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1 Preliminaries

1.1 Noetherian rings and Noetherian modules
Recall that we have the following inclusions among classes of commutative rings with identity:

{Fields} $ {Euclidean Domains} $ {P.I.D.s} $ {U.F.D.s} $ {Integral Domains}

with all containments being proper; a polynomial ring F [x] in a variable x over a field F is a Eu-
clidean Domain, and the polynomial ring F [x1, . . . , xn] is a U.F.D.(Unique Factorization Domain).
However the latter ring is not a P.I.D.(Principal Ideal Domain) unless n = 1.

Actually, ideals in such polynomial rings, although not necessarily principal, are always finitely
generated. General rings with this property are given a special name:

Theorem ([1] §12.1 Theorem 1). Let R be a ring and let M be a left R-module. Then TFAE:

(1) M satisfies the ascending chain condition on submodules (or A.C.C. on submodules), i.e.,
whenever

M1 ⊆M2 ⊆M3 ⊆ · · ·

is an increasing chain of submodules of M , then there is a positive integer m such that for all
k ≥ m, Mk = Mm (so the chain becomes stationary at stage m:

M1 ⊆ · · · ⊆Mm−1 ⊆Mm = Mm+1 = Mm+2 = · · · ).

(2) Every nonempty set of submodules of M contains a maximal element under inclusion.
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(3) Every submodule of M is finitely generated.

The left R-module M is said to be a Noetherian R-module if it satisfies any of the above equivalent
conditions. The ring R is said to be Noetherian if it is Noetherian as a left module over itself, i.e.,
if there are no infinite increasing chains of left ideals in R.

One can formulate analogous notions of A.C.C. on right and on two-sided ideals in a (possibly
noncommutative) ring R. For noncommutative rings these properties need not be related.

Example. Any P.I.D. R is a Noetherian ring due to condition (3) in the theorem with M = R. Then
every nonempty set of ideals of R has a maximal element, and R satisfies the A.C.C. on two-sides
ideals, which is equivalent to the descending chain condition (D.C.C.) on elements in this case.

Example. Even if M itself is a finitely generated R-module, submodules of M need not be finitely
generated, so the condition that M be a Noetherian R-module is in general stronger than the
condition that M be a finitely generated R-module.

Take M to be the cyclic R-module R itself where R is the polynomial ring in infinitely many
variables x1, x2, . . . with coefficients in some field F . The submodule (i.e. 2-sided ideal) generated
by {x1, x2, . . .} cannot be generated by any finite set (note that one must show that no finite subset
of this ideal will generate it).

Proof of Theorem 1. [(1)⇒ (2)] Assume M is Noetherian and let Σ be any nonempty collection
of submodules of M . Choose any M1 ∈ Σ. If M1 is a maximal element of Σ then (2) holds, so
assume M1 is not maximal. Then there is some M2 ∈ Σ such that M1 $ M2. If M2 is maximal
in Σ, (2) holds, so we may assume there is an M3 ∈ Σ properly containing M2. Proceeding in this
way one sees that if (2) fails we can produce an infinite strictly increasing chain of elements of Σ,
contrary to (1).

[(2)⇒ (3)] Assume (2) holds and let N be any submodule of M . Let Σ be the collection of all
finitely generated submodules of N . Since 0 ∈ Σ, this collection is nonempty. By (2) Σ contains
a maximal element N ′. If N ′ $ N , let x ∈ N − N ′. Since N ′ ∈ Σ, the submodule N ′ is finitely
generated by assumption, hence also the submodule generated by N ′ and x is finitely generated.
This contradicts the maximality of N ′, so N = N ′ is finitely generated.

[(3) ⇒ (1)] Assume (3) holds and let M1 ⊆ M2 ⊆ M3 ⊆ · · · be a chain of submodules of
M . Let N =

∪∞
i=1 Mi and note that N is a submodule. By (3) N is finitely generated by, say,

a1, a2, . . . , an. Since ai ∈ N for all i, each ai lies in one of the submodules in the chain, say Mji .
Let m = max{j1, j2, . . . , jn}. Then ai ∈ Mm for all i so the module they generate is contained in
Mm, i.e., N ⊆Mm. This implies Mm = N = Mk for all k ≥ m, which proves (1).

A polynomial ring in n variables can be considered as a polynomial ring in one variable with
coefficients in a polynomial ring in n − 1 variables. By following this inductive approach we can
deduce that F [x1, x2, . . . , xn] is Noetherian from the following more general result.

Theorem ([1] §9.6 Theorem 21, Hilbert’s Basis Theorem). If R is a Noetherian ring then so is the
polynomial ring R[x].

Sketch of proof. Let I be an ideal in R[x] and let L be the set of all leading coefficients of the
elements in I . One can verify that

L is an ideal of R.

Since R is assumed Noetherian, the ideal L in R is finitely generated, say by a1, a2, . . . , an ∈ R.
For each i = 1, . . . , n let fi be an element of I whose leading coefficient is ai.
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Let N = max{deg fi}ni=1. For each d = 0, 1, . . . , N − 1, let Ld be the set of all leading
coefficients of polynomials in I of degree d together with 0. One can verify that

each Ld is also an ideal of R,

again finitely generated (since R is Noetherian). Let bd,1, bd,2, . . . , bd,nd
∈ R be a set of generators

for each nonzero Ld, and let fd,i be a polynomial in I of degree d with leading coefficient bd,i.
The last step is to show that, the polynomials f1, . . . , fn together with all the polynomials fd,i

are a set of generators for I , i.e., that

I = ({f1, . . . , fn} ∪ {fd,i | 0 ≤ d < N, 1 ≤ i ≤ nd}).

It follows that I is finitely generated, and since I was arbitrary, this completes the proof that R[x]
is Noetherian.

Since a field is clearly Noetherian, Hilbert’s Basis Theorem and induction immediately give:

Theorem ([1] §9.6 Corollary 22). The polynomial ring F [x1, x2, . . . , xn] with coefficients from a
field F is Noetherian, i.e., very ideal in this ring is finitely generated.

If I is an ideal in F [x1, x2, . . . , xn] generated by a (possibly infinite) set S of polynomials, the
above corollary shows that I is finitely generated, and in fact I is generated by a finite number of
the polynomials from the set S (cf. [1] §9.6 Exercise 1).

1.2 Linear dependency
Proposition ([1] §12.1 Proposition 3). Let R be an integral domain and let M be a free R-
module of rank n < ∞. Then any n + 1 elements of M are R-linearly dependent, i.e., for any
y1, y2, . . . , yn+1 ∈M there are elements r1, r2, . . . , rn+1 ∈ R, not all zero, such that

r1y1 + r2y2 + · · ·+ rn+1yn+1 = 0.

Proof. The quickest way of proving this is to embed R in its quotient field F (since R is an integral
domain) and observe that since M ∼= R⊕R⊕· · ·⊕R (n times) we obtain M ⊆ F ⊕F ⊕· · ·⊕F .
The latter is an n-dimensional vector space over F so any n + 1 elements of M are F -linearly
dependent. By clearing the denominators of the scalars (by multiplying through by the product of
all the denominators, for example), we obtain an R-linear dependence relation among the n + 1
elements of M .

If R is any integral domain and M is any R-module recall that

Tor(M) := {x ∈M | rx = 0 for some nonzero r ∈ R}

is a submodule of M (called the torsion submodule of M ) and if N is any submodule of Tor(M),
N is called a torsion submodule of M (so the torsion submodule of M is the union of all torsion
submodules of M , i.e., is the maximal torsion submodule of M ). If Tor(M) = 0, the module M
is said to be torsion free.

For any integral domain R the rank of an R-module M is the maximum number of R-linearly
independent elements of M . It is obvious that the rank of Tor(M) is 0, so that in particular any
torsion R-module has rank 0.

Exercise ([1] §12.1 Exercise 1). Let M be a module over the integral domain R. Show that the
rank of M is the same as the rank of the (torsion free) quotient M/TorM .
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The preceding proposition states that for a free R-module M over an integral domain the rank
of a submodule is bounded by the rank of M . This notion of rank agrees with previous uses of the
same term. If the ring R = F is a field, then the rank of an R-module M is the dimension of M as
a vector space over F and any maximal set of F -linearly independent elements is a basis for M .

For a general integral domain, however, an R-module M of rank n need not have a “basis”, i.e.,
need not be a free R-module even if M is torsion free, so some care is necessary with the notion
of rank, particularly with respect to the torsion elements of M .

Exercise ([1] §12.1 Exercise 20). Let R be an integral domain with quotient field F and let M be
any R-module. Prove that rank(M) = dimF (F ⊗R M).

Exercise ([1] §12.1 Exercise 5). Torsion-free R-modules are not always free. Let R = Z[x] and let
M = (2, x) be the ideal generated by 2 and x, considered as a submodule of R. Show that {2, x}
is not a basis of M . Show that rank(M) = 1 but that M is not free of rank 1.

2 The Fundamental Theorem of finitely generated modules over
a P.I.D.

2.1 The Invariant Factor Form
The next important result shows that if N is a submodule of a free module of finite rank over a P.I.D.
then N is again a free module of finite rank and furthermore it is possible to choose generators for
the two modules which are related in a simple way.

Theorem ([1] §12.1 Theorem 4). Let R be a P.I.D., let M be a free R-module of finite rank n
and let N be a submodule of M . Then N is free of rank m, m ≤ n, and there exists a basis
y1, y2, . . . , yn of M so that a1y1, a2y2, . . . , amym is a basis of N , where a1, a2, . . . , am are nonzero
elements of R with the divisibility relations a1 | a2 | · · · | am.

Sketch of proof. The theorem is trivial for N = 0, so assume N ̸= 0.
For each R-module homomorphism φ of M into R, the image φ(N) of N is a submodule of

R, i.e., an ideal in R. Let
Σ := {φ(N) | φ ∈ HomR(M,R)}.

The collection Σ is certainly nonempty, since taking φ to be the trivial homomorphism shows that
(0) ∈ Σ. Recall that any P.I.D. is a Noetherian ring, (by [1] §12.1 Corollary 2) Σ has at least one
maximal element, i.e., there is at least one homomorphism ν ∈ HomR(M,R) so that the principal
ideal ν(N) is not properly contained in any other element of Σ.

Take a1 in the P.I.D. R such that ν(N) = (a1), and let y ∈ N such that ν(y) = a1. One can
verify that

• a1 ̸= 0, and • a1 | φ(y) for every φ ∈ HomR(M,R).

In particular, fix a basis x1, x2, . . . , xn of the free module M , and we have a1 | πi(y) for all i, where
πi ∈ HomR(M,R) is the natural projection homomorphism onto the ith coordinate with respect to
this basis. Write πi(y) = a1bi for some bi ∈ R, 1 ≤ i ≤ n and define

y1 :=
n∑

i=1

bixi. Note that y =
n∑

i=1

abixi

and a1y1 = y. Since a1 = ν(y) = ν(a1y1) = a1ν(y1), 0 ̸= a1 ∈ R and R is an integral domain,
this shows

ν(y1) = 1.
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Next, one may verify that this element y1 can be taken as one element in a basis for M and that
a1y1 can be taken as one element in a basis for N , namely that we have

•M = Ry1 ⊕ ker ν given by x = ν(x)y1 + (x− ν(x)y1), and
• N = Ra1y1 ⊕ (N ∩ ker ν) given by x′ = ν(x′)y1 + (x′ − ν(x′)y1)

(recall that ν(N) = (a1) and hence a1 | ν(x′) for any x′ ∈ N ).
At last, one can prove the freeness of N by induction on the rank, m, of N (the main task

is to show that N ∩ ker ν has rank m − 1); and prove the rest of the theorem by induction on
n, the rank of M (by the induction assumption, there is a basis y2, y3, . . . , yn of ker ν such that
a2y2, a3y3, . . . , amym is a basis of N ∩ ker ν for some a2, a3, . . . , am ∈ R with a2 | a3 | · · · | am;
the main step is to show a1 | a2).

For any submodule N of M , the annihilator of N is defined by

Ann(N) := {r ∈ R | rn = 0 for all n ∈ N}.

Note that:

• Ann(N) is the ideal of R;

• if N is not a torsion submodule of M then Ann(N) = (0);

• if N , L are submodules of M with N ⊆ L, then Ann(L) ⊆ Ann(N);

• if R is a P.I.D. and N ⊆ L ⊆ M with Ann(N) = (a) and Ann(L) = (b), then a | b, in
particular the annihilator of any element x of M divides the annihilator of M (this is implied
by Lagrange’s Theorem when R = Z).

Recall that the left R-module C is a cyclic R-module (for any ring R, not necessarily commu-
tative nor with 1) if there is an element x ∈ C such that C = Rx. We can then define an R-module
homomorphism

π : R→ C by π(r) := rx,

which will be surjective by the assumption C = Rx. The First Isomorphism Theorem gives an
isomorphism of (left) R-modules R/ kerπ ∼= C where kerπ = Ann(x). If R is a P.I.D., kerπ
is a principal ideal (a), so we see that the cyclic R-modules C are of the form R/(a) where
(a) = Ann(C).

The cyclic modules are the simplest modules (since they require only one generator). The
existence portion of the Fundamental Theorem states that any finitely generated module over a
P.I.D. is isomorphic to the direct sum of finitely many cyclic modules.

Theorem ([1] §12.1 Theorems 5 & 9, Fundamental Theorem: Invariant Factor Form). Let R be a
P.I.D. and let M be a finitely generated R-module. Then

(1) (Existence) M is isomorphic to the direct sum of finitely many cyclic modules. More precisely,

M ∼= Rr ⊕ Tor(M), Tor(M) ∼= R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)

for some integer r ≥ 0 and nonzero elements a1, a2, . . . , am ∈ R which are not units in R and
which satisfy the divisibility relations a1 | a2 | · · · | am.

(2) M is torsion free if and only if M is free; M is a torsion module if and only if r = 0, and in
this case the annihilator of M is the ideal (am).
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(3) (Uniqueness) If we have

M ∼= Rr′ ⊕R/(b1)⊕R/(b2)⊕ · · · ⊕R/(bm′)

for some integer r′ ≥ 0 and nonzero elements b1, b2, . . . , bm′ ∈ R which are not units with
b1 | b2 | · · · | bm′ , then r = r′, m = m′ and (ai) = (bi) (so ai = bi up to units) for all i. (It is
precisely the divisibility condition a1 | a2 | · · · | am which gives this uniqueness.)

The integer r is called the free rank or the Betti number of M , and the elements a1, a2, . . . , am ∈ R
(defined up to multiplication by units in R) are called the invariant factors of M.

Proof of Existence. The module M can be generated by a finite set of elements by assumption, so
let x1, . . . , xn be a set of generators of M of minimal cardinality.

Let Rn be the free R-module of rank n with basis b1, . . . , bn and define the homomorphism
π : Rn → M by defining π(bi) := xi for all i, which is automatically surjective since x1, . . . , xn

generate M . By the First Isomorphism Theorem for modules we have Rn/ kerπ ∼= M .
Now, by [1] §12.1 Theorem 4 applied to Rn and the submodule kerπ, we can choose another

basis y1, . . . , yn of Rn, so that a1y1, . . . , amym is a basis of kerπ for some elements a1, . . . , am of
R with a1 | a2 | · · · | am. This implies

M ∼= Rn/ kerπ = (Ry1 ⊕Ry2 ⊕ · · · ⊕Ryn)/(Ra1y1 ⊕Ra2y2 ⊕ · · · ⊕Ramym).

To identify the quotient on the right hand side we use the natural surjective R-module homo-
morphism

Ry1 ⊕Ry2 ⊕ · · · ⊕Ryn −→ R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)⊕Rn−m(
α1y1, α2y2, . . . , αnyn

)
7−→

(
α1 + (a1), . . . , αm + (am), αm+1, . . . , αn

)
.

The kernel of this map is clearly the set of elements where ai divides αi, i = 1, 2, . . . ,m, i.e.
Ra1y1 ⊕ · · · ⊕Ramym. Hence we obtain

M ∼= R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)⊕Rn−m.

If a is a unit in R then R/(a) = 0, so in this direct sum we may remove any of the initial ai which
are units. This gives the decomposition with r = n−m.

See [1] §12.1 Theorem 9 for the proof of Uniqueness.

2.2 The Elementary Divisor Form
Using the Chinese Remainder Theorem it is possible to decompose the cyclic modules in the above
theorem further, so that M is the direct sum of cyclic modules whose annihilators are as simple as
possible (namely (0) or generated by powers of primes in R).

Theorem ([1] §7.6 Theorem 17, Chinese Remainder Theorem). Let A1, A2, . . . , Ak be ideals in
R. The map

R→ R/A1 ×R/A2 × · · · ×R/Ak defined by r 7→ (r + A1, r + A2, . . . , r + Ak)

is a ring homomorphism with kernel A1 ∩ A2 ∩ · · · ∩ Ak.
If for each i, j ∈ {1, 2, . . . , k} with i ̸= j the ideals Ai and Aj are comaximal (i.e. Ai + Aj =

R), then this map is surjective and A1 ∩ A2 ∩ · · · ∩ Ak = A1A2 · · ·Ak, so

R/(A1A2 · · ·Ak) = R/(A1 ∩ A2 ∩ · · · ∩ Ak) ∼= R/A1 ×R/A2 × · · · ×R/Ak.
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Corollary ([1] §7.6 Corollary 18). Let n be a positive integer and let pα1
1 pα2

2 · · · p
αk
k be its factor-

ization into powers of distinct primes. Then

Z/(n) ∼= Z/(pα1
1 )× Z/(pα2

2 )× · · · × Z/(pαk
k )

as rings, so in particular we have the following isomorphism of multiplicative groups:

(Z/nZ)× ∼= (Z/pα1
1 Z)× × (Z/pα2

2 Z)× × · · · × (Z/pαk
k Z)×.

If we compare orders on the two sides of this last isomorphism, we obtain the formula

φ(n) = φ(pα1
1 )φ(pα2

2 ) · · ·φ(pαk
k )

for the Euler φ-function.

Suppose a is a nonzero element of the Principal Ideal Domain R. Then since R is also a Unique
Factorization Domain we can write

a = upα1
1 pα2

2 · · · pαs
s

where the pi are distinct primes in R and u is a unit. This factorization is unique up to units, so the
ideals (pi), i = 1, . . . , s are uniquely defined.

For i ̸= j we have (pi) + (pj) = R since the sum of these two ideals is generated by a greatest
common divisor, which is 1 for distinct primes pi, pj . Put another way, the ideals (pi), i = 1, . . . , s,
are comaximal in pairs. The intersection of all these ideals is the ideal (a) since a is a least common
multiple of pα1

1 , pα2
2 , . . . , pαs

s .
The Chinese Remainder Theorem shows that

R/(a) ∼= R/(pα1
1 )×R/(pα2

2 )× · · · ×R/(pαs
s )

as rings and also as R-modules (cf. [1] §10.3 Exercise 17). Applying this to the modules in the
Invariant Factor Form allows us to write each of the direct summands R/(ai) for the invariant
factor ai of M as a direct sum of cyclic modules whose annihilators are the prime power divisors
of ai. This proves the Existence part of the following:

Theorem ([1] §12.1 Theorems 6 & 9, Fundamental Theorem: Elementary Divisor Form). Let R
be a P.I.D. and let M be a finitely generated R-module. Then M is the direct sum of a finite number
of cyclic modules whose annihilators are either (0) or generated by powers of primes in R, i.e.,

M ∼= Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕ · · · ⊕R/(pαt
t )

where r ∈ Z≥0 and pα1
1 , . . . , pαt

t are positive powers of (not necessarily distinct) primes in R. The
prime powers (defined up to multiplication by units in R) are called the elementary divisors of M.

Two finitely generated R-modules M1 and M2 are isomorphic if and only if they have the same
free rank and the same list of elementary divisors.

2.3 The Primary Decomposition
Suppose M is a finitely generated torsion module over a P.I.D. If for the distinct primes p1, p2, . . . , pn
occurring in the Elementary Divisor Form we group together all the cyclic factors correspond-
ing to the same prime pi, we see in particular that M can be written as a direct sum M =
N1⊕N2⊕· · ·⊕Nn where Ni consists of all the elements of M which are annihilated by some power
of the prime pi. This result holds also for modules over R which may not be finitely generated:
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Theorem ([1] §12.1 Theorem 7, the Primary Decomposition Theorem). Let R be a P.I.D. and let
M be a nonzero torsion R-module (not necessarily finitely generated) with nonzero annihilator a.
Suppose the factorization of a into distinct prime powers in R is

a = upα1
1 pα2

2 · · · pαn
n

and let Ni := {x ∈M | pαi
i x = 0}, 1 ≤ i ≤ n. Then

• Ni is a submodule of M with annihilator pαi
i , and is the submodule of M of all elements

annihilated by some power of pi.

• We have M = N1 ⊕N2 ⊕ · · · ⊕Nn, and we call Ni the pi-primary component of M .

• If M is finitely generated then each Ni is the direct sum of finitely many cyclic modules whose
annihilators are divisors of pαi

i .

• In particular, if M is a finite abelian group of order a = pα1
1 pα2

2 · · · pαn
n then, considered as

a Z-module, M is annihilated by (a), the pi-primary component of M is the unique Sylow
pi-subgroup of M and M is isomorphic to the direct product of its Sylow subgroups.

Proof. Exercise ([1] §10.3 Exercise 18). For reference see the proof of [1] §6.1 Theorem 3.

Notice that with this terminology the elementary divisors of a finitely generated module M are
just the invariant factors of the primary components of Tor(M).

2.4 The Fundamental Theorem of finitely generated Abelian groups
By taking R = Z in the above theorems we derive the following Fundamental Theorem for Abelian
groups:

Theorem ([1] §5.2 Theorem 3, the Fundamental Theorem of Finitely Generated Abelian Groups).
Let G be a finitely generated abelian group. Then

G = Zr × Z/n1Z× Z/n2Z× · · · × Z/nsZ

for some integers r, n1, n2, . . . , ns satisfying that r ≥ 0, nj ≥ 2 for all j, and ni | ni+1 for
1 ≤ i ≤ s− 1. The decomposition is unique.

Theorem ([1] §5.2 Theorem 5, the Primary Decomposition Theorem for finite abelian groups).
Let G be an abelian group of order n > 1 and let the unique factorization of n into distinct prime
powers be

n = pα1
1 pα2

2 · · · p
αk
k .

Then

(1) G ∼= A1 × A2 × · · · × Ak, where |Ai| = pαi
i , i.e., Ai is the (unique) Sylow pi-subgroups of G,

and G is isomorphic to the direct product of its Sylow subgroups.

(2) For each A ∈ {A1, A2, . . . , Ak} with |A| = pα,

A ∼= Z/pβ1Z× Z/pβ2Z× · · ·Z× Z/pβt

with 1 ≤ β1 ≤ · · · ≤ βt and β1 + · · ·+ βt = α (where t and β1, . . . , βt depend on i).
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(3) The decomposition in (1) and (2) is unique, i.e., if G ∼= B1 × B2 × · · · × Bk′ with |Bi| = pαi
i

for all i, then k = k′, Bi
∼= Ai, and Bi and Ai have the same invariant factors.

By the above theorem, in order to find all abelian groups of order n = pα1
1 pα2

2 · · · p
αk
k , one must

find for each i, 1 ≤ i ≤ k, all possible lists of invariant factors for groups of order pαi
i . Each list of

invariant factors in this case is simply a partition of αi (ordered in ascending order). In particular,
the number of nonisomorphic abelian groups of order pα equals the number of partitions of α. This
number is independent of the prime p.

The set of elementary divisors of each abelian group is then obtained by taking one set of
invariant factors from each of the k lists. The abelian groups are the direct products of the cyclic
groups whose orders are the elementary divisors (and distinct lists of elementary divisors give
non-isomorphic groups).

Example. If n = 72 = 2332 we list the abelian groups of this order as follows:

Order pα Partitions of α Abelian Groups of Order pα

1, 1, 1 Z/2Z× Z/2Z× Z/2Z
23 1, 2 Z/2Z× Z/4Z

3 Z/8Z
1, 1 Z/3Z× Z/3Z

32 2 Z/9Z

We obtain the abelian groups of order 72 by taking one abelian group from each of the two lists
(right hand column above) and taking their direct product. Doing this in all possible ways gives
all isomorphism types:

Abelian Groups of Order 72 Elementary Divisors Invariant Factors
(Z/2Z× Z/2Z× Z/2Z)× (Z/3Z× Z/3Z) 2, 2, 2, 3, 3 2, 6, 6
(Z/2Z× Z/2Z× Z/2Z)× (Z/9Z) 2, 2, 2, 9 2, 2, 18
(Z/2Z× Z/4Z)× (Z/3Z× Z/3Z) 2, 4, 3, 3 6, 12
(Z/2Z× Z/4Z)× (Z/9Z) 2, 4, 9 2, 36
(Z/8Z)× (Z/3Z× Z/3Z) 8, 3, 3 3, 24
(Z/8Z)× (Z/9Z) 8, 9 72

By the Fundamental Theorems above, this is a complete list of all abelian groups of order 72 —
every abelian group of this order is isomorphic to precisely one of the groups above and no two of
the groups in this list are isomorphic.

We emphasize that the elementary divisors of G are not invariant factors of G (but invariant
factors of subgroups of G).

Note that if a finitely generated module M is written as a direct sum of cyclic modules of
the form R/(a), then the ideals (a) which occur are not in general unique (Z/2Z × Z/15Z ∼=
Z/5Z×Z/6Z for example), unless some additional conditions are imposed (such as the divisibility
condition for the invariant factors, or the condition that a be the power of a prime in the case of the
elementary divisors). To decide whether two modules are isomorphic it is necessary to first write
them in such a standard form.

Exercise ([1] §5.2 Exercise 9). Let A = Z/60Z×Z/45Z×Z/12Z×Z/36Z. Find the number of
elements of order 2 and the number of subgroups of index 2 in A.
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3 Canonical forms of matrices
We now apply our results on finitely generated modules in the special case where the P.I.D. is the
ring F [x] of polynomials in x with coefficients in a field F . Recall that (cf. [1] §10.1) there is a
bijection between the collection of F [x]-modules and the collection of pairs (V, T ) V an F [x]-module

←→


V a vector space over F
and

T : V → V a linear transformation


given by

the element x acts on V as the linear transformation T .

In terms of this bijection, W an F [x]-submodule of V

←→


W a subspace of V
and

W is T -stable

 .

Let V be a finite dimensional vector space over F of dimension n and let T be a fixed lin-
ear transformation of V . Since V has finite dimension over F by assumption, it is by definition
finitely generated as an F -module, hence certainly finitely generated as an F [x]-module, so the
classification theorems of the preceding section apply.

Any nonzero free F [x]-module (being isomorphic to a direct sum of copies of F [x]) is an
infinite dimensional vector space over F , so if V has finite dimension over F then it must in fact
be a torsion F [x]-module (i.e., its free rank is 0). It follows from the Fundamental Theorem that
then V is isomorphic as an F [x]-module to the direct sum of cyclic, torsion F [x]-modules.

We shall see that this decomposition of V will allow us to choose a basis for V with respect to
which the matrix representation for the linear transformation T is in a specific simple form. When
we use the invariant factor decomposition of V we obtain the rational canonical form for the
matrix for T ; when we use the elementary divisor decomposition (and when F contains all the
eigenvalues of T ) we obtain the Jordan canonical form, as the matrix representing T which is as
close to being a diagonal matrix as possible. The uniqueness portion of the Fundamental Theorem
ensures that the rational and Jordan canonical forms are unique (which is why they are referred to
as canonical).

One important use of these canonical forms is to classify the distinct linear transformations of
V . In particular they allow us to determine when two matrices represent the same linear transfor-
mation, i.e., when two given n× n matrices are similar.

3.1 The rational canonical form
If we fix a basis B of V , then any linear transformation T of V has an associated n× n matrix A.
Conversely, if A is any n× n matrix then the map T defined by T (v) := Av for v ∈ V , where the
v on the right is the n × 1 vector consisting of the coordinates of v with respect to the fixed basis
B of V , is a linear transformation of V .

3.1.1 The annihilator and minimal polynomial

Recall that λ is an eigenvalue of the linear transformation T (i.e. there is a nonzero vector v ∈ V
such that Tv = λv), if and only if λI − T is a singular linear transformation of V , if and only if
det(λI − T ) = 0. Let x be an indeterminate over F . The polynomial det(xI − T ) is called the
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characteristic polynomial of T and will be denoted cT (x). If A is an n×n matrix with coefficients
in F , det(xI − A) is called the characteristic polynomial of A and will be denoted cA(x). It is
easy to see by expanding the determinant that the characteristic polynomial of either T or A is a
monic polynomial of degree n = dimV , and the set of eigenvalues of T (or A) is precisely the set
of roots of the characteristic polynomial of T (of A, respectively). In particular, T has at most n
distinct eigenvalues.

We have seen that V considered as a module over F [x] via the linear transformation T is a
torsion F [x]-module. Let m(x) ∈ F [x] be the unique monic polynomial generating Ann(V ) ⊆
F [x]. Equivalently, m(x) is the unique monic polynomial of minimal degree annihilating V , i.e.,
such that m(T ) is the 0 linear transformation, and if f(x) ∈ F [x] is any polynomial annihilating
V , m(x) divides f(x).

Since the ring of all n× n matrices over F is isomorphic to the collection End(V ) of all linear
transformations of V to itself (an isomorphism is obtained by choosing a basis for V ), it follows
that for any n×n matrix A over F there is similarly a unique monic polynomial of minimal degree
with m(A) the zero matrix.

The unique monic polynomial which generates the ideal Ann(V ) in F [x] is called the minimal
polynomial of T and will be denoted mT (x). The unique monic polynomial of smallest degree
which when evaluated at the matrix A is the zero matrix is called the minimal polynomial of A
and will be denoted mA(x).

We shall shortly prove that cT (x) ∈ Ann(V ), i.e. the minimal polynomial mT (x) for T is a
divisor of the characteristic polynomial cT (x) for T (this is the Cayley–Hamilton Theorem), and
similarly for A, so in fact the degrees of minimal polynomials are at most n.

The invariant factor decomposition of V gives an isomorphism

V ∼= F [x]/
(
a1(x)

)
⊕ F [x]/

(
a2(x)

)
⊕ · · · ⊕ F [x]/

(
am(x)

)
(12.1)

of F [x]-modules where a1(x), a2(x), . . . , am(x) are polynomials in F [x] of degree at least one
with the divisibility conditions a1(x) | a2(x) | . . . | am(x). These invariant factors ai(x) are only
determined up to a unit in F [x], but since the units of F [x] are precisely the nonzero elements of
F (i.e., the nonzero constant polynomials), we may make these polynomials unique by stipulating
that they be monic.

Since the annihilator of V is the ideal (am(x)) (cf. the Fundamental Theorem), we immediately
obtain:

Proposition ([1] §12.2 Proposition 13). The minimal polynomial mT (x) is the largest invariant
factor of V . All the invariant factors of V divide mT (x).

3.1.2 Cyclic submodules and companion matrices

We now choose a basis for each of the direct summands F [x]/
(
ai(x)

)
for V in the decomposition

(12.1) above for which the matrix for T is quite simple. Recall that the linear transformation T
acting on the left side of (12.1) is the element x acting by multiplication on each of the factors on
the right side of the isomorphism in (12.1).

Recall that the elements 1, x̄, x̄2, . . . , x̄k−1 give a basis for the vector space F [x]/(a(x)), where
a(x) = xk + bk−1x

k−1 + · · ·+ b1x+ b0 is any monic polynomial in F [x], and x̄ := x mod (a(x)).
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With respect to this basis the linear transformation of multiplication by x acts in a simple manner:

×x :

1 7→ x̄

x̄ 7→ x̄2

x̄2 7→ x̄3

...

x̄k−2 7→ x̄k−1

x̄k−1 7→ x̄k = −b0 − b1x̄− · · · − bk−1x̄
k−1

where the last equality is because x̄k+bk−1x̄
k−1+· · ·+b1x̄+b0 = 0 since a(x̄) = 0 in F [x]/(a(x)).

With respect to this basis, the matrix for multiplication by x is determined by

(×x)
[
1 x̄ x̄2 · · · x̄k−1

]
=

[
1 x̄ x̄2 · · · x̄k−1

]


0 0 · · · · · · · · · −b0
1 0 · · · · · · · · · −b1
0 1 · · · · · · · · · −b2
0 0

. . . ...
...

... . . . ...
0 0 · · · · · · 1 −bk−1


.

This is the companion matrix of the monic polynomial a(x), which is the k × k matrix with 1’s
down the first subdiagonal, −b0,−b1, . . . ,−bk−1 down the last column and zeros elsewhere. We
denote the companion matrix of a(x) by Ca(x).

3.1.3 The rational canonical form

We apply the above result to each of the cyclic modules on the right side of (12.1) above and let
Bi be the elements of V corresponding to the basis chosen above for the cyclic factor F [x]/(ai(x))
under the isomorphism in (12.1). Then by definition the linear transformation T acts on Bi by the
companion matrix for ai(x) (since we have seen that this is how multiplication by x acts).

The union B of the Bi’s gives a basis for V (since the sum on the right of (12.1) is direct), and
with respect to this basis, the linear transformation T has matrix

Ca1(x)
Ca2(x)

. . .
Cam(x)

 (12.2)

i.e., the direct sum of the companion matrices for the invariant factors.
Notice that this matrix is uniquely determined from the invariant factors of the F [x]-module

V , and the list of invariant factors uniquely determines the module V up to isomorphism as an
F [x]-module.

Theorem ([1] §12.2 Theorem 14, Rational Canonical Form). Let V be a finite dimensional vector
space over the field F and let T be a linear transformation of V . Then there is a basis for V , with
respect to which the matrix for T is in rational canonical form, i.e., is a block diagonal matrix
whose diagonal blocks are the companion matrices for monic polynomials a1(x), a2(x), . . . , am(x)
of degree at least one with a1(x) | a2(x) | · · · | am(x). The rational canonical form for T is unique.
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The use of the word rational is to indicate that this canonical form is calculated entirely within
the field F and exists for any linear transformation T . This is not the case for the Jordan canonical
form (considered later), which only exists if the field F contains the eigenvalues for T . Moreover,
[1] §12.2 Corollary 18 shows that the rational canonical form for an n × n matrix A is an n × n
matrix with entries in the smallest field containing the entries of A; further, this canonical form is
the same matrix even if we allow conjugation of A by nonsingular matrices whose entries come
from larger fields.

The following result translates the notion of similar linear transformations (i.e., the same linear
transformation up to a change of basis) into the language of modules and relates this notion to
rational canonical forms.

Theorem ([1] §12.2 Theorem 15). Let S and T be linear transformations of V . Then TFAE:

(1) S and T are similar linear transformations

(2) the F [x]-modules obtained from V via S and via T are isomorphic F [x]-modules

(3) S and T have the same rational canonical form.

Exercise (cf. [1] §12.2 Example (5) p.487). Find all similarity classes of 3× 3 matrices A over Q
and matrices over F2 satisfying A3 = I .

Exercise ([1] §12.2 Exercise 15). Determine up to similarity all 2 × 2 rational matrices (i.e.,
∈M2(Q)) of precise order 4 (multiplicatively). Do the same if the matrix has entries from C.

3.1.4 Invariant factors

We shall see below how to calculate not only the minimal polynomial for T but also the other
invariant factors.

Let a(x) ∈ F [x] be any monic polynomial. By direct calculation one can verify that the
characteristic polynomial cCa(x)(x) of the companion matrix Ca(x) is a(x); and if M is the block
diagonal matrix 

A1

A2

. . .
Ak


given by the direct sum of matrices A1, A2, . . . , Ak, then the characteristic polynomial cM(x) of
M is cA1(x)cA2(x) · · · cAk

(x).

Proposition ([1] §12.2 Proposition 20). Let A be an n× n matrix over the field F .

(1) The characteristic polynomial of A is the product of all the invariant factors of A.

(2) (The Cayley–Hamilton Theorem) The minimal polynomial mA(x) of A divides the character-
istic polynomial cA(x) of A. In particular cA(A) = 0 as matrices.

(3) The characteristic polynomial of A divides some power of the minimal polynomial of A. In
particular these polynomials have the same roots, not counting multiplicities.

The same statements are true if the matrix A is replaced by a linear transformation T of an n-
dimensional vector space over F .
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The above proposition are frequently quite useful in the determination of the invariant fac-
tors for a matrix A, particularly for matrices of small degree. The following result computes the
invariant factors in general.

Theorem ([1] §12.2 Theorem 21). Let A be an n×n matrix over the field F . The three operations
(a) interchanging two rows or columns
(b) adding a multiple (in F [x]) of one row or column to another
(c) multiplying any row or column by a unit in F [x] (i.e., by a nonzero element in F ),
are called elementary row and column operations in Mn(F [x]). Using these elementary opera-
tions, the n×n matrix xI−A with entries from F [x] can be put into the diagonal form (called the
Smith Normal Form for A) 

1
. . .

1
a1(x)

a2(x)
. . .

am(x)


with monic elements a1(x), a2(x), . . . , am(x) ∈ F [x] with degrees at least one and satisfying
a1(x) | a2(x) | · · · | am(x). The polynomials a1(x), . . . , am(x) are the invariant factors of A.

Proof. Cf. [1] §12.1 Exercises 16 to 19.

3.2 The Jordan canonical form
In this section we use the elementary divisor form of the Fundamental Theorem to obtain the
Jordan canonical form. Matrices in this canonical form are as close to being diagonal matrices as
possible, so the matrices are simpler than in the rational canonical form (but we lose some of the
“rationality” results).

The elementary divisors of a module are the prime power divisors of its invariant factors. For
the F [x]-module V the invariant factors were monic polynomials a1(x), a2(x), . . . , am(x) of de-
gree at least one (with a1(x) | a2(x) | · · · | am(x)), so the associated elementary divisors are the
powers of the irreducible polynomial factors of these polynomials. These polynomials are only
defined up to multiplication by a unit and, as in the case of the invariant factors, we can specify
them uniquely by requiring that they be monic.

To obtain the simplest possible elementary divisors we shall assume that the polynomials
a1(x), a2(x), . . . , am(x) factor completely into linear factors, i.e., that the elementary divisors
of V are powers (x − λ)k of linear polynomials. Since the product of the elementary divisors is
the characteristic polynomial, this is equivalent to the assumption that the field F contains all the
eigenvalues of the linear transformation T (equivalently, of the matrix A representing the linear
transformation T ).

Under this assumption on F , it follows immediately from Elementary Divisor Form of the
Fundamental Theorem that, V is the direct sum of finitely many cyclic F [x]-modules of the form
F [x]/(x − λ)k, where λ ∈ F is one of the eigenvalues of T , corresponding to the elementary
divisors of V .

We now choose a vector space basis for each of the direct summands corresponding to the
elementary divisors of V for which the corresponding matrix for T is particularly simple. Recall

14



that by definition of the F [x]-module structure the linear transformation T acting on V is the
element x acting by multiplication on each of the direct summands F [x]/(x− λ)k.

Consider the elements

(x̄− λ)k−1, (x̄− λ)k−2, . . . , (x̄− λ), 1 ∈ F [x]/(x− λ)k.

Expanding each of these polynomials in x̄ we see that the matrix relating these elements to the F -
basis x̄k−1, x̄k−2, . . . , x̄, 1 of F [x]/(x − λ)k is upper triangular with 1’s along the diagonal. Since
this is an invertible matrix, it follows that the elements above are an F -basis for F [x]/(x− λ)k.

With respect to this basis the linear transformation of multiplication by x acts in a particularly
simple manner (note that x = λ+ (x− λ) and that (x̄− λ)k = 0 in the quotient F [x]/(x− λ)k):

×x :

(x̄− λ)k−1 7→ λ · (x̄− λ)k−1 + (x̄− λ)k = λ · (x̄− λ)k−1

(x̄− λ)k−2 7→ λ · (x̄− λ)k−2 + (x̄− λ)k−1

...
(x̄− λ) 7→ λ · (x̄− λ) + (x̄− λ)2

1 7→ λ · 1 + (x̄− λ).

With respect to this basis, the matrix for multiplication by x is therefore given by

(×x)
[
(x̄− λ)k−1 (x̄− λ)k−2 · · · 1

]
=

[
(x̄− λ)k−1 (x̄− λ)k−2 · · · 1

]

λ 1

λ
. . .
. . . 1

λ 1
λ

 ,

where the blank entries are all zero. The k × k matrix with λ along the main diagonal and 1
along the first superdiagonal depicted above is called the k × k elementary Jordan matrix with
eigenvalue λ or the Jordan block of size k with eigenvalue λ.

Applying this to each of the cyclic factors of V in its elementary divisor decomposition we
obtain a vector space basis for V with respect to which the linear transformation T has as matrix
the direct sum of the Jordan blocks corresponding to the elementary divisors of V , i.e., is block
diagonal with Jordan blocks along the diagonal:

J1
J2

. . .
Jt

 .

Notice that this matrix is uniquely determined up to permutation of the blocks along the diagonal
by the elementary divisors of the F [x]-module V , and conversely the list of elementary divisors
uniquely determines the module V up to F [x]-module isomorphism.

Theorem ([1] §12.3 Theorem 22, Jordan Canonical Form). Let V be a finite dimensional vector
space over the field F and let T be a linear transformation of V . Assume F contains all the
eigenvalues of T . Then there is a basis for V with respect to which the matrix for T is in Jordan
canonical form, i.e., is a block diagonal matrix whose diagonal blocks are the Jordan blocks for
the elementary divisors of V . The Jordan canonical form for T is unique up to a permutation of
the Jordan blocks along the diagonal.
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The Jordan canonical form differs from a diagonal matrix only by the possible presence of
some 1’s along the first superdiagonal (and then only if there are Jordan blocks of size greater than
one), hence is close to being a diagonal matrix. The following result shows in particular that the
Jordan canonical form for a matrix A is as close to being a diagonal matrix as possible.

Corollary ([1] §12.3 Corollarys 24 & 25).

(1) If a matrix A is similar to a diagonal matrix D, then D is the Jordan canonical form of A.

(2) Two diagonal matrices are similar if and only if their diagonal entries are the same up to a
permutation.

(3) If A is an n× n matrix with entries from F and F contains all the eigenvalues of A, then A is
similar to a diagonal matrix over F if and only if the minimal polynomial of A has no repeated
roots.

Exercise ([1] §12.3 Exercise 49). Let A be an n×n matrix with entries from the field K, where K
is either the real or complex numbers. Define the exponential of A by the convergent series (entry
by entry)

expA = eA :=
∞∑
k=0

1

k!
Ak = I + A+

A2

2!
+

A3

3!
+ · · ·+ Ak

k!
+ · · · .

Prove that det(eA) = etr(A), where tr(A) is the trace of A (the sum of the diagonal entries of A).
Hint: prove this for upper triangular matrices first.

Other related exercises in [1]
§12.1 2 4 6 7 8 10 11 14
§12.2 4 8 10 12 15 17
§12.3 2 21 22 24 26
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