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1 Exact sequences

1.1 Exact sequences and diagram chasing
We first introduce a very convenient notation.

Definition. Let X, Y, Z,Xi be some algebraic objects (e.g., groups, rings, or modules).

(1) The pair of homomorphisms X α→ Y
β→ Z is said to be exact (at Y ) if imageα = kerβ.

(2) A sequence · · · → Xn−1 → Xn → Xn+1 → · · · of homomorphisms is said to be an exact
sequence if it is exact at every Xn between a pair of homomorphisms.

(3) The exact sequence 0 → X
ψ→ Y

φ→ Z → 0 is called a short exact sequence. (If X , Y and
Z are groups written multiplicatively, the sequence will be written 1 → X

ψ→ Y
φ→ Z → 1

where 1 denotes the trivial group. ) Y is called an extension of Z by X .

Proposition ([1] §10.5 Proposition 22 & Corollary 23). Let X, Y, Z be some algebraic objects.

(1) The sequence 0→ X
ψ→ Y is exact (at X) if and only if ψ is injective (denoted by X

ψ
↩−→ Y ).

(2) The sequence Y
φ→ Z → 0 is exact (at Z) if and only if φ is surjective (denoted by Y

φ
� Z).

(3) The sequence 0→ X
ψ→ Y

φ→ Z → 0 is exact if and only if

• ψ is injective, • φ is surjective, and • imageψ = kerφ.

Proof. The (uniquely defined) homomorphism 0 → A has image 0 in A. This will be the kernel
of ψ if and only if ψ is injective.

Similarly, the kernel of the (uniquely defined) zero homomorphism C → 0 is all of C, which
is the image of φ if and only if φ is surjective.
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Note that any exact sequence can be written as a succession of short exact sequences, since to
say X α→ Y

β→ Z is exact at Y is the same as saying that the sequence

0 −→ α(X) −→ Y −→ Y/ kerβ −→ 0

is a short exact sequence.

Example. Given (left) R-modules A and C we can always form their direct sum B = A⊕C, and
the sequence

0 −→ A
ι−→ A⊕ C π−→ C −→ 0

where ι(a) := (a, 0) and π(a, c) := c is a short exact sequence.
This is also valid for groups (not necessarily abelian), for example,

1 −→ SL2(C) −→ SL2(C)× C× −→ C× −→ 1

is a short exact sequence.

Example. If φ : B → C is any homomorphism we may form an exact sequence:

0 −→ kerφ
ι−→ B

φ−→ φ(B) −→ 0

where ι is the inclusion map. In particular, if φ is surjective, the sequenceB
φ→ C may be extended

to a short exact sequence with A = kerφ. For example,

1 −→ SL2(C) ↩−→ GL2(C)
det−→ C× −→ 1

is a short exact sequence.
One particularly important instance is when M is an R-module and S is a set of generators

for M . Let F (S) be the free R-module on S. Then

0 −→ K
ι−→ F (S)

φ−→M −→ 0

is the short exact sequence where φ is the unique R-module homomorphism which is the identity
on S (cf. [1] §10.3 Theorem 6, the universal property) and K = kerφ.

More generally, when M is any group (possibly nonabelian), the above short exact sequence
(with 1’s at the ends, if M is written multiplicatively) describes a presentation of M , where K is
the normal subgroup of F (S) generated by the relations defining M (cf. [1] §6.3). For example,

1 −→ H −→ ⟨σ, τ⟩ −→ D2n = ⟨σ, τ | σn = τ 2 = e, τστ = σ−1⟩ −→ 1

is the short exact sequence where ⟨σ, τ⟩ is the free group on {σ, τ}, and H is the smallest normal
subgroup of ⟨σ, τ⟩ containing σn, τ 2, and στστ .

Let 0 → A → B → C → 0 and 0 → A′ → B′ → C ′ → 0 be two short exact sequences
of modules. A homomorphism of short exact sequences is a triple α, β, γ of module homomor-
phisms such that the following diagram commutes:

0 // A

α
��

// B

β
��

// C

γ
��

// 0

0 // A′ // B′ // C ′ // 0

2



The homomorphism is an isomorphism of short exact sequences if α, β, γ are all isomorphisms,
in which case the extensions B and B′ are said to be isomorphic extensions. The two exact
sequences are called equivalent if A = A′, C = C ′, and there is an isomorphism between them
that is the identity maps on A and C (i.e., α and γ are the identity). This means the following
diagram commutes:

0 // A // B

β ∼=
��

// C // 0

0 // A // B′ // C // 0

i.e.,
B

  
AA

AA
AA

AA

β ∼=

��

0 // A

  
AA

AA
AA

A

>>}}}}}}}}
C // 0

B′

>>}}}}}}}

In this case the corresponding extensions B and B′ are said to be equivalent extensions.

Proposition ([1] §10.5 Proposition 24, The Short Five Lemma). Let α, β, γ be a homomorphism
of short exact sequences

0 // A

α
��

ψ
// B

β
��

φ
// C

γ
��

// 0

0 // A′ ψ′
// B′ φ′

// C ′ // 0

(1) If α and γ are injective then so is β.

(2) If α and γ are surjective then so is β.

(3) If α and γ are isomorphisms then so is β (and then the two sequences are isomorphic).

These results hold also for short exact sequences of (possibly nonabelian) groups.

Proof. (1) Suppose then that α and γ are injective and suppose b ∈ B with β(b) = 0. It follows in
particular that the image of β(b) in C ′ is also 0.

By the commutativity of the diagram this implies that γ(φ(b)) = 0, and since γ is assumed
injective, we obtain φ(b) = 0, i.e., b is in the kernel of φ.

By the exactness of the first sequence, this means that b is in the image of ψ, i.e., b = ψ(a) for
some a ∈ A.

Then, again by the commutativity of the diagram, the image of α(a) in B′ is the same as
β(ψ(a)) = β(b) = 0.

But α and ψ′ are injective by assumption, it follows that a = 0.
Finally, b = ψ(a) = ψ(0) = 0 and we see that β is indeed injective.
(2) Exercise.
(3) follows immediately from (1) and (2).

The proving technique above is called diagram chasing, which consists in looking for equiv-
alent map compositions in commutative diagrams, and in exploiting the properties of injective,
surjective and bijective homomorphisms and of exact sequences.
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Exercise (3× 3 Lemma). Suppose

0

��

0

��

0

��

0 // A′

��

// B′

��

// C ′

��

// 0

0 // A

��

// B

��

// C

��

// 0

0 // A′′

��

// B′′

��

// C ′′

��

// 0

0 0 0

is a commutative diagram of R-modules with exact columns. Show that:

(a) if the bottom two rows are exact then so is the top row;

(b) if the top two rows are exact then so is the bottom row;

(c) if the top and bottom rows are exact, and the composite A→ C is zero, then the middle row is
also exact.

Exercise ([1] §17.1 Exercise 3). Suppose

A

f
��

α // B

g

��

β
// C

h
��

// 0

0 // A′ α′
// B′ β′

// C ′

is a commutative diagram of R-modules with exact rows.

(a) If c ∈ ker(h) and β(b) = c, prove that g(b) ∈ ker β′ and conclude that g(b) = α′(a′) for some
a′ ∈ A′.

(b) Show that δ(c) := a′ mod f(A) is a well defined R-module homomorphism from ker(h) to
coker(f) := A′/f(A) (the cokernel of f ).

(c) Show that

ker(f)
α|ker f−−−→ ker(g)

β|ker g−−−→ ker(h) and coker(f)
ᾱ−→ coker(g)

β̄−→ coker(h)

are well defined and exact.

(d) (The Snake Lemma) Prove there is an exact sequence

ker(f) −→ ker(g) −→ ker(h)
δ−→ coker(f) −→ coker(g) −→ coker(h).

(e) Show that if α is injective and β′ is surjective (i.e., the two rows in the commutative diagram
above can be extended to short exact sequences), then the exact sequence above can be ex-
tended to the exact sequence

0 −→ ker(f) −→ ker(g) −→ ker(h)
δ−→ coker(f) −→ coker(g) −→ coker(h) −→ 0.
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1.2 The extension problem
We have done an exercise ([1] §3.1 Exercise 36) that, for any group G, if G/Z(G) is cyclic then G
is abelian. The philosophy behind this is that, if we have a sufficient amount of information about
some normal subgroup, N , of a group G and sufficient information on G/N , then somehow we
can piece this information together to force G itself to have some desired property. In general, just
how much data are required is a delicate matter since the full isomorphism type of G cannot be
determined from the isomorphism types of N and G/N alone.

In the language of left R-modules where R is a ring with 1, we consider whether, given two
modules A and C, there exists a module B containing (an isomorphic copy of) A such that the
resulting quotient module B/A is isomorphic to C. In this case we have a short exact sequence
0→ A→ B → C → 0, and B is said to be an extension of C by A.

It is then natural to ask how many such B exist for a given A and C, and the extent to which
properties of B are determined by the corresponding properties of A and C. There are, of course,
analogous problems in the contexts of groups and rings.

Example. There is always at least one extension of a module C by A, namely the direct sum
B = A⊕ C. In particular,

0 −→ Z ι−→ Z⊕ (Z/nZ) φ−→ Z/nZ −→ 0

gives one extension of Z/nZ by Z.
Another extension is given by the short exact sequence

0 −→ Z ×n−→ Z π−→ Z/nZ −→ 0

where ×n denotes the map x 7→ nx given by multiplication by n, and π denotes the natural
projection.

Note that the modules in the middle of the previous two exact sequences are not isomorphic
even though the respective “A” and “C” terms are isomorphic. Thus there are (at least) two
inequivalent ways of extending Z/nZ by Z.

Recall that, if B and B′ are isomorphic extensions of C by A, then in particular B and B′ are
isomorphic as R-modules, but more is true: there is an R-module isomorphism between B and B′

that restricts to an isomorphism from A to A′ and induces an isomorphism on the quotients C and
C ′. For a given A and C the condition that two extensions B and B′ of C by A are equivalent is
stronger still: there must exist an R-module isomorphism between B and B′ that restricts to the
identity map on A and induces the identity map on C.

The notion of isomorphic extensions measures how many different extensions of C by A there
are, allowing for C and A to be changed by an isomorphism. The notion of equivalent extensions
measures how many different extensions of C by A there are when A and C are rigidly fixed.

Example. Consider the maps

0 // Z/2Z

id
��

ψ
// Z/2Z⊕ Z/2Z

β

��

φ
// Z/2Z

id
��

// 0

0 // Z/2Z ψ′
// Z/2Z⊕ Z/2Z φ′

// Z/2Z // 0

where ψ maps Z/2Z injectively into the first component of the direct sum and φ projects the direct
sum onto its second component. Also ψ′ embeds Z/2Z into the second component of the direct
sum and φ′ projects the direct sum onto its first component.
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If β maps the direct sum Z/2Z ⊕ Z/2Z to itself by interchanging the two factors, then this
diagram is seen to commute, hence giving an equivalence of the two exact sequences that is not
the identity isomorphism.

1.3 The semidirect product of groups and the split extensions
Recall (cf. [1] §5.1) that, the direct product G1 ×G2 × · · · of groups G1, G2, . . . with operations
⋆1, ⋆2, . . ., respectively, is the set of sequences (g1, g2, . . .) where gi ∈ Gi with operation defined
componentwise:

(g1, g2, . . .) ⋆ (h1, h2, . . .) := (g1 ⋆1 h1, g2 ⋆2 h2, . . .).

If G = G1 ×G2 × · · · ×Gn, then Gi E G and G/Gi
∼= ×

j ̸=i
Gj (cf. [1] §5.1 Proposition 2).

The “semidirect product” of two groups is a generalization of the notion of the direct product,
obtained by relaxing the requirement that both groups should be normal subgroups of the product.
This construction will enable us to build a “larger” group from the groups H and K in such a way
that G contains subgroups isomorphic to H and K, respectively, as in the case of direct products.
In this case the subgroupH will be normal inG but the subgroupK will not necessarily be normal.
Thus, for instance, we shall be able to construct nonabelian groups even if H and K are abelian.

Example. Let G = D2n = ⟨σ, τ | σn = τ 2 = e, τστ = σ−1⟩ be the dihedral group, H = ⟨σ⟩ ∼=
Z/nZ, and K = ⟨τ⟩ ∼= Z/2Z.

Clearly G = HK, H E G (since it is of index 2) but K may not be normal. By definition of a
normal subgroup, τHτ−1 = H , i.e. τ (and K in general) acts on H by conjugation. Let φ be the
associated permutation representation φ : K → Aut(H) such that φ(τ)(σ) = τστ−1 = σ−1 by
the definition of D2n.

Any element in D2n can uniquely be written as σaτ b for some 0 ≤ a < n, b = 0 or 1. The
product of any two elements in D2n can be calculated as following:

σa1τ b1σa2τ b2 =

{
σa1σa2τ b1τ b2 if b1 = 0,

σa1(σ−1)a2τ b1τ b2 if b1 = 1.

Example. Let G = GL2(C), H = SL2(C), and

K =

{[
λ

1

]
: λ ∈ C×

}
∼= C×.

Again we have H E G (since H = ker det) and G = HK (since g[ det g 1 ]
−1 ∈ H for any g ∈ G).

Analogous to the previous example, K acts by conjugation on H and the associated permutation
representation is denoted by φ : K → Aut(H). Here

φ(

[
λ

1

]
)

[
a b
c d

]
=

[
λ

1

] [
a b
c d

] [
λ

1

]−1

=

[
a bλ
c/λ d

]
.

Since H ∩K = 1, every element of G = HK can be written uniquely as a product hk for some
h ∈ H and k ∈ K, i.e., there is a bijection between G and the collection of ordered pairs (h, k),
given by hk 7→ (h, k). The product of any two elements in G can also be written in the same form:

(h1k1)(h2k2) = h1(k1h2)k2 = h1(k1h2k
−1
1 )k1k2 = h1(φ(k1)h2)k1k2.
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Theorem ([1] §5.5 Theorems 10 & 12). Let H and K be groups and let φ : K → Aut(H) be a
homomorphism. Let G be the set of ordered pairs (h, k) with h ∈ H and k ∈ K and define the
following multiplication on G:

(h1, k1)(h2, k2) := (h1 · φ(k1)h2, k1k2).

This multiplication makes G into a group, which is called the semidirect product of H and K with
respect to φ and will be denoted by HoφK (when there is no danger of confusion we shall simply
write H oK).

The sets {(h, 1) | h ∈ H} and {(1, k) | k ∈ K} are subgroups of G and the maps h 7→ (h, 1)
for h ∈ H and k 7→ (1, k) for k ∈ K are isomorphisms:

H ∼= {(h, 1) | h ∈ H} and K ∼= {(1, k) | k ∈ K}.

Identifying H and K with their isomorphic copies in G, we have

H E G, H ∩K = 1, G/H ∼= K,

and khk−1 = φ(k)h for all h ∈ H and k ∈ K.
Conversely, suppose that G is a group with subgroups H and K such that G = HK, H E G,

and H ∩K = 1. Let φ : K → Aut(H) be the homomorphism defined by mapping k ∈ K to the
automorphism of left conjugation by k on H . Then G ∼= H oK.

For the semidirect product we can write a short exact sequence 1→ H → H oK → K → 1.
It is easy to check that the semidirect product is a generalization of the direct product: the

semidirect product G = H oK is isomorphic to H ×K if and only if φ is trivial, if and only if
K E G (cf. [1] §5.5 Proposition 11).

Exercise ([1] §5.5 p.179 & p.181). Classify all groups of order pq up to isomorphism, where p and
q are primes with p < q.

We come back to the extension question. Recall that there is always at least one extension of
a left R-module C by A, namely the direct sum B = A ⊕ C. In this case the module B contains
a submodule C ′ isomorphic to C (namely C ′ = 0 ⊕ C) as well as the submodule A, and this
submodule complement to A “splits” B into a direct sum. In the case of groups the existence of
a subgroup complement C ′ to a normal subgroup A in B implies that B is a semidirect product
Ao C. The fact that B is a direct sum in the context of modules is a reflection of the fact that the
underlying group structure in this case is abelian; for abelian groups semidirect products are direct
products. In either case the corresponding short exact sequence is said to “split”:

Proposition ([1] §10.5 Proposition 25). The short exact sequence 0 → A
ψ→ B

φ→ C → 0 is
called split if there is a homomorphism µ : C → B such that φ ◦ µ is the identity map on C.
Such µ is called a splitting homomorphism for the sequence. The extension B is said to be a split
extension of C by A.

• If 0 → A
ψ→ B

φ→ C → 0 is a short exact sequence of R-modules, then the sequence
is split if and only if there is an R-module complement to ψ(A) in B. In this case, up to
isomorphism, B = A⊕ C (more precisely, B = ψ(A)⊕ C ′ for some submodule C ′, and C ′

is mapped isomorphically onto C by φ).

• If 1 → A
ψ→ B

φ→ C → 1 is a short exact sequence of groups, then the sequence is split if
and only if there is a subgroup complement to ψ(A) in B. In this case, up to isomorphism,
B = A o C (more precisely, B = ψ(A) o C ′ for some subgroup C ′, and C ′ is mapped
isomorphically onto C by φ).
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Any set map µ : C → B such that φ◦µ = id is called a section of φ. Note that a section of φ is
nothing more than a choice of coset representatives in B for the quotient B/ kerφ ∼= C. A section
is a (splitting) homomorphism if this set of coset representatives forms a submodule (respectively,
subgroup) in B, in which case this submodule (respectively, subgroup) gives a complement to
ψ(A) in B.

Example. The extension

0 −→ Z ι−→ Z⊕ (Z/nZ) φ−→ Z/nZ −→ 0

of Z/nZ by Z is split (with splitting homomorphism µ mapping Z/nZ isomorphically onto the
second factor of the direct sum).

On the other hand, the exact sequence of Z-modules

0 −→ Z ×n−→ Z π−→ Z/nZ −→ 0

is not split since there is no nonzero homomorphism of Z/nZ into Z.

The next proposition shows in particular that, for modules, the existence of a splitting homo-
morphism (for φ) is equivalent to the existence of a splitting homomorphism for ψ at the other end
of the sequence.

Proposition ([1] §10.5 Proposition 26). If 0 → A
ψ→ B

φ→ C → 0 is a short exact sequence of
modules, then B = ψ(A)⊕ C ′ for some submodule C ′ of B with φ(C ′) ∼= C if and only if there is
a homomorphism λ : B → A such that λ ◦ ψ is the identity map on A.

If 1→ A
ψ→ B

φ→ C → 1 is a short exact sequence of groups, then B = ψ(A)× C ′ for some
subgroup C ′ of B with φ(C ′) ∼= C if and only if there is a homomorphism λ : B → A such that
λ ◦ ψ is the identity map on A.

The above proposition shows that, for general group extensions, the existence of a splitting
homomorphism A on the left end of the sequence is stronger than the condition that the extension
splits: in this case the extension group is a direct product, and not just a semidirect product. The
fact that these two notions are equivalent in the context of modules is again a reflection of the
abelian nature of the underlying groups, where semidirect products are always direct products.

2 The functors HomR(D, _) and HomR(_, D)

Let R be a ring with 1 and suppose the R-module M is an extension of N by L, with 0 → L
ψ→

M
φ→ N → 0 the corresponding short exact sequence of R-modules. It is natural to ask whether

properties for L and N imply related properties for the extension M .

2.1 Projective modules and HomR(D, _)
The first situation we shall consider is whether an R-module homomorphism from some fixed
R-module D to either L or N implies there is also an R-module homomorphism from D to M .

The question of obtaining a homomorphism from D to M given a homomorphism from D to
L is easily disposed of: if f ∈ HomR(D,L) is an R-module homomorphism from D to L, then
the composite f ′ = ψ ◦ f is an R-module homomorphism from D to M .
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The relation between these maps can be indicated pictorially by the commutative diagram

D

f
��

f ′

  A
A

A
A

L
ψ

//M

Put another way, composition with ψ induces a map

ψ∗ : HomR(D,L) −→ HomR(D,M)

f 7−→ f ′ := ψ ◦ f.

Proposition ([1] §10.5 Proposition 27). Let D, L and M be R-modules and let ψ : L→M be an
R-module homomorphism. Then the map ψ∗ : HomR(D,L) → HomR(D,M) defined above is a
homomorphism of abelian groups.

If ψ is injective, then ψ∗ is also injective, i.e.,

if 0 −→ L
ψ−→M is exact,

then 0 −→ HomR(D,L)
ψ∗−→ HomR(D,M) is also exact.

Proof. The fact that ψ∗ is a homomorphism is immediate.
If ψ is injective, then distinct homomorphisms f and g from D into L give distinct homomor-

phisms ψ ◦ f and ψ ◦ g from D into M , which is to say that ψ∗ is also injective.

If D is fixed, then given any R-module X we have an associated abelian group HomR(D,X).
Further, an R-module homomorphism α : X → Y induces an abelian group homomorphism
α∗ : HomR(D,X) → HomR(D, Y ), defined by α∗(f) := α ◦ f . Put another way, the map
HomR(D, _) is a covariant functor from the category of R-modules to the category of abelian
groups (cf. [1] Appendix II).

The situation for homomorphisms into the quotient is much less evident. More precisely, given
an R-module homomorphism f : D → N , the question is whether there exists an R-module
homomorphism F : D → M that extends or lifts f to M , i.e., that makes the following diagram
commute:

D

f

��

F

~~|
|
|
|

M
φ

// N

As before, composition with the homomorphism φ induces a homomorphism of abelian groups

φ∗ : HomR(D,M) −→ HomR(D,N)

F 7−→ F ′ := φ ◦ F.

In terms of φ∗, the homomorphism f to N lifts to a homomorphism to M if and only if f is in the
image of φ∗ (namely, f is the image of the lift F ).

In general it may not be possible to lift a homomorphism f from D to N to a homomorphism
from D to M . Phrased in terms of the map φ∗, this shows that

if M
φ−→ N −→ 0 is exact,

then HomR(D,M)
φ∗−→ HomR(D,N) −→ 0 is not necessarily exact.
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Example. Consider the nonsplit exact sequence 0 → Z ×2→ Z π→ Z/2Z → 0. Let D = Z/2Z and
let f be the identity map from D into N . Any homomorphism F of D into M = Z must map D to 0
(since Z has no elements of order 2), hence π ◦F maps D to 0 in N , and in particular, π ◦F ̸= f .

These results relating the homomorphisms into L and N to the homomorphisms into M can be
neatly summarized as part of the following theorem.

Theorem ([1] §10.5 Theorem 28 & Corollary 32). Let D, L, M , and N be R-modules.

(1) If 0→ L
ψ→M

φ→ N → 0 is exact, then the associated sequence

0 −→ HomR(D,L)
ψ∗−→ HomR(D,M)

φ∗−→ HomR(D,N) is exact, (10.10)

i.e., the functor HomR(D, _) from the category ofR-modules to the category of abelian groups
is left exact.

(2) A homomorphism f : D → N lifts to a homomorphism F : D → M if and only if f is in the
image of φ∗. In general φ∗ need not be surjective; φ∗ is surjective (in which case the sequence
(10.10) can be extended to a short exact sequence) if and only if every homomorphism from D
to N lifts to a homomorphism from D to M .

(3) The sequence (10.10) is exact for all R-modules D if and only if

0 −→ L
ψ−→M

φ−→ N is exact.

Proof. (1) The only item in the first statement that has not already been proved is the exactness of
(10.10) at HomR(D,M), i.e., kerφ∗ = imageψ∗.

Suppose F : D → M is an element of HomR(D,M) lying in the kernel of φ∗, i.e., with
φ ◦ F = 0 as homomorphisms from D to N . If d ∈ D is any element of D, this implies that
φ(F (d)) = 0 and F (d) ∈ kerφ. By the exactness of the sequence defining the extension M we
have kerφ = imageψ, so there is some element l ∈ L with F (d) = ψ(l). Since ψ is injective, the
element l is unique, so this gives a well defined map F ′ : D → L given by F ′(d) := l. It is an easy
check to verify that F ′ is a homomorphism, i.e., F ′ ∈ HomR(D,L). Since ψ ◦ F ′(d) = ψ(l) =
F (d) (for any d ∈ D), we have F = ψ∗(F

′), which shows that F is in the image of ψ∗, proving
that kerφ∗ ⊆ imageψ∗.

Conversely, if F is in the image of ψ∗ then F = ψ∗(F
′) for some F ′ ∈ HomR(D,L), and so

φ(F (d)) = φ(ψ(F ′(d))) for any d ∈ D. Since kerφ = imageψ we have φ ◦ψ = 0, and it follows
that φ(F (d)) = 0 for any d ∈ D, i.e., φ∗(F ) = 0. Hence F is in the kernel of φ∗, proving the
reverse containment: imageψ∗ ⊆ kerφ∗.

(3) For the last statement in the theorem, note first that the surjectivity of φ was not required
for the proof that (10.10) is exact, so the “if” portion of the statement has already been proved.

For the converse, suppose that the sequence (10.10) is exact for all R-modules D. In general,
HomR(R,X) ∼= X for any left R-module X , the isomorphism being given by f 7→ f(1R). Taking
D = R in (10.10), the exactness of the sequence 0→ L

ψ→M
φ→ N follows easily.

By the above theorem, the sequence

0 −→ HomR(D,L)
ψ∗−→ HomR(D,M)

φ∗−→ HomR(D,N) −→ 0 (10.11)

is in general not a short exact sequence since the homomorphism φ∗ need not be surjective. The
next result characterizes the modules D having the property that the sequence (10.10) can always
be extended to a short exact sequence.
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Proposition ([1] §10.5 Proposition 30 & Corollary 32). Let P be an R-module. Then TFAE (the
following are equivalent). The R-module P is called projective if it satisfies any of the following
equivalent conditions.

(1) For any R-modules L, M , and N , if 0→ L
ψ→M

φ→ N → 0 is a short exact sequence, then

0 −→ HomR(P,L)
ψ∗−→ HomR(P,M)

φ∗−→ HomR(P,N) −→ 0

is also a short exact sequence, i.e. the functor HomR(P, _) is exact (it always takes short exact
sequences to short exact sequences).

(2) (The universal lifting property) For any R-modules M and N , if M
φ→ N → 0 is exact, then

every R-module homomorphism from P into N lifts to an R-module homomorphism into M ,
i.e., given f ∈ HomR(P,N) there is a lift F ∈ HomR(P,M) making the following diagram
commute:

P

f
��

F

~~|
|
|
|

M
φ

// N // 0

(3) If P is a quotient of the R-module M , then P is isomorphic to a direct summand of M , i.e.,
every short exact sequence 0 → L → M → P → 0 splits. (P is called “projective” because
any module M that projects onto P has (an isomorphic copy of) P as a direct summand.)

(4) P is a direct summand of a free R-module.

Proof. The equivalence of (1) and (2) is a restatement of the above theorem. The others are left as
exercises.

Example. Free modules are projective. For example, Z is a projective Z-module.
This can be seen directly as follows: suppose f is a map from Z to N and M

φ→ N → 0 is
exact. The homomorphism f is uniquely determined by the value n := f(1). Then f can be lifted to
a homomorphism F : Z→ M by first defining F (1) := m, where m is any element in M mapped
to n by φ, and then extending F to all of Z by additivity.

Since Z is projective, if 0→ L
ψ→M

φ→ N → 0 is an exact sequence of Z-modules, then

0 −→ HomZ(Z, L)
ψ∗−→ HomZ(Z,M)

φ∗−→ HomZ(Z, N) −→ 0

is also an exact sequence. This can also be seen directly using the isomorphism HomZ(Z,M) ∼= M
of abelian groups, which shows that the two exact sequences above are essentially the same.

Example. Free Z-modules have no nonzero elements of finite order, so no nonzero finite abelian
group can be isomorphic to a submodule of a free module. It follows that no nonzero finite abelian
group is a projective Z-module.

In particular we show that, for n ≥ 2 the Z-module Z/nZ is not projective. It must be possi-
ble to find a short exact sequence which after applying the functor HomZ(Z/nZ, _) is no longer
exact on the right. One such sequence is 0 → Z ×n→ Z π→ Z/nZ → 0. It is easy to see that
HomZ(Z/nZ,Z) = 0 and HomZ(Z/nZ,Z/nZ) ∼= Z/nZ. Applying HomZ(Z/nZ, _) to the short
exact sequence above thus gives the sequence

0 −→ 0
(×n)∗−→ 0

π∗−→ Z/nZ −→ 0

11



which is not exact at its only nonzero term.
Another example is Q/Z. Since it is a torsion Z-module it is not a submodule of a free Z-

module, hence is not projective. Note also that the exact sequence 0→ Z→ Q π→ Q/Z→ 0 does
not split since Q contains no submodule isomorphic to Q/Z.

Exercise ([1] §10.5 Exercise 8). Show that the Z-module Q is not projective.

Over many nice rings (such as Z, fields, division algebras) every projective module is in fact a
free module. Here are some examples to show that this is not always the case:

Example. Let R be the ring R1 × R2 under componentwise addition and multiplication. Then
P1 = R1 × 0 and P2 = 0 × R2 are projective because their sum is R, but P1 is not free since
(0, 1)P1 = 0. For example, this is true when R is the ring Z/(6) = Z/(2)× Z/(3).

Example ([1] §18.2 Proposition 6). Consider the ring R = Mn(F ) of n× n matrices over a field
F , acting on the left on the column vector space V = F n. As a left R-module, R is the direct
sum of its columns, each of which is the left R-module V . Hence R ∼= V ⊕ · · · ⊕ V , and V is a
projective R-module.

Since any free R-module would have dimension dn2 over F for some cardinal number d, and
dimF (V ) = n, V cannot possibly be free over R.

Example. Suppose that R is any field F , any ring Mn(F ) of matrices, or any group ring FG of a
finite group G (such that char F does not divide |G|). Then every R-module is projective (cf. [1]
Chap.18 Theorem 1, Theorem 4 & Proposition 6).

2.2 Injective modules and HomR(_, D)

If 0 → L
ψ→ M

φ→ N → 0 is a short exact sequence of R-modules then, instead of considering
maps from an R-module D into L or N and the extent to which these determine maps from D into
M , we can consider the “dual” question of maps from L or N to D.

In this case, it is easy to dispose of the situation of a map from N toD: an R-module map from
N to D immediately gives a map from M to D simply by composing with φ. It is easy to check
that this defines an injective homomorphism of abelian groups

φ∗ : HomR(N,D) −→ HomR(M,D)

f 7−→ f ′ := f ◦ φ,

or, put another way,

if M
φ−→ N −→ 0 is exact,

then HomR(M,D)
φ∗
←− HomR(N,D)←− 0 is also exact.

(Note that the associated maps on the homomorphism groups are in the reverse direction from the
original maps.)

If D is fixed, then given any R-module X we have an associated abelian group HomR(X,D).
Further, an R-module homomorphism α : X → Y induces an abelian group homomorphism
α∗ : HomR(Y,D) → HomR(X,D), defined by α∗(f) := f ◦ α, that “reverses” the direction of
the arrow. Put another way, the map HomR(_, D) is a contravariant functor from the category of
R-modules to the category of abelian groups (cf. [1] Appendix II).
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On the other hand, given an R-module homomorphism f from L to D, it may not be possible
to extend f to a map F from M to D, i.e., given f it may not be possible to find a map F making
the following diagram commute:

L
ψ

//

f
��

M

F
~~}
}
}
}

D

Exercise. Let R = D be any field F . For any vector spaces W ⊆ V over F , if 0 → W
ι→ V

π→
V/W → 0 is a short exact sequence, show that

0 −→ (V/W )∗
π∗
−→ V ∗ ι∗−→W ∗ −→ 0

is also a short exact sequence. Describe the image of (V/W )∗ in V ∗. Show in detail how to lift a
linear functional of W to that of V (cf. [1] §10.5 Proposition 29, note that the dimensions might
be infinite.) This exercise proves that F is an injective F -module.

Example. Consider the nonsplit exact sequence 0 → Z ψ→ Z π→ Z/2Z → 0 of Z-modules,
where ψ is multiplication by 2. Let D = Z/2Z and let fZ → Z/2Z be reduction modulo 2
on the first Z in the sequence. There is only one nonzero homomorphism F from the second Z
in the sequence to Z/2Z (namely, reduction modulo 2), but this F does not lift the map f since
F ◦ ψ(Z) = F (2Z) = 0, so F ◦ ψ ̸= f .

Composition with ψ induces a homomorphism ψ∗ from HomR(M,D) to HomR(L,D) of
abelian groups, and in terms of the map ψ∗ the homomorphism f ∈ HomR(L,D) can be lifted
to a homomorphism from M to D if and only if f is in the image of ψ∗. The example above shows
that

if 0 −→ L
ψ−→M is exact,

then 0←− HomR(L,D)
ψ∗
←− HomR(M,D) is not necessarily exact.

Theorem ([1] §10.5 Theorem 33 & Corollary 35). Let D, L, M , and N be R-modules.

(1) If (0→)L
ψ→M

φ→ N → 0 is exact, then the associated sequence

0 −→ HomR(N,D)
φ∗
−→ HomR(M,D)

ψ∗−→ HomR(L,D) is exact, (10.12)

i.e., the functor HomR(_, D) from the category ofR-modules to the category of abelian groups
is left exact.

(2) A homomorphism f : L → D lifts to a homomorphism F : M → D if and only if f is in the
image of ψ∗. In general ψ∗ need not be surjective; ψ∗ is surjective (in which case the sequence
(10.12) can be extended to a short exact sequence) if and only if every homomorphism from L
to D lifts to a homomorphism from M to D.

(3) The sequence (10.12) is exact for all R-modules D if and only if

L
ψ−→M

φ−→ N −→ 0 is exact.

Proof. Exercise.
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By the above theorem, the sequence

0 −→ HomR(N,D)
φ∗
−→ HomR(M,D)

ψ∗
−→ HomR(L,D) −→ 0

is in general not a short exact sequence since the homomorphism ψ∗ need not be surjective. The
next result characterizes the modules D having the property that the sequence (10.12) can always
be extended to a short exact sequence.

Proposition ([1] §10.5 Proposition 34 & Corollary 35). Let Q be an R-module. Then TFAE (the
following are equivalent). The R-module Q is called injective if it satisfies any of the following
equivalent conditions.

(1) For any R-modules L, M , and N , if 0→ L
ψ→M

φ→ N → 0 is a short exact sequence, then

0 −→ HomR(N,Q)
φ∗
−→ HomR(M,Q)

ψ∗
−→ HomR(L,Q) −→ 0

is also a short exact sequence, i.e. the functor HomR(_, Q) is exact.

(2) (The universal lifting property) For any R-modules L and M , if 0 → L
ψ→ M is exact, then

every R-module homomorphism from L into Q lifts to an R-module homomorphism from M
into Q, i.e., given f ∈ HomR(L,Q) there is a lift F ∈ HomR(M,Q) making the following
diagram commute:

0 // L
ψ

//

f

��

M

F
~~~
~
~
~

Q

(3) If Q is a submodule of the R-module M , then Q is a direct summand of M , i.e., every short
exact sequence 0 → Q → M → N → 0 splits. (Q is called “injective” because any module
M into which Q injects has (an isomorphic copy of) Q as a direct summand.)

Proof. Exercise.

Example. Z is not an injective Z-module. This follows from the fact that the exact sequence
0→ Z ×2→ Z→ Z/2Z→ 0 corresponding to multiplication by 2 does not split.

We have seen that an R-module is projective if and only if it is a direct summand of a free R-
module. Providing such a simple characterization of injective R-modules is not so easy. The next
result gives a criterion forQ to be an injectiveR-module, and using it we can give a characterization
of injective modules when R = Z (or, more generally, when R is a P.I.D.).

Proposition ([1] §10.5 Proposition 36). Let Q be an R-module.

(1) (Baer’s Criterion) Q is injective if and only if, for every left ideal I of R, any R-module homo-
morphism g : I → Q can be extended to an R-module homomorphism G : R→ Q.

(2) IfR is a P.I.D. thenQ is injective if and only if it is divisible, i.e., rQ = Q for every 0 ̸= r ∈ R.

(3) When R is a P.I.D., quotient modules of injective R-modules are again injective.

Example. Both Q and Q/Z are divisible, therefore they are both injective Z-modules. On the
other hand, Z and Z/nZ are not divisible, and hence not injective.

Example. Every R-module is injective if R is any field F .
Moreover, suppose that R is the ring Mn(F ) of matrices, or the group ring FG of a finite

group G (such that char F does not divide |G|). Then every R-module is injective (cf. [1] Chap.18
Theorem 1, Theorem 4 & Proposition 6).
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3 Flat modules and D ⊗R _

We now consider the behavior of extensions 0 → L
ψ→ M

φ→ N → 0 of R-modules with respect
to tensor products.

Theorem ([1] §10.4 Theorem 13). Let M,M ′ be right R-modules, let N,N ′ be left R-modules,
and suppose A :M →M ′, B : N → N ′ are R-module homomorphisms.

(1) There is a unique group homomorphism C :M ⊗R N →M ′ ⊗R N ′, such that

C(m⊗ n) = Am⊗ Bn, for all m ∈M, n ∈ N.

Denote C by A⊗ B. If M,M ′ are also (S,R)-bimodules for some ring S and A is also an S-
module homomorphism, then A⊗ B is a homomorphism of left S-modules. In particular, if R
is commutative thenA⊗B is always an R-module homomorphism for the standard R-module
structures.

(2) If A′ :M ′ →M ′′, B′ : N ′ → N ′′ are R-module homomorphisms, then

(A′ ⊗ B′) ◦ (A⊗ B) = (A′ ◦ A)⊗ (B′ ◦ B).

Suppose thatD is a rightR-module. For any homomorphism f : X → Y of leftR-modules we
obtain (via the above theorem) a homomorphism id⊗f : D ⊗R X → D ⊗R Y of abelian groups.
If in addition D is an (S,R)-bimodule (for example, when S = R is commutative and D is given
the standard (R,R)-bimodule structure), then id⊗f is a homomorphism of left S-modules.

Put another way, D ⊗R _ : X 7→ D ⊗R X is a covariant functor from the category of left
R-modules to the category of abelian groups (respectively, to the category of left S-modules when
D is an (S,R)-bimodule). In a similar way, if D is a left R-module then _ ⊗R D is a covariant
functor from the category of right R-modules to the category of abelian groups (respectively, to
the category of right S-modules when D is an (R, S)-bimodule).

Note that, unlike Hom, the tensor product is covariant in both variables, and we shall therefore
concentrate on D ⊗R _, leaving as an exercise the minor alterations necessary for _⊗R D.

We have already seen examples where the map id⊗ψ : D ⊗R L → D ⊗R M induced by an
injective map ψ : L→ M is no longer injective (for example, the injection Z ↩→ Q of Z-modules
induces the zero map from Z/2Z⊗Z Z = Z/2Z to Z/2Z⊗Z Q = 0).

On the other hand, suppose that φ : M → N is a surjective R-module homomorphism. The
tensor product D⊗RN is generated as an abelian group by the simple tensors d⊗n for d ∈ D and
n ∈ N . The surjectivity of φ implies that n = φ(m) for somem ∈M , and then (id⊗φ)(d⊗m) =
d⊗φ(m) = d⊗n shows that id⊗φ is a surjective homomorphism of abelian groups fromD⊗RM
to D ⊗R N . This proves most of the following theorem.

Theorem ([1] §10.5 Theorem 39 & Corollary 41). Suppose that D is a right R-module and that
L, M and N are left R-modules.

(1) If (0→)L
ψ→M

φ→ N → 0 is exact, then the associated sequence

D ⊗R L
id⊗ψ−−−→ D ⊗RM

id⊗φ−−−→ D ⊗R N −→ 0 is exact, (10.13)

i.e., the functor D ⊗R _ from the category of left R-modules to the category of abelian groups
is right exact.
If D is an (S,R)-bimodule (for example when S = R is commutative and D is given the
standard R-module structure), then (13) is an exact sequence of left S-modules, and D ⊗R _
is a right exact functor from the category of left R-modules to the category of left S-modules.
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(2) The map id⊗ψ is not in general injective, i.e., the sequence (10.13) cannot in general be
extended to a short exact sequence.

(3) The sequence (10.13) is exact for all R-modules D if and only if

0 −→ L
ψ−→M

φ−→ N is exact.

Proof. Exercise.

The following result relating to modules D having the property that (10.13) can always be
extended to a short exact sequence is immediate from the above theorem:

Proposition ([1] §10.5 Proposition 40 & Corollary 41). Let A be a right R-module. Then TFAE
(the following are equivalent). A is called flat if it satisfies any of the following.

(1) For any left R-modules L, M , and N , if 0 → L
ψ→ M

φ→ N → 0 is a short exact sequence,
then

0 −→ A⊗R L
id⊗ψ−−−→ A⊗RM

id⊗φ−−−→ A⊗R N −→ 0

is also a short exact sequence, i.e. the functor A⊗R _ is exact.

(2) For any left R-modules L and M , if 0→ L
ψ→M is an exact sequence of left R-modules (i.e.,

ψ : L → M is injective), then 0 → A ⊗R L
id⊗ψ−−−→ A ⊗R M is an exact sequence of abelian

groups (i.e., id⊗ψ : A⊗R L→ A⊗RM is injective).

Example. Z/2Z is not a flat Z-module. Applying Z/2Z ⊗Z _ to the short exact sequence 0 →
Z ι→ Q π→ Q/Z→ 0 gives the sequence 0→ Z/2Z→ 0→ 0→ 0, which is not exact at its only
nonzero term.

Corollary ([1] §10.5 Corollary 42). Free modules are flat; more generally, projective modules are
flat. (For example, Z is a flat Z-module; any vector space over a field F is a flat F -module.)

Proof. Here we only show that any finitely generated free R-module F ∼= Rn is flat. It suffices to
show that, for any injective map ψ : L → M of R-modules L and M , the induced map id⊗ψ :
F ⊗R L→ F ⊗RM is also injective.

Recall that R⊗RL ∼= L and tensor products commute with direct sums (cf. [1] §10.4 Theorem
17). Therefore F ⊗R L ∼= Ln, F ⊗R M ∼= Mn, and under these isomorphisms the map id⊗ψ :
F ⊗R L → F ⊗R M is just the natural map of Ln to Mn induced by ψ in each component. In
particular, id⊗ψ is injective and it follows that any finitely generated free module is flat.

Example. The Z-module Q is a flat Z-module. This shows that flat modules need not be projective.

Example. The Z-module Q/Z is injective, but is not flat: if we identify Q/Z = Q/Z ⊗Z Z, then
applying Q/Z ⊗Z _ to the short exact sequence 0 → Z ×2→ Z π→ Z/2Z → 0 gives the sequence
0 → Q/Z ×2→ Q/Z → 0 → 0, which is not exact since multiplication by 2 has the element 1/2 in
its kernel.

Exercise ([1] §10.5 Theorem 43, Adjoint Associativity). Let R and S be rings, let A be a right
R-module, let B be an (R, S)-bimodule and let C be a right S-module. Show that there is an
isomorphism of abelian groups:

HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

(the homomorphism groups are right module homomorphisms).
In particular, this exercise shows that (V ⊗W )∗ ∼= HomF (V,W

∗), where V and W are vector
spaces over F .
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Summary
Each of the functors HomR(A, _), HomR(_, A), andA⊗R_, map leftR-modules to abelian groups;
the functor _ ⊗R A maps right R-modules to abelian groups. When R is commutative all four
functors map R-modules to R-modules.

(1) Let A be a left R-module. The functor HomR(A, _) is covariant and left exact; the module A
is projective if and only if HomR(A, _) is exact (i.e., is also right exact).

(2) Let A be a left R-module. The functor HomR(_, A) is contravariant and left exact; the module
A is injective if and only if HomR(_, A) is exact.

(3) Let A be a right R-module. The functor A ⊗R _ is covariant and right exact; the module A is
flat if and only if A⊗R _ is exact (i.e., is also left exact).

(4) Let A be a left R-module. The functor _ ⊗R A is covariant and right exact; the module A is
flat if and only if _⊗R A is exact.

(5) Projective modules are flat. The Z-module Q/Z is injective but not flat. The Z-module Z⊕Q
is flat but neither projective nor injective.

Other related exercises in [1]
§10.5 1 2 3 4 5 6 7 10 11 14 15 20 22 23 24 25 26
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