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1 Definitions and examples

1.1 Modules and submodules
We start with the definition of a module.

Definition. Let R be a ring (not necessarily commutative nor with 1). A left R-module or a left
module over R is a set M together with

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, a map R ×M → M ) denoted by rm, for all r ∈ R, m ∈ M
which satisfies, for all r, r′ ∈ R, m,m′ ∈M , that

(a) (r + r′)m = rm+ r′m, (b) (rr′)m = r(r′m), and (c) r(m+m′) = rm+ rm′.

If the ring R has a 1 we impose the additional axiom: (d) 1m = m, for all m ∈M .
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If R is a ring with 1 and M is a left R-module, it is obvious that R× and M satisfy the two
axioms for a group action of the multiplicative group R× on the set M (cf. [1] §10.1 Exercise 2).

The descriptor “left” in the above definition indicates that the ring elements appear on the left;
“right” R-modules can be defined analogously. If the ring R is commutative and M is a left R-
module we can make M into a right R-module by defining mr := rm for m ∈ M and r ∈ R.
If R is not commutative, axiom 2(b) in general will not hold with this definition (so not every left
R-module is also a right R-module). Unless explicitly mentioned otherwise the term “module”
will always mean “left module”.

Modules satisfying axiom 2(d) are called unital modules, and in this book all our modules will
be unital (this is to avoid “pathologies” such as having rm = 0 for all r ∈ R and m ∈M ).

Let R be a ring and let M be an R-module. An R-submodule of M is a subgroup N of M
which is closed under the action of ring elements, i.e., rn ∈ N , for all r ∈ R, n ∈ N . Submodules
ofM are therefore just subsets ofM which are themselves modules under the restricted operations.
Every R-module M has the two submodules M and 0 (the latter is called the trivial submodule).

Example. When R is a field F , the axioms for an R-module are precisely the same as those for
a vector space over F , so that modules over a field F and vector spaces over F are the same;
submodules are the same as subspaces.

Example. Let R be any ring. Then M = R is a left R-module, where the action of a ring element
on a module element is just the usual multiplication in the ring R (similarly, R is a right module
over itself). In particular, every field can be considered as a (1-dimensional) vector space over
itself.

When R is considered as a left module over itself in this fashion, the submodules of R are
precisely the left ideals of R (and if R is considered as a right R-module over itself, its submodules
are the right ideals). Thus if R is not commutative it has a left and right module structure over
itself and these structures may be different (e.g., the submodules may be different, cf. [1] §10.1
Exercise 21).

The same abelian group may have the structure of an R-module for a number of different rings
R and each of these module structures may carry useful information. Specifically, if M is an R-
module and S is a subring of R with 1S = 1R, then M is automatically an S-module as well. For
instance the field R is an R-module, a Q-module and a Z-module.

1.2 Z-modules
Let R = Z, let A be any abelian group (finite or infinite) and write the operation of A as +. Make
A into a Z-module as follows: for any n ∈ Z and a ∈ A define

na :=


a+ a+ · · ·+ a (n times) if n > 0

0 (the identity of A) if n = 0

−a− a− · · · − a (|n| times) if n < 0.

This definition of an action of the integers on A makes A into a Z-module, and the module axioms
show that this is the only possible action of Z on A making it a (unital) Z-module. Thus every
abelian group is a Z-module.

Conversely, if M is any Z-module, a fortiori M is an abelian group, so

Z-modules are the same as abelian groups.
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Furthermore, it is immediate from the definition that

Z-submodules are the same as subgroups.

Note that since Z is commutative these definitions of left and right actions by ring elements
give the same module structure.

IfA is an abelian group containing an element x of finite order n then nx = 0. Thus, in contrast
to vector spaces, a Z-module may have nonzero elements x such that nx = 0 for some nonzero
ring element n. In particular, ifA has orderm, then by Lagrange’s Theorem (cf. [1] §3.2 Corollary
9) mx = 0, for all x ∈ A. Note that then A is a module over Z/mZ.

In particular, if p is a prime and A is an abelian group (written additively) such that px = 0
for all x ∈ A, then A is a Z/pZ-module, i.e., can be considered as a vector space over the field
Fp := Z/pZ. For instance, the Klein 4-group is a (2-dimensional) vector space over F2.

Exercise ([1] §10.1 Exercise 9). Let R be any ring and M be a left R-module. If N is a submodule
of M , the annihilator of N in R is defined to be

Ann(N) := {r ∈ R | rn = 0 for all n ∈ N}.

Prove that the annihilator of N in R is a 2-sided ideal of R.

In general, ifR is any ring andM is anR-module, and for some (2-sided) ideal I ofR, am = 0
for all a ∈ I and all m ∈ M (i.e. I ⊆ Ann(M)), we say M is annihilated by I . In this situation
we can make M into an R/I-module by defining an action of the quotient ring R/I on M as
follows: for each m ∈M and coset r + I in R/I let

(r + I)m := rm.

Since am = 0 for all a ∈ I and m ∈ M , this is well defined and one easily checks that it makes
M into an R/I-module.

In particular, when I is a maximal ideal in the commutative ring R and IM = 0, then M is a
vector space over the field R/I .

Exercise ([1] §10.1 Exercise 15). If M is a finite abelian group then M is naturally a Z-module.
Can this action be extended to make M into a Q-module?

1.3 F [x]-modules
Let F be a field, let x be an indeterminate and let R be the polynomial ring F [x]. Let V be a vector
space over F and let T be a linear transformation from V to V . We have already seen that V is an
F -module; the linear map T will enable us to make V into an F [x]-module.

Let p(x) be the polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where a0, . . . , an ∈ F . For each v ∈ V define an action of the ring element p(x) on the module
element v by

p(x)v := (anT
n + an−1T

n−1 + · · ·+ a1T + a0I)(v)

= anT
n(v) + an−1T

n−1(v) + · · ·+ a1T (v) + a0v,

i.e., p(x) acts by substituting the linear transformation T for x in p(x) and applying the resulting
linear transformation to v. Put another way, x acts on V as the linear transformation T and we
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extend this to an action of all of F [x] on V in a natural way. It is easy to check that this definition
of an action of F [x] on V satisfies all the module axioms and makes V into an F [x]-module.

The field F is naturally a subring of F [x] (the constant polynomials) and the action of these
field elements is by definition the same as their action when viewed as constant polynomials. In
other words, the definition of the F [x]-action on V is consistent with the given action of the field
F on the vector space V , i.e., the definition extends the action of F to an action of the larger ring
F [x].

The way F [x] acts on V depends on the choice of T so that there are in general many different
F [x]-module structures on the same vector space V . (In general, an abelian group M may have
many different R-module structures, even if the ring R does not vary, in the same way that a given
group G may act in many ways as a permutation group on some fixed set Ω.) For instance, if
T = 0, then p(x)v = a0v, that is, the polynomial p(x) acts on v simply by multiplying by the
constant term of p(x), so that the F [x]-module structure is just the F -module structure. If, on
the other hand, T is the identity transformation (so T n(v) = v for all n and v), then p(x)v =
anv + an−1v + · · · + a0v = (an + · · · + a0)v, so that now p(x) multiplies v by the sum of the
coefficients of p(x).

Exercise. For the above two examples, find the annihilators of V in F [x]. (Recall that F [x] is a
Principal Ideal Domain, so you shall write Ann(V ) as a principal ideal of F [x].)

Example. Let n ∈ Z>0 and let

V = F n := {(t1, t2, . . . , tn) | ti ∈ F for all i}

be the affine n-space over F . Let T be the “shift operator”

T (t1, t2, . . . , tn) := (t2, t3, . . . , tn, 0).

Let ei be the usual ith basis vector (0, 0, . . . , 0, 1, 0, . . . , 0) where the 1 is in position i. Then

T k(ei) =

{
ei−k if i > k

0 if i ≤ k

so for example, if m < n,

(amx
m + am−1x

m−1 + · · ·+ a0)(0, 0, . . . , 1) = (0, . . . , 0, am, am−1, . . . , a0).

From this we can determine the action of any polynomial on any vector.

The construction of an F [x]-module from a vector space V over F and a linear transformation
T from V to V in fact describes all F [x]-modules; namely, an F [x]-module is a vector space to-
gether with a linear transformation which specifies the action of x. This is because if V is any F [x]-
module, then V is an F -module and the action of the ring element x on V is a linear transformation
from V to V . The axioms for a module ensure that the actions of F and x on V uniquely deter-
mine the action of any element of F [x] on V . Thus there is a bijection between the collection of
F [x]-modules and the collection of pairs (V, T ) V an F [x]-module

←→


V a vector space over F
and

T : V → V a linear transformation


given by

the element x acts on V as the linear transformation T .
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Now we consider F [x]-submodules of V where, as above, V is any F [x]-module and T is the
linear transformation from V to V given by the action of x. An F [x]-submodule W of V must first
be an F -submodule, i.e., W must be a vector subspace of V . Secondly, W must be sent to itself
under the action of the ring element x, i.e., we must have T (w) ∈ W for all w ∈ W . Any vector
subspace U of V such that T (U) ⊆ U is called T -stable or T -invariant.

If U is any T -stable subspace of V , it follows that T n(U) ⊆ U for all n ∈ Z≥0. Moreover any
linear combination of powers of T then sends U into U , so that U is also stable by the action of
any polynomial in T . Thus U is an F [x]-submodule of V . This shows that the F [x]-submodules
of V are precisely the T -stable subspaces of V .

In terms of the bijection above, W an F [x]-submodule of V

←→


W a subspace of V
and

W is T -stable


which gives a complete dictionary between F [x]-modules V and vector spaces V together with a
given linear transformation T from V to V .

Example. If T is the shift operator defined on affine n-space V = F n and k is any integer in the
range 0 ≤ k ≤ n, then the subspace

Uk = {(t1, t2, . . . , tk, 0, . . . , 0) | ti ∈ F} ∼= F k

is clearly T -stable so is an F [x]-submodule of V .

We shall see in [1] Chapter 12 that the relatively simple ideal structure of the ring F [x] (recall
that F [x] is a Principal Ideal Domain) forces the F [x]-module structure of V to be correspondingly
uncomplicated, and this in tern provides a great deal of information about the linear transformation
T (in particular, gives some nice matrix representations for T : its rational canonical form and its
Jordan canonical form). Moreover, the same arguments which classify finitely generated F [x]-
modules apply to any Principal Ideal Domain R, and when these are invoked for R = Z, we obtain
the Fundamental Theorem of Finitely Generated Abelian Groups. These results generalize the
theorem that every finite dimensional vector space has a basis.

1.4 Algebras over a ring
Definition. Let R be a commutative ring with identity. An R-algebra is a ring A with identity
together with a ring homomorphism f : R → A mapping 1R to 1A such that the subring f(R) of
A is contained in the center of A.

IfA is anR-algebra then it is easy to check thatA has a natural left and right (unital)R-module
structure defined by r · a = a · r := f(r)a where f(r)a is just the multiplication in the ring A (and
this is the same as af(r) since by assumption f(r) lies in the center of A). In general it is possible
for an R-algebra A to have other left (or right) R-module structures, but unless otherwise stated,
this natural module structure on an algebra will be assumed.

Example. For any ring A with identity, if R is a (commutative) subring of the center of A contain-
ing the identity of A, then A is an R-algebra. In particular, a commutative ring A containing 1 is
an R-algebra for any subring R of A containing 1.

For example, let R be a commutative ring with identity. the polynomial ring R[x1, . . . , xn] is
an R-algebra, and the group ring RG for a finite group G is an R-algebra. Recall that the group

5



ring, RG, of a finite group G with coefficients in R is the set of all formal sums
∑

g∈G agg for all
ag ∈ R, with addition defined “componentwise” and multiplication extended by the distributive
laws from the product in G.

Example. When R = F is a field, F is isomorphic to its image under f (because ker f is an ideal
of F but F only have trivial ideals), so we can identify F itself as a subring of A. Hence, saying
that A is an algebra over a field F is the same as saying that the ring A contains the field F in its
center and the identity of A and of F are the same.

Suppose that A is an R-algebra. Then A is a ring with identity that is a (unital) left R-module
satisfying r · (ab) = (r · a)b = a(r · b) for all r ∈ R and a, b ∈ A (these are all equal to the
product f(r)ab in the ring A — recall that f(R) is contained in the center of A). Conversely,
these conditions on a ring A define an R-algebra, and are sometimes used as the definition of an
R-algebra (cf. [1] §10.1 Exercise 22).

Example. Any ring with identity is a Z-algebra.

If A and B are two R-algebras, an R-algebra homomorphism (or isomorphism) is a ring
homomorphism (isomorphism, respectively) φ : A → B mapping 1A to 1B such that φ(r · a) =
r · φ(a) for all r ∈ R and a ∈ A.

1.5 Module homomorphisms
Let R be a ring and let M and N be R-modules. A map φ : M → N is an R-module homomor-
phism if it respects the R-module structures of M and N , i.e.,

(a) φ(m+m′) = φ(m) + φ(m′) and (b) φ(rm) = rφ(m)

for all r ∈ R and m,m′ ∈M .
Any R-module homomorphism is also a homomorphism of the additive groups, but not ev-

ery group homomorphism need be a module homomorphism (because condition (b) may not be
satisfied).

Example. Z-module homomorphisms are the same as abelian group homomorphisms: For the
ring R = Z the action of ring elements (integers) on any Z-module amounts to just adding and
subtracting within the (additive) abelian group structure of the module so that in this case condition
(b) of a homomorphism is implied by condition (a). For example, φ(2x) = φ(x + x) = φ(x) +
φ(x) = 2φ(x), etc.

Example. If R = F is a field, F -module homomorphisms are the same as linear transformations.

An R-module homomorphism is an isomorphism (of R-modules) if it is both injective and
surjective. The modules M and N are said to be isomorphic, denoted M ∼= N , if there is some
R-module isomorphism φ :M → N .

It is an easy exercise to show that the relation “is R-module isomorphic to” is an equivalence
relation on any set of R-modules (cf. [1] §10.2 Exercise 2). The unqualified term “isomorphism”
when applied to R-modules will always mean R-module isomorphism. (When the symbol ∼= is
used without qualification it will denote an isomorphism of the respective structures.)

Remark. If R is a ring and M = R is a module over itself, then R-module homomorphisms
(even from R to itself) need not be ring homomorphisms, and ring homomorphisms need not be
R-module homomorphisms. For example, when R = Z the Z-module homomorphism x 7→ 2x
is not a ring homomorphism (1 does not map to 1). When R = F [x] the ring homomorphism
φ : f(x) 7→ f(x2) is not an F [x]-module homomorphism (if it were, we would have x2 = φ(x) =
φ(x · 1) = xφ(1) = x).
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Proposition ([1] §10.2 Proposition 2). Let M , N and L be R-modules and define HomR(M,N)
to be the set of all R-module homomorphisms from M to N .

• For φ, ψ ∈ HomR(M,N), define φ+ ψ by

(φ+ ψ)(m) := φ(m) + ψ(m) for all m ∈M.

Then φ+ ψ ∈ HomR(M,N) and with this operation HomR(M,N) is an abelian group.

• If R is a commutative ring then for r ∈ R define rφ by

(rφ)(m) := r(φ(m)) for all m ∈M.

Then rφ ∈ HomR(M,N) and, with this action of the commutative ring R, the abelian group
HomR(M,N) is an R-module.

• If φ ∈ HomR(L,M) and ψ ∈ HomR(M,N), then ψ ◦ φ ∈ HomR(L,N).

• With addition as above and multiplication defined as function composition, HomR(M,M)
is a ring with 1, which is called the endomorphism ring of M and will often be denoted by
EndR(M) (or just End(M) when the ringR is clear from the context). Elements of End(M)
are called endomorphisms. When R is commutative End(M) is an R-algebra.

Exercise ([1] §10.2 Exercises 9 & 10). Let R be a commutative ring with 1. Prove that f 7→ f(1)
defines an isomorphism HomR(R,M) ∼= M of left R-modules; and prove that HomR(R,R) and
R are isomorphic as rings.

When R is commutative there is a natural map from R into End(M) given by r 7→ r1, where
the latter endomorphism of M is just multiplication by r on M . The image of R is contained in
the center of End(M), so if R has an identity, End(M) is an R-algebra.

The ring homomorphism (cf. [1] §10.2 Exercise 7) from R to End(M) may not be injective,
since for some r we may have rm = 0 for all m ∈ M (e.g., R = Z, M = Z/2Z, and r = 2).
When R is a field, however, this map is injective (in general, no unit is in the kernel of this map),
and the copy of R in EndR(M) is called the (subring of) scalar transformations.

1.6 Quotient modules
If φ : M → N is an R-module homomorphism, let kerφ := {m ∈ M | φ(m) = 0} (the kernel
of φ) and let φ(M) := {n ∈ N | n = φ(m) for some m ∈ M} (the image of φ, as usual). It is an
easy exercise to show that kernels and images of R-module homomorphisms are submodules.

The next proposition shows that, every submodule N of an R-module M is “normal” in the
sense that we can always form the quotient module M/N , and the natural projection π : M �
M/N is an R-module homomorphism with kernel N .

The proof of this fact and, more generally, the subsequent proofs of the isomorphism theorems
for modules follow easily from the corresponding facts for groups. The reason for this is because a
module is first of all an abelian group and so every submodule is automatically a normal subgroup,
and any module homomorphism is, in particular, a homomorphism of abelian groups.

What remains to be proved in order to extend results on abelian groups to corresponding re-
sults on modules is to check that, the action of R is compatible with these group quotients and
homomorphisms. For example, the map π above was shown to be a group homomorphism in [1]
Chapter 3, but the abelian group M/N must be shown to be an R-module (i.e. to have an action
by R) and property (b) in the definition of a module homomorphism must be checked for π.
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Proposition ([1] §10.2 Proposition 3). Let R be a ring, M be an R-module and N be a submodule
of M . The (additive, abelian) quotient group M/N can be made into an R-module by defining an
action of elements of R by

r(x+N) := (rx) +N for all r ∈ R, x+N ∈M/N.

The natural projection map π :M �M/N defined by π(x) := x+N is an R-module homomor-
phism with kernel N .

Proof. Based on the results on quotient groups ([1] §3.1 Propositions 5 & 7) we only need to check
that

• the action of the ring element r on the coset x+N is well defined,

• the axioms 2(a) ∼ 2(d) for an R-module hold for the action of R on M/N , and

• the group homomorphism π is a module homomorphism, i.e., π(rm) = rπ(m).

All the isomorphism theorems stated for groups also hold for R-modules. The proofs are
similar to that of the proposition above in that they begin by invoking the corresponding theorem
for groups and then prove that the group homomorphisms are also R-module homomorphisms.

Theorem ([1] §10.2 Theorem 4(1), the First Isomorphism Theorem for Modules).
Let R be a ring, M,N be R-modules and let φ :M → N be an R-module homomorphism. Then

M/ kerφ ∼= φ(M).

Theorem ([1] §10.2 Theorem 4(2), the Second Isomorphism Theorem). Let R be a ring, A,B be
submodules of the R-module M . Define the sum of A and B to be the set

A+B := {a+ b | a ∈ A, b ∈ B}.

Then A+B is also a submodule (it is the smallest submodule which contains both A and B), and

(A+B)/B ∼= A/(A ∩B).

Theorem ([1] §10.2 Theorem 4(3)(4), the Third Isomorphism Theorem). Let R be a ring, N be a
submodule of the R-module M . Then there is a bijection

{A : a submodule of M s.t. A ⊇ N} ←→ {A/N : a submodule of M/N} .

The correspondence is given by

A 7→ A/N for all A ⊇ N.

This correspondence commutes with the processes of taking sums and intersections; and

(M/N)/(A/N) ∼= M/A.

2 Direct sums and free modules
As in the preceding sections the term “module” will mean “left module”.
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2.1 Direct sums
Let R be a ring with 1 and let n ∈ Z>0. Following the example about affine spaces over a field,
define

Rn := {(r1, r2, . . . , rn) | ri ∈ R for all i}.

MakeRn into anR-module by componentwise addition and multiplication by elements of R in the
same manner as when R was a field. The module Rn is called the free module of rank n over R.

An obvious submodule of Rn is given by the ith component, namely the set of n-tuples with
arbitrary ring elements in the ith component and zeros in the jth component for all j ̸= i. This
submodule is isomorphic to R. One easily checks that for each i ∈ {1, . . . , n} the projection map

πi : R
n � R by πi(r1, . . . , rn) := ri

is a surjective R-module homomorphism with kernel equal to the submodule of n-tuples which
have a zero in position i.

In general, letM1, . . . ,Mk be a collection ofR-modules. The set of k-tuples (m1,m2, . . . ,mk)
where mi ∈Mi with addition and action of R defined componentwise is called the direct product
or the (external) direct sum of M1, . . . ,Mk, denoted M1 × · · · ×Mk or M1 ⊕ · · · ⊕Mk.

It is evident that the direct product of a collection of R-modules is again an R-module. The
direct product and direct sum of an infinite number of modules (which are different in general) are
defined in [1] §10.3 Exercise 20.

Analogous to the direct product of groups, the next proposition indicates when a module is
isomorphic to the direct product of some of its submodules.

Proposition ([1] §10.3 Proposition 5, the internal direct sum). Let N1, N2, . . . , Nk be submodules
of the R-module M . The sum of N1, . . . , Nk is the set of all finite sums of elements from the sets
Ni:

N1 + · · ·+Nk := {a1 + a2 + · · ·+ ak | ai ∈ Ni for all i}.

Then TFAE (the following are equivalent):

(1) The map π : N1 × · · · ×Nk →M defined by

(a1, a2, . . . , ak) 7→ a1 + a2 + · · ·+ ak

is an injective homomorphism (of R-modules) and N1 × · · · ×Nk
∼= N1 + · · ·+Nk.

(2) Nj ∩ (N1 + · · ·+ N̂j + · · ·+Nk) = 0 for all j ∈ {1, 2, . . . , k}.

(3) Every x ∈ N1 + · · ·+Nk can be written uniquely in the form a1 + a2 + · · ·+ ak with ai ∈ Ni.

If an R-module M = N1+ · · ·+Nk is the sum of submodules N1, N2, . . . , Nk of M satisfying
the equivalent conditions of the proposition above, then M is said to be the (internal) direct sum
of N1, . . . , Nk, written M = N1 ⊕ · · · ⊕Nk.

Part (1) of the above proposition is the statement that the internal direct sum of N1, N2, . . . , Nk

is isomorphic to their external direct sum, which is the reason we identify them and use the same
notation for both.

Part (3) of the proposition says that, M = N1 ⊕ · · · ⊕ Nk is equivalent to the assertion that
every element m of M can be written uniquely as a sum of elements m = a1 + a2 + · · ·+ ak with
ai ∈ Ni.
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2.2 Generation of modules
Definition. Let R be a ring with 1, and M be an R-module. A submodule N of M (possibly
N =M ) is cyclic if N is generated by one element, i.e., there exists an element a ∈M such that

N = Ra = {ra | r ∈ R}.

If N is a submodule of M (possibly N =M ) and

N = RA := {r1a1 + · · ·+ rkak | r1, . . . , rk ∈ R, a1, . . . , ak ∈ A, k ∈ Z>0}

(where by convention RA := {0} if A = ∅) for some subset A of M , we call A a set of generators
or generating set for N , and we say N is the submodule of M generated by A.

A submodule N of M (possibly N = M ) is finitely generated if there is some finite subset
A = {a1, a2, . . . , an} of M such that N = RA, that is, if N is generated by some finite subset. In
this case we shall write Ra1 + Ra2 + · · · + Ran for RA. Note that cyclic modules are, a fortiori,
finitely generated.

Note that these definitions do not require that the ring R contain a 1, however this condition
ensures that A is contained in RA. It is easy to see that for any subset A of M , RA is indeed a
submodule of M and is the smallest submodule of M which contains A.

In particular, for submodules N1, . . . , Nn of M , N1+ · · ·+Nn is just the submodule generated
by the set N1∪ · · · ∪Nn and is the smallest submodule of M containing Ni for all i. If N1, . . . , Nn

are generated by sets A1, . . . , An respectively, then N1 + · · ·+Nn is generated by A1 ∪ · · · ∪ An.

Example. Let R = Z and let M be any R-module, that is, any abelian group.
If a ∈M , then Za is just the cyclic subgroup ⟨a⟩ of M generated by a.
More generally, M is generated as a Z-module by a set A if and only if M is generated as a

group by A (that is, the action of ring elements in this instance produces no elements that cannot
already be obtained from A by addition and subtraction).

The definition of finitely generated for Z-modules is identical to that for abelian groups.

Example. Let R be a ring with 1 and let M be the (left) R-module R itself.
Note that R is a finitely generated, in fact cyclic, R-module because R = R1.
Recall that the submodules of R are precisely the left ideals of R, so saying I is a cyclic R-

submodule of the left R-module R is the same as saying I is a principal ideal of R. Also, saying I
is a finitely generated R-submodule of R is the same as saying I is a finitely generated ideal.

When R is a commutative ring we often write (A) := RA = AR or (a) := Ra = aR for
the submodule (ideal) generated by A or a respectively. Thus a Principal Ideal Domain is a
(commutative) integral domain R with identity in which every R-submodule of R is cyclic.

Submodules of a finitely generated module need not be finitely generated: take M to be the
cyclic R-module R itself where R = F [x1, x2, x3, . . .] is the polynomial ring in infinitely many
variables with coefficients in some field F . The submodule (i.e., 2-sided ideal) generated by
{x1, x2, . . .} cannot be generated by any finite set (note that one must show that no finite subset of
this ideal will generate it).

The process of generating submodules of an R-module M by taking subsets A of M and
forming all finite “R-linear combinations” of elements of A will be our primary way of producing
submodules (this notion is perhaps familiar from vector space theory where it is referred to as
taking the span of A).

Exercise ([1] §10.3 Exercise 9). Let R be a ring. A nonzero R-module M is said to be irreducible
(or simple) if its only submodules are 0 and M ; otherwise M is called reducible. Show that M is
irreducible if and only if M ̸= 0 and M is a cyclic module with any nonzero element as generator.
Determine all the irreducible Z-modules.

10



2.3 Free modules
Let R be a ring with 1 and let M = Rn be the free module of rank n over R. Then M is the
external direct sum of n copies of R. For each i ∈ {1, 2, . . . , n} let ei = (0, 0, . . . , 0, 1, 0, . . . , 0),
where the 1 appears in position i. Since

(s1, s2, . . . , sn) =
n∑

i=1

siei,

it is clear that M is generated by {e1, e2, . . . , en}, and

Rn = R⊕R⊕ · · · ⊕R (external direct sum)
= Re1 ⊕Re2 ⊕ · · · ⊕Ren (internal direct sum).

In general, an R-module F is said to be free on the subset A of F if for every nonzero element
x of F , there exist unique nonzero elements r1, r2, . . . , rn of R and unique a1, a2, . . . , an in A such
that x = r1a1 + r2a2 + · · · + rnan for some n ∈ Z>0. In this situation we say A is a basis or set
of free generators for F . If R is a commutative ring the cardinality of A is called the rank of F .

Remark. One should be careful to note the difference between the uniqueness property of direct
sums ([1] §10.3 Proposition 5(3)) and the uniqueness property of free modules. Namely, in the
direct sum of two modules, say N1⊕N2, each element can be written uniquely as n1+n2; here the
uniqueness refers to the module elements n1 and n2. In the case of free modules, the uniqueness is
on the ring elements as well as the module elements.

For example, if R = Z and N1 = N2 = Z/2Z, then each element of N1 ⊕ N2 has a unique
representation in the form n1+n2 where each ni ∈ Ni; however n1 (for instance) can be expressed
as n1 or 3n1 or 5n1 . . . etc., so each element does not have a unique representation in the form
r1a1 + r2a2, where r1, r2 ∈ R, a1 ∈ N1 and a2 ∈ N2. Thus Z/2Z⊕ Z/2Z is not a free Z-module
on the generating set {(1, 0), (0, 1)}. Similarly, it is not free on any set.

Theorem ([1] §10.3 Theorem 6). (1) For any set A there is a free R-module F (A) on the set A.

(2) (The universal property) If M is any R-module and φ : A→M is any map of sets, then there
is a unique R-module homomorphism φ̃ : F (A) → M such that φ̃(a) = φ(a) for all a ∈ A,
that is, the following diagram commutes.

A

φ
""F

FF
FF

FF
FF
� � ι // F (A)

φ̃
��

M

If F1 and F2 are free modules on the same set A, there is a unique isomorphism between F1

and F2 which is the identity map on A.

(3) When A = {a1, a2, . . . , an} is a finite set, F (A) = Ra1 ⊕Ra2 ⊕ · · · ⊕Ran ∼= Rn.

Example. When R = Z, the free module on a set A is called the free abelian group on A.
If |A| = n, F (A) is called the free abelian group of rank n and is isomorphic to Z⊕ · · · ⊕ Z
(n times).

Proof of the universal property. Let F (A) = {0} if A = ∅. If A is nonempty let F (A) be the
collection of all set functions f : A→ R such that f(a) = 0 for all but finitely many a ∈ A. Make
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F (A) into an R-module by pointwise addition of functions and pointwise multiplication of a ring
element times a function, i.e.,

(f + g)(a) := f(a) + g(a) and (rf)(a) = r(f(a))

for all a ∈ A, r ∈ R and f, g ∈ F (A). It is an easy matter to check that all the R-module axioms
hold (the details are omitted).

Identify A as a subset of F (A) by a 7→ fa, where fa is the (characteristic) function which is
1 at a and zero elsewhere. We can, in this way, think of F (A) as all finite R-linear combinations
of elements of A by identifying each function f with the sum r1a1 + r2a2 + · · · + rnan, where
ri := f(ai) and f takes on the value zero at all other elements of A. Moreover, each element of
F (A) has a unique expression as such a formal sum.

To establish the universal property of F (A), suppose φ : A→M is a map of the set A into the
R-module M . Define φ̃ : F (A)→M by

φ̃ :
n∑

i=1

riai 7→
n∑

i=1

riφ(ai).

By the uniqueness of the expression for the elements of F (A) as linear combinations of the ai
we see easily that φ̃ is a well defined R-module homomorphism (the details are omitted). By
definition, the restriction of φ̃ to A equals φ. Finally, since F (A) is generated by A, once we know
the values of an R-module homomorphism on A its values on every element of F (A) are uniquely
determined, so φ̃ is the unique extension of φ to all of F (A).

If F is a free R-module with basis A, we shall often (particularly in the case of vector spaces)
define R-module homomorphisms from F into other R-modules simply by specifying their values
on the elements of A and then saying “extend by linearity”.

Exercise ([1] §10.3 Exercise 13 & 14). LetR be a commutative ring with 1, M be a leftR-module,
and F be the free R-module of rank n. Prove that

HomR(F,R) ∼= F and HomR(F,M) ∼= M × · · · ×M (n times).

3 Tensor products of modules

3.1 Bimodules
In this section we study the tensor product of two modules M and N over a ring R (not necessarily
commutative) containing 1. We first consider the general construction of M ⊗R N as an abelian
group, after which we shall return to the question of when this abelian group can be given a module
structure.

Definition. Suppose that N is a left R-module and that M is a right R-module. The quotient of
the free Z-module on the set M ×N by the subgroup generated by all elements of the form

(m1 +m2, n)− (m1, n)− (m2, n),

(m,n1 + n2)− (m,n1)− (m,n2), and
(mr, n)− (m, rn),

(10.6)

for m,m1,m2 ∈M , n, n1, n2 ∈ N and r ∈ R is an abelian group, denoted by M ⊗RN , or simply
M ⊗N if the ring R is clear from the context, and is called the tensor product of M and N over
R.
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The elements of M ⊗R N are called tensors, and the coset, m ⊗ n, of (m,n) in M ⊗R N is
called a simple tensor. We have the relations

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n,
m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2, and

(mr)⊗ n = m⊗ (rn).

(10.7)

Every tensor can be written (non-uniquely in general) as a finite sum of simple tensors.

Let S be any ring with 1 and we try to equip M ⊗R N with a left S-module structure. This
involves defining s(m⊗ n), i.e., the action of a ring element s ∈ S on a tensor m⊗ n in M ⊗RN .
One possible approach is to give M a left S-module structure so that we can define s(m ⊗ n) :=
(sm) ⊗ n. However, we must ensure that this new module structure on M is compatible with its
existing right R-module structure. An abelian group M is called an (S,R)-bimodule if M is a left
S-module, a right R-module, and s(mr) = (sm)r for all s ∈ S, r ∈ R and m ∈M .

Example. Any ring S is an (S,R)-bimodule for any subring R with 1R = 1S by the associativity
of the multiplication in S.

More generally, if f : R → S is any ring homomorphism with f(1R) = 1S , then S can be
considered as a right R-module with the action s · r := sf(r), and with respect to this action S
becomes an (S,R)-bimodule.

In particular, the quotient ring R/I is an (R/I,R)-bimodule (with respect to the canonical
projection homomorphism R � R/I), where I is an ideal (two-sided) in the ring R. This is also
easy to see directly.

Example. Suppose that R is a commutative ring. Then a left (respectively, right) R-module M
can always be given the structure of a right (respectively, left) R-module by defining mr := rm
(respectively, rm := mr), for all m ∈ M and r ∈ R, and this makes M into an (R,R)-bimodule,
which is called the standard R-module structure on M .

Suppose now that N is a left R-module and M is an (S,R)-bimodule. Then the (S,R)-
bimodule structure on M implies that

s

(∑
finite

mi ⊗ ni

)
:=
∑
finite

(smi)⊗ ni (10.8)

gives a well defined action of S under which M ⊗R N is a left S-module. (Note that the universal
property may be used to give an alternate proof that (10.8) is well defined, replacing the direct
calculations on the relations defining the tensor product.) By a completely parallel argument, if
M is a right R-module and N is an (R,S)-bimodule, then the tensor product M ⊗R N has the
structure of a right S-module, where (

∑
mi ⊗ ni)s :=

∑
mi ⊗ (nis).

Example. Suppose that M is a right R-module and that N is a left R-module. It is equivalent
to say that M is a (Z, R)-bimodule and N is an (R,Z)-bimodule. The tensor product M ⊗R N ,
therefore, is a (Z,Z)-bimodule, which happens to be a standard Z-module (i.e. an abelian group).

The tensor product of two vector spaces (of finite dimensional) could be described by its basis
directly. But when considering the tensor product over any ring R, there may be interesting results
to explore, since an R-module may have a torsion part.
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Example. We show that Q/Z⊗Z Q/Z = 0.
In Q/Z⊗Z Q/Z a simple tensor has the form (a/b mod Z)⊗ (c/d mod Z) for some rational

numbers a/b and c/d. Then

(
a

b
mod Z)⊗ (

c

d
mod Z) = d(

a

bd
mod Z)⊗ (

c

d
mod Z)

= (
a

bd
mod Z)⊗ d( c

d
mod Z) = (

a

bd
mod Z)⊗ (c mod Z) = (

a

bd
mod Z)⊗ 0 = 0.

The last equality is because that m⊗ 0 = 0 in any tensor product M ⊗RN , noticing that m⊗ 0 =
m⊗ (0 + 0) = m⊗ 0 +m⊗ 0. Likewise 0⊗ n = 0.

Exercise ([1] §10.4 Exercises 3 & 4). Show that Q ⊗Q Q and Q ⊗Z Q are isomorphic as left
Q-modules, but C⊗C C and C⊗R C are not isomorphic left R-modules.

Before we explain the next example, first we introduce the universal property of the tensor
product of modules.

Theorem ([1] §10.4 Theorem 10). Suppose R is a ring with 1, M is a right R-module, N is a left
R-module, and let L be an abelian group (written additively).

A map φ :M ×N → L is called R-balanced or middle linear with respect to R if

φ(m1 +m2, n) = φ(m1, n) + φ(m2, n),

φ(m,n1 + n2) = φ(m,n1) + φ(m,n2),

φ(mr, n) = φ(m, rn),

for all m,m1,m2 ∈ M , n, n1, n2 ∈ N , and r ∈ R. (In addition, if R is commutative, L is a left
R-module, M is given the standard R-module structure, and φ(mr, n) = φ(m, rn) = rφ(m,n),
we call φ an R-bilinear map.) Then

(1) the map ι :M ×N →M ⊗R N defined by (m,n) 7→ m⊗ n is R-balanced;

(2) if φ̃ : M ⊗R N → L is any group homomorphism from M ⊗R N to an abelian group L, then
the composite map φ̃ ◦ ι is an R-balanced map from M ×N to L;

(3) (the universal property) for any abelian group L and any R-balanced map φ : M × N → L,
there is a unique group homomorphism φ̃ : M ⊗R N → L such that φ factors through ι, i.e.,
φ = φ̃ ◦ ι.

Equivalently, the correspondence φ↔ φ̃ in the commutative diagram

M ×N

φ
''NN

NNN
NNN

NNN
NN

ι // M ⊗R N

φ̃
��

L

establishes a bijection{
R-balanced maps
φ :M ×N → L

}
←→

{
group homomorphisms
φ̃ :M ⊗R N → L

}
.
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Example. We have Z/(2)⊗Z Z/(3) = 0, since 3a = a for a ∈ Z/(2) so that

a⊗ b = 3a⊗ b = a⊗ 3b = a⊗ 0 = 0

and every simple tensor is reduced to 0. In particular 1 ⊗ 1 = 0. It follows that there are no
nonzero balanced (or bilinear) maps from Z/2Z× Z/3Z to any abelian group.

Consider the tensor product Z/(2) ⊗Z Z/(2), which is generated as an abelian group by the
elements 0⊗ 0 = 1⊗ 0 = 0⊗ 1 = 0 and 1⊗ 1. In this case 1⊗ 1 ̸= 0 since, for example, the map
Z/(2)×Z/(2)→ Z/(2) defined by (a, b) 7→ ab is clearly nonzero and linear in both a and b. Since
2(1⊗ 1) = 2⊗ 1 = 0⊗ 1 = 0, the element 1⊗ 1 is of order 2. Hence Z/(2)⊗Z Z/(2) ∼= Z/(2).

Exercise. Show that Z/(m) ⊗Z Z/(n) ∼= Z/(GCD(m,n)), where GCD(m,n) is the greatest
common divisor of the integers m and n.

3.2 Extension of scalars
Suppose that the ring R is a subring of the ring S. Throughout this section, we always assume
that 1R = 1S (this ensures that S is a unital R-module). If N is a left S-module, then N can also
be naturally considered as a left R-module since the elements of R (being elements of S) act on
N by assumption. More generally, if f : R → S is a ring homomorphism from R into S with
f(1R) = 1S (for example the injection map if R is a subring of S as above, or the natural map
R � R/I if I is a two sided ideal of R) then it is easy to see that N can be considered as an
R-module with rn := f(r)n for r ∈ R and n ∈ N . In this situation S can be considered as an
extension of the ring R and the resulting R-module is said to be obtained from N by restriction of
scalars from S to R.

Suppose now that R is a subring of S and we try to reverse this, namely we start with an R-
module N and attempt to define an S-module structure on N that extends the action of R on N to
an action of S on N . In general this is impossible, even in the simplest situation: the ring R itself
is an R-module but is usually not an S-module for the larger ring S. For example, Z is a Z-module
but it cannot be made into a Q-module (if it could, then 1

2
◦ 1 =: z would be an element of Z with

z + z = 1, which is impossible).
Although Z itself cannot be made into a Q-module, it is contained in a Q-module, namely Q

itself. Similarly the ring R can always be embedded as an R-submodule of the S-module S. This
raises the question of whether an arbitrary R-module N can be embedded as an R-submodule of
some S-module, or more generally, the question of what R-module homomorphisms exist from N
to S-modules.

Example. Suppose N is a nontrivial finite abelian group, say N = Z/2Z, and consider possible
Z-module homomorphisms (i.e. abelian group homomorphisms) of N into some Q-module.

A Q-module is just a vector space over Q, and every nonzero element in a vector space over Q
has infinite (additive) order. Since every element ofN has finite order, every element ofN must map
to 0 under such a homomorphism. In other words there are no nonzero Z-module homomorphisms
from this N to any Q-module, much less embeddings of N identifying N as a submodule of a
Q-module.

The two Z-modules Z and Z/2Z exhibit extremely different behaviors when we try to “extend
scalars” from Z to Q: the first module maps injectively into some Q-module, the second always
maps to 0 in a Q-module.

The tensor product S ⊗R N privides a structure of a left S-module for a general left R-module
N that is the “best possible” target in which to try to embed N . The module S ⊗R N is called the
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(left) S-module obtained by extension of scalars from the (left) R-module N . We shall also see
that this module determines all of the possible R-module homomorphisms of N into S-modules,
in particular determining when N is contained in some S-module (cf. [1] §10.4 Corollary 9). In
the case of R = Z and S = Q this construction will give us Q when applied to the module N = Z,
and will give us 0 when applied to the module N = Z/2Z.

Example (Extension of scalars for free modules). If N ∼= Rn is a free module of rank n over R,
then

S ⊗R R
n ∼= Sn

is a free module of rank n over S (cf. [1] §10.4 Corollary 18). In this case the module obtained
by extension of scalars contains (an isomorphic copy of) the original R-module N . For example,
Q⊗Z Zn ∼= Qn, and Zn is a subgroup of the abelian group Qn.

Another special case of this example is that, when F is a subfield of the field K and V is an
n-dimensional vector space over F (i.e. V ∼= F n), K ⊗F V ∼= Kn is a vector space over the
larger field K of the same dimension, and the original vector space V is contained in K ⊗F V as
an F -vector subspace.

Example. Let R = Z, S = Q and let A be a finite abelian group of order n. In this case the
Q-module Q⊗Z A obtained by extension of scalars from the Z-module A is 0. To see this, for any
simple tensor q ⊗ a we can write the rational number q as (q/n)n. Then since na = 0 in A by
Lagrange’s Theorem, we have

q ⊗ a = (
q

n
· n)⊗ a =

q

n
⊗ (na) =

q

n
⊗ 0 = 0.

It follows that Q⊗Z A = 0.
In particular, the map ι : A→ S ⊗R A is the zero map. The universal property of extension of

scalars shows again that, any homomorphism of a finite abelian group into a rational vector space
is the zero map. In particular, if A is nontrivial, then the original Z-module A is not contained in
the Q-module obtained by extension of scalars.

Theorem ([1] §10.4 Theorem 8 & Corollary 9). Let R be a subring of S with 1R = 1S , N be a left
R-module, and ι be the R-module homomorphism defined by ι(n) := 1⊗ n.

(1) (the universal property) For any left S-module L (hence also a left R-module) and any R-
module homomorphism φ : N → L, there is a unique S-module homomorphism φ̃ : S⊗RN →
L such that φ factors through ι, i.e., φ = φ̃ ◦ ι and the diagram

N

φ
$$J

JJJ
JJJ

JJJ
J

ι // S ⊗R N

φ̃
��

L

commutes.

(2) N/ ker ι is the unique largest quotient of N that can be embedded in any S-module. In partic-
ular, N can be embedded as an R-submodule of some left S-module if and only if ι is injective
(in which case N is isomorphic to the R-submodule ι(N) of the S-module S ⊗R N ).

Example. For any ring R and any left R-module N we have R⊗RN ∼= N (so “extending scalars
from R to R” does not change the module). This follows by taking φ to be the identity map from
N to itself (and S = R) in the above theorem: ι is then an isomorphism with inverse isomorphism
given by φ̃.

In particular, if A is any abelian group (i.e., a Z-module), then Z⊗Z A = A.

16



3.3 Change of base (a generalization)
Let f : R → S be a ring homomorphism with f(1R) = 1S . Then s · r := sf(r) gives S the
structure of a right R-module with respect to which S is an (S,R)-bimodule. Then for any left
R-module N , the resulting tensor product S ⊗R N is a left S-module obtained by changing the
base from R to S. This gives a slight generalization of the notion of extension of scalars (where R
was a subring of S).

Example. Let f : R → S be a ring homomorphism with f(1R) = 1S . One can show that
S ⊗R R ∼= S as left S-modules.

• The map φ : S×R→ S defined by (s, r) 7→ sr (where sr := sf(r) by definition of the right
R-action on S), is an R-balanced map.

• The R-balanced map φ induces, via the universal property, an S-module homomorphism
φ̃ : S ⊗R R→ S with φ̃(s⊗ r) = sr.

• The map φ̃′ : S → S ⊗R R with s 7→ s⊗ 1 is an S-module homomorphism that is inverse to
φ̃.

Exercise ([1] §10.4 Exercise 24). Prove that the extension of scalars from Z to the Gaussian
integers Z[i] of the ring R is isomorphic to C as a ring: Z[i] ⊗Z R ∼= C as rings (see [1] §10.4
Proposition 21 for the definition of multiplication in the tensor product of two R-algebras).

Exercise ([1] §10.4 Exercise 25). Let R be a subring of the commutative ring S and let x be an
indeterminate over S. Prove that S[x] and S ⊗R R[x] are isomorphic as S-algebras.

Let R be a ring (not necessarily commutative), let I be a two sided ideal in R, and let N be a
leftR-module. Then as previously mentioned,R/I is an (R/I,R)-bimodule, so the tensor product
R/I ⊗R N is a left R/I-module. This is an example of “extension of scalars” with respect to the
natural projection homomorphism R � R/I .

Proposition. Define

IN :=

{∑
finite

aini

∣∣∣∣∣ ai ∈ I, ni ∈ N

}
.

Then IN is a left R-submodule of N ([1] §10.1 Exercise 5), and

(R/I)⊗R N ∼= N/IN

as left R-modules.

Proof. Exercise (cf. [1] §10.4 p.370).

Example. As an example, let R = Z with ideal I = (m) and let N be the Z-module Z/(n). Then

IN = m(Z/nZ) = (mZ+ nZ)/nZ = GCD(m,n)Z/nZ.

Then N/IN ∼= Z/GCD(m,n)Z and we recover the isomorphism

Z/mZ⊗Z Z/nZ ∼= Z/GCD(m,n)Z

of an previous example.
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3.4 When the base is commutative
Proposition ([1] §10.4 Corollary 15). Suppose R is commutative and M , N , and L are left R-
modules. Then

(M ⊗N)⊗ L ∼= M ⊗ (N ⊗ L)

as R-modules for the standard R-module structures on M , N and L.

Proposition ([1] §10.4 Corollary 19). Let R be a commutative ring and let M ∼= Rs and N ∼= Rt

be free R-modules with bases m1, . . . ,ms and n1, . . . , nt, respectively. Then M ⊗R N is a free
R-module of rank st, with basis mi ⊗ nj , 1 ≤ i ≤ s and 1 ≤ j ≤ t, i.e.,

Rs ⊗R R
t ∼= Rst.

More generally, the tensor product of two free modules of arbitrary rank over a commutative ring
is free.

Proposition ([1] §10.4 Proposition 20). Suppose R is a commutative ring and M , N are left R-
modules, considered with the standard R-module structures. Then there is a unique R-module
isomorphism

M ⊗R N ∼= N ⊗R M

mapping m⊗ n to n⊗m.

Proposition ([1] §10.4 Proposition 21). Let R be a commutative ring and let A and B be R-
algebras. Then the multiplication (a⊗ b)(a′ ⊗ b′) := aa′ ⊗ bb′ is well defined and makes A⊗R B
into an R-algebra.

Other related exercises in [1]
§10.1 5 8 10 11 18 19 20 21
§10.2 3 5 6 8 13
§10.3 3 4 8 10 11 15 18 23 25
§10.4 2 6 7 10 15 16 18 20 27
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