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ABSTRACT
3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety
of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable
plastic. To establish a sustainable way to produce these commercially important chemicals and
materials, fermentative production of 3HP is widely investigated in recent years. It is reported
that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and b-ala-
nine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advan-
tages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To
date, this pathway has been successfully constructed in various species including Escherichia coli,
yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and
engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced
3HP titer up to 40g/L. These results show the feasibility of commercial manufacturing of 3HP
and its derivatives in the future.
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Introduction

3-Hydroxypropionate (3HP) is one of the top 12 value-
added chemicals from biomass released by the US
Department of Energy [1]. It naturally exists in a small
number of thermophile archaea and bacteria, and par-
ticipates in autotrophic carbon fixation cycles [2–5]. 3HP
is a precursor in synthesis of various compounds,
including 1,3-propanediol, acrylic acid, b-propiolactone
and biodegradable polyhydroxyalkanoates containing
3HP monomer [6–10]. However, commercial application
of 3HP was restrained due to its high production cost
[11,12]. In recent years, much effort has been made to
produce 3HP from an inexpensive renewable feedstock
in a metabolic engineered microorganism [12–14].

There are three 3HP-producing pathways reported
which are as shown in Figure 1. Although the glycerol
pathway achieves the highest 3HP titer, it still has little
market competitiveness because of an exogenous sup-
ply of coenzyme B12 [15,16], which is required for the
activity of glycerol dehydratase [17]. Furthermore, the
reducing power imbalance was also a burden for cellu-
lar metabolism [17]. In both b-alanine and malonyl-CoA
pathways, 3HP is derived from common microbial

metabolic intermediate, so that various sugars from
lignocellulosic biomass can be used as a raw material
for 3HP production. Additionally, the production of 3HP
from glucose is redox neutral. Unfortunately, all recom-
binant strains harboring the b-alanine pathway presents
a low 3HP yield, and the highest 3HP titer was 13.7mg/
L [18]. In contrast, the 3HP production via malonyl-CoA
pathway has been dramatically improved in the past
few years [19,20].

The malonyl-CoA pathway has been successfully
reconstructed in Escherichia coli [15], Saccharomyces cer-
evisiae [21], and cyanobacteria [22]. It employs acetyl-
CoA carboxylase (ACC) for the conversion of acetyl-CoA
into malonyl-CoA, which is converted into 3HP with a
two-step reduction catalyzed by malonyl-CoA reductase
(MCR) (Figure 2). The genes encoding ACC widely reside
in various organisms and participate in the synthesis of
fatty acids [23,24], and the gene encoding MCR is
derived from autotrophic thermophile Chloroflexus aur-
antiacus as part of its 3HP cycle for carbon fixation
[3,25–27].

In order to improve 3HP production, malonyl-CoA
pathway was optimized using the following four strat-
egies: (1) redirecting carbon flux toward 3HP
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Figure 2. 3-Hydroxypropionate biosynthesis from glucose or CO2 via malonyl-CoA pathway in recombinant microorganisms. The
acetyl-CoA carboxylase (ACC, j) is responsible for formation of malonyl-CoA from acetyl-CoA, and the malonyl-CoA reductase
from C. aurantiacus (MCR, k) catalyzes the two-step reduction of malonyl-CoA with NADPH to 3HP.

Figure 1. Three pathways for 3-hydroxypropionate production. (A) Different metabolic routes for 3HP biosynthesis from glycerol
or glucose. The enzymes involved are as follows: 1, glycerol dehydratase; 2, aldehyde dehydrogenase; 3, acetyl-CoA carboxylase;
4, malonyl-CoA reductase; 5, aspartate-1-decarboxylase; 6, b-alanine aminotransferase; 7, malonate semialdehyde reductase. (B)
Comparison of those pathways for 3HP biosynthesis. MSA: malonate semialdehyde.
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biosynthesis, (2) improving the catalysis of key enzymes,
(3) enhancing cofactor and energy supply, and (4)
selecting specific host strain.

Redirecting carbon flux toward 3HP
biosynthesis

In metabolic engineering, redirecting carbon flux to the
desired product is considered as an effective approach.
In the malonyl-CoA pathway, acetyl-CoA and malonyl-
CoA are two core intermediates, and are also involved
in the formation of other metabolites (Figure 2). To
enhance 3HP yield, a common approach is to manipu-
late the competing pathways to channel carbon flux to
3HP biosynthesis [28].

Redirecting carbon flux from pyruvate to malonyl-
CoA

Under aerobic conditions, generation of acetyl-CoA
from pyruvate is mainly catalyzed by the pyruvate
dehydrogenase (PDH) complex in microbes. As a central
metabolite, acetyl-CoA is shunted to multiple
metabolic pathways such as the TCA cycle, acetate
metabolism, glyoxylate cycle and malonyl-CoA forma-
tion (Figure 2) [29].

In E. coli, acetate metabolism is the second largest
way of ATP supply after oxidative phosphorylation [30].
Therefore, acetate is commonly regarded as one of the
representative byproducts [31]. There are two particular
routes of acetate production from pyruvate in E. coli
(Figure 2): in the phosphate acetyltransferase/acetate
kinase (PTA-ACK) route, acetyl-CoA produced from pyru-
vate is further converted into acetate with acetyl-P as
an intermediate. This route is initiated in the logarithmic
phase to regulate the carbon flux balance and generate
ATP for cell growth. In the pyruvate oxidase (POX)
route, pyruvate is decarboxylated into acetate. This
route probably plays a role in the late logarithmic phase
and the stationary phase to maintain the balance of
free CoA metabolic pool [32]. The 3HP production
should be enhanced by the knockout of genes related
with the above pathways. However, blocking the PTA-
ACK route hardly showed any effect on the 3HP titer in
the recombinant E. coli strain [15]. In accordance with
this result, the production of an ester from acetyl-CoA
remained largely unchanged, even though both PTA-
ACK and POX pathways were deleted [33].

Actually, acetate reuse has been proved to be an
effective strategy on reducing carbon loss during fer-
mentation. Overexpression of acetyl-CoA synthetase
(ACS), which regenerates acetyl-CoA from acetate, helps
to channel carbon flux to acetyl-CoA and improve 3HP

biosynthesis [34–36]. In S. cerevisiae, there is an add-
itional acetyl-CoA anaplerotic route from pyruvate. PDH
converts pyruvate into acetaldehyde, and the latter can
be further oxidized to acetate by aldehyde dehydrogen-
ase (ALDH). Eventually, ACS catalyzes acetate to
improve cytosolic acetyl-CoA pool (Figure 2) [29,37]. In
S. cerevisiae, the 3HP titer was increased by 80% by
overexpression of the above three enzymes [38].

To block the glyoxylate cycle, Chen et al. deleted the
MLS1 gene in S. cerevisiae, encoding cytosolic malate
synthase. In parallel, they overexpressed two enzymes
in the acetyl-CoA anaplerotic route, including ALDH and
a modified ACS. The 3HP titer was three times higher
when compared with the control strain [21].

Moreover, there are various regulation factors con-
trolling central carbon metabolism [39], such as CsrB,
SgrS and ArcA [40–42]. Manipulation of those regulating
systems is also an effective way to channel carbon flux
into 3HP biosynthesis. For example, deletion of the arcA
gene significantly repressed the acetate accumulation
and improved the 3HP production 2-fold [43].

Redirecting carbon flux from malonyl-CoA to 3HP

Malonyl-CoA is an important precursor in the biosyn-
thesis of fatty acids and some other compounds like
flavonoids [44,45]. To redirect more malonyl-CoA into
3HP production, the antibiotic cerulenin, which can
inhibit the activity of 3-oxoacyl-ACP synthase I and II
[46,47], was used to suppress fatty acids biosynthesis
[48].

In this study, the 3HP sensor was designed and
applied to monitor real-time 3HP concentration in the
culture by directing the dosage of cerulenin. Finally,
under the optimal conditions, the 3HP titer was more
than 20 times higher than that in previous report.
However, 3HP scale production could hardly rely on the
cerulenin because of a high expense [48]. Fortunately,
there are some other methods such as antisense RNAs
[49] and temperature sensitive mutants [50,51], which
can also repress fatty acids biosynthesis conditionally
and will help to increase carbon flow to 3HP biosyn-
thesis in the future.

Improving catalysis of key enzymes

The properties and expression of the enzyme involved
in a metabolic pathway have a direct impact on prod-
uctivity of the engineering strains. To enhance chemical
production, catalysis of key enzymes should be
improved for decreased mass transfer limitations,
disinhibition of precursors or products and increased
activity [52].
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Overcoming malonyl-CoA restriction

The generation of malonyl-CoA is catalyzed from acetyl-
CoA by ACC which is a rate-limiting enzyme in fatty
acid synthesis [53]. Generally, the malonyl-CoA is main-
tained at a low level in wild-type cells [45,54–56], which
becomes a barrier in the 3HP production.

The endogenous ACC was firstly overexpressed during
the fatty acid biosynthesis in recombinant E. coli [53]. Also,
this approach was used in the malonyl-CoA pathway of
3HP with the addition of biotin and HCO3

� during the fer-
mentation to improve the catalysis of ACC [15,19,21,22,57].
However, cell viability could be suppressed by overexpres-
sion of the native ACC with unclear mechanism [45,53], so
Cheng et al. expressed ACC from Corynebacterium glutami-
cum in E. coli, resulting in tremendously increased 3HP
titer [58]. In S. cerevisiae, the activity of cytosolic ACC could
be inhibited by phosphorylation, and this inhibition can
be eliminated by site-directed mutagenesis of the acc1
gene, leading to significant enhancement of malonyl-CoA
supply and 3HP titer [38,59]. Recently, a spectrophotomet-
ric assay was described for ACC activity determination,
eliminating the radioactive substrate in the previous ACC
assay, and can be easily used in high-throughput screen-
ing of ACC mutants [60].

Promoting catalytic efficiency of MCR

MCR derived from C. aurantiacus was used in most con-
structions of the malonyl-CoA pathway. It catalyzes a
two-step reduction from malonyl-CoA to 3HP with mal-
onate semialdehyde as an intermediate (Figure 2) [19,25],
and is most active in autotrophically grown C. aurantia-
cus at 57 �C. When expressed in E. coli or yeast, MCR
enzymatic activity was significantly impaired by the
change of temperature and physiological environments,
making it a rate-limiting factor of 3HP biosynthesis [8,19].

Functional domain analysis revealed that the N-ter-
minal region of MCR (MCR-N; amino acids 1–549) and
the C-terminal region of MCR (MCR-C; amino acids
550–1219) are functionally distinct. The malonyl-CoA is
reduced into malonate semialdehyde with NADPH by
MCR-C, and further reduced to 3HP by MCR-N.

Unexpectedly, dissection of MCR resulted in a higher
substrate affinity and catalytic efficiency as well as the
increased 3HP titer in E. coli [19]. Moreover, separating
MCR into two fragments made it possible to figure out
the serious enzyme activity imbalance between MCR-N
and MCR-C as MCR-C showed much lower activity and
expression level than MCR-N in recombinant E. coli
strain [19]. Then, the activity imbalance was minimized
by directed evolution of the rate-limiting enzyme MCR-
C and fine tuning of MCR-N expression level. Combined

with culture conditions optimization, these engineering
approaches increased the 3HP titer from 0.15 to 40.6 g/
L, representing the highest 3HP production via malonyl-
CoA pathway so far [20].

As distinguished from the bi-functional MCR involved
in the 3HP cycle of C. aurantiacus, two separate
enzymes, malonyl-CoA reductase and malonate semial-
dehyde reductase, are used from the 3HP-4HB carbon
fixation cycle found in certain archaea [61–64]. These
two pathways shared some chemical intermediates, but
the enzymes were distinctly different, suggesting they
evolved independently [65]. Recently, malonyl-CoA
reductase from Sulfolobus tokodaii and malonate semial-
dehyde reductase from Metallosphaera sedula, were
overexpressed in cyanobacteria. This strain also pre-
sented higher 3HP production than the strain carrying
whole-length mcr gene from C. aurantiacus [66]. In add-
ition, a few studies attempted to develop MCR activity
optimized by other means, such as expressing the
genes in a hyperthermophilic host [61–64].

All the above results indicated that the activity of
MCR is an essential factor for 3HP yield via the malonyl-
CoA pathway, and it is necessary to carry out further
development to achieve higher activity of MCR.

Enhancing cofactor and energy supply

Cofactors and energy are essential for many enzymatic
reactions. In the malonyl-CoA pathway, ACC requires
biotin and ATP for its activity [24] and MCR utilizes
NADPH as an electron donor [25]. A plentiful supply of
cofactors and energy has previously been proven help-
ful for 3HP accumulation in the engineered strains.

Enhancing biotin and ATP supply for ACC

The enzyme activity of ACC is dependent on its biotiny-
lation [53,59], and supplementation of biotin during the
fermentation can maximize the strength of ACC. Also,
overexpression of a biotinylating enzyme can improve
carboxylase activity of ACC in a heterologous host,
because the enzyme is responsible for ligating biotin to
ACC [64]. In Pyrococcus furiosus, the biotin protein ligase
from M. sedula was co-expressed with ACC, which
resulted in significantly improved 3HP titer [63].

Additionally, increasing energy supply is also condu-
cive to this ATP-driven reaction. In S. cerevisiae, it was
identified that two genes contributed to the raise in
intracellular malonyl-CoA level. The TPI1 gene was
involved in the production of glyceraldehyde-3-phos-
phate via glycolysis, which resulted in ATP generation.
The PMP1 gene encoded a subunit of the proton-
ATPase PMA1, which helped to form a proton gradient
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and accelerate biotin transportation. Overexpression of
each gene could enhance the 3HP concentration by
over 100% [57].

Enhancing cofactor NADPH supply for MCR

Generation of one mole of 3HP from malonyl-CoA
requires two moles of NADPH, and the enhanced pro-
duction of 3HP in the cell will obviously increase the
demand for reducing power. The cofactor NADPH is
usually produced by the pentose phosphate pathway
(PPP) or the TCA cycle employing NADP-specific isoci-
trate dehydrogenase (IDH) [67,68]. Meanwhile, the
transformation of NADPH from NADH can be mediated
by transhydrogenases and NADH kinases to enhance
the level of NADPH [69,70]. In E. coli, the major source
of NADPH lies in the PPP and the catalysis of pyridine
nucleotide transhydrogenase (PNT), each of which cov-
ers 35–45%, respectively; and IDH provides most of the
rest of the supply [71,72]. The malonyl-CoA pathway
was ever constructed in combination with overexpres-
sion of PNT in E. coli, which led to a 34% higher titer of
3HP than the control [15]. Also, the NADPH supply
could be raised via PPP by deleting the genes encoding
6-phosphofructokinase and NAD-dependent glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) in the
Embden–Meyerhof–Parnas pathway [73]. In another
way, by overexpressing the NADP-dependent GAPDH,
3HP concentration could be increased by 30–70% in S.
cerevisiae [21,38]. Such similar approaches have been
confirmed to increase intracellular NADPH as introduc-
ing a heterogeneous NADP-dependent dehydrogenase
in place of the native NAD-dependent one [74,75].

Selecting specific host strain

An ideal host strain for chemical production should
have the following characteristics: Firstly, the strain
should grow rapidly in simple culture media with inex-
pensive feedstock and accumulate products with high
efficiency. Secondly, the host is supposed to be nonpa-
thogenic, with clear genetic backgrounds, genetically
stable, easy to engineer, and highly adaptable to differ-
ent conditions. According to these criteria, E. coli, the
most widely used model bacteria, was selected as the
host strain for 3HP production via the malonyl-CoA
pathway by many research groups [15,19,20,58].

However, E. coli has some drawbacks such as low tol-
erance to acidic extracellular pH. It results in the use of
large amounts of base titrant to maintain the neutral
medium pH as well as requirement for strong acid in
the subsequent process of converting the salt into the
acid form. To reduce the cost of fermentation and

downstream recovery process, S. cerevisiae becomes an
attractive alternative host for 3HP production as it toler-
ates relatively low pH [21].

On the other hand, the E. coli and S. cerevisiae sys-
tems need organic carbon as substrates, which may
compete with world food supply. To develop more sus-
tainable alternative carbon source for 3HP, photosyn-
thetic cyanobacteria have attracted significant recent
attention due to their ability to absorb carbon dioxide
as the sole carbon source. Consequently, malonyl-CoA
pathway genes were introduced into cyanobacterium
Synechocystis, leading to 3HP production directly from
sunlight and CO2 [22,66]. Although the 3HP titer is rela-
tively low, these studies illustrated the feasibility of
photosynthetic production as a promising alternative to
the traditionally biomass-based 3HP production.

Conclusion and prospects

Here, we summarize the up-to-date progress in 3HP bio-
synthesis via the malonyl-CoA pathway (Table 1). In
recent years, this pathway has been successfully con-
structed in various species including E. coli, yeast and
cyanobacteria, and optimized through carbon flux redir-
ection, enzyme screening and engineering, and the
increased supply of energy and cofactors, resulting in sig-
nificantly enhanced 3HP titer up to 40g/L and showing
the feasibility of low-cost biosynthesis of 3HP or its deriv-
atives and polymers at the industrial level in future.

Despite progress, the pathway performance is still
unsatisfactory and there are some obstacles to be over-
come in technical and commercial viability. Low yield
still remains a bottleneck in the industrialization of
microbial 3HP production via the malonyl-CoA pathway.
To solve this problem, efforts should be addressed in
the following areas: Firstly, ACC and MCR are essential
in 3HP production, and it is necessary to continue the
screening and engineering of ACC and MCR to achieve
higher activity. Besides directed evolution, rational
design is also a powerful vehicle for the proteins with
available structure information. The structures of ACCs
from various species and malonyl-CoA reductase from
S. tokodaii have been reported recently [78–81]. With
the advance in structural biology, crystal structure of
more proteins involved in the malonyl-CoA pathway
will be determined and help to design enzymes with
desirable properties.

Secondly, acetyl-CoA and malonyl-CoA are precursors
of 3HP and a large amount of other metabolites, and it is
plausible that their availability is limiting for 3HP produc-
tion. Several strategies have been reported to balance
the precursor supply for enhanced biosynthesis of vari-
ous chemicals, such as regulating malonyl-CoA
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metabolism via synthetic antisense RNA [49], construc-
tion of malonyl-CoA responsive sensor [82], and a
dynamically regulated pathway [76]. These strategies will
greatly facilitate high-yield 3HP production in the future.

3HP toxicity also serves as a key barrier to commer-
cialization, and the mechanism remains largely unchar-
acterized [83]. A titer of 50–100 g/L is expected for the
economical fermentative production of most building
block acids, and 3HP, at that concentration would lead
to a pH reduction to around 2.0 [84]. Furthermore,
undissociated 3HP can pass freely through the cellular
membranes, and would dissociate in the slightly alka-
line cytoplasm resulting in release of protons which
lower internal pH and anions that repress some aspects
of the metabolism specifically [85]. In recent years,
more genes associated with 3HP tolerance were identi-
fied [85–88], and this will principally promote the devel-
opment of 3HP-resistant strains.
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