
Shandong University Advanced Modern Algebra

Lecture 9 & 10: Field Theory II
Apr. 21, 2023

Lecturer: Bin Guan

1 Splitting fields and algebraic closures 1
1.1 Splitting fields and normal extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Uniqueness of splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Algebraic closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Separable and inseparable extensions 5
2.1 Separable polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Perfect fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Inseparable polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Purely inseparable extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Galois extensions 9
3.1 Automorphism groups and fixed fields . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Galois extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

This lecture refers to §13.4, §13.5, §14.1 in [1]. All the equation numbers without reference
labels are from this book.

1 Splitting fields and algebraic closures

1.1 Splitting fields and normal extensions
Let F be a field. If f(x) is any polynomial in F [x] then there exists a field K (for example
F [x]/(p(x)) where p(x) ∈ F [x] is an irreducible factor of f(x)) which can (by identifying F with
an isomorphic copy of F ) be considered an extension of F in which f(x) has a root α. This is
equivalent to the statement that f(x) has a linear factor x− α in K[x].

Definition. The extension field K of F is called a splitting field for the polynomial f(x) ∈ F [x] if

• f(x) factors completely into linear factors (or splits completely) in K[x], and

• f(x) does not factor completely over any proper subfield of K containing F .

If K is an algebraic extension of F which is the splitting field over F for a collection of polynomials
f(x) ∈ F [x] then K is called a normal extension of F .

Recall that if deg f(x) = n, then f(x) has at most n roots in F ([1] §9.5 Proposition 17) and
has precisely n roots (counting multiplicities) in F if and only if f(x) splits completely in F [x].

Theorem ([1] §13.4 Theorem 25 & Proposition 31). For any field F , if f(x) ∈ F [x] then there
exists an extension K of F which is a splitting field for f(x), which is unique up to isomorphism.
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Proof of Existence. We first show that there is an extension E of F over which f(x) splits com-
pletely into linear factors by induction on the degree n of f(x). If n = 1, then take E = F .

Suppose now that n > 1. If the irreducible factors of f(x) over F are all of degree 1, then F
is the splitting field for f(x) and we may take E = F . Otherwise, at least one of the irreducible
factors, say p(x) of f(x) in F [x] is of degree at least 2. By [1] §13.1 Theorem 3 there is an
extension E1 of F containing a root α of p(x). Over E1 the polynomial f(x) has the linear factor
x − α. The degree of the remaining factor f1(x) of f(x) is n − 1, so by induction there is an
extension E of E1 containing all the roots of f1(x). Since α ∈ E, E is an extension of F containing
all the roots of f(x).

Now let K be the intersection of all the subfields of E containing F which also contain all the
roots of f(x). Then K is a field which is a splitting field for f(x).

If f(x) ∈ F [x] is a polynomial of degree n, then adjoining one root of f(x) to F generates
an extension F1 of degree at most n (and equal to n if and only if f(x) is irreducible). Over F1

the polynomial f(x) now has at least one linear factor, so that any other root of f(x) satisfies an
equation of degree at most n − 1 over F1. Adjoining such a root to F1 we therefore obtain an
extension of degree at most n − 1 of F1, etc. Using the multiplicativity of extension degrees, this
proves

Proposition ([1] §13.4 Proposition 26). A splitting field of a polynomial of degree n over F is of
degree at most n! over F .

Exercise ([1] §13.4 Exercise 5). Let K be a finite extension of F . Prove that K/F is a normal
extension if and only if every irreducible polynomial in F [x] that has a root in K splits completely
in K[x].

Exercise ([1] §13.4 Exercise 6). Let K1 and K2 be finite normal extensions of F contained in the
field K. Show that K1K2 and K1 ∩K2 are both normal over F .

1.2 Examples
If we already know an extension E/F such that f(x) ∈ F [x] splits completely in E[x] (E = F̄
the algebraic closure, for example), say,

f(x) = c(x− α1) · · · (x− αn) for some α1, . . . , αn ∈ E,

then F (α1, . . . , αn) (which is a subfield of E) is a splitting field for f(x).

Example. The splitting field for x2 − 2 over Q is just Q(
√
2,−

√
2) = Q(

√
2). In general any

quadratic extension F (
√
D) is normal over F , being a splitting field of x2 −D.

Example. The splitting field of x4 + 4 over Q is smaller than one might at first suspect: in fact it
is a quadratic field. This polynomial factors over Q:

x4 + 4 = x4 + 4x2 + 4− 4x2 = (x2 + 2)2 − (2x)2

= (x2 + 2x+ 2)(x2 − 2x+ 2),

where these two factors are irreducible (by Eisenstein’s Criterion). Solving for the roots of the two
factors by the quadratic formula, we find the four roots ±1 ± i so that the splitting field of this
polynomial is just the field Q(i).

Example. The splitting field of xn − 1 over Q is the cyclotomic field Q(ζn) of nth roots of unity,
where ζn = e2πi/n. It is an extension of degree φ(n).
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Example (Splitting Field of xp − 2, p a prime). Let p be a prime and consider the splitting field
of xp − 2. If α is a root of this equation, i.e., αp = 2, then (ζα)p = 2 where ζ is any pth root of
unity. Hence the solutions of this equation are ζ p

√
2, with ζ a pth root of unity, where the symbol

p
√
2 denotes the positive real pth root of 2 if we wish to view these elements as complex numbers,

and denotes any one solution of xp = 2 if we view these roots abstractly.
Clearly Q( p

√
2)/Q is not a normal extension (cf. [1] §13.4 Exercise 5).

Since ζp is the ratio of two solutions ζp
p
√
2 and p

√
2 for ζp a primitive pth root of unity, the

splitting field of xp − 2 over Q contains Q( p
√
2, ζp). On the other hand, all the roots above lie in

this field, so that the splitting field is precisely

Q(
p
√
2, ζp).

This field is the composite field of Q( p
√
2) and Q(ζp), with degree ≤ p(p− 1) over Q. We have

p = [Q(
p
√
2) : Q] | [Q(

p
√
2, ζp) : Q], p− 1 = [Q(ζp) : Q] | [Q(

p
√
2, ζp) : Q].

Since p and p − 1 are relatively prime it follows that the extension degree is divisible by p(p − 1)
so that we must have

[Q(
p
√
2, ζp) : Q] = p(p− 1).

We have the following diagram of known subfields:

Q( p
√
2, ζp)

p

sss
sss

sss
s

p−1

KKK
KKK

KKK
K

Q(ζp)

p−1 KKK
KKK

KKK
KK

Q( p
√
2)

p
rrr

rrr
rrr

rrr

Q

In particular, xp − 2 remains irreducible over Q(ζp), which is not at all obvious.
When p = 3, Q(ζp)/Q is a quadratic extension. In fact Q(ζ3) = Q(

√
−3). It follows that

Q( 3
√
2,
√
−3) is the splitting field of x3 − 2 over Q, and we have the diagram of subfields:

Q( 3
√
2,
√
−3)

3

��
��
��
��
��
��
��
��
��
�

2

MMM
MMM

MMM
MM

2

VVVV
VVVV

VVVV
VVVV

VVVV
2

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYY

Q( 3
√
2)

3

��
��
��
��
��
��
��
��
��
�

Q( 3
√
2ω)

3

qqq
qqq

qqq
qqq

qqq
qqq

qqq
qqq

qqq
qq

Q( 3
√
2ω2)

3

kkk
kkk

kkk
kkk

kkk
kkk

kkk
kkk

kkk
kkk

kkk
kkk

kkk
kkk

Q(
√
−3)

2 OOO
OOO

OOO
OOO

OO

Q

where ω = ζ3 =
1
2
(−1 +

√
−3).

Exercise. Determine the splitting field and its degree over Q for x3 − 3x+ 1.
(Hint: First verify that ζ9 + ζ9

−1 is a root, where ζ9 is any primitive 9th root of unity.)

Exercise. Determine the splitting field and its degree over F3 for x6 + 2x3 + 2.
(Hint: Read the proof of the existence of splitting fields. Recall that 23 = 2 in F3, and a3 + b3 =
(a+ b)3 over any integral domain of characteristic 3, cf. [1] §13.5 Proposition 35.)
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1.3 Uniqueness of splitting fields
The fact that different roots of the same irreducible polynomial have the same algebraic properties
can be extended slightly, as follows:

Let φ : F
∼−→ F ′ be an isomorphism of fields. The map φ induces a ring isomorphism (also

denoted φ)

φ : F [x]
∼−→ F ′[x],

n∑
i=0

aix
i 7−→

n∑
i=0

φ(ai)x
i

defined by applying φ to the coefficients of a polynomial in F [x].
Let p(x) ∈ F [x] be an irreducible polynomial and let p′(x) ∈ F ′[x] be the polynomial obtained

by applying the map φ to the coefficients of p(x), i.e., the image of p(x) under φ. The isomorphism
φ maps the maximal ideal (p(x)) to the ideal (p′(x)), so this ideal is also maximal, which shows
that p′(x) is also irreducible in F ′[x]. The following theorem shows that the fields obtained by
adjoining a root of p(x) to F and a root of p′(x) to F ′ have the same algebraic structure (i.e., are
isomorphic):

Theorem ([1] §13.1 Theorem 8). Let φ : F
∼−→ F ′ be an isomorphism of fields. Let p(x) ∈ F [x]

be an irreducible polynomial and let p′(x) ∈ F ′[x] be the irreducible polynomial obtained by
applying the map φ to the coefficients of p(x). Let α be a root of p(x) (in some extension of F ) and
let β be a root of p′(x) (in some extension of F ′). Then there is an isomorphism

σ : F (α)
∼−→ F ′(β)

α 7−→ β

mapping α to β and extending φ, i.e., such that σ|F = φ. It can be represented pictorially by the
diagram

σ : F (α)
∼−→ F ′(β)

| |
φ : F

∼−→ F ′

Proof. As noted above, the isomorphism φ induces a natural isomorphism from F [x] to F ′[x]
which maps the maximal ideal (p(x)) to the maximal ideal (p′(x)). Taking the quotients by these
ideals, we obtain an isomorphism of fields

F [x]/(p(x))
∼−→ F ′[x]/(p′(x)).

By [1] §13.1 Theorem 6 the field on the left is isomorphic to F (α) and by the same theorem the
field on the right is isomorphic to F ′(β). Composing these isomorphisms, we obtain the isomor-
phism σ. It is clear that the restriction of this isomorphism to F is φ, completing the proof.

We now return to the problem of proving it makes no difference how the splitting field of a
polynomial f(x) over a field F is constructed. As in the above theorem it is convenient to state the
result for an arbitrary isomorphism φ : F

∼−→ F ′ between two fields.

Theorem ([1] §13.4 Theorem 27). Let φ : F
∼−→ F ′ be an isomorphism of fields. Let f(x) ∈ F [x]

be a polynomial and let f ′(x) ∈ F ′[x] be the polynomial obtained by applying the map φ to the
coefficients of f(x). Let E be the splitting field for f(x) over F , and let E ′ be the splitting field for
f ′(x) over F ′. Then the isomorphism φ extends to an isomorphism σ : E

∼−→ E ′, i.e., σ|F = φ:

σ : E
∼−→ E ′

| |
φ : F

∼−→ F ′

Proof. By induction on the degree n of f(x).
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1.4 Algebraic closures
The field F is called an algebraic closure of F if F is algebraic over F and if every polynomial
f(x) ∈ F [x] splits completely over F (so that F can be said to contain all the elements algebraic
over F ). A field K is said to be algebraically closed if every polynomial with coefficients in K
has a root in K.

Note that if K is algebraically closed, then in fact every f(x) ∈ K[x] has all its roots in K,
since by definition f(x) has a root α ∈ K, hence has a factor (x−α) in K[x]. The remaining factor
of f(x) then is a polynomial in K[x], hence has a root, so has a linear factor etc., so that f(x) must
split completely. Hence if K is algebraically closed, then K itself is an algebraic closure of K and
the converse is obvious, so that K = K if and only if K is algebraically closed.

The next result shows that the process of “taking the algebraic closure” actually stops after one
step — taking the algebraic closure of an algebraic closure does not give a larger field: the field is
already algebraically closed (notationally: F = F ).

Proposition ([1] §13.4 Proposition 29). Let F be an algebraic closure of F . Then F is alge-
braically closed.

Proof. Let f(x) be a polynomial in F [x] and let α be a root of f(x). Then α generates an algebraic
extension F (α) of F , and F is algebraic over F . By [1] §13.2 Theorem 20, F (α) is algebraic over
F so in particular its element α is algebraic over F . But then α ∈ F , showing F is algebraically
closed.

Proposition ([1] §13.4 Propositions 30 & 31). For any field F there exists an algebraically closed
field K containing F ; the collection of elements F of K that are algebraic over F is an algebraic
closure of F . An algebraic closure of F is unique up to isomorphism.

2 Separable and inseparable extensions

2.1 Separable polynomials
Let F be a field and let f(x) ∈ F [x] be a polynomial. Over a splitting field for f(x) we have the
factorization

f(x) = (x− α1)
n1(x− α2)

n2 · · · (x− αk)
nk ,

where α1, α2, . . . , αk are distinct elements of the splitting field and ni ≥ 1 for all i. Here αi is
called a multiple root if ni > 1 and is called a simple root if ni = 1. The integer ni is called the
multiplicity of the root αi.

A polynomial over F is called separable if it has no multiple roots (i.e., all its roots are dis-
tinct). A polynomial which is not separable is called inseparable. (Remark that in some textbooks
a polynomial over F is called separable if all its irreducible factors have no multiple roots.)

The next proposition shows that the separability of f(x) can be determined by the Euclidean
Algorithm in the field where the coefficients of f(x) lie, without passing to a splitting field and
factoring f(x).

Proposition ([1] §13.5 Proposition 33). Define the (formal) derivative of a polynomial f(x) =∑n
k=0 akx

k ∈ F [x] to be the polynomial

f ′(x) = Dxf(x) :=
n∑

k=1

kakx
k−1 ∈ F [x].
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Then f(x) has a multiple root α if and only if α is also a root of Dxf(x), i.e., f(x) and Dxf(x)
are both divisible by the minimal polynomial for α. In particular, f(x) is separable if and only if
it is relatively prime to its derivative: GCD(f(x), Dxf(x)) = 1.

The formal derivative of a polynomial is purely algebraic and so can be applied to a polynomial
over an arbitrary field F , where the analytic notion of derivative (involving limits — a continuous
operation) may not exist.

Exercise ([1] §13.5 Exercise 1). Show that the formal derivative Dx of a polynomial satisfies

Dx(f(x) + g(x)) = Dxf(x) +Dxg(x) and Dx(f(x)g(x)) = Dxf(x)g(x) + f(x)Dxg(x)

for any two polynomials f(x) and g(x). And prove the above proposition.

Example. The polynomial xpn − x over Fp has derivative pnxpn−1 − 1 = −1 since the field has
characteristic p. Since in this case the derivative has no roots at all, it follows that the polynomial
has no multiple roots, hence is separable.

Example. The polynomial xn − 1 has derivative nxn−1. Over any field of characteristic not
dividing n (including characteristic 0) this polynomial has only the root 0 (of multiplicity n − 1),
which is not a root of xn − 1. Hence xn − 1 is separable and there are n distinct nth roots of unity.
We saw this directly over Q by exhibiting n distinct solutions over C.

If F is of characteristic p and p divides n, then there are fewer than n distinct nth roots of unity
over F : in this case the derivative is identically 0 since n = 0 in F . In fact every root of xn − 1 is
multiple in this case. For example, xp − 1 = (x− 1)p in Fp[x] (cf. [1] §13.5 Proposition 35).

Corollary ([1] §13.5 Corollary 34). Every irreducible polynomial over a field of characteristic 0
(for example, Q) is separable. A polynomial over such a field is separable if and only if it is the
product of distinct irreducible polynomials.

Proof. Suppose F is a field of characteristic 0 and p(x) ∈ F [x] is irreducible of degree n. Then
the derivative Dxp(x) is a polynomial of degree n − 1. Up to constant factors the only factors
of p(x) in F [x] are 1 and p(x), so Dxp(x) must be relatively prime to p(x). This shows that any
irreducible polynomial over a field of characteristic 0 is separable.

The second statement of the corollary is then clear since distinct irreducibles never have zeros
in common (otherwise they are both divisible by the minimal polynomial of a common zero by [1]
§13.2 Proposition 9).

2.2 Perfect fields
The point in the proof of the corollary that can fail in characteristic p is the statement that the
derivative Dxp(x) is of degree n − 1. In characteristic p the derivative of any power xpm of xp is
identically 0:

Dx(x
pm) = pmxpm−1 = 0,

so it is possible for the degree of the derivative to decrease by more than one. If the derivative
Dxp(x) of the irreducible polynomial p(x) is nonzero, however, then just as before we conclude
that p(x) must be separable.

It is clear from the definition of the derivative that if p(x) is a polynomial whose derivative is
0, then every exponent of x in p(x) must be a multiple of the characteristic p = charF of F :

p(x) = amx
pm + am−1x

p(m−1) + · · ·+ a1x
p + a0,
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i.e., p(x) is a polynomial in xp, namely p(x) = p1(x
p) with

p1(x) := amx
m + am−1x

m−1 + · · ·+ a1x+ a0.

We recall a simple but important result about raising to the pth power in a field of characteristic
p.

Proposition ([1] §13.5 Proposition 35). Let F be a field of characteristic p. Then for any a, b ∈ F ,

1p = 1, (a+ b)p = ap + bp, and (ab)p = apbp.

Put another way, the pth-power map defined by Frobp(a) := ap is an injective field homomorphism
from F to F , called the Frobenius endomorphism of F .

Corollary ([1] §13.5 Corollary 36). Suppose that F is a finite field of characteristic p. Then every
element of F is a pth power in F (notationally, F = Fp).

Proof. The injectivity of the Frobenius endomorphism of F implies that it is also surjective when
F is finite, which is the statement of the corollary.

A field K is called perfect if it is of characteristic 0, or is of characteristic p and every element
of K is a pth power in K, i.e., K = Kp.

Proposition ([1] §13.5 Proposition 37). Every irreducible polynomial over a finite field F is sep-
arable. A polynomial in F[x] is separable if and only if it is the product of distinct irreducible
polynomials in F[x].

Proof. Suppose that p(x) ∈ F[x] is an irreducible polynomial with coefficients in a finite field F.
If p(x) were inseparable then we have seen that p(x) = q(xp) for some polynomial q(x) ∈ F[x].
Let

q(x) = amx
m + am−1x

m−1 + · · ·+ a1x+ a0.

By [1] §13.5 Corollary 36, each ai, i = 1, 2, . . . ,m is a pth power in F, say ai = bpi . Then by [1]
§13.5 Proposition 35 we have

p(x) = q(xp) = am(x
p)m + am−1(x

p)m−1 + · · ·+ a1x
p + a0

= (bmx
m)p + (bm−1x

m−1)p + · · ·+ (b1x)
p + bp0

= (bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0)
p,

which shows that p(x) is the pth power of a polynomial in F[x], a contradiction to the irreducibility
of p(x).

The notion of separability carries over to the fields generated by the roots of these polynomials.
The field K is said to be separable (or separably algebraic) over F if every element of K is the
root of a separable polynomial over F (equivalently, the minimal polynomial over F of every
element of K is separable). A field which is not separable is inseparable.

We have seen that the issue of separability is straightforward for finite extensions of perfect
fields since for these fields the minimal polynomial of an algebraic element is irreducible hence
separable.

Corollary ([1] §13.5 Corollary 39). Every finite extension of a perfect field is separable. In par-
ticular, every finite extension of either Q or a finite field is separable.
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Example (Existence and Uniqueness of Finite Fields). Let n > 0 be any positive integer and
consider the splitting field of the polynomial xpn − x over Fp. We have already seen that this poly-
nomial is separable, hence has precisely pn roots. Let α and β be any two roots of this polynomial,
so that αpn = α and βpn = β. Then (αβ)p

n
= αβ, (α−1)p

n
= α−1 and (by [1] §13.5 Proposition

35) (α+β)p
n
= αpn +βpn = α+β. Hence the set F consisting of the pn distinct roots of xpn −x

over Fp is closed under addition, multiplication and inverses in its splitting field. It follows that F
is a subfield, hence in fact must be the splitting field. Since the number of elements is pn, we have
[F : Fp] = n, which shows that there exist finite fields of degree n over Fp for any n > 0.

Let now F be any finite field of characteristic p. If F is of dimension n over its prime subfield
Fp, then F has precisely pn elements. Since the multiplicative group F× is (in fact cyclic) of order
pn − 1, we have αpn−1 = 1 for every α ̸= 0 in F, so that αpn = α for every α ∈ F. But this means
α is a root of xpn − x, hence F is contained in a splitting field for this polynomial. Since we have
seen that the splitting field has order pn, this shows that F is a splitting field for xpn − x over Fp.
Since splitting fields are unique up to isomorphism, this proves that finite fields of any order pn

exist and are unique up to isomorphism. We shall denote the finite field of order pn by Fpn .
Note also that since the finite field Fpn is unique up to isomorphism, the quotients of Fp[x]

by any of the irreducible polynomials of degree n are all isomorphic. If f1(x) and f2(x) are
irreducible of degree n, then f2(x) splits completely in the field Fpn

∼= Fp[x]/(f1(x)). If we denote
a root of f2(x) by α(x) (to emphasize that it is a polynomial of degree < n in x in Fp[x]/(f1(x))),
then the isomorphism is given by

Fp[x]/(f2(x)) ∼= Fp[x]/(f1(x)) x 7→ α(x)

(we have mapped a root of f2(x) in the first field to a root of f2(x) in the second field). For example,
if f1(x) = x4 + x3 + 1, f2(x) = x4 + x + 1 are two of the irreducible quartics over F2, then a
simple computation verifies that

α(x) = x3 + x2

is a root of f2(x) in F16 = F2[x]/(x
4 + x3 + 1). Then we have

F2[x]/(x
4 + x+ 1) ∼= F2[x]/(x

4 + x3 + 1) (∼= F16) x 7→ x3 + x2.

Exercise ([1] §14.3 Exercise 5). Find two irreducible polynomials of degree 3 over F3. Directly
verify that the quotients of F3[x] by these two irreducible polynomials are isomorphic.

We end this part by introducing an important result of finite separable extension. Recall that,
for any finite field F, the multiplicative group F× is cyclic (cf. [1] §9.5 Proposition 18). Assume
that α is a generator, then F = Fp(α) is a simple extension of its prime field Fp.

Theorem ([1] §14.4 Theorem 25, the Primitive Element Theorem). If K/F is finite and separable,
then K/F is simple, i.e., K = F (θ) for some θ ∈ K. In particular, any finite extension of fields of
characteristic 0 is simple; any finite field is a simple extension of its prime field.

2.3 Inseparable polynomials
It is not hard to see that if K is not perfect then there are inseparable irreducible polynomials.

Proposition ([1] §13.5 Proposition 38). Let p(x) be an irreducible polynomial over a field F
of characteristic p. Then there is a unique integer k ≥ 0 and a unique irreducible separable
polynomial psep(x) ∈ F [x] such that p(x) = psep(x

pk).
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Example. The polynomial p(x) = xp − t over F = Fp(t) has derivative 0, hence is not separable.
Here psep(x) = x− t.

The degree of psep(x) is called the separable degree of p(x), denoted degs p(x). The integer pk

in the proposition is called the inseparable degree of p(x), denoted degi p(x). Computing degrees
in the relation p(x) = psep(x

pk) we see that deg p(x) = degs p(x) degi p(x).

Proof. We have seen above that if p(x) is an irreducible polynomial which is not separable, then
its derivative Dxp(x) is identically 0, so that p(x) = p1(x

p) for some polynomial p1(x).
The polynomial p1(x) may or may not itself be separable. If not, then it too is a polynomial in

xp, p1(x) = p2(x
p), so that p(x) is a polynomial in xp2: p(x) = p2(x

p2). Continuing in this fashion
we see that there is a uniquely defined power pk of p such that p(x) = pk(x

pk) where pk(x) has
nonzero derivative (and pk ≤ deg p(x); in fact deg p(x) = pk deg pk(x)).

It is clear that pk(x) is irreducible since any factorization of pk(x) would, after replacing x by
xpk , immediately imply a factorization of the irreducible p(x). It follows that pk(x) is separable.

2.4 Purely inseparable extension
An algebraic extension E/F is called purely inseparable if for each α ∈ E the minimal polyno-
mial mα,F (x) of α over F has only one distinct root.

It is easy to see that the following are equivalent:
(1) E/F is purely inseparable;
(2) if α ∈ E is separable over F , then α ∈ F ;
(3) if α ∈ E, then αpn ∈ F for some n (depending on α), and mα,F (x) = xpn − αpn .

Proposition ([1] §14.9). Let E/F be an algebraic extension. Then there is a unique field Esep

with F ⊆ Esep ⊆ E such that Esep is separable over F and E is purely inseparable over Esep.
The field Esep is the set of elements of E which are separable over F .

The degree of Esep/F is called the separable degree of E/F and the degree of E/Esep is
called the inseparable degree of E/F (often denoted as [E : F ]s and [E : F ]i respectively).

Proposition ([1] §14.9). If E/F is normal with [E : F ]s < ∞, then E = EsepEpi, where Epi is
a purely inseparable extension of F (Epi consists of all purely inseparable elements of E over F )
and Esep ∩ Epi = F .

The largest separable algebraic extension of F is called the separable closure of F .

3 Galois extensions

3.1 Automorphism groups and fixed fields
Let K be a field. An isomorphism σ of K with itself is called an automorphism of K. The
collection of automorphisms of K is denoted Aut(K). If σ ∈ K we shall write σα for σ(α).

An automorphism σ ∈ Aut(K) is said to fix an element α ∈ K if σα = α. If F is a subset of
K (for example, a subfield), then an automorphism σ is said to fix F if it fixes all the elements of
F , i.e., σa = a for all a ∈ F .

Note that any field has at least one automorphism, the identity map, denoted by 1 and some-
times called the trivial automorphism.
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The prime field of K is generated by 1 ∈ K, and since any automorphism σ takes 1 to 1 (and
0 to 0), i.e., σ(1) = 1, it follows that σa = a for all a in the prime field. Hence any automorphism
of a field K fixes its prime subfield. In particular we see that Q and Fp have only the trivial
automorphism: Aut(Q) = {1} and Aut(Fp) = {1}.

Let K/F be an extension of fields. Let Aut(K/F ) be the collection of automorphisms of K
which fix F . Note that if F is the prime subfield of K then Aut(K) = Aut(K/F ) since every
automorphism of K automatically fixes F .

The following proposition is extremely useful for determining the automorphisms of algebraic
extensions.

Proposition ([1] §14.1 Proposition 2). Let K/F be a field extension and let α ∈ K be algebraic
over F . Then for any σ ∈ Aut(K/F ), σα is a root of the minimal polynomial for α over F ,
i.e., Aut(K/F ) permutes the roots of irreducible polynomials. Equivalently, any polynomial with
coefficients in F having α as a root also has σα as a root.

Proof. Suppose α satisfies the equation

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0

where a0, a1, . . . , an−1 are elements of F . Applying the automorphism σ to the equation (and using
the fact that σ is a homomorphism) we obtain

(σα)n + σ(an−1) · (σα)n−1 + · · ·+ σ(a1) · σα + σ(a0) = 0.

By assumption, σ fixes all the elements of F , so σ(ai) = ai, i = 0, 1, . . . , n− 1. Hence

(σα)n + an−1(σα)
n−1 + · · ·+ a1 · σα + a0 = 0.

This precisely shows σα is a root of the same polynomial over F as α. This proves the proposition.

Example. Let K = Q(
√
D) where D is not a square in Q. If τ ∈ Aut(Q(

√
D)) = Aut(Q(

√
D)/Q),

then τ(
√
D) = ±

√
D since these are the two roots of the minimal polynomial for

√
D. Since τ

fixes Q, this determines τ completely:

τ(a+ b
√
D) = a± b

√
D.

The map
√
D 7→

√
D is just the identity automorphism 1 of Q(

√
D); the map σ :

√
D 7→ −

√
D is

the isomorphism Q(
√
D) ∼= Q[x]/(x2−D) ∼= Q(−

√
D) given by [1] §13.1 Theorem 13.6. Hence

Aut(Q(
√
D)) = Aut(Q(

√
D)/Q) = {1, σ} is a cyclic group of order 2 generated by σ.

Example. Let K = Q( 3
√
2). As before, if τ ∈ Aut(K/Q), then τ is completely determined by its

action on 3
√
2 since

τ(a+ b
3
√
2 + c(

3
√
2)2) = a+ bτ

3
√
2 + c(τ

3
√
2)2.

Since τ 3
√
2 must be a root of x3 − 2 and the other two roots of this equation are not elements of K

(recall the splitting field of this polynomial is degree 6 over Q), the only possibility is τ 3
√
2 = 3

√
2

i.e., τ = 1. Hence Aut(Q( 3
√
2)/Q) = {1} is the trivial group.

In general, if K is generated over F by some collection of elements, then any automorphism
σ ∈ Aut(K/F ) is completely determined by what it does to the generators. If K/F is finite then
K is finitely generated over F by algebraic elements, so by the above proposition the number of
automorphisms of K fixing F is finite. In particular, the automorphisms of a finite extension can
be considered as permutations of the roots of a finite number of equations (not every permutation
gives rise to an automorphism, however, as the example above illustrates). It was the investigation
of permutations of the roots of equations that led Galois to the theory we are describing.
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Example. Let K = Q( 3
√
2, ω) be the splitting field of x3−2 over Q, where ω = ζ3 =

1
2
(−1+

√
−3).

Any φ ∈ Aut(K/Q) maps 3
√
2 to one of 3

√
2, 3
√
2ω, 3

√
2ω2, and maps ω to ω or ω2 = 1

2
(−1−

√
−3)

(since these are the roots of the cyclotomic polynomial Φ3(x) = x2+x+1). Since φ is completely
determined by its action on these two elements, this gives only 6 possibilities and each of these
possibilities is actually an automorphism.

To give these automorphisms explicitly, let σ and τ be the automorphisms defined by

σ :

{
3
√
2 7→ 3

√
2ω

ω 7→ ω
τ :

{
3
√
2 7→ 3

√
2

ω 7→ ω2 = −ω − 1.

As before, these can be given explicitly on the elements of Q( 3
√
2, ω), which are linear combinations

of the basis {1, 3
√
2, ( 3

√
2)2, ω, 3

√
2ω, ( 3

√
2)2ω}. For example,

σ(
3
√
2ω) = σ(

3
√
2)σ(ω) =

3
√
2ω · ω =

3
√
2ω2 =

3
√
2 · (−1− ω) = − 3

√
2− 3

√
2ω.

The other elements of the automorphism group are as follows. (Exercise: Complete the table.)

Elements in Images of
Aut(Q( 3

√
2, ω)) ω ω2 3

√
2 3

√
2ω 3

√
2ω2

1 ω ω2 3
√
2 3

√
2ω 3

√
2ω2

σ ω ω2 3
√
2ω 3

√
2ω2 3

√
2

σ2 ω 3
√
2ω2

τ ω2 ω 3
√
2 3

√
2ω 3

√
2ω2

τσ

τσ2 ω2 3
√
2ω

One can compute that σ3 = τ 2 = 1 and στ = τσ2. Hence

Aut(Q(
3
√
2, ω)) = ⟨σ, τ⟩ ∼= S3

is the symmetric group on 3 letters. Alternatively (and less computationally), since G = Aut(Q( 3
√
2, ω)) =

Gal(Q( 3
√
2, ω)/Q) acts as permutations of the 3 roots of x3−2, G is a subgroup of S3, hence must

be S3 since it is of order 6 (cf. [1] §14.1 Proposition 5). The computations above explicitly identify
the automorphisms in G and give an explicit isomorphism of G with S3.

One can also write the splitting field as K = Q( 3
√
2, 3
√
2ω). Note that not every map taking

3
√
2 and 3

√
2ω to roots of x3 − 2 gives rise to an automorphism of the field (for example, the

map 3
√
2 7→ 3

√
2ω, 3

√
2ω 7→ 3

√
2ω clearly cannot be an automorphism since it is evidently not an

injection). The point is that there may be (sometimes very subtle) algebraic relations among the
generators and these relations must be respected by an automorphism. For example, the quotient
of the generators here is ω, which is mapped to 1 and not to a root of the minimal polynomial for
ω. Put another way, the quotient of these generators satisfies a quadratic equation and this map
does not respect that property.

It is an easy exercise to verify the following properties by definition.

Proposition ([1] §14.1 Propositions 1, 3, 4). Let K/F be an extension of fields. Then

• Aut(K) is a group under composition and Aut(K/F ) is a subgroup.

• Let H ≤ Aut(K) be a subgroup of the group of automorphisms of K, and Inv(H) be the
collection of elements of K fixed by all the elements of H:

Inv(H) := {α ∈ K | σα = α for any σ ∈ H}.

Then Inv(H) is a subfield of K, called the fixed field of H .
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The association of groups to fields and fields to groups defined above is inclusion reversing, namely

• if F1 ⊆ F2 ⊆ K are two subfields of K then Aut(K/F1) ≥ Aut(K/F2); and

• if H1 ≤ H2 ≤ Aut(K) are two subgroups of automorphisms, then Inv(H1) ⊇ Inv(H2).

Given a subfield F of K, the associated group is the collection of automorphisms of K which
fix F . Given a group of automorphisms of K, the associated extension is defined by taking F to
be the fixed field of the automorphisms.

Example. It is obvious that, for 1 ∈ Aut(K/F ), Inv({1}) = K; but the fixed field Inv(Aut(K/F ))
of the whole group may not be F . For example,

Inv(Aut(Q(
√
2)/Q)) = Q, but Inv(Aut(Q(

3
√
2)/Q)) = Q(

3
√
2) ̸= Q.

There is a “duality” between the subfields of Q(
√
2) and the subgroups of Aut(Q(

√
2)/Q):

Q(
√
2)

subfields F ⊆ Q(
√
2) |

Q

 Aut(Q(
√
2)/·)−−−−−−−⇀↽−−−−−−−

Inv(·)


{1}

subgroups H ≤ Aut(Q(
√
2)) |

{1, σ}

 .

But there are “not enough” automorphisms in Aut(Q( 3
√
2)/Q) to force the fixed field to be Q

rather than the full Q( 3
√
2). This in turn seems to be due to the fact that the other roots of x3 − 2,

which are the only possible images of 3
√
2 under an automorphism, are not elements of Q( 3

√
2).

(Although even if they were we would need to check that the additional maps we could define were
automorphisms.)

In the next section we make precise the notion of fields with “enough” automorphisms (leading
to the definition of a Galois extension). As one might suspect even from these two examples (and
we prove in the next lecture) these are related to splitting fields.

Example. We can determine the fixed fields for any of the subgroups of Aut(Q( 3
√
2, ω)/Q) =

⟨σ, τ⟩. For example, consider the fixed field of the subgroup {1, σ, σ2} generated by σ. These are
just the elements fixed by σ, since if an element is fixed by σ then it is also fixed by σ2. (In general,
the fixed field of some subgroup is the field fixed by a set of generators for the subgroup.)

Recall that σ :

{
3
√
2 7→ 3

√
2ω

ω 7→ ω
can be given explicitly on the elements of Q( 3

√
2, ω), which

are linear combinations of the basis {1, 3
√
2, ( 3

√
2)2, ω, 3

√
2ω, ( 3

√
2)2ω}. Explicitly,

σ(a+ b
3
√
2 + c

3
√
4 + dω + e

3
√
2ω + f

3
√
4ω)

= a− e
3
√
2 + (f − c)

3
√
4 + dω + (b− e)

3
√
2ω − c

3
√
4ω.

The elements fixed by σ are those with

a = a, b = −e, c = f − c, d = d, e = b− e, f = −c,

which is equivalent to b = c = f = e = 0. Hence the fixed field of {1, σ, σ2} is the field Q(ω).
There is a strong similarity between the diagram of subgroups of Aut(Q( 3

√
2, ω)/Q) and the

diagram of known subfields for the splitting field of x3 − 2:

{1}

��
��
��
��
��
��
��
��
�

DD
DD

DD
DD

QQQ
QQQ

QQQ
QQQ

QQQ
QQ

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVV Q( 3
√
2, ω)

��
��
��
��
��
��
��
��
��

KKK
KKK

KKK
K

UUUU
UUUU

UUUU
UUUU

UUU

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXX

⟨τ⟩

��
��
��
��
��
��
��
��

⟨τσ⟩

zz
zz
zz
zz
zz
zz
zz
zz
zz
zz
z

⟨τσ2⟩

ppp
ppp

ppp
ppp

ppp
ppp

ppp
ppp

ppp
p

Q( 3
√
2)

��
��
��
��
��
��
��
��
��

Q( 3
√
2ω)

rrr
rrr

rrr
rrr

rrr
rrr

rrr
rrr

rrr
r

Q( 3
√
2ω2)

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
lll

lll
l

⟨σ⟩

EE
EE

EE
EE

Q(ω)

KKK
KKK

KKK
KK

⟨σ, τ⟩ Q
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where the subfields in the second diagram are precisely the fixed fields of the subgroups in the first
diagram.

Exercise ([1] §14.1 p.563-564, §14.2 p.567-568). Compute Aut(Q(
√
2,
√
3)/Q) and the fixed

fields of all its subgroups. Compare the diagram of subgroups of Aut(Q(
√
2,
√
3)/Q) and the

diagram of known subfields for Q(
√
2,
√
3).

Exercise ([1] §14.2 p.577-581). Compute the Galois group of the splitting field of x8 − 2 over Q
and the fixed fields of all its subgroups. Compare the diagram of subgroups and that of subfields.

3.2 Galois extensions
An extension E/F is called Galois if it is algebraic, normal and separable. In this case Aut(E/F )
is called the Galois group of the extension and is denoted by Gal(E/F ).

Proposition ([1] §14.2 Corollary 10 & Theorem 13). Let K/F be a finite extension. Then

|Aut(K/F )| ≤ [K : F ],

with equality if and only if K is Galois over F , i.e., K is the splitting field over F of a separable
polynomial f(x).

Example. The extension Q(
√
2)/Q is Galois with Galois group Gal(Q(

√
2)/Q) = {1, σ} ∼=

Z/2Z, where σ is the automorphism a+b
√
2 7→ a−b

√
2. More generally, any quadratic extension

K of any field F of characteristic different from 2 is Galois.

Example. The extension Q( 3
√
2)/Q is not Galois since it is not normal. Its group of automorphlsms

is only of order 1.
The extension Q( 3

√
2, ω) is Galois over Q since it is the splitting field of the polynomial x3 − 2.

We have seen that Gal(Q( 3
√
2, ω)/Q) ∼= S3 is of order 6 = [Q( 3

√
2, ω) : Q].

Example. The field Q( 4
√
2) is not Galois over Q since any automorphism is determined by where

it sends 4
√
2 and of the four possibilities {± 4

√
2,± 4

√
2}, only two are elements of the field (the two

real roots). But Q(
√
2)/Q and Q( 4

√
2)/Q(

√
2) are both Galois extensions since both are quadratic

extensions. This shows that a Galois extension of a Galois extension is not necessarily Galois.

Exercise ([1] §14.1 p.566). We already know the extension of finite fields Fpn/Fp is Galois since
Fpn is the splitting field over Fp of separable polynomial xpn − x. Show that Gal(Fpn/Fp) is a
cyclic group of order n, with the Frobenius automorphism Frobp as generator.

Exercise ([1] §14.1 p.566). We already know Fp(
p
√
t) := Fp(t)[x]/(x

p − t) is an inseparable
extension over Fp(t). Calculate Aut(Fp(

p
√
t)/Fp(t)).

Other related exercises in [1]
§13.4 2 3 4
§13.5 4 5 6 8 9 11
§14.1 5 6 7 8 9 10
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