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This lecture refers to §1.7, §2.2 and Chapter 4 in [1]. All the equation numbers without refer-
ence labels are from this book.

1 Group actions
Group actions will be a powerful tool which we shall use both for proving theorems for abstract
groups and for unravelling the structure of specific examples. Moreover, the concept of an “action”
is a theme which will recur throughout the text as a method for studying an algebraic object by
seeing how it can act on other structures.

1.1 Definitions
A (left) group action of a group G on a set A is a map from G × A to A (written as g.a or g(a),
for all g ∈ G and a ∈ A) satisfying the following properties:

(1) g1.(g2.a) = (g1g2).a for all g1, g2 ∈ G, a ∈ A, and

(2) e.a = a for all a ∈ A.

The expression g.a will usually be written simply as ga when there is no danger of confusing
this map with, say, the group operation (remember, . is not a binary operation and ga is always a
member of A). We denote the (left) group action by G y A.

Exercise ([1] §1.7). Let the group G act on the set A. For each fixed g ∈ G we get a map
σg : A → A defined by σg(a) := ga. Show that

(i) for each fixed g ∈ G, σg is a permutation of A, and

(ii) the map from G to SA defined by g 7→ σg is a homomorphism.
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Reversely, if φ : G → SA is any homomorphism from a group G to the symmetric group on a set
A, show that the map from G × A to A defined by g.a := φ(g)(a) for all g ∈ G and all a ∈ A
satisfies the properties of a group action of G on A. The homomorphism from G to SA given above
is called the permutation representation associated to the given action.

If G acts on a set A and distinct elements of G induce distinct permutations of A, the ac-
tion is said to be faithful. A faithful action is therefore one in which the associated permutation
representation is injective, i.e. an action is faithful if its kernel is the identity.

The kernel of the action of G on A is defined to be {g ∈ G | g.a = a for all a ∈ A}, namely
the elements of G which fix all the elements of A. Note that the kernel of an action is precisely
the same as the kernel of the associated permutation representation; in particular, the kernel is a
normal subgroup of G.

Two group elements induce the same permutation on A if and only if they are in the same
coset of the kernel (if and only if they are in the same fiber [the preimage of one element] of the
permutation representation φ). In particular an action of G on A may also be viewed as a faithful
action of the quotient group G/ kerφ on A.

An action is called the trivial action and G is said to act trivially on A if the kernel of the
action is all of G. This action is not faithful when |G| > 1. Note that distinct elements of G
induce the same permutation on A (in this case the identity permutation). The associated permu-
tation representation G → SA is the trivial homomorphism which maps every element of G to the
identity.

If G is a group acting on a set A and a is some fixed element of A, the stabilizer of a in G is
the set

Ga = StabG(a) := {g ∈ G | g.a = a}.

For any a ∈ A, the kernel of the action is contained in the stabilizer Ga since the kernel of the
action is the set of elements of G that stabilize every point, namely kerφ = ∩a∈AGa.

Exercise ([1] §2.2). Show that the stabilizer Ga of an element a ∈ A is a subgroup of G.

Let G be a group acting on a set A. The relation ∼ on A defined by

a ∼ b if and only if a = g.b for some g ∈ G

is an equivalence relation. For each a ∈ A the equivalence class of a under ∼ is called the orbit of
a under the action of G, and is denoted by Oa or orbG(a).

The orbits under the action of G partition the set A. The action of G on A is called transitive if
there is only one orbit, i.e., given any two elements a, b ∈ A there is some g ∈ G such that a = g.b.

Proposition ([1] §4.1 Proposition 2, the Orbit–Stabilizer Theorem). Let G be a group acting on
the nonempty set A. For any a ∈ A, the map gGa 7→ g.a is a bijection from G/Ga, the set of left
cosets of Ga in G, to the orbit Oa of a.

In particular, if Oa is a finite set, then its number of elements |Oa| is equal to [G : Ga], the
index of the stabilizer of a.

1.2 Examples
Example. The axioms for a vector space V over a field F include the two axioms that the mul-
tiplicative group F× act on the set V . Thus vector spaces are familiar examples of actions of
multiplicative groups of fields where there is even more structure (in particular, V must be an
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abelian group) which can be exploited. In the special case when V = Rn and F = R the action is
specified by

α.(r1, r2, . . . , rn) := (αr1, αr2, . . . , αrn)

for all α ∈ R×, (r1, r2, . . . , rn) ∈ Rn, where αri is just multiplication of two real numbers.
This action is faithful, but not transitive. The orbit of the zero vector does not contain any

nonzero vector, and its stabilizer is the whole group F×.
Given a nonzero vector, what is its orbit and stabilizer?

Example. If we fix a labelling of the vertices of a regular n-gon (n ≥ 3), each element α of the
dihedral group D2n gives rise to a permutation σα of {1, 2, . . . , n} by the way the symmetry α
permutes the corresponding vertices. The map of D2n × {1, 2, . . . , n} onto {1, 2, . . . , n} defined
by (α, i) 7→ σα(i) (i.e. α.i := σα(i)) defines a group action D2n y {1, 2, . . . , n}.

This action is faithful: distinct symmetries of a regular n-gon induce distinct permutations of
the vertices.

This action is also transitive: the vertex labelled 1 can move to any vertex a by taking a rotation.
The stabilizer of any vertex a is the subgroup {1, τ} of D2n, where τ is the reflection about the

line of symmetry passing through vertex a and the center of the n-gon.
The kernel of this action is the identity subgroup: only the identity symmetry fixes every vertex.
When n = 3 the action of D6 on the three (labelled) vertices of a triangle gives an injective

homomorphism from D6 to S3. Since these groups have the same order, this map must also be
surjective, i.e., is an isomorphism D6

∼= S3. Geometrically it says that any permutation of the
vertices of a triangle is a symmetry.

The analogous statement is not true for any n-gon with n ≥ 4 (just by order considerations we
cannot have D2n isomorphic to Sn for any n ≥ 4).

Exercise ([1] §1.7 Exercise 11). Write out the cycle decomposition of the eight permutations in S4

corresponding to the elements of D8 given by the action of D8 on the vertices of a square.

Exercise. Find the order of the symmetry group of the cube using the orbit-stabilizer theorem.

Exercise. Consider the action of the special linear group

SL2(R) :=
{[

a b
c d

]
∈ M2(R) : ad− bc = 1

}
on the upper half plane H = {x+ iy | y > 0} defined by[

a b
c d

]
z :=

az + b

cz + d
.

By taking a = i in the orbit-stabilizer theorem, show that there is a bijection from SL2(R)/ SO2 to
H, where

SO2 :=

{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
is the special orthogonal group. (Actually this bijection is a homeomorphism of topological
spaces.)
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2 Applications of group actions

2.1 The left regular action
Let G be any group and let A = G. Define a map from G×A to A by g.a := ga for each g ∈ G and
a ∈ A, where ga on the right hand side is the product of g and a in the group G. This gives a group
action of G on itself, where each (fixed) g ∈ G permutes the elements of G by left multiplication:

g.a := ga for all g, a ∈ G

(or, if G is written additively, we get g.a := g + a and call this left translation). This action
is called the left regular action of G on itself. The permutation representation afforded by left
multiplication on the elements of G is called the left regular representation of G.

When G is a finite group of order n it is convenient to label the elements of G with the integers
1, 2, . . . , n in order to describe the permutation representation afforded by this action. In this
way the elements of G are listed as g1, g2, . . . gn and for each g ∈ G the permutation σg may be
described as a permutation of the indices 1, 2, . . . , n as follows:

σg(i) = j if and only if ggi = gj.

Example. Let G = V4 = {e, a, b, c} be the Klein 4-group with multiplication defined by

a2 = b2 = e, ab = ba = c.

Label the group elements e, a, b, c with the integers 1, 2, 3, 4, respectively. In the permutation
representation associated to the action of the Klein 4-group on itself by left multiplication, under
this labelling we compute that

a 7→ σa = (1 2)(3 4), b 7→ σb = (1 3)(2 4), c 7→ σc = (1 4)(2 3),

which explicitly gives the permutation representation V4 → S4 associated to this action under this
labelling.

Exercise ([1] §1.7 Exercise 13). Show that the left regular action is transitive and faithful.

Theorem ([1] §4.2 Corollary 4, Cayley’s Theorem). Every group is isomorphic to a subgroup of
some symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of Sn.

Proof. Consider the left regular representation φ : G → SG of G. The above exercise shows that
kerφ is trivial. The fundamental homomorphism theorem implies that G is isomorphic to its image
in SG.

Note that G is isomorphic to a subgroup of a symmetric group, not to the full symmetric group
itself. For example, we exhibited an isomorphism of the Klein 4-group V4 with the subgroup

{(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} = ⟨(1 2)(3 4), (1 3)(2 4)⟩

of S4. Subgroups of symmetric groups are called permutation groups, so Cayley’s Theorem states
that every group is isomorphic to a permutation group.

One might think that we could study all groups more effectively by simply studying subgroups
of symmetric groups (and all finite groups by studying subgroups of Sn, for all n). This approach
alone is neither computationally nor theoretically practical, since to study groups of order n we
would have to work in the much larger group Sn.
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We now consider a generalization of the action of a group by left multiplication on the set of its
elements. Let H be any subgroup of G and let G/H be the set of all left cosets of H in G. Define
an action of G on G/H by

g.aH := gaH for all g ∈ G, aH ∈ G/H

where gaH is the left coset with representative ga. One easily checks that this satisfies the two
axioms for a group action, i.e., that G does act on the set of left cosets of H by left multiplication.

In the special case when H is the identity subgroup of G the coset aH is just {a}, and if
we identify the element a with the set {a}, this action by left multiplication on left cosets of the
identity subgroup is the same as the action of G on itself by left multiplication.

Exercise ([1] §4.2 Theorem 3). Let G be a group, H be a subgroup of G and let G act by left
multiplication on the set G/H of left cosets of H in G. Let πH be the associated permutation
representation afforded by this action. Find the stabilizer in G of each point xH ∈ G/H , and find
the kernel of the action (i.e., the kernel of πH).

2.2 Acting by conjugation
Let G be any group and we first consider G acting on itself (i.e., A = G) by conjugation:

g.a := gag−1 for all g ∈ G, a ∈ G

where gag−1 is computed in the group G as usual. This definition satisfies the two axioms for a
group action.

Two elements a and b of G are said to be conjugate in G if there is some g ∈ G such that
b = gag−1 (i.e., if and only if they are in the same orbit of G acting on itself by conjugation). The
orbits of G acting on itself by conjugation, denoted by [a] or Conj(a), are called the conjugacy
classes of G.

Example. If G is an abelian group then the action of G on itself by conjugation is the trivial
action: g.a = a, for all g, a ∈ G; and for each a ∈ G the conjugacy class of a is {a}.

Example. If |G| > 1 then, unlike the action by left multiplication, G does not act transitively on
itself by conjugation because {e} is always a conjugacy class (i.e., an orbit for this action). More
generally, the one element subset {a} is a conjugacy class if and only if gag−1 = a for all g ∈ G,
if and only if a is in the center of G:

Z(G) := {g ∈ G | gx = xg for all x ∈ G}.

As in the case of a group acting on itself by left multiplication, the action by conjugation can
be generalized. If S is any subset of G, define

gSg−1 := {gsg−1 | s ∈ S}.

A group G acts on the set P(G) of all subsets of itself by defining g.S := gSg−1 for any g ∈ G
and S ∈ P(G). This defines a group action of G on P(G).

Two subsets S and T of G are said to be conjugate in G if there is some g ∈ G such that
T = gsg−1 (i.e., if and only if they are in the same orbit of G acting on its subsets by conjugation).
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2.2.1 The class equation

We now apply the Orbit–Stabilizer Theorem to the action of G by conjugation. It proves that if S
is a subset of G, then the number of conjugates of S equals the index [G : GS] of the stabilizer GS

of S. For action by conjugation

GS = {g ∈ G | gSg−1 = S} =: NG(S)

is the normalizer of S in G. We summarize this as

Proposition ([1] §4.3 Proposition 6). The number of conjugates of a subset S in a group G is the
index of the normalizer of S, [G : NG(S)]. In particular, the number of conjugates of an element
s ∈ G is the index of the centralizer of s, [G : CG(s)].

Proof. The second assertion of the proposition follows from the observation that NG({s}) =
CG(s).

Exercise. If H ≤ G, show that H E NG(H) ≤ G.

Actually, NG(H) is the largest subgroup of G in which H is normal (cf. [1] §3.1 Exercise 31).
Recall (cf. [1] §2.2) that, if S is a subset of G, the centralizer of S in G is defined as

CG(S) := {g ∈ G | gsg−1 = s for all s ∈ S} = {g ∈ G | gs = sg for all s ∈ S},

i.e., CG(S) is the set of elements of G which commute with every element of S. In the special case
when S = {s} we shall write simply CG(s) instead of CG({s}). In this case sn ∈ CG(s) for all
n ∈ Z. Note that

Z(G) = CG(G) =
∩
s∈G

CG(s).

Example. Let G = S3 and let S be the subgroup {(1), (1 2)}.
One can compute directly that CS3(S) = S (cf. [1] §4.3 Proposition 10). Alternatively, since

an element commutes with its powers, S ≤ CS3(S). By Lagrange’s Theorem (cf. [1] §3.2 Theorem
8) the order of the subgroup CS3(S) of S3 divides |S3| = 6. Also by Lagrange’s Theorem applied
to the subgroup S of the group CS3(S) we have that 2 divides |CS3(S)|. The only possibilities are:
|CS3(S)| = 2 or 6. If the latter occurs, CS3(S) = S3, i.e., S ⊆ Z(S3); this is a contradiction be-
cause (1 2) does not commute with (1 2 3). Thus |CS3(S)| = 2 and so CS3(S) = S = {(1), (1 2)}.

Analogously one can show that CS3

(
(1 2 3)

)
= {(1), (1 2 3), (1 2 3)2 = (1 3 2)}.

Next note that NS3(S) = S because σ ∈ NS3(S) if and only if

{σ(1)σ−1, σ(1 2)σ−1} = {(1), (1 2)}.

Since σ(1)σ−1 = (1), this equality of sets occurs if and only if σ(1 2)σ−1 = (1 2) as well, i.e., if
and only if σ ∈ CS3(S).

The center of S3 is the identity because Z(S3) ⊆ CS3(S) = S and (1 2) /∈ Z(S3).

Exercise ([1] §2.2 Exercise 7). Determine Z(D2n) with n ≥ 3.

The action of G on itself by conjugation partitions G into the conjugacy classes of G, whose
orders can be computed by the above proposition. Since the sum of the orders of these conjugacy
classes is the order of G, we obtain the following important relation among these orders.
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Theorem ([1] §4.3 Theorem 7, the Class Equation). Let G be a finite group and let g1, g2, . . . , gr
be representatives of the distinct conjugacy classes of G not contained in the center Z(G) of G.
Then

|G| = |Z(G)|+
r∑

i=1

[G : CG(gi)].

Proof. The element {x} is a conjugacy class of size 1 if and only if x ∈ Z(G), since then gxg−1 =
x for all g ∈ G. Let Z(G) = {z1 = e, z2, . . . , zm}, let K1,K2, . . . ,Kr be the conjugacy classes of
G not contained in the center, and let gi be a representative of Ki for each i. Then the full set of
conjugacy classes of G is given by

{1}, {z2}, . . . , {zm}, K1, K2, . . . , Kr.

Since these partition G we have

|G| =
m∑
i=1

1 +
r∑

i=1

|Ki| = |Z(G)|+
r∑

i=1

[G : CG(gi)],

where |Ki| is given by the Orbit–Stabilizer Theorem. This proves the class equation.

Example. The class equation gives no information in an abelian group since conjugation is the
trivial action and all conjugacy classes have size 1.

Example. Recall that Z(S3) = {(1)}, [S3 : CS3

(
(1 2)

)
] = 6/2 = 3 and [S3 : CS3

(
(1 2 3)

)
] =

6/3 = 2. The conjugacy classes of S3 are

{1}, {(1 2), (2 3), (1 3)}, {(1 2 3), (1 3 2)}.

The class equation for this group is |S3| = 1 + 3 + 2.

Note in particular that all the summands on the right hand side of the class equation are divisors
of the group order since they are indices of subgroups of G. This restricts their possible values (cf.
[1] §4.3 Exercise 6, for example).

An application of the class equation is to show that groups of prime power order have nontrivial
centers, which is the starting point for the study of groups of prime power order.

Theorem ([1] §4.3 Theorem 8). If p is a prime and P is a group of prime power order pα for some
α ∈ Z>0, then P has a nontrivial center: Z(P ) ̸= {e}.

Proof. By the class equation

|P | = |Z(P )|+
r∑

i=1

[P : CP (gi)]

where g1, . . . , gr /∈ Z(P ) are representatives of the distinct non-central conjugacy classes.
By definition, CP (gi) ≤ P for each i, so p | [P : CP (gi)] (the index cannot be 1, otherwise

CP (gi) = P ⇒ gi ∈ Z(P )). Since p also divides |P | it follows that p divides |Z(P )| ≥ 1 (because
e ∈ Z(P )), hence the center must be nontrivial.

Exercise ([1] §4.3 Corollary 9 & §3.1 Exercise 36). If |P | = p2 for some prime p, then P is
abelian. More precisely, P is isomorphic to either Z/p2Z or Z/pZ× Z/pZ.
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2.2.2 Conjugacy in Sn

We next consider conjugation in symmetric groups. Readers familiar with linear algebra will
recognize that in the matrix group GLn(F ), conjugation is the same as “change of basis”: A 7→
PAP−1. The situation in Sn is analogous:

Proposition ([1] §4.3 Proposition 10). Let σ, τ be elements of the symmetric group Sn. Then

τ(a1 a2 · · · ak)τ−1 =
(
τ(a1) τ(a2) · · · τ(ak)

)
.

In general, suppose σ has cycle decomposition

(a1 a2 · · · ak1)(b1 b2 · · · bk2) · · · .

Then τστ−1 has cycle decomposition(
τ(a1) τ(a2) · · · τ(ak1)

)(
τ(b1) τ(b2) · · · τ(bk2)

)
· · · ,

that is, τστ−1 is obtained from σ by replacing each entry i in the cycle decomposition for σ by the
entry τ(i).

Proof. Observe that if σ(i) = j, then

τστ−1
(
τ(i)

)
= τ(j).

Thus, if the ordered pair i, j appears in the cycle decomposition of σ, then the ordered pair τ(i),
τ(j) appears in the cycle decomposition of τστ−1. This completes the proof.

Example. One can compute directly that CS3

(
(1 2 3)

)
= ⟨(123)⟩ = {(1), (123), (132)}. For

example,

(1 2)(1 2 3)(1 2)−1 = (2 1 3) ̸= (1 2 3), (1 3 2)(1 2 3)(1 3 2)−1 = (3 1 2) = (1 2 3).

Exercise ([1] §4.3 Exercise 8). Prove that Z(Sn) = {(1)} for all n ≥ 3.

If σ ∈ Sn is the product of disjoint cycles of lengths n1, n2, . . . , nr with n1 ≤ n2 ≤ · · · ≤ nr

(including its 1-cycles) then the integers n1, n2, . . . , nr are called the cycle type of σ.
Note that by the results of the preceding section the cycle type of a permutation is unique. For

example, the cycle type of an m-cycle in Sn is 1, 1, . . . , 1,m, where the m is preceded by n −m
ones.

Proposition ([1] §4.3 Proposition 11). Two elements of Sn are conjugate in Sn if and only if they
have the same cycle type. The number of conjugacy classes of Sn equals the number of partitions
of n. (A partition of n ∈ Z>0 is any nondecreasing sequence of positive integers whose sum is n.)

One can exhibit all normal subgroups of Sn with the help of the above proposition. We first
observe that normal subgroups of a group G are the union of conjugacy classes of G, i.e.,

if H E G, then for every conjugacy class K of G, either K ⊆ H or K ∩H = ∅.

This is because if x ∈ K∩H , then gxg−1 ∈ gHg−1 for all g ∈ G. Since H is normal, gHg−1 = H ,
so that H contains all the conjugates of x, i.e., K ⊆ H .

Other useful properties of normal subgroups, for example, are that

if H E G, then e ∈ H , |H| divides |G|, and H is a subgroup of G.
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Example. If n = 3, the partitions of 3 and corresponding representatives of the conjugacy classes
(with 1-cycles not written) are as given in the following table:

Partition of 3 Representative of Conjugacy Class Number of Conjugates
1, 1, 1 (1) 1
1, 2 (1 2) A2

3/2 = 3
3 (1 2 3) A3

3/3 = 2

The sum of the orders of these conjugacy classes is the order of S3.
If H E S3, all the possible choices of conjugacy classes in H can only be given by 1, 1 + 2,

and 1 + 3 + 2, which correspond to all the normal subgroups of S3: {e}, A3, and S3.

Example. If n = 4, the partitions of 4 and corresponding representatives of the conjugacy classes
(with 1-cycles not written) are as given in the following table:

Partition of 4 Representative of Conjugacy Class Order of Conjugacy Class
1, 1, 1, 1 (1) 1
1, 1, 2 (1 2) A2

4/2 = 6
1, 3 (1 2 3) A3

4/3 = 8
2, 2 (1 2)(3 4) (A2

4/2 · A2
2/2)/2 = 3

4 (1 2 3 4) A4
4/4 = 6

The sum of the orders of these conjugacy classes is the order of S4.
If H E S4, all the possible choices of conjugacy classes in H can only be given by

1, 1 + 3, 1 + 8 + 3, and 1 + 6 + 8 + 3 + 6,

which correspond to all the normal subgroups of S4:

{e}, {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, A4, and S4.

Note that, even though 6 + 6 divides |S4| = 24, the union Conj
(
(1 2)

)
∪ Conj

(
(1 2 3 4)

)
is not a

subgroup of S4.

Exercise ([1] §1.3 Exercise 16 & §4.3 p.127). Compute directly the number of m-cycles in Sn

by a combinatorial calculation. If σ ∈ Sn is an m-cycle, determine its centralizer and verify the
Orbit–Stabilizer Theorem.

Exercise ([1] §4.3 p.127–128). Use the partitions of 5 to determine all normal subgroups of S5.

Exercise ([1] §4.3 Exercise 20). Let σ ∈ An. Show that all elements in the conjugacy class of σ
in Sn (i.e., all elements of the same cycle type as σ) are conjugate in An if and only if σ commutes
with an odd permutation.

Exercise ([1] §4.3 Exercise 22). Show that if n is odd then the set of all n-cycles consists of two
conjugacy classes of equal size in An.

2.3 The right group action
Exercise ([1] §1.7 Exercises 14 & 15). Let G be a group and let A = G. Show that if G is non-
abelian then the maps defined by g.a := ag for all g, a ∈ G do NOT satisfy the axioms of a (left)
group action of G on itself, but the maps defined by g.a := ag−1 do.
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In the definition of an action the group elements appear to the left of the set elements and so
our notion of an action might more precisely be termed a left group action. One can analogously
define the notion of a right group action of the group G on the nonempty set A as a map from
A×G to A, denoted by a.g for a ∈ A and g ∈ G, that satisfies the axioms:

(1) (a.g1).g2 = a.(g1g2) for all g1, g2 ∈ G, a ∈ A, and

(2) a.e = a for all a ∈ A.

For arbitrary group actions it is an easy exercise to check that if we are given a left group action
of G on A then the map A× G → A defined by a.g := g−1.a is a right group action. Conversely,
given a right group action of G on A we can form a left group action by g.a := a.g−1. Call these
pairs corresponding group actions. Put another way, for corresponding group actions, g acts on
the left in the same way that g−1 acts on the right.

This is particularly transparent for the action of conjugation because the “left conjugate of a
by g”, namely gag−1, is the same group element as the “right conjugate of a by g−1” (denoted by
ag

−1). Thus two elements or subsets of a group are “left conjugate” if and only if they are “right
conjugate”, and so the relation “conjugacy” is the same for the left and right corresponding actions.
More generally, it is also an exercise ([1] §4.3 Exercise 1) to see that for any corresponding left
and right actions the orbits are the same.

We have consistently used left actions since they are compatible with the notation of applying
functions on the left (i.e., with the notation φ(g)); in this way left multiplication on the left cosets
of a subgroup is a left action. Similarly, right multiplication on the right cosets of a subgroup is
a right action and the associated permutation representation φ is a homomorphism provided the
function φ : G → SA is written on the right as (g1g2)φ (and also provided permutations in SA are
written on the right as functions from A to itself).

There are instances where a set admits two actions by a group G: one naturally on the left and
the other on the right, so that it is useful to be comfortable with both types of actions.

3 Sylow’s Theorem

3.1 Examples and Proof
In this section, let G be a finite group and let p be a prime. A group of order pα for some α ∈ Z>0

is called a p-group. Subgroups of G which are p-groups are called p-subgroups. If G is a group
of order pαm, where p - m, then a subgroup of order pα is called a Sylow p-subgroup of G. The
set of Sylow p-subgroups of G will be denoted by Sylp(G) and the number of Sylow p-subgroups
of G will be denoted by np(G) (or just np when G is clear from the context).

Example. • If p does not divide the order of G, the Sylow p-subgroup of G is the trivial group.

• If |G| = pα, G is the unique Sylow p-subgroup of G.

Example. S3 has three Sylow 2-subgroups: ⟨(1 2)⟩, ⟨(2 3)⟩ and ⟨(1 3)⟩. It has a unique (normal)
Sylow 3-subgroup: ⟨(1 2 3)⟩ = A3.

The full converse to Lagrange’s Theorem is not true: namely, if G is a finite group and n divides
|G|, then G need not have a subgroup of order n. For example A4 does not have a subgroup of
order 6. There are some partial converses to Lagrange’s Theorem.

For finite abelian groups the full converse of Lagrange is true, namely an abelian group has a
subgroup of order n for each divisor n of |G| (cf. [1] §3.4 Exercise 4).
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The strongest converse to Lagrange’s Theorem which applies to arbitrary finite groups is the
following:

Theorem ([1] §4.5 Theorem 18, Sylow’s Theorem). Let G be a group of order pαm, where p is a
prime not dividing m.

(1) Sylow p-subgroups of G exist, i.e., Sylp(G) ̸= ∅.

(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists g ∈ G such
that Q ≤ gPg−1, i.e., Q is contained in some conjugate of P .
In particular, any two Sylow p-subgroups of G are conjugate in G.

(3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

np ≡ 1 (mod p).

Further,
np = [G : NG(P )] | m.

Example. |A4| = 12 = 22 · 3. By n2 ≡ 1 (mod 2) and n2 | 3 we have n2 = 1 or 3. By n3 ≡ 1
(mod 3) and n3 | 4 we have n3 = 1 or 4.

In fact A4 has a unique (normal) Sylow 2-subgroup: ⟨(1 2)(3 4), (1 3)(2 4)⟩ ∼= V4. It has four
Sylow 3-subgroups: ⟨(1 2 3)⟩, ⟨(1 2 4)⟩, ⟨(1 3 4)⟩ and ⟨(2 3 4)⟩.

Example. |S4| = 24 = 23 · 3. By n2 ≡ 1 (mod 2) and n2 | 3 we have n2 = 1 or 3. By n3 ≡ 1
(mod 3) and n3 | 8 we have n3 = 1 or 4. In fact S4 has n2 = 3 and n3 = 4.

Exercise ([1] §4.5 Exercises 6 & 7). Exhibit all Sylow 2-subgroups and all Sylow 3-subgroups of
S4 and find elements of S4 which conjugate one of these into each of the others.

(Note that all elements of order 3 in S4 are the 3-cycles and there are 8 of them; and S4 contains
a subgroup isomorphic to D8 given by the action of D8 on the vertices of a square.)

Recall (cf. [1] §4.4 Corollary 14) that, if H is any subgroup of the group G, then for any
fixed g ∈ G, h 7→ ghg−1 defines an isomorphism H ∼= gHg−1 of groups. Conjugate elements
and conjugate subgroups have the same order. In particular, a conjugate of a Sylow p-subgroup is
also a Sylow p-subgroup; and any two Sylow p-subgroups of a group (for the same prime p) are
isomorphic.

Corollary ([1] §4.5 Corollary 20). Let P be a Sylow p-subgroup of G. Then TFAE (the following
are equivalent):

(1) P is the unique Sylow p-subgroup of G, i.e., np = 1;

(2) P is normal in G;

(3) P is characteristic in G, i.e. every automorphism of G maps P to itself;

(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X is any subset of
G such that ord(x) is a power of p for all x ∈ X , then ⟨X⟩ is a p-group.

Example. A finite abelian group has a unique Sylow p-subgroup for each prime p (note that any
subgroup of an abelian group is normal). This subgroup consists of all elements x whose order is
a power of p. This is sometimes called the p-primary component of the abelian group.

Recall that, the classification of finite abelian groups ([1] §5.2 Theorem 5) says, any finite
abelian group is the direct sum of all its p-primary component.
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Proof of Sylow’s Theorem (3). Assume that (1)(2) are true. Let P be a Sylow p-subgroups of G.
By (2), G acts by conjugation on Sylp(G), i.e., g.Q := gQg−1 for any g ∈ G, Q ∈ Sylp(G);
moreover, the action is transitive, and the stabilizer of P ∈ Sylp(G) is NG(P ). The Orbit–Stabilizer
Theorem implies that np = | Sylp(G)| = [G : NG(P )] (cf. [1] §4.3 Proposition 6).

Again, consider the action of a fixed Sylow p-subgroup P on Sylp(G) by conjugation, i.e.,
g.Q := gQg−1 for any g ∈ P , Q ∈ Sylp(G). We now study the fixed point of this action, i.e.,
Q ∈ Sylp(G) such that g.Q = Q for any g ∈ P . Clearly P itself is a fixed point; and by definition,
if Q is a fixed point, then P ≤ NG(Q).

Claim that P , Q are also Sylow p-subgroups of NG(Q). In fact, |G| = pαm and |P | = |Q| =
pα. Recall that Q E NG(Q) ≤ G. By Lagrange’s Theorem |NG(Q)| = pαm′ for some m′ | m,
and therefore p - m′. So the subgroups P , Q are both Sylow p-subgroups of NG(Q).

However, Q E NG(Q) implies that NG(Q) has only one Sylow p-subgroup, i.e. Q = P . (Note
that [1] §4.5 Corollary 20 is a corollary of only [1] §4.5 Theorem 18(2), so this line of reasoning is
not circular.) This means, the action of P on Sylp(G) by conjugation only has one fixed point P .

Now apply a generalized version of the “Class Equation”, i.e.,

np = | Sylp(G)| =
∑

fixed points

1 +
∑

Q∈non-fixed orbits

|OQ|

= 1 +
∑

Q∈non-fixed orbits

[P : StabP (Q)].

Here for any non-fixed Q, 1 < |OQ| = [P : StabP (Q)] divides |P | = pα so each |OQ| must be a
power of p. This implies np ≡ 1 (mod p).

3.2 Applications of Sylow’s Theorem
Most of the examples use Sylow’s Theorem to prove that a group of a particular order is not simple,
i.e., G has a nontrivial normal subgroup. We shall be able to use these results to classify groups of
some specific orders n.

Example ([1] §4.5 p.143). Suppose |G| = pq for primes p and q with p < q. Let P ∈ Sylp(G) and
let Q ∈ Sylq(G). We show that Q is normal in G.

Now the three conditions: nq = 1 + kq for some k ∈ Z≥0, nq | p and p < q, together force
k = 0. Since nq = 1, Q E G.

Since np divides the prime q, the only possibilities are np = 1 or q. In particular, if p - q − 1,
(that is, if q ̸≡ 1 (mod p)), then np cannot equal q, so P E G.

Example. Suppose |G| = 72 = 23 · 32 and we show that G is not simple.
If n3 = 1 then the only Sylow 3-subgroup of G is normal. Suppose n3 ̸= 1. Since n3 | 8 and

n3 ≡ 1 (mod 3), it follows that n3 = 4.
Now G acts by conjugation on its four Sylow 3-subgroups, so this action affords a permutation

representation φ : G → S4. On one hand, the action is transitive and therefore nontrivial, so
kerφ ̸= G; on the other hand, |G| = 72 > |S4| = 24, therefore φ cannot be injective, i.e.
kerφ ̸= {e}. So we construct a nontrivial normal subgroup kerφ of G.

Exercise ([1] §4.5 Exercise 13). Prove that a group of order 56 has a normal Sylow p-subgroup
for some prime p dividing its order and therefore is not simple.

Example (Classification of groups of order 6). Suppose |G| = 6. Let Q ∈ Syl2(G) and P ∈
Syl3(G). Then P and Q are both cyclic, and we denote P = ⟨a⟩, Q = ⟨b⟩ with order ord(a) = 3,
ord(b) = 2. Since [G : P ] = 2 and b /∈ ⟨a⟩, G is a disjoint union of cosets of P :

G = ⟨a⟩ ∪ ⟨a⟩b.
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We can also say that G is generated by a and b.
We know P = ⟨a⟩ is a normal subgroup of G (by the first example or directly by [G : P ] = 2),

then bPb−1 = P . In particular
bab−1 ∈ P = {e, a, a2}.

Assume that bab−1 = ak for some 0 ≤ k ≤ 2. Then b2 = e implies

a = b(bab−1)b−1 = bakb−1 = (bab−1)k = ak
2

=⇒ ak
2−1 = e.

Recall that ord(a) = 3 and then 3 | k2 − 1, therefore k ̸= 0.

• If k = 1 then bab−1 = a, i.e. ab = ba. In this case G is a quotient group of

⟨a, b | a3 = b2 = e, ab = ba⟩ ∼= Z/3Z⊕ Z/2Z ∼= Z/6Z.

But G is of order 6, hence G ∼= Z/6Z.

• If k = 2 then bab−1 = a−1. In this case G is a quotient group of

⟨a, b | a3 = b2 = e, bab−1 = a−1⟩ ∼= D6.

Again by comparing the orders we have G ∼= D6.

Other related exercises in [1]
§1.6 25 26
§1.7 17 19
§2.2 6 8 12
§4.1 1 6
§4.2 4 7 13
§4.3 5 6 11 13 25 26 31 32
§4.5 5 9 10 11 17 18 26 39 40
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