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1 Basic theory of field extensions

1.1 Characteristics
Exercise ([1] §7.3 Exercise 26). The characteristic of a ring R with identity 1R = 1 ̸= 0, denoted
char(R), is the smallest positive integer n such that 1 + 1 + · · ·+ 1 = 0 (n times) in R; if no such
integer exists the characteristic of R is said to be 0. For example, Z/nZ is a ring of characteristic
n for each positive integer n and Z is a ring of characteristic 0.

(a) Prove that the map Z → R defined by

k 7→ k · 1R :=


1 + 1 + · · ·+ 1 (k times) if k > 0

0 if k = 0

−1− 1− · · · − 1 (|k| times) if k < 0.

is a ring homomorphism whose kernel is nZ, where n is the characteristic of R (this explains
the use of the terminology “characteristic 0” instead of the archaic phrase “characteristic ∞”
for rings in which no sum of 1’s is zero).

(b) Show that mn ·1R = (n ·1R)(m ·1R) for positive integers m and n, and that the characteristic
of an integral domain is either 0 or a prime p.

(c) Prove that if p is a prime and if R is a commutative ring of characteristic p, then

(a+ b)p = ap + bp for all a, b ∈ R.
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(d) Show that the characteristic of an integral domain is the same as that of its field of fractions.

Exercise (b) shows that, the characteristic of an integral domain is either 0 or a prime p. Let
1F denotes the identity of F . Exercise (a) along with the First Isomorphism Theorem shows that,
F contains a subfield isomorphic either to Q (the field of fractions of Z) or to Fp := Z/pZ (the
field of fractions of Z/pZ) depending on the characteristic of F , and in either case is the smallest
subfield of F containing 1F (the field generated by 1F in F ). This subfield is called the prime
subfield of F .

One can verify that, if char(F ) = p then for any α ∈ F ,

p · α := α + α + · · ·+ α︸ ︷︷ ︸
p times

= 0.

We shall usually denote the identity 1F of a field F simply by 1. Then in a field of characteristic p,
one has p · 1 = 0, frequently written simply p = 0 (for example, 2 = 0 in a field of characteristic
2). It should be kept in mind, however, that this is a shorthand statement — the element “p” is
really p · 1F and is not a distinct element in F .

1.2 Field extensions
Any homomorphism φ : F → F ′ of fields is either identically 0 or is injective, so that the image
of φ is either 0 or isomorphic to F . This follows from the fact that the only ideals of a field F are
0 and F .

If K is a field containing the subfield F , then K is said to be an extension field (or simply an
extension) of F , denoted K/F or by the diagram

K

F

In particular, every field F is an extension of its prime subfield. The field F is sometimes called
the base field of the extension. (The notation K/F for a field extension is a shorthand for “K over
F ” and is not the quotient of K by F .)

If K/F is any extension of fields, then the multiplication defined in K makes K into a vector
space over F . In particular every field F can be considered as a vector space over its prime field.
The degree (or relative degree or index) of a field extension K/F , denoted [K : F ], is the
dimension of K as a vector space over F (i.e. [K : F ] := dimF K). The extension is said to be
finite if [K : F ] is finite and is said to be infinite otherwise.

Exercise ([1] §13.2 Exercise 1). Let F be a finite field of characteristic p. Prove that |F| = pn for
some positive integer n.

Suppose F is a subfield of a field K and α ∈ K is an element of K. Then the collection of
subfields of K containing both F and α is nonempty (K is such a field, for example). Since the
intersection of subfields is again a subfield, it follows that there is a unique minimal subfield of K
containing both F and α (the intersection of all subfields with this property). Let α, β, · · · ∈ K be
a collection of elements of K. Then the smallest subfield of K containing both F and the elements
α, β, . . ., denoted F (α, β, . . .), is called the field generated by α, β, . . . over F .

If the field K is generated by a single element a over F , K = F (α), then K is said to be a
simple extension of F and the element α is called a primitive element for the extension.
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Lemma ([1] §13.2 Lemma 16). F (α, β) = (F (α))(β), i.e., the field generated over F by α and
β, is the field generated by β over the field F (α) generated by α. Pictorially,
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1.3 Simple extensions
An important class of field extensions are those obtained by trying to solve equations over a given
field F . For example, if F = R is the field of real numbers, then the simple equation x2 + 1 = 0
does not have a solution in F . The question arises whether there is some larger field containing R
in which this equation does have a solution, and it was this question that led Gauss to introduce the
complex numbers C = R + Ri, where i is defined so that i2 + 1 = 0. One then defines addition
and multiplication in C by the usual rules familiar from elementary algebra and checks that in fact
C so defined is a field, i.e., it is possible to find an inverse for every nonzero element of C.

Given any field F and any polynomial p(x) ∈ F [x] one can ask a similar question: does there
exist an extension K of F containing a solution of the equation p(x) = 0 (i.e., containing a root of
p(x))? Note that we may assume here that the polynomial p(x) is irreducible in F [x], since a root
of any factor of p(x) is certainly a root of p(x) itself.

Recall that F [x] is an Euclidean Domain and hence a Principal Ideal Domain; F [x]/(f(x)) is
a field if and only if f(x) is irreducible (cf. [1] §9.2 Exercise 3).

Theorem ([1] §13.1 Theorem 3). Let F be a field and let p(x) ∈ F [x] be an irreducible polyno-
mial. Then there exists a field K containing an isomorphic copy of F in which p(x) has a root.
(Identifying F with this isomorphic copy shows that there exists an extension of F in which p(x)
has a root.)

Proof. Consider the quotient
K := F [x]/(p(x))

of the polynomial ring F [x] by the ideal generated by p(x). Since by assumption p(x) is an
irreducible polynomial in the P.I.D. (Principal Ideal Domain) F [x], K is actually a field.

The canonical projection π : F [x] → F [x]/(p(x)) restricted to F ⊂ F [x] gives a homomor-
phism φ = π|F : F → K, which is not identically 0 since it maps the identity 1 of F to the identity
1 of K. Hence φ(F ) ∼= F is an isomorphic copy of F contained in K. We identify F with its
isomorphic image in K and view F as a subfield of K.

If x̄ := π(x) = x (mod p(x)) denotes the image of x in the quotient K, then

p(x̄) = p(x) (since π is a homomorphism)
= p(x) (mod p(x)) in F [x]/(p(x))

= 0 in F [x]/(p(x))

so that K does indeed contain a root of the polynomial p(x). Then K is an extension of F in which
the polynomial p(x) has a root.
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Example. Let F = Q and p(x) = x3 − 2, irreducible over Q by Eisenstein’s Criterion. Clearly C
is an extension of Q containing “all” solutions of the equation x3 − 2 = 0:

x =
3
√
2,

3
√
2ω,

3
√
2ω2, where ω = ζ3 :=

−1 +
√
3i

2
.

In particular, Q( 3
√
2) (the smallest subfield of C containing 3

√
2) is an extension of Q in which

p(x) = x3 − 2 has a root. But by the proof of the above theorem, we know K := Q[x]/(x3 − 2) is
also an extension of Q containing (at least one) solution of the equation x3 − 2 = 0; the solution
in K is denoted by x̄ := x (mod x3 − 2). Later in this section we will show that K is isomorphic
to Q( 3

√
2) (cf. [1] §13.1 Theorem 6).

Theorem ([1] §13.1 Theorem 4). Let p(x) ∈ F [x] be an irreducible polynomial of degree n over
the field F and let K be the field F [x]/(p(x)). Let θ := x mod (p(x)) ∈ K. Then the elements

1, θ, θ2, . . . , θn−1

are a basis for K as a vector space over F , so the degree of the extension is n, i.e., [K : F ] = n.
Hence

K = F (θ) = {a0 + a1θ + a2θ
2 + · · ·+ an−1θ

n−1 | a0, a1, . . . , an−1 ∈ F}
consists of all polynomials of degree < n in θ.

Proof. Exercise.

Example. Let F = Fp(t) be the field of rational functions in the variable t over the finite field Fp.
Let p(x) = xp − t ∈ F [x]. Then p(x) is irreducible (it is Eisenstein at the prime (t) in Fp[t]). If we
denote a root by θ, the corresponding degree p field extension F (θ) consists of the elements

{a0(t) + a1(t)θ + · · ·+ ap−1(t)θ
p−1 | a0(t), a1(t), . . . , ap−1(t) ∈ F = Fp(t)}

where the coefficients ai(t)’s are rational functions in t with coefficients in Fp and where θp = t.
This is an example of an extension over an infinite field with prime characteristic.

Example. Take F = F2, the finite field with two elements, and p(x) = x2 + x + 1, which is
irreducible over F2 (if not, then p(x) has a factor of degree one, and hence has a root in F2, but
neither 0 nor 1 ∈ F2 is a root of p(x)). Here we obtain a degree 2 extension of F2:

F2[x]/(x
2 + x+ 1) = {a+ bθ | a, b ∈ F2}

where θ2 = −θ − 1 = θ + 1. Multiplication in this field F2(θ) (which contains four elements
because [F2(θ) : F2] = deg p(x) = 2) is defined by

(a+ bθ)(c+ dθ) = ac+ (ad+ bc)θ + bdθ2

= ac+ (ad+ bc)θ + bd(θ + 1)

= (ac+ bd) + (ad+ be+ bd)θ.

Exercise ([1] §13.2 Exercise 2). Construct a finite field containing 27 elements.

The above theorem provides an easy description of the elements of the field K = F [x]/(p(x))
as polynomials of degree < n in θ where θ is an element (in K) with p(θ) = 0. We may suppose
p(x) is monic (since its roots and the ideal it generates do not change by multiplying by a constant),
say p(x) = xn + pn−1x

n−1 + · · ·+ p1x+ p0. Then in K, since p(θ) = 0, we have

θn = −(pn−1θ
n−1 + · · ·+ p1θ + p0),
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i.e., θn is a linear combination of lower powers of θ. Multiplying both sides by θ and replacing the
θn on the right hand side by these lower powers again, we see that also θn+1 is a polynomial of
degree < n in θ. Similarly, any positive power of θ can be written as a polynomial of degree < n
in θ, hence any polynomial in θ can be written as a polynomial of degree < n in θ.

Example. Let F = Q and p(x) = x3 − 2. Denoting a root (in K = Q[x]/(x3 − 2)) of p(x) by
θ := x mod (p(x)), we obtain the field

Q[x]/(x3 − 2) = {a+ bθ + cθ2 | a, b, c ∈ Q} = Q(θ)

with θ3 = 2, an extension of degree 3.
To find the inverse of, say, 1 + θ in this field, we can proceed as follows: By the Euclidean

Algorithm in Q[x] there are polynomials a(x) and b(x) with

a(x)(1 + x) + b(x)(x3 − 2) = 1

(since p(x) = x3 − 2 is irreducible, it is relatively prime to every polynomial of smaller degree).
In the quotient field this equation implies that a(θ) is the inverse of 1 + θ. In this case, a simple
computation shows that we can take a(x) = 1

3
(x2 − x+ 1) (and b(x) = −1

3
), so that

(1 + θ)−1 =
1

3
(θ2 − θ + 1).

In particular,

(1 +
3
√
2)−1 =

1

3
((

3
√
2)2 − 3

√
2 + 1), (1 +

3
√
2ω)−1 =

1

3
((

3
√
2ω)2 − 3

√
2ω + 1).

The connection between the simple extension F (α) generated by α over F where α is a root
of some irreducible polynomial p(x) and the field F [x]/(p(x)) is provided by the following:

Theorem ([1] §13.1 Theorem 6). Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial
of degree n. Suppose K is an extension field of F containing a root α of p(x). Let F (α) denote the
subfield of K generated over F by α. Then

F (α) ∼= F [x]/(p(x)).

In particular,

F (α) = {a0 + a1α + a2α
2 + · · ·+ an−1α

n−1 | a0, a1, . . . , an−1 ∈ F} ⊆ K.

Proof. There is a natural homomorphism

φ : F [x] −→ F (α) ⊆ K

a(x) 7−→ a(α)

obtained by mapping F to F by the identity map and sending x to α and then extending so that the
map is a ring homomorphism (i.e., the polynomial a(x) in x maps to the polynomial a(α) in α).

Since p(α) = 0 by assumption, the element p(x) is in the kernel of φ, so we obtain an induced
homomorphism (also denoted φ)

φ : F [x]/(p(x)) −→ F (α).

But since p(x) is irreducible, the quotient on the left is a field, and φ is not the 0 map (it is the
identity on F , for example), hence φ is an isomorphism of the field on the left with its image.

Since this image is then a subfield of F (α) containing F and containing α, by the definition of
F (α) the map must be surjective, proving the theorem.
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As the above theorem indicates, the roots of an irreducible polynomial p(x) are algebraically
indistinguishable in the sense that the fields obtained by adjoining any root of an irreducible
polynomial are isomorphic. For example, the fields obtained by adjoining one of the three possible
(complex) roots of x3 − 2 = 0 to Q were all algebraically isomorphic: Q( 3

√
2) ∼= Q( 3

√
2ω) ∼=

Q[x]/(x3−2). The fields were distinguished not by their algebraic properties, but by whether their
elements were real, which involves continuous operations.

Exercise. Show that Q(
√
2) ̸∼= Q(

√
3).

1.4 Cyclotomic polynomials and extensions
Consider the polynomial xn − 1 over Q. The roots of this polynomial are called the nth roots of
unity. Over C there are n distinct solutions of the equation xn = 1, namely the elements

e2πi
k
n = cos

2πk

n
+ i sin

2πk

n

for k = 0, 1, . . . , n − 1. These points are given geometrically by n equally spaced points starting
with the point (1, 0) (corresponding to k = 0) on a circle of radius 1 in the complex plane.

The collection of nth roots of unity form a group of order n under multiplication. Obviously
this is a cyclic group, denoted µn, and it can be generated by e2πi/n. A generator of µn is called a
primitive nth root of unity.

Let ζn denote a primitive nth root of unity. (For example, over C we usually use ζn to denote
e2πi/n.) The other primitive nth roots of unity are then the elements ζn

a where 1 ≤ a < n is an
integer relatively prime to n, since these are the other generators for a cyclic group of order n.
In particular there are precisely φ(n) primitive nth roots of unity, where φ(n) denotes the Euler
totient function. The primitive roots of unity in C for some small values of n are:

..x .

y

.
O

. x.

y

.
O

. x.

y

.
O

.
ζ1 = ζ8

0 = ζ8
8

.

ζ8 =
√

2
2

+ i
√

2
2

.

ζ4 = ζ8
2

. ζ2 = ζ8
4

.
ζ1 = 1

.

ζ6 = 1+i
√

3
2

.

ζ3 = −1+i
√

3
2

.ζ2 .
ζ1

.

ζ5 =
√
5−1
4

+ i

√
10+2

√
5

4

The splitting field of xn − 1 over Q (the smallest extension over Q which contains all nth roots
of unity) is the field Q(ζn) and is called the cyclotomic field of nth roots of unity.

Determining the degree of this extension requires some analysis of the minimal polynomial of
ζn over Q. For example, when n = p is a prime, ζp is a root of the polynomial

Φp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

which is irreducible (since Φp(y+1) is Eisenstein). It follows that Φp(x) is the minimal polynomial
of ζp over Q, so that [Q(ζp) : Q] = p− 1.

In general, ζn satisfies the nth cyclotomic polynomial Φn(x), which is the polynomial whose
roots are the primitive nth roots of unity:

Φn(x) :=
∏
ζ∈µn

primitive

(x− ζ) =
∏

1≤a<n
GCD(a,n)=1

(x− ζn
a)

which is of degree φ(n).
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Example. Let n = 6. The roots of the polynomial x6 − 1 are precisely the 6th roots of unity so we
have the factorization

x6 − 1 =
5∏

i=0

(x− ζ6
i) = (x− ζ6

0)︸ ︷︷ ︸
Φ1(x)

· (x− ζ6
3)︸ ︷︷ ︸

Φ2(x)

· (x− ζ6
2)(x− ζ6

4)︸ ︷︷ ︸
Φ3(x)

· (x− ζ6
1)(x− ζ6

5)︸ ︷︷ ︸
Φ6(x)

.

Precisely we have

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1, Φ6(x) = x2 − x+ 1.

Moreover

x2 − 1 = Φ1(x)Φ2(x), x3 − 1 = Φ1(x)Φ3(x), x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x).

As shown in the example, grouping together the factors (x − ζn
i) where ζn

i is an element of
order d in µn (i.e., ζni is a primitive dth root of unity), we have the factorization

xn − 1 =
∏
d|n

∏
ζ∈µd

primitive

(x− ζ) =
∏
d|n

Φd(x).

(Note incidentally that comparing degrees gives the identity n =
∑

d|n φ(d).) One can show by
induction and by Gauss’ Lemma (cf. [1] §13.6 Lemma 40) that the cyclotomic polynomial Φn(x)
is a monic polynomial in Z[x].

Theorem ([1] §13.6 Theorem 41 & Corollary 42). The cyclotomic polynomial Φn(x) is an irre-
ducible monic polynomial in Z[x] of degree φ(n). Therefore [Q(ζn) : Q] = φ(n).

Exercise. We know the coefficients of Φp(x) are all 1 when p is a prime. Is it true that all the
coefficients of any cyclotomic polynomial are 0 and ±1?

2 Algebraic extensions

2.1 Algebraic and transcendental elements
Let F be a field and let K be an extension of F . The element α ∈ K is said to be algebraic over F
if α is a root of some nonzero polynomial f(x) ∈ F [x]. If α is not algebraic over F (i.e., is not the
root of any nonzero polynomial with coefficients in F ) then α is said to be transcendental over
F . The extension K/F is said to be algebraic if every element of K is algebraic over F .

Let α be algebraic over F . Then (cf. [1] §13.2 Proposition 9) there is a unique monic irre-
ducible polynomial mα,F (x) ∈ F [x] which has α as a root; a polynomial f(x) ∈ F [x] has α as a
root if and only if mα,F (x) divides f(x) in F [x]. The polynomial mα,F (x) (or just mα(x) if the
field F is understood) is called the minimal polynomial for α over F . The degree of mα(x) is
called the degree of α. By [1] §13.1 Theorem 6 we have

F (α) ∼= F [x]/(mα(x))

so that in particular
[F (α) : F ] = degmα(x) = degα,

i.e., the degree of α over F is the degree of the extension it generates over F . Moreover, a monic
polynomial over F with α as a root is the minimal polynomial for α over F if and only if it is
irreducible over F .
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Note that if α is algebraic over a field F then it is algebraic over any extension field L of F (if
f(x) having α as a root has coefficients in F then it also has coefficients in L). Moreover, mα,L(x)
divides mα,F (x) in L[x]. In particular, [L(α) : L] ≤ [F (α) : F ].

Example. 6
√
2 is algebraic over Q and it has minimal polynomial m 6√2,Q(x) = x6 − 2. But the

minimal polynomial of 6
√
2 over Q(

√
2) is m 6√2,Q(

√
2)(x) = x3 −

√
2.√

3 is algebraic over Q and it has minimal polynomial m√
3,Q(x) = x2 − 3. But the minimal

polynomial of
√
3 over Q(

√
2) is still m√

3,Q(
√
2)(x) = x2 −

√
3: we know that m√

3,Q(
√
2)(x)

divides m√
3,Q(x) = x2 −

√
3 so m√

3,Q(
√
2)(x) has degree 1 or 2; if degm√

3,Q(
√
2)(x) = 1 then√

3 ∈ Q(
√
2), i.e.

√
3 = a+ b

√
2 for some a, b ∈ Q, which is impossible (why).

In particular [Q( 6
√
2,
√
2) : Q(

√
2)] = [Q( 6

√
2) : Q(

√
2)] = 3 and [Q(

√
2,
√
3) : Q(

√
2)] = 2.

The next exercise gives an effective procedure for determining an equation of degree n (the
“characteristic polynomial”) satisfied by an element α in an extension of F of degree n, with
which one can compute its minimal polynomial.

Exercise ([1] §13.2 Exercises 19 & 20). Let K be an extension of F of degree n.

(a) For any α ∈ K prove that α acting by left multiplication on K is an F -linear transformation
of K.

(b) Prove that K is isomorphic to a subfield of the ring of n × n matrices over F , so the ring
Mn(F ) contains an isomorphic copy of every extension of F of degree ≤ n.

(c) Show that if the matrix of the linear transformation “multiplication by α” is A, then α is a
root of the characteristic polynomial for A.

(d) Find the monic polynomial of degree 3 satisfied by 3
√
2 and by 1 + 3

√
2 + 3

√
4.

2.2 Quadratic extensions
Let F be a field of characteristic ̸= 2, and let K be an extension of F of degree 2, [K : F ] = 2.
Let α be any element of K not contained in F . Then 1, α, α2 are linearly dependent over F , i.e., α
satisfies an equation of degree at most 2 over F . This equation cannot be of degree 1, since α is not
an element of F by assumption. It follows that the minimal polynomial of α is a monic quadratic

mα(x) = x2 + bx+ c, b, c ∈ F.

Since F $ F (α) ⊆ K and F (α) is already a vector space over F of dimension 2, we have
K = F (α).

The roots of this quadratic equation can be determined by the quadratic formula, which is valid
over any field of characteristic ̸= 2:

α =
−b±

√
b2 − 4c

2

(the reason for requiring the characteristic of F not be 2 is that we must divide by 2). Here b2 − 4c
is not a square in F since a is not an element of F and the symbol

√
b2 − 4c denotes a root of the

equation x2 − (b2 − 4c) = 0 in K. Note that here there is no natural choice of one of the roots —
the roots are algebraically indistinguishable.

Then F (α) = F (
√
b2 − 4c). It follows that any extension K of F of degree 2 is of the form

F (
√
D) where D is an element of F which is not a square in F , and conversely, every such

extension is an extension of degree 2 of F . For this reason, extensions of degree 2 of a field F are
called quadratic extensions of F .
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2.3 Finite extensions
Theorem ([1] §13.2 Proposition 12 & Corollary 13). If the extension K/F is finite, then it is
algebraic. In particular, the element α is algebraic over F if and only if the simple extension
F (α)/F is finite, if and only if F (α)/F is algebraic.

Proof. Let [K : F ] = n. Then, for any α ∈ K, the n + 1 elements 1, α, α2, . . . , αn of K are
linearly dependent over F , say

b0 + b1α + b2α
2 + · · ·+ bnα

n = 0

with b0, b1, b2, . . . , bn ∈ F not all 0. Hence α is the root of a nonzero polynomial with coefficients
in F (of degree ≤ n), which proves any α ∈ K is algebraic over F .

Suppose that F is a subfield of a field K which in turn is a subfield of a field L. Then there are
three associated extension degrees — the dimension of K and L as vector spaces over F , and the
dimension of L as a vector space over K.

Theorem ([1] §13.2 Theorem 14). Let F ⊆ K ⊆ L be fields. Then

[L : F ] = [L : K][K : F ],

i.e. extension degrees are multiplicative, where if one side of the equation is infinite, the other side
is also infinite. Pictorially,

L

[L:F ]

[L:K]

K

[K:F ]

F

In particular, if L/F is a finite extension, then [K : F ] divides [L : F ].

Note the similarity of this result with the result on group orders. We shall frequently indicate
the relative degrees of extensions in field diagrams.

Proof. Exercise.

Example.
Q( 6

√
2)

6

3

Q(
√
2,
√
3)

2
2

rrr
rrr

rrr
r

2

LLL
LLL

LLL
L

Q(
√
2)

2

Q(
√
2)

2
MMM

MMM
MMM

MMM
Q(

√
6)

2

Q(
√
3)

2
qqq

qqq
qqq

qqq

Q Q

In particular, [Q(
√
2,
√
3) : Q] = 4 and [Q(

√
2,
√
3) : Q(

√
6)] = 2

Exercise ([1] §13.2 Exercise 7). Prove that Q(
√
2 +

√
3) = Q(

√
2,
√
3). Conclude that [Q(

√
2 +√

3) : Q] = 4. Find an irreducible polynomial satisfied by
√
2 +

√
3.
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Corollary ([1] §13.2 Corollaries 18 & 19). Suppose α and β are algebraic over F . Then α ± β,
αβ, α/β (for β ̸= 0), (in particular α−1 for α ̸= 0) are all algebraic. Moreover, if L/F is an
arbitrary extension, then the collection of elements of L that are algebraic over F form a subfield
L̄ of L, called the algebraic closure of F in L.

Proof. All of these elements lie in the extension F (α, β). By [1] §13.2 Theorem 14

[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] ≤ [F (β) : F ][F (α) : F ] < ∞,

and by [1] §13.2 Corollary 13 F (α, β)/F is algebraic.

Example. Consider the extension C/Q and let Q denote the subfield of all elements in C that are
algebraic over Q. In particular, the elements n

√
2 (the positive nth roots of 2 in R) are all elements

of Q, so that [Q : Q] ≥ n for all integers n > 1. Hence Q is an infinite algebraic extension of Q,
called the field of algebraic numbers.

It is extremely difficult in general to prove that a given real number is not algebraic. For
example, it is known that π = 3.14159 . . . and e = 2.71828 . . . are transcendental elements of R.
Even the proofs that these elements are not rational are not too easy.

2.4 The composite fields
Let K1 and K2 be two subfields of a field K. Then the composite field of K1 and K2, denoted
K1K2, is the smallest subfield of K containing both K1 and K2. Similarly, the composite of any
collection of subfields of K is the smallest subfield containing all the subfields.

Note that the composite K1K2 can also be described as the intersection of all the subfields of
K containing both K1 and K2 and similarly for the composite of more than two fields, analogous
to the subgroup generated by a subset of a group (cf. [1] §2.4).

Proposition ([1] §13.2 Proposition 21). Let K1 and K2 be two finite extensions of a field F con-
tained in K. Then

[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

with equality if and only if an F -basis for one of the fields remains linearly independent over the
other field. If α1, α2, . . . , αn and β1, β2, . . . , βm are bases for K1 and K2 over F , respectively,
then the elements αiβj for i = 1, 2, . . . , n and j = 1, 2, . . . ,m span K1K2 over F . We have the
following diagram:

K1K2

≤m

xx
xx
xx
xx
x ≤n

FF
FF

FF
FF

F

K1

n GG
GG

GG
GG

G K2

m
ww
ww
ww
ww
w

F

Proof. It is clear that the bases give generators for the composite K1K2 over F :

K1K2 = F (α1, α2, . . . , αn, β1, β2, . . . , βm).

Since α1, α2, . . . , αn is an F -basis for K1 any power αi
k of one of the α’s is a linear combination

with coefficients in F of the α’s and a similar statement holds for the β’s. It follows that the
collection of linear combinations ∑

1≤i≤n, 1≤j≤m

cijαiβj
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with coefficients in F is closed under multiplication and addition since in a product of two such
elements any higher powers of the α’s and β’s can be replaced by linear expressions. Hence, the
elements αiβj span the composite extension K1K2 over F . In particular, [K1K2 : F ] ≤ mn.

From K1K2 = F (α1, α2, . . . , αn, β1, β2, . . . , βm) = K1(β1, β2, . . . , βm), we see as above that
β1, β2, . . . , βm span K1K2 over K1. Hence [K1K2 : K1] ≤ m = [K2 : F ] with equality if and only
if these elements are linearly independent over K1. Since [K1K2 : F ] = [K1K2 : K1][K1 : F ] this
proves the proposition.

3 Classical straightedge and compass constructions
As a simple application of the results we have obtained on algebraic extensions, and in particular on
the multiplicativity of extension degrees, we can answer (in the negative) the following geometric
problems posed by the Greeks:

I. (Doubling the Cube) Is it possible using only straightedge and compass to construct a cube
with precisely twice the volume of a given cube?

II. (Trisecting an Angle) Is it possible using only straightedge and compass to trisect any given
angle θ?

III. (Squaring the Circle) Is it possible using only straightedge and compass to construct a square
whose area is precisely the area of a given circle?

To answer these questions we must translate the construction of lengths by compass and
straightedge into algebraic terms. Let 1 denote a fixed given unit distance. Then any distance
is determined by its length a ∈ R, which allows us to view geometric distances as elements of
the real numbers R. Using the given unit distance 1 to define the scale on the axes, we can then
construct the usual Cartesian plane R2 and view all of our constructions as occurring in R2.

The problems above then amount to determining whether particular lengths in R can be ob-
tained by compass and straightedge constructions from a fixed unit distance. The collection of
such real numbers together with their negatives will be called the constructible elements of R.
A point (x, y) ∈ R2 is then constructible if and only if its coordinates x and y are constructible
elements of R. We shall not distinguish between the lengths that are constructible and the real
numbers that are constructible.

Each straightedge and compass construction consists of a series of operations of the following
four types:

(1) connecting two given points by a straight line,

(2) finding a point of intersection of two straight lines,

(3) drawing a circle with given radius and center, and

(4) finding the point(s) of intersection of a straight line and a circle or the intersection of two
circles.

Lemma ([1] §13.3 p.532 Fig.1). If two lengths a and b are given, then the lengths a ± b, ab and
a/b are all constructible. In particular, every rational number is constructible, and the collection
of constructible elements form a subfield of R strictly larger than Q (since

√
2 is constructible).

Theorem ([1] §13.3 Proposition 23). If the element α ∈ R is obtained from a field F ⊆ R by a
series of compass and straightedge constructions, then [F (α) : F ] = 2k for some integer k ≥ 0.

11



Proof. A straightedge construction (type (2)) defines points obtained by the intersection of two
straight lines. The “two-point form” formula x−x0

x1−x0
= y−y0

y1−y0
for the straight line connecting two

points with coordinates in some field F gives an equation for the line of the form ax+ by − c = 0
with a, b, c ∈ F . Solving two such equations simultaneously to determine the point of intersection
of two such lines gives solutions also in F (following from Cramer’s Rule). It follows that if the
coordinates of two points lie in the field F then straightedge constructions alone will not produce
additional points whose coordinates are not also in F .

A compass construction (type (3) or (4) above) defines points obtained by the intersection of
a circle with either a straight line or another circle. A circle with center (h, k) and radius r has
equation (x − h)2 + (y − k)2 = r2 so when we consider the effect of compass constructions on
elements of a field F we are considering simultaneous solutions of such an equation with a linear
equation ax+ by− c = 0 where a, b, c, h, k, r ∈ F , or the simultaneous solutions of two quadratic
equations.

In the case of a linear equation and the equation for the circle, solving for y in the linear
equation and substituting gives a quadratic equation for x (and y is given linearly in terms of x).
Hence the coordinates of the point of intersection are at worst in a quadratic extension of F .

In the case of the intersection of two circles, say

(x− h1)
2 + (y − k1)

2 = r1
2 and

(x− h2)
2 + (y − k2)

2 = r2
2,

subtraction of the second equation from the first shows that we have the same intersection by
considering the two equations

(x− h1)
2 + (y − k1)

2 = r1
2 and

2(h2 − h1)x+ 2(k2 − k1)y = [a number in F ],

which is the intersection of a circle and a straight line (the straight line connecting the two points
of intersection, in fact) of the type just considered.

It follows that if a collection of constructible elements is given, then one can construct all
the elements in the subfield F of R generated by these elements and that any straightedge and
compass operation on elements of F produces elements in at worst a quadratic extension of F .
Since quadratic extensions have degree 2 and extension degrees are multiplicative, it follows that
if α ∈ R is obtained from elements in a field F by a (finite) series of straightedge and compass
operations then α is an element of an extension K of F such that [K : F ] = 2m for some m. Since
[F (α) : F ] divides this extension degree, it must also be a power of 2.

Corollary ([1] §13.3 Theorem 24). None of the classical Greek problems: (I) Doubling the Cube,
(II) Trisecting an Angle, and (III) Squaring the Circle, is possible.

Proof. We will prove for example that it is impossible using only straightedge and compass to
trisect θ = 60◦. By the triple angle formula for cosines:

cos(3α) = 4 cos3 α− 3 cosα,

we see that cos 20◦ satisfies the equation 8x3 − 6x− 1 = 0, which is irreducible in Q[x] (because
it has no rational solution, cf. [1] §9.4 Proposition 11), so [Q(cos 20◦) : Q] = 3 and hence cos 20◦

is not constructible.
One can also study cos 20◦ by 2 cos π

9
= ζ18 + ζ18

−1. In [1] §14.5 we shall see that

[Q(ζ18 + ζ18
−1) : Q] = [Q(ζ18) ∩ R : Q] = [Q(ζ18) : Q]/2 = φ(18)/2 = 3.

In fact, one can verify, using the proposition of 18th roots of unity, that the minimal polynomial of
ζ18 + ζ18

−1 in Q[x] is x3 − 3x− 1.
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After discussing the cyclotomic fields in [1] §14.5 we shall consider another classical geo-
metric question: “which regular n-gons can be constructed by straightedge and compass?” The
construction of the regular n-gon in R2 is evidently equivalent to the construction of the nth roots
of unity, since the nth roots of unity form the vertices of a regular n-gon on the unit circle in C
with one vertex at the point 1. The construction of ζn is equivalent to the constructibility of the
first coordinate x in R2 of ζn, namely Re ζn = cos 2π

n
.

Theorem ([1] §14.5 Proposition 29). The regular n-gon can be constructed by straightedge and
compass if and only if n = 2kp1 · · · pr is the product of a power of 2 and distinct Fermat primes
(primes of the form 22

m
+ 1).

Exercise ([1] §13.3 Exercise 1). Prove that it is impossible to construct the regular 9-gon.

Exercise ([1] §13.3 Exercise 5). Construct the regular 5-gon by straightedge and compass.

Other related exercises in [1]
§13.1 1 3 5 7
§13.2 5 11 12 13 14 16 18 21 22
§13.3 4
§13.6 3 4 7 8 9 10 11 12
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