
Shandong University Advanced Modern Algebra

Lecture 1 & 2: Multilinear Algebra
Feb. 24, 2023

Lecturer: Bin Guan

1 Tensor products of vector spaces 1
1.1 Change of base for vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Tensor products of two vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dual of tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Tensor products of linear transformations . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tensor algebras 6
2.1 Algebras over a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Properties of tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Tensor algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Symmetric and exterior algebras 8
3.1 Symmetric algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Exterior algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Symmetric and alternating tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

This lecture refers to §10.4, §11.2 and §11.5 in [1]. All the equation numbers without reference
labels are from this book. For convenience, [2, Chap. VI] and [3, Chap. 9] define tensor product
of vector spaces without primilinary in modules.

1 Tensor products of vector spaces
In this section we study the tensor product of two vector spaces V and W over a field F ,

ultimately denoting it by V ⊗F W .

1.1 Change of base for vector spaces
Let K/F be a finite extension of fields, and let W be an n-dimensional vector space over K

(i.e. W ∼= Kn). Then W automatically has a multiplication-by-F structure and is a vector space
over the smaller field F . In this situation we ignore some unnecessary scalar multiplications and
denote the F -vector space asWF .

Exercise. What is the dimension of WF? Can you determine a basis of it?

Nowwe try to reverse this, and let V be ann-dimensional vector space overF . How to construct
a vector space over the larger fieldK that is“small enough”in which we can embed V ?

Example (Complexification of a real vector space). Let F = R, K = C. If V is a real vector
space, to construct a complex vector space V C from V (which is called the complexification of V ),
it is necessary (and sufficient) to formally define a real linear transformation called“multiplication
by i”. More precisely

(V C)R := V ⊕ iV = {v1 + iv2 | v1, v2 ∈ V }
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as real vector spaces. One can define multiplication by a complex number on V ⊕ iV by the
distributive law.

IfW is ann-dimensional complex vector space, it is natually a 2n-dimensional real vector space
and we denote it by WR. If it is related to another real vector space V such that WR = V ⊕ iV ,
we say that V is a real form of the complex vector space W . We have shown that any real vector
space is a real form of its complexification.

The operations (·)R and (·)C are not inverse to each other. (Try to compute the dimensions of
(V C)R and (WR)

C.)

We begin the construction by returning to the basic axioms of vector spaces in order to examine
whether we can define“scalar products”of the form λv, for λ ∈ K and v ∈ V . These axioms
start with an abelian group V together with a map from K × V to V , where the image of the pair
(λ, v) is denoted by λv.

It is therefore natural to consider the free abelian group on the set K × V , i.e. the collection
of all finite commuting sums of elements of the form (λi, vi) where λi ∈ K and vi ∈ V . (The set
K × V can also be regarded as an F -vector space by taking the direct sum K ⊕ V . Notice that
the free abelian group ⟨K × V ⟩ andK ⊕ V have different definitions of additions.) In this abelian
group the original space V has been thoroughly distinguished from the new“coefficients”from
K.

To satisfy the relations necessary for a K-vector space structure and the compatibility relation
with the action of F -multiplication on V , we must take the quotient of this abelian group by the
subgroup H generated by all elements of the form

(λ1 + λ2, v)− (λ1, v)− (λ2, v),

(λ, v1 + v2)− (λ, v1)− (λ, v2), and
(λa, v)− (λ, av),

(10.3)

for λ, λ1, λ2 ∈ K, v, v1, v2 ∈ V and a ∈ F , where av in the last element refers to the F -
multiplication structure already defined on V .

The resulting quotient group (quotient space) is denoted byK⊗F V (or justK⊗V if F is clear
from the context) and is called the tensor product of K and V over F . If λ⊗ v denotes the coset
containing (λ, v) in K ⊗F V then by definition of the quotient we have forced the relations

(λ1 + λ2)⊗ v = λ1 ⊗ v + λ2 ⊗ v,

λ⊗ (v1 + v2) = λ⊗ v1 + λ⊗ v2, and
(λa)⊗ v = λ⊗ av.

(10.4)

The elements of K ⊗F V are called tensors and can be written (non-uniquely in general) as finite
sums of“simple tensors”of the form λ⊗ v with λ ∈ K, v ∈ V .

Proposition. The tensor productK ⊗F V is natually a vector space overK with the scalar multi-
plication defined by

λ

∑
finite

λi ⊗ vi

 :=
∑
finite

(λλi)⊗ vi.

The vector spaceK ⊗F V is called theK-vector space obtained by extension of scalars from
the F -space V . It is also denoted by V K in [2].

Exercise ([1] §11.2 Proposition 15). What is dimK(V
K)? Determine a basis of it. And what is

dimF ((V
K)F )?
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Proposition. The map ι : v 7→ (1, v) 7→ 1⊗ v defines a natural embedding (a 1-1 F -linear map)
V → K ⊗F V , more precisely,

ι : V → K × V � K ⊗F V = (K ⊗F V )F .

(For an extension of scalars from an R-module N , this map ι : N → S ⊗R N is not injective in
general.)

Exercise. Show that F ⊗F V ∼= V .

The above proposition shows that K ⊗F V contains (an isomorphic copy of) V . On the other
hand, the relations in equation (10.3) were the minimal relations that we had to impose in order to
obtain a K-vector space, so it is reasonable to expect that the tensor productK ⊗F V is the“best
possible”K-vector space to serve as target for an F -linear map from V . The next theorem makes
this more precise by showing that any other F -linear map from V to any K-vector space factors
through this one, and is referred to as the universal property for the tensor productK ⊗F V .

Theorem ([1] §10.4 Theorem 8, universal property). Let F be a subfield of K, let V be a vector
space over F and let ι : V → K ⊗F V be the F -linear map defined by ι(v) := 1⊗ v. Suppose that
W is any vector space overK (hence also an F -linear space) and that φ : V → W is an F -linear
map. Then there is a unique K-linear map φ̃ : W → K ⊗F V such that φ factors through φ̃, i.e.,
φ = φ̃ ◦ ι and the diagram

V

φ
$$J

JJ
JJ

JJ
JJ

J
� � ι // K ⊗F V

φ̃
��

W

commutes.

1.2 Tensor products of two vector spaces
Let V,W be vector spaces over the field F . The quotient of the free abelian group on the set

V ×W by the subgroup generated by all elements of the form

(v1 + v2, w)− (v1, w)− (v2, w),

(v, w1 + w2)− (v, w1)− (v, w2), and
(av, w)− (v, aw),

(10.6)

for v, v1, v2 ∈ V , w,w1, w2 ∈ W and a ∈ F , is an abelian group, denoted by V ⊗F W (or simply
V ⊗W if the field F is clear from the context), and is called the tensor product of V andW over
F .

We have the relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, and
(av)⊗ w = v ⊗ (aw).

(10.7)

The elements of V ⊗F W are called tensors, and the coset, v⊗w, of (v, w) in V ⊗F W is called
a simple tensor or a pure tensor. Not every element need be a simple tensor, but every tensor can
be written (non-uniquely in general) as finite sums of simple tensors. By the last relation in (10.7),
we may have v ⊗ w = v′ ⊗ w′ even if v ̸= v′, w ̸= w′.
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Exercise. If v1, v2 ∈ V ,w1, w2 ∈ W are linearly independent, is it possible to write v1⊗w1+v2⊗w2

as a pure tensor?

Proposition. The tensor product V ⊗F W is a vector space over F with the scalar multiplication
defined by

a

∑
finite

vi ⊗ wi

 :=
∑
finite

(avi)⊗ wi =
∑
finite

vi ⊗ (awi).

Proposition ([1] §11.2 Proposition 16, [2] Proposition 6.14). If V,W are finite-dimensional vector
spaces over F , then

dimF (V ⊗F W ) = dimF V dimF W.

If {ei} is a basis of V and {fj} is a basis of W , then the most general member of V ⊗F W is of
the form

∑
j vj ⊗ fj with all vj ∈ V . In particular, {ei ⊗ fj} is a basis of V ⊗F W .

1.3 Dual of tensor products
Fix a field F , and let U, V,W be vector spaces over F . The space of all linear transformations

A : V → W is a vector space over F under addition and scalar multiplication of the values, and is
denoted by HomF (V,W ).

Recall ([1] §11.2). Let V,W be of finite dimensional. What are the dimensions of HomF (V,W )
and the dual space V ∗ = HomF (V, F ) of V ? Determine bases of them.

A map φ : V ×W → U is said to be bilinear if it is linear in each of the two variables when
the other one is held fixed, i.e.,

φ(v1 + v2, w) = φ(v1, w) + φ(v2, w),

φ(v, w1 + w2) = φ(v, w1) + φ(v, w2),

φ(av, w) = φ(v, aw) = aφ(v, w),

for all v, v1, v2 ∈ V , w,w1, w2 ∈ W and a ∈ F . Such a space of bilinear maps (or bilinear
functions) is a vector space over F under addition and scalar multiplication of the values, and is
denoted by L(V,W ;U). The bilinear maps are called bilinear forms when the range space U is F
itself.

With this teminology, it follows immediately from the relations in (10.7) that, the quotient map
ι : V ×W → V ⊗F W defined by ι(v, w) := v ⊗ w is bilinear.

Theorem ([1] §10.4 Theorem 10 & Corollary 12, universal property). Let V,W be vector spaces
over the field F , V ⊗F W be the tensor product of V and W , and ι : V ×W → V ⊗F W be the
bilinear map defined above.

(1) If φ̃ : V ⊗F W → U is any linear transformation to a vector space U , then the composite map
φ̃ ◦ ι is a bilinear map from V ×W to U .

(2) Conversely, suppose that U is any vector space over F and that φ : V ×W → U is a bilinear
map. Then there is a unique F -linear map φ̃ : V ⊗F W → U such that φ factors through φ̃,
i.e., φ = φ̃ ◦ ι.
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Equivalently, the correspondence φ ↔ φ̃ in the commutative diagram

V ×W

φ
&&NN

NNN
NNN

NNN
N

ι // // V ⊗F W

φ̃
��

U

establishes a bijection L(V,W ;U) ↔ HomF (V ⊗F W,U). Furthermore, this bijection is an
isomorphism of vector spaces.

Corollary ([2] Corollary 6.12, an equivalent definition of tensor product). If V andW are vector
spaces over F , then the vector space L(V,W ;F ) of all bilinear forms on V × W is canonically
isomorphic to (V ⊗F W )∗, the dual of the vector space V ⊗F W .

1.4 Tensor products of linear transformations
Theorem ([1] §10.4 Theorem 13). Let V, V ′,W,W ′ be vector spaces over F , and suppose A :
V → V ′, B : W → W ′ are F -linear maps.

(1) There is a unique F -linear map C : V ⊗F W → V ′ ⊗F W ′, such that

C(v ⊗ w) = Av ⊗ Bw, for all v ∈ V, w ∈ W.

Denote C by A⊗ B.

(2) If A′ : V ′ → V ′′, B′ : W ′ → W ′′ are also F -linear maps, then

(A′ ⊗ B′) ◦ (A⊗ B) = (A′ ◦ A)⊗ (B′ ◦ B).

Proof. The map (v, w) 7→ Av ⊗ Bw from V ×W to V ′ ⊗F W ′ is clearly bilinear, so (1) follows
immediately from the universal property.

The uniqueness condition of the universal property also implies (2).

Exercise. Show that the above theorem constructs an injection fromHomF (V, V
′)⊗FHomF (W,W ′)

to HomF (V ⊗F W,V ′ ⊗F W ′). Is it onto?

Exercise ([1] §11.2 Proposition 17). LetA = (aij) be anm×m′ matrix andB = (bij) be an n×n′

matrix. The tensor product (or the Kronecker product) of two matrices is defined as anmn×m′n′

matrix by

A⊗B := (aijB) =

a11B · · · a1m′B
...

...
am1B · · · amm′B


consisting of anm×m′ block matrix whose i, j block is the n× n′ matrix aijB. Explain why this
definition is reasonable.

Exercise. If V and W are finite-dimensional vector spaces over F , show that

r∑
i=1

fi ⊗ wi 7→

(
v 7→

r∑
i=1

fi(v)wi

)

defines a canonical isomorphism V ∗ ⊗F W ∼= HomF (V,W ). What is the inverse of this map?
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2 Tensor algebras
From now on, all vector spaces are defined over a fixed field F and we drop all the subscripts

of the tensor products.

2.1 Algebras over a field
The definition of an R-algebra where R is an arbitrary commutative ring with identity can be

found in [1] §10.1, and will be covered in future lectures.
If F is a field, an algebra over F is a vector space V over F with a multiplication or product

operation V × V → V that is F -bilinear. The additive part of the F -bilinearity means that the
product operation satisfies the distributive laws

a(b+ c) = ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ V,

and the scalar-multiplication part of the F -bilinearity means that

(λa)b = λ(ab) = a(λb) for all λ ∈ F and a, b ∈ V .

An algebra is determined by its vector-space structure and the multiplication table for the members
of an F -basis.

In this course we shall workmostly just with associative algebras, i.e., those algebras satisfying
the usual associative law

a(bc) = (ab)c for all a, b, c ∈ V .

An associative algebra is therefore a ring and a vector space, the scalar multiplication and the ring
multiplication being linked by the requirement that (λa)b = λ(ab) = a(λb) for all scalars λ.

Example (commutative). The field extensionK/F ; the polynomial algebra F [x1, . . . , xn].

Example (noncommutative). The matrix algebra Mn(F ); EndF (V ) := HomF (V, V ) for any vec-
tor space V ; the quaternion algebra H; the group algebra F [G].

Exercise ([1] §10.4 Proposition 21). How to define an algebra structure on the tensor product of
two algebras over F?

2.2 Properties of tensor products
The next result shows that we may write V1 ⊗ V2 ⊗ V3, or more generally, an n-fold tensor

product V1 ⊗ V2 ⊗ · · · ⊗ Vn, unambiguously whenever it is defined.

Theorem ([1] §10.4 Theorem 14, Associativity of the Tensor Product). Suppose V1, V2, V3 are
vector spaces over the field F . Then there is a unique isomorphism

(V1 ⊗ V2)⊗ V3
∼= V1 ⊗ (V2 ⊗ V3)

of vector spaces such that (v1 ⊗ v2)⊗ v3 7→ v1 ⊗ (v2 ⊗ v3).

Proof. For each fixed v3 ∈ V3, the mapping (v1, v2) 7→ v1⊗(v2⊗v3) is bilinear, so by the universal
property there is a homomorphism V1 ⊗ V2 → V1 ⊗ (V2 ⊗ V3) with v1 ⊗ v2 7→ v1 ⊗ (v2 ⊗ v3). This
shows that the map from (V1 ⊗ V2)⊗ V3 to V1 ⊗ (V2 ⊗ V3) given by (v1 ⊗ v2, v3) 7→ v1 ⊗ (v2 ⊗ v3)
is well defined. Since it is easily seen to be bilinear, another application of the universal property
implies that it induces a homomorphism (V1⊗V2)⊗V3

∼= V1⊗(V2⊗V3) such that (v1⊗v2)⊗v3 7→
v1 ⊗ (v2 ⊗ v3). In a similar way we can construct a homomorphism in the opposite direction that
is inverse to this one. This proves the isomorphism.
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The next theorem shows that tensor products commute with direct sums.

Recall. What is the definition of direct sum V ⊕W of two vector spaces? What is its dimension?
Determine a basis of it.

Theorem ([1] §10.4 Theorem 17, Tensor Products of Direct Sums). Suppose V, V ′,W,W ′ are
vector spaces over the field F . Then there are unique isomorphisms

(V ⊕ V ′)⊗W ∼= (V ⊗W )⊕ (V ′ ⊗W )

V ⊗ (W ⊕W ′) ∼= (V ⊗W )⊕ (V ⊗W ′)

of vector spaces such that (v, v′) ⊗ w 7→ (v ⊗ w, v′ ⊗ w) and v ⊗ (w,w′) 7→ (v ⊗ w, v ⊗ w′)
respectively.

Theorem ([1] §10.4 Proposition 20). Suppose V, V ′ are vector spaces over the field F . Then there
is a unique isomorphisms

V ⊗ V ′ ∼= V ′ ⊗ V

of vector spaces such that v ⊗ v′ 7→ v′ ⊗ v.

Remark. When V = V ′ it is not in general true that v ⊗ v′ = v′ ⊗ v for v, v′ ∈ V . We shall study
“symmetric tensors”in the next section.

2.3 Tensor algebras
Suppose V is a vector space over the field F and v1, v2 ∈ V . We have formally defined a

“product”v1v2 of elements of V by tensor product, and we have constructed a new vector space
V ⊗ V generated by such“products”v1 ⊗ v2. The“value”of this product is not in V , so this
does not give an algebra structure on V itself. If, however, we iterate this by taking the“products”
v1v2v3 and v1v2v3v4, and all finite sums of such products, we can construct an algebra containing V
that is“universal”with respect to algebras containing V . (If V is an F -algebra and already have
multiplication structure, we need to“forget”this multiplication to define this universal object.)

For each integer k ≥ 1, define T k(V ) (or V ⊗k) by

T k(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k factors

,

and set T 0(V ) = F . The elements of T k(V ) are called k-tensors. Define

T (V ) = F ⊕ T 1(V )⊕ T 2(V )⊕ · · · =
∞⊕
k=0

T k(V ).

Every element of T (V ) is a finite linear combination of k-tensors for various k ≥ 0. We identify
V with T 1(V ), so that V is a subspace of T (V ).

Theorem ([1] §11.5 Theorem 31). Let V be a vector space over the field F .

(1) T (V ) is an (associative) F -algebra containing V with multiplication defined by mapping

(v1 ⊗ · · · ⊗ vi) · (v′1 ⊗ · · · ⊗ v′j) := v1 ⊗ · · · ⊗ vi ⊗ v′1 ⊗ · · · ⊗ v′j

and extended to sums via the distributive laws. The algebra T (V ) is called the tensor algebra
of V . With respect to this multiplication T i(V )T j(V ) ⊆ T i+j(V ).
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(2) (Universal Property) If A is any F -algebra and φ : V → A is an F -linear transformation,
then there is a unique F -algebra homomorphism φ̃ : T (V ) → A such that φ̃|V = φ and the
diagram

(vector space) V

φ
""E

EE
EE

EE
EE

E
� � // T (V )

φ̃

��

(algebra)

A (algebra)
commutes.

Proposition ([1] §11.5 Proposition 32). Let V be a finite-dimensional vector space over the field
F with basis B = {e1, . . . , en}. Then the k-tensors

ei1 ⊗ ei2 ⊗ · · · ⊗ eik with eij ∈ B

are a vector space basis of T k(V ) over F (with the understanding that the basis vector is the
element 1 ∈ F when k = 0). In particular, dimF (T k(V )) = nk.

The above theorem and proposition show that the space T (V )may be regarded as the noncom-
mutative polynomial algebra over F in the (noncommuting) variables e1, . . . , en.

Example. When V = F has dimension 1, T (F ) is isomorphic to the polynomial algebra F [x].

Since T i(V )T j(V ) ⊆ T i+j(V ), the tensor algebra T (V ) has a natural“grading”or“degree”
structure reminiscent of a polynomial ring. A ring S is called a graded ring if it is the direct sum
of additive subgroups S = S0⊕S1⊕S2⊕· · · such that SiSj ⊆ Si+j for all i, j ≥ 0. The elements
of Sk are said to be homogeneous of degree k, and Sk is called the homogeneous component of
S of degree k.

Example. The polynomial ring S = R[x1, x2, . . . , xn] in n variables over the commutative ring R
is a graded ring. Here S0 = R is a subring of S, and the homogeneous component of degree k is
the additive subgroup of all R-linear combinations of monomials of degree k.

3 Symmetric and exterior algebras

3.1 Symmetric algebras
Suppose V is a vector space over the field F . We have construct an algebra containing V

that is“universal”with respect to algebras containing V , the tensor algebra. But it is in general
noncommutative. How can we construct a“universal”commutative algebra containing V ? The
idea comes from forming the commutator quotient G/G′ of a group.

The symmetric algebra of V is the F -algebra obtained by taking the quotient of the tensor
algebra T (V ) by the ideal C(V ) generated by all elements of the form v1 ⊗ v2 − v2 ⊗ v1, for all
v1, v2 ∈ V . The symmetric algebra T (V )/C(V ) is denoted by S(V ).

Example. (1) When V = F has dimension 1, all the commutators are 0 ∈ F ⊗ F . The ideal
C(F ) = 0 and the symmetric algebra S(F ) = T (F ) ∼= F [x].

(2) When V = Fe1 ⊕ Fe2 has dimension 2, all the commutators are constant multiples of e1 ⊗
e2 − e2 ⊗ e1. So in the quotient S(V ) = T (V )/C(V ), the coset of e1 ⊗ e2 is the same with that
of e2 ⊗ e1, that means, in S(V ) we can permute the order of e1 and e2.
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Recall that ei1 ⊗ ei2 ⊗ · · · ⊗ eik with ij ∈ {1, 2} are a vector space basis of T k(V ). Therefore
(the cosets of) the same pure tensors also form a basis of Sk(V ), with the order of the factors
permuted are identified, i.e., (the cosets of) the pure tensors e⊗k1

1 ⊗ e⊗k2
2 with k1 + k2 = k are

a basis of Sk(V ). Furthurmore S(V ) ∼= F [x1, x2].

Exercise. Show that the symmetric algebra S(V ) = T (V )/C(V ) is graded with S0(V ) = F and
S1(V ) = V . We call the subspace Sk(V ) the kth symmetric power of V.

Theorem ([1] §11.5 Theorem 34). Let V be a vector space over the field F and let S(V ) be its
symmetric algebra.

(1) The kth symmetric power Sk(V ) of V is equal toM⊗k modulo the submodule generated by all
elements of the form

(v1 ⊗ · · · ⊗ vk)− (vσ(1) ⊗ · · · ⊗ vσ(k))

for all vi ∈ V and all permutations σ in the symmetric group Sk.

(2) (Universal property for maps to commutative algebras) IfA is any commutative F -algebra and
φ : V → A is a linear map, then there is a unique F -algebra homomorphism φ̃ : S(V ) → A
such that φ̃|V = φ.

Corollary ([1] §11.5 Corollary 35). Let V be an n-dimensional vector space over the field F . Then
S(V ) is isomorphic as a graded F -algebra to the (commutative) ring of polynomials F [x1, . . . , xn]
in n variables over F (i.e. the isomorphism is also a vector space isomorphism from Sk(V ) onto
the space of all homogeneous polynomials of degree k). In particular, dimF (Sk(V )) =

(
k+n−1
n−1

)
.

Example. When V = Fe1 ⊕ Fe2 is 2-dimensional, (the cosets of) e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e2 form a
basis of the 3-dimensional subspace S2(V ) of S(V ).

3.2 Exterior algebras
The exterior algebra of a vector space V over F , also called an alternating algebra orGrass-

mann algebra, is the F -algebra obtained by taking the quotient of the tensor algebra T (V ) by the
ideal A(V ) generated by all elements of the form v1 ⊗ v2 + v2 ⊗ v1, for v1, v2 ∈ V . The exterior
algebra T (V )/A(V ) is denoted by

∧
(V ) and the image of v1⊗ · · ·⊗ vk in

∧
(V ) is denoted by mt

v1 ∧ · · · ∧ vk.

Exercise. Show that A(V ) is equal to the ideal generated by all elements of the form v ⊗ v for
v ∈ V .

As with the symmetric algebra, the exterior algebra is also graded, with kth homogeneous com-
ponent

∧k(V ) = T k(V )/Ak(V ). We can again identify F with
∧0(V ) and V with

∧1(V ) and so
consider V as a subspace of the F -algebra

∧
(V ). The subspace

∧k(V ) is called the kth exterior
power of V.

The multiplication

(v1 ∧ · · · ∧ vi) ∧ (v′1 ∧ · · · ∧ v′j) = v1 ∧ · · · ∧ vi ∧ v′1 ∧ · · · ∧ v′j

in the exterior algebra is called thewedge (or exterior) product. By definition of the quotient, this
multiplication is anticommutative on simple tensors:

v ∧ v′ = −v′ ∧ v for all v, v′ ∈ V.

The multiplication is also alternating in the sense that the product v1 ∧ · · · ∧ vk is 0 in
∧
(V ) if

vi = vj for some i ̸= j (cf. [1] §11.5 Theorem 36).
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Exercise ([1] §11.5 Exercise 4). The anticommutativity of wedge product does not extend to arbi-
trary products. It even does not extend to products of all simple tensors. Show that v1∧ (v2∧v3) =
(v2 ∧ v3) ∧ v1 for v1, v2, v3 ∈ V .

Example. (1) Suppose V is a one-dimensional vector space over F with basis element e. Then
e∧e = 0 implies that, the image λ1e∧· · ·∧λke, of any simple tensors λ1e⊗· · ·⊗λke ∈ T k(V ),
is zero in

∧k(V ) for k ≥ 2.
It follows that

∧0(V ) = F ,
∧1(V ) = V , and

∧k(V ) = 0 for k ≥ 2. As a graded F -algebra
we have ∧

(V ) = F ⊕ V ⊕ 0⊕ 0⊕ · · · .

(2) Suppose now that V is a two-dimensional vector space over F with basis e, e′.
Then

∧k(V ) consists of finite sums of elements of the form v1∧ · · · ∧ vk = (λ1e+µ1e
′)∧ · · · ∧

(λke + µke
′). Such an element is a sum of elements that are simple wedge products involving

only e and e′. For example, an element in
∧2(V ) is a sum of elements of the form

(λ1e+ µ1e
′) ∧ (λ2e+ µ2e

′) = λ1λ2(e ∧ e) + λ1µ2(e ∧ e′) + µ1λ2(e
′ ∧ e) + µ1µ2(e

′ ∧ e′)

= (λ1µ2 − µ1λ2)(e ∧ e′).

It follows that
∧k(V ) for k ≥ 3 since then at least one of e, e′ appears twice in such simple

products.
We have seen that the tensors in the 2nd exterior power of V are all constant multiples of e∧ e′.
Actually one can see that e ∧ e′ by comparing the dimensions of T 2(V ) and A2(V ).
It follows that

∧0(V ) = F ,
∧1(V ) = V ,

∧2(V ) = F (e∧ e′), and
∧k(V ) = 0 for k ≥ 3. As a

graded F -algebra we have∧
(V ) = F ⊕ (Fe⊕ Fe′)⊕ F (e ∧ e′)⊕ 0⊕ 0⊕ · · · .

Exercise. Suppose that V is a 2-dimensional vector space over F with basis e, e′. Determine bases
of C2(V ) := C(V ) ∩ T 2(V ) and A2(V ) := A(V ) ∩ T 2(V ). Recall that C(V ) and A(V ) are the
ideals in the definition of the symmetric and the exterior algebra respectively.

As the previous examples illustrate, unlike the tensor and symmetric algebras, for finite-dimensional
vector spaces the exterior algebra is finite dimensional.

Corollary ([1] §11.5 Corollary 37). Let V be a finite-dimensional vector space over the field F
with basis B = {e1, . . . , en}. Then the vectors

vi1 ∧ · · · ∧ vik for 1 ≤ i1 < · · · < ik ≤ n

are a basis of
∧k(V ), and

∧k(V ) = 0 when k > n (when k = 0 the basis vector is the element
1 ∈ F ). In particular, dimF (

∧k(V )) =
(
n
k

)
and dimF (

∧
(V )) = 2n.

Exercise. How do you understand the wedge product of two 3-dimensional vectors? For V = R3,
show that v1 ∧ v2 7→ (v3 7→ det[v1 v2 v3]) defines an isomorphism

∧2(V ) ∼= V ∗ of real vector
spaces. Can you generalize this result tom-dimensional vector spaces for any m?
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3.3 Symmetric and alternating tensors
The symmetric and exterior algebras can in some instances also be defined in terms of symmet-

ric and alternating tensors, which identify these algebras as subalgebras of the tensor algebra rather
than as quotient algebras.

For any vector space V there is a natural left group action of the symmetric group Sk on V k

given by permuting the factors:

σ(v1, . . . , vk) = (vσ−1(1), . . . vσ−1(k)) for each σ ∈ Sk

(the reason for σ−1 is to make this a left group action). This map is clearly F -multilinear, so there
is a well defined F -linear left group action of Sk on T k(V ) which is defined on simple tensors by

σ(v1 ⊗ . . .⊗ vk) = vσ−1(1) ⊗ . . .⊗ vσ−1(k) for each σ ∈ Sk.

An element z ∈ T k(V ) is called a symmetric k-tensor if σz = z for all σ in the symmetric
group Sk; is called an alternating k-tensor if σz = sgn(σ)z for all σ ∈ Sk, where sgn(σ) is the
sign ±1 of the permutation σ.

Example. The elements v ⊗ v and v1 ⊗ v2 + v2 ⊗ v1 arc symmetric 2-tensors. The element v1 ⊗
v2 − v2 ⊗ v1 is an alternating 2-tensor.

It is immediate from the definition that the collection of symmetric (respectively, alternating)
k-tensors is a subspace of T k(V ).

Define linear transformations on T k(V ) by

Sym(z) :=
∑
σ∈Sk

σ(z), Alt(z) :=
∑
σ∈Sk

sgn(σ)σ(z).

For any k-tensor z, the k-tensor Sym(z) is symmetric and the k-tensor Alt(z) is alternating. For
example, for any τ ∈ Sk,

τ Alt(z) =
∑
σ∈Sk

sgn(σ)τσ(z) =
∑
σ′∈Sk

sgn(τ−1σ′)σ′(z) (letting σ′ = τσ)

= sgn(τ−1)
∑
σ′∈Sk

sgn(σ′)σ′(z) = sgn(τ)Alt(z).

The tensor Sym(z) is called the symmetrization of z and Alt(z) the skew-symmetrization of z.

Proposition ([1] §11.5 Proposition 40). Suppose char(F ) - k! and V is a vector space over F .
Then

(1) The map 1
k!
Sym induces an isomorphism of vector spaces between the kth symmetric power of

V and the subspace of symmetric k-tensors:

1

k!
Sym : Sk(V )

∼−→ {symmetric k-tensors}.

(2) The map 1
k!
Alt induces an isomorphism of vector spaces between the kth exterior power of V

and the subspace of alternating k-tensors:

1

k!
Alt : Λk(V )

∼−→ {alternating k-tensors}.
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Exercise. Let V be a 3-dimensional vector space over a field F in which 6 ̸= 0. Suppose e1, e2, e3
form a basis of V . Calculate 1

6
Sym(z ⊗ w) and 1

6
Alt(z ⊗ w) for z = e1, w = e2 ⊗ e3 − e3 ⊗ e2.

Exercise. Suppose char(F ) - k! and V is a vector space over F . Show that π2 = π for both
π = 1

k!
Sym and π = 1

k!
Alt.

When k! is invertible, this exercise shows that π is a projection onto the subspace image(π) (cf.
[1] §11.2 Exercise 11), and then we have direct sums of vector spaces

T k(V ) = ker(π)⊕ image(π)

for π = 1
k!
Sym or π = 1

k!
Alt. It is possible to define the kth exterior power of V as the collection

of alternating k-tensors. In this case the multiplication of two alternating tensors z and w is defined
by first taking the product zw := z ⊗ w in T (V ) and then projecting the resulting tensor into the
subspace of alternating tensors. Note that the simple product of two alternating tensors need not be
alternating (for example, the square of an alternating tensor is a symmetric tensor).

If k! is not invertible then in general we do not have such Sk-invariant direct sum decomposi-
tions, so it is not in general possible to identify, for example, the kth exterior power of V with the
alternating k-tensors of V .

Other related exercises in [1]
§10.4 11, 12, 13, 27, 23 (assume that R is a field), 25 (assume that both R and S are fields)
§11.2 38, 39
§11.5 4, 10, 11, 12, 13
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