™),
then fe — f as e — 0 at every point of continuity of f, and the convergence is uniform
on any set where f is uniformly continuous.

Proof. Note that for every ¢ > 0, f: (x) converges absolutely for all x since
f elL*®and K e L. As before,

|fe) —fX)| < f [f(x =1 = fOOIIKe (D] dt.
Rll

If f is continuous at x, then given 1 > 0, there exists 6 > 0 such that |f(x —
t) — f(0)| <nif |t| < 5. Hence,

[1fx= —flIKe®ldt =m | [Ke®ldt+2lfllo [ IKe(®)]dt
RN It<& B
Since flt|<5 |Ke (0| dt < ||K||; and f|t\>6 |Ke ()| dt — 0 as e — 0 for any fixed §,
it follows that |fe (x) — f(x)| — 0. Since § may be chosen to be independent of
x on any set where f is uniformly continuous, the same proof shows that f.
converges uniformly to f on such a set.

Before stating the next result, we generalize some notation already used in
special cases (see (7.45a) and Exercise 31 of Chapter 7.). If {(x) and ¢(x) are
defined in a neighborhood of xp and if ¢ > 0 there, we say that

P(x) = O0(dp(x) as x — Xg

if there is a constant ¢ such that [V(x)/d(x)| < c¢ near x¢. If, in addition,
limy_x, Y(x)/$(x) = 0, we say that

P(x) = o($p(x)) as x — Xp.

The common terminology for these situations is that 1\ is “big oh” or “little
oh” of ¢ asx — xp. In particular, the expressions {(x) = O(1) and P (x) = o(1)
as X — Xo mean, respectively, that 1 is bounded and that { — 0 as x — xo.
The notation most commonly occurs when xp is zero or infinite. A similar
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notation is used when x is a discontinuous variable, say a sequence of integers
tending to +oo. For example, ax = O(1) and ax = o(1) as k — +o00 mean,
respectively, that {ax} is a bounded sequence and that 4y — 0 as k — +o0.

The next theorem concerns the pointwise convergence of f. when f € L!
(see Exercise 12 for the case f € LP).

Theorem 9.9 Let f = f x K¢, where f € LY(R™), K € LY(R™) N L>®RM),
fR" K =1, and K(x) = o(|x|™") as |x| — +oc. Then f. — f as ¢ — 0 at each point
of continuity of f.

Proof. If f is continuous at x, then given 1 >0, choose & >0 such that
[f(x —t) — f(x)| <n if [t| < 6. Note that f¢ (x) converges absolutely for all
x since f € L! and K € L. As usual,

fe0—fo0l =n [ IKe®ldt+ [ 10— 1 —f00l Ke(B)]dt

[t]<d [t|>d

=nIKlh+ [ 1fx= Bl Ke®ldt+ fol [ IKe(olat
[t[=5 [t=5

The last term on the right tends to zero with ¢ by Lemma 9.5. It is enough,
therefore, to show that the second term tends to zero with €. Write |K(x)| =
w(x)|x|~", where pu(x) — 0 as |x| — +oo. Then

t
[ 1fxc— vl Kt = | If(x—t)lu(g)ltl‘”dt

[t=5 [t=d

t
5" - —t)|dt.
<o famn()] S, v

=5

Note that supjy> s 1(t/e) — 0 as ¢ — 0. Hence, since =5 [fx—tydt < | fl1,
the last expression tends to zero with ¢, and the theorem follows.

There are many classical kernels that satisfy the restrictions we have
imposed. Let us list three important examples for the case n = 1.

The Poisson kernel. Let

K(x) = P(x) = % [x € (—o0, +00)].

1+ x2
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Then P € L(—o00, +00) N L®(—00, +00), fj’;o P =1, Pis positive, and P(x) =
o(Jx|™1) as |x| = +oo. In fact, P(x) = O(|x|~2) as |x| — 400. We have

o= 2r(3) -1

c = ;m, e > 0. (910)

P; is called the Poisson kernel, and the convolution

17 €
fe@) = (f xPe)(x) = %Lf(t)m dt
is called the Poisson integral of f.

Setting ¢ = y and letting f (x, y) = f,(x), we obtain a function f (x, y) defined
in the upper half plane {(x, ) : —co < x < 400,y > 0}. Notice that y/(? +x?)
is the imaginary part of —1/z,z = x + iy, and so is harmonic in the upper
half-plane; that is, Py (x) satisfies Laplace’s equation

a2 92 .
(@ + W)Py(x) =0 ify>0.

We leave it as an exercise to show thatif f € LV, 1 < p < oo, then

0> | 9 PN L &
(@ + a—y2>f(x,y) - j £ <@ + 3—y2> Py(x —tydt,
—00
so that (3%/3x% + 82/3y?)f (x,y) = 0 for y > 0. Hence, f(x, y) is also harmonic
in the upper half-plane.

If f is integrable on (—oo, +00), it follows from Theorem 9.9 that f(x,y) —
f(x) as y — 0 wherever f is continuous. Thus, f(x,y) solves the Dirichlet
problem for the upper half-plane; that is, if f(x) is continuous and integrable
on (—oo,+00), then f(x,y) defines a function that is harmonic in the upper
half-plane and that tends to f(x) as y — 0. See also Exercises 15, 16.

The Fejér kernel. Let

1 /sinx)\?
K(x) = p ( . ) [x € (—o0, 4+00)].

Then K satisfies the same conditions as P(x) in the previous example, and
Ke(x) = (1/m)[e sin?(x/€) /x2]. Setting w = 1/¢, w > 0, we obtain the Fejér
kernel

1 sin? wx

P w) = w2

(9.11)
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If feL(—o0,+00) and if f is continuous at x, then by Theorem 9.9,

. 1 sin? wt
Mo 7 A =f00.

+00
[ fa-»

wt
The Gauss—Weierstrass kernel. The function
K@) = =[x € (—00,+00)]
= — —00, +00
JT

also satisfies all the required conditions (see Exercise 11 of Chapter 6).

Here, K:(x) = (1/ ﬁta)e_xz/ 52, and letting ¢ = ,/y, y > 0, we obtain the
Gauss—Weierstrass kernel

W, y) = \/Lﬂ_ye—xz/y. (9.12)

The convolution
Wf(x,y) = (f* W( y))(x) = L Jrfof(x — t)e_tz/y dt
VY

is called the Gauss—Weierstrass integral of f. If f is integrable on (—o0, +-00) and
continuous at x, then

yl_i}(ggr Wf(x,y) = f(x).

Notice that W(x, y) satisfies the heat equation

92 3
—W=4—W
0x2 Ay

in the upper half-plane, as does Wf(x,y) if f € LF(—o0,00) for some p, 1 <
p < oo.

Higher dimensional versions of the Gauss—Weierstrass and Poisson ker-
nels are discussed in Chapter 13.

If we strengthen the condition K(x)=o(|x|™"), |x|— + oo, used in
Theorem 9.9, we can obtain the convergence of fe to f almost everywhere.
The following result is fairly typical of theorems of this kind. Its hypotheses
are met by any of the three examples just listed.
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Theorem 9.13 Suppose that f € L(R™), K is bounded, K(x) = O(x|7"M) as
x| — oo for some A > 0, and [gn K = 1. If fe = f % K¢, then f — f at each point
of the Lebesgue set of f.

Proof. Let xo be a point of the Lebesgue set of f (see (7.14)), so that
p " f‘x|<p |f(xo +x) — f(x0)|dx — 0 as p — 0. By considering the function
f(xo +x), we may assume that xg = 0. Since the hypothesis on K implies that
K(x) = o(]x|™™), the conclusion follows from Theorem 9.9 if f is continuous
at 0. Hence, subtracting from f a continuous function with compact support,
which equals f(0) at 0, we may suppose that f(0) = 0.

The hypotheses |[K(x)| < M and K(x) = O(]x|™"=?) can be combined into a
single estimate:

M,
[KM)| < AT X
Hence,
A
K P —
[Ke(@)| < My &+ X
Therefore,
A
|f£(0)| <M f |f(x)|( + |x |)n+7\ d

and it remains to show that the integral tends to zero. We will use the
following lemma, which is of some independent interest.

Lemma 9.14 Suppose that f(x) is integrable over a spherical shell a < |x| < b
and that &(p) is continuous fora < p < b, 0 < a < b < +oo. Let F(p) =
Jazixi<pf GV dx fora < p < b. Then

[ foobaxdx = jcb(p) dF(p),

a<|x|<b

the integral on the right being a Riemann—Stieltjes integral.

Proof. Note that this reduces to the formula in Theorem 7.32(i) in case n = 1.
In any case, writing f = f*—f~, we see that F is the difference of two bounded

increasing functions. Hence, F is of bounded variation on [4, b] and fab ¢ dFis
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well-defined. We may assume thatf > 0. Let [ = fa5|x|5bf(x)¢(|x|) dx and let
{a=po < p1 <--- < px = b} be a partition of [a,b]. Then

k
=3 | fooouxdx,
=1 pi—1=IX|<p;
and since f > 0,
k k
Somio [ feodxsisyY M [ feodx

=1 pi=IxI<p; i=1 pi—1=IxI<p;

where m; and M; are, respectively, the minimum and maximum of ¢ in
[pi—1, p;i]. This can be rewritten

=

k
> milF(pi) — Fpi—)] < Z ilF(pi) — F(pi—1)]-

By Theorem 2.24, the extreme terms in this inequality converge to

fab &(p)dF(p) as the norm of the partition tends to zero, and the lemma
follows.

Returning to the proof of Theorem 9.13, let F(p)= fIXI< 0 |f(x)|dx. The

hypotheses that xg =0 is a Lebesgue point of f and that f(0) =0 imply that
given > 0, there is a 6 > 0 such that F(p) < np" if p < 8. Write

j|f( Ty Dm = [+ [ =a+B

x|<d  |x|>d

Taking ¢ (p) = s)‘/(z + p)™* and [a,b] = [0, §] in Lemma 9.14, we have

5
f (g + p)n+?\ (p)

Integrating by parts and observing that F(0) = 0, we obtain

A 5 A

e iORURRY OfF(p) dp.

(e + p)n+?\+1
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The first term on the right tends to zero as ¢ — 0. The definition of 4 and the
change of variables p = ef show that the second term is at most

5 E)\ o/¢e i
n J— S —
0 0

Hence,

n

1+ t)n+7\+1 =cn,

o
limsup A < (11 +A)m j
0

e—0

where c (=cj ;) is finite since A > 0.
Finally, to estimate B, note that if |x| > §, then ¢ + |x| > §, so that

E)\ E)\
B<onx | If0oldx < ooxifin.

|x|>&

Hence, lim,_,g B = 0. Combining these estimates, we obtain lim sup,_, (A +
B) < cn, and the theorem follows by letting 1 — 0. See Exercise 12 for the
casef e L?, p> 1.

The kernels {K.} for K satisfying the kinds of conditions earlier are exam-
ples of approximations of the identity.

9.3 The Hardy-Littlewood Maximal Function

Let f* denote the Hardy-Littlewood maximal function of f:
} 1
fro0 =suwp — [ 1fyldy,
QI 5

where the supremum is taken over all cubes Q with center x and edges par-
allel to the coordinate axes (see (7.5)). If f € LP(R™) for some p > 1, then f is
locally integrable in R", and consequently, |f| < f* a.e. by Theorem 7.11.

We observed on p. 136 in Section 7.2 that f* is not integrable over R®
(unless f = 0 a.e.), but does satisfy the weak-type condition

(x € RM: f*(x) > a| < §n fll, (>0, 9.15)
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where ¢ depends only on 1 (Lemma 7.9). The behavior of f* on the other L?
spaces, 1 < p < oo, turns out to be better. For example, it is clear from the
definition of f* that f*(x) < ||f|l« for all x. Thus, f* is bounded if f is, and
If*llcc < llflloc- The following theorem describes the behavior of f* when
fell,p>1

Theorem 9.16 Let1 <p <ooandf € LP(R™). Then f* € LP(R™) and

ILF1, < cllfll,,

where ¢ depends only on n and p.

Proof. Let f e LP(R™). We may assume that 1 <p < oo since the result is
obvious with constant c=1 when p=oc0. The idea is to obtain informa-
tion for L7 by interpolating between the known results for L! and L. For
o> 0, let

w() = |{x e R": f*(x) > «f|

denote the distribution function of f*. Fix « > 0 and define a function g by
g(x) = f(x) when |f(x)| > «/2 and g(x) = 0 otherwise. Note that g € LY(RM)
since

Igh= [ 1feoldx
{xeR™:|f(x)|>oc/2}

<j|f< >|<'f(/2)')p Cax (;)H 11} < oo.

Also, the difference f — g € L*°(R"); in fact, ||f — gllc < /2. Then since
fOO] < 180 + /2,

Frx) < sup — j|g<y)|dy+ S =g+,

1Ql

In particular,

{xeR":f"(x) > «} C {xeR“:g*(x)> %},
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so that, by (9.15),

n. x &
w(x) < erR 18 (x) > ZH
2c 2c
<Zlgh== [  Ifeoldx
{xeR™:|f (x)|>/2}

We have the formula [pa f*Pdx = p [~ o " w () dot, which was stated on two
occasions: Exercise 16 of Chapter 5, and Exercise 5 of Chapter 6. Hence,

ff*r’ dx < pfocpfl |:§
RO 0 *

Interchanging the order of integration in the expression on the right (which
is justified since the integrand is nonnegative), we obtain

2lf (]
ff*” dx < ZCpf Lf ()] ( f oc”zdoc) dx.
RO Rn

0

[f Ol dx:| do.

{xeR™:|f(x)|>o/2}

Sincep—2 > —1 (i.e,, p > 1), the inner integral equals (2|f(x)|)P_1/(p —1)ae.
(wherever f(x) is finite), so that

2Ppc 2Ppc b
*p —_r- P -
[ frrax < . 1Rjn Foordx = 21

Rl‘l

Taking pth roots, we see that ||f*||, < Cp| fllp, where C§ = 2Ppc/(p — 1). This
completes the proof. Note that the constant C,, tends to +oc asp — 1 and is
bounded as p — oo.

The Hardy-Littlewood maximal function plays an important role in many
parts of analysis concerned with operator theory and differentiation. It arose
naturally in Chapter 7 in connection with Lebesgue’s differentiation theo-
rem, and it will be used in the proof of Theorem 9.19 and frequently in later
chapters. As another illustration of its usefulness, we have the following
result.

Theorem 9.17 Let K(x) be nonnegative and integrable on R™ and suppose that
K(x) depends only on |x| and decreases as |x| increases (i.e., K(x) = ¢(|x|), where
&(t), t > 0, is monotone decreasing). Then
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sup | (f * Ke)(%)| < cf* (%),

e>0

with c independent of f. In particular, for such kernels K,
Ilsstilgl(f*Kg)l llp <cllfllp, ifl<p<oo,
I{Xisalilgl(f*Ks)(X)l > af| = éllfllll x>0, ifp=1,
with ¢ independent of f and «.

Proof. We first remark that there is a constant c depending only on 7 such that

sup 57" j If(x = y)ldy < cf* ().

8>0 lyl<6

This follows by enclosing the ball |y| < § in the cube with center 0 and edge 26
and observing that ratios of the two volumes are bounded independent of 6.

To prove the result, we will use a method based on Tonelli’s theorem.
Fix eand let E = {(y,t) : y € R", t > 0, K¢(y) > t}. Then E is a measurable
subset of R**! by Theorem 5.1, and

K&(y) o0
Key) = [ dt= [xey bt
0 0
Hence,
I Kool = | [ fx—yKewdy| < [ 1fx=y)| {fmy,t) dt} dy.
Rn R» 0

Changing the order of integration in the last expression, we obtain

f |f(x=yIxe(y, b dy | dt
LR i

ol
={| | Ifexc—yldy|a
0 L{y:Ke(y)>t}

|(f * Ke)(¥)| =

OHg

Let E; = {y : Ke(y) > t}, t > 0. Since K(y) depends only on |y| and decreases
as |y| increases, E; is a ball with center 0 unless it is empty or the single point 0.
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In the t-integration in the last display, we may ignore any values of t such
that |E¢| = 0 since the inner integral is then zero. For all other ¢, E; is a ball,
and by our earlier remark, the inner integral satisfies

1
J = pldy = Eil | 7= [Ifx=yldy | = [Eilef 0.
Ef f Et
By combining estimates, we have
oo oo
| + K0l = [ [Ed of* () dt = f*(0 [ |Exldt
0 0
Finally, note that |E;| is the distribution function of K¢, so that
oo
[ IEddt = IKelly = 1K1y
0

Therefore, |(f * K¢)(X)| < c||K||1f*(x), and the first statement of the theorem
follows by taking the sup over ¢ > 0. The second statement is then a corollary
of Theorem 9.16 if p > 1, and of (9.15) if p = 1.

We leave it to the reader (Exercise 18) to show that Theorem 9.17 can also be
derived from the formula in the conclusion of Lemma 9.14 (see, e.g., Exercise
17 and the proof of Theorem 12.61).

In particular, for the kernel K(x) = 1/(1 + Ix|"**), A > 0, Theorem 9.17
gives

A

£
—y)————dy| <cf*(x), 9.18
sup Rfnf(x Ve e | =9 (9.18)

a fact that will be used in the next section.

Note that the conclusion of Theorem 9.17 is valid for any K that is
majorized in absolute value by a kernel satisfying the hypothesis of Theorem
9.17. This includes any K satisfying the hypothesis of Theorem 9.13.

9.4 The Marcinkiewicz Integral

We recall from Theorem 6.17, that if F is a closed subset of a bounded open
interval (a,b) in R!, and if 5(x) denotes the distance from x to F, then the
Marcinkiewicz integral



Approximations of the Identity and Maximal Functions 231

M)

b
M) = |

is integrable over F. More generally, in Exercise 7 of Chapter 6, we considered
the expression

A
f 3N (f (v) b4y O 0),

& lx — y|1+?\

where f is nonnegative and integrable over the complement of F. If f = X (4 ),
this reduces to M) (x). In case A = 1, M, plays a role in proving Theorem
12.67.

Now we consider L? estimates for n-dimensional analogues, namely, for
the integral

5?\
Ho = | %d (x € RM),
Rn
and the modified form
My)f (y)
HA( = | X =y 4 500 Y

Rn

Here again, A > 0, 6(x) denotes the distance from x to a closed set F ¢ R"
and f is nonnegative and measurable on R". Notice that Hj (f) and ] (f) are
equal in F since & is zero there. For the same reason, ] (f) and H) (f) are inde-
pendent of the values of f on F. Therefore, we may assume for simplicity that
f=0onF.

We will prove in the next theorem that if f € LF(R™ — F), 1 < p < oo, then
H)(f) € LP(R™). This implies the basic fact that J (f) € LP(F). (In general, Jx (f)
diverges outside F: see, e.g., Exercise 9 of Chapter 6.) For the proof, it will be
convenient to consider one more modification of [, (f), namely,

SMy)f (y)
|X _ y|n+)\ + 5(y)n+?\ y-

H)\ (F)(%) =f

RII

As we move from a point x to another point y, the distance from F does not
increase by more than |x — y|. Hence,

16(x) — d(y)| < Ix —yl.
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It follows that 6(y) < |x — y| + 8(x), so that we have
6714—7\ (y) < 27‘1+)\[|x _ y|n+>\ + 6(X)n+)\],

as well as a similar inequality with x and y interchanged. We immediately
obtain that

27 (D) < HA(F) (0 < 2" TH () ().

Thus, inequalities for H/)\ lead to ones for Hj, but H/)\ is easier to deal with.

Theorem 9.19 Iff € LF(R™), 1 <p < oo, and A > 0, then H)(f) € LF(R™) and
IHAD Ny < cll fllp,
where c is independent of f. In particular, |[]x(f)llpr < c |l fllp-

Proof. Fixp,1 < p < oo, and letg be any nonnegative function with [|gl,y <1,
where 1/p + 1/p’ = 1. By interchanging the order of integration, we obtain

/ _ A g(x)
anHA(f)(X)g(x) dx —anf(y)5 (y) [an P dx] dy.

The outer integration on the right can be restricted to R® —F without changing
the value of the integral. However, if y € R® —F, then 6(y) > 0, and it follows
from (9.18) that the inner integral on the right is bounded by Cé(y)_)‘ g (y)-
Combining this estimate with Holder’s inequality and Theorem 9.16, we
obtain

J Hyhoogeodx < e [ fyg“pdy
Rn R®

=< clflplg*ily
= calflpligly = cill fllp-

By (8.9), the supremum of the left side for all such g is |[Hj (f)ly, so that
I1HY (O llp < c1ll fllp, and the theorem follows.
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Exercises

1. Use Minkowski’s integral inequality (see Exercise 8 of Chapter 8) to
prove Theorem 9.1 for 1 < p < oo.

2. (a) Prove Young’s Theorem 9.2. (For f, g > O and p, g, 7 < oo, write

(f *¢)(X) = jf(t)p/rg(x _ t)li/r ,f(t)P(l/pfl/r) - g(x — t)q(l/qfl/r) dt,

and apply Holder’s inequality for three functions (Exercise 6 of
Chapter 8) with exponents r, p1, and po, where 1/p1=1/p — 1/r,
1p2=1/9—1/r)

(b) Suppose that the conclusion of Theorem 9.2 holds for three indices
p,q,r > 0. Show that 1/r = 1/p + 1/q — 1. (Apply the inequality in
the conclusion to the dilated functions f (Ax) and g(Ax), A > 0, and let
A vary. A similar method is used in Exercise 13 of Chapter 14.)

3. (a) Show thatif f € LP(R™) and K € LF'(R"), 1 <p < oo, 1/p+1/p’ =1,
then f * K is bounded and continuous in R™.

(b) Sketch the (trapezoidal) graph of x; * X; where I and | are one-
dimensional intervals. Consider also the case when the two intervals
are the same.

4. (a) Show that the function i defined by h(x) = e~/ ¥ for x > 0 and
h(x) =0forx <0isin C®.

(b) Show that the function g(x) = h(x — a)h(b — x), a < b, is C* with
support [a, b].

(c) Constructa functionin C5°(R™") whose support is a ball or an interval.

5. Let G and G1 be bounded open subsets of R™ such that Gy C G. Construct
a function i € Ci° such that 1 = 1in Gy and 1 = 0 outside G. (Choose an
open Gy such that G1 C Gy, G C G.Leth = XG, * K for a K € C* with
suitably small supportand [ K =1.)

6. Prove Theorem 9.4.

7. Let f € LP(—00,+00), 1 < p < oo. Show that the Poisson integral of f,
f(x,1), is harmonic in the upper half-plane y > 0. (Show that ((3%/3x?) +
@%/9yD)f (x,y) = [ FB((0%/0x2) + (92/dy*) Py (x — t) dt.)

8. (Schur’s lemma) For s,t > 0, let K(s,t) satisfy K > 0 and K(As,At) =
A 1K(s, t) forall A > 0, and suppose that fooo t=1PK(1, ) dt =y < +oo for
some p, 1 < p < oo. For example, K(s,t) = 1/(s + t) has these properties.
Show that if
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(THE) = [fOKEs bt (f = 0),
0

then |Tfll, < vl flp.- (Note that K(s,t) = s71K(1,t/s), and therefore
(TH(s) = fooo f(ts)K(1,t) dt. Now apply Minkowski’s integral inequality
[see Exercise 8 of Chapter 8].)

9. (a) The maximal function is defined as f*(x) = sup Q|1 IQ |f], where
the supremum is taken over cubes Q with center x. Let f**(x) be
defined similarly, but with the supremum taken over all cubes Q con-
taining x. Thus, f*(x) < f**(x). Show that there is a positive constant
¢ depending only on the dimension such that f**(x) < c¢f*(x).

(b) If f** were instead defined to be sup |B|~! IB || where the supre-
mum is taken over all balls B containing x, show that there are
positive constants c¢1 and ¢, depending only on the dimension so that
cf*(x) < f**(x) < cof*(x) for all x.

10. Let T : f — Tf be a function transformation that is sublinear; that is, T has
the property that if Tfy and Tf, are defined, then so is T(f; + f2), and

IT(fi + )01 = [(TfH)] + [(TR) (X

Suppose also that there are constants c; and c¢; such that T satisfies
ITflloo < c1ll flloo and [{x : [(TH()] > o] < cao ! fll1, o > 0. Show that
for 1 < p < oo, there is a constant c3 such that || Tf||, < c3||f|lp. This is a
special case of an interpolation result due to Marcinkiewicz. (An exam-
ple of such a T is the maximal function operator Tf = f*, and the proof

in the general case is like that for f*.)

11. Generalize Theorem 9.6 as follows: Letf = f*K,,K € LY(R™) and IR“ K=
v.Iff € IF(R"), 1 < p < oo, show that || fe —yfll, — 0. Derive analogous
results for Theorems 9.8, 9.9, and 9.13. (The case y # 0 follows from the
case v = 1 by considering K(x)/v.)

12. Show that the conclusions of Theorems 9.9 and 9.13 remain true if the
assumption that f € L! is replaced by f € L, p > 1.

13. Letf € LP(0,1), 1 <p < oo, and for each k = 1,2, ..., define a function
feon (0,1) by letting Ij = {x :  — 1D27F <x <275}, j=1,...,2F and
setting fx(x) equal to |Ik,j|’1 ij f for x € Ii;. Prove that fy — f in LF(0,1)
norm. (Exercise 17 of Chapter 7 may be helpful for the case p = 1.)

14. Show that Theorem 9.6 and Corollary 9.7 fail for p = co.

15. Regarding the Dirichlet problem for the upper half-space, more can be
said about the behavior of the Poisson integral f (x, y) of f (x) near a point
of continuity of f(x). Prove that if f € LF(—00,00), 1 < p < o0, and f
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16.

17.

18.

19.

20.

21.

22,

is continuous at a point xg, then f(x,y) — f(xo) as (x,y) approaches xg
unrestrictedly, that is,asx - xpandy — 0,y > 0.

Letl < p < o0, f € LP(—00,00), and xq be a Lebesgue point of f. Show
that the Poisson integral f(x,y) of f converges nontangentially to f(xo),
that is, show that forany y > 0, f(x,y) — f(x0) as x — xg and y — 0 with
|x — x0| < vy. (Note that the Poisson kernel satisfies Py (t +z) < C, Py(t)
if |z < vy, with C, independent of y,t,z.) (See also Theorems 12.42
and 12.64.)

Prove that the conclusion of Lemma 9.14 holds without assuming ¢ is

continuous provided fab & (p) dF(p) exists. Show, for example, that the
conclusion holds if ¢ is monotone and finite on [a, b]. (For the second

part, recall from Theorem 2.21 that fab ¢ dF exists if fab Fdd does.)

Derive the first part of Theorem 9.17 by using the formula in the conclu-
sion of Lemma 9.14 (even though the function ¢ in Theorem 9.17 is not
assumed to be continuous). (Use Exercise 17. Note that if K(x) = ¢&(]x])
satisfies the hypothesis of Theorem 9.17, then ¢ (|x|) = o(|x|™") as [x| = 0
and as |x| — o0).

Let K(x) be a nonnegative, decreasing, integrable radial function on R"
(ie., K satisfies the hypothesis of Theorem 9.17), and let | K = 1. Use The-
orem 9.17 to show thatif 1 <p < ocoandf € L’(R"), thenf+K, — f a.e.as
¢ = 0.(Incase1 < p < oo, a proof reminiscent of the proof of Lebesgue’s
differentiation theorem can be constructed by applying Corollary 9.7.)

Show that the conclusion f * K — f in Exercise 19 is valid at every
Lebesgue point of f. (A proof based on integrating the formula in Lemma
9.14 by parts is possible; cf. Exercise 18.)

Let f and g be locally integrable functions on R™ and suppose that | f|x|g]
is finite a.e. in R™. Prove that f * g is measurable on R". (See the argu-
ment in the last part of the proof of Theorem 9.1 involving the truncated
functions fy and also truncate g.)

As we know from Chapter 7, the maximal function f* of an f € L'(R")
may not be locally integrable. Show that if f satisfies the stronger condi-
tion fRn [fI(1+1log™ | f]) dx < oo, thenf* € LY(E) for every measurable set
E with |E| < 0o, and

[frax < C(EI+ [ Ifitog" Ifldx),
E Rn

with Cindependent of f and E. (Let w(x) denote the distribution function
of f* relative to E. Write [;° w(o)da = [y +f$° for v > 0. The first
integral on the right is bounded by y|E|. In the second integral, use the
estimate w(a) < Cax~! uf{lf|>(x/2} |f]; cf. the proof of Theorem 9.16.)
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23. (a) Show that there is no identity element for the convolution operation
on LY(RM), that is, there is no function k € L}(R™) such that fxk=
f a.e. for every f € LL(R™).
(b) Show that if f,g € L2(R™), then f * g belongs to L*°(R™) but not
necessarily to L2(R™). See also Lemma 13.49.
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Abstract Integration

In the preceding chapters, we developed a theory of integration based on a
theory of measurable sets. The notion of the measure of a set was in turn
based on the primitive and classical notion of the measure (or volume) of an
interval in R"; this led almost automatically by the process of covering to the
notion of measure for more general sets.

In this chapter, we follow an alternate approach. We will consider a family
of sets and assume that they all have measures, that is, assume that with each
member of the family, we can associate a nonnegative number satisfying ele-
mentary and natural requirements that justify calling it a measure. Starting
with this assumption, we will develop a theory of integration that follows the
pattern of Lebesgue integration. The advantage of this method is that it can
be applied not only to R™ but also to general abstract spaces with much less
geometric structure than R™. Thus, it is important for applications. There are
new questions that arise in the abstract setting, but many of the theorems and
proofs are practically the same as those for Lebesgue measure in R". In such
cases, we will usually refer to earlier chapters for proofs.

It is natural to ask how we can construct such measures. One possible
approach is to start with the more elementary notion of an outer measure in an
abstract space and, as in the case of R discussed in Chapter 3, select a sub-
class of sets on which the outer measure has additional properties, qualifying
it as a measure. This idea will be developed in Chapter 11.

10.1 Additive Set Functions and Measures

Let .7 be a fixed set, and let ¥ be a c-algebra of subsets of .#; that is, let
satisfy the following:

(@) S € X.

(b) If E € ¥, then its complement CE (=¥ — E) € X (i.e., ¥ is closed under
complements).

(c) fEx € Efork=1,2,...,then | JEx € X (i.e., ¥ is closed under countable
unions).

237
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It is easy to see that the definition is unchanged if condition (a) is replaced
by the assumption that ¥ be nonempty; see also p. 49 in Section 3.2. Another
widely used term for a o-algebra is a countably additive family of sets.

Immediate consequences of the definition are that the following sets
belong to X:

(1) The empty set ¥ (= C.¥),

(@ NEcifExex, k=1,2,...,

(3) limsupEx (= (N1 Urey Ex) and liminf Ex (= U5_q Moy Ex) if each
Ere X,

(4) Ey —Ex(=E1NCEy)ifE1,E; € X.

We recall the basic fact that the collection of Lebesgue measurable sub-
sets of R" is a o-algebra: see Theorem 3.20. In general, the elements E of a
o-algebra X are called X-measurable sets, or simply measurable sets if it is clear
from context what X is.

If ¥ is a o-algebra, then a real-valued function ¢(E), E € X, is called an
additive set function on X if

(i) ¢(E) is finite for every E € %,
(i) d(UEx) =Y d(Ex) for every countable family {Ex} of disjoint sets in .

Since | E is independent of the order of the Ex’s, the series in (ii) converges
absolutely.

We obtain a simple example of a set function by choosing X to be the
o-algebra of all subsets of . and defining ¢(E) = xg(xp) for a fixed xg € ..
As another example, let ¥ be the collection of all Lebesgue measurable
subsets of R, and define ¢(E) = fE f, where f € L(R™).

A function p(E) defined for E in X is called a measure on ¥ if

() 0 = wE) = +oo,
(i) nw(UEx) = > u(Ey) for every countable family {Ej} of disjoint sets in X.

The choices u = 0 or u = 400 are always possible, but of little interest.

If L is a measure on ¥, then the triplet (., &, p) is called a measure space. For
example, Lebesgue measure together with the class of Lebesgue measurable
subsets of R™ is a measure space. As another example, let . be any countable
set, & = {x¢}, and let {a;} be a sequence of nonnegative numbers. Let X be the
family of all subsets of ., and define (E) = ) _ a; if E = {xkj }. Then (%, X, 5)
is a measure space. Such a space is called a discrete measure space.

The distinction between a measure and an additive set function is that a
measure is nonnegative, but may be infinite, while an additive set function
may take both positive and negative values, but is finite. Any nonnegative
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additive set function is a finite measure and vice versa. There are similarities
between many of the properties of set functions and measures. If E; C E
and p is a measure, then w(Ey — Eq) + w(E1) = w(Ey), so that w(E, — Eq) =
W(Ey) —w(Eq) if w(E) is finite. If ¢ is an additive set function, then the formula
&(Ex—Eq) = ¢(E2)—P(E1), E1 C Ep, always holds. Choosing E; = E;, we see
that ¢ (@) = 0 for an additive set function, and also w(?¥) = 0 for a measure,
unless W(E) = +oo for all E. Moreover, if E; C E», then w(E1) < pw(E) even if
1(E1) = 400, and ¢(Eq) < dp(Er)if ¢ = 0.

The next few results concern limit properties and a basic decomposition
for additive set functions. Both . and X are fixed.

Theorem 10.1  If{Ey} is a monotone sequence of sets in  (i.e., Ex /' Eor Ex \( E)
and ¢ is an additive set function, then $(E) = limy_, oo $(Ep).

Proof. fEx /' E,thenE =] Ex = E{U(E; —E1)U(E3 —Ep)U---. Hence, by
disjointness,

G(E) = d(E1) + Y b(Ex — Ex_1)

k=2

N
= (Ey) + ngnoo;[wsk) — bE-1)] = Jim ¢(En).

On the other hand, if Ex \( E, then . — E; . — E. Therefore, by the case
already considered, we have ¢(¥ — Ex) — ¢(¥ — E). Since ¢(¥ — Ey) =
O () — d(Ep) and $(¥ — E) = ¢(¥) — ¢(E), the result follows.

The next theorem is similar to Fatou’s lemma (Theorem 5.17).

Theorem 10.2  Let ¢ be a nonnegative additive set function, and let {Ey} be any
sequence of sets in X. Then

d(liminf Ey) < liminf ¢(Ex) < limsup d(Ex) < ¢p(limsup Ey).
k— o0 k—o0

Proof. The sets Hy, = (i, Ex increase to lim inf Ej. Therefore, by the preced-
ing theorem, ¢(liminf Ey) = lim ¢(Hy,). Since Hy, C Ey and ¢ > 0, we have
GHm) < $(Ep) and lim ¢(Hy,) < liminf $(E;,). Therefore, dp(liminf Ey) <
lim inf ¢ (E;), which proves the first inequality. The proof of the third one is
similar, and the second is obvious.
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If E € %, the collection of sets ENA as A ranges over X forms a o-algebra >/
of subsets of E. In fact, ¥’ is just the collection of all X-measurable subsets of
E.If1 is an additive set function on ¥, then its restriction to ¥’ is additive on
¥’. On the other hand, if ¢ is an additive set function on ¥/, then the function
defined by {(A) = $(A N E) is additive on X.

Now, let ¢ be an additive set function on the measurable subsets of a set
E € X, and define

V(E) = V(E;$) = sup ¢(A),  V(E) = V(E; ) = —inf $(A),
ACE ACE
AeX AeX

V(E) = V(E; ¢) = V(E) + V(E) (10.3)

to be the upper, lower, and total variation of ¢ on E, respectively. Note that all
three are nonnegative since ¢(¥) = 0. Moreover, as is easy to see from the
definitions,

—V(E) < $p(A) < V() ifAcEandAc %,
and therefore, supsr acx |P(A)| < V(E). In fact,

sup |[p(A)| < V(E) < 2sup |p(A)].
ACE ACE
Aex Aex

Also, each variation is monotone increasing with E; that is, if E; C Ep, then
V(E1) < V(Ep), etc.

In case X is the collection of all Lebesgue measurable sets in R and ¢(E) =
Ji-f for some fixed f € L(R™), itis easy to see that V(E) = [ f*, V(E) = [.f~,
and V(E) = fE | f1; consequently, V,V, and V are also additive set functions.
More generally, we will show that if ¢ is any additive set function on a o-
algebra X, then V, V, and V are also additive set functions on . A simple
corollary of the finiteness of V is that an additive set function ¢ is not only
finite but also bounded. The first step in proving that the three variations are
additive is the following lemma.

Lemma10.4 If ¢ isan additive set function on X, then each of its three variations
is countably subadditive; that is, if Ex € £,k =1,2,..., then

V(UE) = > ViED,

with similar formulas for V and V.
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Proof. LetHy = E1, Hy = E; — E1, H3 = E3 — E; — Eq,.... Then the Hy are
disjoint and (JEx = [JHy. If A € ¥ and A C |J E, then A = [ J(A N Hy) and
&(A) = > b(ANHy). Therefore, since ANHy C Ex, we have ¢p(A) < > V(Ep).
Hence,

V(UE)= sw o) <Y VE,

ACU Ex,Aex

which proves the result for V. The proof for V is similar, and the result for V
follows by adding.

Lemma10.5 If § is an additive set function on ¥, then its variations V(E), V(E),
and V (E) are finite for every E € .

Proof. 1t is enough to show the result for V. Suppose that V(E) = +oo for
some E. We claim that there would then exist sets Ex € X,k = 1,2,..., such
that E; N\, and both V(Ey) = +o0 and |p(Ex)| > k — 1. To see this, we argue
by induction. Let E; = E, and suppose that E; D E; D --- D Ey have been
constructed with |p(Ex)| > k— 1 and V(Ey) = +oo fork = 1,...,N. Since
V(EN) = +00, there exists A € X such that A C Ex and |p(A)| > |$p(EN)| +N.
If V(A) = +o0, let ENy1 = A, noting that |[$p(A)] > N. If V(A) < +oo, let
Eny1 = EN—A. Then V(Eny1) = +oosince by Lemma 10.4, we have V(Ey) <
V(En+1) + V(A). Furthermore,

I (EN+D| = [P(EN) — G(A)] = [d(A)] — [d(EN)| = N.

This establishes the existence of sets E; with the desired properties. Thus, by
Theorem 10.1, we obtain |p([) Ex)| = lim |[¢(Ex)| = +o0, contradicting the
finiteness of ¢ and completing the proof of the lemma.

The final step in proving that the variations are additive set functions is

given in the next lemma.

Lemma 10.6  If ¢ is an additive set function on ¥ and {Ex} is a sequence of
disjoint sets in X, then V(| Ex) = Y_ V(Ex). Similar formulas hold for V and V.

Proof. By Lemma 10.4, we have VIUEp < ZV(E;(). To show the opposite
inequality, given ¢ > 0, choose A C Ex with V(Ey) < ¢(Ap) + €27 This is
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possible since V/(E) is finite by the previous lemma. Since the Ey are disjoint
so are the Ay, and we obtain

S VED = (3 o@n) +e=o (Ja) +e =V (UE) +e.

Since ¢ is an arbitrary positive number, the result for V follows. The analogous
formula for V is proved similarly, and the one for V follows by adding.

Combining Lemmas 10.5 and 10.6, we immediately obtain the next
theorem.

Theorem 10.7  If ¢ is an additive set function on X, then so are its variations v,
V,and V.

The result that follows is basic and gives a decomposition of an additive
set function into the difference of two nonnegative additive set functions. It
may be compared to Theorem 2.6.

Theorem 10.8 (Jordan Decomposition) If ¢ is an additive set function on
¥, then

$(E) =V(E) - V(E), Eezx.

Proof. If A C Eand A € %, then ¢(E) = $p(A)+¢d(E — A). Choose measurable
sets Ay C E with ¢p(Ax) — V(E) as k — oo. Then ¢(E — Ax) — $(E) — V(E),
and —V(E) < &(E) — V(E) since $(E — Ay) > —V(E). If it were true that
—V(E) < ¢(E) — V(E), there would be a measurable set B  E with ¢(B) <
¢(E) — V(E), and consequently ¢(E — B) > V(E), a contradiction. Hence,
—V(E) = $(E) — V(E) as claimed.

A sequence {Ej} of sets is said to converge if lim sup Ex = liminf Ex. Thus,
{Ex} converges if each point that belongs to infinitely many Ey belongs to all Ej
from some k on. For example, if either Ex ' E or Ex \ E, then {E;} converges
to E. If {Ex} is any sequence that converges, it is said to converge to the set
E = lim sup Ex = liminf Ej.

As a simple corollary of the Jordan decomposition, we obtain the following
result.

Corollary 10.9  Ifasequence of sets {Ey} of X converges to E, and if § is an additive
set function on X, then limy_, oo $(Ex) = P(E).
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Proof. If ¢ > 0, we may apply Theorem 10.2. Since the extreme terms there
both equal ¢(E), it follows that all four equal ¢ (E). Hence, lim ¢p(Ey) exists
and equals ¢(E). For arbitrary ¢, the result therefore holds for Vand V, and
so, by the Jordan decomposition, for ¢ itself.

Let (-, ¥, u) be a measure space. We have already observed that p satisfies

W(E1) < w(Ep) if E; C Ep, Eq, Ex € 2. Another basic property of u is given in
the next theorem.

Theorem 10.10 Let (., X, w) be a measure space, and let {Ex : k = 1,2,...} be
any sequence of measurable sets. Then

m(U Ee) = D0 weEo.

Proof. Write | Ex as a disjoint union as follows:
| JEk=E1UE—EDUE—E;—EDU---.
Then
H(U Ek) = W) + wE2 — Ey) + w(Ez —E2 —Ep) + -+
< W(E) + w(E) + wEs) + - = Y u(Ep),
which completes the proof.
By definition, a measure is countably additive on disjoint measurable sets

(cf. Theorem 3.23). The next result shows that it shares another basic property
of Lebesgue measure (see Theorem 3.26).

Theorem 10.11 Let (7, X, n) be a measure space, and let {Ey} be a sequence of
measurable sets.

() If Ex /' E, then limy_, o W(Ex) = w(E).
(ii) If Ex \ E and w(Ey,) < o0 for some ko, then limy_, o, wW(Ex) = w(E).

Proof. Suppose that Ex  E. If u(Ex) < +oo for all k, we may use the same
argument used to prove the first part of Theorem 10.1. If p(E;) = +oo for
some k, then lim u(Ey) = W(E) = +o0. To prove the second part, we may
assume that ky = 1 and use the argument for Theorem 10.1 with .% replaced
by E1.
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Corollary 10.12  Let (., X, 1) be a measure space and let {Ey : k =1,2,...} bea
sequence of measurable sets. Then

(1) w(iminf Ex) < liminfy_, o p(Eg).
(ii) Ifu(U,f(? Ex) < +oo for some ko, then w(lim sup Ex) > lim supy_, o t(Eg).

Proof. Part (ii) is an immediate corollary of Theorem 10.2. For part (i), let
Ay = ﬂ,fim Er,m =1,2,.... Then Ay, / liminf E;, and by Theorem 10.11,
wliminf Ex) = limy—co W(Ay). Since A, C E;, we have u(A,;) < w(Eny)
and limy— oo W(Ay) < liminf,— o wW(Ey). The result follows by combining
inequalities.

10.2 Measurable Functions and Integration

We will now develop the notions of measurable functions and integration
in a measure space. These will be used later in the chapter to prove several
important results for set functions.

Let X be a fixed o-algebra of subsets of ., and let f(x) be a real-valued
function defined for x in a measurable set E. (As usual, f may take the val-
ues +00.) Then f is said to be X-measurable, or simply measurable, if {x € E :
f(x) > a} is measurable for —oco < a < +00. We will state some familiar results
whose proofs depend only on the fact that the class of measurable sets forms a
o-algebra. The proofs are therefore similar to those in Chapter 4 for Lebesgue
measurable functions, and details are left to the reader. On the other hand,
the proofs of some other results (such as the monotone convergence theo-
rem) follow a pattern different from their analogues in Chapter 5 due to the
lack of a geometric interpretation of the integral in the general setting.

Theorem 10.13

(i) Iffand g are measurable on a set E € X, then so are f + g, cf for real ¢, d(f) if
& is continuous on RY, f+,f=,|fI forp > 0, fg, and 1/f if f # 0in E.
(ii) If {fx} are measurable on a set E € T, then so are supy fy, infy fi, im sup_, o fx,
lim infy_,  fx, and, if it exists, limy_, o f-
(iif) If fisa simple. function takir}g values {?k}szl on L?isjoint sets {Ek}kN: 1 Tespec-
tively, then f is measurable if and only if each Ey is measurable. In particular,
XE is measurable if and only if E is.

(iv) If f is nonnegative and measurable on E € X, then there exist nonnegative,
simple measurable f, / f on E.
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If (7, ¥, n) is a measure space, a measurable set E is said to have p-measure
zero, or measure zero, if W(E) = 0. A property is said to hold almost everywhere
in E with respect to y, or a.e. (), if it holds in E except at most for a subset of
measure zero.

We have the following analogue of Egorov’s theorem.

Theorem 10.14 (Egorov’s Theorem) Let (.7, X, w) be a measure space, and let E
be a measurable set with W(E) < +o0. Let {fi} be a sequence of measurable functions
on E such that each fi is finite a.e. (1) in E and {f} converges a.e. (W) in E to a finite
limit. Then, given € > 0, there is a measurable set A C E with W(E — A) < € such
that {fi} converges uniformly on A.

In general, we cannot choose A to be closed in Theorem 10.14; in fact, . has
very little structure, and the notion of a closed set may not even be defined.
The proof is similar to that for Lebesgue measure and is left as an exercise.

Let f be nonnegative on a measurable set E. Define the integral of f over E
with respect to p by

gf dp = sup X]j | f0luEp, £ =0, (10.15)

where the supremum is taken over all decompositions E = [ J E; of E into the
union of a finite number of disjoint measurable sets E;. We adopt the conven-
tion 0 - oo = oo - 0 = 0 for the terms of the sum in (10.15). By Theorem 5.8,
the definition reduces to the usual Lebesgue integral in case . = R™, ¥ is the
class of Lebesgue measurable sets, p is Lebesgue measure, and f is nonnega-
tive and Lebesgue measurable. Although definition (10.15) does not require
the measurability of f, many of the familiar properties of the integral are valid
only for measurable functions. All functions considered in the rest of this
section are assumed to be measurable.

Theorem 10.16  Let (., £, ) be a measure space, and let f be a nonnegative,
simple measurable function defined on a measurable set E. Iff takes values vy, ..., vN
on disjoint Eq, . .., EN, then

[fan="3"v;uEp.

E

Proof. Since f is measurable, each E; is measurable by Theorem 10.13(iii).
Clearly, fE fdu=>" vj(Ej). On the other hand, consider any decomposition
E = |J Ay of E into a finite number of disjoint measurable sets, and let wy =
infa, f. If Ax N Ej is not empty, then wy < v;. Therefore, by the additivity of y,
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Z wip(Ag) = Z Z wi (A N Ej)
ik
<D U wANE) =) vn(Ep.
j k

Taking the supremum over all such decompositions gives [ f du < 3 vju(E)),
which completes the proof.

Note that the previous theorem holds even if some of the v; are +o0.

Theorem 10.17 Let (7, =, ) be a measure space, and let f and g be measurable
functions defined on a set E € X.

(i) IfO<f <gonE, then [pfdu < [pgdp.
(i) Iff = 0on E and w(E) =0, then [pfdu = 0.

Proof. Both parts follow immediately from the definition (10.15). For part (ii),
note that wE) =0 whenever EiCE and E; € ¥. Hence, each term of the sum
in (10.15) is zero.

In order to further investigate the properties of the integral, we need the
next two lemmas. In these and the results that follow, the measure space
(&, %, w) is fixed.

Lemma 10.18

(i) If f and g are nonnegative, simple measurable functions on E, and if c is a
nonnegative constant, then [p(f + g)du = [pfdu+ [pgduand [pcf du =
¢ Jpfdu.

(if) Iff is a nonnegative, simple measurable function on E, and E = E1 U E; is the
union of two disjoint measurable sets, then [pfdu= [p fdu+ [p fdu.

The proof of the first part of (i) is like the first part of the proof of Theorem
5.14. The second part of (i) follows immediately from Theorem 10.16. Details
and the proof of (ii) are left as an exercise.

Lemma 10.19 Let f, k = 1,2,..., and g be nonnegative, simple measurable
functions defined on aset E € . If fy /' and limy_, o fx > g on E, then
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lim ffk du > Jgdu.
k—o0
E E
Moreover, the conclusion remains true if some values of g are 4o0.

Proof. Suppose g takes finite values vy, ..., v, on disjoint sets E, ..., E;. By
Lemma 10.18(ii), it is enough to show that

klingogfk du > fgdu for each j.

j Ej

We thus reduce the proof when ¢ < 400 to the case when g is constant on
E, thatis, g = v > O on E. If v = 0, the result is obvious. Suppose then that
0<v<+oo,andlet0 <e <vand Ay ={x e E: fi(x) >v—¢€},k=1,2,....
Since f /', we have Ay ' E, so that u(Ax) — n(E). Moreover,

[fedn > [ fedu= @— eucap.
E

Ak

Therefore, limy_, oo fE frduw > (v — e)u(E). Letting ¢ — 0 and observing that
vw(E) = [pgdu, we obtain the desired result. We leave it to the reader to
check the case when some values of g are +o0.

The next theorem is helpful in deriving properties of [ fdu for arbitrary
nonnegative f from those for simple f.

Theorem 10.20  Let {fi} be a sequence of nonnegative, simple measurable functions
definedon E € . If fi /' f on E, then [ frduw — [ fdu.

Proof. Clearly, limy_, o [pfkdn < [pfdu. To show the opposite inequality,
consider a partition E = | J E; of E into a finite number of disjoint measurable
sets Ej, and let v; = infg; f and 0 = }_ vju(E)). The function g defined by ¢ =
> UiXE; is nonnegative and measurable, and jE gdp = o.Since limy_,  fx > &,
we have limy_, o fE frdu > o by Lemma 10.19. Taking the supremum of such
o over all partitions of E, we obtain the desired result.

As a corollary, we have the following theorem.

Theorem 10.21  Let f and g be nonnegative measurable functions defined on
E e X, and let c be a nonnegative constant. Then
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O J(f+Qdu= [pfdu+ [pgduand [cfdu=c [ fdu.
(if) If E = E1 U Ep, where Eq and E; are disjoint and measurable, then fE fdp =
Je fau+ [g, fdu.

Proof. By Theorem 10.13(iv), choose simple measurable f; and gx such that
0<fr /fand 0 < gt / g Then f; + g is simple and measurable, and
0 <fx+ 8 /' f + g Therefore, by Theorem 10.20 and Lemma 10.18,

JE+odu= tim [ +godu= lim (jfkdw I du)
E E E E

- jfdu+jgdp.
E E

This proves the first part of (i); the other parts are proved similarly.

If f is any real-valued measurable function defined on a measurable set E,
we define its integral with respect to u by

[fydue = [fauw= [fran—[fan, (10.22)
E E E E

provided not both integrals on the right are +oco.

We say that f is integrable with respect to y, or u-integrable, over E if [, fdn
exists and is finite. When this is the case, we write f € L(E;du) or f € L(E; ).
The abbreviations L(du) or L(i) are also useful when it is clear from context
what the set E is.

It is immediate from (10.22) and Theorem 10.17 that [, fdu = 0if u(E) = 0
and that [ fdu < [gduif f < g on E and both integrals exist. The familiar
properties of the Lebesgue integral are shared by [ f du; some of them are
listed in the following theorem.

Theorem 10.23

(@) | Jpfdul < [¢|fldw furthermore, f € L(E;dw) if and only if | f| € L(E; dw).
(i) IfIf| < |gla.e. (W) inE,andifg € L(E;dw), thenf € L(E;dw), and [; |f|du <
IE gl dp.
(iii) Iff € L(E;dw), then fis finite a.e. (1) in E.
(iv) If f=g ae.(w) in E and if [ fdu exists, then [pgdu exists and
Jegdnw= Jpfdu
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(V) If [pfdw exists and c is a constant, then [pcf du exists and [pcf du =
c[pfdu
(vi) If f,§ € L(E;dw), then f + g € L(E;dw) and [ (f +¢)dp = [ fdu+ [pgdn.
(vil) If f = 0andm < g < Mon E, then

mffdu < ffgdu < Mffdu.
E E E

Proof. The proofs are similar to those for Lebesgue integrals. As examples,
we will prove (iii) and (iv). For (iii), suppose that f € L(E;dp). Then, by (i),
|fl € L(E;dw). Let Z = {x € E : | f(x)| = +00}. Then for any positive integer k,

ku@ < [Ifldu < [ Ifldu.
Z E

Since f € L(E; d), it follows that w(Z) = 0, which proves (iii).

For (iv), since both f* = gt and f~ = ¢~ a.e. (1) in E, we may assume that
f = 0.Thenboth [ fduand [, gduclearly exist. Let E; = {x € E : f(x) # g(x)}.
Since w(E1) = 0, Theorem 10.21(ii) implies that

ffdu— ffdu— fgdu fgdu,

E-E, E-F,

as asserted.

Theorem 10.24  If {fi} is a sequence of nonnegative measurable functions on E,
then

Lj (ka) du=>" bjfk du.

Proof. Letf = > 24 fk- Since f > Y} fx, the integral of f over E majorizes
Yie1 Jefedu for any m. Hence, the left side in the preceding equation

majorizes the right. To show the opposite inequality, let {fk(] )} be a sequence of

nonnegative, simple measurable functions increasing to fi. Let s; = Z] 1 y ).
Then s; is nonnegative and simple, and s; . We will show thats; 7 f. Clearly,
limj 0085 < f. On the other hand, for any m,

m
lim s; > hm Z » ka
k:1

]—)OO
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Therefore, lim;j . s; > f. It follows from Theorem 10.20 that IE sjdp —
Jefdw. Since Y} _, fi > sj, we obtain

00 J
fokdu = lim fokdu > lim fsjdu - ffdu.
k=1E 7% k=1E U E
This proves the desired inequality, and the theorem follows.

The next three results are essentially corollaries of Theorem 10.24.

Theorem 10.25 If [ f dpexists, and if E = | J Ey is a countable union of disjoint
measurable sets Ey, then

[fau=3"[fdu.
E Ey

Proof. Suppose first that f > 0. Let fy = fxg, on E, so that f; is measurable
and nonnegative, and f = ) f¢. By Theorem 10.24,

ffdu= fokdu= fodu-

For arbitrary measurable f, the existence of [; f du implies that of fEk fdw in

fact, the integrals of f* and f~ over any Ej are majorized by those over E.
Moreover, by the case already considered,

[fran=>"[frdw,  [fau=3 [f du
E Ex E Ex

Since at least one of these sums is finite, the conclusion follows by subtraction.
(Compare Theorem 5.24.)

Theorem 10.26  If fi are measurableand 0 <fi /' f on E, then [ frdu — [ fdp.

Proof. If [ fidu = +oo for some k, the result is obvious. We may therefore
assume that each f € L(dp). Write f = fi+ Y _peo (fk —fi—1)- Since each term on
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the right is nonnegative, we obtain from Theorems 10.24 and 10.23(vi) that

ffdu = ffl du+ i (ffkdu - ffk-1 du) = lim ffkdu-
E E E

k=2 \E E

Theorem 10.27 (Monotone Convergence Theorem) Let {f;} and f be measur-
able functions on E:

(i) Suppose that fi /' f a.e. (W) on E. If there exists & € L(E; dw) such that fy > ¢
on E for all k, then [ fidpw — [ fdu.

(ii) Suppose that fi \ f a.e. (1) on E. If there exists & € L(E;dw) such that fy < ¢
on E for all k, then [ frdu — [ fdp.

Proof. The proof of (i) follows by applying Theorem 10.26 to the functions
fx — &. The details are as in the proof of Theorem 5.32. Part (ii) follows by
applying (i) to the functions —f.

Theorem 10.28 (Uniform Convergence Theorem) If fy € L(E;dw), k =
1,2,...,and {fi} converges uniformly to f on E, W(E) < 400, then f € L(E;du) and

Jefedw — Jfdu.

The proof is the same as for Lebesgue measure (see Theorem 5.33) and is
omitted.

Fatou’s lemma and the Lebesgue dominated convergence theorem are true
for abstract measures. They are stated below without proof; the proofs are like
those of Theorems 5.34 and 5.36.

Theorem 10.29 (Fatou’s Lemma) If {fi} is a sequence of measurable functions on
E and there exists ¢ € L(E;dw) such that fi > ¢ a.e. (w) on E for all k, then

f(hm inf f) dy < lim inf j jrm
7 k—o00 k— o0 7

The case ¢ = 0 (i.e., fr > 0) is of special importance. In this case, we obtain
the following useful corollary.

Corollary 10.30  Let {fi} and f be nonnegative measurable functions on E such
that fy — f a.e. (w) in E. If [ frdw < M for all k, then [; f dp < M.



252 Measure and Integral: An Introduction to Real Analysis

Theorem 10.31 (Lebesgue’s Dominated Convergence Theorem) Let ¢, {fx},
and f be measurable functions on E such that | fx| < da.e. (w)on Eand ¢ € L(E;dyp).
Then

6] ‘[E(hm infy, oo fk) dp < liminfy_, oo fEfk dp < limsupy_, o fEfk dp
< Jp(imsupy_, o fi) At

(i) Iffx — f a.e. (w) in E, then [;frdu — [ fdu.

Corollary 10.32 (Bounded Convergence Theorem) Suppose that {f} and f are
measurable functions on E such that fi — f a.e. () in E. If W(E) < +o0 and there
is a constant M such that | fy| < Ma.e. (w) in E, then [ frdu — [ f du.

We conclude our brief study of integration with respect to abstract mea-
sures by defining L*(E;duw) = LP(E, Z,dp), 0 < p < 00, to be the collection of
all measurable real or complex-valued f such that [ | f |p dp < +00. We set

1/p
1Fllp = £l = (j P du) , 0<p<co.
E

When p = oo, L*°(E;dp) is defined to be the collection of all measurable f
such that || f|| ,, < +o0c, where

[ flloo = Il flloo,Edp = ess Sup IfI =infoc: u(x € E: [f(x)] > o) =0}

We leave it to the reader to check that |[f| < |flle a.e. (1) in E and that
for every o < ||fl|loc, there is a set Eq CE such that p(Ey) >0 and |f|> «
on E,.

Observe that IV is LV (-7, X, dpu) when .7 is the set of integers, X is the set
of all subsets of ., and W(E) is the number of elements of E.

For 1 < p < oo, Holder’s and Minkowski’s inequalities hold:

I8l < Iflplgllys  1f +&lp < 1fllp 4 1&llp

1/p+1/p" = 1. Moreover, L? is a Banach space withnorm || - [, if 1 < p < oo.
In general, L” is not separable (see Exercise 9). However, if L? is separa-
ble, we can define orthogonality, linear independence, completeness, Fourier
coefficients, and Fourier series as usual, obtaining Bessel’s inequality and
Parseval’s formula, as well as the usual result relating L? and 2.
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10.3 Absolutely Continuous and Singular Set Functions and
Measures

We now turn our attention from the familiar results earlier to some new ones
arising naturally in the context of abstract measure spaces.

Let (7, %, u) be a measure space, and let ¢ be an additive set function
on X. If E € X, then ¢ is said to be absolutely continuous on E with respect to
w if $(A) = O for every measurable A C E with u(A) = 0. Note that this
definition has a somewhat different pattern from the one for Lebesgue mea-
sure (see p. 130 in Section 7.1). However, in Theorem 10.34, we shall obtain a
reformulation of the present definition in terms of the old one.

On the other hand, ¢ is said to be singular on E with respect to w if there is a
measurable set Z C E such that p(Z) = 0 and ¢(A) = 0 for every measurable
A C E—Z. Thus, ¢ is singular if it is supported on a set of p-measure zero, so
that E splits into the union of two sets, Z and E — Z, one with p-measure
zero and the other with the property that ¢ is zero on each measurable
subset of it.

As examples, note that if f € L(E;dp), then the function ¢(A) = fA fduis
absolutely continuous on E with respect to . If Z is any measurable subset
of E with n(Z) = 0 and  is any additive set function on the measurable
subsets of E, then the function ¢(A) = P(A N Z) is singular on E with respect
to .

We list several simple properties of such set functions in the next theorem.

Theorem 10.33

(i) If ¢ is both absolutely continuous and singular on E with respect to y, then
& (A) = 0 for every measurable A C E.

(ii) If both \p and ¢ are absolutely continuous (singular) on E with respect to p,
then so are b + ¢ and cd, where c is any real constant.

(iii) ¢ is absolutely continuous (singular) on E with respect to w if and only if its
variations V and V are, or, equivalently, if and only if its total variation V is.

(iv) If {dx} is a sequence of additive set functions that are absolutely continuous
(singular) on E with respect to y, and if $(A) = limy_, o Gr(A) exists for
every measurable A C E, then ¢ is absolutely continuous (singular) on E with
respect to (L.

Proof. For part (i), suppose that ¢ is absolutely continuous and singular
on E. Let Z be a subset of E with u-measure zero such that ¢(H) = 0 if
H is measurable and H C E — Z. If A is any measurable subset of E, then
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dA) = ¢ANZ) + d(A—-Z). Since ¢ is absolutely continuous and
L(ANZ) =0 wehave ¢ (AN Z) = 0. Moreover, since A—Z C E—Zand ¢
is singular, we have ¢p(A — Z) = 0. Hence, ¢(A) = 0, and part (i) is proved.
The proofs of parts (ii)—(iv) are left as exercises.

The next two theorems give alternate characterizations of absolutely con-
tinuous and singular set functions.

Theorem 10.34  An additive set function ¢ is absolutely continuous on E with
respect to W if and only if given € > 0, there exists & > 0 such that |p(A)| < ¢ for
any measurable A C E with u(A) < .

Proof. The sufficiency of the condition is immediate since if p(A) = 0, then
wWA) < dforall 5 > 0, so that |¢(A)| < ¢ for all e. Consequently, $p(A) = 0.
For the converse, suppose that ¢ is absolutely continuous, but that there is
an ¢ > 0 for which no § > 0 gives the desired result. Then, taking § = 27
fork =1,2,..., there would exist measurable Ay C E with w(Ax) < 27% and
|d(Ap)| > €. Let A = lim sup Ag. Then, for any m,

1(A) < u( U Ak) <Y 27k,
k=m k=m

so that pu(A) = 0. Therefore, ¢(A) = 0. Assuming for the moment that ¢ > 0,
we obtain from Theorem 10.2 that $(A) = d(limsup Ax) > limsup ¢p(Ax) >
e. This contradiction establishes the result in case ¢ > 0. For the general
case, the variation V of an absolutely continuous ¢ is absolutely continuous
(by Theorem 10.33(iii)) and nonnegative. Since |¢p(A)| < V(A), the theorem
follows.

Theorem 10.35 An additive set function ¢ is singular on E with respect to | if
and only if given € > 0, there is a measurable subset Eq of E such that p(Ep) < €
and V(E — Eg; &) < e. (Recall from p. 240 in Section 10.1 that V(E — Eo; ) is
equivalent in size to supsg_gy aex [P(A)D.

Proof. If ¢ is singular, there exists Z C E with u(Z) = 0 such that V(E —
Z;$) = 0. Taking Eg = Z, we obtain the necessity of the condition. To prove its
sufficiency, choose for eachk = 1,2, ... a measurable E; C E with p(Ey) < 2k
and V(E — Ex; ) < 27, Let Z = lim sup Ey. Since Z C |2, Ex for every m, it
follows as usual that p(Z) = 0. Moreover, by Theorem 10.2,
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V(E — Z; b) = V(E — limsup Ex; &) = V(liminf(E — Ex); d)

< liminf V(E — Ex; &) = 0.

Hence, ¢ is singular with respect to p, which completes the proof.

For any measurable set E and any additive set function ¢, the next the-
orem gives a useful decomposition of E in terms of the sign of ¢. In order
to motivate it, let us first consider the special case when ¢ is the indefinite
integral of an f € L(E;dp): ¢(A) = fA fdu for measurable A C E. Let-
ting P = {x € E : f(x) > 0}, we see that $(A) > 0 for any measurable
A C P and that $(A) < 0 for any measurable A C E — P. It follows that
V(E;$) = V(P;¢) = b(P) and V(E;§) = V(E — P;¢) = —¢(E - P). As a
simple consequence, since P = {x € E : f(x) = f T (x)}, we have

VE ) = [frdn, VES) = [f du

E E

The splitting E = P U (E — P) is the sort of decomposition of E that we have
in mind. For an arbitrary ¢, there is the following basic result.

Theorem 10.36 (Hahn Decomposition) Let E be a measurable set and let ¢ be
an additive set function defined on the measurable subsets A of E. Then there is a
measurable P C E such that $(A) > 0 for A C P and $(A) < 0for A C E—P.
Equivalently, V(P; ) = V(E — P; ¢) = 0. Hence,

V(E; §) = V(P; d) = d(P),

V(E ) =V(E-P,dp)=—-p(E-P).

Proof. Denote V(A) = V(A;¢) and V(A) = V(A;d) for measurable sets
A C E. For each positive integer k, choose a measurable Ay C E such
that d(A;) > V(E) — 27%. Then V(4;) > V(E) — 27%. Since V is additive,
V(E — Ay) = V(E) — V(Ay) < 275 Moreover, by the Jordan decomposi-
tion (Theorem 10.8), V(Ax) — V(Ax) = ®(Ar) > V(E) — 27, and therefore
V(Ap) <27 Let P = liminf A. Since V is nonnegative, Theorem 10.2 implies
that V(P) < liminf V(Ag) = 0. Also,

V(E — P) = V(E — liminf Ay) = V(limsup(E — Ay)) < V( U (E— Ak))

k=m
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for any m. Therefore, for any m, by using Lemma 10.4, we obtain

VE-P) <)Y VE-A) <), 27k

k=m k=m

which gives V(E — P) = 0 and completes the proof.

In the next theorem, we use the Hahn decomposition to split E into sets
where ¢ is comparable to p. In doing so, we assume that ¢ is nonnegative
and p is finite; thus, we are in fact dealing with two finite measures.

Theorem 10.37  Let & be a nonnegative additive set function defined on the mea-
surable subsets of a measurable set E, and let y be a measure with w(E) < +o0.
Then given a > 0, there is a decomposition E = Z U (\Up2; Ex) of E into disjoint
measurable sets such that

(i) wz)=0
(i) atk — DHu(A) < d(A) < akp(A) for measurable A C E, k=1,2,...

Proof. We may assume thata = 1 by considering ¢/a. For each positive inte-
ger k, let Yr(A) = $(A) — ku(A) for measurable A C E. Since ¢ and p are
finite and additive, 1 is an additive set function. By the Hahn decomposi-
tion, there is a set Py C E such that Yx(A) > 0if A C P and Py(A) < 0if
A C E — Py. Thus, ¢(A) > ku(A) if A C Py and ¢(A) < kn(A)if A C E — Py.

Now, let Qx = Ui Pm for k = 1,2,..., and observe that P C Qi and
Or \.. We will show that ¢p(A) > ku(A) if A C Ok, and ¢p(A) < ku(A) if
A C E — Q. To see this, write

Qk = Pr U Pry1 —P) U Py — Prp1 — P U - -

and note that the terms on the right side are disjoint. Hence, if A C Qx, we
may write A = U;’f:k Am, where the Ay, are disjoint and A, C Py, by simply
intersecting A with each such term of Q. Then

GA) =D d(A) = Y mu(An) = kY wAn) = ku(A),
m=k m=k m=k

so that $(A) > ku(A) for A C Q, as claimed. On the other hand, if A € E—Qy,
then A C E — Py, so that $p(A) < ku(A). This proves the assertion above.
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We can now give the decomposition of E. Let Z = (2 Qx = limsup Py,
and write

E=ZU(E-QDUQ1—-Q)U(Q2—-Q3)U---
=ZUE{UEyUE3U---.

The terms in this decomposition are disjoint. If A C E1(= E—Q1), then $(A) <
1(A) by what was shown earlier, and ¢(A) > 0 by hypothesis. For k > 2, we
have Ex = Q-1 — Qk = Qx_1 N (E — Q). Hence, if k > 2 and A C Ej, then
®(A) > (k—1) uw(A) due to the fact that A C Q_q; also, d(A) < ku(A) due to
A C E — Q. Finally, since Z C Q for all k, we have $(Z) > ku(Z) for all k.
Since ¢ is finite, it follows that p(Z) = 0, which completes the proof.

To give some idea of the significance of the last result, write A = (AN Z)U
[Uk (A N Ey)] for measurable A C E. Then

(A = ANZ) + Y GANE.

The set function o(A) = ¢ (A N Z) is singular with respect to p. By (ii) of the
theorem, ¢ is absolutely continuous with respect to p on each Ej. Hence, the
set function o defined by

a(A) = G(A) — o(A) =Y dANEy)

is absolutely continuous with respect to p since if p(A) = 0, then p(A N Ey) =
0 and ¢(A N Ey) = 0 for all k. Note also that (ii) can be written

atk—1) [ du < &) < ak [ du
A A

for measurable A C Ej.

We will now use these ideas to decompose any set function into the sum
of an absolutely continuous part, which will be an indefinite integral, and a
singular part. This decomposition, which is of major importance, is stated in
the following theorem. We assume that the measure p defined on the measur-
able subsets of E is o-finite, that is, that E can be written as a countable union
of measurable sets with finite p-measure.

Theorem 10.38 (Lebesgue Decomposition) Let ¢ be an additive set function
on the measurable subsets of a measurable set E, and let | be a o-finite measure on
E. Then there is a unique decomposition

d(A) = x(A) + o(A) for measurable A C E,
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where o and o are additive set functions, « is absolutely continuous with respect
to w, and o is singular with respect to y. These functions are

x(A) = [fdu,  o(A)=dANZ)
A

for appropriate f € L (E;dw) and Z with w(Z) = 0. Moreover, if & > 0, then f > 0.

Proof. Assuming that such a decomposition exists, we will show it is unique.
If d = x1 + 07 is another decomposition of ¢ into absolutely continuous and
singular parts, then x — &1 = o1 — 0, which (being both absolutely continuous
and singular with respect to p) must vanish identically. Hence « = «; and
0 = 01.

To show that the decomposition exists, first assume that ¢ > 0 and p(E) <
+oo. Takinga = 27", m = 1,2,..., in Theorem 10.37, we may write E as a

disjoint union E = Z™ U ({J, E{"™), where
W(Z™) =0 and 27"(k — Du(A) < b(A) < 27"ku(A) if A c E™.

Givenm, k, m',and ¥, let p = 27"(k — 1),y = 27"k, ' = 27" (K — 1), and
v = 27" 1If the intervals [B,v] and [p’, V'] are disjoint, we will show that
theset A = El(cm) n E,((',n ) has u-measure zero. In fact, we have both

BRA) < d(AD) = yuA) and B'u(A) = dA) = Y'uA).

If, for example, v < f/, the inequalities B'1(A) < d(A) < yu(A) imply that
1(A) = 0. A similar argument applies if v/ < f. Fixing m and k, and setting
m' = m + 1, we see that there are at most four values of k’ such that E,(C’,nH)

intersects E]((m) in a set of positive p-measure, namely, k' = 2k — 2, 2k — 1, 2k,
and 2k + 1. Hence,

(m) (m+1) (m+1) (m+1) (m+1) (m)
Ey 7 CEy y VEy 4 UEy "UEy ; UY Y,

where u(Ylim)) =0.
Let

Z= (Lmj z<m>> U (H Y,ﬁm)> ,

so that u(Z) = 0, and define functions {f;,}>~_; on E by fi,(x) = 27" (k — 1)
if x e E,((m) — Z and f(x) = 0if x € Z. Therefore, if x € E]({m) — Z, then
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fm(x) = 27" (k — 1) and f;,+1(x) takes one of the four values Z_m_lj,j =2k —
3,2k—2,2k—1,2k. Hence, |fi (x) —fn+1(x)] <27"ifx € E,((m) — Z, and so also if
x € E. It follows that {f;;} converges uniformly on E to a limit f. Since f;, > 0,
also f > 0.

Since E is the disjoint union Z U |J; <El(cm) —Z) and ¢ is absolutely
continuous on each E,(cm) ,

W) =bANZ) + Y ¢ (an (E - 2))
k

=¢(AmZ)+Z¢<AmE,£m))
P

for measurable A C E. Therefore,

PANZ) + Y 27"k =D (ANE™) < o)
k

=o(ANZ) +Y 2"k (ANE"),
k

which can be rewritten
PANZ) + [fudi < $A) < GANZ) + [ frudi+27"w(A).
A A

Since 1(A) is finite, we obtain from the uniform convergence theorem that
Jufmduw— [, fdu. Therefore,

O(A) = HANZ) + [ fdu,
A

which proves the theorem in case ¢ > 0 and n(E) < +oo.

If § > 0and W(E) = +oo, then E can still be written as a disjoint union
E=U Ej with u(EJ-) < 400, since E is o-finite. Hence, there exist Z]- C E;,
1(Zj) = 0, and nonnegative f; on E; such that for all measurable A C E,

PANE)=dANZ)+ [ fdu
AﬂE]-
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Letting Z = Z andf = Zf]-xgj, we obtain u(Z) =0, f > 0, and

$(A) =) GANE) =) H(ANZ)
+>° j fjdu:cb(AmZ)Jrffdu.
A

AﬂEj

Of course, f is integrable since ¢ is finite. The proof is now complete if ¢ > 0.

For an arbitrary ¢, apply the decomposition to each of V and V, and sub-
tract the results. By the Jordan decomposition, we obtain ¢(A) = IA fdp +
0(A), where f € L(E;du) and o is singular with respect to p. It remains to
show that there is a set Z, uw(Z) =0, such that c(A) = ¢ (AN Z). Let Z be the
set of p-measure zero corresponding to o in the definition of a singular set
function. Then 0 (AN Z) =0(A) and fAmZ f du+ o(A) =0. Hence, replacing
Aby ANZin the formula ¢p(A) = [, fdu+ o(A), we obtain 0(A) = (AN Z).
This completes the proof. For a result concerning the uniqueness of f, see
Exercise 6(a).

We have already noted that the indefinite integral of an integrable function
is absolutely continuous. The following fundamental result gives a converse:
namely, in a o-finite space, the only absolutely continuous set functions are
indefinite integrals.

Theorem 10.39 (Radon-Nikodym) Let ¢ be an additive set function on the
measurable subsets of a measurable E, and let . be a o-finite measure on E. If ¢ is
absolutely continuous with respect to , there exists a unique f € L (E; dw) such that

O(A) = [ fdn
A

for every measurable A C E.

Here, the function f is called the Radon—Nikodym derivative of ¢ with respect
to .

Proof. The result follows from the Lebesgue decomposition. In fact, $(A) =
fAf du+ ¢ (AN Z) for appropriate f € L (E;dp) and Z with p(Z) = 0. Since ¢
is absolutely continuous, we have ¢ (AN Z) =0, so that ¢ (A) = IA f du. For
the uniqueness of f, see Exercise 6(a).

If v and p are two measures defined on the same family of measurable
sets, we say that v is absolutely continuous with respect to p on a measurable
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set E if v(A) = 0 for every A C E with u(A) = 0. If v is finite, Theorem
10.34 implies that a necessary and sufficient condition for v to be absolutely
continuous with respect to p is that given ¢ > 0, there exist & > 0 such that
V(A) < eif u(A) < 8. The necessity of this condition may fail if v is not finite;
see Exercise 12.

We say that two measures v and p are mutually singular on E if E can be
written as a disjoint union, E = E1 U E, of two measurable sets with v(E;) =
w(E2) = 0. The reader can check that the following analogue of Theorem
10.35 is valid: two measures v and p are mutually singular on E if and only
if given € > 0, there are disjoint measurable E; and E; with E = E; U E; and
V(E1) < €, u(Ep) < e.

We also note that if v and p are mutually singular on E and if g € L (E; dv),
then the set function [, gdv is singular with respect to 1. To see this, write
E = Eq UEy, where E; and E; are disjoint with v (E1) = p(Ep) = 0. Setting
Z = Ey,wehave u(Z) = 0 and v(A) = 0 for every measurable A C E-Z = E;.
Hence, fA gdv = 0 for such A, which proves the assertion.

We have the following analogue of the Lebesgue decomposition.

Theorem 10.40 Let v and p be two o-finite measures defined on the measurable
subsets of a measurable E. Then there is a unique, nonnegative measurable f on E and
a unique measure o on the measurable subsets of E such that o and p are mutually
singular on E and v(A) = [, f du+ o(A) for every measurable A C E. Moreover,

[gdv=[gfdu+ [gdo
A

A A

whenever [, g dv exists.

Before giving the proof, we add several remarks based on the theorem.
First, [, f duis an absolutely continuous measure with respect to psince f > 0.
Next, if E = Z U (E — Z), where w(Z) = o(E — Z) = 0, then o has the form

0(A) =v(ANZ) formeasurable A CE,

as can be seen by replacing A by A N Z in the decomposition of v and
observing that 0(A) = c(ANZ) + 0(A — Z) = o(A N Z). Note also that if
v(E) is finite, then f € L(E;dn). Finally, if ¢ € L(E;dv), then g € L(E; do) since
0(A) < v(A) for all measurable A C E. In this case, the second formula in the
theorem implies that gf € L(E; dp) and expresses the Lebesgue decomposition
of [, g dv with respect to .

Proof. If v(E) < +oo, the Lebesgue decomposition implies that v(A) =
fAfdu + o(A) for measurable A C E, where f > 0,f € L(E;dw), and o
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and p are mutually singular. If v(E) = +o00, then since v is o-finite, we have
E = |JE; with E; disjoint and v(E;) < +o0. Choose Z; C E; and f; on E; such
that u(Z;) =0, fj > 0 and

V(ANE) = f fidn+v(ANZ;) formeasurable A C E.
AﬁEj

LetZ=UZjand f = }_fjxg;. Then w(Z) = 0, and adding over j, we have

V(A) = ffdu+ V(ANZ) = ffdu+ o(A),
A A

as claimed. The proof of the uniqueness of f and o is left as an exercise.

If ¢ is the characteristic function xp of a measurable set B, the formula
in question, namely, [, ¢dv = [,&fdun + [, gdo, reduces to V(AN B) =
fAmB fdu + o(A N B), which we know to be valid. Hence, the formula is
also valid for any simple measurable g and, therefore, by the monotone con-
vergence theorem, for any measurable ¢ > 0. Now let ¢ be any measurable
function for which [, gdv exists. Then at least one of [, g* dvand [, g~ dvis
finite, and the formula for ¢ follows by subtracting those for ¢* and g~

Corollary 10.41 Let v and p be two o-finite measures defined on the measurable
subsets of a measurable E.

(i) Then v is absolutely continuous with respect to W on E if and only if there is
a nonnegative measurable f such that v(A) = [, fdu for every measurable
A C E. In this case,

Jgdv=[gfdu
A A

for any measurable g and A C E for which [, g dv exists.

(ii) Let g € L(E;dv). Then [,gdv = [,g&f du for some nonnegative f and all
measurable A C E if and only if [, gdv is absolutely continuous with respect
to .

Proof. Let v(A) = [,fdu+ o(A) be the decomposition given by Theorem
10.40. Part (i) follows from Theorem 10.40 since o = 0 if and only if v is
absolutely continuous with respect to p. Part (ii) follows from the fact that
the formula [, gdv = [, ¢fdu + [, gdo is the Lebesgue decomposition of

Jagdv.
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10.4 The Dual Space of I/

If B is a Banach space (or, more generally, a normed linear space) over the
real numbers, a real-valued linear functional | on B is by definition a finite
real-valued function I(f), f € B, which satisfies

I(fi+ ) =1(h) +1(f), (af) =al(f), —00 < & < 400.

Note that [(0) = 0.

A linear functional ! is said to be bounded if there is a constant ¢ such that
[I(F)] < cl|fll for all f € B. Abounded linear functional / is continuous with
respect to the norm in B, by which we mean that if ||f — fx| - Oask — oo,

then I(fy) — I(f), since |I(f) — I(f)] = I(f — f)|l < clIf —fkll = 0.

The norm ||1|| of a bounded linear functional | is defined as

Il = sup [I(F)]. (10.42)
If1<1

Since f/|| f|| has norm 1 for any f # 0, and since / is linear, we have |I|| =

supy.0 1)1/ 11 £1.

The collection of all bounded linear functionals on B is called the dual space
B’ of B. We shall consider the case when B = L¥ = L7 (E; dp) and for simplicity
restrict our attention to real-valued functions. Our goal is to show that if 1 <
p < oo and p is o-finite, then the dual space (L*)" of L7 can be identified

in a natural way with L”, 1/p + 1/p/ = 1. The main tool in doing so is the
Radon-Nikodym theorem. The first result is the following.

Theorem 1043 Let1 < p < oo, 1/p+1/p = 1. Ifg € LF (E;dw), then the
formula

If) = [ fedn
E
defines a bounded linear functional | € [LF(E;dw)]". Moreover, |[I|| < |Iglly-

Proof. This follows easily from Holder’s inequality and the linear properties
of the integral: we have

1P| = =< Igllp I fllp,

ffg dp
E

and therefore |[I|| < [Igll,-
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The theorem shows that with each ¢ € ¥, we can associate a bounded
linear functional, I(f) = [ fg du, on LP. If pis o-finite on E, the correspondence

between g and [ is unique (see Exercise 6) and defines an embedding of ¥ in
(L?)'. We now give the characterization of (L*)’, 1 < p < oc.

Theorem 1044 Let1l < p < oo, 1/p+ 1/p) = 1, and let u be o-finite. If
1 € [LP(E;dw)Y, there is a unique g € ¥ (E; dw) such that

I(f) = ffgdu-
E

Moreover, ||I|| = |Iglly, and therefore the correspondence between | and g defines an
isometry between (LP) and LY.

Proof. Suppose first that p(E) < 4o00. Let! € (LP)" and write ||/|| = c. Define
a set function ¢ on the measurable sets A C E by

$(A) = 1(xa).

Note that ¢ is finite; in fact, |d(A)| < clixally, = cu(A)P. Clearly, ¢ is finitely
additive. To show that it is countably additive, suppose that A = (g2 Ak, Ak
measurable and disjoint. Write A = (J{L; A0 U (U241 Ak) = A’'UA”. Then

B(A) = A) + GA") =D b(AR) + G(A").

k=1

Since |p(A”)| < c(A)YP (with p #00), Theorem 10.11 implies that ¢p(A”)
tends to zero as m — oco. Hence, ¢(A) = > 721 ¢(Ax), which shows that ¢
is countably additive. The fact that |p(A)| < cpu(A)1P also implies that ¢ is
absolutely continuous with respect to .

By the Radon-Nikodym theorem, thereisa g € LY(E; dp) such that ¢(A) =
J4gdu for measurable A C E. This means that I(xa) = [rxagdu, so that
I(f) = [ fgdu for any simple measurable f. To show the same formula holds
forany f € L, we first claim thatg € L and || glly <c.Ifp > 1, choose simple

functions h; with 0 < Iy 7 | g|7’/. Let {gx} be the simple functions defined by

Sk = h;/p signg.
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Then [gi, = llrly”, and
[ sigdu=1g0 <cgel, = el
E

Since gxg = hi/p|g| > h,i/pﬂ/p/ = hy, we obtain ||h|l; < C||hk||}/p- We may
assume that ||fi|l; # O for large k. (Otherwise, ¢ would be zero a.e. (i), and

our claim would be obviously true.) Hence, dividing both sides of the last

inequality by ||hk||}/p, we have IIhk||i/p/ < ¢, so that |g| y < ¢ by the monotone
convergence theorem. This proves the claim when p > 1. The casep = 1 is
left as an exercise.

To show that I(f) = [ fgdp for any f € L¥, choose simple f; converging to
f in L? norm (see Exercise 8). Then I(fy) — I(f), and [pfigdn — [fgdu by

Holder’s inequality:

P

[figdu— [fedu| < [If—f| || du < | fi—f], I3
E E E

The fact that the formula holds for f; thus implies that it holds for f by passing
to the limit.

To complete the proof for the case wW(E) < 400, it remains to show that
= c and that the correspondence between I and g is unique. However,

”g p’
we already know that | g”p, < ¢, and the opposite inequality follows from
Theorem 10.43. For the uniqueness of the correspondence, see Exercise 6(c).
If p(E) = +o0, then since p is o-finite, there exist E; /' E with p(E;) < +o0.
Let ! € [LP(E)]'. We may view functions in L? (E)) as those functions in L7 (E)
that vanish outside E;. Since the restriction of / to LP(E;) is a bounded linear

8ill, < 1, such that

functional, there is a unique 8 € ¥ (Ep,
1) = | fgjdu
Ej

for every f in L that vanishes outside E;. For such f, the fact that E; C Ej;1
also gives

I(f) = f fgjr1dpn = ffgjﬂ dp.
Ej

Ej
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Therefore, gj11 = gj a.e. (1) in E;. We may assume that gj;1 = gj everywhere
in E;. Define g(x) = gj(x) if x € E;. Then g is measurable and it follows that
“g”p/ < |ll|l. If f € LP(E), then

Ifxe) = [ fejdn = [ fedn.

E; Ej

Since fx; converges in L¥ to f and fE fgdu — [-fedu (note that fg € L! by

Holder'’s inequality), we obtain I (f) = [.fg du in the limit. Therefore, by
Theorem 10.43, ||| < ”g’ ., so that ||| = HgH and the proof is complete.

We remark that the proof of Theorem 10.44 fails in several places if p = oo,
for example, at the place where we conclude that ¢ is absolutely continuous.
In fact, the theorem itself is false when p = oo, that is, not every bounded
linear functional on L* can be represented [ (f) = [ fgdu for some g € L!; an
example is indicated in Exercise 18.

10.5 Relative Differentiation of Measures

Lebesgue’s differentiation theorem, Theorem 7.11, states that if f is locally
integrable in R™, then

| fpdy =f00 ae,

= |Qx<h>| o

where Qx(h) is the cube with center x and edge length h. We will now study
an analogue of this result for other measures on R". Specifically, if p and
v are two o-finite measures on the Borel subsets of R", we will study the
existence of

lim Y (Qx(1) (h)
10 1(Qx ()

and its relation to the Lebesgue decomposition of v with respect to p.

We will follow the method used to prove Lebesgue’s differentiation theo-
rem. To do this, we must find a replacement for Vitali’s lemma: the simple
form of Vitali’s lemma (see Lemma 7.4) relies heavily on the fact that expand-
ing a cube concentrically by a factor (say 5) only enlarges its Lebesgue
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measure proportionally, whereas no such relation may hold for general mea-
sures. In order to bypass this difficulty, we shall present a covering lemma
that is purely geometric in nature, that is, which makes no mention of
measure.

We consider only cubes whose edges are parallel to the coordinate axes
and write Q = Qx for those with center x. We say that a family K of cubes has
bounded overlaps if there is a constant ¢ such that every x € R™ belongs to at
most ¢ cubes from K. Thus, K has bounded overlaps if and only if

Z xo(x) <c¢ forallx e R™
QeK

Theorem 10.45 (Besicovitch Covering Lemma) Let E be a bounded subset of
R™ and let K be a family of cubes covering E that contains a cube Qx with center x
for each x € E. Then there exist points {xx} in E such that

(i) EcUQx
(i) {Qx,} has bounded overlaps

Moreover, the constant c for which ) XQy, = Ccan be chosen to depend only on n.

In order to prove this, it will be convenient to first prove the following
lemma.

Lemma 10.46  Let {Qx}p2, be a sequence of cubes with centers {x} such that if
j <k then xi ¢ Qj and |Qk| < 2|Qj|. Then {Qk} has bounded overlaps, and the
constant c for which ) xq, < c can be chosen to depend only on n.

Proof. We will consider only n = 2; the case n # 2 is similar and left as an
exercise. Let Qk,,m =1,2,..., be those Qj that contain the origin and whose
centers are in the first quadrant, and let h;; denote the edge length of Q.
Then Q, covers at least the region

Az[uywosxf%Mﬁfys%m}

Hence, no Q,, can have its center outside the set {(x, ) : 0 <x <h;,0 <y <
hi1}; otherwise, we would have h;, > 2h; for some m, so that |Qy,, | > 4|Qx, |, a
contradiction. Therefore, the center of each Qi ,m > 2, must lie in one of the
regions A, B, C, or D indicated in the following illustration:
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hy

v

%lﬁ h

The center cannot be in A since that would contradict the assumption that
the center of Q,, m > 2, does not lie in Q, . If it lies in B, then since Qy,, con-
tains 0, it covers B, and so there is at most one Qy,, with center in B. Similar
arguments hold for C and D. Applying the same reasoning to each quad-
rant, we see that there are at most 16 cubes in {Qy} that contain the origin.
By translation, the same holds at any point of the plane, and the lemma is
proved.

Proof of Besicovitch’s lemma. Let
ocp = sup {|Qx| : x € E}.

If &1 = 400, there are arbitrarily large Qx, and since E is bounded, we simply
choose one that contains E. If o1 < 400, write E; = E and choose x; € E;
with |Qx, | > «1/2. Let

Ey =E1 — Qx, oo =sup{|Qx|:x e Ep}.

The definition of &y assumes that E; # @. Then «y > 0 and we choose x, € Ej
with |Qy,| > /2. Proceed in this way, obtaining at the kth stage

k-1

Ex=Er1—Qx, =E—[JQu ox=sup{IQul:x€El,
j=1

Xy € Ey, |ka| > o /2.

We continue the process as long as Ex # ¢J. Note that o > 0if Ex # ¢.
Since x; € E, we have x; € E]- for all j < k. Therefore, ka| <o <o <

Z‘ij if j < k. It follows that {Q,, } satisfies the hypothesis of Lemma 10.46
and so has bounded overlaps. It remains only to show that E C (J Qx,.
If some Ej, is empty, then E is contained in the union of the Qx,, k < ko — 1.

If no Ej is empty, then Qy, is defined for every k = 1,2,.. .. Since oy \( and
/2 < |Qx| < o, it follows either that |Qy,| — 0 or that there exists & > 0
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such that |ka’ > b for all k. The second possibility cannot arise; otherwise,
E would not be bounded since x;¢ € E but xi is not in any Qx]. withj < k.
Hence, ka| — 0, or equivalently, oy — 0.If x € E — |J Qx,, then x € E for
all k. Therefore, |Qx| < o for all k, which means that |Qx| = 0. This shows that
E — |J Qx, is actually empty and completes the proof.

A Borel measure 1 on R™ (i.e., a measure on the Borel subsets of R™) is
called regular if

w(E) = inf {1(G) : G D E, G open}

for every Borel set E. If p is regular and E is a Borel set with p(E) < oo, then
any open set G that satisfies E C G and p(G) < W(E) + ¢ for some ¢ > 0 also
satisfies W(G — E) < ¢ since W(G — E) = w(G) — w(E) when w(E) < oo.

Now suppose that p is a o-finite regular Borel measure. Let E be a Borel
set and ¢ > 0. We will show that there is an open set G satisfying E C G and
w(G — E) < ¢ whether u(E) is finite or not. In fact, since u is o-finite, we can
write E = (J{° Ex with pu(Ey) < oo for each k, and then by choosing open sets
Gy with W(Gy —Ex) < 27X, we obtain an openset G = | J{° Gy such thatE C G
and G — E C U7 (G — Ex), and consequently

oo o0
£
WG—B) =) uGe—E) <) r=¢
1 1

as desired. Moreover, since the complement CE of E is also a Borel set, it
follows that there is an open set G with CE ¢ G and u(é — CE) < ¢. Then
the closed set F defined by F = CG satisfies F c E and wE — F) < ¢ since
E—F =G — CE. In case wW(F) < oo, we obtain pw(E) — w(F) < e. In any case,
either both p(E) and n(F) are finite or p(E) = w(F) = oo. Therefore, for any
Borel set E,

WE) = sup ()
F closed
FCE

if uis a o-finite regular Borel measure.

From now on, we will consider two regular Borel measures p and v on
R™ that are finite on the bounded Borel sets. Let Qx () denote the cube with
center x and edge length k. We will also assume that

(i) W(Qx(h)) > 0forxe R™, h > 0.
(ii) Sets of the form

{x : sup M > oc}, {x : limsupm > oc}, etc.,
n=0 H(Qx()) h—0 H(Qx(h))

are (Borel) measurable.
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Assumption (ii) is made for simplicity and is not necessary (see Exercise 17 of
Chapter 11). Also, the assumption that u and v are regular is redundant (see
Theorem 11.24 and the remarks following it). We assume that p and v are
finite on the bounded Borel sets in order to ensure their finiteness on every
Qx(h). Thus p and v are o-finite measures.

We will also use the fact that the class of continuous functions with com-
pact support is dense in L(dp); that is, given f € L(dw), there exist continuous
gk with compact support such that [ | f — g|dp — 0. (See Exercise 27.)

Note that when p is Lebesgue measure and v(E) = [ |f|dx for a locally
integrable f, then supj,.o v(Qx(h))/1(Qx(h)) is the Hardy-Littlewood maxi-
mal function of f (see (7.5)). In the next lemma, we estimate the size of this
expression if p and v are any measures with the properties listed above. The
results we will prove about differentiation are corollaries of this estimate.

Lemma 10.47  Let pand v satisfy the stated conditions. Then there is a constant
c depending only on n such that

(@) pi{x e R":supy.q[v(Qx(h)/m(Qx(h))] > o} < (c/x)V(R™), and
(b) u{x € E : limsupy,_, o [V(Qx(7)/1w(Qx(h)| > o} < (¢/x)V(E)

for any Borel set E C R™ and any « > 0

Proof. (a) Fix « > 0, and let

S = R": — .
{X R Q)

If B is any bounded Borel set and x € S N B, there is a cube Qx with center
x such that v(Qx)/1(Qx) > «. Using Besicovitch’s lemma, select {ka} and ¢
such that v(Qx,) > ax(Qx,), SN B C |J Qx,, and ZXka < ¢. We then have

B = u(lJ ka) <) Q) < % > vQx),

Zv(ka) = Z I Xkadv <c f dv =cv (U ka) .

U ka U ka

Therefore, (S N B) < cv(|JQx)/e, so that uw(S N B) < cv(R")/«. Letting
B /' R™, we obtain p(S) < cv(R™)/«, as desired.
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(b) Fix & > 0, and let

- V@)
= {x cElmsup s oy “} '

If v(E)= + oo, there is nothing to prove. Otherwise, choose an open set
G D E with v(G) < Vv(E) + ¢, and let B be a bounded Borel set. If xe T N B,
there is a cube Qx such that Qx C G and v(Qx)/1(Qx) > «. By again using
Besicovitch’s lemma, there exists {Qy,}, Qx, CG, such that W(TNB) <
cv([JQx)/«. Therefore, (T N B) <cv(G)/« < c[V(E) + ¢]/«. The result now
follows by first letting ¢ — 0 and then letting B ~ R™.

The first result about differentiation of measures is the following.

Theorem 10.48  Let v and  satisfy the stated conditions. If v and p are mutually
singular, then

V)
hlj}r%) m =0 a.e. (}l)

Proof. Since v and p are mutually singular, there is a set Z with v(R" — Z) =
nw(Z) = 0. Let E = R™ — Z, and consider the sets

- Q)
To = {xe Etlimaup SO -

Q) }
T= E :lims — " > 0%.
{X 5P W(Qun)

oc}, o >0,

By Lemma 10.47(b), we have w(T«) < c¢v(E)/x = 0. Since T is the union of
the T, for any sequence ox — 0, it also has p-measure zero, and the result
follows.

Theorem 10.49  Let  satisfy the stated conditions, and let f be a Borel measurable
function that is integrable (dw) over every bounded Borel set in R™. Then

. 1
5 g ) S =S ae
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Proof. Assume first that f € L (R";dw). For any integrable g, we have

1
[ fau—foo| < [ 1f—glan
U'(Qx(h))Q o (QX(h))Qx(h)
| gdu—foo)
H(Qx(h))Q )

If g is also continuous, the last term on the right converges to |g(x) — f(x)| as
h — 0. Hence, letting L(x) denote the limsup as & — 0 of the term on the left,
we obtain

L —9ld — .
(X)_ili}g u(Qx(h))Q{h)lf gldu+1g(x) — f(x)

Therefore, the set S where L(x) > ¢, ¢ > 0, is contained in the union of the
two sets where the corresponding terms on the right side of the last inequality
exceed ¢/2. From Lemma 10.47 and Tchebyshev’s inequality, we obtain

s <e(5)” [i-slans ()7 [1-slan

As noted before the proof of Lemma 10.47, g can be chosen such that [z,
| f — gl du is arbitrarily small. Hence, 1(S¢) = 0 for every € > 0, and the result
follows.

The case when f ¢ L(R"; dp) is left as an exercise (cf. Theorem 7.11).

Combining the last two theorems, we obtain the main result:

Corollary 10.50  Let v and w satisfy the stated conditions. If v(E) = [ f du+0(E)
is the decomposition of v into parts that are absolutely continuous and singular with
respect to u, then

v(Qx(h)

hl_IR) m =f(x) a.e. (H.)
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Exercises

1.
2.

Prove Theorem 10.13.

Ameasure space (., X, i) is said to be complete if ¥ contains all subsets of
sets with measure zero; that is, (., £, ) is complete if Y € ¥ whenever
Y CZ, Z e ¥, and w(Z) = 0. In this case, show that if f is measurable and
g = f a.e. (w), then g is also measurable (cf. Theorem 4.5 and Chapter 3,
Exercise 34). Is this true if (7, X, p) is not complete?

Give an example of an incomplete measure space with a measure that
is neither identically infinite nor identically zero.

. Prove Egorov’s Theorem 10.14.

. If (, £, ) is a measure space, and if f and {f;} are measurable and finite

a.e. (1) in a measurable set E, then {f;} is said to converge in p-measure on
E to limit f if

klim wx € E: |[f(x) —fr(x)| > e} =0forall e > 0.
— 00

Formulate and prove analogues of Theorems 4.21 through 4.23.

5. Complete the proof of Lemma 10.18.
6. (a) Iffi,f» € L(dw) and [ fidu = [ fodu for all measurable E, show that

A =fae (.
(b) Prove the uniqueness of f and o in Theorem 10.40.
(c) Let pbe o-finite, and let f1,f> € ¥ dw), 1/p+1/p=11<p<oo.1If
[ figdn = [ frgdu for all g € LP(dn), show that f; = f; a.e. (n).
Prove the integral convergence results in Theorems 10.27 through 10.29
and 10.31.

Show that for 1 < p < oo, the class of simple functions vanishing outside
sets of finite measure is dense in LF (dw). See also Exercise 27.

The symmetric difference of two sets E1 and E; is defined as
Ey AE; = (E1 — E2) U (E2 — Ey).

Let (., X, p) be a measure space, and identify measurable sets E1 and E;
if W(E;AEp) = 0. Show that ¥ is a metric space with distance d(E1, Ep) =
w(E1AEy) and that if pis finite, then LP (.7, X, p) is separable if and only if
¥ is1 < p < oco. (For the sufficiency in the second part, Exercise 8 may be
helpful; for the necessity, let {f;} be a countable dense set in LV (., X, )
and consider the sets {1/2 < fx < 3/2}.)
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10. If ¢ is a set function whose Jordan decomposition is ¢ = V —V, define
[fao=[fav- [fav,
E E E

provided not both integrals on the right are infinite with the same
sign. If V is the total variation of ¢ on E, and if |f| < M, prove that
| Jefdbl < MV.

11. Prove parts (ii)-(iv) of Theorem 10.33.

12. Give an example of a pair of measures v and u such that v is absolutely
continuous with respect to p, but given ¢ > 0, there is no 6 > 0 such that
Vv(A) < ¢ for every A with 1L(A) < 8. (Thus, the analogue for measures of
Theorem 10.34 may fail.)

Prove the analogue of Theorem 10.35 for mutually singular measures
vand .

13. Show that the set P of the Hahn decomposition is unique up to null sets.
(By a null set for ¢, we mean a set N such that $(A) = 0 for every
measurable A C N.)

14. Complete the proof of Theorem 10.44 for p = 1.

15. (Converse of Holder’s inequality) Let p be a o-finite measure and 1 <
p < oo.

(a) Show that

7

Il = sup | [ fgdu

where the supremum is taken over all bounded measurable func-
tions g that vanish outside a set (depending on g) of finite measure,
and for which |glly < 1 and [fgdu exists. (If 1 < p < oo and
Iflly < oo, this can be deduced from Theorem 10.44.)

(b) Show that a real-valued measurable f belongs to L7 if fg € L! for all
gel’, 1p+1/p =1
16. Consider a convolution operator Tf (x) = jR“ f(y)K(x—y) dy withK > 0. If
1<p<ooand |Tf|, < M|fll, for all f, show that || Tf |, < M||f|l, forallf,
1/p+1/p’ = 1. (Use Exercise 15 to write || Tf ||, = Supjjg|, <1 | Jra(THg dx|,
and note that

[apeogmdx= [ (TR (-yf ) dy

Rn Rn

where g(x) = g(—x).)
Find a generalization if the hypothesis is instead that ||Tf[l; < M]|fll,
for all f, where g is a fixed index with 1 < g < oo and g # p.
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17.

18.

19.
20.

21.

22,

Let p be o-finite and define .Z7(dp) to be the class of complex-valued f
with [ |f[Pdp < 400. Let ! be a complex-valued bounded linear functional
on £P(dp). If 1 < p < oo, show that there is a function g € 44 (dw)
such that I(f) = [ fgdp. (Here, as usual, we define [hdp = [hidp +
i [hydwif h = hy + ihy with by and hy real-valued.) (Hint: Reduce to the
real case.)

Give an example to show that (L*°)’ cannot be identified with L! as in
Theorem 10.44. (Consider L*°[—1, 1] with Lebesgue measure, and let ¢
be the subspace of continuous functions on [—1,1] with the sup norm.
Define I(f) = f(0) for f € €. Then [ is a bounded linear functional on
%, so by the Hahn—Banach theorem*, ] has an extension I € (L*°[—1,1])’.

If there were a function g € L'[—1,1] such that I(f) = f_ll e dx for all

f € L*[-1,1], then we would have f(0) = Lllfgdx forall f € €. Show
that this implies that g = 0 a.e., so that/ = 0. The functional / is called the
Dirac d-function.)

To show that (L*®(E;dx))’ and L(E;dx) are not isometrically isomor-
phic, one can combine the following three facts: LY(E; dx) is separable;
L*°(E; dx) is not separable; and, a Banach space is separable if its dual
space is separable. For the latter, see the references in the footnote below,
Theorem 8.11 on p. 192 of the first, or Theorem 3.26, p. 73, of the second.

Complete the proof of Theorem 10.49.
Under the hypothesis of Theorem 10.49, prove that

1
i ) [ 1fp = fooldu =0 ae. (.
Qx()
Derive an analogue of the Besicovitch Covering Lemma for the case
of two dimensions (x,y) when the squares Q) are replaced by rect-
angles R(yy)(h) centered at (x,y) whose x and y dimensions are h and
h?, respectively. Use this result to prove that under the hypothesis of
Theorem 10.49,

im ———— [ fdu=f(ry) ae (w.

h—0 U'(R(x,y) (h)) Ry o)

Let pbe a measure and A be aset with0 < p(A) < co. Letf be measurable
and bounded on A, and let ¢ be convex in an interval containing the
range of f. Prove that

* (see, e.g., Theorem 2.5, p. 33 of M. Schechter, Principles of Functional Analysis, 2nd edition,
Graduate Studies in Mathematics, vol. 36 (2001), American Mathematical Society; or
Theorem 1.1, p. 1, of H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Springer, 2011).
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fAde < fA o) du
d)(fAdH)_ fAdP— .

(This is Jensen’s inequality for measures. See Theorem 7.44.)

23. A sequence {¢y} of set functions is said to be uniformly absolutely continu-
ous with respect to a measure wif given e > 0, there exists 6 > 0 such that
if E satisfies w(E) < 9, then |px(E)| < e for all k. If {fi} is a sequence of
integrable functions on a finite measure space (., £, u) that converges
pointwise a.e. (1) to an integrable f, show that fy — f in L(du) norm
if and only if the indefinite integrals of the f; are uniformly absolutely
continuous with respect to p. (Cf. Exercise 17 of Chapter 7.)

24. Let (., £, 1) be a o-finite measure space, and let f be X-measurable and
integrable over .. Let X be a o-algebra satisfying Xy C X. Of course, f
may not be Xg-measurable. Show that there is a unique function f; that
is ¥p-measurable such that [fgdu = [ fygdu for every Ep-measurable
g for which the integrals are finite. The function fy is called the condi-
tional expectation of f with respect to Xy, denoted fo = E(f|Zp). (Apply the
Radon-Nikodym theorem to the set function ¢(E) = [ fdu, E € Zo.)

25. Using the notation of the preceding exercise, prove the following:
(a) E(af + bg|Xo) = aE(f|Xo) + bE(g]X0), a, b constants.
(b) E(fIZo) = 0iff > 0.
() E(fglXo) = gE(f1X0) if g is £g-measurable.
(d) If =1 C 5y C =, then E(f|Z1) = E(E(f|Z0)|1).
26. (Hardy’s inequality) Let f > O on (0,00), 1 < p < oo, du(x) = x*dx and
dv(x) = x*P dx on (0, 00). Prove there exists a constant ¢ independent of
f such that
() [y~ o fBdhP du) <c 77 P dv), « < -1,

() o7 fB AP dux) < c f57 fF ) dv(x), o> —1.

(For (i), (Jy f(HdbP < cxP~"=1 (7 f(H)Pt" dt by Holder’s inequality, pro-
vided p —m — 1 > 0. Multiply both sides by x%, integrate over (0, co0),
change the order of integration, and observe that an appropriate 1 exists
since & < —1.)

27. If pis a o-finite regular Borel measure on R", show that the class of con-
tinuous functions with compact support is dense in L7 (du), 1 < p < oo.
(By Exercise 8, it is enough to approximate xg, where E is a Borel set with
finite measure. Given ¢ > 0, as shown in Section 10.5 on p. 269, there
exist open G and closed F with F C E C G and W(G — F) < ¢. Now use
Urysohn’s lemma: if F1 and F, are disjoint closed sets in R™, there is a
continuous f on R" with0 <f <1,f =1onF;,f =0on F,.)

28. Let1 < p < oo and p be a o-finite measure for which I (E; du) is separa-
ble, 1/p + 1/p" = 1. Show that every bounded sequence in L7 (E;du) has
a weakly convergent subsequence, that is, if supy || fell, < oo, show that
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29.

30.

31.
32.

there exists {fi,} and f € L¥ such that [;fygdpn — [pfgduforallg e U’i.
(Use the Bolzano—Weierstrass theorem to show that for every g € LV,
there is a subsequence {fi;} depending on ¢ such that Jr J;g du converges.
By using a diagonal argument, {f;;} can be chosen to be independent of

g for all g in any fixed countable subset S of L’ and consequently for all
g € L by choosing S to be dense in L”. Finally, apply Theorem 10.44 to
the linear functional € (L?)’ defined by () = limk]._,oo fE fkjg du.)

Let I7 be defined as in Section 8.3. Explain how Theorem 10.44 can be

used to describe both the action and the norm of a continuous linear

functional on /?,1 < p < oo.

Let X be the o-algebra of Lebesgue measurable sets in R!. For every E €

%, let A(E) denote the Lebesgue measure of E, and define measures R

and A by R(E) = A(EN[0,1]) and A(E) = xg(0):

(a) Show that [, fdA = f(0)A(E).

(b) Is either R or A absolutely continuous or singular with respect
to A?

(c) Identify the functions f and the sets Z in the Lebesgue decomposi-
tions of A with respect to A, of A with respect to A, of R with respect
to A, and of A with respect to R.

Prove the Besicovitch Covering Lemma in case n = 1.

Let w(x) be a nonnegative locally integrable function on R™ such that

fQ w > 0 for every cube Q in R™ with edges parallel to the coordinate

axes. Consider the w-weighted maximal function Myf defined by

Maf () = sup [Ifplwwpdy, xer,
Q

1
fQ w(y) dy

where f is a measurable function and the supremum is taken over all
cubes Q C R™ centered at x with edges parallel to the coordinate axes.
Show that

W dx < S j ool wx) dx, o >0,
{x:Myf (X)> o} & Rn

and that for 1 < p < oo,

1/p

1/p
( | IMuf GO P60 dx) <C < [ 1feorwe dx) :
Rn Rl‘l

where the constant C is independent of w,f, and «. (Compare Lemma
10.47 and Theorem 9.16.)
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Outer Measure and Measure

11.1 Constructing Measures from Outer Measures

A function I' = I'(A) that is defined for every subset A of a set .7 is called an
outer measure if it satisfies the following:

(i r'A) =0, I@ =0.
(ii) T'(Ay) <T(Ap) if Ay C Ap.
(i) T'(JAx) <> T'(Ap for any countable collection of sets {Ay}.

For example, ordinary Lebesgue outer measure is an outer measure on the
subsets of R". Some other concrete examples will be constructed later in the
chapter.

As with Lebesgue outer measure, it is possible to use any outer mea-
sure to introduce a class of measurable sets and a corresponding measure.
In doing so, we base the definition of measurability on Carathéodory’s
Theorem 3.30. Thus, given an outer measure I', we say that a subset E of
7 is I'-measurable, or simply measurable, if

I'A)=T(ANE)+T(A—-E) (11.1)
for every A C 7. Equivalently, E is measurable if and only if
'(Aj UAy) =T'(A1) + I'(Ay) whenever A1 C E, A, C . — E.
It follows that a set E is measurable if and only if its complement . — E is
measurable.
As a simple example, let us show that any set Z with I'(Z) = 0 is
measurable. In fact, for such Z and any A C .77, property (ii) gives

TANZ)+T(A—2) <T(Z) +T(A) = T'(A).

But by (iii), the opposite inequality I'(A) < T'(A N Z) 4+ T'(A — Z) is always
true, and the measurability of Z follows.

279
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If E is a measurable set, then I'(E) is called its I"-measure, or simply its
measure. The terminology is justified by the following theorem.

Theorem 11.2  Let T be an outer measure on the subsets of 7.

(i) The family of I'-measurable subsets of .7 forms a o-algebra.

(ii) T is countably additive on disjoint measurable sets, that is, if {E} is a count-
able collection of disjoint I'-measurable sets, then T'(J Ex) = >_ I'(Ex). More
generally, for any A, measurable or not,

r(anlUE)=>_r@nEy and
ra) =Y r@aney+r(a-JE).

Proof. Let{Ej} be a collection of disjoint measurable sets, and let H = | ;2 Ex
and Hj= U§<21 Ex, j=1,2,.... We first claim that for every A,

j
T'A) = Z T(ANEp +T'(A - H).
k=1

The proof will be by induction on j. If j=1, the formula follows from the
measurability of E1. Assuming that the formula holds for j — 1, we have

I'(A) =T(ANE)+T(A-E)
j—1

=T(ANE)+ Y T(A-E)NE)+T(A-E)—H_y).
k=1

Since the Ey are disjoint, (A — Ej) N Ex = A N Ey for k < j — 1. Hence, since

(A—Ej) —Hj_1 = A — Hj, we obtain I'(A) = }}_; T(ANEy) + I'(A — H)), as
required. This proves the claim.

Since H; C H, we have I'(A — Hj) > I'(A — H). Using this fact in the
previous formula and letting j — oo, it follows that

F(A)>Y T(ANE)+T(A-H) >T(ANH) +T'(A-H).
k=1

However, we also have I'(A) < I'(A N H) + I'(A — H). Therefore, H is mea-
surable and I'(A) = > 72 ['(A N Ex) + I'(A — H). Replacing A by AN H in
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this equation, we obtain I'(A N H) = Y 2, I'(A N Ey), and the proof of (ii) is
complete.

Note we have also shown that a countable union of disjoint measurable
sets is measurable, and we know that the complement of a measurable set
is measurable. To prove (i), it remains to show that a countable union of
arbitrary measurable sets is measurable. We will use the next lemma.

Lemma 11.3  If Eq and E; are measurable, then so is E; — E».

Proof. We will show that I'(A U B) = I'(A) + I'(B) whenever A C E; — E»
and B ¢ C(E; —E»). Since B = (BNEp) U (B—Ej), we have AUB =
[AU (B — E»)] U [B N Ez]. Hence, since AU (B — E;) C CE; and BN Ep C Ey,
it follows from the measurability of E; that T(AUB) = T'(AU (B — Ep)) +
I'(B N Ejz). However, A C E; and B — E; ¢ C(E1 — E3) — E» C CEjq. There-
fore, since E; is measurable, '(AU (B — E3)) = I'(A) + I'(B — Ez). Combining
equalities and using the measurability of E>, we obtain

['(AUB) =T'(A)+T(B—-Ey) +T'(BNEy =T'(A) +T'(B),

which proves the lemma.

Returning now to the proof of part (i) of Theorem 11.2, recall that the com-
plement of a measurable set is measurable. Since E; U E; = C(CE; — Ep), it
then follows from Lemma 11.3 that E1 U E, is measurable if E; and E, are.
Therefore, any finite union of measurable sets is measurable. Now, let {Ex} be

a countable collection of measurable sets. If H; = U{{:l Eg, then

o0 o0
UE=Hiu| JHn-H)|,
k=1 =1

and since the H; are measurable and increasing, the terms on the right are
measurable and disjoint. Thus, by the case already proved, it follows that
Ur2 ;1 Ex is measurable. This completes the proof of the theorem.

According to Theorem 11.2, an outer measure I' is a measure on the o-
algebra of I'-measurable sets and so enjoys the usual properties of measures.
We also have the following result.

Corollary 11.4  Let ' be an outer measure on ., let {Ex} be a collection of
measurable sets, and let A be any set.
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(i) If Ex /', then T'(A N limEy) = limpoo (A N Ey); if Ex \ and if
I'(A N Ey,) is finite for some ko, then T'(A N lim E) = limy_, o T'(A N Ey).

(i) T(A Nliminf Ex) < liminfg, o (A N Eg); if (AN U,?iko Ey) is finite for
some kg, then T'(A N limsup Ex) > lim supy_, o, I'(A N Eg).

Proof. We will prove the first statements in (i) and (ii); the proofs of the sec-
ond statements are left as exercises. Let Ex be measurable and E . To prove
the first part of (i), we may assume that I'(A N E) is finite for each k; other-
wise, the result is clear. The sets E1, E» — Eq, ..., Exy1 — E, . . . are disjoint and
measurable. Since

(&) oo
lim E = | J Ex = E1 U [U(Ek+1 - E@} :

k=1 k=1

it follows from Theorem 11.2 that

M(ANlimEy) = T(ANE) + Z (AN (Expq — Ep).
k=1

Moreover, since Ex and Ey.;1 — Eg are disjoint and measurable and Ej has finite
measure, we have I'(A N (Ex+1 — Ex)) = T'(A N Ex11) — T'(A N Ex). Therefore,

FANLmE) =TANED + ) [TANEgyr) — TANER]
k=1

= lim (AN Egyq),
k— 00

which proves the first part of (i).

For the first part of (ii), let {Ex} be measurable and define sets X; = ﬂ,?i]
Ex, j = 1,2,.... Then Xj /' liminf Ey, so that by (i), T'(A N liminf Ey) =
limj_, oo I'(A N Xj). But since A N X; C ANEj, we have lim; , o, (AN X)) <
liminf; , o, T'(A N E;), and the result follows.

11.2 Metric Outer Measures

Now let us introduce a new assumption concerning the underlying space .#:
namely, that it is a metric space with metric d. The distance between two sets
A1 and Aj is then defined by

d(Al,Az) = inf{d(x,y) X e Al,y € Az},
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as in Euclidean space (see p. 5 in Section 1.3). An outer measure I" on . is
called a metric outer measure, or an outer measure in the sense of Carathéodory, if

I'(A1 UAy) =T (A1) + I'(A2) whenever d(A1,A>) > 0.

For example, by Lemma 3.16, Lebesgue outer measure satisfies this condition.

An outer measure in a metric space may not be a metric outer measure
and may lack properties (in addition to the defining property) of metric outer
measures. Consider, for example, the case when .7 is the x, y-plane and d is
the usual Euclidean metric in R2. Define

r(A) = A C R?, where Y is the y-axis,

1
dA,Y)

with the conventions 1/0 = oo and () = 0. We leave it as an exercise to check
that r is an outer measure on R2 but not a metric outer measure. Furthermore,
Y and all its subsets are r-measurable (with infinite measure), and no set B C
R%withd(B,Y) > 0is r-measurable. In particular, r does not have the property
in the next result, Theorem 11.5.

Since . is a metric space, it has the topology induced by its metric. Thus,
a set G in . is said to be open if for every x € G, there is a &6 > 0 such that
the metric ball {y : d(x,y) < 0} lies in G. A closed set is by definition the
complement of an open set, and % denotes the c-algebra of Borel subsets of
7; thatis, % is the smallest c-algebra containing all the open (closed) subsets
of .7.

Theorem 11.5 Let T be a metric outer measure on a metric space /. Then every
Borel subset of .7 is T'-measurable.

Since the collection of I'-measurable sets is a o-algebra, it is enough to
prove that every closed set is I'-measurable. To prove this, we will use the
following fact.

Lemma 11.6  Let T be a metric outer measure on a space . with metric d. Let A
be any set contained in an open set G, and let Ay = {x € A : d(x,CG) > 1/k}, k =
1,2,.... Then limy_, o I'(Ag) = I'(A).

Proof. Since G is open, we have Ay /' A. Clearly, limy_, o I'(Ax) < T'(A).
To prove the opposite inequality, let Dy = Ax41 — Ak = 1,2,... Then
d(Dk41,Ax) = [(1/k) — (1/(k + 1))] > O since if x € Ay and y € Dy4q, then

1
= d(x/ CG) = d(x/}/) + d(]// CG) < d(x/y) + k_‘__ll

=1 =
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where the second inequality is true since d is a metric. We also have
A=AUDrUDg 1 U---, T(A) <T'(A)+T D) +T(Dks1)+--- -

If Y T'(Dj) < +oo, then ijk I'(D;) tends to zero as k — oo, and it follows
that I'(A) < limy_, o '(Ag), as desired.

If Y T'(Dj) = 400, then at least one of } | T'(Dy;) and } _ I'(Dy;41) is infinite.
We can therefore choose N so that I'(Dy) + I'(Dn—2) + I'(Dn—4) + - - - is arbi-
trarily large. However, when k > 2, the fact that U;:ll D; C Ay implies that

the distance between Dy, and U;:ll D; is positive. Therefore,

'ODnUDN2UDn_gU---) =T'(DN) +T'(Dn-—2) +T'(DNn_g) +---.

Since An+1 contains DNUDy_2 UDN_4U- - -, it follows that lim " (Ax) = +o0,
and the lemma is proved.

Proof of Theorem 11.5. Let F be any closed set. It is enough to show that I'(AU
B)=T(A) +T'B)forACCF,BCF.If Ay ={x € A:dxF) > 1/k}, then
d(Agx,B) > 1/k, so that I'(Ax U B) = I'(Ax) + I'(B). Therefore, I'(A U B) >
I'(Ax) + T'(B). Letting k — oo, it follows from the lemma that I'(A U B) >
I'(A) +T'(B). Since the opposite inequality is also true, the theorem is proved.

If 7 is a metric space, the notions of upper and lower semicontinuity of
functions can be defined just as in R™. For example, a real-valued function f
defined near a point xg is said to be upper semicontinuous at x if

limsup f(x) < f(xp).

X—>Xp

Here, of course, the notation x — xg means that d(x, xy) — 0. The results of
Theorem 4.14 are valid for metric spaces; for example, f is usc at every point
of . if and only if {f > a} is closed for every a. We thus obtain the following
fact.

Corollary 11.7  Let T be a metric outer measure on .. Then every semicontinuous
function on . is T-measurable.

Proof. Suppose, for example, that f is upper semicontinuous on .. Then
{x : f(x) >a} is closed for every 4, and so is I"-measurable by Theorem 11.5.
Hence, f is I'-measurable. If f is lower semicontinuous, then —f is upper
semicontinuous, and the corollary follows.
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11.3 Lebesgue-Stieltjes Measure

In this section and the next, we will consider two specific examples of outer
measures in the sense of Carathéodory. The first is known as Lebesgue—
Stieltjes outer measure. It elucidates the connection between measures and
monotone functions. The situation is relatively simple for measures on R! and
monotone functions of a single variable, and we shall restrict our attention to
this case. Extensions to higher dimensions are possible but more complicated.

To construct a typical Lebesgue—Stieltjes outer measure, consider any fixed
function f that is finite and monotone increasing (i.e., nondecreasing) on
(—00, +00). For each half-open finite interval of the form (g, b], let

A, b] = Ar((a,b]) = f(b) — f(@).
Note that A > 0 since f is increasing. If A is a nonempty subset of R, let
A*(A) = Af(A) = inf ) Max, bil,

where the inf is taken over all countable collections {(ax, bx]} such that A C
(J(ax, bg]. Further, define A* (@) = 0.

Theorem 11.8  A* is a Carathéodory outer measure on RY.

Proof. We have A* > 0 and A*(?) = 0. First, we will show that if A1 C A,
then A*(A1) < A*(Ap). This is obvious if either A1 = @ or A*(Ay) = +o0.
In any other case, choose {(ax, bx]} such that Ay C (J(ax, bel and Y~ A(ag, bl <
A*(Ap) + €. Then A1 C UGy, by, so that A*(A1) < > Mag, bx]. Therefore,
A*(A1) < A*(Az) + ¢, and the result follows by letting ¢ — 0.

To show that A* is subadditive, let {Aj}]?'il be a collection of nonempty

subsets of R! and let A = | J Aj. We may assume that A*(A;) < +oo for each
j. Choose {(ag{, b;]} such that

Ajc | J@, b and 3 A@, b1 < A*(A) + 27,
k k

Since A C U]»’k(a;(, b;c], we have

A*A) < SN@L ] < Y A4 + e
ik j

It follows that A*(A) < Y A*(Aj) and therefore that A* is an outer measure.
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To show that A* is a Carathéodory outer measure, observe thatif a = ag <
a < ---<ay =b, then

N N
Aa, bl =fb) = f@) =Y [f@) — flax—D] = Y Max_1,a].

k=1 k=1

It follows that in defining A*, we can always work with arbitrarily short
intervals (ay, br]. Hence, if A1 and A; satisfy d(A1, Az) > 0, then given e > 0, we
can choose {(ak, bx]} such that each (a, bx] has length less than d(A, Ay) and

ArUAy @ brl, Y Ay, bl < A*(A1UAg) + ¢

Thus, the collection {(a, b1} splits into two coverings, one of A; and the other
of Ay. Therefore, A*(A1) + A*(A2) < )Y A(ax, bxl, so that since ¢ is arbitrary,
A*(A1) + A*(A2) < A*(A1 U Ap). But the opposite inequality is always true,
which completes the proof.

A}" is called the Lebesgue—Sticltjes outer measure corresponding to f, and its
restriction to those sets that are A}“-measurable is called the Lebesgue—Stieltjes

measure corresponding to f and denoted Af or simply A. Every Borel set in
(—00,00) is Af-measurable by Theorems 11.5 and 11.8. In particular, since
(a,b] is a Borel set, A}‘((a, b)) = As((a, b)) for every (a, b].

We leave it as an exercise to show that the Lebesgue-Stieltjes outer measure
A% corresponding to f(x) = x coincides with ordinary Lebesgue outer mea-
sure in R1. Hence, by Carathéodory’s Theorem 3.30, a set is A*-measurable if
and only if it is Lebesgue measurable.

An outer measure I" defined on the subsets of a set .7 is said to be regular
if for every A C .7 there is a I'-measurable set E such that A C Eand I'(A) =
I'(E). Ordinary Lebesgue outer measure in R" is regular by Theorem 3.8. The
next theorem shows that any Lebesgue-Stieltjes outer measure is regular; in
fact, it shows that any set in R! can be included in a Borel set with the same

Lebesgue-Stieltjes outer measure. Of course, Borel sets are A*-measurable by
Theorem 11.5.

Theorem 11.9  Let A* be a Lebesgue—Stieltjes outer measure. If A is a subset of
R3, there is a Borel set B containing A such that A*(A) = A(B).

Proof. Givenj=1,2,..., choose {(a;(, b;(]} such that

cU@ b S a@, b < ava)+ ;
k k
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Let B; = Uk(a;(, b{(] and B = [ B;. Then A C B and B is a Borel set. Moreover,

AB) = YN B = A A + ;
k

Since B C Bj, it follows that A(B) < A*(A) + (1/)), so that A(B) < A*(A). But
the opposite inequality is also true since A C B, and the theorem follows.

If u is a finite Borel measure on R1, define

fu(x) = p((—o0,x]), —00 <x < +o0.

Note that f,, is monotone increasing and that p((a, bl) = fu(b) — fu(@@). It is
natural to ask if the Lebesgue—Stieltjes measure induced by f,, agrees with
as a Borel measure. An affirmative answer would mean that every finite Borel
measure is a Lebesgue-Stieltjes measure. We shall see later (Corollary 11.22)
that this is actually the case and that the continuity from the right of f,, (see
Exercise 2) plays a role. The next result is also useful.

Theorem 11.10  If f is an increasing function that is continuous from the right,
then its Lebesgue—Stieltjes measure A satisfies

A((a, b)) = f(b) —f(@).

In particular, A({a}) = f(a) — f(a—).

Proof. Since (a, b] covers itself, we always have A((a,b]) = A*((a,b]) < f(b) —
f (). To show the opposite inequality, suppose that (a,b] C (J(ak, bx]. Given
¢ > 0, use the right continuity of f to choose {b}} with

be <b, f(by) > f(by) —e27%

If o’ satisfies a < a’ < b, then [4/,]] is covered by the (ay, b;(), and therefore,

there is a finite N such that [/, b] C (U}, (a, b,). By discarding any unnec-
essary (a, bl’() and reindexing the rest, we may assume that ar41 < b;{ for
k=1,...,N-1.Also,a; < a’'andb < by, sothatf(ar) < f(a") and f(b) < f(b)).
We have

N N
D Nk b = Y Mag, bl = ) [f (b)) — f(@p)]
k k=1 k=1

N-1

= f(bn) = f(@1) + Y _If(0x) — f(a41)].

k=1



288 Measure and Integral: An Introduction to Real Analysis

Now,

fbn) = f(a1) = [fON) — fF(OD] + [f(By) — f@1)]
> —e+[f(b) —f(@a)].

Also, since f(b}) — f(ax41) = 0fork=1,...,N -1,

N-1 N-1 N-1
D If ) — fl@g)l = Y If o) — FO1+ Y _[f (b)) — f(ars1)]
k=1 k=1 k=1

o0
>3 (-2 +0=—c
k=1

Combining estimates, we obtain

D Nag, bl = —2¢ + [f(b) — f@)].
k

Lettinge — Oanda’ — a, wehave ), A(ax, bx] > f(b)—f(a). Hence, A((a,b]) >
f(b) — f(a), and the first statement of the theorem follows. The second state-
ment is proved by applying the first to the intervals (a — (1/k),a],k=1,2,...,
which decrease to {a}. This completes the proof.

Let ¢ be a Borel measurable function defined on R!, and let Ay be a
Lebesgue-Stieltjes measure. Then the integral [ gdAs is called the Lebesgue—
Stieltjes integral of g with respect to Ag.* The next theorem gives a relation
between [ ¢dAs and the usual Riemann-Stieltjes integral [ g df.

Theorem 11.11  Let f be an increasing function that is right continuous on [a, b],
and let g be a bounded Borel measurable function on [a, b]. If the Riemann—Stieltjes

integral j;zb g df exists, then

b
[ san =[5

(a,b] a

Proof. LetD = {xj} be a partition of [a, b], and let m; and M; be the inf and
sup of g in [xj-1, ] respectively. Let

*In some other texts, any integral [fdu of the kind considered in Chapter 10 is called a
Lebesgue-Stieltjes integral. We shall use the terminology only when p is a Lebesgue-Stieltjes
measure.
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Lr = ) mjlf () =G0l Ur = Y- MiIf () —f(xj-1)]

denote the corresponding lower and upper Riemann-Stieltjes sums. Define
functions g1 and g by setting ¢1 = m; in (xj_1,xj] and g2 = M; in (xj_1,x;].
Since f is right continuous, it follows from Theorem 11.10 that

ngdA=Lr, jgzd/\zllr.
(a,b] (a,b]

Therefore, since g1 < g < g2, we obtain Lr < f(a b gdA < Ur. However, as

IT'| — 0, both Lt and Ur converge to fub g df by Theorem 2.29. This completes
the proof.

We remark in passing that a right continuous function f of bounded varia-
tion can be written f =f; — f», where f; and f, are right continuous, bounded,
and increasing. If A; and A, are the Lebesgue—Stieltjes measures corre-
sponding to f; and f,, consider the Borel set function ®=A; — A, and
define

jngZIgdAl —fgd[\z.

If fab gdfi and fab gdf, exist and are finite for a bounded Borel measurable
function g, it then follows from Theorems 11.11 and 2.16 that

b
| gdo = [gdf.

(a,b] a

11.4 Hausdorff Measure

Our second example of a Carathéodory outer measure is Hausdorff outer
measure in R™. To define it, fix « > 0, and let A be any subset of R™. Given
e>0,let

HE (A) = inf )840,
k

where 5(Ay) denotes the diameter of Ak (see p. 5 in Section 1.3), and the inf is
taken over all countable collections {Ax} such that A C | JAx and 6(Ax) < ¢
for all k. We may always assume that the Ay in a given covering are disjoint
and that A = [ Ay.
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If ¢’ < ¢, each covering of A by sets with diameters less than ¢’ is also such
a cover for €. Hence, as € decreases, the collection of coverings decreases, and

consequently H E,f’) (A) increases. Define

Hyo(A) = 3135 H(A).

Theorem 11.12  For « > 0,H« is a Carathéodory outer measure on R™.

Proof. Clearly, Hy > 0 and Hy (%) = 0. If A; C Ay, then any covering of

Ay is also one of A1, so that Hf,f)(Al) < Hgf)(Az). Letting ¢ — 0, we obtain
Hx (A1) < Hx(Ap). To show that H is subadditive, let A = | J A, and choose
a cover of Ay for each k. The union of these is a cover of A, and it is easy
to show that Hf,f)(A) < ZHE,S)(A;() < Y Hu(Ag). Letting ¢ — 0, we get
Hx(A) < Y Hx(Ag). The details of this argument and the proof that Hy is a
Carathéodory outer measure are left as exercises.

H is called Hausdorff outer measure of dimension o« on R", and the corre-
sponding measure is called Hausdorff measure of dimension oc and also denoted
H. It has the following basic property.

Theorem 11.13
(i) If Hx(A) < +oo, then Hg (A) =0 for B > «.
(i) If Hx(A) > 0, then Hp (A) = +oo for 3 < «.

Proof. Statements (i) and (ii) are equivalent. To prove (i), let A= |J A,
0(Ap) < e. If B > «, then

H'(A) < )" 8(ApP < eP7 > 5(40>,

Therefore, Hg)(A) < Py (A). Letting ¢ — 0, we obtain Hg(A) = 0 if
Hy(A) < 400, completing the proof.

The next theorem shows that Hausdorff outer measure is regular, by
showing that any set in R™ can be included in a Borel set with the same
Hausdorff outer measure.

Theorem 11.14  Given A C R™ and o > 0, there is a set B of type G5 containing
A such that Hy(A) = Hy(B).
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Proof. Given ¢ > 0, choose {Ax} such that A = | Ak, 6(Ax) < ¢/2 and
Y 8(An* < HEP(A) + & < Ha(A) +&.

Enclose Ag in an open set Gx with 6(Gr) < (1 + €)3(Ay); this can be done
by letting Gr ={x : d(x,Ax) < €86(Ax)/2}. Let G = |J Gi. Then G is open and
A C G.Since d(Gy) < (1 +¢)e/2 < efor0 < ¢ < 1, we have

HP(G) <) 3G™ <1 +0* ) 5(An™

<A+ e)*[Hx(A) + €].

Now let ¢ — 0 through a sequence {¢;}, and let G(j) be the corresponding
open sets G as above. If B = () G(j), then B is of type Gs and A C B. Also,
since B C G(j) for each j, we have

HYB) < (14 e)*[Hx(A) +¢] fore= g

Letting j — oo, we obtain Hy(B) < H«(A). Since the opposite inequality is
clearly true, the result follows.

If Aisasubset of Rl and A = | J Ay with 8(A) < ¢, then §(Ay) = ||, where
Iy is the smallest interval containing Ax. Hence, in the one-dimensional case,

HY (W) =inf ) ILI° (n=1),

where the I;’s are intervals of length less than e such that A C | JIr. If x = 1, it
follows that H (A) is the usual Lebesgue outer measure of A.InR", n > 1, H,
is not the same as Lebesgue outer measure (see Exercise 10). Nevertheless,
there is a simple relation between the two, which is a corollary of the next
lemma.

Let

H{® (A) = inf ) 8(Q0%,

where {Qx} is any collection of cubes with edges parallel to the axes such that
A C |JQkand §(Qx) < e. Also, let

H, (A) = lin%) HE(A).
£E—>
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Thus, H, is defined in the same way as H«, except that cubes are used instead
of arbitrary sets.

Lemma 11.15  There is a constant ¢ depending only on n and o such that

H(A) < Hy(A) < cH«(A), A CR™
x

Proof. Since every covering of A by cubes is a covering of A, we obtain
Hy(A) < H (A). Any set with diameter 9, say, is contained in a cube with
edge length 25 and so with diameter 2{/n 5. Now let A = J Ak, §(Ap) < e.
Select cubes Q D Ay with 8(Qy) = 2/1 8(Ax). Then

Y 8(A% = @V %Y 8(Q0% = @V T HEY (A,

Therefore, Hg,f) (A) > (Zﬁ)_“H/g‘/ﬁa) (A). Letting e — 0, we obtain Hy (A) >
(2/n)~*H', (A), which completes the proof.

Theorem 11.16

(i) There are positive constants c1 and c; depending only on the dimension n such
that c1Hp(A) < |Ale < coHp(A) for A C R™.

(i) If « > n, then Hy(A) = 0 for every A C R™

Proof. We first claim that for every set A C R",
Hy(A) = inf ) 8(Qu",
" (Qu) 2.5Q

where the inf is taken over all collections {Q} of cubes with edges parallel
to the coordinate axes that cover A, without restriction on the size of 5(Qk).
Let I denote the inf on the right side. It follows easily that H;,(A) > I. To
show the opposite inequality, let {Qx : k = 1,2,...} be a collection of cubes
with edges parallel to the coordinate axes such that A C |J Qk, and let e,1 >
0. Pick cubes {Qy} satisfying Qx C (Qf)° and |Qf — Qx| < 2k for~ each k.
Decompose (Qf)° = Uj ék,]- into the union of nonoverlapping cubes Q ; with
6((~2k/j) < ¢ (and edges parallel to the coordinate axes); see Theorem 1.11 and
the comment after its proof about the size of the initial net of cubes used in its
proof. Then, for each k, we have |Qf| = Z]- |Qkj|, and consequently 8(Q;)" =

Zj 5(@;(,]-)” since for any cube Q, 5(Q)" is proportional to the volume of Q: in
fact, 5(Q)" = n"/2|Q|. Then A C Uk, ék,j and
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HOA) <Y 8(Qk)" =n"?Y |5

kj k

=" " (IQkl +1QF — Q)

k>1

<Y Q" +n".
k

Letting 1 and ¢ tend to 0, we obtain H),(A) < > 8(Qx)". Hence, H,,(A) < I,
and the claim is proved.

Next note that the inf denoted earlier by I satisfies I = inf ) n"?|Qy| =
n"/?|Al, (see Exercise 22(a) of Chapter 3). Consequently, H;,(A) = n"2|Al,
for every A C R™. Part (i) now follows from the fact that H,, and H, are
comparable (Lemma 11.15).

For part (ii), if H,(A) is finite, then Hy(A) = 0 for o« > n by Theorem 11.13.
If Hy(A) = +o0, write A = [ J(AN Q;)), where the Q; are disjoint (partly open)
cubes. Since |A N Qjle is finite, so is Hy(A N Q;). Hence, Hx(A N Qj) = 0 for
o > 1. Therefore, Hx(A) < > Ha(ANQ)) = 0.

It is natural to ask if H (A) is comparable to the expression
inf Y " 8(Ap)%,

where the inf is taken over all coverings {Ax} of A, without any requirement
on the size of the diameters. It is not difficult to see that the answer in general
is no. In fact, this expression is finite for any bounded A, as is easily seen from
covering A by itself. On the other hand, it is clear from Theorems 11.13 and
11.16 that if [Al, > 0, then Hy(A) = 400 for o < n.

However, in case o« = 11, Hy(A) is comparable to the previous expression.
To see this, it is enough by Lemma 11.15 to prove that H,(A) is comparable
to it. But since H,(A) = inf ) 8(Qx)", where {Qx} is any collection of cubes
covering A whose edges are parallel to the axes, this follows from the fact that
inf Y 8(Qp)" and inf ) 5(Ax)" are comparable (cf. the proof of Lemma 11.15).

We remark in passing that Hausdorff measure is particularly useful in
measuring sets with Lebesgue measure zero since these may have positive
Hausdorff measure for some o« < n. For example, it can be shown that the
Cantor set in [0,1] has Hausdorff measure of dimension log 2/log 3 equal to
1; see Exercise 19.

11.5 The Carathéodory—Hahn Extension Theorem

In this section, we will settle the question that arose in the discussion pre-
ceding Theorem 11.10. We recall the situation. Let u be a finite Borel measure
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on R!, and let A be the Lebesgue-Stieltjes measure induced by the function
f(x) = p((—o0, x]). Since f is continuous from the right, we have by Theorem
11.10 that

A(a,b]) = w(@, b)) [=f(b) —f@]

The point in question is whether this implies that i and A agree on every
Borel set in R1. More generally, we may ask if two Borel measures can be
finite and equal on every (a, b] without being identical. It is worthwhile to
consider this question in a still more general context, which we now present.

Let .7 be a fixed set. By an algebra <7 of subsets of .7, we mean a nonempty
collection of subsets of . that is closed under the operations of taking
complements and finite unions; that is, .o/ is an algebra if it satisfies the
following:

() fAe o, thenCA(=.% —A) € o.
(ii) If Ay,..., An € o, then Y| A € .

What distinguishes an algebra from a c-algebra is that an algebra is only
closed under finite unions. It follows from the definition that an algebra is
also closed under finite intersections and differences (relative complements)
and that both the empty set ¢ and the whole space . belong to it.

The collection of finite intervals (a, b] on the line is clearly not an algebra.
However, we can generate an algebra from it by adjoining #, R!, and all inter-
vals of the form (—oo,a] and (b, +00), as well as all possible finite disjoint
unions of these and the intervals (g, b]. This algebra will be called the algebra
generated by the intervals (a, b].

By a measure A on an algebra <7/, we mean a function A which is defined on
the elements of &7 and which satisfies

(i) A(A) > 0and A(¥) = 0,

(i) AMUg2q A0 = > p2q MAx) whenever {A;} is a countable collection of
disjoint sets in &/ whose union also belongs to .<7.

It follows easily that such a A is monotone: if A7 C Ay and Aj, Ay € &7, then
A(A1) < A(A2).

A measure A on ¢/ is called o-finite (with respect to <7) if .7 can be written
& = J Sk with S¢ € o7 and A(Sx) < +o00. For example, any Lebesgue-Stieltjes
measure A on the line is a o-finite measure on the algebra generated by the
intervals (a, b].

Using the ideas behind the construction of a Lebesgue-Stieltjes outer mea-
sure, we can construct an outer measure A* from A. Thus, let A be a measure



Outer Measure and Measure 295

on an algebra &/ of subsets of .. For any subset A of ., define
A*(A) = inf Y NAp), (11.17)

where the infimum is taken over all countable collections {Ax} such that Ay €
o and A C |JAy. It is always possible to find such a covering of A since ./
itself belongs to 7. The facts that < is an algebra and A is monotone allow us
to assume without loss of generality that the sets Ay covering A are disjoint
since Uk>1Ak =A1UA —ADUMA3 - Ay —A)DU---.

Theorem 11.18  Let A be a measure on an algebra </, and let A* be defined by
(11.17). Then N* is an outer measure.

The proof is similar to the first part of the proof of Theorem 11.8 and is left
as an exercise.

While A is assumed to be defined only on .7, A* is defined on every subset
of .7. The next result shows that A* equals A when restricted to <.

Theorem 11.19  Let A be a measure on an algebra <7, and let A* be the correspond-
ing outer measure. If A € <7, then N*(A) = A(A) and A is measurable with respect
to A*.

Proof. Let A € /. Clearly, A*(A) < A(A). On the other hand, given disjoint
Ay € o with A C UAg, let AL = Ay N A. Then A} € &/ and A is the dis-
joint union of the A;. Hence, A(A) = > A(A)). Since A; C Ay, it follows that
A(A) < Y A(Ax). Therefore, A(A) < A*(A), and the proof of the first part of
the theorem is complete.

For the second part, let A € .o7. To show that A is measurable with respect
to A*, we must show that

A*(E) =N (ENA)+A*(E—A) forevery E C ..

Since A* is subadditive, the right side majorizes the left. To show the opposite
inequality, we may assume that A*(E) is finite. Given € > 0, choose {Ey} such
that Ex € o, E C |JEx and Y_ A(Ex) < A*(E) + ¢. Since E and A are in &7 and
(Ex NA) U (Ex — A) = E;, we have A(Ex N A) + A(Er — A) = A(Ey). Hence,

Z)\(Ek NA) + Z?\(Ek — A) < A*(E) + ¢.
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Therefore, since ENA C | J(ExNA)and E — A C |J(Ex — A), it follows from
the definition of A* that

AMENA) +AE —-A) <A(E) +e.
Letting ¢ — 0, we obtain the desired inequality, which completes the proof.

Let A be a measure on an algebra <7, and let u be a measure on a o-algebra
¥ that contains <. Then p is said to be an extension of A to T if u(A) = A(A)
for every A € /. If A\* is the outer measure generated by A and <™ denotes
the o-algebra of A*-measurable sets, it follows from the last theorem that A*
is an extension of A to .&/*. This proves the first part of the following theorem,
which is the main result of this section.

Theorem 11.20 (Carathéodory—-Hahn Extension Theorem) Let A be a mea-
sure on an algebra o7, let N* be the corresponding outer measure, and let o/* be the
o-algebra of N*-measurable sets.

(i) The restriction of N* to </* is an extension of A.

(if) IfAis o-finite with respect to <7, and if ¥ is any o-algebra with o7 C ¥ C /%,
then N* is the only measure on X that is an extension of A.

Proof. As we have already observed, (i) follows from Theorem 11.19. To
prove (ii), which states the uniqueness of the extension, let i be any mea-
sureon X,o/ C X C &/*, which agrees with A on «/. Given aset E € X,
consider any countable collection {Ay} such that E C | J Ax and each Ay € &7
Then

hE) < 1w (JAr) = 3 rao = Y- AAp.

Therefore, by the definition of A*, we have w(E) < A*(E). To show that
equality holds, first suppose that there exists a set A € &/ with E C A and
A(A) < +oo. Applying what has just been proved to A — E (which belongs
to X), we obtain WA — E) < A*(A — E). However,

W(E) + WA — E) = p(A) = MA) = A*(A) = \" (E) + \"(A - E).

Since all these terms are finite (due to the fact that A(A) is finite), it follows
that w(E) > A*(E), so that w(E) = A*(E) in this case.

In the general case, since A is o-finite, there exists disjoint Sy € < such that
& =J Sk and A(Sx) < +00. We may apply the previous result to each E N S
(which is a subset of Sy), obtaining w(E N Sx) = A*(E N Sk). By adding over k,
we obtain p(E) = A*(E), which completes the proof.
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As a corollary, we can answer the questions raised at the beginning of this
section.

Corollary 11.21  Let y and v be two Borel measures on R which are finite and
equal on every half-open interval (a,b], —oo < a < b < +oo. Then w(B) = v(B)
for every Borel set B C R™.

Proof. Such pand v must agree on the algebra generated by the (4, b] and are
o-finite with respect to this algebra. Since the smallest o-algebra containing
all (a, b] is the Borel o-algebra, it follows from Theorem 11.20 that p and v are
identical.

Although we have confined ourselves to n = 1, we note that an analogue
of Corollary 11.21 can be formulated in higher dimensions. See Exercise 18.

Now let i be any finite Borel measure on R!, and define f,, by f,.(x) =
w((—oo,x]). Clearly, wu((a,bl)=f.(b) — f.(@). Moreover, if Ay, denotes the
Lebesgue-Stieltjes measure constructed from f,,, then since f,, is continu-
ous from the right, it follows from Theorem 11.10 that Ag, ((a,b]) = fu(b) —
fu(@). Therefore, by the previous corollary, i and Ay, are identical as Borel
measures, and we easily obtain

Corollary 11.22  The class of finite Borel measures on R is identical with the
class of Lebesgue—Stieltjes measures induced by bounded increasing functions that
are continuous from the right.

See also Exercise 4.

Let 1t be a Borel measure on R! which is finite on every (a,b],—o0 < a <
b < +o0 (equivalently, u is finite on every bounded Borel set). Consider the
restriction of p to the algebra <7 generated by the (4, b], and let u* be the cor-
responding outer measure. The smallest o-algebra containing </ is the Borel
sets #. Thus, & C % C «/*. Since p and u* are measures on % that agree
on &, it follows that p = pu* on #. In particular, if B € %, we see from the
definition of p* (see (11.17)) that

w(B) = inf {Z AR B C | Ak Ax € @7} :

Each Ay e o/ is a countable union of disjoint (a,b]. Hence, we obtain the
formula

w(B) = inf {Z wag, bl : B < | @ bk]}, Be A (11.23)
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We recall (see p. 269 in Section 10.5) that a Borel measure p is said to be
regular if

w(B) = inf{(G) : BC G,G open}, Be Z.

Theorem 11.24  If w is a Borel measure on R which is finite on every bounded
Borel set, then W is regular.

Proof. This is a corollary of (11.23). Given a Borel set B and ¢ > 0, find a cover
{(a, b1} of B such that

> b < u(B) +e.

Since p is finite on bounded intervals, it follows from Theorem 10.11 that
w(a, bl = limg_, 04+ p(a, b + ¢). Hence, by slightly enlarging each (ak, bx], we
see that there is an open set G,G = |J(a, bx + &) for sufficiently small e,
containing B such that

WG) < ) wlag, by + ) < u(B) + 2e.
This completes the proof.
In Theorem 11.24, as in Corollary 11.21, we have limited ourselves ton = 1.

For n > 1, see Exercise 18. In particular, note that the assumption in Section
10.5 on p. 269 concerning the regularity of p and v is redundant.

Exercises

1. (a) Prove the second statements in both parts of Corollary 11.4.

(b) Verify the statements made before Theorem 11.5 about the function
7(A) defined on sets A C R2. (One way to see that a set B with
d(Y,B) > 0 is not r-measurable is to denote the mirror reflection
of B in the y-axis by B* and check that the equation r(B U B*) =
r(B) + r(B*) is false.)

2. Let u be a finite Borel measure on R!, and define fux) = p((—oo,x]),

—00 < x < 400. Show that f,, is monotone increasing, u((a, b]) = fu.(b) —

fu(@), fu is continuous from the right, and lim,_, _o f;.(x) = 0.

3. Let f be monotone increasing on R1.
(a) Show that A¢(R) is finite if and only if f is bounded.
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10.

11.

12.

(b) Letf be bounded and right continuous, let 1 = Ag, and let f denote
the function f,, defined in Exercise 2. Show that f and f differ by a
constant.

Thus, if we make the additional assumption that limy_, o f(x) =0,
then f =f.

If we identify two functions on R! which differ by a constant, prove that

there is a one-to-one correspondence between the class of finite Borel

measures on R! and the class of bounded increasing functions that are
continuous from the right.

Let f be monotone increasing and right continuous on R?.

(a) Show that Ay is absolutely continuous with respect to Lebesgue mea-
sure if and only if f is absolutely continuous on R!. (By absolutely
continuous on R, we mean absolutely continuous on every compact
interval.)

(b) If As is absolutely continuous with respect to Lebesgue measure,
show that its Radon-Nikodym derivative equals df /dx.

Prove that the Lebesgue-Stieltjes outer measure constructed from f (x) =
x is the same as Lebesgue outer measure.

If f is monotone increasing and continuous from the right on R, show
that A}“ (A) = A}’*(A), where A)?* is defined in the same way as AJ’E except
that we use open intervals (ay, by).

If f is monotone increasing and continuous from the right, derive formu-
las for As([a, b]) and Af((a,D)).

Complete the proof of Theorem 11.12.

Show that in R®, n > 1, the Hausdorff outer measure H,, is not identical
to Lebesgue outer measure. (For example, let n = 2, and write A = | Ay,

8(Ar) < e. Enclose A in a circle C; with the same diameter, and show
that " 5(Ap)? > (4/m)|Al,. Thus, H(A) > (4/m)|Al,.)

If A is a subset of R", define the Hausdorff dimension of A as follows: If
Hy(A) =0forall « > 0, let dim A = 0; otherwise, let

dim A = sup{x : Hyx(A) = +o0}.

(a) Show that Hy(A) = 0if « > dimA and that Hy(A) = 400 if & <
dim A. Show that in R™ we have dim A < n. See Exercise 19 in order
to determine the Hausdorff dimension of the Cantor set.

(b) If dim Ay = d for each Ay in a countable collection {Ay}, show that
dim(| J Ax) = d. Hence, show that every countable set has Hausdorff
dimension 0.

Let I" be an outer measure on .¥, and let I'' denote I' restricted to the
['-measurable sets. Since I'’ is a measure on an algebra, itinduces an outer
measure I'*. Show that I'*(A) > I'(A) for A C . and that equality holds
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for a given A if and only if there is a I'-measurable set E such that A C E
and I'(E) = I'(A). Thus, I' = I'*if ' is regular.

13. Let Abe a measure on an algebra 7, and let A* be the corresponding outer
measure. Given A, show that there is a set H of the form " {; Ax; such
that Ay € o/, A C H and A*(A) = A*(H). Thus, every outer measure that
is induced by a measure on an algebra is regular.

14. Prove Theorem 11.18.
15. (a) Show that the intersection of a family of algebras is an algebra.

(b) A collection & of subsets of . is called a subalgebra if it is closed
under finite intersections and if the complement of any set in ¢ is
the union of a finite number of disjoint sets in ¥. Give an example
of a subalgebra. Show that a subalgebra ¢ generates an algebra by
adding ¢, ., and all finite disjoint unions of sets of €.

16. If  is a finite Borel measure on R, show that w(B) = sup u(F) for every
Borel set B, where the sup is taken over all closed subsets F of B.

17. Show that the conclusions of Theorems 10.48 and 10.49, and therefore
also the conclusion of Corollary 10.50, remain true without the assump-
tion (ii) stated before Lemma 10.47. (Show that without this assumption,
the conclusions of Lemma 10.47 are true with p replaced by p*; for
example,

« _ v(Qx(h)) v(R™)
e i - o =)

18. Derive analogues of Corollary 11.21 and Theorem 11.24in R", n > 1. (Use
partly open n-dimensional intervals in place of the intervals (g, b].)

19. Show that the Cantor set C in [0, 1] has the Hausdorff measure of order
log 2/log 3 equal to 1. (In order to show the inequality Hiog2/10¢3(C) <1,
consider Hl(gg)z/log3(C) when ¢ = 3%, k = 1,2,..., and show that the
2k intervals {Ij} of length 37* remaining at the kth stage Cy of construc-
tion of C satisfy > |[}|* = 2k3—kx — 1 if & = log2/log3. A proof of
the opposite inequality is harder. It may be helpful to note that if [ is a
closed interval, containing at its two endpoints intervals from Cj, then

1% > ny(I)/2%, where ni(I) is the number of intervals of Cy contained in
I'and o = log2/log3.)



12

A Few Facts from Harmonic Analysis

12.1 Trigonometric Fourier Series

The Lebesgue measure and integration have been decisive in the develop-
ment of many branches of analysis and are applied there in ever greater
degree. But, conversely, some of the applications have had considerable
impact on the theory of integration. In this chapter, we will consider one topic
where this interdependence has been particularly fruitful: harmonic analysis
(see p. 305 in Section 12.1).

One of the principal goals of harmonic analysis, which is a vast field,
is to represent very general functions f in terms of a collection of simpler
oscillatory ones. The fact that typical representations involve integration of
f accounts for the interrelation of the two fields. Oscillatory behavior of the
simpler functions has advantages: it can help make them independent of one
another, and it can be exploited in order to find particular linear combinations
of them that approximate general functions.

We begin by describing some elementary notions and facts; the concept of
an orthogonal system, and in particular of the trigonometric system, is basic
here.

The notion of an orthogonal system, defined generally on a subset E of
positive measure in R", was introduced in Chapter 8, and we refer the reader
to that place for the definitions and properties of general orthogonal systems,
restating only a few facts here.

A system of complex-valued functions {¢p«(x)}, all belonging to L2(E), is
called orthogonal over E if

=0 a#p

(o, bp) = d)oc(b_ﬁi
! >0 oa=7p.

The second condition means that ¢« # 0.1If (¢ «, «) = 1forall &, the orthog-
onal system is called normal, or orthonormal. If {$p «} is orthogonal, the system
{d«/llP«ll2} is orthonormal. Thus, by merely multiplying the functions of an
orthogonal system by suitable constants, we can normalize it, and formulas

301
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for orthonormal systems can be easily and automatically extended to gen-
eral, not necessarily normal, orthogonal systems. On the other hand, certain
important orthogonal systems very naturally appear, often for historical rea-
sons, in a nonnormalized form, and because of this, it may be desirable not to
insist on the normality of the system under consideration. Let us, therefore,
briefly restate the definitions in this somewhat more general setup.

Since orthogonal systems are countable (see Theorem 8.21), we may index
them by integers. Let ¢1(x), $2(x), ... be an orthogonal system on E C R™
Thus,

0 k1.

dr by =
Ef M>0 k=1

Given any (complex-valued) f € L2(E), we call the numbers
1 J—
%= 5 Ejf br

the Fourier coefficients of f and the series S[f] = ) cxdr(x) the Fourier series of
f, with respect to {¢px}. As before, we write

Y k).

If we set

V=N P, de =20 o= jfll)k, (12.1)

then {\x} is orthonormal over E, and {di} is the sequence of Fourier coeffi-
cients of f with respect to {ix}. Clearly,

dk = Py (12.2)

This set of formulas enables us to rewrite relations for orthonormal sys-
tems in forms valid for general orthogonal systems. Thus, Bessel’s inequality
> |dk* < J; |f1* and Parseval’s formula Y |dx|> = [, |f|* take the forms

YoM = [IFR Y M = [1F2 (123)
E E

The notion of completeness of an orthogonal system (“the vanishing of
all the Fourier coefficients implies the vanishing of the function”) remains
unchanged in the general case, and as in the case of normalized systems, the



A Few Facts from Harmonic Analysis 303

validity of the second formula in (12.3) is a necessary and sufficient condition
for the completeness of {dy}.

Let s, denote the nth partial sum of S[f]. As a corollary of the cor-
responding result for orthonormal systems, we see that the equation
S Mlerl? = Jr | |2 is equivalent to

f|f—sn|2—>0.
E

Thus, if an orthogonal system is complete, the Fourier series of every f € L*(E)
converges to f, convergence being understood in the metric L2. Of course,
this says nothing about the pointwise convergence of ) cx$x(x). On the other
hand, it holds for any rearrangement of the terms of ) cx ¢y since the orthog-
onality and completeness of a system are not affected by a permutation of the
functions within the system.

We shall now consider a special orthogonal system, the trigonometric
system. This name is given to the system of functions

¢ = coskx +isinkx, x € (—oo,00) (k=0, £1, £2,...).

These functions are all periodic, with period 27, and it is immediate that they
form an orthogonal system over any interval Q = (a,a + 2m) of length 27,
since if k and m are distinct integers, then

i(k—m)x a+2m
ikx imx _ i(k—m)x _ e _
ge e dx_ge dx_|:k_m:| =0.

a

The system is not orthonormal since Ay = fQ le*k%|2dx = 27 for all k. Thus,
with any f € L(Q), we may associate its Fourier coefficients

1 — 1 -
=5 [y erar = e [fwe™ar e=0,41,42,..), (12.4)
Q Q
and its Fourier series
+o00 )
ey e (12.5)
—00

In what follows, this series will be designated by S[f], and its coefficients
by Ck [f]
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Observe that if two functions ¢ and  are orthogonal over a set E and if
IE [b|? = fE [P|2, then the pair ¢ £+ 1 is also orthogonal over E, as seen from
the equation

J@+0@ -0 = [108 - [P =0.
E E E

Applying this to the pairs e*** (k = 1,2,...), we see that the functions

1 eikx +e—ikx eikx o e—ikx
g k=1,2,..) (12.6)

or, what is the same thing, the functions

1
X cosx, sinx, ..., coskx, sinkx, ... (12.7)

are orthogonal over any interval Q of length 27t. Using the form (12.6), we
find that the numbers A for (12.7) are

57{,71,7(,....

Thus, any f € L(Q) can be developed into a new Fourier series
1 oo
f~ an + ;(uk cos kx + by sinkx), (12.8)

where

) . (12.9)
g = ;gf(t) cos kt dt, by = %gf(t) sin kt dt.

The numbers a; and by are easily expressible in terms of the coefficients ci
of (12.4):

1
590 =C0, Ak =kt g by =i(ck — cx)- (12.10)
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Hence,

n n n
Z Ckelkx =+ Z Ckelkx + Z C_keflkx
k=1 k=1

k=—n

1 n
= an + ;(ak cos kx + by sin kx),

and the nth partial sum of the series in (12.8) turns out to be the nth symmetric
partial sum of ) cxe™ . The numbers a; = ax[f]1 and by = bi[f] are called the
Fourier cosine and sine coefficients of f, respectively.

To sum up, we may consider the trigonometric system in two forms. One
consists of the functions ¢** (k = 0,+1,+2,...), and the Fourier series has
the form Y"1 ¢;e**, where the c; are given by (12.4). The other consists of
the functions (12.7), the Fourier series is (12.8), and the coefficients ax and by
are given by (12.9). The partial sums of (12.8) are the symmetric partial sums
of (12.5). In both cases, the terms of the Fourier series are harmonic oscillations,
and for this reason, the study of S[f]is called the harmonic analysis of f.

Each form of the trigonometric system has its advantages. For example, if
f is real-valued, then the numbers a; and by are real, while the cx have the
property c_i = ¢x. Note also that if Q = (—7, ) and f is an even function, that
is, if f(—x) = f(x), then

2 7T
o= Of f(Hcosktdt, by=0,
and if f is an odd function, that is, if f(—x) = —f(x), then

2 7T
o =0, b=~ [ £ty sinke .
0

Thus, if f is even, (12.8) reduces to the cosine series %ao + > 524 ax coskx, and
if f is odd, to the sine series Y j.; by sin kx.

Since the terms of a (trigonometric) Fourier series are periodic with period
2m, if we expect to represent a function f by its Fourier series, we may assume
from the start that f is defined everywhere (or almost everywhere [a.e.]) on
the real axis and is periodic with period 27. This amounts to considering the
function as defined on the circumference of the unit circle. We do not distin-
guish between points that are congruent mod 27. By an integrable function,
we shall mean a function integrable over a period. Similarly, the L¥ norm of
a function will mean its L” norm over a period and the familiar definitions



306 Measure and Integral: An Introduction to Real Analysis

of other classes of function such as functions of bounded variation and Lips-
chitz continuous functions will also be restricted to a period. In what follows,
periodic will mean periodic of period 27t.

In the preceding chapters, we proved a number of theorems about func-
tions in LF(R™) and, in particular, in L” (RY). Usually, these results have
analogues for periodic functions, where integrals over R! are replaced by
integrals over a period. The proofs are usually in essence identical with those
for R! (or are merely corollaries of the results for R!) and may be left as
exercises.

We would like to stress one point. The definition of a general orthogo-
nal system presupposes that the functions in the system are of class L2. This
makes it possible to define Fourier coefficients for any f € L2. If f is not in
L?, it may be impossible to define its Fourier coefficients with respect to
certain orthogonal systems. The situation is different for special orthogonal
systems. For example, in the case of the functions {eikx }, which are bounded,
the coefficients ¢, are defined for any f that is merely integrable over Q and,
in particular, for any f € LF(Q), 1 < p < oo. Thus, the trigonometric system is
richer in properties than general orthogonal systems.

Some simple developments are important for the general theory of Fourier
series. We consider two here and refer the reader to Exercise 5 for others.

Example (a). Let f be periodic and equal to %(7‘( — x) for 0<x<2m,
with f(0) =f(2m) =0. Since f is odd, its Fourier series is a sine series, and
integration by parts gives

7T 7t

2 r1 1 1 1
bkz;tojz(ﬂ—x)sinkxdng %—oncoskxdx =3
Thus,
o) +o0 ik
Slnkx 1 e
[y =Y
k=1 —00

where }~" denotes 3

Example (b). Let f be periodic and equal in (—m, 7r) to the characteristic
function of the interval (—h,h),0 <h <m. Then f is even, and if k # 0, its
cosine coefficient is

h .
ax = zfcoskxdx = zsmkh.
7

0
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Since ag = 2h/m, we obtain

Series of the form

400 ) 1 o0
Z cxe’™, >0 + Z (ay cos kx + by sinkx) ,
—00 k=1

whether they are Fourier series or not, are called trigonometric series. In defin-
ing the convergence of Y+ e, we usually consider the limit, ordinary or

generalized, of the symmetric partial sums 3" ', and once again

n n
. 1

E k™ = Zag + E (ay cos kx + by sinkx) ,

—n

2
k=1

where

1 .
500 =co, Ak =crtcp, be=i(ck—cok).

A finite sum T = 3" cxe™ is called a trigonometric polynomial of order n,
and if |c_,| + |cu| # O, T is strictly of order n. If T is of order n and vanishes at
more than 2n distinct points (i.e., distinct mod 27), then it vanishes identically,
that is, all the ¢y are 0. In fact, Te"™ = Y"  cxe®*¥ is an algebraic (power)
polynomial in z = ¢* of degree < 21, and if it has more than 2n zeros, then it
vanishes identically.

If the numbers a; and by, are real, the trigonometric series

1 o0
S = an + ; (ay cos kx + by sin kx)

is the real part of the power series

1 o0
S0+ ;; (a — iby) 2¥
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on the unit circle z = ¢*. The imaginary part is then the series

oo
Z (ax sin kx — by cos kx) (12.11)
k=1
(with vanishing constant term). If S is written in the complex form 3"+ e~
it is easy to see that (12.11) is

7

+oo

Z(—i sign k)cre™™ (12.12)

—00

(where, by convention, sign 0 = 0). The series (12.11), or (12.12), is said to bNe
conjugate to S. A series conjugate to a trigonometric series S is denoted by S.
If S has constant term 0, then

=-S.

N

It is natural to study the properties of g[f] simultaneously with those of S[f].

One more remark. Properties of functions in LP(R"), and in particular
in LP(RY), are important for the theory of Fourier integrals, which for non-
periodic functions play the same role as Fourier series in the periodic case.
The two theories run largely parallel. In this chapter, we shall limit ourselves
to Fourier series since our primary aim is to show the role that Lebesgue inte-
gration plays in some problems of representability of functions, and both the
results and techniques of Fourier series are sufficiently indicative of the sit-
uation. In Chapter 13, we will study the main aspects of Fourier integrals in
R n>1.

]
12.2 Theorems about Fourier Coefficients

Theorem 12.13  If a periodic f is the indefinite integral of its derivative f' (i.e., if
f is periodic and absolutely continuous), and if f ~ Y cxe™*, then

+o00 )
) adibe™.
—00

In symbols,
SIf'1 = S'lf1,

where S'[f] denotes the result of the termwise differentiation of S[f].
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Proof. Ttis clear that f’ is also periodic and that its constant term equals

27
@m! j f () dx = 2m)~Lf2m) — £(0)] = 0.
0

If k # 0, integrating by parts and observing that the integrated term is zero,
we have

27 27
2m) ! f f e ™ gy = 2m) ik j f () *dx = ikey,
0 0

which proves the theorem.

By repeated application of this result, we see that if a periodic f is the mth
indefinite integral of an integrable function ™, then

S [f(m] = S = Y (k)" ™.

Theorem 12.14  Iff is periodic, f ~ 3 cxe™™™, and if F is the indefinite integral of
f, then F(x) — cox is periodic and

F(x) — cgx ~ Co + Z/ ?—Ilzeik",

where Cy is a suitable constant (depending on the choice of the arbitrary constant of
integration in F) and Y again denotes 2 k40

Proof. Let G(x) = F(x) — cox. The periodicity of G follows from the equation
x+4271

Gx+2m) —Gkx) = f fdt —co(2m) = 2mcy — 2mcy = 0.

Since G is also absolutely continuous, Theorem 12.13 gives

S[G1 =SIG1 = SIf —col = ) _ cxe™.
k0

Hence, S[G] is obtained by termwise integration of Z'ckeik", which leads to
the result, Cy being the constant term of S[F — cpx].
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For the trigonometric system, we have Bessel’s inequality (see (12.3))

+o00 1 27t
2 2
§|Ck| <o Oj |f ()2 dx,

but actually, as we shall see, we also have Parseval’s formula
+o00 1 27
2 2
=— d 12.15
gcm 27Tof|f(X)| x (12.15)

for every f € L?. We know by Theorem 8.31 that this is a corollary of the next
result.

Theorem 12.16  The trigonometric system is complete. More precisely, if all the
Fourier coefficients of an integrable f are zero, then f = 0 a.e.

Proof. Assume first that f is continuous and real-valued, with all ¢y =0. If
f # 0, then |f| attains a nonzero maximum M at some point xp. Suppose,
for example, that f(xp) =M > 0. Let 6 > 0 be so small that f(x) > %M in the
interval I = (xg — 8, xp + 6). Consider the trigonometric polynomial

t(x) =1+ cos(x — xg) — cosb.

It is strictly greater than 1 inside I and does not exceed 1 in absolute value
elsewhere. The hypothesis that all the Fourier coefficients of f are 0 implies
that [ f T dx = 0 for any trigonometric polynomial T, and in particular,

7T
fftNdx=o (N=1,2..).

We claim that this is impossible for N large enough. The absolute value of the
part of the last integral extended over the complement of [ is < 2t- M - 1N =
27tM. If I is the middle half of I, then t(x) > 0 > 1in I, so that

1
Ndy> [ ftNdx > M- 0N|I'| > +oc.
2
] 7

Collecting results, we see that " f#Vdx — +oo; this contradiction shows
that f = 0.

If f is continuous but not real-valued, the hypothesis foh fx)e ™dx =0
for all k implies that fdz " f(x) e~ ™ dx = 0 for all k. By adding and subtracting
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the last two equations, we see that both the real and imaginary parts of f have
all their Fourier coefficients equal to 0 and so vanish identically.

Finally, if f is merely integrable, the hypothesis co =0 implies that the
function F(x) = fox f dt is periodic, and by Theorem 12.14, for a suitable Cy,
the Fourier coefficients of the continuous function F — C are all 0. Hence,
F—Cyp =0, Fisaconstant, and f = F' = 0 a.e. This completes the proof of the
theorem. Another proof is given on p. 340 in Section 12.6.

An immediate corollary is the following result.

Theorem 12.17  Parseval’s formula (12.15) holds for any f € L2,

Parseval’s formula can be written in more general forms, which are,
however, corollaries of (12.15). Thus, besides f ~ Y cxe** e L2, consider
another function ¢ ~ Y die™ e L2. Then, by an argument like that in
Section 8.6 for (8.32),

1 27t +o0 o
= j fgdx=>"ccdy. (12.18)
0 —00

This reduces to (12.15) in the special case f = g.
The completeness of the trigonometric system also gives the next two
theorems.

Theorem 12.19  If the Fourier series of a continuous f converges uniformly, then
the sum of the series is f.

Proof. Let g be the sum of the uniformly convergent series S[f]. The Fourier
coefficients of g can be obtained by multiplying S[f] by e~** and integrating
the result termwise. Thus, c[g] = ck[f] for all k, so that f = g.

Theorem 12.20  If a periodic f is the integral of a function in L?, then S[f] con-
verges absolutely and uniformly. In particular, the Fourier series of a continuously
differentiable function converges uniformly to the function.

Proof. Let f be the integral of g € L%, g~ Y cke™ (co=0). Then S[f] = Co +
> Cre®™, Cr = cr/ik, k # 0. We have 3 lekl? < 400 by Bessel’s inequality, so
that ) |Cy| < +o00 by Schwarz'’s inequality. This completes the proof.

The theorem that follows is of basic importance.
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Theorem 12.21 (Riemann-Lebesgue) The Fourier coefficients cy of any inte-
grable f tend to 0 as k — +oo. Hence, also ay, by — 0 as k — +oo.

Proof. First, we note the obvious but important inequality

27t
1
elf1l < o [ 1f1dx.
0

We will give two proofs of the theorem.

(@) (See also Exercise 15 of Chapter 8.) If f € 1?2, then ¢t — O as
a corollary of Bessel’s inequality (p. 310, Section 12.2). If feL and
e>0, write f=¢+h, where geL? and foz " |h| <e. (This decomposi-
tion can be made in various ways: we may, for example, take M large
enough and define & to be f wherever |f| > M and 0 elsewhere; clearly,
lg| <M, and so g € L?.) Then

cklf] = cklgl + cklhl.
Since c¢x[g]— 0 and |ck[h]| < m~! foh |h| < ¢/2m for all k, the relation

cklf1 — 0 follows.
(b) Observe that

1 271 27t—(7t/k) -
_ 1 ik g L T pikCet-(re/k))
clfl = 7 0jf(x)e dx = o _(T{/k) f (x—i— k> e dx

17 T
_ T\ ,—ikx
= 2n0ff<x+k)e dx.
Taking the semi-sum of the first and third integrals, we obtain
12" T
_ _ ~ —ikx
alfl = Oj [f(x) f<x+ k)]e ax,

WWﬂfﬁTwm—f@+9Mx
0

However, we know that the last integral tends to 0 as k — Zoo (cf.
Theorem 8.19; the analogous result for periodic functions is left to the reader).
This completes the proof.
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Given any finite periodic f, the expression

sup [f(x +h) —f(0)] >0
X, |h| <8

is called the modulus of continuity of f and denoted by w(8) or w(d,f) (cf.
Exercise 17 of Chapter 1). If fisin LF,1 < p < oo, the expression

|h|<b

. e 1/p
sup |:Et f f(x+h) —f))P dx:|
0

is called the L¥ modulus of continuity of f and denoted wy(8,f) or simply w(d).
Clearly, wy,(8) < w(d) and, as is easily seen from Holder’s inequality,

wp(d) < wy(d) ifp<g.

We know that if f € L7, then w,(3,f) — 0 with 5 (Theorem 8.19). The last
inequality in proof (b) of Theorem 12.21 gives

leklf1l < %w <%,f) , lex[f1l < %wl <|_7I<T|’f)' (12.22)

These two inequalities contain the Riemann-Lebesgue theorem in a sharp
form since they quantitatively estimate the magnitude of the Fourier coeffi-
cients of f in terms of various moduli of continuity.

The estimates (12.22) are also useful for families of functions. The fol-
lowing special case deserves a separate mention. A continuous periodic f is
said to satisfy a Lipschitz condition of order «, 0 < x <1, if w($,f) =O0(6%) or,
equivalently, if there is a finite constant M independent of x, I such that

[f(x +h) = f(0)] < MIh|™.

Theorem 12.23  If f satisfies a Lipschitz condition of order «,0 < & <1, then
lek[f11 = O(kI™%).

If x =1, the stronger estimate

leelf1l = o (%)

is valid.
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Proof. The first part follows from the first inequality (12.22). If x = 1, then f
is absolutely continuous (see p. 150 in Section 7.5) and so equals the indef-
inite integral of its derivative f’. Since f’ is bounded (and so is in L?), its

Fourier coefficients tend to zero. Hence, the coefficients of f are o(1/|k|) by
Theorem 12.13.

Theorem 12.24  Ifa periodic f is of bounded variation over a period, then |ck[f]| =
O(1/|kl). More precisely,

lexl < 4
K=ok
where V is the total variation of f over a closed interval of length 2.

Proof. Integrating by parts and taking account of the periodicity of f, we have

7T

_ —ikx _ 1 ¢ —ikx
2nck[f] = Jﬂ e f(x)dx = §7L e " df (x),

where the last integral is a Riemann-Stieltjes integral. Hence,

2mlerlf1] < k1™ [ 1df Gl = 7V

—T7T

It must be stressed that V is the total variation over a closed interval of
periodicity.

12.3 Convergence of S[f] and g[f]

We shall now briefly discuss the problem of pointwise convergence of S[f],
treating side-by-side the parallel problem for g[f] Among many existing
results, we will consider only the simplest. Without loss of generality, we
may restrict our attention to real-valued f. _

We begin by computing the partial sums of S[f] and S[f]. If ar and by denote
the cosine and sine coefficients of f and n = 1,2, . . ., then the nth partial sum
of S[f1is
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1 n
sp(x) = an + ]; (ar cos kx + by sin kx)

1 A n 1 7t -
o jf(t)dt_i_}; {coskx- - Lf(t) coskt dt + sin kx
_7-[ = —

17 _
'%7Lf(t) smktdt}
=lff(t) 1—i—icosk(x—t) dt:lff(t)D (x —t)dt
s 2 pt ) " !
where

1 n
D, () = 3 + Zcoskt.
k=1

In case n =0, we denote sy(x) = %ao and Dy(t) = % The trigonometric poly-
nomial D, is cglled the nth Dirichlet kernel. Similarly, if n = 1,2,.. ., the nth
partial sum of S[f] is

500 = Y (@ sinkx — by coskx) = 711 ff(t) {Z sin k(x — t)} dt
k=1 —7T k=1

1 ¢ ~
= %_L F®Du(x—pat,
where

5,1 ) = Z sin kt

k=1

is the nth conjugate Dirichlet kernel. It will be convenient to define So(x) =0
and Dy(t) =0. Notice that D, and D, are even and odd functions of ¢,
respectively, and that

17 1 7~
- j Dy(hdt=1, = f D, () dt = 0. (12.25)
(e T
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Moreover, D, and f)n are, respectively, the real and imaginary parts of

n n 1_ .
=1 =1

this expression being interpreted as 3 + n when ¢ = 0. Then an elementary
computation gives (even if n = 0)

sin<n+%>t N cos%t—cos<n+%>t
———%, Duth =

Dy(t) =
! 2 sin 5t 2 sin %t

) (12.26)

with D,,(0) = 1+ 4 and D, (0) = 0.
A quicker, though somewhat artificial, method of obtaining the first for-
mula in (12.26) is to multiply D, (t) termwise by 2 sin %t, replace the products

2sin %t coskt by sin (k + %) t —sin <k — %) t, and make use of cancellation of

terms. The formula for 5n(t) can be derived similarly.
Given a function f and a fixed point x, let us consider the expressions

1 1
() = E[f(x+ H+fx—0bl, )= E[f(x +8—flx =0l

as functions of ¢. They are called the even and odd parts of f at the point x,
respectively. Clearly,

flx+1) = bx(t) + (D).
It turns out that the behaviors of ¢(t) and 1y (t) near t = 0 are decisive for
the behaviors of S[f] and S[f], as the case may be, at the point x.

Returning to the formula for s, (x) and making use of the even character of
D, (), we can write

17 17
Snl@) = — j fODatx =yt = — f F(HD(t — x) dt

7T

17 2 ™1
= %_J;Tf(x + D, (t) dt = ;[ br E[f(x +t) —|—f(x — 1D, (t) dt

=2 [ puDuttr
7[0
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The first formula (12.25) immediately gives

2 7T
51 (0) = f00) = = [ [bx(t) —f()] Du(t) dt
0

sin (n+ %)t

—3 dt.
2sin 5t

2 7T
= _0[ [bx(b) — ()]

It will be convenient to modify this formula slightly by replacing n by n — 1
and taking the semi-sum of the two formulas. When n > 1, writing

sf (x) = % [sn(x) + sp—1(X)] = sp(x) — % (ay, cosnx + by sinnx), (12.27)

we obtain, after observing that

1 . 2 7 ot
5 (@n cosnx + by sinnx) = — Of [at) — f] <2 d,
the formula
H#Hoon _ 2 ¢ o sin nt it
51 () —f@) 7TOf[«bx() fo) o .

The right side here is the nth Fourier sine coefficient of the odd function

1 1
[bx () — f(x)] 5 cot Et'

and if this function happens to be integrable near =0, the Riemann-

Lebesgue theorem immediately gives sff (x) — f(x) — 0. Hence, making use
of the fact that a,, b, — 0, we obtain from (12.27) the following basic result.

Theorem 12.28 (Dini’s Test) Let f be periodic and integrable. If the integral
f |px(t) — f(x)] 1cot 1tdt
0 2 2

is finite, then S[f] converges at the point x to the value f (x).
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Since only small values of ¢+ matter here, and since for small ¢t we have
% cot %t ~ t~1 Dini’s condition can be restated in the form

f |d>x(t)t—f(x)| 4t < 400,
0

or what is the same thing

< 4o0. (12.29)

f fat+h+fe—b-%@l
t
0

The following special case is useful. Suppose that f has a jump disconti-
nuity at x, so that the one-sided limits f(x+), f (x—) exist and are finite. Since
changing f at a single point does not affect S[f], we may assume that

1
fx) = E[f(H) +f(x-)],

in which case we say that f has a reqular discontinuity at x. Condition (12.29)
is then certainly satisfied if both

< 400.

f If(x + f)t—f(x-i-)l df < 100, j If(x — f)t—f(x—)l it
0 0

Thus, a corollary of Dini’s test is that if both f(x+) and f(x—) exist and are
finite, and if both of the last two integrals are finite, then S[f] converges at the point
x to the value

fo+) +f(x—)
—

There is a result analogous to Theorem 12.28 for g[f], and_we will be
brief here. Using the formula for s, and the odd character of D,, we have
if n>1 that

cos%t—cos(n—i—%)td

~ 17 ~ 2 7
5@ ==~ [ fr+ 0Dudt = == [he() 2
—7T 0

o1
ZSIIlit
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E#(x) _ S (%) + 51 (%)

2
1
, 1 1 7 cos(n+3)t
:——jll)x(t)—cot—tdt+—j1bx(t) ( 1 ) dat,
™y 2 2 Ty 2sin 5t
provided that
" dt
1 % < oo (12:30)
0

Under this hypothesis, the last term in the preceding equation tends to zero
by the Riemann-Lebesgue theorem, and we obtain (see Exercise 22)

Theorem 12.31  Under the hypothesis (12.30), the series g[f] converges at the
point x to the sum

27 1 1 (fx+b—f fa—b
_%qu)x(t)icotitdt f ron

We denote the last integral, which converges absolutely when (12.30)
holds, by f(x) :

f(x+ t) —f(x— t)
12.32
f( )= Oj 2tan & 5t ( )

This function is called the conjugate function of f and is intimately connected
with the behavior of S[f] We will study the existence and properties of f in
detail later.

Observe that condition (12.30) is of a nature completely different from
(12.29); (12.30) precludes the possibility that f may have a jump at x. See
Exercise 15.

The proofs of Theorems 12.28 and 12.31 are based on the Riemann-—
Lebesgue theorem and give convergence results only at individual points.
They cannot give uniform convergence in an interval without additional and
rather strong assumptions. We consider one such assumption that, though
very restrictive, leads to an important result.

Theorem 12.33 If f=0 in an interval (a,b), then S[f] and g[f] converge
uniformly in every smaller interval (a + €,b — €). The sum of S[f]is 0.
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Proof. The pointwise convergence in (4, b) is a corollary of Theorems 12.28
and 12.31, and it is only the question of uniformity that requires additional
comment. We will consider only S[f]; the argument for S[f] is similar. Fix
¢ > 0. From (12.27), we deduce that

_ 17 in nt
Sn#(xo) _ S (x0) + sp—1(xg) _1 jf(xo +h sin nl it
T[—T( Ztan it

2

1 s
= ff(xo + Hxt)sinntdt, xge@+eb—e),
—7T

where X (t) is periodic, equals % cot %t for € < |t| <m, and is arbitrary for || < e.
Suppose X is defined so that it is continuous everywhere. Write f (xo +)x(t) =
Sx, (), treating t as the variable and x as a parameter, and consider the mod-
ulus of continuity of gy, (t) in the metric L. If we show that w1 (5, Sx,) tends to
0 with  uniformly for xp € (a+¢,b — ¢), then the Fourier coefficients of gy, (f)
will also tend to 0 uniformly for such x (see the second formula (12.22)), and
the theorem will follow. Now, for h > 0,

27t 27t
f |G (E+ 1) — g (1) it = j |f (o + £+ ) x(E+ 1) — f (xo + b x ()| dt
0 0

27

< j |f (o +t+h) — f (o + B)| Ix(t + W)l dt
0

27t

+ f |f (o + )| Ix(t+ ) — x ()] dt.
0

The last integral clearly tends to 0 with /, uniformly in xg, since max [x(t +
h)—x@®)| — 0ash — 0.If M = max [x|, the preceding integral is majorized by

27t 27t
Mf If o+ t+Hh) —f (xo+b)| dt:Mf|f(t+h) — f(b)| dt,
0 0

a quantity independent of xp and tending to 0. This completes the proof.

Two trigonometric series T1 and T> are said to be equiconvergent at a point
xo if their difference T1 — T converges to 0 at x¢. If T; — T merely converges,
but not necessarily to 0, then T7 and T5 are said to be equiconvergent in the wider
sense at xg. Each of two equiconvergent series may be individually divergent,
but the character of divergence is so similar that divergence cancels out in
T —T>.
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Theorem 12.34  Let f1 and f be two periodic functions that are equal in an interval
(a,b). Then S[f1] and SIf,] are uniformly equiconvergent in every subinterval (a +
€, b — ¢); S[f1] and S[f2] are uniformly equiconvergent in the wider sense in every
(@a+e¢eb—e).

This is a corollary of Theorem 12.33, since, for example, S[f1]1 — S[f2] = SI[f]
where f (= fi — f2) vanishes in (g, b).

Thus, if we change the values of f in an arbitrary way outside an interval
(a,b), we do not affect the behavior of S[f]in (a + ¢,b — ¢). Likewise for S[f],
although in this case, if the series converges, the value of the sum may change.
Therefore, the convergence or divergence of S[f] and g[f] ata point xg is a local
property, that is, it depends only on the behavior of f near xj.

L]
12.4 Divergence of Fourier Series
Theorem 12.35 There exists a continuous periodic f such that S[f] diverges (more

specifically, the partial sums of S[f] are unbounded) at some point.

Proof. Let1 < m < n and consider the polynomials

cosmx  cos(m+ 1)x cos(m+n—1)x
Qun(x) = + R e a—
n—1 1
cosm+n+1)x cos(m+n+2)x cos(m + 2n)x
1 2 n ’

We will show that all these polynomials are uniformly bounded, but that their
partial sums are not. To prove the first statement, we need the fact that the
partial sums of the series

> sinkx
>

k=1

which we considered on p. 306 in Section 12.1, are uniformly bounded. This
is an elementary fact that can be proved in many ways (see, e.g., Theorem
12.50(c)), but here we take it for granted. Thus, since
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n

Quin(x) = Z cos(m +n — k)x ; cos(m +n + k)x

k=1
. " sinkx
=2s1n(m+n)xz P

k=1

we obtain |Qy;,»(x)| < C, where C is independent of m and n. On the other
hand, when x = 0, the partial sum

cos mx n cos(m+n—1)x

# _
Qm,n (x) = 1

has the value 1 + (1/2) + - - - + (1/n), which is of order log n.
Now select integers my and ny such that

mp+2n <mpy (k=1,2,..)),

and choose a series of positive numbers o such that > o < +00, o log ny —
+00. (We will make the construction in a moment.) The series

> 0 Qug iy (%)

k=1

then converges uniformly to a continuous function f. In view of the previ-
ous inequality relating my and my 1, the polynomials Qy, i, do not overlap.
Hence, the last series can be written as a single trigonometric series, whose
coefficients (because of uniform convergence) are the Fourier coefficients
of f. Thus, this series, unbracketed, is S[f]. But S[f] has unbounded partial

sums at x = 0 since a single block of terms, namely, ocijffk,nk (x), is of order
ok logng at x = 0.
It is easy to verify that if we set

me =55, m = 2my :2(5"3), o = 1/K2,

then all the conditions required previously are fulfilled. This completes the
proof.

We leave it to the reader to check that if we choose
my = 5k2, ng =2my, o = 1/]8

in the construction above, we get a continuous f whose partial sums are
divergent but bounded at x = 0.
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Theorem 12.35 asserts that the partial sums of S[f] can be unbounded even
if f is continuous. It is of interest to know how unbounded they can be. From
the formula

1 7T
suv.f) = — | foc+ DDu(tydt,
we see that if | f| < 1, then
sn(x, )| < 1 f D ()| dt = Efw) )| dt
n 7 = 7_[_71 n 7_[0 n 7

uniformly in x. The right side here is called the nth Lebesgue constant and will
be denoted by L. Note that L, is actually the value of s,(0, f) for a specific f,
namely, f(t) = sign Dy ().

Theorem 12.36 We have

2 7 4
L, = _I|Dn(t)|dt= —zlogn+O(1) as n — oo.
T T

Proof. Write

2 7 2 7
L":%ofm"(t)'dt:;‘of

27{
z;of

. 1 1
sin({n+= |t 1 dt
2 ZSiH Et
. 1 1 1
sin{n+=|t - dt.
2 2sin 5t t

i (ne L) %2 |
sin — — 4+ —
2 t T
0
-1
Since (2 sin %t) —t1ig nonnegative and bounded for 0 <t <7, and since

| sin (n + %) t| <1, the last integral is nonnegative and majorized by an abso-

lute constant. The change of variable (n + %) t = u shows that the preceding

term equals

(n+(1/2)m .

| sin u|
u

du.

alm
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We may disregard the parts of this integral extended over (0,71) and
(mt, (n + %) 71), since the integrand is bounded. In view of the periodicity

of sin u, what remains can be written as

2”f‘|sinu|du_2f(, . ”i LAY
) u _ﬂosm U+ k7 ’

k=1

For 0 < u < m, the sum in brackets is contained between 7! Y r_p(1/k) and
e Z,’:;ll (1/k) and so differs from 7t~! log n by an amount that is bounded in
n and u. If we now note that fon sinu du = 2, and collect estimates, we obtain
Ly = (4/m*) logn + O(D).

Theorem 12.37 Iff is integrable, then at each point xq of continuity of f,
sn (x0,f) = o(logn).
The estimate is uniform over every closed interval of continuity of f.

Proof. We will prove only the first statement, leaving the second to the
reader. Suppose, as we may, that xo =0, f(xp) =0. Because of our results about
localization (see Theorem 12.34), we may assume that f vanishes outside an
arbitrarily small fixed interval (-9, §). Then

1 i

1
20 = |— HD,(Hdt| < s Dl - D, (t)| dt.
152(0)] ﬂ_féf() 0) ;&péwn _L| )

Since the sup here is small with 4 and the integral is of order logn, the
assertion follows.

12.5 Summability of Sequences and Series

Theorem 12.35 shows that even continuous functions, when developed into
Fourier series, may not be representable by those series in terms of pointwise
convergence. The situation can be remedied by considering generalized sums
of the series. This topic is vast and basic for analysis, and we will study only
a few facts important for the theory of Fourier series.
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Consider a fixed doubly infinite matrix of numbers (real or complex):

Xpo &o1 - Xon
®p o1 e X

(A)
Xm0 Km1 -+ Xmn

Given an infinite sequence of numbers sy, 51, ...,5, ..., we transform it by
using (/) into a sequence 0y, 01, . . ., Oy, . . . by means of the formulas

Om = XS0 + X181 + -+ -+ XSy + -+ (m=0,1,2,..)),

assuming that the series defining o, converges for each m. We may ask what
conditions on (.#) will guarantee that whenever {s,} converges to a finite
limit s, lim 0y, also exists and equals s. An answer is given by the following
theorem.

Theorem 12.38  Suppose that (.# ) satisfies the following three conditions:

@) >, lotmn| < A (for all m, with A independent of m),
(ﬁ) hmm—wo(zn ) =1,
(iif) limy— 0o Xmn = O for each n.

Then for any sequence {s,} converging to a finite limit s, lim oy, exists and equals s.

Theorem 12.38 is due to Toeplitz, and a matrix (.#) that satisfies (i)-(iii) is
called a Toeplitz matrix.

Proof. First of all, since {s,} is bounded, (i) implies that o, exists for each m.
Next, write s, = s + ¢, where ¢, — 0. Then

Om = Z(an (s+¢en) ZSZ(an +Z(xmn£n‘
n n n

Wehaves ), o, — sby (ii), and it remains only to show that the expression

Pm = E Kmn€n
n
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tends to 0 as m — oo. Given & > 0, split p;; into two sums,

Pm = Z Cmn€n + Z Xmn€n = p;% + p;;l/

n<ngp n>ng

say, where ng is so large that |e,,| < 6 for n > ng. By (i),

|p'/r;l| S Z |(an| |£n| S Z |(an|6 SAé

n>np n>np

On the other hand, p;, consists of a fixed number of terms each of which, by
(iii), tends to 0 as m — co. Hence, |p},| < AS for m large enough. Combining
estimates, we see that p;;, — 0, which completes the proof.

Itis useful to note thatif s =0, then condition (ii) is not required in the proof
(and so in the statement of the theorem) above. It is also immediate from the
proof that if {s;} depends on a parameter, and if {s,} tends uniformly to a
bounded limit s, then {0} tends uniformly to s too.

If 0,y — s, we shall say that the sequence {s,;} (or the series whose partial
sums are the s,) is summable to limit (sum) s by means of the matrix (.4, or
simply is summable (.#) to s.

The matrix (.#) is called positive if o, > 0O for all m, n. Condition (i) is then
a corollary of (ii). For positive (.#), Theorem 12.38 also holds if s = +o0; we
leave the proof to the reader.

Two methods of summability are of special significance for Fourier series.

(a) The method of the arithmetic mean. Given sg,5s1,...,5, ..., consider the
arithmetic means oy, 01, ..., Oy, ... defined by

_SotS1+ -+,
B m+1

m=20,1,2,...).

Om

If s, s (—oo<s<+o00), then o, —s. This is clearly a special case of
Theorem 12.38; the matrix is positive.

It is useful (see, e.g., the comments following the proof of Theorem 12.44)
to note that if the s, are the partial sums of a series Y - ux, then

_So+81+"'+5m _uo+(uo+u1)+---+(uo+u1+~-~+um)

om m+1 m+1
1 m
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Thus,

Gm=§<1—m+1>uk, sm—cmzm—Hgkuk. (12.39)

(b) The method of Abel. Given a series ug + uj + - - - + Uy + - - -, consider the
power series

o0
fr = Zunr”, 0<r<l,
n=0

assuming that it converges for 0 <r < 1.If f(r) > sasr — 1, we say that }_ u,
is Abel summable (or A-summable) to sum s. The method can also be applied
to sequences since any sequence {s,} can be written as the partial sums of the
series sgp + (51 —sg) + (5p —s1) + - - -.

Let us now see the relation of Abel summability to the general scheme. We
claim that for 0 < r < 1, the formula

o o0
Z U =1 -7 anr” (Sp =ug+---+uy) (12.40)
n=0 n=0

is valid assuming only that one of the two series that appear is convergent. If
the right side converges, it equals

00 00 00 00
YBUTED SLTAED SEVED pomt:
n=0 n=0 n=0 n=1

oo oo
=50+ Z (Sn —sp—) 1" = Zunr”.
n=1 n=0

Conversely, if Y ;7 u,1" converges for some r, 0 < r < 1, its Cauchy product
with the absolutely convergent series Y o ;7" = (1 — r)~! converges to sum

o0 n o0 o0
Z (Zukrk . r”k> = Z(uo +ur - Fu)r' = anr”.
n=0 \k=0 n=0 n=0

This proves (12.40). Now, if {r;,} is any sequence tending to 1,0 <, <1, then
the positive numbers

un = (1 —1m) rnm
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satisfy conditions (i), (ii), (iii) of Theorem 12.38. We leave the verification to
the reader.

Theorem 12.41 (Abel) If ZZ';O u, converges to sums, —oo < s < +oo, then it
is A-summable to s.

Proof. Suppose first that s is finite. Applying (12.40), we have to show that
(1 =1 Y ;2 osar™ — sasr — 1.Itis enough to prove that this relation holds
for any sequence r = r,m = 0,1,..., where 0 <ry, <1, 1, — 1. Thisis a
corollary of Theorem 12.38 since the numbers o, = (1 — ry)7};, satisfy (i),
(ii), (iii). The matrix oy, is positive, and so the proof holds for s = +oo, the
only prerequisite being that the series ) u,r" converges for 0 < r < 1.

We may also consider the power series
oo
f@=> uz",
n=0

where z is a complex variable lying in the unit disc: z = 7', 0 < r < 1. If f(2)
tends to a limit s as z tends nontangentially to 1, that is, as z — 1 in such a
way that

[1—z|
1—|z|

<C<+4+x (z]<1),

then Y 7 uy is said to be nontangentially Abel summable to sum s. The last
inequality means that, in approaching 1, z remains between two chords of the
unit circle through z = 1. In fact, if z = x4y is a point that satisfies 0 < x < 1

and |1 —z| < C(1—|z|), then |y| < C(1 —x) since |y| < \/y?> + (1 —x)? = [1—z|

and C(1 — |z]) < C(1 — x). Conversely (see Exercise 23(a)), given a constant
v > 0, there are constants C and & with C > 0 and 0 < & < 1 such that if
z=x+iywith|z] <1,1-6 <x < land|y| < y(1—x), then|1—z| < C(1—|z|).

See (12.65) for another characterization of the notion of nontangential
approach of z to 1.

Theorem 12.42 (Abel-Stolz) If > 72, uy converges to a finite sum s, then it is
nontangentially Abel summable to s.

Proof. The proofis identical to that of Abel’s theorem, except that now we use
the formula > u,z" = (1 —2) }_ s,z" and consider any sequence {z,,} tending
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to 1 from the interior of the unit disc. The matrix &y, is now (1 — zy)z),,
conditions (ii) and (iii) of Theorem 12.38 are satisfied as before, and (i) takes
the form

11—zl <
1 — |zl

Theorem 12.43 If 3 7° juy, is summable by the method of the arithmetic mean
to sum s, then it is A-summable to s. If in addition s is finite, then Zflozo U, is
nontangentially A-summable to s.

Proof. Suppose that s is finite. By hypothesis,

_So+51+"'+5n
- n+1

o — s.

Write sg + 51 + - - - + s, = t,. Applying formula (12.40) twice, we have

S 00 st i
D" = A=Y st = A=1?Y tar" = A =n? Y 1+ Dour".
n=0 n=0 n=0 n=0

Again, itis enough to consider any sequence r;; — 1, 0 <, < 1. We then have
to apply Theorem 12.38 with matrix

O = (1 — 1)? (n + )17,

and we easily verify that (x;,,) satisfies conditions (i), (ii), (iii) of Theorem
12.38. The rest of the proof of the theorem is left to the reader.

While convergence of a series implies summability A, the converse is gen-
erally false: for example, ) (—1)" diverges but is A-summable to sum %
since > 2 o(—nN" = 1/1 +71r) — % as r — 1—. If one makes additional
assumptions on the terms of the series, however, the converse will hold. The

following result is both elementary and useful.

Theorem 12.44 (Tauber) If > u, is A-summable to sum s, —oo < s < 400, and
if uy =o0(1/n) as n — oo, then Y_ uy, converges to sum s.
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Proof. Write u, = ¢,,/n,n > 1, where ¢, — 0. Let r,, be a sequence tending to
1, which we shall determine in a moment. Then s,, — f (,) is a transformation
of the sequence ¢;:

n n ]
Sm _f(rm ZZ E Z mzzamnsnr
n=1 n=1 n=1
where
n : 1 n :
ocmnzz(l—rm) ifn <m, O = =T ifn > m.

If we verify conditions (i) and (iii) of Theorem 12.38, then the fact that e, — 0
will give s, — f(rm) — 0, and so also s, — 5. Condition (iii) is obvious for
any {ry,} — 1. As for (i), observing that

1—r"=(1—r)(1~|—---+r”_1)5(1—r)n,

we have

Z|(xmn|§z_(l_rm)”+ Z

n= m+1
<m(1—rm)+—2r

1

= 1— .
m( 'm) + ——— P p—

Hence, if we choose 1, = 1 — (1/m), then ), |otyn| < 2. Thus, condition (i)
holds, and the theorem follows.

If 3" uy is summable by the method of the arithmetic mean and nu, — 0, then
> uy converges. Of course, this is a corollary of Theorems 12.43 and 12.44, but
a direct proof is on the surface: By (12.39),

and the assumption nu,; — 0 clearly implies s;, — 0 — 0. Thus, if 0y — s,
then also s, — s. Actually, this argument shows that if nu,, — 0, then whether
{om} converges or not, the difference s, — 03, tends to 0, that is, the behavior of
{sm} imitates that of {0},}. The same argument shows that if {0} is a bounded
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sequence, and |u,| < A/n forn =1,2,..., then the sequence {s,,} is bounded. The
result that follows lies deeper.

Theorem 12.45 (Hardy) If ) u, is summable by the method of the arithmetic
mean to a finite sum s and if

|un|§ (7’l=1,2,...),

then ) uy converges to s.

Proof. Consider the expressions (which we shall call the delayed arithmetic
means)

Sp+1 +Spa2 + -+ Sputk
Un,k = 2 .

They are easily expressible in terms of the oy:

(0+ +Spsk) — (So+---+sp) n+k+1 n+1
k = X Ontk — X On

Onk =

n+1
= X (Gn+k - Gn) + Optk.

It is clear that if k, is any sequence of integers such that n/k; is bounded as
n — oo, then 0, — s implies that 0, — s. Using the definition of 0,,x, we
also deduce that

(Sn+1—8Sn) + -+ (Sn+k - Sn)
k

Opk = Sn

k
1 .
=5+ X ;(k -]+ 1)”n+j-
]=

Hence, assuming as we may that A =1,

k
k
’Un,k_sn’ = j_21|”n+j| = P
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Letk = k;, = [en], where € > 0O is arbitrarily small and fixed, and [x] designates
the integral part of x. Then n/k, is bounded, and so 0, %, — s. But by taking
k, = [en] in the last estimate, we obtain

lim sup ‘Gn,k,, — sn| <e.
n—oo

Hence, s, — s, and the proof is complete.

We remark in passing that the conclusion of Hardy’s theorem is true if the
assumption of summability by the method of the arithmetic mean is replaced
by A-summability (theorem of Littlewood)*.

12.6 Summability of S[f] and §[f] by the Method of the
Arithmetic Mean

Given a periodic f, we denote by s, (x) = s,(x,f) the partial sums of S[f] and
by 0, (x) = o,(x,f) their arithmetic means. Thus (see p. 315 in Section 12.3
for the definition of the Dirichlet kernel D,,),

17 17
sn(x) = ;[_L F®Dy(x — tydt = %_L F(x+ HDy(t) dt,

1 7 1 7
on(x) = j FOKn(x =ty dt = f Flx+ HKa(h) dt,

where, by using (12.26),

n

1 < 1 1
Ky,(t) = —— D{t)y=—+ sin{7+ = )¢t
n(®) n+1Z: i (n+1)251n1t§ <] 2)
j=0 2" j=0
Note that 0 (x) =a¢/2 and Ko () = 1/2. Multiplying and dividing the last sum

termwise by 2sin %t and using the equation 2sin <] + %) t sin %t = cosjt —
cos(j + 1)t, we get

Ky(t) =

1—cos(n+1t 2 (Sin[(” + 1)t/2]>2 (12.46)

2 o1
(i1 (2singe)” PELL 2singt

*See A. Zygmund, Trigonometric Series, vol. 1, 2nd edn., Cambridge University Press,
Cambridge, U.K., 1968, p. 81.
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The trigonometric polynomial K;(t) is called the nth Fejér kernel. An analo-
gous kernel was considered in (9.11) for nonperiodic functions. The formula

17 17
on(f) = = jf(t)Kn(x —tdt =~ jf(x — HK,(t) dt

is a periodic version of the notion of convolving a function and a kernel. Some
of the facts we will prove below are similar to ones we have already had in
Chapter 9, but rather than connecting the present case with those results, we
shall give brief direct proofs of the theorems we need.

Using the formula D;(t) = % + ZZn:l cosmt, j > 1, the Fejér kernel can be
written (see (12.39)):

n

1 " m 1 |m]| ;
K, = §+Z <1— n+l>cosmt= 3 Z (1— n+1)el’”t,
m=1

m=—n

which should be interpreted as 1/2 in case n = 0. K;; has the following
properties:

(@) Ku(t) = 0; Ky(—t) = Ky (b).
(b) 1/m) [T Ku(t)dt =1.

(c) Ku() < (n+1)/2; Ku(t) < A/[(n + Dt*] (0 < |t| < 7; A an absolute
constant).

Here, (a) and (b) are obvious from the various previously mentioned
formulas for K,. The first part of (c) follows from the formula K, ()=
n+ 17t Z}LO Dj(t) together with the obvious estimate |D;| < j + % and
the identity Z}Lo j = n(n + 1)/2. The second part follows from (12.46) if we
note that | sinu| > (2/m)|u| for 0 < |u| < /2.

From the second inequality in (c), we immediately deduce

() féfmfﬁ Ky (t)ydt — 0 asn — oo for any fixed 5, 0 < & < 7.

These properties of K, lead to the next result, which is basic and related
to Theorem 9.9.

Theorem 12.47 (Fejér) Let f be integrable and periodic. Then

o (x) = f(x)



334 Measure and Integral: An Introduction to Real Analysis

at each point of continuity of f, and the convergence is uniform over every closed
interval of continuity. In particular, 0,(x) tends to f (x) uniformly everywhere if f is
continuous everywhere. If f has a jump discontinuity at xq, then

1
oy (x9) — 3 If (xo+) + f (xo—)].

Proof. Suppose f is continuous on a closed interval I=[a,b] (which may
reduce to a point). Given ¢ > 0, we can find § > 0 so that |f(x +1) —f(x)] < ¢
for x € I, |t| < 8. Using (b), we can write (assuming as we may that 5 < )

1 s
ou() — ) = — [ If(e+ ) — FIKu(hy e

=1f+l [ =o+pu

s T
lt]<d d<|t|=m

Clearly, if x € I, then

1 7T
mﬂggjemmmgifm@wza
|t|<d —Tt

Let M = max|f| in I. Then, forx € I,

1
Bul <= [ (fG+DI+ MK dt

S<|t|=m

1
: n |:5I<nteli§7r K"(t)i| 6<|tf<7t[|f(x + )| + M] dt.

The last integral is majorized by f_nn |f(x+1)|dt+2nM = f_ﬁﬂ |f(®)|dt+27M,
and by (c), the factor preceding it tends to 0 as n — oo. Hence, [B;] — 0
uniformly for x € I, and || + |Bx| < 2¢ for n large enough and x € I. This
proves the first part of Theorem 12.47.

The proof of the second part is similar. We may assume that f (xg) =
% [f (xo+) + f (xo—)] since oy, (xp) is unaffected by changing f at a single point.
Then since K, is even,
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1 s
ou (X0) — f (x0) = o f [f (o +8) +f (xo — ) — f (xo+) — f (xo—)] Ku(t) dt,
0
1 7T
[ow (x0) = f o) = — [[[f (ko + ) = f (xob)| K0
0
+lf|f(x —t) —f (xo—)| Kn(H) dt = a, + b
7'[0 0 0 n n n-

To show, for example, that a, — 0, write foﬂ = foé + fg[ and use the fact that
in (0,5) the difference |f (xo 4+ t) — f (xo+)| is small, while in (5, 7r) we have
max K (t) tending to zero. The argument for b, is similar, and the proof is
complete.

The following result, although it is simple, deserves a statement.

Theorem 12.48

(@) Let f be periodic and integrable. If f(x) < B for all x, then also o, (x) < B. If
f(x) = A, then o,(x) = A. If | f(x)| = M, then |0, (x)] < M.

(b) Iff(x) — Fooasx — xg, then 0, (xg) — Fooasn — oo.

We leave the proofs to the reader.

The next two results are corollaries of Fejér’s theorem.

Theorem 12.49 Let f be periodic and integrable, f ~ 3" cxe™™, and let F be the
indefinite integral of f. Then the series in the formula

Ck ikx
F(x) — ~ Cop+ '—¢
(x) —cox 0 E g
(see Theorem 12.14) converges uniformly to F(x) — cox.

Proof. Let S(x) denote the series on the right side of the formula. Then S(x) is
the Fourier series of a continuous function, and therefore its arithmetic means
converge uniformly by Fejér’s theorem. Since the terms of S(x) are bounded
uniformly in x and are also of order o(1/]k|) uniformly in x, the difference
between the partial sums and the arithmetic means of S(x) tends uniformly
to 0 by using an argument like the one in the discussion following the proof
of Theorem 12.44. Also, S(x) = F(x) — cox by Theorem 12.19.
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Theorem 12.50 (Dirichlet-Jordan) If f is periodic and of bounded variation,
then

(a) S[f] converges to f(x) at each point of continuity of f and to %[f(x—i—) +f(x)]
at each point of discontinuity.

(b) The convergence of S[f] is uniform over every closed interval of continuity
of f.
(c) The partial sums of S[f] are uniformly bounded.

Parts (a) and (b) follow immediately from Fejér’s theorem if one uses
Theorem 12.45 and the fact that the Fourier coefficients of a function of
bounded variation are O(1/|k|) (see Theorem 12.24). For (c), use Theorem
12.48 and the remark before Theorem 12.45.

Perhaps it is of interest to observe here that the classical theorem of
Weierstrass about the uniform approximability of functions that are contin-
uous in finite closed intervals by power polynomials can be easily deduced
from Fejér’s theorem. Suppose that f(x) is continuous for a < x < b. The
formula x = %({1 +b) + %(b — a)t establishes a one-to-one mapping between
the intervalsa < x < band —1 <t < +1, and every f(x) continuous in [4, b]
becomes a g(t) continuous in [—1, 4-1]. If we approximate g(¢) by polynomials
in t, we at the same time approximate f(x) by polynomials in x. Hence, we
may assume from the start that f(x) is defined and continuous in [—1, +1].
Write x = cos 0. The function h(8) = f(cos ) is then defined and continuous
in [0, ], and if we extend it to [—7t, 7] by the condition of evenness, and after
that to (—oo, +00) by periodicity, then 1(6) can be approximated arbitrarily
closely and uniformly on [0, 7] by cosine polynomials

n
T(O) = Z o cos ko,
k=0

for example, the arithmetic means of S[h], these being cosine polynomials
since & is even. It is easy to see that cosk0 is a power polynomial of degree
kin x = cos®: for k = 0,1, this is obvious, and for general k, it follows by
induction from the formula cos k0 + cos(k — 2)0 = 2cos 0 cos(k — 1)0. Thus,
the polynomials T(0) above are power polynomials P(cos 0) in cos 0, and the
approximability of /1(0) by T(0) is the same thing as the approximability of
f(x) by P(x), which verifies Weierstrass’s approximation theorem.

We shall now consider the arithmetic means of S[f] when f is merely inte-
grable. In Chapter 7, we introduced the notion of a Lebesgue point of a
function in R™, but here we are only interested in the case n = 1. We recall the
definition. A point xg is a Lebesgue point for a locally integrable f if
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h

1

o feo+n—faoldt—0 a0,
—h

and we proved that almost all points have this property.

Simultaneously with S[f], we shall also consider S[f], for f merely inte-
grable. For 0 < ¢ < 7, we write

~ 1
fe=—— [ fa+n

e<|t|<mt

1
2 tan 5t

ljf(x+t) f(x—t)

2tan 5 t

and call 75 (x) the truncated conjugate function of f. If limsﬁofE (x) exists, we
will denote it f(x) and call it the conjugate function of f:

~ . 1 rf(x+1 f(x—t)
o=ty (5 0

2tan 1 >t

= lim (—1 f f(x+t) )
e—0 Tt 2tan 1 t

e<|t|<Tt

We came across this function in Theorem 12.31 in connection with Dini’s
criterion. Occasionally, one also uses the notation

¢ fe+ t)

f(X) j 2tan 1i‘
where p.v. stands for principal value, indicating that the integral, which as a
Lebesgue integral is generally divergent at ¢ = 0, is given a new meaning
by first removing a symmetric neighborhood around t = 0 and then making
that neighborhood shrink to 0. Formally, f is the convolution of f and % cot %t,
although the latter is not an integrable function. We will study the existence
of f later. N

The arithmetic means of S[f] will be denoted by G,(x) = T(x,f). From
the formula on p. 315 in Section 12.3 fors;, and the oddness of the conjugate
Dirichlet kernels D71 (t), n > 1, we obtain

Tu(x) = —% j Fx+ HKu(t) dt,
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where
~ 1 <~
Kn(t) = Tl 1 ZDj(t).
j=0
Of course, 150 = I~<0 =09 =0.

Theorem 12.51 (Lebesgue) Suppose that f is periodic and integrable. Then at
every Lebesgue point xq of f (in particular, for almost every xg),

(i) ou(xo) = f(xo) asn— oo,

(i) u(x0) — fi/n(xo) = 0 asn — oo.

Proof. Note that part (ii) does not assert that either 6, (xp) or fl /m(x0) has a
limit, but only that their difference tends to 0. We will use the estimates

A
Ku(t) =n, Ky(t) < —a n>10<t<m), (12.52)
n

which are just variants of (c) on p. 333, Section 12.6. If we have to use both
estimates, then clearly the first is preferable for t < 1/n and the second for
t > 1/n. The proof that follows is basically a repetition of the argument for
Theorem 9.13.

Let x be a Lebesgue point of f. Assuming as we may that f (xg) = 0, and
letting

o) = |f (o +B|+ |f (xo — 1)

t
;b = [ oy,
0

the condition that x( is a Lebesgue point takes the form \(h)/h — 0ash — 0.
The formula

17 17
on (o) = — [ f o+ D Ka®dt = — [1f (o + ) +f (s — D] Ku(t) dt
—7T 0

gives

1/n 7T

17 1 1
o (xo)| = ;Ofcb(t)Kn(t)dt: — [+ [ =t p

0 1/n
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Clearly,

1/n

0<ay < f oyndt = LM
0

1/n

Next, using the second estimate for K, and integrating by parts, we have

Séjd)— — |:1|)(t)] +— Mdi‘
n/ t n 1/n t

12 n
1/n

The integrated term tends to 0 as n — co. As for the last term, we will show
that it also tends to 0. Given any ¢ > 0, take 6 so small that (#)/t <€ if 0 <
t < 6. Then

The first term on the right is majorized by (e/n) flo/(; t=2dt = ¢, while the last
term clearly tends to 0 as n — oo since 1 is bounded. Collecting results,
we conclude that 0y, (xg) — 0. This proves (i).

To prove (ii), we need estimates for K,, = [1/(n+ 1)] Y7, j=0 D The obvious

inequality |D | <j (recall that Do(t) = 0 and D ® = Zk:l sinktifj=1,2,...)
shows that

Kn(t)| < n. (12.53)

On the other hand, from the formula

(see (12.26)), we find that for 0 < |t| < T,

~ 1 n
Kl =77 {z zsml Z“’S (+2) }

n

~ 1 1 1 1 1
K,(t) — =cot =t = — cos|j+ =)t
nh =50t n+1251n%t§ (7 2)
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Then, using the identity 2 sin % cos (] + %) t = sin(j + 1)t — sinjt, we obtain

—sin(n + 1)t
2’
(n+1) (zsin %t)

~ 1 1
Kn(t) — E cot Et =

which shows that

~ 1 1 A

The estimates (12.53) and (12.54) are analogues of (12.52), and they easily lead
to (ii). We write, forn =1,2,.. .,

Gy (x0) _]’Fl/n (x0)

1 ¢ ~ 1 1 1
=_%Jj(xo+t)1<n(t)alt+7—T | fao+ngcot st

1/n<|t|<m

_ ! [ fao+bnKawat

|t<1/n

1 1 1 ~
+ % J f(x0+t) I:E cot Et—Kn(t):| dt

1/n<|t|<Tt

and use the estimates (12.53) and (12.54) in the last two integrals, respectively.
An argument identical to that for &, and (3, in the preceding proof shows that
these integrals tend to 0. This completes the proof.

We remark that part (i) of Lebesgue’s theorem leads to a new proof of
the completeness of the trigonometric system (see Theorem 12.16). For if
all the Fourier coefficients of f are 0, then o,(x,f) vanishes identically and
consequently f = 0 a.e. by part (i).

Part (ii) of Lebesgue’s theorem shows that lim G,(xp) exists at every
Lebesgue point of f at which the conjugate function

f(x) = lim e (x0)
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exists. The converse is also true, though it requires an additional argument.
Letl/(n+1) < e <1/n. Then

1/n
7 7 1 1 1
fa(xo)—fl/n(xo)’_;[ f |f(xo+f)—f(xo—t)|Ecotztdt
1/(n+1)
1/n
1 dt
- f [fGo+t) —flo—BI— (12.55)
1/(n+1)

IA

1/n

1
n j|f(x0+t)—f(x0—t)|dt—>0
0

s

in view of the Lebesgue point condition. Hence, we obtain

Theorem 12.56 At every Lebesgue point xo of an integrable f, the existence of
f(xo) is equivalent to the summability of S[f] by the method of the arithmetic mean,
and f (xp) = lim Gy, (xo, f).

Suppose now that f is not only integrable but also in L2. If f ~ 3" e, this
means that ) lck|2 < +o00. Observing that

g[f] = chﬁkeik", €x = —isignk

(see (12.12); recall that ¢g = 0), we see by the Riesz-Fischer Theorem 8.30 that
there is a function ¢ € L? such that S[f] = S[g] and

1 27t
7 f 817 = lekexl*.
0

Therefore,

127'( ) 5 127t 5
Ecof'g' <> lal =§[0j|f|,

thatis, [Igll2 < IIfll2. Since~c~rn (x,f) = o4(x,8) and lim 0, (x, g) exists and equals
g a.e. by Theorem 12.51, f exists and equals g a.e. by Theorem 12.56, and we
have proved the following result.
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Theorem 12.57 Iff is periodic and in L?, then the conjugate function

~ 1 0 fx+bH—fx—t 1 i
f(x)=——ff( 0 fl( Dt = — L im
us o 2 tan 5t Te—0
exists a.e. and is in L2. Moreover, ||7||2 < \Ifllz (more precisely, |[?||% = |[f||% —

27t|col?) and S[f1 = S[f].

The existence a.e. of]7 is a remarkable result, which shows that the odd
partof f,

1
Yx() = E[f(x +8H —f(x—1D],

has special properties that are not immediate consequences of the theory of
integration. Observing that § cot 1t—(1/¢) isbounded for 0 < < 71, we deduce
from Theorem 12.57 that if f € L2, then the integral

[roenfen, |
0 t f,—>0S

exists a.e., a result that is not obvious even for continuous f.

That]? exists a.e. for f merely integrable will be proved later (see Theorem
12.67).
In the theorems that follow, we will use the notation

x| <7t

e 1/p
Iflly = (f |f(x)|”dx> , 1<p <00 |flleo =esssup|f(x)]

(although sometimes it may be convenient to modify the definition of ||f ||, by
inserting a numerical factor; e.g., by writing ||f||, = [(1/27) ffﬂ |f|pdx]1/7’).

Theorem 12.58 Iff € LF, then

@ llonllp < lfllp, 1 <p < o0,
@) [If —oullp > 0,1 <p <o0.

Proof. The theorem and its proof are repetitions of Theorems 9.1 and 9.6.
If p = oo, (i) is a corollary of Theorem 12.48(a). If 1 <p < oo and p’ is the
exponent conjugate to p, we have
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17 UK (v — 1P
|cn(x)|sﬂ_jﬁ|f(t)|1<n(x HYPK, (x — HP' dt

, - 1/p 1 T 1/p
5[;_[1 |f(t)|P1<n(x—t)dt] [;_LKn(x—t)dt} ,

by Holder’s inequality, and so by property (b) on p. 333 in Section 12.6,
1 7T
lon@P < %_fﬁ FOPKa(c— b,

an inequality that clearly also holds for p = 1. Integrating both sides over
—n < x < m, and interchanging the order of integration on the right, we
obtain (i).

Part (ii) is proved similarly. We write

1 7T
o) —f| = — [ 1fG+ D = F@IKa(0)

< [;{_jﬂ f&+8H = F@IPK(t) dt] [;[_L K () dt] :

1 7T
jowt0) —f@[" < — [ |[fa+n —f@ Kat dt.

Integrating both sides over —m <x <7 and interchanging the order of inte-
gration on the right, we obtain

1 7T
low = fIp < — | dOKu(t)dt
where

o) = f |f(x+1) —f(x)|F dx.

Clearly, ¢ is a bounded function, and we know by Theorem 8.19 that it tends
to 0 with . Hence, by Fejér’s Theorem 12.47,

% [ KB dt = 0,0,5) — 0,

and (ii) follows.
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We conclude this section by considering the maximal arithmetic means
defined by

o*(x) = 0" (x,f) = su}gl(fn(x,f)L

In view of Theorem 12.51(i), 0*(x) is finite a.e. It has properties not unlike
those of the Hardy-Littlewood maximal function f* considered in Chapters 7
and 9 and that are easily deducible from those of f*. (Using similar symbols,
o* and f*, for different notions should not cause confusion.) First, we consider
an adaptation of the definition of f* to the case of periodic functions. For
periodic f, it is natural to set

h
. 1
) = sup ﬁ_fh |f (x + B)| dt. (12.59)

O<h<mt

Clearly, f* is also periodic.

Theorem 12.60 Let f be periodic and integrable. Then

r:0 < x <21 f*(0) > a] < gnful, o> 0.

These inequalities are analogues (actually, corollaries) of Theorem 9.16 and
Lemma 7.9. Let g(x) be defined as equal to f (x) in (—7t, 371) and to 0 elsewhere.
Then, in (0,2m), the maximal function f* just defined is majorized by the
Hardy-Littlewood maximal function of g, and the norms of g in (—oo, +00)
are majorized by multiples of the corresponding norms of f in (0, 27).

The first part of the next result is an analogue of Theorem 9.17.

Theorem 12.61  Let f be periodic and integrable. Then there is an absolute constant
c such that

(i) o*(x,f) <cf*(x),
(i) sup,>1 104X, f) — fi/m(®)| < of*(x).

Proof. The proof can be based on either Tonelli’s theorem (see the proof of
Theorem 9.17) or on the formula for integration by parts. We choose the sec-
ond approach since it follows the same line as the proof of Theorem 12.51, but
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is actually easier since we do not have to consider Lebesgue points. Using the
notation and proof of Theorem 12.51, we have

A

1 7T
o, f)] < — [(f+ D1+ |fx = tDKu(t) i
0

I
Al
S
¥+
Al
—3
Il
I3

<
+
=
S

where

1/n
n<1nj¢<t)dt Bni—fmdt

and ¢t = |f(x + B + [f(x — D). Let () = fot &) du. The inequal-
ity (W(£)/2t) < f*(x) shows that &, < f*(x). If we integrate the integral
majorizing 3, by parts so as to introduce P (t) and again use the inequality
(p(#)/2t) < f*(x), we obtain 3, < Af*(x), and (i) follows. The proof of (ii) is
left to the reader.

The following result is a corollary of Theorem 12.61 and complements
Theorem 12.57. It will be useful later.

Theorem 12.62 If f is periodic and in L2, then the maximal conjugate function
defined by

few = suwp [fo)]

O<e<m
is also in L% and

Ifell <Allfll2 (A independent of f).

~\ *
We put the asterisk as a subscript here to avoid confusion with ( f ) , the

Hardy-Littlewood maximal function ofj~f, which also appears in the proof of
the theorem.
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Proof. First suppose that 0 < ¢ <1/2.Pickn =2,3,...such that1/(n+1) <
¢ < 1/n. The inequalities in (12.55) give

1/n
-~ 1
7o)~ Fim@| < B0 [t b+ 1= Iyt < f* ),
T 0

where the final inequality is true since n > 2. Combining this with Theorems
12.61(ii) and 12.57, we find that (with different A’s at different places)

Fe@)] = sup 84001 + Af*(x) = sup o )| + AF* )

<al (7)*(x) +£* @} (by Theorem 1261().

If instead 1/2 < ¢ < 7, then

75(")’:71? [ fa+n L

t
e<ifj<m 2tan§
1 1
< - x+t)| —dt
Tt f f | |2tan £|
3<Iti<m 2

<A [ Ifa+ldt < A,

[t|<7t

Collecting estimates, we obtain

fo < Al 0 +F ),
fellz < AQIFll2 + [If 112,
fell2 < AllfI12.

12.7 Summability of S[f] by Abel Means

Given a periodic and integrable f,

1 o0
f~ an + Z(an cosnx + by, sinnx),

n=1



A Few Facts from Harmonic Analysis 347

let

1 o0
flr,x) = an + Z(un cosnx + b, sinnx)r", 0<r<1,

n=1

denote its Abel means. Since summability by arithmetic means implies Abel
summability, the results of the preceding section immediately lead to results
about A-summability of S[f]. For example, we have the relation

fr,x0) = f(xo) (r—1) (12.63)

at every Lebesgue point of f, and so a.e. In particular, the last relation holds
at each point of continuity of f and uniformly over every closed interval of
continuity.

However, an independent discussion of Abel summability has some mer-
its, if only for the following two reasons: (a) the relation (12.63) holds at points
that need not be Lebesgue points (Theorem 12.64); (b) instead of (12.63), we
may consider the more general relation

f(r,x) — f(x0)

as (r,x) tends to (1,xg) (i-e., as re™* tends to ™) not only radially but also
along more general curves, for example, nontangentially (see p. 328 in
Section 12.5).

We now derive a representation for f(r, x) as an integral operator. Using
the formulas for a,, and b,,, we have

fr,x) = %T_Lf(t)dtjtgr” [cosnx%_[rf(t) cos ntdt

N B
+s1nnx%_Lf(t)s1nntdtj|

- j—t_Lf(t) B + le P cos n(x — t):| dt

17 1
- %_L fOP(r,x— bt = — f Fx+ HP(r, b dt,

—7T

where

1 oo
P@,t) = 5 + Zr" cos nt

n=1
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is called the periodic Poisson kernel. The function f(r, x) is called the Poisson
integral of f. All the formal operations performed above (like the interchange
of the order of summation and integration) are easily justifiable since 0 <r < 1.

We can write P(r, t) in a finite form by observing that % + > 2, " cosnt is
the real part of the series

1+Z+Z2+ _ 114z (z
2 21—z

and a simple computation shows that

1—12 B 1—12

1 1
P(r,t) = = = - .
5 21 —2rcost + r? 2(1—1')2 +4rsin2 %i‘

This may be compared to the nonperiodic version of the Poisson kernel given
in (9.10). The Poisson kernel has all the properties of the Fejér kernel but is
also much smoother. We list the following properties:

(@) P(r,t) = 0; P(r,—t) = P(r,1).
(b) A/m) [T P@r,tydt =1.
(©) P(r,t) <1/(1 —1); P(r,t) < A(1l =1/ (3 <r <1, |t| <7, Aanabsolute

constant).

Properties (a) and (b) are obvious. The first part of (c) is a corollary of

1 1147 1
P(r,t) < =+ +2_|_...—_ < ,
(r)_2 T 21—r ~ 1—v

and the second part follows from

A-nA+r - 1—7r

1
P(r,t) = = < .
. 2(1—r2+4rsin® 3t = 4rsin® 3t

The estimates (c) are analogues of the corresponding estimates for the Fejér
kernel K, (t) if we identify (1 — r) and 1/n. Thus, results for the Fejér means
have analogues for Abel means, and the proofs are basically the same. We
shall, however, not dwell on this point and shall limit ourselves to several
results of a somewhat different nature.

Given a periodic and integrable f, we will systematically denote by F its
indefinite integral; F need not be periodic. Besides the ordinary derivative of
Fatx,

F(x+h) — F(x)

F(x) = li ,
®) hg% h
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we will also consider the symmetric derivative

, F(x+h)—F(x—h)
Fs) = 1—>0+ 2h '

Clearly, the existence of F'(x) implies that of Fj(x) and F;(x) = F'(x). The
converse is not true, however, as shown by the simple example F(x) = |x| at
x = 0. Using the notions of the even and odd parts of a function introduced
on p. 316 in Section 12.3, we see that F; is the ordinary derivative at 0 of the
odd part of F at the point x (x is fixed, differentiation is with respect to &, at
h = 0). Also, since

Fi(x) = hm -

/

ff(x+t)+f(x—t)

F[(x) is the ordinary derivative at 0 of the integral of the even part of f at the
point x.

Theorem 12.64 Let f be periodic and integrable, and let F be the integral of f.

(i) At any point xo where F,,(xo) exists, finite or infinite, S[f] is Abel summable to
the value F/,(xo).

(i) Atany point xo where F has an ordinary and finite derivative F'(xo), the Poisson
integral f(r, x) tends to F'(xg) as (v, x) tends nontangentially to (1, xo).

Proof. (i) Suppose, as we may, that xo = 0. Write

1 t
o) = SO +f=Dl, W) = [ b du,
0

and note that lim;_, o [P (#)/t] = F,(0). We have

7T )
2 2
fr,00 == Of SOP( by dt = = Oj b(HP(r, 1) dt + o(1)

for any fixed 6,0 < & < m, in view of the second part of property (c) for P(r, t).
Integration by parts shows that the last integral equals

D) 3
—= f WP (r,t) dt + o(1),
0
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where

(1—r?)rsint
(1—2rcost+ r2)2.

P(rt) = %P(r, H=—

Since —P’ > 0in (0, 7), if P (¢)/t is contained between m and M in (0, d), then
the last integral is contained between m and M multiplied by

2 2 2 2
miﬁpmﬂmz—fpmﬂm+mn
7tO T[O

=%fpmgm+mn=1+mn
0

Collecting results, we see that the limsup and liminf of f(r,0) as r — 1
are contained between m and M. This gives (i) when F,(0) is either finite or
infinite.

(ii) Assume again that xo =0. We may also assume that F(0) =0. Let us
show that it suffices to prove the result in case F'(0) =0. Indeed, denote
F(0) = o, set g(x) = f(x) — «, and let G be the integral of g. Then G'(0) =
F'(0) — « = 0, and if we can prove that the Poisson integral of g, which equals
f(r,x) — «, converges to 0 as (r,x) tends nontangentially to (1,0), then the
proof will be complete. Thus, assume that F'(0) = 0.

Suppose that (r,x) — (1,0) nontangentially, that is, see Exercise 23(b),
suppose that ¥ — 1 and x — 0 in such a way that

|x]
<C 12.65
1—r~— ( )

for some positive constant C. Given ¢ > 0, choose & so small that |F(u)/u| < €
for |u| < 26. Write

7T )
1 1
fM@:;iﬂwmeaw:%lﬂwHWm0w+MD

12 !
=—;IFu+ﬂPmDﬁ+MD,
-5

using integration by parts and property (c) of P on p. 348 in Section 12.7. If
|x] <, then |x+t| < 25 in the last integral, and the integral itself is majorized
in absolute value by
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d d )
eij#mmeﬂ:%mfWWﬁWH&”ﬂpmmﬁ (12.66)
-5 0 0
Since
o
JIP@,pldt = P@r,0) = P(,8) < P(r,0) < ——
0
and

d ) )
LﬁW@mﬂ:—jWWﬁW:—WWﬁﬁ+IHMMt
0 0 0

=

1
P(r, t)ydt = o,
(r,t) ik

S—3

condition (12.65) implies that the right side of (12.66) is less than a fixed multi-
ple of €. Hence, f (, x) tends to 0 under the hypothesis (12.65). This completes
the proof of (ii).

12.8 Existence of}:

In this section, we prove the following basic result.

Theorem 12.67 If f is periodic and integrable, then the conjugate function

TR B | fx+1
f<x>—3%fe<x>—ii%{ - df]

1
e<ltl<rt 2tan 5t

exists a.e. and is in weak L :for oo > 0,
~ c
{x: x| <7 [f(0)] > a}] < &llflllf

where c is independent of f and o.
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Remark: If f is integrable, f need not be, as the following example shows.
Let f be any periodic integrable function, nonnegative in (O, %7{) and zero

elsewhere in (-, 71). Then for —%7‘( <x <0,

1
~ 17 dt 1 dt
-~ (f)—— == [(f)————
f niLf( )Ztan%(x—t) n Ojf( P "
x| |x|
1 dt 1 dt
“(fr)— =~ (f)——
= ﬂoff()zmn%(x—t) ﬂojf()Ztan%(t—x)
x| x|
~ 1 dt
il t t) dt.
el = ﬂoff( )Ztan%(t—i- |x]) = m2tan |x| Off()

Now choosing f(f) = (t log? t) <:(d/dt) [log(1/t)]~ ) for 0<t<3 and
f(t) =0 for % <t < 7, we obtain V(x)‘ > c [|x]| log(1/|x|)]_1 for some constant

c>0andall x € (—m/2,0). Clearly, f € L butf ¢ L.

The lemma that follows is essential for the proof of Theorem 12.67.*

Lemma 12.68 (The Decomposition Lemma) Let Q be a finite interval in R1
and suppose that f € L(Q), f > 0. Then for any « satisfying

x> o f f, (12.69)

there is a sequence of nonoverlapping intervals Q1, Qa, . . . contained in Q such that

() &« < 57 Jof <20 (k=12,..),
(i) f(x) <axae.inP=Q—JQk
(i) IUQkl = % JuoS = & Jof-

Proof. We split Q in half, obtaining two subintervals Q' of equal length. For
each ', there are only two possibilities: |Q’ -1 IQ, f<oaor|Q|! fQ, f>
Since |Q'| = %|Q|, the hypothesis (12.69) implies that |Q’| ! fQ, f < 2«. Thus,
for each ', we have either

*Lemma 12.68 is due to A.P. Calderén and A. Zygmund; see the remarks after its proof.
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Q™! ff <a or a<|Q|? ff <2a.
Q Q

If Q' satisfies the first condition, we call it an interval of the first kind—
otherwise, of the second kind.

We save any Q' of the second kind. If Q' is of the first kind, we may repeat
the previous argument by splitting Q' into 2 equal parts Q”. For each Q”, we
again have either

Q1™ [f=a or a<IQT [f=2a
Q// Q//

Saving those of the second kind, we repeat the procedure for each Q" of the
first kind, and so on.

LetQ1,Q2,...,Qk, ... be the sequence of all the intervals of the second kind
in the previous procedure. Clearly, the Qf are nonoverlapping and satisfy
condition (i). Also, each x € P = Q — | Qx belongs to a sequence of intervals
{Q} with |Q| tending to 0 such that |Q|~? fo < o Since the ratio |Q|_1fQjr
tends to f(x) a.e. in P, (ii) follows. Finally, writing the first inequality (i) in the
form o| Q| < ka f, and summing over k, we deduce (iii).

Remarks

(1) Lemma 12.68 holds for periodic functions of period 27 considered on
the circumference of the unit circle, and o> (27r)~! f_nﬂ f. The intervals
Qk may be thought of as nonoverlapping arcs on the circumference with
lengths |Qkx] < 7, and we make no distinction between an arc and its
periodic translates. The proof is identical with that above.

(2) Lemma 12.68 is valid for Q = R%, f € L'(RY), and any « > 0. More-
over, it has an analogue in R", n>1, where Q and the Qy are taken to
be n-dimensional cubes with edges parallel to the coordinate axes. The
proof in case Q = R%, f € LI(RY), and « is any positive number is left
to the reader. For the analogue in R", n>1, see Lemma 14.55. See also
Exercise 23 in Chapter 14.

Proof of Theorem 12.67 Assume first that the periodic function f € L is non-
negative. Fix any « > (2m)~! [”_f and apply remark (1). We then obtain a
sequence of nonoverlapping arcs Q1,Qy, ... on the circumference Q of the
unit circle such that

oc<|$—k|ff§2oc, f<oaaeinP=0Q—|JQ (12.70)
Qk
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Make a decomposition
f=g+h

where g is defined as equal to f in P and as |Qk| ™! ka f oneach arc Q. Hence,
hequals 0 in P and f — | Qx| kaf on each Q. Using (12.70), we have

(@ 0<g<axaeinP, 0<g<2aineachQy,

() h=0inP, jhza
o} (12.71)

© b <f+1Q™" ff <f+2«in each Q.
Qk

In particular, since g isbounded a.e., and so is in 12, Q(x) existsa.e.and S]]z <
ligll2 by Thecgem 12.57.

To study h, we will use the Marcinkiewicz Theorem 6.17. That theorem
was stated for functions defined on intervals of R, while here we need it for
functions defined on the circumference of the unit circle. Clearly, these two
situations are identical. We restate the theorem.

Theorem 12.72 Let F be a closed subset of the unit circumference Q, and let G =
Q — F. Let 5(x) be the (circular) distance of the point x € Q from F. Then, for each
A >0, the integral

oA oA
Mo (x) = f — (2] dy = f )
Q

YA x|+ dy

is finite a.e. in F. Moreover,

fwhunh52x4mL
F

We will need the result only in case A = 1.

We will now study the existence of h=limh,, using properties (12.71)(b),
(c) of h. Let Q; denote the interior of the arc Q expanded concentrically twice,
and let t; denote the center of Qx and dy its length. Let Q* = [ Qj and let P* be
the complement of Q* in Q; P* is closed. We will consider only points x € P*
until near the end of the proof.
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Fix x € P*, and consider the equation

he(x)=71—t j h(t)%cot%(x—t)dt.

e<|x—t|<T
Since h = 0 outside | Qy, the last integral is a sum

(i) of integrals extended over those Qi that are totally outside
(x—¢,x+¢),and

(ii) of at most two integrals extended over portions of those Qj that contain
the points x + ¢.

We will investigate these two cases separately, beginning with (ii). The
interval Qy that, say, contains x+e¢ is distant from x by < ¢ and at the same time
by > %dk (since x € P*). Hence, %dk < ¢, and the integral under consideration
is majorized in absolute value by

1 x+e+dy ()| 1 x+3¢e 1 3¢
— dt < — h®)|dt < — | |h(x +t)|dt.
T xi |x — ¢ e XJL | | 3£0f| |

We have just presupposed implicitly that € < %71 in order to guarantee that

|x —t| < |2tan %(x — t)| whenever t satisfies |[x — t| < 3¢ (since |0] < |tan 0|
when |6] < 71/2), but since we are primarily interested in small ¢, this is an
unimportant restriction. A similar estimate is valid for the interval Qk con-
taining x — ¢. Using definition (12.59), we see that the contribution of (i) is
majorized by 2h* (x).

We also notice that # = 0 in P* so that by Lebesgue’s theorem on the dif-
ferentiability of integrals, the contribution of (ii) tends to 0 with ¢ at almost
every x € P*.

Consider now any integral from (i). Since ka h = 0 (see (12.71)(b)), it can
be written in the form

1 17 1 1
7—TQj h |:cot 5= = cot 5 (x - tk)i| dt
k

(tx is the midpoint of Q). Let .#(x) denote the last integral with the integrand
replaced by its absolute value. Denoting absolute constants by A, we have
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)sin% (t— tk)‘

1 1
S0 = — [ )13 dt
T ‘sin%(x—t)sin%(x—tk)‘
dt
Ad ht)| ———— 12.7
< kg|(nm_ﬂu_&| (12.73)
k
A
S [,
(x — t
Qk

where to arrive at the last term, we have used the fact that |t — #;| < %dk and
|x — t;| > di (recall that x ¢ Q* since x € P*), so that

1 [x — ¢
<

27 |x — tgl

< ; (x € P*, t € Qp). (12.74)
Using the first inequality in (12.71)(c) and (12.70), we also have

[1r =2 [ f < 4 Qul. (12.75)
Qk Qk

If 6(¢) denotes the distance from f to P*, then 6(¢f) > %dk for t € Q. Collecting
results and using (12.73) through (12.75), we get the final estimates

o(t)

Jk(x) < _— 5 d

Ady
o )24oc|Qk| Aocf

Z F(x) < AocZ f 6(2)2

for x € P* and those intervals O that are entirely contained in the comple-
ment of (x — ¢,x + €).
The last sum is majorized by

§()
ocf P dt,
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a quantity that is finite a.e. in P* by Theorem 12.72 with A = 1. Hence, in view
of our observation that the integrals in (ii) tend to 0 a.e. in P*, h = lim . exists
a.e.in P* and

~ o(t) N
h(x)| < Aocg G dt (ae.in P¥). (12.76)

Sincej~r =g+ h, and g exists a.e.,f exists a.e. in P*, that is, everywhere in Q
with the exception of a set of measure at most

101 =2 10kl < éff 12.77)
Q

Taking « arbitrarily large, we see that7 exists a.e.

The assumption f > 0 can be dropped by considering the decomposition
f=rr-f.

We still have to prove the weak integrability of 7 This can be deduced
from the estimates above, and we shall be brief. We may again assume that
f = 0. Fixany a > (2m)~! fQ f, and consider the decomposition f = g+ h
corresponding to this . Then

{x:‘f‘>o¢}c{x:|§]>%o¢}u{x:)ﬁ)>%o¢}:SUT.

Recall that 0 < g < 2a; we also have [, ¢ = [ f since [ = 0 by (12.71)(b).
Hence, by Tchebyshev’s inequality,

ISI =

A
A/
N| —
K
N———
S
O —
¥

To estimate |T|, let Ty = TN P*, T, = TN Q*. Thus, |T| = |T1| + |T2|, and
by (12.77),

Tl 10" = = [f.
Q



358 Measure and Integral: An Introduction to Real Analysis

On Ty, |Z(x)| is majorized a.e. by (see (12.76))

5(f) (1)
Ax f( —t)2 cxf( - )zdt AoaM(x),

and if |Z(x)| is to be > %oc there, then necessarily M(x) >1/(2A). But M(x) is
the integral M (x) of Theorem 12.72 corresponding toA =1, G = Q*, F = P*.
Therefore, by the estimate given in Theorem 12.72 and (12.77),

. 4
JM=2Q1=— [,
P* 0

and by Tchebyshev’s inequality, the subset of P* where M(x) >1/(2A) has
measure at most 24 [, M <8Aa~! Jof- Thus, |T1| < 8Ax! Jof, and collect-

ing estimates, we have
Hx: ‘f(x)‘ . oc” < §|[f||1 (c =10 + 8A).

This was proved for « > (2m)~! fQ f but is trivially true for smaller « since

our set certainly has measure < 27, while 27t < ot IQ f for such «.
This completes the proof of Theorem 12.67. The theorem is strengthened
by the following result.

Theorem 12.78 Iff € L, then the maximal conjugate function

fw = sw [fo)

O<e<mt

is in weak L1, that is,
~ c
Hwﬂm>a”_awh(“>%

where c is independent of f and o.

Proof. The proof is practically the same as that of Theorem 12.67. Leav-
ing the details for the reader to fill, we argue as follows. We fix f > 0 and

« > @2m! IQ f and make the previous decomposition f = g + h, so that
f* < g* + h By Theorem 12.62, |xll2 < AIIgIIz, and the estimates we

had for /1 also hold for ,. The restriction ¢ < 371 that was imposed in the
argument is unimportant since if ¢ > 371, then |he(x)| < CIQ f for all x, so
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that sup,- /3 |Za | <c fo Therefore, the set where sup, > /3 |E£ X)| > ais
empty if o > ¢ [ f, while if « < ¢ [, f, its measure is < 2 < 2meo! Jof-

12.9 Properties offforf el’,1<p<o0

Theorem 12.79 Iff e [,1 <p < oo, 1?hen]~r € L7 and g[f] = S[f]. Moreover,

(@ |l7||p =Aliflly and (b |Iﬁ<||p = Apllfllp- (12.80)
The constant Ay, depends only on p and is bounded for p away from 1 and oo.

This is the central theorem of the section. Its proof is long and has to be split
into several parts. Of course, (b) implies (a). The theorem is false for p = 1
(see the remark after the statement of Theorem 12.67), and Theorem 12.67 is
a substitute for this case. See also Exercise 21. The theorem is also false for
p = oc: see Exercises 19 and 20.

Lemma12.81 Iff € L7,1 < p <2, then f, € LV and (12.80) holds.

Proof. For p=2, this is Theorem 12.62. For p=1, ]7* is in weak L! by
Theorem 12.67. The lemma will be obtained from these extreme cases by
an interpolation argument similar to the one we used in the proof of the
Hardy-Littlewood maximal function result in Theorem 9.16. We will use the
same letter A to denote different absolute positive constants.

Let fel?,1<p<2. For each fixed « >0, we make the decomposition
f =g+ hwith

g(x) = f(x) wherever|f(x)| < «, g(x) = 0 otherwise,
h(x) = f(x) wherever|f(x)| > «, h(x) = 0 otherwise.

Clearly, g e~L2,h € Ll,]?* <%+ I, Let w(x) = |{7’:k > o}| be the distribution
function of f,.. We have

w(e) < {3 > o/2}| + HZ* > oc/ZH.
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By Theorem 12.67, with Q = (—m, ),

i = o2} a2 [I1=207 [ £,
Q {IfI>o}

and by Tchebyshev’s inequality and Theorem 12.62,

(7 > a2}| = (w2) 7 [&
Q

SAofzjgzonfz j 12
Q {Ifl=o}

We have (see Theorem 5.51 and Exercises 16 of Chapter 5 and 5 of Chapter 6)
Felly = = [ o dasey = p [ o~ w(eo) da.
0 0

Using the estimates above, the last integral is majorized by
oo o0
Apf i e j [fldx | doc+ Apj ot o2 f fPdx | d.
0 {If1> o} 0 {Ifl=e)
Interchanging the order of integration, we can write this as

[f0)l 00
API|f(X)| ( f (Xp_Zd(X) dx—l-Apffz(x)( j ocp_?’doc) dx
Q

0 Q Lf )l
= Ap | —— [If@lPds+ —— [IfoPix
e 5 2-p) '

due to the fact that 1 < p < 2. It follows that (12.80)(b), and so also (12.80)(a),
holds with

1 1
P _ -
Ap_Ap{p—1+2—p} 1<p<2), (12.82)

which proves the lemma.

It is not surprising that A, becomes infinite as p — 1 since as we have
observed, the integrability of f does not imply that of f. On the other hand,
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in view of the validity of (12.80)(b) for p = 2, it is natural to expect that there
is a better estimate for Ay near p = 2 than (12.82) (which becomes infinite as
p — 2). This we shall see below.

Meanwhile, note that the exponent 2 plays a rather accidental role in
Lemma 12.81. In fact, if we knew (12.80)(b) for any pg > 1, then the previ-
ous argument would giveitfor 1 < p < po, with A, bounded for p away from
p = 1 and p = po. The only change necessary in the proof is replacing the
exponent 2 in the argument for g by po. Moreover, if instead of (12.80)(b) we
only knew (12.80)(a) for some po, then by applying the same argument to f
instead of f, we would obtain (12.80)(a) for 1 < p < po, with A, bounded for
p away from 1 and pg. We will use this idea below.

Inequality (12.80)(b) for any p implies

Felly < Apliflly (12.83)

for the same p and all ¢ > 0. From the fact that H?a ||y equals supy | fQﬁ; gl for
all g with ||g||,y <1,1/p+1/p’ =1, and the easily verifiable formula

jfsgz_ffge
Q Q

(apply Fubini’s theorem), it follows that if (12.83) holds for any p,1 <p < oo,
then it also holds for the conjugate exponent p/, and Ay = A, (see also
Exercise 16 of Chapter 10). But we proved (12.83) for 1 < p < 2. Hence, it
also holds for 2 < p < 00, and an observation analogous to the one made
earlier just before (12.83), but this time for f; rather than f, shows that the
constant Ay in (12.83) remains bounded for p away from 1 and oco.

Using (12.82), we thus see that the A, in (12.83) satisfies the inequality

Ay < p%l 1<p<2), (12.84)

and so also (since A, = Ay)

Ay <Ap forp>2. (12.85)

Since j~fE x) — f(x) a.e. as ¢ — 0 for any integrable f, (12.83) leads to the
basic inequality |[?| lp < Apllfllp,1 < p < oo, where A, satisfies the two pre-
vious estimates. This proves (12.80)(a); we still have to prove (12.80)(b) for
2 < p < oo and the formula g[f] = S[]?] forfell,p>1.

Let us show thatif f € L?, p > 1, then §[f] =S []7]. We may assume thatp <2.
In view of Theorem 12.56, lim G, (x) exists and equals f(x) a.e. for f merely
integrable. Next, by Theorem 12.61(ii), |5} (x)| is majorized by};(x) + cf*(x),
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an integrable function in our case since f € LP, 1 < p <2. Hence, by the dom-
inated convergence theorem, each liourier coefficient of G, tends to the
corresponding Fourier coefficient of f. But it also tends to the correspond-
ing coefficient of S[f]; in fact by (12.39), if f ~ 3" cxe™*, then the kth Fourier
coefficient of @1 equals;[l — |kl/(n + D] (—isignk)cy if |k| < n and equals 0 if
|k| > n. Thus, S[f] = S[f].

To complete the proof of Theorem 12.79, it remains to show that (12.80)(b)
holds for 1 < p < oo (we have shown it only for 1 < p < 2), with A, bounded
for p away from 1 and oo. It is immediate (see the proof of Theorem 12.62)
thatif 1/(n+1) < e < 1/n, then |fe (x) — f1/,(x)| is majorized by f*(x). Hence,
by Theorem 12.61(ii),

Jo@) < ¢f*(0) + sup [Ga(0)
By Theorem 12.61(i) applied to S[f] = S[f],
sup [5u(x/)| = o (x.F) = ¢ (F) .
Hence,
Fselr+()]
|ﬁﬂpschvﬂb+HG)WJ

< cCplllfllp + 1F1l),

where C, is the constant of the Hardy-Littlewood maximal Theorem 12.60.
In view of (12.80)(a), the inequality |[]?* llp < Bpl|fllp is thus established for all
p,1 < p < oo, with B, = cCp[1 + Apl, Ap being the constant in (12.80)(a).
Combining the estimates (12.84) and (12.85) for A, with the estimate for
Cp on p. 228 in Section 9.3, it follows that By, is bounded for p away from
1 and co. In particular, since C, remains bounded as p — oo, it follows that
By is O(p) as p — oo. To estimate B, as p — 1, it is best to use the estimate
derived in the proof of Lemma 12.81 (see (12.82)); thus, B, = O(1/(p — 1)) as
p — 1, so that B, satisfies the same sorts of estimates as Ay. This completes
the proof of Theorem 12.79.
We have the following important corollary.

Corollary 12.86 Letf € LF,1 <p < oo. Then]?E converges in LP norm tof.

This is an immediate consequence of the dominated convergence theorem
<f.€ll.

since f. converges pointwise a.e. to f and \fs
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12.10 Application of Conjugate Functions to Partial Sums of S[f]

The behavior of the partial sums s, (x) = s, (x,f) is a much more delicate topic
than the behavior of the arithmetic means. We will consider only the question
of the convergence of s, to f in the metric L. The main tool here is a connection
between the partial sums and the conjugate function.

Instead of s;, it will be convenient to consider the expressions (see (12.27))

sf x) = M Sp(x) — = (an cos nx + by, sin nx) (12.87)

when n > 1. We have

4.1 ¢ Dyx—H+Dya(x—1
51 (x) = W_f f®) : dt
_1 ff( sinn(x — sinnGx—bH
Z(X )
— s j f(t) cos nt  cosnx. j f(t) sin nt
2 tan 2(x 2tan & (=1

The last decomposition was purely formal, but from Section 12.8, we know
that the cofactors of sinnx and cosnx exist a.e. in the principal value
sense (and represent the conjugate functions of f(t) cosnt and f(t)sinnt,
respectively).

Theorem 12.88 (M. Riesz) Iff € IV,1 < p < oo, then

@ lsallp < cllfllp, If = sullp = 0,
() sullp < cllfllp, Ilf =Sullp = 0,

where ¢ depends only on p.

Proof. 1t is enough to prove (i), which implies (ii) since 5,(x,f) = sy (x,f)

and |m|p <Apllfllp, 1<p<oo. The first part of (i) with s# instead of s,

is an immediate corollary of the last formula for si and the inequality
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Ifll, < Apllfllp: in fact, letting gu(t) = f(t) cosnt, hy(t) = f(t)sinnt in the
formula, we obtain

s#(x) = sin nx gu (x) — cos nxhy,(x) (ae.),
||5#||p = ||§n||p + ||zn||p < Ap(lIgnllp + l1hallp) < Apllfllp

for 1 <p <oo. Since, by (12.87), ||s# —sullp < Alfll; < A||f||p, we obtain
sullp < Apll fllp-

The relation || f —s;|, — 0 is obvious for functions that have a continuous
derivative (see Theorem 12.20), and since such functions are dense in L7, it
also follows in the general case.

Exercises

1. Prove the following versions of Theorems 12.13 and 12.14.
(a) Iff ~ %ao + Y12 (ag coskx + by sin kx), and f is the indefinite integral
of f/, then f" ~ 3" 2 k(by cos kx — ay sin kx).

(b) Iff ~ %ao + > poq (ax coskx + by sin kx), and F is the indefinite integral
of f, then

1 1 1
F(x) — anx ~ EAO + Z E(uk sin kx — by coskx).
k=1
2. Prove thatif f(x) ~ > cxe™, then flx+o0)~> cpekoetkr

3. If f is real or complex-valued and f ~ %ao + Y p2q (ax coskx + by sinkx),
show that

1" 1 >
— [1AP = 5 laol + 3 (1o + 1exl?)
0

k=1

4. Deduce from (12.18) that if f,g € L2,f ~ 3 cxe®™, g ~ 3" die'®, then

27
1 .
5 | Fgte—nat =3 cpdye™.
0
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Thus, a Fourier coefficient of the convolution of f and g equals the prod-
uct of the corresponding coefficients of f and g. (For nonperiodic versions
of this result, see Theorems 13.30 and 13.59.)

5. Prove the following.
(a) If f(x) is periodic and equal to sign x in (—, 7), then

sin3x  sinb5x }

f (%) g X+ +
~ — Isin
T 3 5

(b) LetO<h < %71, and let f be the triangular function defined as follows:
f is periodic, even, continuous, f(0) = 1,f(x) = 0 for 2k < x < m, and
f is linear in (0, 2h). Then

2h |1 & [sinkh)? h XK, (sinkh\? 4.
f~;|:§+z< kh)COSkx:|:7T[|:1+§(kh>e .

(c) Let g be periodic and equal to % log (1 / ’2 sin %x‘) in (—7, 7t). Then

> coskx
k=1

(For (b), the coefficients can be computed directly, or by using Exercise 4
and Example (b), Section 12.1, p. 306. Observe that the convolution of the
characteristic function of an interval with itself is a triangular function.
For (c), one may either integrate by parts in the formula for the cosine
coefficients of g or consider the real part of the series

OOE Z—k—lo 1 z=re
G D
k=1

forr <1, and then letr — 1.)

6. Using the formula for the Fourier series of %(7[ —x) given in Example (a),
Section 12.1, p. 306, prove the formulas

e - B

2 a2 LuaTay

n=1 n=1

> 1

Z s = ﬂZkBk for some rational B, (k=1,2,...).

n=1
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7. Prove that each of the systems
(a) %, cosx,cos2x,...,coskx, ...
(b) sinx,sin2x,...,sinkx,...
is orthogonal and complete over (0, 7).

8. Let {¢;(x)} and {Yk(y)} be two orthogonal systems: the first over a set
A C R" and the second over a set B C R". Then the (double) system

wik(X,y) = ¢;j()Pk(y)

is orthogonal over the Cartesian product C = A x B C R™*". If both {d)}
and {1} are complete, 5o is {wj}.
Generalize this to the case of more than two orthogonal systems.

9. Let {(ky,k1,...,ky)} be all lattice points in the space R™ (i.e., all distinct
points with integral coordinates). Then the system

exp {i (kixy + koxa + -+ + knxn)}
is orthogonal and complete over any cube in R" with edge length 2.

10. If f ~ chei’f’f € L?and g ~ Y die™ € L2, then hh = fg is integrable, and
if h ~ > Cue™, then

+00
Cn = Z denfk/
k=—00
where the series on the right converges absolutely. (For n = 0, this

means (1/2m) foh fg = Y cxd_k, which is a variant of (12.18).) See also
Exercises 17 and 18.

11. Letf ~ ) cxe’®™ e [2. For each n, let

Yn = chﬁ = I{X(:)an%.
£

k#n

Show that {y,} € 2 and, more precisely, that ) lval? < 7122 ek |2
The numbers vy, are discrete analogues of the formal Hilbert integral
f[f(t) /(x — t)]1dt; see Section 3 of Chapter 13. (The numbers vy, are the
Fourier coefficients of the function fg, where g ~ 3 4 e /k = i(m — x)
for 0 < x < 27 (see Example (a), Section 12.1, p. 306), and we have

27 27t
[1fgl2 =7 [1f12)
0 0
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12.

13.

14.

15.

16.

17.

Let f and g be periodic, f € [P,g€F,1<p<o0,1/p + 1/p =1. Consider

the product hy(t) = f (x+1)g(t) as a function of t. Show that the nth Fourier

coefficient of hi.(t) tends to 0 as n — oo, uniformly in x. (Show that the

L!'-modulus of continuity of & tends to 0 uniformly in x; apply (12.22).)

Let f be periodic and integrable. Show that for the partial sums s, and’s;,

we have the following formulas:

(@) sp(x) = A/m) [7_f(x + 1) [(sinnt)/t] dt + ,(x), where €, (x) tends to
0 uniformly in x as n — oo.

(b) Su(x) = (1/m) [T _fx+1) [(1— cosnt)/t dt +n,(x), where 1, (x) tends
to 0 uniformly in x.

(For (a), except for an error which is 0(1) uniformly in x, we have

sinnt

Yo
2tan 5t

1 7T
@) = — ff(x+t)

and since % cot %t— % is bounded in (—, 7), the result follows easily from

Exercise 12 withp =1,p" = 00.)
Let Zn =271 foﬂ |15n (1) dt, 15,1 denoting the conjugate Dirichlet kernel.
Prove the following analogue of Theorem 12.36:

~ 2
L, = %logn—l—o(logn) asn — oo.

Show also that L, = [3,(0, sign D,)| = max{[3, 0,1 : f with |f| < 1}.
Show that if x is a point of continuity of an integrable f, then 5,(x) =
o(logn). If f has a jump discontinuity at x and the value of the jump
isd = f(x+) — f(x—), show thats,(x) = —(d/m)logn + o(logn). (The
second statement follows from the first by considering [if, e.g., x =
0] the function h(t) = J(r — t) of Example (a), Section 12.1, p. 306,
whose conjugate function h satisfies i = —g, where g is the function of
Exercise 5(c).)

Prove the following more general form of Theorem 12.38. Suppose that
liminfs, =s and limsups, = s are finite. Then both liminf o, and
lim sup oy, are contained between the numbers

1 1
§(§+§) tA E(g—é),

where A is the same as in condition (i) of Theorem 12.38.

Prove the following extension of Exercise 10. Let f €L’ and 'geU’/,
l<p<oo, 1/p + 1/p'=1 (thus also 1<p’ <o0). If f~3 e and
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g~ die™, then the Fourier coefficients C, of the (integrable) function
h = fg are given by

oo M

C,= Z Crldy_j = MliIn Z .

k=—o00 T M
Thus, the C,, are the same as in Exercise 10, but the series representing
the C;; are no longer claimed to be absolutely convergent, and we must

consider the limits of their symmetric partial sums. (The proof is parallel
to that of Exercise 10. We write

1 27 1 27t 1 27t
_ - —inx _ _ —inx | inx
C, = o Ojfge =5 Oj(f SMm)ge + o OjsMge ,

where spy = sm(x,f), observe that the first integral on the right is
majorized by on2 ™| f —sml Igl, apply Holder’s inequality, and use the fact
that || f — smllp — 0 by Theorem 12.88.)

18. The result of Exercise 17 is valid when p=1,p’ = 0o (or whenp=o00,p’ =
1), but the series defining the C,, must be taken in the sense of the
(symmetric) first arithmetic means:

M

. k|

19. We know that Theorem 12.79 is false for p = 1. Show that it is also false
for p = oo, that is, that the conjugate function of a bounded function
need not be bounded. (Consider, e.g., the two series > ;2 (sinkx)/k ~
%(n—x),O <x <2mand ) (2 (coskx)/k ~ %10g(1/|251n %x|), —MT<X<T
[see Exercise 5].)

20. There is a substitute result for Theorem 12.79 in case p = oo. Let f be a
periodic function with | f| < 1. Then there are absolute constants A, L > 0
such that

7T
f M <
—Tt

See also Exercise 27 in Chapter 14. (Write

~ . O N\n(Fin
eW'—Mf|—1=Z7‘ l{'

n!

n=2
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21.

22,

23.

and integrate termwise. Use (12.80)(a), (12.85), and the fact that n" <
c"nl.)
Suppose that f is a periodic function for which

s
[ 1f110g™ 11 < +oc,
—TT

where log™ stands for the positive part of log. This clearly implies that
f € L. Show that f € L! and that there are absolute constants A and B
such that

j[ﬂ 5Af|f|1og+|f|dx+B.
-7 -7

(Write w(x) = |{x : |x] < 7, E(x)| > «}|. Then

f m :Tw(oc)doc:fz+f.
-7 0 0 2

For the first integral on the right, use the fact that w(«) < 27, and for the
second, use an argument like that in the proof of Lemma 12.81.)

The discussion that precedes Theorem 12.31 shows only that the averages
(Sn(x) 4+ Sy—1(x))/2 converge. Give the remaining details of the proof of
Theorem 12.31. (Consider 5, (x) —3,_1(x).)

(a) Prove the statement about nontangential approach made before
Theorem 12.42, namely, that given v >0, there exist C, 5 >0 with
d<lsuchthat|l—z|<CA-[z)ifz=x+1iy, |z] <1,1-0<x<1
and |y| < y(1—x). (It may be helpful to use the asymptotic estimates
|sin®| ~ |0 and 1 — cos® ~ 62/2 as 6 — 0.)

(b) Verify that (12.65) characterizes the nontangential approach of z =
re*to1,|z| < 1.






13

The Fourier Transform

In this chapter, we will study properties of the Fourier transform f(x) of a
function f on R", n > 1, defined formally (for the moment) as

T 1 —ix- n
) = Wﬁ[ f(y)e ™Y¥dy, xeR" (13.1)

Here x -y = Y | xyx is the usual dot product of x = (x1,...,x,) and y =
1, - --,Yn), and i is the complex number i = v/—1 = ¢/2. Both f and?may
be complex-valued.

Different normalizations off are common in the literature, such as

_1 —ix: TUX-
Q2 [ fope™vay, [ fopemvdy,...,
Rn Rn

but the important properties of f are unaffected by normalization, and
passing from one normalization to another is easy by scaling.
We will often abuse notation by denoting

F0O =f00) or 7(X)=(f(X))A

instead of the more cumbersome notations f/(;)(x), (f (-)) (%), etc. For exam-
ple, we will do this in Theorem 13.8 when computing the Fourier transform

of e~ since the notations e=** and (e=**) are somewhat simpler than
ey eo.

Note that f(x) is a formal analogue of the sequence {¢;}>7,, of trigonometric
Fourier coefficients of a periodic function on the line, with the continuous
variable x now playing the role of j.

One of our main goals is to derive an analogue of Parseval’s formula
(12.15), that is, to prove that the mapping f — f is essentially an isometry
on L?(R™). Of course, an important requirement for achieving this is to find
an interpretation of f in case f € L?(R™). Unlike the formulas for Fourier coef-
ficients in the one-dimensional periodic case, the integral in (13.1) may not
converge absolutely for every f € L2(R™). However, as is easy to see, (13.1)
does converge absolutely if f € L!(R®). Properties off when f € LI(R®) are
simpler to derive precisely because of this absolute convergence, and we will

371
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begin with that case. Furthermore, properties offwhen f e LYR™) will be
useful later for studying f for other classes of functions f.

13.1 The Fourier Transform on L!
In this section, we list some properties of the Fourier transform of functions
in LL(R™).

(1) Letf € LY(R™), n > 1. Deﬁnef(x) by (13.1) and note that (cf. Exercise 1 of
Chapter 8)

~ 1 .
_ —ix-y
00l = (2n>"ﬁ[f(”e dy
1 n
< G [ 1fldy, xern

Rn

Thus, the integral in (13.1) converges absolutely (i.e., exists in the usual
Lebesgue sense) for every f € L}(R™) and every x € R", and the mapping
f — f sends the space L} (R™) into L™ (R™) with

sup |f0] < @m0 ~"|f 1. (13.2)

xeR™

The verification is immediate.
(2) The mapping f — f is linear on L}(R™), that is, if f1,fo € L'(R") and
c1,¢2 € C (the class of complex numbers), then

(c1fi + szz)A(X) = i) + 2fa(X), x€R™ (13.3)

We leave the simple proof to the reader.

(3) Next, let us show that f(x) is a uniformly continuous function of x on R™
if f € L'(RM). For any x,h € R®,

@m"[fox+h) —foo| = | [ fye ™ {e Y — 1} dy
Rl’l
= [ If I min{(hllyl, 2} dy
RI\

< [ Ifoimiyldy+ [ 1fyi2dy

lyl<N lyl=N
=I1+1,
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say, where N > 0 will be chosen momentarily. Let ¢ > 0. Note that I depends
only on N and f, not on x or h, and Il — 0 as N — oo since f € L}(R™). Fix N
so large that II < ¢/2. For I, we have

3
I< | IfylhiNdy < || fliNIh| < 3
lyl=N

jf lh| < ¢/Q2|IfIl1N). Here, we have assumed that ||f]l; # 0, but otherwise
f = 0and the result is trivial. Hence, I +II < & uniformly in x and h provided
|h| is small, which proves the result.

(4) There is a version for the Fourier transform of the Riemann-Lebesgue
Theorem 12.21 for Fourier coefficients, namely,

Theorem 13.4 (Riemann-Lebesgue) Iff € L'(R®), then ‘ l‘im f(x) =0.
X|—> 00

Proof. We will give two proofs. First, for any x € R", |x| # 0, we write

(ZW)”f(x) = f f (y)e’i"'y dy
Rn
2
il E)e e i

RII

X

—ixy
X2 )e dy.

Adding the first and last formulas gives

22mf00 = | [f ) —f (y + |:—|x2)] e dy

Rn

and

220" fx)| < f P(y) —f(YﬁL 3)

o X2

dy.

The last integral tends to 0 as |x| — oo by continuity in L!, Theorem 8.19, and
the first proof is complete.

We may also proceed by computing the Fourier transform of step functions
and using a density argument. Let I = [];_; [ak, bi] be any interval in R® with
positive measure |I|. For any x = (x1, ..., x,), by Fubini’s theorem,
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by by
(271’)”)’(\1()() — j - j eiixlyl e eiix"y”dyl e dyn
a ay
n b
= Hf e~ dt = HFak bl (%K),
k=1ai

where for any one-dimensional interval [4, b] and any s € R1, we denote

f . b —a lf S = 0
F[ﬂ,h] (8 = e Stdy = *le —pisa
a ———ifs #0.

—1is

The simple inequality [¢® — e/| < |¢ — ], b, € R! shows that |Fjp(5)| <
b F[u,b](s)| < 2/|s| if s # 0. Since |x| < |x1| + - -+ + |x5]|, there exists
ko =1,...,n depending on x such that |x| < n|xy,|. Combining estimates, if
|x| # 0, we obtain

Q" |1 <1"[}P[ak,bk< | < H(bk—ak)

k=1 1%k 0|k1
k#ko

2n |I| where £ = min(by — ay).
|x| v’ k
Hence, X1(x) = O(]x|™1) as |x| — o0, and in particular, X7(x) — 0 as |x| — oo.
If |I| = 0, then X; = 0.

If f is a linear combination of characteristic functions ,9f intervalsin R" (i.e.,
if f is a step function), it then follows from (13.3) that f(x) — 0 as |x| — oo.
Finally, given any f € L}(R™) and ¢ > 0, choose a step function g such that
If —glli < € (see the comment at the end of the proof of Lemma 7.3 for the
existence of such a g). Then for any x € R", by (13.2) and (13.3),

fool < |f<x) — 301+ B0 = I(f — 9 0] + [§X0)]
+ g

(2 "

Since g tends to 0 at infinity, so does]?, and Theorem 13.4 is again proved.

The next three properties show how the Fourier transform interacts with
translations, dilations, and rotations in R™. The proofs of the first two are left
as exercises.
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(5) (Translation) Let f € L'(R") and h € R™. Define the translation tf of f by
h as (tpf)(x) = f(x + h). Then

f(x) = (x), xeR™M (13.5)

Also,

~

(Thf) x) = f(x+h) = (f(x)e—i"'h) . xeRY,

that is, if Enf is the function defined by (Enf)(x)=f(x)e ™", then

Thf = Enf.
(6) (Dilation) Letf € LY(R™) and A € R! — {0}. Define the dilation 5xf of f by
A to be the function (85f)(x) = f(Ax). Then

SAf(0) = #AG) (: # (5;j) (x)), x € R™. (13.6)

(7) (Rotation) Let O be an orthogonal linear transformation of R™ and set
(Of)(x) = f(Ox), x € R If f € L1(R™), then

Of0 = O (=FO0), xeR™ (13.7)
In fact,
— 1 .
_ —ixy
Of (%) = <zmannf(O”e dy
_ 1 —ix-(’)’ly dy
= 2o Rj fye | det O]

1 —1(Ox-
~ 2o J Fe O dy
RII

since [det O] = 1 and x - O7ly = Ox- 00~y = Ox -y by orthogonality.
The last expression is f (Ox) by definition, and (13.7) is proved.

See Exercise 5 for an analogue of (13.7) for general nonsingular linear
transformations of R™.

By definition, a radial function of x is one that depends only on
|x|. Thus, f is a radial function on R™ if there is a function g(t),
t>0, such that f(x) = g(|x|) for all x € R™ Formula (13.7) says that
rotations about the origin commute with the Fourier transform. As a
consequence, we immediately obtain the next property.
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(8) The Fourier transform of an integrable radial function is a radial function.

Itis possible to explicitly compute the Fourier transforms of e=** and e,
and the formulas obtained have important applications. The computation of

(e""‘z)A is the simpler of the two, and the result will be used later in order to
find (=) .

(9) In shorthand notation, we have (e""'z)A = (2ﬁ)‘"e‘|x|2/ 4 that is,

Theorem 13.8 Forall x € R",

1 2 1 2
=yl =iy gy — —Ix|%/4
e Ve y = e .
(2m" f Q"
Rl‘l

—_—
e_‘xl2 =

Proof. By Fubini’s theorem,

1 2
_‘l —1X-
Qm" J e ay
Rl‘l

1 7 € 2 2 :
— (27-[)” I e f e_yl e g_yn e_lxlyl e g_lx"y”dyl e dyn
—0oQ —oQ

n oo
—yk 1xkykd _ —(t2+ztxk)dt
(27-[)71 1_[ f ¢ Y = (271)71 1_[ f
k=1-o00 k=1—00

2
Writing #2 + itx, = (t+i %)2 + %", we see that the last expression equals

n o n
271) l—[ j e—(t+ixk/2)zdt . l_[ e—x%/4‘
= —o0

k=1

Next, we use, without proof, the identities

o0 o0
j e~ gy f et = Jmoif —oo <5 < 00,
—00 —00

The first of these is a corollary of Cauchy’s contour integration theorem; the
second one is classical and has been observed in Exercise 11 of Chapter 6.
Hence,
— 1 2
e—Ix? — e IxP/4 e IX*/4
oG eNED

and the proof is complete.
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By rescaling e~ and using the dilation property (13.6), we easily find a
function that is equal to a multiple of its own Fourier transform:

2y - L e n
(e ) = (Zn)”/ze , xeR"M (13.9)

In order to find an analogue in higher dimensions of the one-dimensional
Gauss—Weierstrass kernel defined in (9.12), we first consider the kernel

Kx) = n_”/ze_mz, x € R",
and the corresponding approximation of the identity:
Ke(x) = e "K(x/e) = (vme) " e X, e s 0.

Note that fRn K(x)dx = 1, again by Exercise 11 of Chapter 6. Setting ¢ = Vi,
t > 0, we obtain the n-dimensional Gauss—Weierstrass kernel defined by

Wx, t) = (V) e M/t x e RY, ¢ > 0. (13.10)
Then

fW(x,t)dx:l, t> 0.
RIl

For x € R™ and t > 0, the convolution Wf(x, t) defined by

WEe, 1) = [f + W(, )00 = [ fox—y)W(y, bdy (13.11)
Rl‘l

is called the Gauss—Weierstrass integral of f. The kernel W(x, t) satisfies the heat
equation

” + -+ Gl Wx, t) =4 9 W(x,t) (13.12)
92 dx2 S T '

in the upper half-space Rf,‘_“ ={(x,t) : x € R",t > 0} (see Exercise 6(a)).
Due to the dilation property (13.6) and Theorem 13.8, the Gauss—
Weierstrass kernel satisfies

W(x, ) = (e*flxlz/‘*) . Wt = (m) e x4 (13.13)
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if (x,t) € R'fl, where the Fourier transforms are taken in the x variable.
We will use the first of these equations to derive an inversion formula for the
Fourier transform, that is, a way to recover f from f. We need the following
basic result in order to accomplish this.

(10) (Shifting hats) Iff,g € L'(R™), then

[Foogmax= [ foogmax (13.14)
Rn Rn

Proof. Note that both integrals in (13.14) are finite; for example, the one on
the left side is finite since g € L'(R®) and f € L>°(R™) by (13.2). The formula
itself is a corollary of Fubini’s theorem since

~ 1 4
[Foogmax= [ ( oo Jf (y)e_”"ydy> g(x)dx

Rn Rn R»

1 ,
_ —ix-y
_anf(Y) ((271)” fg(x)e dx) dy

Rl‘l

= [fmawady,
R[l

where the change in the order of integration is justified because f(y)g(x) €
LY(R?", dydx).

(11) We have the following inversion result (see also (13.28)).

Theorem 13.15 (Inversion of the Fourier transform on L) Iff € LY(RM),
then at every point x of the Lebesgue set of f,

fog = lim fj?(y)ei’"ye—’f‘yl2 dy. (13.16)
t—>0+Rn
Ifin additionf € LY(RM), then at every Lebesgue point x of f,
f00 = [ Fyervay. (13.17)
Rl'l

In particular, (13.16) and (13.17) hold a.e. in R™ and at every point of continuity
of f.
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Note that (13.17) can be rewritten as
00 = @"F(—x = @n" () - (13.18)

Before proving Theorem 13.15, we mention that the periodic analogue of
(13.17) is that if the sum of the Fourier coefficients of a periodic f € L(—m, )
converges absolutely, then S[f], the Fourier series of f, converges to f at every
Lebesgue point of f. This is a corollary of the first part of Lebesgue’s Theorem
12.51 (together with Theorem 12.38) since S[f] converges everywhere if the
sum of the Fourier coefficients of f converges absolutely.

Proof. To prove Theorem 13.15, let f € L' (R™) and write

Wi b = [ fx—y) Wy, bdy = [ fx+y)W(y,bdy,
RI\ Rn

where the last equality is true since W(y, f) is an even function of y. By (13.13)
and (13.14), the last integral equals

[hHrim (e‘”y'z/‘*)Ady: [ o) e dy
En

Rl‘l

= [Fpeye ¥ gy by (135).
RI\

In summary, we have

W (x,t) = j?(y)eix'ye_”yw‘ldy for all (x,t) € Rﬂ‘rﬂ. (13.19)
Rn

Now let t — 0+4. Due to the convolution representation of Wf(x,t) and
Theorem 9.13, Wf(x,t) converges to f(x) at every Lebesgue point x of f.
The same is true if t is replaced by 4f, and consequently, (13.16) follows
from (13.19). Assuming in addition that}: € L'(RM), we easily obtain from
Lebesgue’s dominated convergence theorem that, as t — 0, the integral on
the right in (13.19) tends to J"Rn?(y)eix'ydy. Formula (13.17) now follows at
every Lebesgue point of f, and the proof is complete.

The integrals in (13.16), namely,

f?(y)ei"'ye*””zdy, xe R t>0,
RII



380 Measure and Integral: An Introduction to Real Analysis

are referred to as the Gauss—Weierstrass means of the Fourier inversion integral
Jgn f (y)eXVdy, although the latter integral may not exist in the Lebesgue sense
if f € L1(R™). In general, the integrals

[ spePay
RI\

are called the Gauss—Weierstrass means of [, ¢ and may exist and be finite
for every t > 0 while [zn ¢ may not. The analogous expressions

fg(y)e_”yldy, t>0,
Rn

are called the Abel means of [gn g (see (13.28)).
(12) An immediate corollary of (13.16) in Theorem 13.15 is
Corollary 13.20 (Uniqueness) Iff,g € L}(R™) and f (x) =Z(x) for all x € R™,

then f = gace. in R™. In particular, if f € LY(R™) and f 0 everywhere in R®, then
f=0ae inR™

(13) Another corollary of Theorem 13.15 is the following simple sufficient
condition for integrability of f.

Corollary 13.21 _ Suppose that f € LY(R™), f is continuous at x = 0 andf >0
everywhere. Then f e LYR™) and || f i =£(0).

Proof. Under the hypotheses, we may set x = 0 in (13.16) to obtain

1 Fro oty
f“’)—tli%innf(Y)e dy.

In particular, the integral fRnf(y)e’”dey is bounded in t for t > 0. Its inte-
grand is nonnegative since f > 0 by assumption. Letting t — 0, Fatou’s
lemma then implies that f is integrable. Finally, (13.17) with x = 0 gives

fO = [Fody=Iflh,
Rn

completing the proof.
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(14) Next, we compute the Fourier transform of e~ in R, n > 1. Let
o0
Mo = js“*le*sds, x>0,
0

denote the classical Gamma function.

Theorem 13.22 Forallx €e R and ¢ > 0,

Proof. Because of the dilation property (13.6), it is enough to prove the result
in case ¢ = 1. We consider first the one-dimensional case, n = 1, where the
computation is simplest. Let x € (—o0, 00). Then

— m
2me— ¥ = f e tleixt gy

—00

0
e—t—ixtdt_l_ j =it gy

—00

I
OHg

o0
67(l+ix)tdt+fef(1fix)tdt
0

e~ (it —(1=int o0
1+ix 1—ix

t=0

OHg

112
Tl4ix 1—ix 142

Hence,

eflx‘ = —

L x € (—00,0), (13.23)

and we are done since whenn =1, thenI'((n +1)/2) =T'(1) = 1.
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Combining (13.23) with the inversion formula (13.17) in case n=1,
we obtain

=¥l — = lxtdt - —ixtdt _ ]
e j1+t2 7t»[1+t2e , X € (—00,00)

Tt
—00

2

Next, with the purpose of introducing an exponential factor e™ in the

computation, we write

o0

1 — IE_(l_HZ)S ds.
1+ #2 ;

Consequently,

e = - f fe +t ds | e7™dt, x e (—o0,0). (13.24)
—00 0

Now consider the higher dimensional case:

m)"e X = jeily‘e*i"'ydy, x € R™,
Rn

On the right side, express the factor e~ by using (13.24) with x there chosen
to be |y|, obtaining

eyl —

?—1I>—‘

o0 o0
J j 1+t ) e,l"y” dat
—0Q
17 r 2
=—|e° < j et Se_iyltdt> ds

0 — 00

=]

[e¢]

1 s 2 1
_ - —~lyl/s) ~_ 4
Oje e 7 s,

where the last equality follows by dilation from the one-dimensional version
of Theorem 13.8. By substitution, we obtain that for any x € R",
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0
1 Tes 2 .
_ —lyl*/(4s) ,—ix-y
- 7'[‘! \/g < j ¢ ¢ dY) ds

- LT A e et

o
@m)e N = j (71[ fe*Sﬁef\y|2/<4s> f_; ) Y dy
S

by another application of Theorem 13.8, this time in the #-dimensional form.
Regrouping terms gives

— o0 2
(2m)"e—IXl = 2" (\/an_l fe_(Hlx‘ >ss"Tds

0

on p n—1 oo .
= L)LH je‘ssTlds.
A+x»)7 3§
The last integral equals I'(4f}), and therefore
——  r(nl 1
e = (nzl ) i XE€ R",

as desired. This completes the proof of Theorem 13.22.

(15) (The Poisson Integral in R:™) For (x,e) € RT™ = {(x,¢) : x € R,
¢ > 0}, we denote

2 ) < , (13.25)

P(x,e) = e~ e = e - —
T2 (82 + |X|2)%

and call P(x,¢) the Poisson kernel for the half-space RT'™. The case

n = 1 is considered in (9.10), and the periodic version is defined in

Section 12.7 on p. 348.

As a function of x, P(x, ¢) is clearly positive and of class LY(R™) N L®(R™)
for each ¢ > 0. Also, as a function of (x,¢), it is infinitely differentiable in
R, By direct computation, it satisfies Laplace’s equation

( 92 22 92 ) "

—+- -+ —+ P(x,e) =0 inRT}™. (13.26)
2 92 +

0x] ox de?
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Moreover, P(x, ¢) is an approximation of the identity since if P(x) is defined
by P(x) = P(x, 1), then P(x, ¢) = ¢ "P(x/¢), and by (13.17),

=1

j P(x,1)dx = j Xl dx = =Xl
Rn x=0

Rn

Hence, since P(x,1) = O(1/|x|"*1) as |x| — oo, Theorem 9.13 implies that the
Poisson integral of f, defined to be the convolution

Pfix,e) = [ fx—y)P(y, &) dy, (13.27)
Rn

converges tof(x) as ¢ — 0at each point x of the Lebesgue set of f if f € LI (R™).
If f e LP(R™), p > 1, the same is true (cf. Exercise 12 of Chapter 9). Note that

R0 R0

Rn

Hence, if f € L'(R™) and x is a Lebesgue point of f, then
f00 = lim [ F(ye*¥e<Wldy. (13.28)
£—>0+Rn

Recall that the integrals

f}‘\(y)eix'ye_£|5’|dy, e>0,
Rn

are called the Abel means of the (formal) integral [gn 7(y)eix'ydy.
We also have by inversion that

Px,e)=e ™M, xeRM, &> 0, (13.29)
where the Fourier transform is taken in the x variable.

(16) (The Convolution Property) By Young’s theorem, the convolution of any
two integrable functions is also integrable and therefore has a well-defined
Fourier transform.



The Fourier Transform 385

Theorem 13.30  Iff,g € LY(R™), then
ftk\g(x) = (27T)”f(x) g(x) forallx e R™

This follows easily from Fubini’s theorem; we omit the details. In case
n =1, the result is listed in Exercise 6 Chapter 6. See also Theorem 13.59 for
an important related result.

(17) (Differentiation Properties) We continue our list of properties of the
Fourier transform with two important differentiation formulas.

Theorem 13.31

(a) Let x¢, k = 1,...,n, denote the kth coordinate of x, x € R™. If f and x;f (x)
belong to LY(R™), then f has a partial derivative with respect to xy. everywhere
in RY, and

of . ~ [ 1 , e
a—xk(x)—(—zxkf(X)) |:— Wl{fn(—zykf(y))e ydy] (13.32)

(b) Fixk=1,...,nandleth=(0,...,0,h,0,...,0) #£0 lie on the kth coordinate
axis. Suppose that f € L'(R™) and that there is a function g such that

lim | fAD =f0) o lax=o. (13.33)
hk_)ORn hk
Then g € LY(R™) and
Ix) = ixk?(x) for all x € R™. (13.34)

A few remarks about condition (13.33) are listed after the proof of the
theorem.

Proof. (a) Denoting nonzero points on the kth coordinate axis by h=
©,...,0,h,0,...,0), we have

Tix +h) — fi 1 —ihye _ 1 .
om0
Rl’l

hy @n hy
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Since the expression in curly brackets converges to —iy; as i — 0 and is
bounded in absolute value by |yk|, formula (13.32) follows from the Lebesgue
dominated convergence theorem and the hypothesis that f (y)yx is integrable.

(b) If g satisfies (13.33), then g is clearly integrable since f is. With
h = (0,...,0,/,0,...,0) as usual, (13.33) together with (13.2) implies the
pointwise equality

C(fxHR) —fO\
i (R0 g,

1 -~ n
hllenO h—k(Thf —f) 0 =8(x), xeR"

Equivalently, by (13.3) and (13.5), for all x,

ixghy _

Jimn £00 { — } =3,

and (13.34) follows.

We now make some remarks related to (13.33). Given f, a function g that
satisfies (13.33) is clearly unique up to a set of Lebesgue measure 0. If such a
g exists, it is called the partial derivative of f with respect to xy. in the L' sense, the
idea being that the difference quotient of f in the kth coordinate converges in
the L! norm.

A simple case when (13.33) holds with ¢ equal to the ordinary partial
derivative 9f /dxy of f is when f € C(l)(R“), since then both f and df/dxx have
compact support and the difference quotient of f in the variable x; converges
uniformly to df /0x. Hence, by (13.34), for every k = 1,...,n, we have

(af > ) =igf(x), xR, iff e CHRM). (13.35)

axk

As we will see in Theorem 13.41, the restriction in (13.35) that f € C(l)(R“) can
be considerably weakened.

By iteration, (13.35) leads easily to analogous formulas for higher-order
derivatives. For example, if f € C%(R“) andjk=1,...,n, then

92 9 ~
< f )(x)zix,-( f ) ) = (ix)) (Xf (0.

8x]~8xk a_xk
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More generally, if o = («y, ..., ) is a multi-index of nonnegative integers
and D% is the differential operator defined by

91 g %n

DX= " ...
X1 X’
ox; dx s

then forany N =1,2,... and any a« with &1 +--- + &; <N,
DYf(x) = (ix))™ - (ix) ¥ f(x) iff € CY(RM). (13.36)

A higher-order analogue of part (a) of Theorem 13.31 is thatif N =1,2,...
and f has the property that p(x)f (x) € LY(R™) for every polynomial p(x) of
degree N (or less), then f € CN(R™) and

(DYF)(x) = [(—ix1)* -+ (—ix) " f )] ifoq +-+ o <N. (1337

Verification is left to the reader.

In particular, (13.36) and (13.37) hold for derivatives of any order if
feCP®m).

Note that if fe CZOV (R") for some N, then for every multi-index
oa=(x1,...,&,) with oq +---+ o, <N, the fact that D"‘feLl (R™) implies
that I?‘Xf is a bounded function on R™. Hence, by (13.36), the function
(ix)*1 ... (ixn)"‘”f(x) is bounded in x if o1 + - - - 4+ oy < N. Consequently,

Ifool<C iff € CY'(R™).

1+ xhN

Also, since 5"7f tends to 0 at infinity, f(x) = o(|x|™") as [x| — oo. Roughly
speaking, this means that the smoother a function with compact support is,
the faster its Fourier transform tends to 0 at infinity. In particular, by choos-
ing N=n + 1, we obtain a simple sufficient condition for f to be integrable,
namely,

Corollary 13.38 Iff € CSH(R“), then}‘\ e LYR™). In particular, the inversion
formula (13.17) holds everywhere in R™ for such f.

The class .7 = . (R™) of Schwartz functions, or rapidly decreasing functions,
on R™" is defined to be the collection of all f € C*°(R™) such that p(x)D*f(x)
is bounded on R" for every polynomial p(x) and every multi-index o. The
bound may vary with o and the polynomial p. Thus, if x® denotes the
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monomial x? = x{s x,g”, where = (PB1,...,Pn) and each Py is a

nonnegative integer, then

={f e C*®R") : sup |xBD°‘f(x)| < oo forall , B}. (13.39)
xeRM

Clearly, C5°(R") C ., but the containment is proper since e~ belongs
to . but does not have compact support. The function e~ is not differen-
tiable at the origin, and so it does not belong to .. The functions 1, Ix|2, and
e~1/? (defined to be 0 at the origin) are simple examples of infinitely differ-
entiable functions that do not belong to .. Note that . C LP(R™) for every
p, 0<p<oo. Also, if f € .7, then p(x)D*f(x) € .7 for every polynomial p(x)
in R™ and every multi-index o.
We leave the proof of the next result to the reader (see Exercise 8).

Theorem 13.40 Iff € .7, then? € 7. Also, if f € 7, then the formulas in
(13.36) and (13.37) hold for all «, that is,

D (x) = () () and (DF) (0 = [(=0%f 0]

forall x € R™ and all o.

In particular, if f € C5°(R™), thenj?e Z(R™). On the other hand, the only
function f in C5°(R™) such that f has compact support isf=0 (see Exercise 28).
Theorem 13.40 shows that the formula (3f/ Ixg) (X) = 1xkf (x) is valid if
f € &, and we observed in (13.35) that it is also true if f € Cl (R™). Let us
now show that it holds for a much larger class of functions. Recall that (by
Theorem 7.29) an absolutely continuous function F(t), t € [a,b] C R}, has a

first derivative F’ a.e. in [a,b] and F(b) — F(a) = f: F'(t) dt.

Theorem 13.41 Let k=1,...,n and f € LY(R™). Suppose that f is locally
absolutely continuous on every line parallel to the kth coordinate axis, that
is, suppose that f(xi,...,Xk—1, Xk, Xk+1, - - -, Xn), When considered as a function
of xi, is absolutely continuous on every interval —oo <a <xx<b<oo for all
X1, Xk—1, Xkt 1, - - - Xn If 3 /3x; € LY(R™), then

3f . . - n
<8_xk) (x) =ixf(x), xeR™

In particular, the formula holds for every k=1,...,n and every f such that
feLYR™) N Lipjoc(R™) and |Vf| € LL(R™).
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Proof. The second statement of the theorem (concerning the assumption that
f is locally Lipschitz continuous) follows from the first statement since if f
is locally Lipschitz continuous, then it is locally absolutely continuous on
every line.

To prove the first statement, let f satisfy its hypothesis. By Theorem
13.31(b), it is enough to verify (13.33) with g equal to 9f/dx, that is, to show
that df /dxy is the partial derivative of f with respect to xi in the L! sense. We
will show this only when #n > 2 and k = 1, leaving the remaining cases for
the reader to check. If x = (x1, x3, ..., x,), denote

x = (x1,%) with X = (xp,...,x,) € R* L,

By hypothesis, for every X, f(x1, X) is an absolutely continuous function of x;
on every compact interval in R!. Hence, by Theorem 7.29, for every x € R™
and every h = (1,0,...,0) € R, we have

h

f
fx+h) —fx) =f (x1 + 1, X) —f(x1,%) = f o (x1+t,x)dt.

0

Thus, if b1 # 0,

x+h) —f(x A
fox+h) f()_%(x)_aj[af (43— L (xl,x)]dt.

h x1

Taking the L! norm in x, and denoting t = (¢,0, . ..,0), we obtain

|

RII

h

1
—EJ

Now let #; — 0. By continuity in L! (Theorem 8.19), the integrand in the last
integral tends to 0 as t — 0, that is,

of of

FoHh) —f00 af
hy

8—f< x+H - LR

(X) ——(x)|| dt.

— 0ast— 0,

1

and the result follows.

(18) (The Principal Value Fourier Transform of x~!) We close this section with
the computation in one dimension of a different notion of the Fourier trans-
form, which we call the principal value Fourier transform, of the function 1/x.
Since 1/x fails to be integrable in R?, both near the origin and near infinity,
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its Fourier transform cannot be defined by using the one-dimensional ver-
sion of (13.1). Furthermore, since 1/x does not belong to L? near the origin,
the method developed in the next section for extending the definition of the
Fourier transform to L? functions will not apply to 1/x.

However, as we will see, the symmetry and oddness of 1/x can be exploited
in order to define its Fourier transform as a limit, denoted p.v. (x~1) and
defined by

1\ 1 1 .
v.[-) = lim — —e M d - . 13.42
pV(x) >0+ 27 f ¢ Yo % € (00,00) (1342)
w—00 e<lyl<w

We call this expression the principal value Fourier transform of x~1. Its existence
and evaluation are treated in the next theorem and will be used in Section
13.3 in order to define the Hilbert transform of a general L? function.

We may rewrite (13.42) in the equivalent form

1\ _
p.v. (-) = lim K¢o(x), xeRl (13.43)
X e—=0+
w—>00

where K¢, is the doubly truncated function

Ke,w(x) = M, 0<e<w<oo. (13.44)

Note thateach K¢, € L1(RY), and therefore Kg/\cU is well-defined and satisfies
IKe,w lloo < IKe,wll1/2m). However, ||K¢,w 1 is unbounded in ¢, w; in fact,

dx w
IKewlh = [ = =2log—.

|x]|

e<|x|<w

Theorem 13.45  The principal value Fourier transform 21 defined in (13.42)
exists and is finite everywhere in RY, and

1 - .
p-v. (;) = —é signx, —oo <x < 00. (13.46)

Here, the right side of (13.46) should be interpreted as 0 when x = 0, that is, p.v.
x~1 equals 0 when x = 0.
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—_—
Furthermore, K, is bounded uniformly in x, €, and w:

— 4
sup ||K£,w || < -—. (13.47)
£,W T

0o —

O<e<w<oo

Proof. The proof of (13.46) is simple and based on the classical formula

Csint T
li —dt == 13.4
£—1>r{)1+ t 2 (13.48)
w—00 €

which can be verified by contour integration. We will take (13.48) for granted.
Ifx e Rland 0 < € < w < oo, then since 1/y is an odd function of y,

1 1 1 isinxy i sinaxt
— Zetigy, = N gy = =
5 [ ey 5 | = j — .

vis
e<lyl<w e<lyl<w

The last expression is 0 if x = 0, while if x # 0, it is

- (signx) ]Usm it dt = - (signx) w"“'@ dt
T ] t s el t

Then (13.46) follows immediately from (13.48) by letting ¢ — 0, w — oc.
To prove (13.47), note as earlier thatif 0 < ¢ < w < oo and x # 0, then

) . [x] .
—— 1 e~y i M gint
K X) = — dy = ——(signx —dt.
e, () o j y Y 71( gnx) t
e<lyl<w elx|
Hence, it suffices to show that
A sin t
sup f —dt| < 4.
O<A<A<oo A £

We will verify this when 0 <A <1 < A < oo, leaving the cases when A and
A do not straddle 1 to the reader. If 0 < A <1 < A < oo, integration by parts
gives

si

* The improper integral [;° ?t dt converges absolutely at t = 0 and so is improper only at co.
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Asmt sint sint sint cost ACost
Adet j dt+f—dt j—dt—Tl+1jt—2dt.

Therefore,

[ty <
A

1 ool
Ofldt+2+ljt—2dt=

as desired.

13.2 The Fourier Transform on L?

We will now define the Fourier transform of a general f € L*(R™) and study its
main properties. The same notation, namely f, will be used for the Fourier
transform no matter whether f belongs to LY(R™) or to LZ(R™) since the two
definitions will turn out to agree a.e. when f € LY(R™) N L%(R™). Note that
LY(R™) N L2(R™) is a dense subset of both L (R™) and L%(R™M).

We will see that a striking and fundamental difference between the maps
f— ?When f € LY(R™) and when f € L2(R) is that the mapping for L2(R™)
turns out to be essentially an isometry of L?(R®) onto itself. Proving this is
the main goal of the section.

Since the functions f now under consideration are generally complex-
valued, it will be useful to recall that

fR=f [1P=[fF [f=[F etc,
E E E E

where z denotes the complex conjugate of z, z € C. Also, if f € LY(R™), then
f(x) f( X), x € R™, since

1 . 1
G J @Yy = o [ Foey dy.
Rn Rn

The next lemma gives a useful fact about the convolution f * g of two L?
functions. See Exercise 13 for an analogue when f € L’(R™) and g € ' (RM),
I/p+1/p=11<p =00
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Lemma13.49 Letf,g € L2(R™). Then f *g is uniformly continuous and bounded
on R™, and || f * glloe < I fll2Igll2-

Proof. We will use Schwarz’s inequality. Let f, ¢ € L>(R™). For any x € R™,

(f 1 < [ 1fx—y)gldy
Rn

1/2 1/2
< ( [ 1= y>|2dy) ( | |g<y>|2dy) = 11 fl2lgl2-
R® Rn

In particular, f * g is finite everywhere and || f * gllooc < IIfll2lIgll2. Also, if
x,h € R", then

If x(x+h) — (f (x| =

[ Fox+h—y) = fx— plgy) dy
Rn
< 1f¢+h) = fOl2lgll; — Oas [h| — 0

by continuity in L2, and the proof is complete.

We can now derive the key fact needed in order to extend the definition of
the Fourier transform to LZ(R™).

Lemma13.50 Iff € LL(R™) N L2(R™), then f € L2(R™) and
Ifll2 = @0~ flla.

Proof. Let f satisfy the hypothesis, and set g(x) = f(—x). Then ¢ € L'(R®) N
L2(RM). By Lemma 13.49, f g is continuous in R", and

(900 = [ fygx—ydy = [ fyfty—xdy,
Rn

Rn

(2O = [ f@Fydy =IfI3-
Rl’l

Using Theorem 13.30, and since g(x) =%, we also have

Frg) = RFZx) = Q)" [fx)? > 0.
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Corollary 13.21 applied to f * g then implies that f/*\g € LY(R™) with L! norm

If + gl = (f % £)(0),

or equivalently,

em" [ [fooldx = If13,
Rn

and the proof is complete.

A simple method often referred to as extension by continuity and based on
the fact that L' (R™) N L2(R™) is dense in LZ(R™) (in fact, the subset Co°(R™) of
LY(R™) N L2(R™) is dense in L2(R™) by Corollary 9.7) allows us to use Lemma
13.50 to define the Fourier transform on L2(R™). We proceed as follows.

Givenanf € L2(R™), choose a sequence {fj}]?’il c LYR™) NL2(R™) such that
||f]- —fll2 = 0asj — oo. By Lemma 13.50, for all j and ¢,

Ifi = fellz = @021 — full.

Since {ﬁ} is a Cauchy sequence in L2(R™), then so is {};}, and hence there is a
function Zf € L2(R™) such thatﬁ — Zf in L2(R™). Note that .Zf is indepen-
dent of the particular sequence {f;}; in fact, if {gj} C LY(R™) NL2(R™) is another
sequence that satisfies ||gj — fll2 — 0, then g} — Zfin L2(R™) since

1§ — Ffll2 < I8 — filla + I — Zfll2
= @) "2||g; — fill2 + IIf; = Ffll2 — Oas j — oo.

As usual, L? functions that are equal a.e. are considered to be the same
function. R

Moreover, in case f € LY(R™) NL2(R™), we see that .Z f =f a.e. by choosing
{fj} earlier to be the sequence with f; = f for every j.

By definition, the Fourier transform of an L function f is Zf. We adopt the
convention of denoting .Zf by f if f € L2(R™).

Many of the properties of f that were proved in Section 13.1 for inte-
grable f extend to analogous properties when f € L2(R™) simply by using the

definition of f for f € L2(R™). For example, if f € L2(R™), then f(x) = f(—x) and

’?h\f x) = eix'hf(x) [where (thf)x) =f(x+h), h e R“],

— 1 ~/x 1
SN0 = 5f <X) [where (5Af)(X) = f(Wx), A € R — {0}].
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For functions f € L2(R™), such formulas must be interpreted as holding
for a.e. x instead of all x as is true for integrable functions. In order to ver-
ify the formula for ’Fh\f, choose a sequence {fj} C LYR™) N L?(R™) with
I f] —fllz = 0. Then ’chfj converges in L2(RM) to Thf, and consequently, '?h\f]
converges to @ in L2(R™). But by (13.5), the formula holds for every f;, that
is, ;h7j(x) = ei"‘hﬁ(x) for all x. On the other hand, since |[]/§ —7”2 — 0, then
eix'hﬁ(x) converges in L2(R™) to eix'hf(x). The desired formula for ”Fh\f now fol-
lows immediately. The formulas for?(x) and for 6/;;‘ can be proved similarly.
Some more properties of ?that extend easily from the case when f € L' (R™)
to the case when f € L2(R™) will be derived below.

Two notable exceptions to the parallel properties of the Fourier transform
of L! and L? functions are that when f € L*(R™), 7 may not be continuous
or bounded, and the conclusion of the Riemann-Lebesgue theorem that

-~

f(x) — 0as |x| - oo may fail. In fact, the next result, which is basic, shows
that every L? function is the Fourier transform of an L? function.

Theorem 13.51 (Plancherel) The mapping F : f — Ff = fis a one-to-one
linear transformation of L>(R™) onto itself, and

Ifll2 = @02 fll, feL*R™. (13.52)
Formula (13.52) is called Plancherel’s formula.

Proof. Let f € L2(R™ and choose {fit LY(R™ N LZR"™) such that
Ifj = fl2— 0. Then [[f; — fll2 — 0. Hence l|fjl2 — [ fl2 and [[fil2 = IIfll2.
Plancherel’s formula (13.52) for f then follows immediately since ||fjll2 =
(2m)~"/2| f;|2 for every j by Lemma 13.50.

Next, let us show that linearity of .# on L?(R™) follows in a standard way
from the corresponding property (13.3) for integrable functions. To see this,
letf,g € L2(R™) and choose {fi} g} € LY(R™ N L2(R™) such that f; — f and

gj — gin L?(R™). For any constants c1, ¢, we have (¢ fi + ng]') = clﬁ + 028;
by (13.3). However, since c1f; + c28j — cif + c2g in L*(R™),

(c1fy + ©2gj) = (c1f +ag) in L2R™),
and sinceﬁ .3 g — gin L*(RM),

cifi + 028 — cif + g in L2R™).

Hence, (c1f + czg)A = clf + ¢2g, as desired.
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The fact that .%# is a one-to-one map is a corollary of its linearity and
Plancherel’s formula since if f,¢ € L*(R™) and f =g, then

If —gll2 = QO™ 1(F —g) lla = @02 f —3lla =0,

and therefore f = g a.e.

To complete the proof of Theorem 13.51, it remains to show that the range
of 7 is all of L>(R™). We will prove this by using Corollary 13.38 and the
following extension to L? of property (13.14) about shifting hats:

[Faax= [fRax iff,geL*(R"). (13.53)
Rn Rn

To prove (13.53), letf, g € L2(R™) and choose {ﬁ}, {gj}in LY(R™) NL2(R™) such
thatf; — f, g — gin L?(R™). By (13.14), for every j,

fﬁgjx = ff];g; dx.
Rn Rn

Then (13.53) follows by passing to the limit since}]\- — fand g — ginL2(R™).
Finally, let f € L>(R™) and define F by
F() = @m)'F(—).

Then F € L2(R™), and we claim that f= F. For any ¢ € Ci°(R"), Corollary
13.38 implies that

() = 2" H(—),
and therefore
ff(X)qJ(X) dx = ff(x) Q)" H(—x) dx
R R0
= [Foo@n"S(—xdx by (13.53)
Rl‘l

= [F0 @m"dm dx = [ Food(o dx
Rn Rn

= ff(x)(p(x) dx by (13.53) again.
RII
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Hence,

ff(p dx = jf(pdx for all ¢ € C3°(R™).
Rn Rn

Therefore f = F a.e., which verifies our claim and completes the proof of
Theorem 13.51.

An alternate proof (still using (13.53)) that .# is surjective from L? to L? is
indicated in Exercise 14.

The next theorem records some facts about the inverse map .7 ~! of .# on

L2(R™), including analogues of (13.17) and (13.18). Its proof follows easily
from the statement and the proof of Plancherel’s theorem and is omitted.

Theorem 13.54  The inverse map F ! of F is a one-to-one linear mapping of
L2(R™) onto itself, and

177X H)lla = 2™ 2| fll2.
Also, for every f € L>(R™) and a.e. x € R,
(FHx) = Qn)f(—x)

and

f00 = 2" F(—x) = 2" (F—) .

F fails to be isometry on L2(R™), that is, || fll2 and ||f||2 are not identical,
only because of the factor (2m)~"/2 in (13.52). However, simple renormaliza-
tions of .Z lead to isometries. We leave it to the reader to check that both of
the maps .#; and .%; defined by

Fif(x) = 2" f(x) and Fof(x) = Qm)" f(2mx)
are isometries of L2(R™) onto itself.

Plancherel’s formula also gives analogues of (8.32) and (12.18), namely,

Theorem 13.55 Iff,g € L*(R™), then

f Fx) g dx = m)" jf(x)% dx.
Rn Rn
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The proof is left as an exercise.

Next, we turn to an analogue of the fact (see p. 303 in Section 12.1 and
Theorem 8.29) that the trigonometric Fourier series S[f] of an f € L2(—m, )
converges to f in L2(—7, 7r) norm.

Theorem 13.56  Let f € L>(R™). Then as k — oo,

| Fape¥dy — fx) in L2R™) norm, (13.57)
lyl<k

and

I f(y)e_”‘ Ydy — f(x) in L2(R™) norm. (13.58)

(27‘[)”| Ik

Proof. It is enough to prove (13.58) since it is equivalent to (13.57) by
Theorem 13.54. If f € L>(R™) and k = 1,2,..., the functions f; defined by
fey) = f(¥)X{y1<k) (y) belong to LYR™ N LZ(R“), and, by the Lebesgue dom-
inated convergence theorem, | fx — fllo — 0. Hence |[fk - f Il — 0, which
is the same as (13.58) in case k is restricted to the positive integers. Note
that the proof works equally well if the sequence k = 1,2, ... is replaced by
any sequence {t} of real numbers with #, — oco. Consequently, k can be a
continuous real variable tending to oo, and the proof is complete.

We close this section with two results about the Fourier transform of
the convolution f % ¢ of an L! function and an L? function. Recall that

f * g then belongs to L? by Young’s convolution theorem, and therefore f/*\g
is well-defined as an L? function.

Theorem 13.59 Iff € LY(R™) and g € L>(R™), then
f/ﬂ:g(x) = (Zﬂ)”f(x)§(x) a.e. in RM,

Proof. Fix f and g satisfying the hypothesis, and choose g € L!(R™) NL?(R™),
k=1,2,..., such that gy — gin L2(R™M). By Young’s Theorem 9.2, it follows
that f * gr — f * g in L>(R"), and hence

frge— frg inLARM).
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On the other hand, we have f/*g = (2m) ”fg} by Theorem 13.30, and therefore
2m)""f G — f * g in LA(R™).

But also (27'()”7;)57C — (27[)”;‘\’g\ in L2(R™) sincefis bounded, and the result
follows.

Corollary 13.60 Let K € LY(RM) and f € L2(R™). Then

If % Kll2 < @m0)" |Kllso fl2-

Thus, the function operator T defined by T : f — f * K, when considered as a
transformation from L2(R™) into itself, has operator norm at most (27)" ||K loo-

Proof. Letf € L2(R™ and K € LI(R™). By Plancherel’s Theorem (13.51) and
Theorem 13.59,

If Kz = @m"2||f x K|l = @m"2|2m)" f Kl
< 20" Klleo 20" ?|f 2 = 0" IKllool fll2,

and the proof is complete.

13.3 The Hilbert Transform on L2

In this section, we will use Plancherel’s theorem to define the Hilbert trans-
form Hf (x) of a general f € L?(—00,00) and to prove the important classical
result that the mapping H : f — Hf is bounded on L?(—o0, 00).

Given an f € L?(—00, 00), its Hilbert transform is formally defined for —oo <
x < oo to be the principal value integral

—-0+ 7T
w—>oo e<lyl<w

oo
Hf(x) =p.wv. 1 f flx— y)1 dy = hm — j flx— y) dy.  (13.61)
T y
We include the constant factor 1/7 in the definition of Hf for historical and
natural reasons (see Exercise 17). Since 1/x is real-valued, it is natural to also
assume that f is real-valued by considering the real and imaginary parts of
f separately. Hf is generally regarded as the nonperiodic analogue of the
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conjugate function7 studied in Chapter 12 (see Exercise 17 and the comments
at the end of this section). Sometimes, we also write simply

Hf = % p-v. (f * K), where K(x) = 91_c

The standard convolution f * (1/x) may diverge everywhere in R even
when f is a smooth L? function since 1/x is not integrable near x = 0. Our goal
is to give a sense in which the principal value definition (13.61) is well-defined
for every f € L>(RY).

We will use the truncated kernels K¢, in (13.44):

X
Ke,w () = Xie <lrl<a) (¥) ), D<e<w < oo
x

Since each K¢, € LY(RY), Young’s convolution theorem implies that the
doubly truncated Hilbert transform He f defined by

1 1 1
(He,wf) () = —(f ¥ Kew) @ = — [ fe- W dy (13.62)

e<lyl<w

belongs to L2RY forall0 < ¢ < w < 00 iff e L2(RY).

However, as we have already noted, the norms |K¢,wll1 = 2log(w/e)
are unbounded in ¢ and w. Consequently, the simple estimate obtained by
applying Young’s theorem, namely,

IHe,wfll2 < I fll211Ke, w1,

does not guarantee boundedness of |[He, o fll2in e, wiff € L2(RM).

Instead of Young’s theorem, the next result uses Theorem 13.45, (13.47),
and Corollary 13.60 to interpret the convergence of (13.62) when f € L2(R?)
(see also Exercise 16 regarding the convergence of the singly truncated Hilbert
transform Hef (x) = (1/m) f,\_ f(x —y)/ydy as e — 0).

Theorem 13.63 Iff € L*(RY), then the truncated Hilbert transform He of
defined in (13.62) converges in L2(RY), that is, there is a function Hf € L2(RY)
such that

|He,wf — Hflla > 0 ase — 0and w — oo. (13.64)
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Furthermore,

I1Hf ll2 = I fll2, (13.65)
Iil?(x) = (—isign x)f(x) ae., (13.66)

and there is a constant c, independent of f, €, and w, such that
He,wfll2 < cllfll2- (13.67)

Proof. Letf e L>(RY). Corollary 13.60 gives

1 1 —
IHe,wfllz = _Ilf # Ke,wllz < — - 2 1Ke 0 lloo I fll2

4
=2 — I fll2 by (13.47),

which proves (13.67) with ¢ = 8/7.
To show that H (,f converges in L2RY),let0 < e <w <ooand 0 < ¢ <
w’ < oo. By Plancherel’s theorem and Theorem 13.59,

IHe,wf — Herwifll2 = QY2 He,wof — Herwif 12

o —

1 — -~
= 02> 27| (Koo = Kevr) Fll

The last expression tends to 0 as ¢,¢’ — 0 and w, w’ — oo by Lebesgue’s
dominated convergence theorem sincef e LZ(RY) and Ks/\w (x) — K/s/;(x) is
uniformly bounded in x, ¢, w, ¢/, w’ by (13.47) and tends pointwise to 0 for all
xas ¢ ¢ — 0and w, w’ — oo by Theorem 13.45. Since L2(RY) is complete, it
follows that H ,f converges in L2(RY). Let Hf denote its limit in L2(RY). This
proves (13.64).

Then, by Plancherel’s theorem, as ¢, ¢’ — 0 and w, w’ — oo,

He of — Hf in LARY). (13.68)

On the other hand, by Theorem 13.59 again,

— 1
Ha,wfz ;(f*Ke,w) =

-
1
3
~
™
€
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But f(x) K/EE (x) converges in L2(RY) to f(x) {(—i/2) signx}, again by domi-
nated convergence and the pointwise convergence of K, ¢, (x) to (—i/2) signx
proved in Theorem 13.45. Hence,

He of (1) —> 71? 27 f (%) {%l sign x} = (—isign®) f(x) in L2RY).  (13.69)

Combining (13.69) and (13.68) proves (13.66).
Finally, we have

IHflla = QY2 Hf |2 = 2m) 2|/ (—isignx) fl2
= 02| fll2 = Ifll2.

This verifies (13.65), and the proof is complete.

Corollary 13.70  Iff e L>(RY), then H(Hf) = —f a.e. In particular, the map H :
f — Hf is an isometry of L>(RY) onto itself.

Proof. 1ff € L?(RY), then by (13.66),
H/(H\f)(x) = (—isignx) Iflj\‘(x) = (—isignx)z}\(x) = —f(x) a.e.

Hence, H(Hf) = —f a.e. Since H is clearly a linear operator on L>(R'), we
obtain that H(—Hf) = f a.e. Therefore, H maps L2(RY) onto itself. The fact
that H is an isometry is due to (13.65).

In passing, we mention without proof that Hf can be defined by (13.61) if
f belongs to LP(R?) for any p, 1 < p < 0o, and that the operator H f — Hf
shares the main properties of the conjugate function map C : f — f defined
in Chapter 12. The theory of the Hilbert transform serves as a gateway to the
very broad field of singular integral operatorsinR", n = 1,2, .. .. Afairly typical
form of a singular integral is

Tf(x) = ff(y)K(x, y)dy, xeR",
Rn

where the kernel K satisfies |[K(x,y)| < A|x — y|™" for some fixed constant
A and has additional cancellation properties that ensure a rich theory. Many
related topics can be found in Singular Integrals and Differentiability Proper-
ties of Functions, Princeton University Press, Princeton, New Jersey, 1970, and



The Fourier Transform 403

Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-
grals, Princeton University Press, Princeton, New Jersey, 1993, both authored
by E. M. Stein, as well as in the references listed there.

13.4 The Fourier Transformon P, 1 <p <2

In this section, the properties of the Fourier transform of L! and L? functions
will be used to define the Fourier transformfwhen f belongs to L” for some
pwith1 < p < 2 and also to show that the map % : f — }‘\is bounded from
Linto LV, 1/p+1/p’ = 1.

Let us first show that the set L} (R™) + LZ(R™) defined by

L'RM +L2RY ={f:f =fi +fo, fi € L'R™), o € L2RM)

contains L (R™), 1 < p < 2. This is obvious if pis either 1or2. If 1 < p < 2
and f € L (R™), the functions fi and f, in the simple decomposition

f=fxup=n tfxun<n =hH+f

satisfy

[1Ar1ax< [1firax= | IfPdx<Ifl} <oo
Rn Rn {If1=1}

and

[1pPax< [IfPax= [ IfPdx<Ifl} < oo,
R® Rn {Ifl<1}

and therefore f € L'(R™) 4 L?(R™).
Now, given any f € LY(R™) + L2(R™) and a decomposition f = f1 + fo with
fie LY(R™) and f, € L2(RM), we may defmef by

f=h+h
provided the right side is independent of any particular such decomposition
of f. To show that this is the case, suppose thatf = fi +f2 = g1 +g2 withf;, gj €
U(Rn), j=1,2.Thenf; — =g - fr e LY(R™ N LZ(RM), and consequently,

A-8Gi=(fi-g) =@ —fz) =& —hae,orequivalently fi + o = 31 + &
a.e. as desired
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In particular,?is well-defined in thisway if f € LP(R") and 1 < p < 2. Also,
if f belongs to either LY(R™) or L*(R™), then the present definition of}? agrees
with the appropriate earlier one by considering the trivial decomposition of
f as the sum of f and 0.

The next result is the main one of the section.

Theorem 13.71 (Titchmarsh, Hausdorff-Young) If1 < p <2, then thereisa
constant C depending only on p such that

-~ 1 1
Ifly <Clifllp, =+ =1, (13.72)
ppP
forall f € LP(R™).

Proof. 1t suffices to prove the theorem for 1 < p < 2 since the endpoint cases
p = 1 and p = 2 have already been established. We will prove the result
for 1 <p <2 by adapting the interpolation method of Marcinkiewicz to the
present situation. Recall that, in a different context, this method of interpola-
tion is used in the proof of Theorem 9.16 (see also Exercise 10 of Chapter 9).
The Marcinkiewicz method will not give the best value of the constant C in
(13.72) (see the comments after the proof).

Fix f and p with f € LP(R™) and 1 < p < 2. Since the Fourier transform is a
linear operator, we may assume without loss of generality that || f||, = 1. Let

w(x) denote the distribution function of |?|:

W) =[x eR": [fx)| > a}|, «>0.

It suffices to show that there is a constant C depending only on p such that

p f o Tw(a)yda < C
0
since the expression on the left side equals ||7||Z:.
For each « > 0, define functions g and by
8 =8« :fX{|fV’*121/oc} and h=he :fX{|f\P*1<1/oc}'
Note that f = ¢ + h. Also, g € L'(R™) and h € L?(R™) with norms satisfying

Igh= [ flaxsa [ Iffixs<alflf=a  (1373)

{IfP 1=y (IfP =)
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and

k)13 = | | f2dx (13.74)
{0<Ifl<a/®=1)

_Zp
<o Pl j |fIPdx < oo.
Rll

Thenf =3 + h and, by (13.73),

-~ - ~ X ~ 04 ~
Ifl <181+ |l < G + Ikl < 5 +1hl.

Hence,
{|f| > oc] - {|iz\| > %] and

w(e) = |{Ifl > a}| < [{if > 3}

1 ~ 4 1
h?dx = — ——||h)3
< /2>2an' Pix = — ol
1
<= |f12dx,

{0<|fl<o 1/ (-1}

where we used (13.74) to obtain the last estimate. Therefore,

oo o0
f o (o) do < f o =3 f |f|2dx do
0 0 {0<\f|<o(1/(l’*l)}
1P
= j |f|2 ( j ocp,_‘o’doc) dx
{0<|f|<oo} 0

1 ,
T f |f|2|f|(1_p)(p “Ddx  since p>2
P {0<|fl<oo}

1 1
Pdx =
p,_zanm =g
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Collecting estimates, we obtain

- 4 N
= (25) - (5)

. : 1/p
which proves (13.72) with C = (2%) and1l <p <2

RS
.

The value obtained here for the constant C is unbounded as p tends to 2. In
fact, when p = 2, the proof fails to produce a finite right-hand side in (13.72)
even though we know by Plancherel’s theorem that ||f|| ) = 2m) 2 fl2.
This nonoptimality in the proof is due to the use of estimates of distribu-
tion functions. For example, while Plancherel’s theorem is a sharp estimate,
its application in the proof of Theorem 13.71 is preceded by using Tcheby-
shev’s inequality in order to bound the measure of {|k| > o«/2}. In general,
the Marcinkiewicz method is better suited to situations when only weak type
distribution function estimates are known at the endpoint p values. A dif-
ferent interpolation technique, not treated in this text, known as the Riesz
convexity theorem or the Riesz-Thorin theorem, and based on strong type
norm estimates at the endpoints and complex-variable methods, produces a
smaller value of the constant C in (13.72). This technique yields a value of C
that is bounded for 1 < p < 2. In fact, the best possible value of C, which
depends on n and p, is determined in results due to K. I. Babenko and to
W. Beckner.*

Exercises

1. Let f € L'(R™). Show that if f is real-valued and even, thenf is also
real-valued and even. If f is real-valued and odd, show that?is odd and
purely imaginary.

Find a complex-valued f such thatf(x) is real-valued and finite for all x.

2. Let f be an even integrable function on (—o0, 0c0). Show that

~ 1%
feo =~ Ojf(y) cos([x[y) dy.

* See Inequalities in Fourier analysis, Annals of Mathematics 102 (1972), 159-182, by W. Beckner.
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3.

Let f(x) € LY(R™), n > 2, and suppose that f is a radial function: f(x) =
g(Jx|) for all x. Assume that the polar coordinate representation

jf(x) dx = T ( j f(T’X/) dx/) rnfldr

Rn 0 \¥|=1

is valid, where dx’ denotes the differential element of surface area on the
unit sphere {x' € R" : |x'| = 1}, and x = rx/, r = |x| if |x| # 0. Show that

foo = @m 3 X2 [ g r Lz (rixDyr,
0

where J,_2)2(t), t > 0, is the Bessel function of order (n — 2)/2, which
may be defined as follows. For t > 0 and x” with |x'| = 1, show that the
function of (t,x) defined by [, e~™¥'dy’ is independent of x/, and
then set

f e—z‘tx’~y’dy/ — (Zn)%t*%f% #, t=>0.
ly'|=1

Note in particular that the formula above forfshows thatf is a radial
function if f is radial.

4. Verify properties (13.5) and (13.6) of the Fourier transform.

5.

6.

Let L be a nonsingular linear transformation of R™ and define (Lf)(x) =
flx).Iff € LY(R™), show that

Lf) = |det LI~ F((L™1*x), xeR",

where (L71)* (= (L*)~1) is the adjoint (or transpose) of L1 Equivalently,

(Lf)Az | det Ll_lz?where L= (L~H*.

(a) Verify (13.12). Also, given a functionf € L!(R™), find a function f(x, t)
defined on Ri“ such that

" 92 9
_ /t - ,t : Rn+1
) 5afh = gf et ik

and

}in% f(x,t) =f(x) atevery Lebesgue point x of f.
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7.

9.
10.

11.

12.

13.
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Such a function f(x,t) is said to solve the Dirichlet problem for the
heat equation in R:‘LH. (Consider dilations of the Gauss—Weierstrass
integral Wf(x, t).)

(b) Let Pf(x, £) be the Poisson integral of f defined by (13.27) for (x, ¢) €
Rﬂ“. Iff e LY(R™), show that Pf is harmonic in R’f“l, that is, Pf
satisfies Laplace’s equation

92 8% 92 11
— 4+ —+ — | Pf(x,6) =0if x e R%", ¢ > 0.
8x% ax% 882 f( ) +

Hence, since lim,_,o Pf(x, €) = f(x) at every Lebesgue point x of f, Pf
solves the Dirichlet problem for Laplace’s equation in the half-space
1
R}
Letf € LY(R™), P(x, €) = P, (x) be the Poisson kernel for R‘}fl, and Pf(x, €)
be the Poisson integral of f. Show that for all x e R* and all ¢, 5 > 0,

(Pa * P5)(x) = P.y5(x) and (Pf(-, €) % P5)(x) = Pf(x,e + ).

Prove analogues for W(x, t) and Wf(x,t).

. Prove Theorem 13.40. Note in particular thatif A = % +--+ % denotes

the Laplace differential operator (or Laplacian) in R, then
A (x) = —x*f(x) iff € ..

(Use Theorem 13.31 and the fact that if f € . then p(x)f (x) € . for every

polynomial p(x).)

Letf e LY(R™M). If? € ., show that there is a function F € . such that

f = Fin the Lebesgue set of f.

Iff,g € 7, prove thatf x g e 7.

Suppose that f € L' (R") and f has a partial derivative in the L! sense with

respect to xi for every k =1, ..., n. Prove that f(x) = o(|x|™1) as |x| — oo.

Compare the estimate preceding Corollary 13.38 with N = 1 there.

(a) Show that the principal value Fourier transform in Rl of 1/|x| is
identically infinite.

(b) Show that the principal value Fourier transform in R! of 1/ lx|1- e,
0 < o < 1, equals c«|x|™% if x # 0. (We will see in Chapter 14 that
the function 1/|x|'=%,0 < « < 1, is the kernel of the one-dimensional
fractional integral operator of order «.)

Letl <p<oo1l/p+1/p=1fec PR, and g € ¥ (R™). Show that

f * g is uniformly continuous and bounded on R".
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14.

15.
16.

17.

Part of Plancherel’s theorem states that the range of the map .% : f — ]?,
fe L2(R™), is all of L2(R™), that is, that .Z is surjective. Show that this
can also be proved as follows without using Corollary 13.38. The range
space & (L2(R™)) is a closed subset of L2(R™). If it were a proper subset,
there would exist (by using an orthogonal basis in L*(R™)) a nontrivial
g € L2(R™) such that [z gfdx = 0 for all f € L>(R™). Now use (13.53) to
deduce a contradiction.

Verify Theorem 13.55.

Let f € L2(—00, 00). Show that the singly truncated Hilbert transform

Hef(x) = = ff(x—y) dy, €¢>0,x¢e (—00,00),
|y|>£

is finite and continuous at every x and that |H¢f — Hf|o — Oas ¢ —
0. Show also that there is a constant c independent of f and ¢ such that
[Hefll2 < cllfll2.

Given a real-valued function f € L2(R!) (or more generally in L (R?) for
some p, 1 < p < 00), consider the Cauchy integral Cf(z), z = x + iy,
defined in the upper half-space by

1 ¥ 1 .
Cf(z) = ;{_Lf(t): dt, z=x+1iy,y>0.

(a) Show that for every such z, Cf(z) converges absolutely, has real part
equal to the Poisson integral of f, that is, equal to

fooy) = (f + Py () = —l[fo

4

tﬂ+y
and has imaginary part

—t
— ————dt

foy = ffo tﬂ+y
The latter expression]?(x, ) is called the conjugate Poisson integral of
f in the upper half-space R% . Recall that the numerical factor 1/m is
needed in order to guarantee that [°_ P, (x)dx = 1. In this way, the
factor 1/7t is also natural in the definition of f (x,y) even though its
kernel P(x) (1/m)x/(x*> + 1) is not integrable at infinity.

(b) Show that at every Lebesgue point x of f, the conjugate Poisson inte-
gral f(x,y) is equiconvergent as y — 0+ with the singly truncated
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18.

19.

20.

21.
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Hilbert transform Hyf(x) defined in Exercise 16, that is, j~f(x, y) —
Hyf(x) — 0asy — 0+ if xis a Lebesgue point of f. Compare Theorem
12.51 (ii). (Define

) 1 X|>
k(x) = P(x) — %X{\\Tﬂ("),

where 1~3(x) is as in part (a), and note that k(x) is bounded with k(x) =
O(Jx|3) as |x| — oo. Also, ffooo k(x) dx = 0. Now compute the dilated
kernels k,(x) = y’lk(x/y), y > 0, and use the ideas of Theorem 9.13
and Exercise 11 of Chapter 9.)
Let f € /(—o00,00) and let Hf denote the Hilbert transform of f. If
ffooo f(x)dx # 0, show that there is no function g € .#(—00, 00) such that
Hf =gae.
Iff,g € L2(—00,00) and H; If, Hg denote their Hilbert transforms, show that

T(Hf) (Hg) dx = ngdx and Tf(Hg) dx = — T(Hf)gdx.

Let —oo < a < b < oo and () (x) denote the characteristic function of
the interval (a, b). Prove that the truncated Hilbert transform H¢ X (a0
satisfies

1 a—x
li H x) = —log|——|, x#ab,
5_1)161+( e,wX(a,b))( ) = 0g h—x *
w—00
where the convergence is in the pointwise sense. Deduce that the Hilbert
transform of a function that is bounded and has compact support may
not be bounded or have compact support.

Let —oo < a < b < oo and () (x) denote the characteristic function of
the interval (a,b). Set c = (a + b)/2 and ¢ = (b — a) /2. Show that

o 1sinéx _;.,
X@p) (X) = e A € (—00,00),

where the right side should be interpreted as £/t when x = 0. Note that
X(,p) is not integrable (at infinity). Also, given i > 0, sketch the graph of
the convolution ﬁX(—h,h) *X (-1, and show that the Fourier transform of
this function is the integrable function (sin? hx) /(rthx?) (cf. Exercise 5(b)
of Chapter 12).

These examples further illustrate the maxim first observed on p. 387
in Section 13.1 that the smoother a compactly supported function is, the
smaller its Fourier transform is at infinity.
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22,

23.
24.

25.

Let1l <p < 2andf € LP(R™). Show that the functions

XYy k>0,
fro) = (2 )n‘ |fkf(y)e y, k>

converge in LF (R™) tofask — oo, 1/p+1/p = 1.
Letl <p <2, f € LI(R") and g € LP(R™). Show that f x g = (2m)"f § a.e.
Let f € LP(0,2m), 1 < p < 2, be periodic with period 27, and let ¢, =

(1/2m) foh f (He *tdt, k = 0,41, ..., be its Fourier coefficients. Prove that
there is a constant C independent of f such that

1/p

w o 11
> lel” <C f IfiFdt] , —-+-=1
k 0 p P

This is the periodic Hausdorff-Young theorem. (Write

ok o ko
2 <erl<2 2 <erl<2

oo , oo , oo .,
Ydolal = Y a2 Y1
k:—oo j:— =

in analogy with the first equality in Theorem 5.51. After summing by
parts, argue similarly to the proof of Theorem 13.71 with 2/~ playing
the role of o This method will not produce the optimal value of the
constant C.)

Let f € [P(—00,00), 1 < p < 2. Derive the following pointwise formula
for f:

feo = <27T [ y)

(Deﬁne F(x) = [y f and Fy(x) = [y f;\\] where fy = fx(-nnN), N > 0. By
Holder’s inequality, |F(x) — Fn()| < [x[V7|f - fully — 0as N — oo.
Then f(x) = F'(x) = (d/dx) imn_, o FN(x) a.e. Also,

e~y _

iy dy.)

FN@) = 5 j fap ———
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26. Let p be a finite Borel measure on R™. Define the Fourier transform
of by

N 1 »
_ Xy n
Hx) = - ane du(y), xeR™

(a) Show that L is bounded and continuous on R™ and satisfies [ti(—x) =
U(x) for all x.

(b) If xp is a point in R™ and {E} is the class of Borel sets in R, define the
delta measure Oy, at Xg by 0x,(E) = 1if xg € E and 8x,(E) = 0if xo ¢ E.
Show that

— 1 .
Brg (X) = ——e 0%,

@m"

Note that SB(X) is identically equal to the constant 1/(2m)".
(c) Let m=1,2,..., {xj}]’m:1 cR", and {z]-}j’i1 be complex numbers.

Show that
2
m m m P
DD R —x0zE = " [ [Dz8 )| duy).
j=1 k=1 Rn |j=1

In particular, the sum on the left side is nonnegative. (Conversely,
it is known that any bounded continuous complex-valued function
g on R" that satisfies g(—x) = g(x) for all x is the Fourier transform
of a finite Borel measure provided g is nonnegative definite in the
following sense:

m m
Z Zg(xj — Xp)zjzg = 0

=1 k=1

for all such m, {x;} i and {z; ;.":1. See S. Bochner, Lectures on Fourier
Integrals, Annals of Math. Studies 42, Princeton Univ. Press, 1959.)

27. (a) Iff € LY((0, 00); dt/1), that is, if fooo |f(®)|dt/t < oo, define the Mellin
transform m(f) of f by

1 ¢ - dt
m(f)(x) = 7 ff(t)t*”‘ T <x<oo
0
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28.

29.

If f,geLl((O,oo);dt/t), define an analogue f#g of ordinary
convolution by

e dt
(F#9)s) = [ fist g T 0<s<o.
0

Show that f#g¢ € L1((0, 00); dt/t) and
m(f#¢)(x) = m(f)(x) m(g)(x), xeR™L

(b) For any f defined on (0,00), let (Ef)(x) f(ex), xeRL IffeL1
((0, 00); dt/t), show that Ef € LY(RY) and m(f)(x) = Ef(x) (Exercise 11
of Chapter 7 may be helpful.) If f € L*((0, 00);dt/t), explain why
Ef € L2(RY), and define m(f) by m(f)(x) = Ef(x), x € R1. Show that

1 —indt o T2(R1
7 If(t)t n — m(f)(x) in L*(R") norm as k — oo, and

_L Im(f) (x) 2dx = 2710f|f<t>| t

Show that f = 0 if f,? € Ci°(RM). (In case n = 1 and f is supported in
the open interval (—m, ), the Fgurier series S[f] of f in (—m, 7) converges
everywhere in (—m, 7) to f. If f has compact support, S[f] reduces to a
trigonometric polynomial and therefore has at most a finite number of
roots (mod 2m); see Section 12.1, p. 307. An alternate proof based on the
identity theorem for analytic functions is possible.)

There is an analogue for smooth truncations of the limit inversion fact in
(13.57). For k = 1,2, ..., let ) () € C3°(R") with xx(x) = 1if x| <k,
Xk(x) = 0if [x| > 2k, and 0 < x; < 1. The operators

Vifo0 = [ xpfe*¥dy, fel*RY,
RI\

are often called pseudodifferential cutoff operators. Show that || W fll2 < |Ifll2
and ||V f — fll2 — 0 as k — oo. Show also that Wy f = i * f, where
(2m)™px = Xx. Deduce that W f is infinitely differentiable if f L2(R™),
and thatif f € ., then D*Wy f — D%f in L?(R™) for every multi-index «.
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Fractional Integration

In this chapter, we will study an important class of convolution operators
known as fractional integral operators. The behavior of these operators on
functions in the L spaces, including L? for various “endpoint” values of p, is
of particular interest. In addition, a number of closely related topics dealing
with how much a function differs from its integral average are treated. Results
of this second type are generally called mean oscillation estimates. The classes
of Holder continuous functions as well as the class of functions of bounded
mean oscillation arise naturally in this context.

In the next chapter, the norm estimates for fractional integrals that are
derived in this chapter will be used in order to obtain Poincaré-Sobolev
inequalities.

Many of the results and methods in Chapters 14 and 15 can be adapted to
geometric settings that are more varied than the usual Euclidean one, as well
as to measures more general than Lebesgue measure.

14.1 Subrepresentation Formulas and Fractional Integrals

Let f be a real-valued measurable functionon R", n > 1,and let 0 < « < n.
The fractional integral or Riesz potential of f of order « is defined by

Lof (x) = j fo |n ——_dy, xeR", (14.1)

provided the integral exists. By allowing f to vary, the mapping defined by
I : f — If, that is, the convolution operator with kernel |x|*~", is called
the fractional integral operator of order . The main mapping properties of I,
including answers to the questions of existence, finiteness, and measurability
of I«f for various classes of measurable f, will be studied in Section 14.3. For
now, we simply note that if f is nonnegative and measurable on R", then
since |x|*~" is also nonnegative and measurable, Corollary 6.16 guarantees
existence and measurability (but not finiteness) of Iof on R™.

The case « =1 will play a special role, although the theory for general
o, 0 <a<mn, will be developed. As a motivation for studying fractional
integrals, we begin by deriving a basic subrepresentation formula for any

415
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sufficiently smooth function f in terms of the Riesz potential of order o = 1
of the first partial derivatives of f. The formula may be regarded as a weak
substitute in R®, n > 1, for the fundamental theorem of calculus in R, that
is, as an n-dimensional version of the formula in Theorem 7.29 showing that
an absolutely continuous function f defined on an interval [4,b] C (—o00, 00)
satisfies

) —fy) = jf/(t) dt, x yelabl.
Yy

In particular, after taking absolute values and integrating in y, this formula
yields the estimate

b b
7 o —rwidy= [If1 xemmn

Moreover, since

b b
1 1
f) = o — aff(y) dy = +— j [f —f@ldy,

we also obtain the pointwise inequality

b
=[Ifl, xelabl

b
1
fo— maff(y)dy

In order to derive analogues of these inequalities in higher dimensions,
we will initially assume that f is a function defined in an open ball B ¢ R"
and that f belongs to the class C!(B) of functions with continuous first partial
derivatives in B. The C! restriction will be considerably relaxed in Theorem
15.16. The gradient vector of such an f will be denoted

(L),

ax1” T axy
its magnitude is
n o\ 1/2
of
Vf| = — .
v (;(axi) )

Note that since B is open, neither f nor |Vf| may belong to L!(B) if f € C!(B).
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Theorem 14.2 (Subrepresentation Formula) Let B be an open ball in R™ and
f € CY(B). Then

1 \%
i | Vo0 sy <an | IO 4y, xeB, (49

5 X= yl-t
where cy, is a constant that depends only on n. If in addition f € LY(B), then

\Y
|f0) — f| < cu j Ifﬁdy x € B, (14.4)

x —vy|n—1777
5 =yl

L

where fg = ; Jpf(y) dy is the integral average of f on B.

Before proving the theorem, we remark that the integrals on the right sides
of (14.3) and (14.4) are essentially I (|Vf])(x), except that their domain of inte-
gration is restricted to B. In fact, f is assumed to be defined only on B. If g is
any function defined on B, but not necessarily outside B, we can extend g to
all of R™ by defining it to be 0 outside B, and we will then denote the extension

by gxa:

gx)ifxe B

@XB)O) =10 ifx e R" _ B.

Sometimes, we will also write g(x)xg(x) instead of (¢gxp)(x). With this nota-
tion, the integrals on the right sides of (14.3) and (14.4) can be written simply
as I (IVfIx) ().

Proof. We will prove Theorem 14.2 only in case n > 2, leaving it to the reader
to adapt our earlier comments about an absolutely continuous function on
a closed interval [4,b] ¢ Rl to a continuously differentiable f on an open
interval (a,b), b —a < oo.

Fix an open ball Band an f € CY(B). It suffices to prove (14.3) since (14.4)
follows immediately from (14.3) and the simple estimate

1 1
00 =l = | 75 J Fo0 —fpldy| < o Bf Ifx) — f(y)|dy,

assuming of course thatf € L!(B) in order to guarantee that f5 is well-defined.
To prove (14.3), fix x € B, and for any y € B, write
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1

fy) —fx =f %[f(ty +1- t)x)] dt
0

1
= [(vHty+a—-px -y -,
0

where use of the chain rule is justified since f € C}(B) and the line segment
{ty + (1 — t)x : 0 <t < 1} lies in B. Hence, by Tonelli’s theorem,

1
[1fn —fooldy = | (j (V) (ty + (1= 5] Iy = X] dy) dt.
B 0 \B

In the inner integral on the right side, we make the affine change of variables
w =ty + (1 -#Hx = x+ t{(y — x) in y, with t and x fixed, and note that
w € B. Also, [w — x| = |y — x| ¢, and consequently |w — x| < t diam(B). By
using (6.13) and Exercise 20 of Chapter 5, it follows that the right side of the
preceding equation is at most

1
|w — x| dw
IIX{W |w— x|<td1am(B)}(W) |Vf(W)| r— _d

0B

Sflvf(W)IIW—XI( i thdt)dw
B

w—x|/diam(B)

_ diam(B)" 1
= 1! IVF(W))| malw.

However, diam(B)" is a fixed multiple of |B|; in fact, by using polar coordi-
nates y = ry’ with r = |y| and |y’| = 1, and denoting the radius of B by r(B)
and the surface area of the unit ball in R" by w;,, we have

r(B) . n
,  rB)" wy, [ diam(B
|B| — j dy — j r’i_ldr f dy — (n) Wy = 7}’1 [ 2( ):| .

lyl<r(B) 0 ly'|=1

Combining estimates gives
2" 1
Jlf(y) —foldy = -~ IB Bj V)] W

This proves (14.3) with ¢, = 2"w;, !, and the proof of Theorem 14.2 is complete.
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If f satisfies the stronger condition that f € C!(B), where B is the closure of
B, then (14.3) and (14.4) hold for all x € B (see Exercise 1). Also, the integral
on the right side of (14.3) is then finite for x € B; in fact, it is bounded by

(max |Vf|> f ;dy = (max |Vf|> w;, diam(B).
B B

X — n—1
[x—y|<diam(B) | vl
Here, we have used the formula

1 dy
|X _ y|nfl dy = |y|n71
lyl<diam(B)

= w, diam(B).
[x—y|<diam(B)

Note that when f € C!(B), we clearly also have that f € L'(B).

The role played by balls in Theorem 14.2 can be played by some other types
of sets, with similar proofs. See Exercise 4 for the case of the Cartesian product
By x By of two balls, and see Exercise 5 for general intervals in R™.

From now on, all balls B are assumed to be open. As in Chapter 1, we use
the notation

B=Bx;n)={y:|x—y| <1} (14.5)

for the (open) ball with center x and radius r. The radius of a ball B will
often be denoted by 7(B). As shown in the proof of Theorem 14.2, there is a
constant ¢, depending only on 7 such that |B| = c,#(B)" for every ball B.

Next, we list a corollary of Theorem 14.2 that gives analogues of the
subrepresentation formula (14.4) without the average fp on the left side if f
vanishes on appropriate subsets of B.

Corollary 14.6  Suppose that B is an open ball in R™ and f € C'(B).

(i) Iff = 0inameasurable set E C B satisfying |E| >y |B| for some constanty > 0,
then

o ¢ IVf
fool = 5 J oy X<,

where ¢y, is a constant that depends only on n.
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(i) Iff has compact support in B, then

\Y
Lf(X)] < cn f b!fi)'dy, x € RY,

_ g1
B vl
where ¢, depends only on n.

Proof. Let B, f, and E satisfy the hypothesis of part (i). If x € B, then since
f=0inE, we have

1
UWN=ELﬂﬂW—ﬂﬁWY

IVf(y)l J

|x _ y|n—l

wjvw ~fooldy =7 |
Y B

by (14.3), with the same constant ¢, as in (14.3), and the proof of (i) is
complete.

Next, suppose that B is an open ball, f € C!(B), and f has compact support
in B. Extend f to R™ by setting f = 0 outside B. Then f € C!(R™). Let B* be an
open ball concentric with B such that r(B*) > r(B). By part (i) applied to B*,
and with E chosen to be E = B* — B and y = |B* — B|/|B*|, we obtain

Cn | ;f(9)| Cn
_ — 2 dv=-=L(V

A y|n—1

for all xe B*, and so for all xe R™ since f is supported in B. The corollary
follows by choosing B* with r(B*) = 2r(B) since y then depends only on . In
fact, by instead letting (B*) — oo and observing that y then tends to 1, we
obtain | f(x)| < ¢,I1 (IVf|xp)(x) with the same constant ¢, as in Theorem 14.2.

Corollary 14.7 Iff € C'(R™) and there is a sequence {Bi}72; of balls increasing
to R™ such that fg, — 0, then

VI,

n
x |n1 x € RY,

fool <en [ ==

Rll

where ¢y, depends only on n.

Note that the expression on the right side of the conclusion is ¢, I1 (| Vf]) (x).
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Proof. Fix f € C!(R™) and a sequence of balls B; ,// R® with fg, — 0. The
conclusion of the corollary follows immediately by applying (14.4) to the balls
B; and using Fatou’s lemma.

The assumption in Corollary 14.7 that there are balls B; ,/ R" such that
fB; = 0is satisfied by any sequence of balls increasing to R™ if either

(1) f € L"(R™) for some r with 1 < r < oo or
() f € Lj,.(R") for some r with 1 < 7 < oo and limxj— . f(x) = 0.

For example, in case (1), by Holder’s inequality,

1/r
1
— [ Ifld — [ IfI"d BI7Y" ) fllr my,
|fs|<|B|j|f|y ('B'Bfm y) < 1BV fllren)

which tends to 0 as B 7 R™ since r is finite. The verification in case (2) is left
to the reader.
Note that part (ii) of Corollary 14.6 is a special case of Corollary 14.7.

The significance of the subrepresentation formulas in Theorem 14.2 and
Corollaries 14.6 and 14.7 will be more apparent after we study the behavior
of L7 norms of If when f € L? in Section 14.3. For example, when n > 1, by
combining (14.4) with norm estimates for If in case x = 1, we will be able to
bound L7(B) norms of f —fg by LP(B) norms of | Vf| for appropriate values of p
and g. The inequalities obtained are called Poincaré-Sobolev estimates; they
are derived in Chapter 15 under less restrictive smoothness assumptions on
f than continuous differentiability. In case n = 1, Poincaré-Sobolev estimates
can be derived directly from Theorem 7.29.

14.2 L1, L! Poincaré Estimates, the Subrepresentation Formula, and
Holder Classes

In this section, we begin by considering the relationship between the
inequality

1B| f |f00 — fi dx < cr(B) IVf(x)I dx (14.8)

and the subrepresentation formula (14.4). Note that (14.4) is a pointwise
estimate, while (14.8) is not. We call inequality (14.8) the LY, L Poincaré esti-
mate for f and B. The “L!, L part of the terminology is due to the fact that the
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exponents of both | fx) —f | and |Vf(x)| in (14.8) are 1. One of our main goals
is to show that for a given f, the subrepresentation formula (14.4) is equiv-
alent to the L', L! Poincaré estimate provided the ball B is allowed to vary.
Another goal is to apply the ideas used to prove this equivalence in order
to obtain pointwise estimates that characterize some other mean oscillation
inequalities of the form

1
B| f |f() —fs| dx < a(B), B C By, (14.9)
B

where a(B) is a nonnegative functional defined on balls.
Such functionals a(B) may depend on f. For example, by choosing

r(B)
aB) =c o j |Vfldx,

(14.9) becomes (14.8). In this section, we will consider only two types of
functionals. The first one is

_ 1B
a(B) = Bj (14.10)

where g is fixed and nonnegative, for example, ¢ = |Vf|. The other one is
aB)=crB)P, 0<p=<1, (14.11)

where 3 is fixed (independent of B). We will call (14.11) the Hélder 3-functional,
or the Lipschitz 3-functional. Holder functionals can depend on f only indi-
rectly through the constants c and 3. Theorems 14.12 and 14.25 give pointwise
characterizations of those f that satisfy (14.9) for a(B) as in (14.10) and (14.11),
respectively. Similar ideas are used to prove both characterizations.

On the other hand, the important special case of (14.11) when (3 =0 lies
deeper and requires a different treatment. Then a(B) is identically constant,
and when By is replaced by R", condition (14.9) becomes

1
ﬁﬂf—flguxgc, B CR"
B

Such f are said to belong to the class BMO(R™) of functions of bounded mean
oscillation on R™. They will be characterized in Section 14.5 in terms of the size
of the distribution function of | f — f3| on B, rather than in terms of a pointwise
condition.

We will continue to assume that all balls B are open and to use the notation

fo = 1B [pfdxiff € L'(B).
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Theorem 14.12  Let By be a ball in R", f eL! (By), and g be a nonnegative
measurable function on By. Then there is a constant Cy such that

1 1
B j |f —f8| dx < Clr(B)ﬁ fgdx for all balls B C By (14.13)
B B

if and only if there is a constant Cy such that

|f0 —f] < C2 f g(y|n dy fora.e. x € Band all balls B C By. (14.14)

The constants Cy and Cy are equivalent in the sense that there is a positive constant
cn depending only on n such that ¢;'C1 < Cp < ¢,Cy.

Before proving the theorem, we note that (14.13) remains the same if f is
changed arbitrarily in a set of measure 0. The possible exclusion of a set of
measure 0 in (14.14) is then natural since (14.14) is a pointwise inequality for
|f — fgl. In Remark 14.19, we will see that if either (14.13) or (14.14) holds,
then (14.14) holds for every point x of the Lebesgue set of f in B.

Proof of Theorem 14.12. To show that (14.14) implies (14.13), we first integrate
(14.14) over B to obtain

dx
J |00 = fia| dx = C2 Jg(y) (l! W) dy.

Since |x —y| < 2r(B) if x, y € B, then

f dx dx
_ y|n—1 = | _ |n—1
B |X yl [x—y|<2r(B) y

= w,2r(B).

Combining estimates, we immediately obtain (14.13) with C; = 2w,,C».

The proof of the converse is longer and based on adding (14.13) over an
appropriate chain {By} of balls By associated with each point x € By that
shrink regularly to x (in the sense of Section 7.2, p. 141). The chain associated
with x is described in the next lemma. Its key properties are that if x; and r
denote the center and radius of B, then ry ~ |x — x¢| — 0 as k — oo, and
every two successive balls By, Br1 have substantial overlap uniformly in k,
while the entire collection {Bix} has bounded overlaps (see Section 10.5,
p- 267) uniformly in x. A more precise formulation is as follows.
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Lemma 14.15 Let B be an open ball in R™ and let x € B. Then there is a sequence
{Bi}ro; of balls with the following properties:
(i) Bx C B,
(ii) Br = B (x¢; ry) withry > %r(B) and 1 = % x —x¢] = 0ask — oo,
(iii) Bx C B (x;3r),
(iv) Ifk < €and By N By # 0, then £ =k + 1,
(v) Bi N By contains a ball By with |By|, |Bis1| < cn |B~k|

Taking Lemma 14.15 temporarily for granted, let us finish the proof of
Theorem 14.12. We must prove (14.14) assuming that (14.13) is true. Fix a
ball B with B C By. For each x € B, let {Bi};2; be a chain of subballs of B with
the properties in Lemma 14.15. Then By = B(xy; r¢) C B(x;3ry) foreach k > 1,
and x; — xand r, — 0as k — oo. Since |B(x;3r¢)| = 3"|Bxl, the balls By
shrink regularly to x, and Theorem 7.16 implies that

f(x) = lim fp, fora.e.xeB.
k—o0

In fact, this equality holds at every Lebesgue point of f in B. Fix such an x.
Then,

fo=f00 = lim (fs —f5,) = (fs = fin) + D (fe — i) s
k=1
and therefore,

1£00 —fo] < Ifs = fo| + D |f3e = foep | = T+ 11 (14.16)

k=1

We have

|Bl|f(f f8) |B|f’f fsl

< cnﬁ j |f —fs| since By C Band r(B) < 8r; = 8r(By)  (14.17)

< cnclﬁ fg(y) dy by (14.13)

8(y)
<cnCy f W dy
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since for all y € B, we have |x — y| < 2r(B), and consequently,

r(B) _, 1 - 1
Bl — "r@B)y-l T M x -yl

y € B.

Next, in order to estimate II, let {B}} be balls as described in part (v) of
Lemma 14.15. Then fork=1,2,...,

|ka _ka+1| = ‘ka _fBNk‘ + )fBNk — fBin

j(f ka f(f ka+1

[Be] 5 |B F
SIBIIV ka|+ f lf ka+1|
Bk 1
|§k|.Hence,
< |B lf[f fa| (14.18)

T
e Z B f g(y)dy by (14.13)
k=1 By

00 e
=cnCy Bfg(y) {;XBk(y)lB—k'} dy

since By C B. By Lemma 14.15(iv), for each y € B, there are at most two nonzero
terms in the sum in the last integrand. Also, ify € By, then since By C B(x; 3ry),
we have |x — y| < 3r¢ and therefore,

187 1 1

T =Cn =Cn ’
Bel T T My

yGBk.

Hence, the entire sum in curly brackets is also bounded by c,|x — y|_(”_1).
Combining estimates, we obtain

8(y)
I+H§CnC1f—,1dYr
5 Xx—yl"

which completes the proof of Theorem 14.12.



426 Measure and Integral: An Introduction to Real Analysis

Remark 14.19 As mentioned after the statement of Theorem 14.12, the set of points
x for which (14.14) holds can be assumed to contain all points of the Lebesgue set of
f in B for all balls B C By. Indeed, the proof of Theorem 14.12 shows that if (14.13)
holds, then (14.14) is true if x is a Lebesgue point of f in B. On the other hand, the
proof also shows that if (14.14) is true, then so is (14.13), and consequently, (14.14)
holds for all x in the Lebesque set of f in B for all balls B C By. A related fact will be
used in the proof of Theorem 14.25.

Proof of Lemma 14.15. We will construct a chain with the desired properties in
case B = B(0;7) and x = (x,0,...,0) with 0 < x < r. The construction in the
general case is similar and left as an exercise.

Fix x and r as above and define real numbers {x;}??, by

1, r 1 1
x1:—<—§+x>; Xt = 5 () = ¥+ 5 (=) ifk= 1 (1420

Then {xy} is strictly increasing and —r/4 < x < x for all k. Denote
1 .
Xy = (x,0,...,0) and r, = 5 (x—xp) ifk>1.
We will show that the balls By defined by

By =B(x;rp), k=1, (14.21)

have the desired properties. To prove property (i), let y € By for some k and
note that 7(By) = rr = (x — x¢)/2. Then

1
lyl < |y — x| + Ixl <7’k+|xk|=§(x_xk+2|xk|)~

If x; > 0, the last expression is (x + x¢) /2 < x < r, while if x; < 0, it is

1(x 3x)<1(x 3x1) L r+3r 7
—(x— —(x— < = -r)<r.
2 ) V=32 1

In either case, y € B(0;r) = B, which proves (i).
For (ii), since |x — x¢| = x — x¢ for all k, we have ry = |x — x¢|/2 by the
definition of . Also,

1
n=sx—x)=_,+

| =
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Moreover, x; — X since x — Xy41 = %(x — xx) if k > 1 by (14.20) and therefore
by iteration, we have

X—xp] =% — 2 = L ifk>1. (14.22)

2k—1

For (iii), note that the first equality in (14.22) combined with the definition
of r¢ gives |x — x¢| = 2ry, and then for every y € By, we obtain

ly — x| < |y — xg| + Ixx — x| < ¥ + 21 = 31y

This proves (iii). Note also that r = (x—x1)/ 2k = Xk+1—Xk, k> 1, and therefore,

r(B)

r(By) =1 < 17 k=1, (14.23)

a fact that will be used in the proof of Theorem 14.25.
To prove (iv), fix k and suppose that By N By # ¥ for some ¢ > k. We must
show that £ = k4 1. For any y € By N By,

Xe — X = |x¢ — x| < Ix¢ =yl + |y — Xl
X —X1 X —X1
2¢ 2k

<Try+r=

But by (14.22),

X —X1 X —X1
Xe =X =(X—x) — (x—Xx¢) = k-1 -1
Combining the previous two inequalities and dividing by x — x1 give

2 2 1 1 , 1 3
ot <ot + > Or equivalently > <ot

This is possible only if £ = k + 1 since we have assumed that £ > k. Thus, (iv)
is proved.
Finally, in order to verify (v), fix k > 1 and define

~ 3 ~ ~ ~ ~ 1
xk=xk+17’kz xx = (xk,0,...,0), Bk=B<Xk}Z”k>-
First note that

~ ~ n
|Bi| = car (Br)" = cx (—) = . IBl,
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and since 7y = 2rg41, also |Bk| |Bk+11/2". Thus, (v) will be proved if we show
that Bk C By N Bgy1- Lety € Bk Then,

ly — Xkl < Iy — Xl + [Xk — Xkl

1 +3
< =1+ =1 =171,
4k 4k k

and so By C By. Similarly, since X; = X1 — }Irk (recall that rx = xxy1 — xx), we
have

Iy — Xpeq1] < |y — Xkl + 1% — Xpey1

11’ +11’ 11’ T,
< - I = =1 = .
4k 4k 2k k+1

It follows that ka C Byy1, which completes the proof of Lemma 14.15.

An immediate corollary of Theorem 14.12 is the following equivalence
between the truths of the L', L! Poincaré inequality and the subrepresenta-
tion inequality for any integrable f that has first partial derivatives. However,

the corollary does not assert the truth of either of these inequalities for such
f. See also Theorem 15.16 and Exercise 22 in Chapter 15.

Corollary 14.24  Let By be a ball in R™ and f be an integrable function on By, all
of whose first partial derivatives exist a.e. in By. Then the following two conditions
are equivalent:

(a) There is a constant Cq such that

|B|f|f fldx < Clr(B)—j|Vf|dx for all balls B C By.

(b) There is a constant Cp such that

lf(x) —fgl < Ca f | f(}llr?'ldy fora.e. x € Band all balls B C By.

The constants C1 and C, are equivalent in the sense that there is a positive constant
¢y depending only on n such that ¢;'Cy < Cp < ¢, Cy.

By choosing ¢ = 1in (14.13), we obtain the condition

I%l f |f —fBl < Cr(B) forallballs B C By.
B
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This amounts to (14.9) for the Holder (Lipschitz) functional a(B) = Cr(B)P
in the special case 3 = 1. On the other hand, when ¢ = 1, condition (14.14)
becomes

|f(x) —fgl < Cr(B) a.e.in B for all balls B C By,

since

1
f ﬁdy ~ r(B) ifx e B,
p Xyl

with constants of comparability that depend only on n. Theorem 14.12 guar-
antees the equivalence of these two conditions on f. The next result, which is
a companion for Holder (3-functionals of Theorem 14.12, characterizes such
anf as being Lipschitz continuous on By after possible redefinition in a subset
of By of measure zero.

Theorem 14.25 (Campanato, Meyers) Let 0 < 3 <1, By bea ball in R™, and f
be a function defined on By with f € L' (By). Then the following three conditions are
equivalent.

(i) There is a constant Cq such that

1
B [1f ~fol < Cor®P  for all balls B C By, (14.26)
B

(ii) There is a constant Cy such that
|f(x) — fg| < Cor(B)P a.e. in B for all balls B C By. (14.27)

(iii) There is a constant C3 such that
If0) —f(y)| < Calx—ylP forae x,yeBy, (14.28)

and consequently, after redefinition of f in at most a subset of By of measure
zero,

If() —f(y)| < C3lx —y|P  forallx, y € By. (14.29)

Furthermore, any two of the constants C1, Co, C3 are equivalent in the same
sense as in Theorem 14.12; for example, if (14.26) is true, then (14.28) holds
with C3 = ¢y, 3 C1 for some constant c,, g that depends at most on n and 3.
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A function f for which (14.29) holds is said to satisty a Holder (Lipschitz)
condition of order 3 on By, or to be Holder (Lipschitz) continuous of order
3 on By.

Proof. We will show that (i) = (ii) = (ili) = (i); some details in the
proof that (ii) = (iii) will be left as exercises. Fix 0 < 3 <1 and a ball By. Let
f eLY(By) and suppose that (i) holds for f. To show that (ii) holds, fix a ball
B C Bp and follow the notation and proof of Theorem 14.12 through (14.17),
but now estimate (14.17) by using (14.26) to obtain

" TE] j|f fol < eaCar(B)®.

Next, in order to estimate term II in (14.16), combine (14.18) with (14.26) to
obtain

[ee)
c
=< ZZﬁflf—kal <2c,C1 Y r(Bp)P.
1 k=1

By

Now recall from (14.23) that r(By) < r(B)/Zk_1 for allk > 1. Hence, since 3 > 0,
we obtain

I < 2¢,Cy Z —rp B =cupCir®P.

(2k= 1)‘3

Combining the estimates for I and II, we see that the inequality in (ii) holds
if x is a Lebesgue point of f in B. This completes the proof that (i) = (ii).

Next, let us sketch the proof that (ii) = (iii), leaving some details to the
reader. Suppose then that (ii) holds and let Ly denote the Lebesgue set of f in
By. Since (ii) clearly implies (i) by integration, it follows from what was just
proved that the inequality in (ii) is true for all x € BN Ly for every ball B C By.
Then, by the triangle inequality,

Ifx) —f(y)] < 2C,r(B)P  ifx, y € BNLyand B C B. (14.30)
We will prove (14.28) by using (14.30) to show that there is a constant C3
such that | f(x) — f(y)| < C3|]x — Y] B for all X,y € L. By translation, we may

assume that By = B(0;7). If x,y € L and |x —y| > r/4, then (14.30) with B
chosen to be By gives

If) — f(y)] < 2CarP < 2C(4x — y)P = 22PHCy|x — yIP.



Fractional Integrals 431

It remains to consider points x,y € Ly with 0 < [x —y| < r/4. Fix such x,y
and choose ¢, R > 0 depending on x, y with

R
Ix| +¢, lyl+¢e<r and E<|x—y|<R<|x—y|+£. (14.31)

Note that R < r/2 since R < 2|x —y| < r/2. Also, y € B(x;R) and x € B(y; R)
since |x —y| < R. If either B(x; R) or B(y; R) lies in By, we are done since, if
for example B(x;R) C By, then by (14.30) applied to B(x; R) and the fact that
X,y € B(x;R) N L¢, we obtain

If(x) —f(y)| <2CaRP < 2C,2x — y)P = 2B+1C,|x — yIP,

which is the desired estimate. Thus, we may assume that neither B(x; R) nor
B(y; R) is contained in By = B(0;r). Then both x and y belong to an annulus
near the boundary of By:

% <r—R<Ix,lyl <7, (14.32)

and, by Exercise 8, there exist (open) balls B, BY C Bp such thatx € BX,y € BY,
r(B) = r(BY) = R, and B* N BY # @. Since Ly is dense in By, there is then a
point z € Ly such that z € BN BY. Then x,y, z € Ly, and by applying (14.30)
to both BX and BY, we have

lf) —f(2)] < 2C,RP, lf(y) —f(@)]| < ZCZRB'
Therefore,

|f() — f(y)| < 2CoRP 4+ 2C,RP
<4Cy(2|x — y|)[5 — 2f5+2c2|x _ Y|B-

Thus, (14.28) is now proved in all cases, with C3 = 2B+2C, < 8C,.

Statement (14.29) in part (iii), namely, the fact that f can be redefined in a set
of measure 0 such that | f(x) —f(y)| < C3|x—y]| B forall x, y € By, follows from
(14.28) with the same constant C3 (see Exercise 9). Finally, the implication
(iii) = (i) follows immediately by integrating either (14.28) or (14.29) with
respect to y over B. This completes the proof of Theorem 14.25.
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14.3 Norm Estimates for I,

We will now determine values of p and g for which I« is a bounded operator
from L7 (R™) to L7(R™) and study some closely related “endpoint” estimates.
We always assume 0 < & < 7. In case & = 1, the results will be used in Chapter
15 to derive Poincaré-Sobolev estimates.

We use the notation || f||, for the L/ (R") norm of f, 1 < p < oo.

It will turn out that the values of p and q for which the norm inequality
Iafllg <clflly forallfeLF(R™) (14.33)

is true, for some c independent of f, are limited to 1 < p < & and % = % -

For the endpoint values p = 1 and p = n/x, we will derive variants of (14.33).
Let us begin by listing three comments that explain why the restrictions on
p and q just mentioned are necessary for (14.33).

If p > L, there exists f € LP(R") such that If = oo everywhere in R". In

X

particular, (14.33) cannot hold if p > Z. (14.34)

X

If1 <p < £, the only value of g for which (14.33) can possibly hold for all
e LP(RM) satisfies - = - — =, thatis, g = pn/(n — ). 14.35
P(R") satisfies ¢ = ;, — §, thatis, g = p (14.35)

Ifp=1and ; =1— %, there exists f € L' (R") such that | [afll = co. Thus,
(14.33) fails whenp = 1and g = n/(n — «). (14.36)

We will verify the first and third of these. The second one follows from a
basic dilation property of I, namely, if 0 < A < co and 8, f denotes the dilation
of f defined by (55f)(x) = f(Ax), then ox(I«f) = A*Ix(57f); see Exercise 13.
The formula 1/g = 1/p — «/n is often called the dimensional balance formula for
I (or simply the balance formula for I ).

To verify (14.34), let , p satisfy 0 < @ < n and n/« < p < oco. Let 1 denote
the characteristic function of {y : |y| > 2}, and let

_ b(y)
O = Stog iy

Then f is clearly bounded and nonnegative on R", and also f € LP(R") for
n/o < p < oo since

1
jfpz f —————dy < 00,
g YI¥doglyD?
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where we have used the fact that p > 1 in case p = n/«. However, If(x) = oo
for every x since

1 1
ly|*log |yl |x —y|"~*

Ifo= |

lyl>2+]x|

dy

1 1
lyl*loglyl 2lyD"==

> dy
lyl>2+[x|

1
—d
lyl" log |yl

20(—71

y =
ly|>2+]x]|

We note that in case p = oo, amuch simpler function f can be chosen above;
for example, the constant function f = 1 has fractional integral equal to

1 1
——dy = dy = 4+oo for all x.
an"‘—Y'”‘“ ’ an'-‘/'”‘“ ’

Also, in case p = 1/, there are functions f € L"/*(R™) with compact support
such that If ¢ L (R"); see Exercise 14.

To verify (14.36), let 0 < & < n and p = 1. If B denotes the unit ball B(0; 1),
then xg € L1(R™) and

1
IaxB(x) = j W‘iy

lyl<1

1 1
> —dy=¢, —————, xeR™
B yL (X + == T g
Hence, if g = n/(n — «), then

1
I P 71 — _dx= )
Rjﬂ( «XB) XZCann (x| + D X =100

The failure of integrability of (I «XB) =% is due to its size for large values
of |x|. However, there are functions f € LY(R™) such that |I of |/ ("= js not
even locally integrable; see Exercise 15.

The next result gives basic norm estimates for the Riesz operators .
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Theorem 14.37 (Hardy-Littlewood, Sobolev*) Let

1 1
O<a<mn, 1§p<2, amd ===--%,
& q9 p n

Then for every f € LP(R™), If exists a.e. and is measurable in R™. Moreover,
(@) ifl <p < £, then
Hofllg < clifllp

for a constant c that depends only on «, n, and p;
(b) ifp =1, then

supA|{x € R : [1of ()] = A7 < cll flh <q= « )

A>0 n—u«o

with c depending only on o and n.

Proof. The theorem can be proved in several ways. We will use a method due
to L. Hedberg and based on Hélder’s inequality and norm estimates for the
Hardy-Littlewood maximal function.

Let f be nonnegative and measurable on R™. Then, as noted at the begin-
ning of this chapter, I«f is measurable on R™ by Corollary 6.16. For 6 > 0 to
be chosen and x € R™, we write

Ifo= | |f(y|lay+ | f(yfmy

Ix—yl<b |x— y\>6
=1(0) + J2(x), say.

By Holder’s inequality, if 1 < p < & and 1/p 4 1/p’ = 1, then

/v

1 _n
ROl | [ oy | = e 8IS
x=yl=8 y

since (n — «)p’ > n due to the restriction p <n/x. In case p=1, so that p’ =
0o, the similar estimate Jo(x) < 5%*7"| f|l; follows immediately from the
definition of J>(x).

* Hardy and Littlewood considered the case n =1 and Sobolev the case # > 1. When p > 1, Thorin
obtained estimates, and p = 1 was studied by Zygmund.
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Next, we will show that J1(x) < ¢;;,«0%f*(x), where f* denotes the Hardy-
Littlewood maximal function of f. In fact, this follows from Theorem 9.17, but
a direct proof is simple:

[e.0]

sy [ LY
k=1g§2-k<|x—y|<52-F+1 y
> 1
| fway
=1 ( ) |x y|<82-Kk+1
o0 52 k+1)

Z

The maximal function f* used here can be formed by using either cubes or
balls centered at x in its definition since the two resulting functions are point-
wise equivalent in size, with constants of equivalence depending only on n
(cf. the second part of Exercise 9 of Chapter 9).

By combining the estimates for [; and J,, we obtain

n (xf*(x) =Cy océocf*(x)

lof (0 = ¢ [8°F7 00 + 857 I £1, ], (14.38)

where the constant c depends only on 7, &, and p. Choosing 6 (depending
on f and x) such that the two terms on the right side are the same, namely,

b= (”f”p/f*(x))p/n, gives

«p |
Iof 00 < Il fll," Ff 001 (14.39)

This choice of § essentially amounts to minimizing the right side of (14.38)
with respect to 6 and makes sense unless f*(x) is 0 or co. However, if f*(x) = 0
forany x, thenf = O a.e. in R™ and conclusions (a) and (b) are trivially true. On
the other hand, if f*(x) = 0o, then (14.39) is automatically true and no choice
of 6 is needed.

It follows from (14.39) that

L\
Maflly < clifl," (j(f*)q“n’”)
Rn

1

v I . 1 1 «

=C||f||pn (I«*)p) Slnceazﬁ_;
xpp

+
—Cllfllp” ILf* ”p <clfly” " =clflly
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where in order to obtain the last inequality, we have assumed p>1 and
applied Theorem 9.16. Note that the constant c still depends only on n, «,
and p. This completes the proof of part (a) when f > 0.

If p = 1, then (14.39) implies that for any A > 0,

{XE R™ 1chf(x) - )\} C :XER“ ;f*(x) > ( “fl'og/n) 7 }/

assuming as we may that || f|l1 #0. Applying the weak type estimate in
Lemma 7.9 to the set on the right side yields

o/n
{x e R" : Iof(x) > A}| < ¢ (Hf” ) Ifl1

(M),

with ¢ depending only on # and «. This agrees with the inequality in part (b).
The theorem is now proved for nonnegative f.

Next, consider a general f € LP(R™) for 1 <p <n/«x and 0 < < n. We must
show that If exists a.e. and is measurable in R™ and that (a) and (b) hold.
The results just derived for nonnegative measurable functions can be applied
to |f| to conclude that (a) and (b) hold with I«(|f]) in place of I,f. Since
Iaf X)| < I(|f1)(x) at any point x where If (x) exists, it then suffices to ver-
ify that Iof(x) exists a.e. and is measurable in R™. This is a consequence of
local integrability of both f and the Riesz kernel 1/|y|"~%, together with the
fact that

(lfl i a)(x>=1a<|f|)(x)<oo a.in RY;

see Exercise 21 of Chapter 9. Alternately, the general case can be concluded
by writing f = f* — f~ and applying the results for nonnegative functions to
both f* and f~. The proof of Theorem 14.37 is now complete.

14.4 Exponential Integrability of I,f

In Theorem 14.37, the endpoint value p=n/x corresponding to g4 = oo is
excluded. In fact, statement (14.34) shows in a dramatic way that the range
of I on L™ *(R™) is not contained in L>(R™M). In this section, we will derive
variants of Theorem 14.37 for p = n/o either by restricting I to the sub-
class of compactly supported f € L/ *(R™) or by appropriately modifying the
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definition of I for general f € L *@R™). The range functions then turn out to
be locally exponentially integrable; in particular, they belong to L?o -(R™) for
every g < oo. Results in case p =7/ have been studied extensively and are
often called estimates of Trudinger or Moser-Trudinger type. They help moti-
vate the study in Section 14.5 of functions of bounded mean oscillation, which
also exhibit local exponential integrability, although of a weaker kind than in
the present section.

We begin with a result for compactly supported functions f € L/ *(R™),
0 < o < 1. Such f belongs to L (R™) by Holder’s inequality, and consequently
I«f is measurable and finite a.e. by Theorem 14.37.

We will often denote ¢! by exp{t} for t > 0.

Theorem 14.40 Let 0 < ov < n. There are positive constants ¢1 and c; depending
only on o and n such that if f € L *(R™) and f = 0 outside a ball B, then

1 of OO _.
ﬁwgfexp{ (ufnn/a) }dx‘z

In the statement of the theorem, we have tacitly assumed that || |,/ 7 0
since otherwise If = 0 everywhere, while the integral in the conclusion is
meaningless.

Proof. Fix «, f, and B satisfying the hypothesis. Replacing f by |f1/Ilflln/«.
we may assume that f >0 and | f|l,;y« =1. Denote R=2r(B). For xe B and
5 € (0,R], split If as in the proof of Theorem 14.37:

I = —d —d
F00 = | |G e W _dy+ [ fo =
x—y|<d [x=y|=>d
=100 + J2().

As before, J1(x) < cn,«d%f*(x). In order to estimate J»(x), note that since x € B
and f(y) =0ify ¢ B, then

o= [ fo |n sy
S<|x—y|<R

1 n
= M fllnye f mdy by Holder’s inequality
S=<|x—y|=<R y

n—«

= cn,“<log E) " since || fllna = 1.
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Hence,

Lof(X) < Cno |:50‘f*(x) n <1og %) ! } ifxeBand 0 < & <R.
If f*(x) < oo, choose 0 satisfying

X 1 x
5 —mln{%,R },

noting again that if f*(x) = 0, then f = 0 a.e. in R™ and there is nothing to
prove. It follows that

n—«

Iof (%) < Cno [1 + {10g+ (Rf* (x)i)} 7

] , xeB. (14.41)

Let S= {xeB:Iaf(X)>2cy«}, with ¢, « as in the last inequality. If
x €S, the inequality implies that log™ (Rf*(x)1/*) >1 and therefore that
log (Rf*(x)/*) > 1. Hence,

Lof(X) < 2010 {1og (Rf*(x)}?)}% ifx € 8.

Exponentiating, we obtain
I =y
exp:<&> } ng*(x)%, X €8S.
20,0
On the other hand, if x € B — S, then If(x) < 2¢;, «, so that

exp{<m>w} <e ifxeB-S.
20y,

Combining the last two estimates yields

1 Lof oo\
EBIQXPK 2cn,a> } IBIIRf 00 dx+|B| edx

1

%(ff (x) e dx) |B|nl’ +e
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by Holder’s inequality with exponents nn and n’, 1/n + 1/n" = 1. By Theorem
9.16, since n/o > 1,

(jf*(x)idx> <Iff e <clifly)s=c1=¢
B
where ¢ depends only on n and «. Also, since R = 2r(B) and |B| is a multiple

depending only on n of r(B)",

R B _ 2r(B)
|B| |B|1/n

=cy.

The theorem now follows immediately from the estimates above.

Theorem 14.40 has a variant for arbitrary functions f e L*R™) and a
modified version of If. The modification is defined by

[of(X) = f fy [Ix — ! _ Xy) }dy, 0<a<n, (14.42)

a yln-x ly|"—
R

where x(y) is the characteristic function of the complement of the closed unit
ball, that is,

1 iflyl>1

X)) = Xqy=13(y) = {0 if 1yl < 1.

Before proceeding, let us show that if f € L'/*(R"), then I:(f exists as a
Lebesgue integral and is finite a.e. in R™. In fact, we will prove the stronger
property that

1 x(¥)

X _y|n—oc |y|71—(X

dy e Ll (R™ iff € L"*(R™).  (14.43)

The integral in (14.43) is a measurable function of x in R™ by Tonelli’s theorem
since its integrand is a measurable function of (x, y) in R by Lemmas 5.2 and
6.15. To verify (14.43), we will show thatif f € L"*@®R™ and N > 1, then

_ x(y
( 'f(y)"| —yle T jype

dy) dx < oo.
|x|<N
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By Tonelli’s theorem, this iterated integral equals

1 X(y)
f lf(y)l( j ST — dx) dy
lyl<2N o | XY lyl
1 X(y)
+ If(y)l( [ oo — 22 dx)dy
ly|>2N ey X lyl
=] +K, say.

Since x(y)/ly|"~* < 1forally,

I= | If(y)l( | #dwr | 1dx)dy
|

lyl<2N x—y|<3N |x| <N

Scn,oc( j If(y)ldy) (N®*+N") < o0

lyl<2N

since f is locally integrable. Also, since X(y) = 1 when |y| > 1, we have

dx) dy

1 1
k= | |f<y>|(j ' —
ly|>2N Ix|<N x—yl lyl

< | If(y)l(f cn,aw;'aﬂdx) dy
|

ly|>2N x| <N

<cnaN™ [ If

1
et -
ly|>2N

By Holder’s inequality with exponents 1/ and (n/o) = n/(n — «), the last
expression is at most

n—-«

_n—x+1
cn,aN"“nfnn/a( [y ”dy) ,

ly|>2N
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n— oc+1

which is finite since n>nand || fllu« < oo.In fact,

n—«

[ =y | = e
ly|>2N

This completes the proof of (14.43).

We also note that if f € L"/*(R™), then I o(f is measurable but may not be
locally essentially bounded (see Exercises 16 and 14).

We can now state and prove an analogue of Theorem 14.40 for I ‘Xf

Theorem 14.44 Let 0 < ov < n. There are positive constants c1 and c; depending
only on n and o such that for any f € L'/ *(R™) and any ball B,

R IR G M
|B|Bfexp[ 1( 1 flln/e =

As in Theorem 14.40, we assume that || f]l;/« F 0. Note that the aver-

age [I of | exists and is finite if || f||;;/o < 00 since I ‘Xf is then measurable by
Exercise 16 and locally integrable by (14.43).

Proof. Part of the proof is like that of Theorem 14.40, and we will concentrate
on the differences. Fix «, f, and B. We may assume that || f ||,y = 1Dby linearity
of I«. If x € B, then

INGR 1N IB|j|locf(x) Iif @) dz

1
“wl(]
:ij(j + f ---)dz:A1+A2,

1Bl 3 Rn_2B

2B

1 1
x_y|n—oc |Z_y|7’l—lX

dy) dz

say, where 2B denotes the ball of radius 2r(B) concentric with B. If y ¢ 2B and
z € B,wehave |z—y| > r(B), [x—y| > r(B), and |x —z| < 2r(B), and therefore,

1 r(B)
Sflf( j If I md )dl,

B \ly—x|zr(B)
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where ¢ depends only on 7 and o. Since the inner integral is independent of
z, we obtain

1
A < cr(B) j |f(y)l md}’
ly—x|>r(B)
n—a+l
scr(B)ann/a( [y i”dY)
ly|=r(B)

=crB)-1-rB) ! =

Next,

1 1 1
— dy | dz.
= B|f<2£ 'f(y)'{|x—y|"—“+|z—y|"—°‘} y) ’

B

Performing the integration in z gives

Ar= j @l Bl j|f<y)|cr<B>°‘dy An + A,

y|7’l ocd

where to obtain A, we have used the fact that for any y € 2B,

f—l —dz < f _ —dz = cr(B)*
 lz—yl"* |z —yl"=

|z—y|<3r(B)

for a constant c that depends only on 7 and o. By Holder’s inequality,

1 n " X
Ap < — | [ IfI=d 2B}~ cr(B)*
o< ([ 1)
<clfllnyua=c.

It remains to consider Aq;. Since x € B,

Ans | Ifo)l

1
— iy
— y|7170€
[x—y|=3r(B)

|x
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The integral on the right side can be estimated by the method used in the
proof of Theorem 14.40, namely, by choosing b € (0, 3r(B)] such that

| |f<y>|mdy— [

[x—y|<3r(B) |x—y|<d 5 <|x—y|<3r(B)
< c[l n {1og+ (3r(B)f*(x)%)} " }

(cf. (14.41)). Details are left as an exercise. Collecting estimates yields a similar
inequality for I cxf x) —[I (xf 15:

n—«

|[of (00 — [IN‘xf]B| <c [1 + {10g+ (3r(B)f*(x)é)} 7

}, x € B.

The remainder of the proof of Theorem 14.44 is essentially identical to the
part of the proof of Theorem 14.40 after (14.41). Details are left to the reader.
This completes the proof of Theorem 14.44.

We close this section by making some further comments about If in case
f_e L"*(R™). As already noted, I«f may then be identically infinite, while
If is finite a.e. and locally exponentially integrable. On the other hand, if
If exists in the Lebesgue sense and is finite at any point xo where If also
exists and is finite, then the definitions (14.1) and (14.42) imply that

Lo (x0) — Iof (X0) = f f(y) |” _dy. (14.45)

lyl>1

Moreover, the integral on the right side of (14.45) then exists and is finite.
Conversely, if this integral exists and is finite, then since it is independent of xg
and since by (14.43) I«f is locally integrable when || |,/ < 00, I«f must also
be locally integrable, and the difference I f —I (Xf must be identically constant
a.e. In this case, for a.e. x € R®, we have Iof (x) — [[af] = Iof (X) — [I(xf]B, and
Theorem 14.44 immediately yields the next corollary.

Corollary 14.46 Let 0 < x<nand f € L *(RM). If

j If(y)l| = “dy<oo

lyl>1
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then I«f exists and is finite a.e. in R™ and

1o | (oo — s\
IBIBf p{”( 17l ) }d"—”

for every ball B C R™, with c1 and ¢, independent of f and B.

See also Exercise 18.

14.5 Bounded Mean Oscillation

In this section, we will study functions that satisfy (14.9) with By replaced
by R™ for the constant functional a(B) =c; cf. (14.11) with exponent 3 =0.
Such functions have a remarkable local exponential integrability property
discovered by F. John and L. Nirenberg.

We begin with some standard terminology. A locally integrable function f
on R" is said to be of bounded mean oscillation on R™ (or to be a BMO function
on R") if there is a constant ¢ > 0 such that for every ball B C R",

1
B {160 —fo] dx <. (14.47)
B

As usual, f denotes the average |B|™! [,f. The collection of all such f is
denoted BMO(R™) and called the class of functions of bounded mean oscillation
on R™. Equivalently, if we denote

1
Iflhe = sup o J £ — fi| dx, (14.48)

where the supremum is taken over all balls B C R", thenf € BMO(R™) means
that f is locally integrable and || f]l« < occ.

Note thatif f and g are any two locally integrable functions, then || f+gll« <
Il fll« + lIgll«, and |Icfll« = lc| |l fll« for any constant c. However, || - ||, is not a
norm in the usual sense since it vanishes on constant functions.

The next lemma shows that if f is measurable and (14.47) holds with the
average fp replaced by a different constant depending on B, then f belongs to
BMO(R™).
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Lemma 14.49 Let f be a measurable function on R™. If there is a constant C
such that

1
ﬁBf|f(x) —¢(f,B)|dx < C

for every ball B C R™ and for some constant c(f, B) depending on f and B, then
f € BMO@R™). Moreover, || f||,. < 2C.

Proof. 1f f satisfies the hypothesis, then f is clearly locally integrable by the
triangle inequality. Furthermore, for any ball B,

1 1
1) 100 =fol dx < o [1£00 = cf, Bl dx+ [eff, B) ~fi|
B B

< C+|c(f,B) — f3

7

where c(f, B) and C are as in the hypothesis. Also,
1
[of, B = fi| = | [ (00 = e(f, B)) dx
Bl
<L {100 = of, Byldx < C.
T Bl -

Therefore, || f||l« < C + C = 2C, and the lemma is proved.

A simple corollary of Lemma 14.49 is that balls can be replaced by cubes in
the definition of BMO(R™). More precisely, suppose that f is locally integrable
and satisfies the analogue of condition (14.47) for cubes, that is suppose that

1
”f”** ‘= 8sup —— j }f(x) —fQ| dx < 00,
Q15

where the supremum is taken over all cubes Q with edges parallel to the coor-
dinate axes, and fo = [Q| ™! IQ f. Then, given any ball B, by enclosing B in a
cube Q with |Q| < ¢,|B|, we obtain

[1f ~faldx < [ 1f = foldx < | flexlQI < cullflluslBI.
B Q

It follows from Lemma 14.49 with c(f,B) there chosen to be fo that f €
BMO@R™) and || fll« < 2cull flls« The converse is also true, that is, the defi-
nition of BMO(R™) using balls implies the analogous definition using cubes,
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and || flls« < cllfll« for some constant c that depends only on 1; we leave the
verification as an exercise.

Our main goal is to study the “size” of functions of bounded mean oscil-
lation. To set the stage, we begin by listing a few examples. First, it is easy
to see that L>°(R™) C BMOR™). In fact, if f € L°°(R"), then f is clearly locally
integrable, and for any ball B,

g7 J 1700 =il dx < 1f  fol
B
< 1loe + 1fol = 20l

Hence, f € BMOR™) and || fll« < 2/ f llco-

However, the containment L*°(R™) C BMO(R™") is a proper containment.
For example, the (essentially) unbounded function log |x| is of bounded mean
oscillation on R™; see Exercise 20. We also leave it as an exercise to check the
following two facts: if —co <A < oo and A # 0, then x| ¢ BMO(R™); and there
are functions with compact support that belong to L7 (R") for all p, 0 < p < oo,
but do not belong to BMO(R™). See Exercises 21 and 22. -

Another subclass of BMO(R") is the collection of all functions I«f defined
in (14.42) when f € L/ *(R™), 0 < oc < n. This follows immediately from the
exponential integrability estimate in Theorem 14.44 and the simple inequality
t <exp(tY),t >0,y > 1. See also Exercise 27.

All the examples given so far of BMO(R™) functions are locally expo-
nentially integrable in the sense that there are positive constants ¢ and vy
such that

fexp {clfx0)1Y} dx < oo for every ball B C R™.
B

Anatural question is whether the same is true for every f e BMO(R™). If y > 1,
the answer is no, and an example is f(x) = log |x|; for example, if n = 1 and
Y > 1, then for any ¢ > 0,

1/2 1 v 00
j exp {c <log —) } dx = f e e dy = +oo.
0 X In2

However, the answer is yes if v = 1. This is a corollary of the following basic
fact, which is the main result of the section.

Theorem 14.50 (John-Nirenberg) There are positive constants c1 and c;
depending only on n such that if f e BMO(R™), B is a ball in R™ and A > 0, then
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{xeB:|fx) —f| >A}| <1 <exp{—”C;—|}|\*}>|B|. (14.51)

Here, we have assumed that || ||« # 0; otherwise, f is constant a.e. in R™
and the left side of (14.51) is zero for all B and all A > 0.
Before giving a proof, let us deduce two corollaries of the theorem.

Corollary 14.52 Let f € BMOR™) and 1 < p < oo. There is a positive constant
c depending only on n and p such that for every ball B C R",

1 1/p
(ﬁ Jlf —fB|”dx) <clfll.
B

In particular, f € LfOC(R“), and for every ball B,
1 1/p
I Pd < «
(|B| Bj|f| x) <clfll + Ifsl

Proof. To prove the corollary, we compute (cf. Exercise 16 of Chapter 5)

|B|f|f — fol i |B|f”’1 [{x e B: |£00 — fi] = A} dn

ﬁOO
< Boj Clep{ ”f“*}|B|d?\ by (14.51)

p o0
=ra (—”f ”*) [ W=t an,
C2 0

The first part of the corollary now follows by taking pth roots, and the sec-
ond part then follows from Minkowski’s inequality. Note that the integral
Jo? A~le=rdN is the classical gamma function I'(p).

The proof shows that the constant c can be chosen to satisfy

oo
& =peic,’ j A ~Le=A dx
0

oo
> peicy” jp’”_le_}‘ d\ = perc,pP e P,
p
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whose pth root is of order O(p!/?') — oo as p — oo. The constant ¢ in the con-
clusion of the corollary must tend to co as p — oo since functions in BMO(R™)
may not be locally essentially bounded.

Corollary 14.53  Let ¢ and ¢y be as in Theorem 14.50. If f € BMO(R™) and ¢y is
a positive constant such that col| f ||« < co, then

€oc1

1
_ ax <14 ————
_|B|Jexp{co|f fol} dx =14 o —

for every ball B C R™. In particular, [ exp{co|f|}dx < oo for every ball B C R™.
Proof. The result can be deduced from (14.51) combined with the following

formula (see Exercise 29 of Chapter 5):

o0

jexp{co|f—f3|} dx = |B| +cojeC0>‘| [x € B:[f(x) —fz] > A} dA.

B 0

Further details are left to the reader.

Theorem 14.50 will be proved in several steps. The main step is to derive
an analogue of (14.51) for n-dimensional cubes Q with edges parallel to the
coordinate axes, that is, to show that

(xeQ: |fo0—fol = Al < e <exp {_ ”jfnk }) 0l (1454)

for all such Q and all A > 0, and now with ¢c; =4 and c; =21 In 2. As usual,
we assume that || f||.. # 0 since otherwise there is nothing to prove.

The proof of (14.54) will be based on the following n-dimensional ver-
sion of the Decomposition Lemma 12.68 (cf. the second remark on p. 353 in
Section 12.8). All cubes considered below are assumed to have edges parallel
to the coordinate axes.

Lemma 14.55 (Decomposition Lemma in R™) Let Q be a cube in R™ and
suppose that f € LY(Q) and f > 0. Then for any real number s satisfying

there are nonoverlapping cubes Q1, Qa, . . . contained in Q such that
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(i) s < @ Jo f =2"s forall k,
(i) f(x) <sforae.xeQ—JQk

Proof. The proof is essentially identical to that of Lemma 12.68, but since the
lemma is basic, we will repeat the main ideas.

Fix Q, f, and s as in the hypothesis, and subdivide Q into 2" subcubes Q'
of equal size by bisecting each edge of Q. For each @/, either |Q'|~! IQ’ f<s
or |Q'|7! Jof > s. Using the hypothesis that Q! Jof = s together with the
fact that |Q| = 2"|Q’|, we have for each Q' that either

1
|Q/|ff55 or s<
Q/

1
- ff§2”s.
|Q|Q,

If Q' satisfies the first condition, we call it a cube of the first kind; otherwise,
we say it is of the second kind.

We save any cube of the second kind and repeat the process for each Q' of
the first kind by subdividing it into 2" cubes Q" of equal size. For each Q”,
we again have either

— | f<s or s<—— | f=<2'.
Q" ; Q" Qf,,

Save those Q" of the second kind, repeat the procedure for every Q" of the
first kind, and so on. Let {Qx} be all the cubes of the second kind in the con-
struction above. The Qy are clearly nonoverlapping and satisfy property (i).
Each x in Q — [J Qx belongs by construction to every Q in a sequence {Q} of
cubes with |Q| — 0and |Q| ! fQ f < s. Consequently, by the Lebesgue differ-
entiation theorem, f(x) < s for a.e. such x, which proves property (ii). Finally,

(iii) follows by adding over k the first inequality in (i), rewritten in the form
1Ok <s71 kaf, k=1,2,.... This completes the proof of Lemma 14.55.

Proof of Theorem 14.50. We begin by proving (14.54), which is the version of
(14.51) for cubes instead of balls. We may consider only those f e BMO(R™)
that are not identically constant a.e. in R". Then 0 < || f .« < oo, and by replac-
ing f by f/| fll++x, we may consider only those f such that || f|l.«« = 1. Any such
f satisfies

IQI jlf fol <1 for every cube Q C R™.
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For A > 0, define

l{x € Q:1f(x) —fol > A}l
sup .
Qf QI

FO\) =

Clearly, F(A\) < 1forall A > 0, and our objective is to show that F(A) < ¢; e
withc; =4and ¢y =27 1n2.

Fix Q and f with [|f||l«+ = 1 and apply Lemma 14.55 to |f — fg| for a fixed
value s > 1, noting that

1
= [f—fol=1ss.
IQIg

Then there are nonoverlapping subcubes Qi, k = 1,2,..., of Q such that
|f —fol <sforalmostall x € Q — [ J; Qk and

s < L I If —fol < 2"s  for all Q. (14.56)
|Qkl O

If A > s, then, except possibly for a set of measure zero,

{xeQ:[f0 —fo| > A} c|J{xe Q:|fx —fo| > A}. (14.57)

k

We have

\for —fal =

1
@ka (f —fo)

1 n
S@Q{’f—fd =2%s

by (14.56). Therefore, for any x € Q,

|f(x) _fQ} = |f(x) _ka| + |ka _fQ| = |f(x) _ka‘ +2%.

If the left side | f(x) — fo| exceeds A, then by subtracting 2"s from both sides,
we obtain ]f(x) —ka} > A — 2"s. Hence, by (14.57), if A > s, then

[{xeQ:|fo0 —fol > Al = D l{x e Qe |fo0 —fa | > A=2"s}].
k
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If A > 2"s, it follows that

lixe Q:1f) —fol > NI _
QI IQI

Zm 2"s) |Qxl

F()\ 21g)

< PO -2 >—@j|f fol = =———

where we have used property (iii) in Lemma 14.55 (applied to |f — fpl) in
order to obtain the next-to-last estimate. Therefore,

F(A— 2
FOv < % ifs>1and A > 2.

This inequality will now be iterated in order to prove the estimate F(A) <
dexp{— (27" ' In2) A}, A > 0. Let

s=2 and vy=2"s=2""

Fix Awith A > yand choosem = 0,1,2,...suchthat (m+1)y < A < (m+2)y.
Thenif m # 0,

A>SA—Y>A=2y>--->A—my >,

and we obtain F(A\) <27 ™F(A — my) after m iterations, even if m = 0. The
trivial estimate F(A — my) < 1 together with m > (A/y) — 2 then gives

A
FO) <2 ™ <22V =4e” v ifA>7.

Finally, if 0 <A <+, then it is also true that F(A) < 4e7¥ A since F (A) < 1.This
proves (14.54) for all A > 0 and for all Q and f.

To complete the proof, it remains only to deduce inequality (14.51) for balls
from its analogue (14.54) for cubes. The ideas needed are like those in the first
paragraph after the proof of Lemma 14.49, and we will be brief. We will use
the letters c, c1, ¢ to denote various positive constants depending only on 7,
which may be different at each occurrence. Let B be a ball and f € BMO(R™),
| 1« # 0. Choose a cube satisfying B C Q and |Q| < c|B|. As usual,

1 c
fs —fol < @JV ~fal = I_ng’f —fol <clifll andso

|f(x) _fQ| z |f(X) _fB|_C”f||**, x € R™.
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Then if A is much larger than || f]|.«, for example, if A/2 > c || f||+«, we have

ixen: 1704l >l < < @: 001l > 2]

A
< cyexp { 25 i } Q| by (14.54).

Hence, since |Q| < ¢|Bl and ¢ ™| fllss < [l fllx < €1 fllsss

[{x € B:|f(x) —fgl > A}| §c1exp{ CZW} Bl, A>cllflls

However, for the remaining values of A, thatis, when 0 < A < ¢ || f||«, such an
inequality is obvious, and Theorem 14.50 follows.

Exercises

1. Show thatiff € C1(B), where B denotes the closure of a ball B, then the
inequalities in (14.3) and (14.4) are true for all x € B.

2. Under the same assumptions as in Theorem 14.2, show that both of the
estimates (14.3) and (14.4) can be improved by replacing the integral on
their right-hand sides by

|x1 yzl

IVi(y) - (x —y)|
ffy X9l 4o < f y|”

Ix —yl"

1B

3. Derive the L!, L! Poincaré inequality (14.8) directly by the same method
used to prove the subrepresentation Theorem 14.2, instead of obtaining
it as a corollary of Theorem 14.2.

4. Let Bj and B be balls, with B C R™ and B, C R™, 11,13 > 1. If f(x1, %) €
C1(B; x Bp) NLY(By x By), show that for every (x1,x2) € By x By,

|f (x1,%2) — f,xB,| < € f |Vyof (y1,¥2)| k1 (x1, %25 y1, y2) dyidy2
leBz

+c f |VYzf (Y1,Y2)\ ka (X1/X2,‘Y1,yZ) dyi1dy»,
Bl XBZ
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where

1 Ix; — yil
|B1| |B2| <|X1—y1| + |X2—Y2|>"1+”2’

ki (x1,%2;y1,y2) = i=1,2,

r(B1) 7(B2)

fB,xB, = (IB1] |Bo|)~ ! IB1 szf' and c is a constant that is independent of f,
X1, X2, B1, and B».
Note that each integral is at most a multiple of

[ (|Vyf 1, y2)| 7B + | Vysf (1, 72)| 7((B2)

B]XBZ

x K (x1,%2;y1,y2) dy1dya

where
1 1
K (x1,x2;v1, .
b1 3032) = (B 1By + bazpl T
r(B1) 7(B2)

5. Let Q be a closed cube in R™, n > 1. Show thatif f € CHQ), then

IVf(y)l

00 —fol sen | =y, xeQ
Q

where fo = |Q| ! fQ f and ¢, depends only on n. Also, by choosing Q to
be the unit cube centered at the origin and making an affine change of
variables, show thatif I = H?:l [a;,b;] is an interval in R™ and f € cl,
then forall x € I,

F00 —fil < cnulj(Z(b o‘—@')

dy,
|x1_]/1 n-1
=11

where f; = |I|7! [, f.

6. Let I = [[,[a; b;] be an interval in R® and suppose that f € Cl(I).
Show that

{100 fitdx < cu [ >~ ap ‘;—i(x) dx,
I 1

I i=1

where f; = |I|7! [, f and c, is independent of f and I.
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7. The proof of Lemma 14.15 was carried out for the ball B=B(0;r) and a
point x = (x,0,...,0) with 0 <x <r. Show that the proof is similar in the
general case.

8. Verify the existence of balls B* and BY with the properties described after
(14.32), that is, using the notation there and assuming that x, y, r, R, €
satisfy (14.31) and (14.32), show that there are open balls BX, BY C B(0;r)
such thatx e BX, y € BY, r(B*) =r(BY) =R, and B*NBY # . (Denote d = |x—
yl, X' =x/|x|, ¥y =y/lyl, and let x; = (|x| — d)x’ and y; = (ly| — d)y’. Then
the balls BX = B(xy4; R) and BY = B(yy; R) have the desired properties. The
restriction on ¢ in (14.31) helps to show that B, BY C B(0; r). Also, (xg +
y4)/2 € BX N BY. It may be helpful to note that |x; — y4| <d, for example,
by the law of cosines.)

9. Show that a function that satisfies (14.28) can be redefined on a subset of
By of measure zero so that (14.29) holds with the same constant Cj as in
(14.28).

10. Prove that Theorems 14.12 and 14.25 remain true if By is replaced by R™
and f is assumed to be locally integrable on R™.

11. Show that the function |x|'/? is Holder continuous of order  on R™ if and
only if p =1/2.

12. In the plane R?, consider the class of rectangles I((x, y); h) with edges par-
allel to the coordinate axes, center (x, ), x-dimension /, and y-dimension
W%, h > 0, where (x, y) and h are allowed to vary. Suppose that f(x,y) is a
locally integrable function that satisfies

1
" fj |f(”' v) _fI((x,y);h)‘ dudo < ChP
I((ey);h)

for some C and {3 independent of (x,y) and /1, with 0 < 3 < 1. Show that
after possible redefinition on a set of measure zero, f satisfies

B
|f,y) — f(u,v)| < ¢ (Ix— ul + Iy—vll/z)

for all (x,y) and (u, v), where c depends only on C and 3. (It may be help-
ful to consider R? endowed with the metric d((x, v, w,0) = |x —ul +
ly — v|1/2 instead of the usual metric.)

13. Verify the dilation property 6; (Iof) = A*I«(8Af), where (07f) (x) = f(Ax),
A > 0, and use it to prove (14.35). Similarly, show thatif 0 < « < 1,4 > 0,
and there is a constant ¢ such that

stugt l{x e R : |[[of 0| > t}|1/q <clflh
>

for allf, then g =n/(n — ).
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14.

15.

16.

17.
18.

Let B be the ball B(0;1/2) in R®, andlet0<ax<nand 0<f <1 — (x/n).
Then the function

-1
£60 = x50 {xI llog x|~ |

has compact support and belongs to L/*(R®). Show that there is a
positive constant ¢ such that

1og10g|17‘ ifp=0
Iof(x) > ¢ B for all x near 0.
(IOgIITI) ifo<p<1-72

In particular,
lim Iof (x) = 400,
x—0

and If is not essentially bounded in any neighborhood of the origin.
How are If and If related?

Let0 < a <n,y=2—(x/n),and B = B(0;1/2). Show that the function
F0 = xB00 {1xI" log x|}

belongs to LY(R™) but that I of ¢ L= (R™). (Show that there is a con-

loc
stant ¢ > 0 such that If (x) > ¢ [x|*™" | log |x| |l_y for all x near the origin.)

If 0<x<n and f € L"/*(R"), show that I:(f is a measurable function.
(One way to proceed is to express Inf as the limit of a sequence of
measurable functions: for example, by (14.43),

o 1 xy)
I(Xf(x) - kli>nolo f f(y) [|X _ y|nfoc - |y|710(i| d

lyl<k

for almost every x.)
Complete the proof of Theorem 14.44.
Let0 < x < nmandf € L *(R™M). The discussion preceding Corollary
14.46 shows that the condition

1
lyl"

| 1wl

lyl>1

— dy <0

is necessary and sulfficient for the existence and finiteness a.e. of I4f.
Prove that the condition holds if there exists p € [1,n/x) such that
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fe LY *@R™) N LP(RM). Consequently, the conclusion of Corollary 14.46
is valid for such f.

19. Let 0<p <1 and By be a ball in R™. Suppose that f is a measurable
function on By that satisfies

1
Sl;;p W I |f(X) — C(f, B)| dx < o0,
B

where the supremum is taken over all balls B C By and ¢(f, B) is a con-
stant depending on f and B. Show that f € L'(By) and that (14.26) holds.
(Argue as in the proof of Lemma 14.49.)

20. (a) Show that log [x| € BMO(R™).

(b) In case n = 1, show that the odd function (sign x) log |x| does not
belong to BMO(—00, 00). Find an analogue of this fact in case n > 1.

(For part (a), it may help to consider two types of balls, those with cen-

ter xg # 0 and radius 7(B) < |xg|/2 and those with center xg and radius

r(B) > |xgl/2 [e.g.,xg = 0], and apply Lemma 14.49. If B is of the first

type, use the fact that log |x| is continuously differentiable in B and choose

c(log x|, B) = log|xp| in the lemma. If B is of the second type, choose

c(log |x|,B) = logr(B). For part (b), consider intervals centered at the

origin.)

21. Show that |x|* ¢ BMO(R™M), —00 < A < 00, A # 0.
Show that |x|)‘x|x‘<1(x) € BMO(R"™) if A > O butnotif A < 0.

22. Give an example of a compactly supported function that belongs to
LP(R™) for every p, 0 < p < oo, but does not belong to BMO(R™).

23. Derive an analogue of the decomposition Lemma 14.55 for any given
s > Oassuming thatf € L'(R"). (Given s and f, adjust the size of the cubes
Q in the initial grid, which now covers all of R®, such that |Q|~! IQ f<s

and all Q have the same edge length.)

24. Let w(x) be measurable and positive a.e. in R", and suppose that logw €
BMO(R™). Show that there are positive constants A; and A, depending
on n, with A; also depending on || log wl,, such that

1 1
(@f wAld") (@ f wAldX> <A, forallballs B C R
B B

(This can be deduced from Corollary 14.53 by writing

f whdx = f exp {A1(logw — (logw)p) } dx exp {A1(logw)p},
B B



Fractional Integrals 457

25.

26.

27.

together with a similar formula for [, w=Mdx; note that the function
log(1/w) = —log w also belongs to BMO(R™).)

Let1 < p < oco. A nonnegative function w(x) on R" is said to satisfy the
Ay condition if w,w™1/#~V e L] (R™) and there is a constant C such that
for every ball B C R",

1 p71
<|B| jw(x) dx) <|B| fw(x)il ) <C.

For such w, we will write w € A;,. The opposite inequality with C = 11is

a consequence of Holder’s inequality. Note that 0 < w(x) < oo for a.e. x

ifwe A

(a) Show by direct estimation that [x|Y € Ay if —n < v < n(p —1).
(Consider first the case when r(B) < |xg|/2, where r(B) and x5 denote
the radius and center of B.)

(b) Show thatlogw € BMO(R") ifw € Ay. (Consider separately the cases
p=2,p<2andp > 2. If w € Ay, show that

upi fexp {Nogw(x) —logwp|}dx < 0o, wp = fw(x) dx.

|B| B

If p <2and w € Ay, show that w € Ay. In case p > 2, use the fact that
ifweApthenw VPV eA,, 1/p+1/p =1)

Let Qg be a cube in R™. We say thatf € BMO(Qp) iff € LY(Qp) and

e ] jlf fol < o0,

where the supremum is taken over all cubes Q in Qg that have the same
orientation as Qp. Prove that if f € BMO(Qp), then there are positive con-
stants ¢ and ¢ such that for all such Q and all A > 0, (14.54) holds with

”f”**, Qo in PlaCe of ”f”**
Let]? be the periodic conjugate function of f as defined in Chapter 12:

fo = ——pv jf(x—)

[t|=<7t

2i,‘

a) Iff € L*°[—m, 7], show thatj?belongs to the class BMO[ —, 7t] defined
in Exercise 26 and that

”f”**,[—Tt,T[] =< C”f”LOO[—T[,’/T]

with ¢ independent of f.
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(b) Deduce from part (a) the conclusion of Exercise 20 in Chapter 12.

Let f € L°(R!) and have compact support. Show that the Hilbert trans-
form Hf of f belongs to BMO(R?), and derive an analogue for ||Hf ||, of
the estimate in part (a).

(For (a), given a small interval I C [, 7], let x; denote the center of I
and 2I denote the interval concentric with I with length 2|I|. Decompose
fon (x; —m,x;+ m) as f = g+ h where g = fxo;. Use Holder’s inequal-
ity and Theorem 12.79, applied to the periodic extension of g, to show
that [; 3] < clI| || flloo[—r,7)- Then estimate [; |h(x) —h(xp)| dx by using the
mean value theorem.)

28. For a measurable function f on R™ and 0 < « < #, define the fractional
maximal function Mf of f by

Mof(x) = s j| fy)ldy, xeR"

(B)I’l X

Show that M «f is a measurable function on R™ and that there is a constant
¢ independent of f and x such that Myf(x) < cIx(|f)(x). As a conse-
quence, the estimates in Theorem 14.37 for I«f also hold for M«f. Show
that the same is true if balls B are replaced by cubes Q in the definition of
M f, with r(B) replaced by the edge length of Q.

29. Let 0 < o < n and suppose that f satisfies

f If1(1 +log™ | f1) dx < oc.
Rn

Prove that If € L""=%(E) for every measurable set E C R™ with
|E|] < 00, and

[ 1= ax < ClFI (IEI + [ 111" If] dx) ,
E Rn

where C is independent of f and E. (Combine (14.39) in case p = 1 with
the estimate in Exercise 22 of Chapter 9.)

30. Letk=2,3,...and Bbe aballin R", n > k. Show thatif f € CS(B), then
fool < c f|ka<y)|m dy, xeB,

where |ka(y)| denotes the sum Z‘“|:k|D°‘f(y)|, o = (&1,...,%y) is
a multi-index of nonnegative integers, |x| = o1 + -+ + «, and c is a
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constant independent of B and f. (In case k=2, apply part (ii) of
Corollary 14.6 to f and each component of its gradient, and verify the
estimate

1 1 1
J Xz Jy g1 S Oy MY e
B

when n > 2.)






15

Weak Derivatives and Poincaré-Sobolev
Estimates

First-order Poincaré-Sobolev estimates in R™ are inequalities showing how
L? norms of the gradient of a function control the function itself. For a
sufficiently smooth function f, the first-order partial derivatives df/dx;,
i=1,...,n, and the gradient Vf of course have the usual meanings. When
f is continuously differentiable and n > 1, the first-order Poincaré—Sobolev
estimates that we will derive are fairly simple consequences of the subrep-
resentation formulas and norm estimates for fractional integrals proved in
Chapter 14. A notable exception to the simplicity of their derivation occurs
when p =1, as we will see.

However, Poincaré—Sobolev estimates are also true for less smooth func-
tions. Our first goal is to study a weaker notion of Vf that may exist when the
ordinary gradient does not. This will allow us to extend the subrepresenta-
tion formulas in Chapter 14 to more general functions than those of class C'.
Poincaré-Sobolev estimates for functions with weak derivatives can then be
derived for n > 1 by using the same pattern as for smooth functions, namely,
by applying norm estimates for the fractional integral operator I;. Results
when n = 1 will instead be obtained from the representation in Chapter 7 of
an absolutely continuous function as the integral of its derivative.

15.1 Weak Derivatives
1

Let Q2 be an open set in R", n > 1. Let L; _(2) denote the class of locally inte-
grable real-valued functions f on €; as usual, we say f is locally integrable on
Qifitis integrable on every compact subset of Q2. The notion of the weak first-
order partial derivatives of such an f is based on generalizing the standard
formula for integration by parts by allowing functions that may be different
from the ordinary partial derivatives of f to play their role in the formula.

The precise definition in case n>1 is as follows: if fe Lllo () and
i=1,...,n,then f(x) is said to have a weak partial derivative in Q with respect to
xj, where x = (x1, ..., xy,), if there is a function g; € Lllo () such that

461
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jf(x) %(x) ax = — fgi(x) e(x)dx forevery ¢ € C3°(R). (15.1)
Q ! Q

The justification for not including “integrated terms” on the right side of
(15.1) is that each function ¢ has compact support in Q.

An important part of the definition that f has a weak partial derivative g;
in  is that both f and g; belong to Lllo (), but neither f nor g; is required to
belong to LY().

The functions ¢ in (15.1) are called fest functions because they serve to test
whether the same function g; satisfies (15.1) as ¢ varies over a fairly large col-
lection of functions with compact support. As we will see later, using Ci°(<2)
as the class of test functions is sufficient to ensure that g; is unique if it exists,
and it will then make sense to refer to g; as “the” weak partial derivative of f
with respect to x;.

On the other hand, if (15.1) holds for all ¢ € C3°(£2), then it also holds for
all @ € Lipo(2), that is, for all ¢ that are Lipschitz continuous and compactly
supported in Q (see Theorem 15.7).

In case n = 1 and 2 is an open set in (—o0, 00), the analogous definition is
that a function f € Lllo () has a weak derivative in S if there exists g € Lllo ()
such that

j F)Q () dx = — j g dx forevery @ € CP(Q). (15.2)
Q Q

There are simple, almost trivial, examples of functions that have weak par-
tial derivatives but have ordinary partial derivatives nowhere. For example,
incasen =1,if —oo < s <t < 0o, the function x(x) that equals s for rational
x and equals ¢ for irrational x has this property since for every ¢ € C3°(RY),

o o0 o
fxgo’dx:t j @dx=0=— j 0 @dx.
o e .

Therefore, x has weak derivative 0 in R! even though its ordinary derivative
exists nowhere; in fact, x is continuous nowhere. The averaging process that
is inherent in integrating X ¢’ compensates for the lack of ordinary differen-
tiability of x. We leave it as an exercise to construct a similar example in any
dimension.

On the other hand, as we will see in Theorem 15.4, the weak first partial
derivatives with respect to x;, i = 1,...,n, of a locally Lipschitz continuous
function f agree with its corresponding ordinary partial derivatives 9f /0x;.

Let us begin by making several comments related to (15.1) and (15.2).
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The integrals on both sides of (15.1) are well-defined and finite since if K
denotes the support of ¢, then

] o=l o< [
Q K

where we have used the local integrability of f in €, and similarly,

f|f|dx<oo,

3.7(1 1.o© (K)

[ Igioldx = [ Igioldx < loleq [ Iildx < oc.
Q K K

Next, let us consider the question of uniqueness of weak derivatives. Let
i =1,...,n and suppose that f has a weak partial derivative g; with respect
to x; in Q. Clearly, both f and g; can be changed arbitrarily in any subset of
Q@ of measure zero without affecting (15.1). However, it turns out that g; is
uniquely determined a.e. in Q by f. To prove this, it is enough to first note
that if g; is another function in Lllo () that satisfies (15.1) for the same f, then

I(gi —8)edx=0 forall ¢ € C°(Q),
Q
and then to apply part (i) of the next lemma with g chosen to be g; — g;.

Lemma 15.3  Let 2 be an open set in R™ and let ¢ € L}

@) If

Q).

loc

jg(pdx: 0 forall @ € C°(Q),
Q

then g = 0a.e. in Q.
(ii) If Q is connected and

jga(p dx=0 foralli=1,...,nandall ¢ € C3°(),

then g is constant a.e. in Q.
Part (ii) of Lemma 15.3 will be used in the proof of Theorem 15.6.

Proof. Part (i) can be proved in several ways. We will use a method based
on a smooth approximation of the identity; the method is flexible and will
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be used in other situations in this chapter. Let k(x) € C({Ix] < 1}) sat-
isfy fRn k(x)dx = 1, and set k. (x) = ¢ "k(x/¢), ¢ > 0. Each function k. (x) is
infinitely differentiable in R™ and supported in {|x| < ¢}. Let B be any fixed
ball (or bounded open interval if n = 1) whose closure lies in Q. Then there
is a number ¢p > 0 and a compact set Ko with B C Ky C € such that for all
y € Band all € € (0, ¢p), the function k. (y — x) considered as a function of x
has support in K. By hypothesis, we obtain

fg(x)ks(y—x)dx =0 forallyeBandalle < ¢g.
Q

For such y and ¢, the integral on the left equals

{ (@ xk0) 0Ok (y = X dx,
Rn

which by Theorem 9.13 converges to (gxk,)(y) fora.e.y € R"ase¢ — 0,and so
converges to g(y) for a.e. y € B as ¢ — 0. Here, g'xx, is of course interpreted
to be 0 outside Ky, that is,

g ifxe Ky
8k (0 = :O if x e R™ — K,

and we have used the fact that g xk, € LY(RM). It follows that g is zero a.e in
B and therefore also a.e. in . This proves (i).

To prove (ii), let k¢, B, €g, and Ky be as above. If y € B and ¢ < ¢, then for
everyi =1,...,n, we have by hypothesis that

9
0 Zig(")a_m[ke(y —x)]dx
=— aiyl S{g(x)ks (y — x) dx.

Hence, for all € < ¢p, there is a constant ¢, = c¢ g such that

Ig(x)ka (y —x)dx=c¢ forallyeB.
Q

As above, assuming thaty € Band ¢ < ¢g, g can be replaced by the integrable
function gxk, in this integration, and the domain € of integration can then
be enlarged to R™. Now let ¢ — 0. Then the integral converges to g(y) a.e. in
B, and consequently c. converges to some constant c, and g(y) = ca.e. in B.
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Since Q is connected by hypothesis, it follows that g is constant a.e. in Q. This
completes the proof of the lemma.

Since the function g; in (15.1) is unique (if it exists), we may call it the weak
partial derivative of f with respect to x; in Q. It is customary to use the famil-
iar notation 9f/dx; for g; even though f may not have a partial derivative
with respect to x; in @ in the ordinary sense. Similarly, when n = 1, the
weak derivative of f will be denoted by f’. In situations when the notation
might cause confusion, it can be clarified by also using the term “weak” or
“ordinary” derivative as the case may be.

Let us now show that if f € Lipj,-(R2), then f has weak partial derivatives
that are the same as its ordinary partial derivatives. Recall from the discussion
preceding the Rademacher-Stepanov Theorem 7.53 that any f € Lipj,-(€2) has
ordinary partial derivatives daf/dx;, i = 1,...,n, a.e. in Q that are measur-
able and locally bounded in Q. We note however that the full strength of the
Rademacher-Stepanov theorem is not used here.

Theorem 15.4  Let Q be an open set in R™ and let f € Lipj.(S2). Then for each
i=1,...,n, f has a weak partial derivative g; with respect to x; in Q given by the
ordinary partial derivative of /dx;, that is,

) _ af : 00 .
Jfa_mdx_—ia—xi(pdx foeCP@andi=1,...,n

Proof. Let 2, f, and ¢ satisfy the hypothesis, and let 9f/9x; denote the ordi-
nary partial derivative of f with respect to x;. Note that both integrals in the
conclusion are finite since ¢ and 3¢ /dx; are bounded and both f and 3f/9x;
are integrable (even bounded) on the support of ¢.

We will prove the result in case n > 1 and i = 1; the general case is similar.
Denote points x € R" by

x = (x1,%2,...,Xxp) = (x1,X) withX = (x,...,x,) € R\71,
and write

Qg = {x1: (x1,%) € Q}

and dx =dx;dx with dx =dxy---dx,.

By Theorem 6.8,

99 = L A .
Ifaxl dx = f ff(x1,x) o1 (x1,%) dxq | dx.
@ R-1 [ 2
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Each set Q4 is an open set in (—o0, 00). If Q4 is not empty, then Theorem 1.10
implies that it can be written as a countable union Uj(ocj, B/) of disjoint open
intervals (o, 3;), possibly of infinite length. The intervals («;, 3;) are the con-
nected components of Q24 and of course depend on € and X. When f (x1, X) and
@(x1,X) are considered as functions of x1, f(x1,X) is locally Lipschitz contin-
uous on 4 and @(x1,X) is supported in the union Uj (aj, bj) of open intervals

(aj, bj) that satisfy [a;, b;] C («, B) and bj —a; < oo for each j. Therefore, using
Theorem 7.32(ii) and the absolute continuity on 4], b]-] of f(x1,X), we obtain

Bj bj

L) . L) .

7 ’ d = , - ’ d
o{f(xl 05,0 dn [ljf(xl 05, (0 dn
]

B,
=- j —(xl,x><p(x1,x> dx = — j —(xl,x><p(x1,x> dx1.

Adding over j gives
.0 N 0 N N
ff(xlrx)a—q)(xl,x) dx) = — j —f(xlfx)@(xl,x) dxy.
o X1 & 3X1

Hence,

Ifaxl f |:_ j %(xlzﬁ)@(xllﬁ) dx1j| dx
=- f o1 —@dx,

where the final equality is also due to Theorem 6.8, completing the proof.

Let f be a function defined on an open interval («, 3) C (—00,00), possibly
of infinte length. We say that f is absolutely continuous on («, 3) if f is absolutely
continuous on every compact subinterval [g, b] of (x, 3). By Theorem 7.29, this
is equivalent to assuming that f has an ordinary derivative f" a.e. in (x, 3) that
is locally integrable in («, ) and that

b
fO —f@= [f@dx ifa<a<b<p.
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Remark 15.5 The proof of Theorem 15.4 shows that the conclusion

R0 af .
—dx=—| —@d f C(R™
ifaxi x iaxi@x if € C°(R™)

is true for a particular i, i = 1,...,n, if the assumption that f € Lip;o.(Q) is
weakened by assuming both of the following:

(a) f is absolutely continuous with respect to x; on every connected component of
the intersection of Q with a.e. ((n — 1)-dimensional measure) line parallel to the
X; axis.

(b) f and its ordinary partial derivative df /dx; belong to L} (S2).

loc

In case n = 1, condition (b) in Remark 15.5 is automatically true for any f
that is absolutely continuous on every connected component of 2. In fact, we
have the next basic result.

Theorem 15.6  Let 2 be an open set in (—oo,00) and f € L}OC(Q). Then f has
a weak derivative in Q if and only if f can be redefined in a subset of Q of measure
zero so that f is absolutely continuous on every connected component of 2, that is,
if and only if there is a function h on Q such that f = h a.e. in Q and h is absolutely
continuous on every connected component of Q2. Moreover, the weak derivative f' of

f coincides with the ordinary derivative '.

Proof. The sufficiency of the condition follows from Remark 15.5, as we have
already noted. To prove the necessity, suppose that f has weak derivative f’
on 2, and decompose 2 into the countable union of disjoint open intervals
(o, Bj), possibly of infinite length: 2 = U]-( aj, ;). These intervals are the con-
nected components of 2. Given an interval (o, 3;), choose a pointy; € (e, )

and define f in (o, Bj) by

Foo = f fbdt, xe (o, B).

Yj

In this way, f is defined in all of  and is absolutely continuous on every
(ij, Bj) since f' € L}OC(Q). Clearly, " is the weak derivative of f on each («;, 3/)
since it is the weak derivative of f on Q. Therefore, for every ¢ € Cy’ ((eqj, B),
we have
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Bj Bj
ffm/dx =- ff @ dx
(X] O(]'
Bj
=— (f)’ @dx Dby Theorem 7.11
&
Bj
= fjf @ dx by Theorem 7.32(ii).
&

In the middle equality above, (f)’ denotes the ordinary derivative of . Hence,
for all ¢ € C3°((ev;, B)),

B; 5
[¢F-Hedax=0,
&;

and it follows from the second part of Lemma 15.3 (in the one-dimensional
case of an open interval) that there is a constant ¢; such that

f) =f(x) +¢ forae xe (x,B).

Define h(x) in Q by h(x) = f(x) +cifx e (o, Bj), ] = 1. Then & is absolutely
continuous on every («;, ;) and f = h a.e.in Q. Also, the ordinary derivative

I satisfies ' = (f)’ = f’ a.e. in , and the proof is complete.

A simple application of Theorem 15.6 is that the step function

1 if0<x<1
FO=1_1 i —1<x <0
does not have a weak derivative on (-1, 1), even though it is infinitely dif-
ferentiable on (—1, 1) except at a single point. This follows immediately from
Theorem 15.6 since f has a jump discontinuity in (-1, 1), but a direct verifi-
cation is not difficult. In fact, first note that if ¢ is infinitely differentiable and
supported in (-1, 1), then the left side of (15.2) equals

1 1 0
jf(p’dxzj(p’dx— f o dx
-1 0 -1

=leD) — O] = [¢(0) — ¢(=D] = —2¢(0)
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since @(1) = @(—1)=0. If (15.2) were true, there would then exist geL
(—1,1) such that

loc

jg(p dx =2¢@(0) forall € C°((~1,1)).
-1

We leave it as an exercise to show that this is impossible; see Exercise 2. See
also Exercise 3.

We conclude our basic comments related to (15.1) and (15.2) by showing
that the class C{°(2) of test functions ¢ used in the definition of weak partial
derivatives on 2 can be enlarged to the class Lipy(2) of Lipschitz continuous
functions with compact support in Q. Thus, once it is verified by testing with
the class Cj°(Q2) that a function has weak derivatives, it is legitimate to use
(15.1) (or (15.2)) for the larger class of functions ¢ € Lipg(€2).

Theorem 15.7  Let Q be an open set in R™ and suppose that f has a weak partial
derivative 8f /9x; in Q for some i, i=1,...,n. Then

f = j (p dx  for every @ € Lipy(R).

Proof. Consider again an approximation of the identity k. (x) = ¢ "k(x/¢),
£>0, xeR", with ke C({|x| < 1}) and [gankdx=1. Let ¢ € Lipo(2). By
extending ¢ to be zero outside €2, we may think of ¢ as being Lipschitz con-
tinuous in all of R™. Since ¢ has compact support in €, there is a compact set
Ko € Q and a number ¢y > 0 such that Ky contains the supports of ¢ and
@ *x ke for all € < ¢9. Moreover, we may assume that ¢ is chosen so small that
forall ¢ < g9 and x € Ko, k¢ (x —y) considered as a function of y is supported
in Q. By the definition of the weak derivative df /9x;,

if(")a%(‘p xke) () dx = —Jf—i(x) (@ k)0 dx, € < €.

Let us compute the limit as ¢ — 0 of each side of this equation. The domains
of integration on both sides may be replaced by Ky because ¢ < ¢p. The
expression on the right is then

—j—((p*k)dx
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Since 9f /dx; € LY(Kp) and (¢ * ke)(x) converges pointwise to @(x) and is
bounded uniformly in e and x, this has limit equal to

of
faxl =—§{B—Xi(pdx

On the other hand, for € < ¢¢, the integral on the left side earlier above is

0
J£005— (0 x ko)) dx.
Xj
Ko
In order to compute its limit as ¢ — 0, note that

a_l(“’ s ke)(x) = f(p(y) (ke (x—y) dy

_ _9 _ _ (3¢ _
—icp(y)[ 8yi(ke(x y))} dy—iayi(y)ka(x y) dy,

where to obtain the final equality, we have assumed that x € Ky and ¢ < ¢
and applied Theorem 15.4 to the Lipschitz function ¢ and the smooth test
function k¢ (x—y) of y. (See the related result in Exercise 4.) Since ¢ is Lipschitz
continuous, the last integral is bounded uniformly in x and ¢ for x € R™ and
e >0, and it converges a.e. to (3¢ /dx;)(x) as ¢ — 0. Since f € LY(Kp), the
Lebesgue dominated convergence theorem implies that

. ? (e
Elgr}JJf(X)a—Jq(tp*ks)(X)dX— ffaxi dx
0
—jf—dx

0X;

This completes the computation of the limits. It follows that
I¢ of
f foe d - SJZ‘ ox; dx,

and the theorem is proved.
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If a locally integrable function f in  has weak partial derivatives df /dx; in
Qforeveryi=1,...,n,n > 1, we write

o= (L) o

axy " axy

and call this vector the weak gradient of f in Q. It is customary to use the same
notation Vf for the weak gradient as for the ordinary gradient. By Theorem
15.4, the two notions are the same if f € Lipj,.(2). Note that if f is any function
with a weak gradient in Q, then both f and |Vf| are locally integrable in 2 by
definition; here, the notation |Vf| stands for

2) 1/2

15.2 Smooth Approximation and Sobolev Spaces

of

Bx,-

- (3

i=1

In Section 15.3, before deriving Poincaré-Sobolev estimates, we will show
that the subrepresentation formulas for C! functions in Chapter 14 can be
extended to functions with a weak gradient. The proofs of these extended
versions of the formulas will be based on the known ones for C! functions
and various results about approximation by smooth functions. Approxima-
tion theorems like Theorem 15.8 are generally attributed to K. Friedrichs,
although their hypotheses may vary. Some variants are discussed farther
below and in the exercises.

Theorem 15.8 Let Q be an open set in R™ and K be a compact subset of Q. If
f has a weak gradient Vf in Q, then there is a sequence {f; ]?’21 of functions on Q

such that

() fj € C§°() for all j,
(i) f; = f a.e. in Kand in L(K) norm as j — oo,

(i) Vf; — Vf a.e. in Kand in L (K) norm as j — oo.

In part (iii), the terminology Vf; — Vf in LY(K) norm means that for every
i=1,...,n,0f/dx; - 8f/3x; in L'(K) norm as j — oc.

Before giving a proof, we note that more can be said about the supports
of the approximating functions f;: if G is any open set satisfying K C G C €,
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then conclusion (i) of the theorem can be replaced by ﬁ € C°(G) for all j. Of
course, the sequence {f]-} then depends on G as well as on K. Indeed, to see
why, we have only to apply the theorem with Q replaced by G, after noting
that if f has weak gradient Vf in an open set €, then f also has weak gradient
Vf in any open set G C Q.

See Theorem 15.9 about the existence of a single subsequence {f;} that has
the properties in Theorem 15.8 for every compact set K C Q.

Proof. We will use the standard method based on a smooth approximation
of the identity, with a further refinement. As usual, B(x; r) denotes the (open)
ball with center x and radius r.

Let f, ©, and K satisfy the hypothesis, and let k¢ (x) be as in the proof of
Theorem 15.7. Choose an open set G and a number ¢g > 0 such that K C G,
G has compact closure in €2, B(x;e) C G forall x € Kand all ¢ < ¢g, and
B(y;e) C Qforally € Gand all € < ¢g. For example, G can be chosen as

G= U B(x; €0),

xeK

where ¢ is chosen less than half the distance from K to the complement of
(cf. Exercise 1(1) in Chapter 1). Note that k. (x —y) considered as a function of
y has support in G for all x € Kand all € < ¢g.

Let ¢ = fxc denote the function on R™ obtained by extending f to be zero
outside G. Then g € L'(R™) since f € L} () by hypothesis. Now define

loc
ge(x) = (g*xke)(x), xeR", e>0.

Then g € C3°(R") by Theorem 9.3 and the comments after its proof. More-
over, since g vanishes outside G and k. has support in B(0; ¢), it follows that
ge has supportin Q if ¢ < .

By Theorems 9.6 and 9.13, g¢ — gin LY(R™) norm and pointwise a.e. in R™
as ¢ — 0. Hence, g¢ — f in LY(K) and pointwise a.e. in K.

Next, by Theorem 9.3, for all x € R, alle > Oand everyi = 1,...,n,
we have

0ge

8xi

9
00 = [ 85 - fkex—y)} dy
RP !
=- fg(y)i{ks(x —y)}dy
qn OV

9
=- !f(y)a_%{kﬂ(x —y)}dy.
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Considered as a function of y, k¢ (x—y) has support in B(x; ¢) and therefore has
supportin G if x € Kand € < €. Since df /9x; is the weak partial derivative of
f with respect to x; in €, it is also the weak partial derivative of f with respect
to x; in G. Consequently,

ad 9 '
aixj(x) = ! a—i(y)ka(x—y)dy ifx e Kand ¢ < ¢g.

The last integral equals

() i)
f

which converges to (%XG) (x) in LY(R™) and pointwise a.e. in R™ as ¢ — 0.

Restricting x to K, we obtain that dg¢ /dx; — 9f/dx; in LY(K) and pointwise
a.e. in K. The theorem now follows by choosing f; = g¢; for any sequence
{5]'}]921 — 0 such that ¢; < ¢ for all j.

The proof of Theorem 15.8 can be modified to yield a single sequence {f;}
that has the same properties as in Theorem 15.8 for every compact set K C .
Indeed, we have the following result whose proof is left to the reader (see
Exercise 5).

Theorem 15.9  Under the same hypotheses on Q and f as in Theorem 15.8, there
is a sequence {f;} that satisfies the three properties in the conclusion of Theorem 15.8
for every compact set K C Q.

It follows immediately that the sequence {f;} in Theorem 15.9 has the point-
wise convergence properties f; — f and Vf; — Vf a.e. in Q.

We arrive naturally at the definition of the Sobolev space W'#(2) by con-
sidering functions f that have a weak gradient in 2 such that both f and |Vf]
belong to LP(2), that is, if 2 is an open setin R and 1 < p < oo, then WP ()
is defined by

WP(Q) = {f € LP(Q) : f has a weak gradient in Q satisfying |Vf| € LP()} .
(15.10)

The purpose of the first superscript 1 in the notation W7 is to indicate
that only first-order derivatives enter the definition. We will not consider
Sobolev spaces involving weak derivatives of order more than 1, although
these spaces have important applications. In fact, we only consider a few
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aspects of the spaces W'#(Q), and then our primary concerns are the cases
when Q is either a ball or the entire space R™.

One fact about (15.10) deserves emphasis: in order that f € WP(Q), the
definition requires that f and |Vf| belong to L”(2) and not just to L’Z] (€2).On

the other hand, in case €2 is a ball B, we will see in Section 15.3 thatf € WP (B)
iff e Lll0 .(B) and f has a weak gradient in B satisfying |Vf| € LP(B). In other
words, in the case of a ball B, the requirement in (15.10) that f € L”(B) can be
replaced by assuming only thatf € L} (B).

Some basic properties of Sobolev spaces are given in the exercises. For
example (see Exercise 7), if €2 is any open set in R* and 1 < p < oo, then

WP (Q) is a Banach space with respect to the norm

n
3
i = Iflpe + S |2 (15.11)
= 10%illp o)
An equivalent norm is
NP 1/2
I fllre) + (Z o ) = Iflr@ + 1/ lw@.
i=1 ! 1/(Q)

Moreover, W7 () is separable if 1 < p < oo.
In case 1 < p < oo, another equivalent norm is

N
LP(Q)

and using this norm when p=2 makes W'2(Q) a Hilbert space with inner
product

n
14
(”f”U’(Q) +2
i=1

of
8xi

(.9 = [fRax+ [ Vf - Vgax (15.12)
Q Q

See Exercises 11 and 12 for versions of the product rule and the chain rule
in W'7(Q).

Next, we state a way that functions in W¥(Q) can be approximated by
smooth functions when p is finite.

Theorem 15.13 Let 1 < p < oo and 2 be an open set in R™. If f € WIP(Q),
there is a sequence {f; ]?’21 of functions on R™ such that

(@) fj € C°(RM) for all j,
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(ii) f; — f a.e.in Q and in LP(Q) norm as j — oo,
(iii) Vf; — Vf a.e.in Qandin LF(K) normas j — oo for every compact set K C <.

Moreover, in case @ = R™ and f € WP (R™) for some p with 1 < p < oo, the sequence
{fj} can be chosen to converge to f in WP (R™) norm, that is, so that fi — finLPF(RY)
and Vf; — Vf in LP(R").

Here the terminology Vf; — Vf in LV norm means that df;/dx; — 9f /dx; in
[P normasj — oo foreveryi=1,...,n.

Proof. The proof is similar to that of Theorem 15.8, now using the L? versions
of Theorems 9.6 and 9.13. We will leave some details for the reader to check.
Fix p, @, and f satisfying the hypotheses, and define ¢ = fxq by extending f
to be zero outside 2. Note that g belongs to L¥ (R™) but may not have compact
supportand that g =f everywhere if 2 =R". For ¢ > 0, define g, = gxk. where
ke is the same approximation of the identity used in the proofs of Theorems
15.7 and 15.8.

Then g, € C®°(R"), although it may not have compact support,and g — ¢
in LP(R™) and pointwise a.e. in R™. Hence, g — f in LF(€2) and pointwise a.e.
in Q.

The proof that Vg, — Vf pointwise a.e. in  and also in L”(K) norm for
every compact set K in Q is left to the reader, as is the proof that if & = R",
then the sequence can be chosen with Vg — Vf in L”(R") norm.

Finally, whether © = R™ or not, let n(x) be a smooth cutoff function on R"
such thatn € C5°(R") and

o |1 =1
=00 ifx > 2.

Then for any sequence ¢; — 0, the functions {f;} defined on R" by f;(x) =
n(gx)ge; (x) have compact support in R™ and satisfy all the properties stated

in the theorem. For example, let us show why Vf; — Vf in LP(K) for every
compact set K C Q. We compute

V(%) = €j (V) (gx)ge; () +n(gx)Vge;(x), x € R™
Therefore, if x € €,

[Vfi00 = V(0| < & VnllLse®m Ige; 001 + (g2 | Ve, () — V()|
+ (1= () IVf 0] 1= (x) + B; (%) + V().
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First consider o Denote
M = [[V7[z2= ) (5up g, 17 o) )-
j

Then M is finite and
lllr@) < Mej — 0 asj— oo.

We estimate the norm of y; by using the facts that ;(¢jx) = 1if [¢jx| <1 and
[Vf] € LP(S2) with p finite:

1/p

1vjllr @) < j |VfIP dx — 0 asj— oo.

er;\x\>£]fl

Next, fix a compact set K C €. Since Vg,; — Vf in L/ (K), then

1Bl = I1V8e; — Vil — 0 asj— oo.

Collecting estimates, it follows that Vf; — Vf in LP(K) for every compact set
Kc Q.

Next, suppose that & = R" and recall that Vg,; — Vf in L/(R") in this
case. Hence,

IBillr®ey = IVge; = Vflr@ny — 0 asj— oo.

Finally, the arguments proving that both [|a|»rn) and |vlirr®n) tend to 0
were already included above. Thus, in case 2 = R", we obtain that Vf; — Vf
in LP(R™).

The remaining details of the proof are left to the reader.

In some situations, fewer properties of the approximating sequence {f;} are
needed than the ones listed in Theorems 15.8 or 15.13. The following simple
variant of Theorem 15.13 will be useful in the proof of Theorem 15.45.

Theorem 15.14  Let f have a weak gradient in R™ that satisfies |Vf| € LF(R™)
forsome p, 1 < p < oo. If either f € L'(R™) for some r with 1 < r < oo or
limyxj— o0 f (X) = 0, then there is a sequence {f]-}]?’il C C®(RM) with limx 0 fj(X) =
0 for every j such that f; — f pointwise a.e. in R™ and Vf; — Vf in LP(R") norm as
] — OQ.
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Proof. Let ke be as usual and let fj = f x k¢, for any sequence ¢; — 0. Then
fj € C*R™) forall j. Also, fj — f a.e. in R" since f € L}, (R™), and Vf; — Vf
in LP(R™) as usual.

It remains to show that each f]-(x) — 0 as |x|] — oo. First, suppose that
f(x) — 0as |x] - oo. Then, for every ¢ > 0,

sup |f| >0 as |x|] = oo,
B(x;e)

and we are done since

I(f % ke)(X)| < ( Sup) |f|) Ikl (Rn)-

B(x;e

Finally, assuming instead that f € L"(R™) for some r with 1 < r < oo, we have

kol =] [ fpkex—y)dy
|[x—yl<e
1/r
< f |f(y)|rdy ”k&”Lr’(Rn)/
|[x—yl<e

1/r +1/r = 1. For each ¢, the r'-norm of k is independent of x and finite:

kel gy < llkellLsocrny IBCO; €)]'/"
Hence, since

1/r
[ fordy| -0 asixl— oo,

x—yl<e

where we use the fact that r is finite, we are again done, and the proof is
complete.

In Theorem 15.14, either of the extra assumptions limjx— 0 f(x) = 0 or
f e L"(R™) for some rwith 1 < r < oo canbe replaced by the weaker condition
that limjxj- o J5 1) |f1dy = O without affecting the conclusion of the theorem.
Verification is left as an exercise.

In passing, we prove a result about extending functions with weak deriva-
tives and compact support.



478 Measure and Integral: An Introduction to Real Analysis

Theorem 15.15  Suppose that f has compact support in an open set @ C R™ and
weak partial derivative 3f /0x; in Q for some i = 1,...,n. Extend f and 3f /dx; to
R™ by setting them equal to 0 outside Q. Then f has a weak partial derivative 9f /9x;
in R™.

Proof. Fix f and Q satisfying the hypothesis. Choose a function { € C§°(2)
such that { = 1 on the support of f; cf. Exercise 5 of Chapter 9. Then for any
test function ¢ € C5°(R™), we have ¢ € C5°(R2), and consequently,

9 o
Jfa_xi(‘f’“))d" - _J J Obix

Since f and df/dx; are defined to be 0 outside 2, we may think of both
integrals as extended over R™. Furthermore, by Exercise 13, the set where
9f /0x; #0 is contained in the union of the support of f and a subset of
of measure 0. Hence, since = 1 on the support of f, the integrals are
unchanged if 1 is replaced by 1 in their integrands, and we obtain

dp of
—dx=— | —@dx.
jfaxi x faxi(p X
R R

Of course, the extended functions f and ;_Jq belong to Lllo -(R™), and the proof
is complete.

15.3 Poincaré-Sobolev Estimates

In this section, we derive a variety of first-order Poincaré-Sobolev estimates
for functions with a weak gradient. Results in case n = 1 (see Exercise 20) are
easy consequences of Theorem 15.6 and the representation of an absolutely
continuous function as the integral of its derivative, and so we generally
assume thatn > 1.

We begin by extending the subrepresentation inequalities in Chapter 14 to
functions with a weak gradient. Poincaré-Sobolev estimates for n > 1 will
follow by combining these inequalities with various results about fractional
integrals.

Let us first extend Theorem 14.2. As usual, all balls B C R™ are open by
definition, and if f has a weak gradient Vf in a ball B, then f and |Vf| must
belong to Lllo (B), but neither is assumed to belong to L1(B).
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Theorem 15.16  If f has weak gradient Vf in a ball B C R", then

IVl

1
Bl Bf lf(x) — f(pldy < anf x—ypL dy fora.e. x € B. (15.17)
If in addition f € LY(B), then
[ f(xX) —fBl <cu j %dy fora.e . x e B, (15.18)

B

where fg = |B|~! [, f(y) dy. The constant c,, depends only on n.

Proof. Letf and B satisfy the hypothesis. Clearly, (15.18) follows from (15.17)
iff e LY(B). To prove (15.17), we will use Theorems 14.2 and 15.8. Choose
balls D /' B concentric with B and with closures in B. It suffices to show that
there is a constant c;, depending only on # such that

! V)l
ﬁg |f(x) _f(y)l dy S C}’lg W dy for a.e.x € D, (1519)

since (15.17) then follows by passing to the limit. Given such a ball D, choose
{fj} as in Theorem 15.8 corresponding to the compact set K = D. Since each f;
is infinitely differentiable in D, Theorem 14.2 gives

1
i 1500 = fipldy < eahi(1Vfixp)®0, x €D,
D

for every j, where I; denotes the fractional integral operator of order 1 and
cn depends only on n. Here, as usual, |VfIxp denotes the extension of |Vfj
to R" by setting it equal to 0 outside D. Since f; — f a.e. in D, we obtain by
applying Fatou’s lemma to the left side that

1

ﬁ f [f) —f(y)ldy < cn lijgiogfll(WﬂXD)(x) fora.e.x € D.
D

To prove (15.19), it is then enough to show that

liggffl(IijIXD) < L(|Vflxp) ae.inD.

By Theorem 15.8, Vf; — Vf in LY(D) norm, and therefore [Vfilxp — |Vflxp in
LY(R™) norm. The weak type estimate in Theorem 14.37(b) then implies that
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11(|Vj§|xp) converges in measure on R™ to I1(|Vf|xp). Consequently, there
is a subsequence {j;} — oo such that I;(|Vf;,Ixp) — ©L(IVflxp) pointwise
a.e. in R™. Hence, the desired inequality is true a.e. in R™ and therefore also
a.e. in D. This proves (15.19) and Theorem 15.16.

Corollary 15.20  Iff has a weak gradient equal to zero in a ball B, then f is constant
a.e. in B.

Proof. This follows from (15.17) since if |Vf| = 0 in B, then the integral on the
right side of (15.17) vanishes for all x € B, and therefore | f(x) — f(y)| = 0 for
a.e.x,y € B.

The next result is an analogue of Corollary 14.6.

Corollary 15.21  Let f have a weak gradient Vf in a ball B C R™.

(i) If f = 0 in a measurable set E C B satisfying |E| > v|B| for some constant
v > 0, then

e ¢ IVf(y)l
[f(x)| < Y “B[—"‘ e dy fora.e xeB.

(ii) Iff has compact support in B, then

\Y%
IfOOl < Cnfb('_f%dy for a.e. x € B.
B

In both parts, the constant c, depends only on n.

Proof. The proof of part (i) is omitted since it is essentially identical to the
corresponding proof in Corollary 14.6.

To prove (ii), let f have compact support and weak gradient Vf in a ball
B. Extend f and Vf to R™ by setting them equal to zero outside B. Let B* be
the ball of radius 2r(B) concentric with B. By Theorem 15.15, Vf is the weak
gradient of f in B*. Also, by Exercise 13, |Vf| = 0 outside B. By part (i) of this
corollary applied to B* and its subset E = B* — B, we then obtain

\/ Y
ool < e [ LD gy o, [ IO gy

4 |x_y|n—1 5 |x_y|n—1

for a.e. x € B, which completes the proof.
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There is also an analogue of Corollary 14.7. In stating it, we assume f has a
weak gradient in R™ and satisfies the extra condition that there is a sequence
{Bi}°; of balls such that B; / R" and fg, — 0 asi — oo. As in Chapter 14,
typical situations when this holds are (i) f € L"(R™) for somerwith1 <r < oo,
or (i) f € Lj,.(R") for some r with 1 < 7 < oo and lim|x|— 0 f (X) = 0.

Corollary 15.22  Let f have weak gradient Vf in R™ and suppose that fg — 0 for
some sequence of balls B/ R™. Then there is a constant ¢, depending only on n
such that

[fX)| < cnlh(IVF)(x) fora.e x € R",

where 1y is the fractional integral operator of order 1. In particular, the conclusion
holds if f € WIP(R™) for any p with 1 < p < oo.

Proof. Fix a function f with a weak gradient in R" and fg — 0 for some
sequence of balls B increasing to R™. For any B in the sequence, since f is
locally integrable in R", we have that f € L'(B), and Theorem 15.16 (see
(15.18)) yields

I fx) —fBl < cnlh(IVfD(x) fora.e.x e B.
Now let B 7 R". Since fg — 0, the result follows.

We now turn to the Poincaré-Sobolev inequalities themselves. Four sepa-
rate ranges of p values will be considered: 1 <p <n,p=n,p >n,andp = 1.
The case p = 1 uses a more local subrepresentation formula than the ones
derived so far. Our primary interest is again when n > 1. In fact, the range
1 <p <ndoesnotexistif n =1, and results whenp=n=1landp >n=1
are easy consequences of Theorem 15.6; see Exercise 20.

We begin with the range 1 < p < n.

Theorem 15.23 Let BbeaballinR", n > 1, and let p and q satisfy 1 <p < nand
1/qg =1/p — 1/n (so that g = pn/(n — p) > p). If f is a locally integrable function
on B with a weak gradient Vf belonging to L (B), then f € L1(B) and

1/p

1/4
<j 1f(x) — f3|‘7dx> < Cup <f |Vf(x)|de> , (15.24)
B B

where fg = |B|™! [ f(x) dx and the constant c, , depends only on n and p.
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If f also has compact support in B, then

1/p

1/
(f | f(x)|‘7dx> < Cnp (j |Vf(x)|de> . (15.25)
B B

Some comments about Theorem 15.23 are given after its proof.

Proof. Fix B, p, and f satisfying the hypothesis of the first part of the theorem,
and let 1/g = 1/p — 1/n. Let us begin by showing that f € L!(B). Theorem
14.37(a) in case o« = 1 gives

I AVEIXB)ILa®n) < cnpll(VHOXBIIP @0y = cnpll VSl < oo

In particular, I (| Vf|xg) is finite a.e. in B. Since f € L], (B) by hypothesis, f is
also finite a.e. in B. Furthermore, by (15.17),

1
5 ] 00 —fpldy =i (Vfixp)o0 aeinB,
B

and therefore,

1
) DIy < 1f001+ el (Vfixp) 00 ae.inB.
B

The fact that f € L!(B) now follows by choosing a point x € B such that both
f(x) and I; (| Vf|xg)(x) are finite.
Hence, the average fp is finite and (15.18) holds:

|f ) —fBl = cui(IVfIXB)(X) a.e.in B.
Taking L7 norms over B, we obtain

I f —fellae) < cnlllh(IVFIxB) L)
< Cn,p”Vf”L/"(B)r

as noted earlier. This proves (15.24). The fact that f € L9(B) now follows
immediately from Minkowski’s inequality:

I fllzacsy < ILf — fallzacsy + | fsl IBIM7
< cupl Villrs) + | fal 1BIV7 < oo.

This proves the first statement in Theorem 15.23.
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If f also has compact support in B, a similar argument based on part (ii) of
Corollary 15.21 yields (15.25). Theorem 15.23 is now proved.

We pause briefly in order to add several comments related to Theorem
15.23.

The proof of Theorem 15.23 fails if p = 1 since I; does not map LY(R™) into
L@~ (R™); Theorem 14.37 provides only a weak type estimate for I; when
p = 1. However, as will see in Theorem 15.37, Theorem 15.23 remains true
ifp=1

Inequality (15.24) is often called the L?, L9 Poincaré estimate for f and B, and
(15.25) for compactly supported f is called the L?, L7 Sobolev estimate for f. The
formula 1/q = 1/p — 1/n is called the Poincaré-Sobolev dimensional balance for-
mula or simply the balance formula. Because of it and the fact that the measure
of any ball B in R" is a fixed multiple of #(B)", the L?, L7 Poincaré estimate for
B can be written in the equivalent normalized form

1 4 1 1p
(ﬁg £ —fsl”dx) < cupr(B) (E J |vf(x>|de> . (1526)

Similarly, the L, L7 Sobolev estimate can be written in the form

1 1/q 1 1/p
<®Bj f (X)W") < cnpr(B) (@ Bf IVf(x)I”dX> . (15.27)

A remarkable fact is that the hypothesis in the first part of Theorem 15.23
is nominally weaker than assuming f belongs to W (B), because f is not
assumed to belong to L”(B) or even to LY(B), but the conclusion is stronger
since f turns out to belong to L7(B) for some q > p. In fact, as already shown
in the proof of Theorem 15.23, under the same hypothesis as in the first part
of Theorem 15.23, we have

Ifllzaw) < cupllVFllr@) + | f8l IBIYT < oo, (15.28)

From a heuristic point of view, the main content of Theorem 15.23 is that
there is a gain in the order of integrability of f. An important corollary is that
WY (B) c L1(B)if 1 < p <nand 1l/q =1/p —1/n. See also Exercise 14.
Norm estimates over all of R" for the range 1 <p < can be derived eas-
ily from Corollary 15.22. The second part of the following result is usually
referred to as the first-order Sobolev embedding theorem for R™ incase 1 < p < n.

Theorem 15.29  Let f have a weak gradient in R™ satisfying |Vf| € LP(R™) for
some p with 1 < p < n, and suppose that fg — 0 for some sequence of balls increasing
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toR™. Let 1/g=1/p — 1/n. Then f € L1(R™) and
I fllLa®ny < cnpllVEllr®n).
In particular, if f € WY (R®) for some p with 1 < p < n, then
I fllsny < cnpll VEllr@ny < Cupll fllwiegay,
1/g=1/p—1/n.

Proof. The first statement follows immediately by combining Corollary 15.22
and Theorem 14.37(a). Alternately, it can be derived by applying (15.24) to
each ball in the sequence of balls in the hypothesis of the theorem.

The second statement is a corollary of the first one since fg — 0 for any
sequence of balls B / R"if f € LP(R™), 1 < p < oo. See also Exercise 15.

Next, we consider the endpoint value p = n that was omitted in Theorem
15.23. When p = 1, the corresponding value of g in the balance formula 1/g =
1/p — 1/nis q = co. However, the function | log |x||(5 belongs to W ({|x| <
1/2hifn>1and 0 < f < (n — 1)/n, but it is not bounded; see Exercise 16.

On the other hand, by using the estimates of Moser-Trudinger type in
Chapter 14, we obtain the following result about local exponential integra-
bility. The case n = 2 was studied by Pohozaev.

Theorem 15.30 Let B be a ball in R™, n>1, and f have a weak gradient in B
satisfying |Vf| € L"(B). There are positive constants c1 and cp depending only on n
such that

1 00 — fm)”“”‘”
— _— d . 15.31
B] Bfexp {Cl ( N x=0 (1531

If f is also supported in B, then (15.31) also holds with fg replaced by 0.

We have assumed here that || Vf |11y # 0; otherwise, f is constant a.e. in B
by Corollary 15.20.

Proof. Let B and f satisfy the first hypothesis. Since |Vf| € L"(B), then |Vf| €
LP(B) for 1 < p < n by Hoélder’s inequality, and consequently f € L!(B) by
Theorem 15.23. The proof of (15.31) then follows immediately by combining
(15.18) with the case « = 1 of Theorem 14.40. If f also has compact support
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in B, a similar argument based on the second part of Corollary 15.21 yields
the second part of the theorem.

In case n = 1, a better result than (15.31) holds; see Exercise 20.

An immediate corollary of (15.31), under the same assumptions on f, is
that for every r with 0 < r < oo,

1 (1f0) - fm)’
o —— ] d n,rs
B Bf ( NiET YA

or equivalently

1/r
1
(ﬁ f £ ) —fB|rdX) < cnrIVflins), 0<r<oo.
B

For a related global inequality, see Corollary 15.41.

Let us now consider the case p > n.

Theorem 15.32 (Morrey) Let B bea ball in R™ andn < p < oo. If f has a weak
gradient Vf in B satisfying |Vf| € LP(B), then after possible redefinition of f in a
subset of B of measure zero, f is Holder continuous of order 1— (n/p) on B. Moreover,
there is a constant cy ) depending only on n and p such that

1£00 — F()] < cuplVflwlx—yl' 7, xyeB.

The order 1 — (n/p) of Holder continuity should be interpreted as 1 if p = oo, that
is, f is Lipschitz continuous on B if p = oo.

Proof. Let B, p, and f satisfy the hypothesis. Then |Vf| € L'(B) for1 < r <
p, so f € LY(B) by previous results. Therefore, using (15.18) and Holder’s
inequality, for any ball By C B and a.e. x € By, we obtain

IVFDI
|X _ y|n71

F00 —fo,l < |

By

) 1y
| ey dy) '

By

< cn IVFlie sy (
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1/p+1/p’ = 1. Note that (n — 1)p’ < nsince p > n. Also, By C B(x;2r(B1)) for
every x € By. Hence, if x € By, then

. 1/ ) 1y
[ N N
_ y|m=Dp’ - — y|m=Dp’
X X
B | yl [x—y|<2r(B1) | yl
2B Y
_ n—1
= Cup oy T dr
n—(n71)p’ 1_n

= Cn,pr(Bl) P = Cn,pr(Bl) 7,

where the exponent 1 — % means 1 if p = oo (p’ = 1). Therefore, for a.e. x € By,

1_n 1_n
L) —fBy | < cupllVEllLrayr(B1) P < cnpllVEllrwyr(Br) 7.

The theorem now follows from Theorem 14.25.

Next, we record an immediate corollary of the case p = co of Theorem 15.4
combined with Theorem 15.32. See also Exercise 10.

Corollary 15.33  Let B be a ball in R™ and f be a locally integrable function in B.
Then f has a weak gradient in L>°(B) if and only if, after redefinition of f in at most
a subset of B of measure zero, f € Lip(B). The Lipschitz constant of f and the norm
I Vf oo By are equivalent in size, with constants of equivalence that are independent
of f and B.

Finally, we turn to the endpoint p = 1. Results in this case are often referred
to as Gagliardo, Nirenberg estimates. The main goal is to prove that the
conclusion of Theorem 15.23 also holds when p =1, which is a surprising
fact since the analogous strong type result for fractional integral operators
is false. The local nature of ordinary differentiation helps lead to the follow-
ing sharper version of the subrepresentation formula, which will play a key
role whenp = 1.

Theorem 15.34 Let B be a ball in R™ and let f € Lipj,(B) N LY(B). For
k=0,£1,+£2,..., define sets Q2 C B by

Q= {xeB:2F < |f(x) —f| < 2FF1}.
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Then for all k,

|f00 = fBl < cn (I Vf IXy ) () + — B flf feldy, xe€Q, (15.35)

where 11 is the fractional integral operator of order 1 and c,, is a constant depending
only on n.

Before giving a proof, we note that the second term on the right side of
(15.35) is bounded above by 8(| f])g. It is also bounded above by

|B| fIVfld

as can be seen by using the L!, L! Poincaré estimate. Consequently, (15.35) can
be restated with the second term on the right side replaced by either of these
expressions. In our application, we will choose the second of the two.

To see why (15.35) is an improvement of (14.4) and (15.18), note that

7) [IVfldy < ea h(Vflx) 00, x € B,
B

due to the simple estimate #(B)/|B| = car(B)I" < ¢p|x — y|1_” forall x,y € B.

Hence, the right side of (15.35) is bounded by a multiple of I; (|Vf|xg)(x) if
x € B.

Proof of Theorem 15.34. Fix B and f as in the hypothesis, and for each
k=0,%1,£2,..., define a truncation gi of |f — fg| on B by

21 if | f(x) — f < 2F1
gk = {1f(0) —f| if 281 < [f(x) — f] < 2F, that is, if x € Q1
2k if 2K < | f(x) — f3l.

Then (see Exercise 17), each gx € Lipj,-(B) and
1800 — gk < [f) —f(yI, xyeB.
Therefore, |Vgi| < |Vf] a.e. in B, and we claim that

Vgl < IVflxe,_, a.e.inB. (15.36)
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To prove this, it is enough to show that |[Vgx| = 0 a.e.in B—Q;_;. Letxg € B—
Q1. Then there are three possibilities: | f(xo) — fg| > 2K f(x0) — fBl < 2k-1
or |f(xo) — fBl = 2k=1_1In either of the first two cases, since f is continuous,
there is a neighborhood of xq in which g is constant, namely, in which gj = 2*
or g = 2K, respectively, and consequently [Vgx(xo)| = 0 in either of the first
two cases. On the other hand, if | f(xg) — f3| = 251 then grk(xp) = 2k=1 and
therefore, gy has an absolute minimum at xq (since gy > 2k-1 everywhere in
B). Assuming as we may that Vgi(xo) exists, it follows that |Vgi(xo)| = 0, and
(15.36) is verified.
Note that g is integrable, even bounded, in B. For all x € B,

k(X)) = [gx(X) — (gK)B] + (gK)B
< i(IVgkIxB) %) + (1B
< cn L (IVfIxa,_ ) ) + (818,

where we have applied the subrepresentation formula to the locally Lipschitz
function g, and used (15.36). Also, gx < k=1 4 f — fplin B, and hence

< 2k 1
(8K)B < |B|f|f fsldy.
Therefore, if x € B,

1
800 = ol (19flx@r 1) 00 + 271+ o I = fildy.
B

Restricting x to Q, where we have gx(x) = 2k, gives

1
2 = el (Vflxey )00 + 27 o [1f —fuldy,
B

and by then subtracting 2~ from both sides, it follows that

zkscn11<|Vf|ka,l><x>+|B|j|f foldy, xe .

Combining this with the fact that | f — fz| < 2*1 on €, we obtain the desired
estimate

|f 00 = fBl < cn LIV IX Q) (X) + — B flf feldy, x€ Q.

We can now extend Theorems 15.23 and 1529 top = 1.
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Theorem 15.37

(i) Let B be a ball in R™ and f be a function with a weak gradient Vf in B that
satisfies |Vf| € LY(B). Then f € L"/"=1(B) and

(n=1)/n
(f |f = fol"/ "D dx) <y j |VF| dx. (15.38)
B B

(i) Let f have a weak gradient Vf in R® satisfing |Vf| € LY(R™). Iffg — 0 for some
sequence of balls B /' R®, then f € L/ "~D(R™) and

”f”L"/(" DE®Rn) = Cn”Vf”Ll(Rn) (1539)

In particular, (15.39) holds if f € WYL (R™). Thus, it holds if f has compact
support and a weak gradient in R™ satisfing |Vf| € LY(R™).
The constants c,, depend only on n.

Once again, there are normalized versions: (15.38) can be rewritten as

(n=1)/n r(B)
<|B| jlf fB |n/(n 1 dx> <cn B I|Vf|dx,
B

and if f has compact support in B, (15.39) is the same as

(n=1)/n T’(B)
(|B| j|f|n/(" Ddx) "] IIVfId

Proof. It is enough to prove part (i) since part (ii) follows from it by applying
(15.38) to the sequence of balls in the hypothesis of part (ii) and using Fatou’s
lemma.

Fix a ball B and let f have weak gradient in B with |Vf| € L'(B). Then
f € L}(B) by an argument like the one at the beginning of the proof of Theorem
15.23, except that the finiteness of I; (|Vf|xp) a.e. in B now follows from the
weak type estimate in Theorem 14.37(b) since |Vf| € L'(B).

Assuming also that f € C*(B), or even also just that f € Lip;,.(B), we can
apply Theorem 15.34. Thus, let

Q= {xeB:2F <|f(x) —fgl <21}, k=0,%1,....
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Recall from the discussion following the statement of Theorem 15.34, that is,
from the discussion about the size of the second term on the right side of
(15.35), that

160 — ol = en 1V Xy )00 + €0 B f|Vf|dy, xe Q. (1540)

Denote g = n/(n — 1). Since B is the disjoint union of the €2, we have

j|f =Y [ 1f=for?

k=—o00 Q
< Z 2 ="+ Y =51+ 5,
k=—o00 k<N k>=N+1

say, where N is chosen such that the second term on the right of (15.40)
satisfies

\Vf| < 2N,

B

Then

S1=) 204010y < 209 By
k<N

= 22120 |B| < 2% (c 0 )fl f|) |B|

q
=y <I|Vf|> sinceq =n/(n —1).
B

In order to estimate Sy, note that for all x € Q, the choice of N and (15.40)
imply that

26 < 1f00 = fa] < eal1(IVf Iy )00 + 2N,

If k > N + 1, then by subtracting 2N from both sides and noting that 2¢-1 <
2k — 2N we obtain

zk—l
L(IVfIxee ) (%) > . XE Qr, k>N+1.

n
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Equivalently, if k > N + 1, then

Q C {x: h(Vflxe, )00 > 2 eu).
Therefore, by the weak type estimate in Theorem 14.37(b),
q
19%] < ¢ (%QI |vf|) ifk>N+1.
-1

Hence,

Sp= ) 2K iey

k>N-+1
2(k+1)q !
=Cn Z m( f |Vf|)
k>=N+1 Q1

= ¢ k;ﬂ (Qkf |Vf|)q
= (Z | |Vf|)q=cn (Jl%)q.

k Q.

Here, we have used the estimate Y |27 < (3 |akl)? to obtain the last line
(see Exercise 31 of Chapter 8). Combining the estimates for S; and S, proves
(15.38) in case f is smooth.

Now consider a general f with a weak gradient satisfying |Vf| € L' (B). Let
D be a ball with D C B, and choose an approximating sequence {fi} as in

Theorem 15.8 with K = D there. By the case just proved, we have (with g =
n/(n—1))

1/q
(j|fj— (fj)D|‘7> < [ IVl
D D

foreveryj. Asj — oo,fj — fae.inD, (f)p — fp since fj — f in LY(D) norm,
and |Vfj| — |Vf]in LY(D). Therefore,

1/4
(flf—fpl") < [ 1911,
D D
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where we used Fatou’s lemma for the left side of the inequality. Now enlarge
the domain of integration on the right side to B and then let D increase to B.
Sincef € L'(B), then fp — fg, and another application of Fatou’s lemma gives
(15.38).

Finally, since (15.38) and the finiteness of fg imply that f € L7(B) by
Minkowski’s inequality, the proof is complete.

Part (ii) of Theorem 15.37 yields the next result about the space W (R).

Corollary 15.41 Letf € WM R and1 <n <r < oo. Then f € L"(R™) and

n 1_1n
”f”Lr(R“) =< Cn,r”f”in(Rn)”vf”Ln(f{n); (1542)

where ¢y, is a constant depending only on n and r. In particular,

||f||L’(R“) = Cn,r”f”wl,n(Rn)/ n=<r<oo. (15.43)

Proof. First suppose f € C)(R™) and note that the function F = |f|>~If is
then also of class C(l)(R“) if > 1. Moreover, 0F/0x; = 6|f|5_18f/8xl- for every
i=1,...,n.Denote n’ =n/(n—1) and || fllp»®ny = || fll». Applying (15.39) to
F, we obtain

1£15 < a8 [1A°TIVAI
< e8I fI5 IVflla, 8> 1, by Holder’s inequality  (15.44)
with exponents n’ and n.

We will successively choose 8 = n,n+1,n+2,...1in (15.44). With b = n,
since (n — 1)n’ = n, we have

AN < et LA IV F Il

Next, choosing 6 =n + 1,

LN < en G+ D) 1 F I IV D

< cu(n+ DullfIFHIVEIZ,

where we have used the case § = # to obtain the last inequality. Continuing
inductively in this way gives

AN < cnn+H -+ Dl fIE VAR, k=0,1,....
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Raising both sides to the power 1/(n 4 k), we obtain

n 1-n
1Ay < cnr WfNG NIVl 7, r=m+kn', k=0,1,....

Also, the estimate is trivially true when r = n.
In order to obtain the same estimate for every r € [, 00), we use Holder’s
inequality in the form (cf. Exercise 6 of Chapter 8)

1 6 1-90
0 1-6 —
Ifll < 0Fl AN, 1§r1§r572500’?_ﬁ+ o

In fact, by choosing 1 = nand r, = (n+k)n’ forafixedk =0, 1, .. ., it follows
that for any r € [n, (n + k)n'],

1 0 1-0
0
Al < AW o 5 = 0+ G o
1 ktl\1-0
< UA1E (ens AU 1911
4= 1 k+1
11 (1-0) K (1-9) 1-1
=l fll IV = I IVFI

This proves the result when f € C}(R™). For general f € WL (R™), the same
estimate then holds by applying the second statement in Theorem 15.13 with
p = n. Details are left to the reader. This completes the proof.

Theorem 15.37(ii) has an elegant companion result relying heavily on the
product structure of R™. There is an equally elegant analogue of Theorem
15.29 for functions defined in all of R". The result corresponding to
Theorem 15.37(ii) is given next; see Exercise 18 for the one corresponding to
Theorem 15.29.

Theorem 15.45 Iff € WVL(RD), then f € L "~D(R™) and

n 1/n
d
I £l /1) (gay < l_[ —f

(15.46)
i1 axi

L1(R") '

Moreover, the conclusion holds if the hypothesis that f € WYL(R™) is replaced by
assuming that f has a weak gradient in R™ that satisfies |Vf| € L'(R™) and either
f e L'R™) for some v € [1, 00) or lim|xj— o0 f(x) = 0.

In the proof, we will use the next lemma in case n > 1.
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Lemma 1547 Letn = 2,3,... and g1(X),...,gn(X) be n functions of x =
(x1,-..,xn) € R™ such that g;(x) is independent of x;, i = 1,...,n, that is, g;(X)
depends only on (x1,...,%_1,Xi41,---,Xn) € RV"L Ifeach ¢; € L" Y (R™1), then

n
= 1_[ ”gl ”Ln—l(Rn—l)-
LYRn) =1

[ s

i=1

Proof. The proof will be by induction on n. We may assume that every g; is
nonnegative.
If n = 2, the result is true since

R2 R1 R1

fgl(xz)gz(xl)dxldxz = (fgl(xz) dx2) (fgz(xﬂdxl) .

Suppose n > 3 and let (1 — 1)’ denote the conjugate index of n — 1. Write
182 --8n = (9182 -gn-1) §n and apply Holder’s inequality with indices
(n — 1) and n — 1, obtaining

n

f [ l_[gi} dxq - dxy—q
Rn-1 1
1 1
n—1 , (n—1) n—1
< j { l_[ggn_l) }dx1 ceedxy_q f g Vdxy - dxy g )
Rn-1 1 Rn-1
(15.48)
The second factor on the right side of (15.48) is ||gx |l »-1gn-1), Which is inde-

pendent of x;, since g;, is independent of x;,. We estimate the first factor on the
right side by applying the inductive assumption as follows:

j { ﬁ&(’nl)/} dxq---dxp_q
1

Rn-1

1
n—1 n-2
—1)(n-2
51_[ Jgfn V0D g dx gy - da .
1 [R

n-2
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Now raise both sides of this inequality to the power 1/(n — 1)/, note that
(n—1)(n —2) = n — 1, and combine the result with (15.48) to obtain

j {ﬁgi} dxy---dxp_q

Rn—1
n—1 n—1
= 1_[ f 8?71 dxy - - -dxi qdxiyy - dxp—q lgn Il a1 (Rn-1)-
1 Rn-2

On the right side of this inequality, each of the first n —1 factors in the product
is a function only of x,,. Hence, by integrating both sides of the inequality with
respect to x,; and then using Holder’s inequality with n—1 exponents all equal
to n — 1 (see Exercise 6 of Chapter 8), we obtain

n n—1
| [ ]"[gz-] dx < (H ||gi||Ln1(Rn1)> g/l L1 (Re-1)
1

R 1
n
= [ [ lgilln1 a1y
1
This completes the proof of Lemma 15.47.

Proof of Theorem 15.45. First assume thatf € C'(R"), n > 1, with |Vf| € L'(R™)
and that limjx|—c0 f(x) = 0. Then for any x = (x1,...,xp) andi=1,...,n, we
have

.
)
fo= | 8—£i(x1,...,xi1,t,xi+1,...,xn)dt

and

|f(x)| < f %(xll"'Ixi—lltl‘xi+ll"'lxn) dt = hi(x)/
1

where }; is defined by the last equality. Note that /;(x) is independent of x;
and belongs to L!(R*~1). Raising both sides of the inequality to the power
1/(n — 1), n > 1, and then taking the product over i of the result gives

n
Fool7T < [[hio™T, xeR™

i=1
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Each h}/ =1 ¢ L'~} (R™1). Therefore, by Lemma 15.47 with g; chosen to be

1

h?/(”—l)’

n 1
_n_ =
[1feorTax <[ |
Rn i=1 n—-1 (R“*l)
B n af T
i1 8xi Ll(Rn)

Raising both sides to the power (n — 1)/n proves (15.46) when n > 1 and
f e CH(R™) with limit 0 at oo and |Vf| € L'(R™). The general case whenn > 1
follows by using the approximation result in Theorem 15.14 combined with
Fatou’s lemma; details as well as the proof in case n = 1 are left to the reader.
This completes the proof.

Exercises

1.

Construct an example of a function f that has weak first-order par-
tial derivatives in R", n > 1, but whose ordinary first-order partial
derivatives exist nowhere in R™.

. Let ¢ be a real number different from 0. Show that there is no locally

integrable function g on (—1,1) such that Lll gepdx=cp(0) for all ¢ €
Coo((=1,1)).

. The fact that the Cantor-Lebesgue function f does not have a weak

derivative on the interval (0,1) is an immediate corollary of Theorem
15.6. Verify this fact instead directly from the definition of a weak
derivative by choosing test functions that are adapted to the graph of f.

. Consider the convolution (¢ * k)(x), x € R™, where ¢ € Lip;,.(R™), k €

Ll (R™), and k has compact support. Show that for everyi =1,...,n, the
ordinary derivative (¢ xk)/dx; exists and is finite everywhere in R", and

0

_ (9@ _ n
8xi(cp *k)(x) = f " (Mk(x—y)dy, xeR"

Rl‘l

Show that the same is true without the assumption that k has compact
support if @ satisfies the additional conditions ¢, d¢/dy; € L= (R").

. Verify Theorem 15.9. (Choose a sequence {K,};2; of compact subsets of

2 whose interiors increase to 2. For each ¢, use Theorem 15.8 to pick a
function f; € C§°(Q) such that || fe — fll1k,) + IIVfe = Vflpnk, < 1/¢
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10.

11.

Show that for every compact K C €, {f;} and {Vf} converge in LY(K) to
f and Vf, respectively. Then use a diagonal process to construct a sub-
sequence {¢;} of positive integers such that {f;;} and {Vf} also converge
pointwise a.e. in Q.)

Let Q be an open set in R™ and let f,g € L} (). Show that for any i =

1,...,n, f has weak partial derivative 8f /dx; = g if and only if there are
functions {f}}]?’il C C*(Q) such thatfj — fin LY(K) and dfj/dx; — gin

LY(K) as j — oo for every compact set K C Q.

Prove that when 1 < p < oo, WP () is a Banach space with respect
to the norm (15.11) and that it is separable when 1 <p < co. Prove that
W'2(Q) is a Hilbert space with respect to the inner product (15.12). (To
show separability, first note that the repeated Cartesian product of LP(£2)
with itself is separable when 1 < p < co. Then apply the result in Exercise
23 of Chapter 8.)

Complete the proof of Theorem 15.13. Furthermore, given a number
8> 0, show that the approximating functions {f;} can be chosen to have
supports in the d-neighborhood {x : d(x,Q2) < 8} of Q, where d(x, 2)
denotes the distance from x to Q. In particular, in case 2 is a ball B,
if B* is a larger ball concentric with B, the f; can be chosen to have
supports in B*.

Letl <p<ooandf € WLP(R™). For h and x in R®, define the translated
function (tpf)(x) = f(x + h). Show that

Ithf — fllr@ey < [h| | VFllLr@n).

(Consider first the case when f € C3°(R") and derive the estimate | tpf —
Flrrqixi<kn < W IVElleqixi<k+nyp fork =1,2,.. . If pis finite, the general
case follows from approximation and letting k — oo. If p=o0, apply
estimates for L” when 7 is finite and let v /" 00.)

(@) Iff WL (R™), show that
1f00 —fWI < Ix =yl IVfllLe®n) forae. x,yeR"

In particular, a function f belongs to WY (R) if and only if there
exists g € Lip(R™) such that f = g a.e. in R™.
(b) If f € L*®(R™), show that f € WL (R™M) if and only if there is a
constant C such that | f(x) — f(y)| < C|x —y| for a.e. x,y € R™.
(Product Rule) Let 1 < p < oo and 2 be an open set in R™. Prove that if
f,g € WIP(Q) NL®(Q), then fg € WP(Q) N L>®() and

_98 O il
(fg)_faxi+ xig inQ,i=1,...,n

d
3x1‘
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(Note that both fg and the sum on the right side of the formula belong
to LP(Q). It is then enough to check that the sum is the weak derivative
d(fg)/dx;. Use approximation by functions in C§°(R") if p is finite. If p =
0o, use the result for finite p after noting that for every bounded open set
Q' C Q, both f and g belong to W (Q’) for all finite p.)

12. (Chain Rule) Let ¢ € Cl(—o0,0) with ¢’ bounded and ¢(0) = 0. Let
1 < p < oo and  be an open set in R™. If f ¢ W'?(Q), prove that the
composition (¢ o f)(x) = d(f(x)) satisfies $ o f € WP(Q2) and

d o i .
a_xl(d)of)—(d) Of)axl" 1_1/~

R
(The hypothesis ¢(0) = 0 guarantees that [pof| < [|¢'[lec|f] € LP(£2). Itis
then enough to check that the expression on the right side of the formula
is the weak partial derivative with respect to x; of ¢ o f. Approximate f
by smooth functions if p is finite. If p = oo, use the result for finite p and
bounded open sets in £2.)

13. Let f have compact support in an open set 2 C R™ and weak derivative
df /9x; in Q for some i. Show that the set where df/9x; # 0 is contained in
the union of the support of f and a subset of Q of measure 0. (The result
in Exercise 2 of Chapter 7 may be helpful.)

14. Let BbeaballinR", 1 < p < n,and 1/q = 1/p — 1/n. If f has weak
gradient Vf in B and |Vf| € L?(B), show that

1
I fllLasy < cupllVEllLr@) +cn B I fllres)

1
=Cnp (1 + @) ||f||w1m(3)/

and if either fg = 0 or f has compact support in B, then

I fllLay < cnpli VI B) < cnpll fllwir -

15. Let f have weak gradient Vf in R™ and suppose that |Vf| € LF(R") for
somepwithl <p <n.Letl/g=1/p—1/n:
(a) Show thatf € L1(R") if and only if there is a sequence {Bg};2 ; of balls
increasing to R™ such that | f, | |Bk|*/ is bounded in k.

(b) Suppose that fg — 0 for some sequence of balls B ,/ R™. Show that

sup (sl 1BI'7) < o,

where the supremum is taken over all balls B C R™.
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16.

17.

18.

19.

20.

Letn > 1 and B = B(0; 1/2) be the ball in R™ of radius 1/2 centered at the
origin. If 0 < § < (n — 1)/n, show that | log |x||B belongs to WL (B) but
not to L>(B). Compare Exercise 14 in Chapter 14.

Let f and g be finite functions defined on a set & C R™. Prove that the
function h(x) = max{f(x), g(x)} (as well as its analogue with max replaced
by min) satisfies

|h(x) — h(y)| < max{|f(x) —f(y)], 1) =g}, xye€ Q.
If Q is open and f, g € Lipj,(€2), deduce that i € Lipjy-(€2) and that
IVA(x)| < max{|Vf(x)|, |[Vg(x)|} fora.e.x € Q.

In particular, if —oo < ¢ < oo and f € Lip,(2), show that the truncated
function

_)fx iffo <c
fe) = {c iff(x) >c

satisfies |Vf;| < |Vf] a.e. in Q. Show also that |V(|f])| < |Vf| a.e.in Q.
Prove the following analogue of Theorem 15.45 when 1 < p < n and
1/9 =1/p — 1/n.If f € WP (RD), then

n

Iflamey < cup ] |
i=1

3f l/'rl

ax,-

LP(RM)

(Incasef € C(l)(R“), apply (15.46) to the function F = |f|®~!f with § =
g(n —1)/n. Note that 1 < & < oo, and apply Holder’s inequality to the
formula [|0F/9xil| 1 gy = 151 f1°~10f /8|1 gny with exponents p’ and p.)

(a) Show that there exists f € C*°(R") with |Vf| € LP(R") for every p,
1 < p < oo, such that (15.39), (15.46), and the first inequality in the
conclusion of Theorem 15.29 fail.

(b) Suppose that 1 < p < n, f € W//(RM), and 9f/dx; = 0 a.e. in R™ for
some i, i = 1,...,n. Prove that f = 0 a.e. in R". (See Exercise 18 in
casel <p < n.)

Let n = 1, (a,b) be an open interval in R}, possibly of infinite length,

and suppose that f has a weak derivative f” in (a, b). Verify the following

analogues of Theorems 15.30 and 15.32:

(@) If f' € L'(a,b), then f € L*(a, b) and

If = F©lliw@p < I f I11ap forae.ce @b).
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(b) If f' € LP(a, b) for some p with 1 < p < oo, then

@) —fW] < If lpaplx —ylYP forae x,y € (a,b),

where 1/p+1/p’ + 1.
21. Letf e WLL(R™). Prove that

n

Il < 1l 1<7< —.
22. Verify the following remarkable fact. Let f and g be locally integrable
functions on R" that satisfy

1 1
ﬁBﬁf—fmdx < Cr(B)EBﬁng

for all balls B € R", with C independent of B.If 1 < p < nand 1/ =
1/p — 1/n, then for every ball B,

1/p

1/q
1 1
_ _ q ! _ p
<|B|Bf|f 15l dX> sCr(B)<|B|Bf|g| dX> ,

where C" depends only on n and C. (Recall Theorem 14.12.)
What can be said if p > n?

23. Let Bbe aball in R" withr(B) = land n > 2. Letk = 1,2,...and f €
C’(‘)+1 (B). If n = 2k or n = 2k + 1, show that

If @) < enl VS fll2p),

where the right-hand side denotes the L2(B) norm of the sum of the abso-
lute value of every partial derivative of f of order k + 1, and ¢, is a
constant independent of B and f. (One way to proceed is to first apply
Corollary 14.6 to obtain | fllrem®)y < clIVfllr@) if r > n. Then show

that || Vf L) < c||V2f | Lrn/-+m By, and continue considering higher order
derivatives as necessary.)



Notations

x+y

addition

dot product
absolute value
positive part
negative part

limit from the right
limit from the left
converges to

converges in measure to
increases to

decreases to

sequence

set of x satisfying . ..

x an element of E

x not an element of E

union

intersection

difference, relative complement
subset
complement
closure

interior

diameter
diameter
distance function
measure
outermeasure
closed interval
open interval

partly open intervals

countable intersection of open sets
countable union of closed sets
empty set

supremum, least upper bound
infimum, greatest lower bound
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lim sup
lim inf
ess sup
ess inf
L L

LP

Lip, Lipioc
LOO
wl»

54

)4

Rl

Rn

C

Jef
jEde

[, fdd
-1
-1y

|| P e s
f*g

XE

a.e.

S, Z,w
o(d(x)) }
O(d(x)
V(E)
V(E), V(E)
VIf;a,b]
SIf]

SIf1

usc

Isc

Rr

Sr
w(f;d) }
wp(f; 8)
ws,E(00)
Z‘j(-

f

s

f
7f

Iof, Tof

Notations

limit superior

limit inferior
essential supremum
essential infimum

classes of functions

classes of sequences

real number system
n-dimensional Euclidean space
complex number system
Lebesgue integral in R™

Lebesgue integral in a measure space

Riemann-Stieltjes integral
norm

L? norm

BMO constants
convolution

characteristic function
almost everywhere
measure space

order of magnitude relations

variations

Fourier series
conjugate Fourier series
upper semicontinuous
lower semicontinuous
Riemann-Stieltjes sum
sum of increments

moduli of continuity

distribution function
Hardy-Littlewood maximal function
conjugate function

Fourier transform

Fourier transform

fractional integrals
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Hf

Hsf/ Hs,wf
Hu(A)
A(A), A*(A)
o(D)

i

ax;

vf

Hilbert transform

truncated Hilbert transform

Hausdorff measure

Lebesgue-Stieltjes measure, outer measure
volume

partial derivative

gradient
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