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This lecture refers to Chapter 15 in [1]. All the equation numbers without reference labels are
from this book.

Throughout this chapter R will denote a commutative ring with 1 ̸= 0.

1 Affine algebraic sets

1.1 Loci of common zeros
The set An of n-tuples of elements of the field k is called affine n-space over k. If x1, x2, . . . , xn
are independent variables over k, then the polynomials f ∈ k[x1, x2, . . . , xn] can be viewed as
k-valued functions f : An → k on An by evaluating f at the points in An:

f : An → k, (a1, a2, . . . , an) 7→ f(a1, a2, . . . , an) ∈ k.

This gives a ring of k-valued functions on An, denoted by k[An] and called the coordinate ring
of An. For instance, when k = R and n = 2, the coordinate ring of Euclidean 2-space R2 is
denoted by R[A2] and is the ring of polynomials in two variables, say x and y, acting as real valued
functions on R2 (the usual “coordinate functions”).

Each subset S of functions in the coordinate ring k[An] determines a subset Z(S) of affine
space, namely the set of points where all functions in S are simultaneously zero:

Z(S) := {(a1, a2, . . . , an) ∈ An | f(a1, a2, . . . , an) = 0 for all f ∈ S},

where Z(∅) := An. A subset V of An is called an affine algebraic set (or just an algebraic set) if
V is the set of common zeros of some set S of polynomials, i.e., if V = Z(S) for some S ⊆ k[An].
In this case V = Z(S) is called the locus of S in An. If S = {f} or {f1, . . . , fn} we shall simply
write Z(f) or Z(f1, . . . , fn) for Z(S) and call it the locus of f or f1, . . . , fn, respectively.

1



Example. The one-point subsets of An for any n are affine algebraic, since {(a1, a2, . . . , an)} =
Z(x1 − a1, x2 − a2, . . . , xn − an). More generally, any finite subset of An is an affine algebraic
set. For example, {(0, 0), (1, 1)} = Z(x(x− 1), y(y − 1), x(y − 1), y(x− 1)).

Exercise ([1] §15.1 Exercise 14). Show that, if n = 1, the affine algebraic sets in A1 over any field
k are ∅, k, and finite subsets of k.

Example. One may define lines, planes, etc. in An — these are linear algebraic sets, the loci of sets
of linear (degree 1) polynomials of k[x1, x2, . . . , xn]. For example, a line in A3 is the locus of two
linear polynomials of k[x, y, z] that are not multiples of each other. In particular, the coordinate
axes, coordinate planes, etc. in An are all affine algebraic sets. For instance, the x-axis in A3 is
the zero set Z(y, z) and the x, y-plane is the zero set Z(z).

In general the algebraic set Z(f) of a nonconstant polynomial f is called a hypersurface in
An. Conic sections are familiar algebraic sets in the Euclidean plane R2. For example, Z(xy− 1)
is the hyperbola y = 1/x. Likewise, quadric surfaces such as the ellipsoid defined by the equation
x2 + y2

4
+ z2

9
= 1 are affine algebraic sets in R3.

Exercise ([1] §15.1 Exercises 21 & 22). Identify each 2× 2 matrix ( a bc d ) with entries from k with
the point (a, b, c, d) in A4. Show that the group SL2(k) of matrices of determinant 1 is an algebraic
set in A4. In general, SLn(k) is an affine algebraic set in An2

.

Note that the locus of a single polynomial of the form f − g is the same as the solutions in
affine n-space of the equation f = g, so affine algebraic sets are the solution sets to systems of
polynomial equations, and as a result occur frequently in mathematics.

There are easily verified properties of affine algebraic sets:

Proposition. Let S and T be subsets of k[An].

(1) Z is inclusion reversing (i.e., contravariant): if S ⊆ T then Z(T ) ⊆ Z(S).

(2) Z(S) = Z(I), where I = (S) is the ideal in k[An] generated by the subset S.

(3) An arbitrary intersection of affine algebraic sets is an algebraic set: if {Sα | α ∈ λ} is any
collection of subsets of k[An], then ∩αZ(Sα) = Z(∪αSα).

(4) The union of two affine algebraic sets (and by induction, the union of a finite number of affine
algebraic sets) is again an affine algebraic set, in fact Z(I) ∪ Z(J) = Z(IJ), where I and J
are ideals and IJ is their product.

(5) Z(0) = An and Z(1) = ∅ (here 0 and 1 denote constant functions).

Proof. Exercises ([1] §15.1 Exercise 13).

Properties (3), (4) and (5) in the proposition are the axioms for the closed sets in a topology
on An. This topology is called the Zariski topology on affine n-space.

Exercise ([1] §15.2 Exercise 22). Prove that GLn(k) is an open affine algebraic set in An2
and

can be embedded as a closed affine algebraic set in An2+1. In particular, deduce that the set k× of
nonzero elements in A1 embeds into A2 as the hyperbola xy = 1.

The Zariski topology is quite “coarse” in the sense that there are “relatively few” closed (or
open) sets. For example, for the Zariski topology on A1 the only closed sets are ∅, k and the finite
sets, and so the nonempty open sets are the complements of finite sets. If k is an infinite field it
follows that in the Zariski topology any two nonempty open sets in A1 have nonempty intersection.
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In the language of point-set topology, the Zariski topology is always T1 (points are closed sets),
but for infinite fields the Zariski topology is never T2 (Hausdorff), i.e., two distinct points never
belong to two disjoint open sets (cf. [1] §15.2 Exercise 11). For example, when k = R, a nonempty
Zariski open set is just the real line R with some finite number of points removed, and any two
such sets have (infinitely many) points in common.

Note also that the Zariski open (respectively, closed) sets in R are also open (respectively,
closed) sets with respect to the usual Euclidean topology. The converse is not true; for example the
interval [0, 1] is closed in the Euclidean topology but is not closed in the Zariski topology. In this
sense the Euclidean topology on R is much “finer”: there are many more open sets in the Euclidean
topology, in fact the collection of Euclidean open (respectively, closed) sets properly contains the
collection of Zariski open (respectively, closed) sets.

Exercise ([1] §15.2 Exercise 27). When k is an infinite field, prove that the Zariski topology on
k2 is not the same as taking the Zariski topology on k and then forming the product topology on
k × k. [Hint: By [1] §15.1 Exercise 14, in the product topology on k × k, the closed sets in k × k
are finite unions of sets of the form {a} × {b}, {a} × k and k × {b}, for any a, b ∈ k.]

1.2 Coordinate rings
By property (2) in the above proposition, every affine algebraic set is the algebraic set correspond-
ing to an ideal of the coordinate ring. Thus we may consider

Z : {ideals of k[An]} −→ {affine algebraic sets in An}.

Recall that, every ideal I in the Noetherian ring k[x1, x2, . . . , xn] is finitely generated, say I =
(f1, f2, . . . , fq). It follows from property (3) that Z(I) = Z(f1) ∩ Z(f2) ∩ · · · ∩ Z(fq), i.e.,
each affine algebraic set is the intersection of a finite number of hypersurfaces in An. Note that
this “geometric” property in affine n-space is a consequence of an “algebraic” property of the
corresponding coordinate ring (namely, Hilbert’s Basis Theorem).

If V is an algebraic set in affine n-space, then there may be many ideals I such that V = Z(I).
For example, in affine 2-space over R the y-axis is the locus of the ideal (x) of R[x, y], and also
the locus of (x2), (x3), etc. More generally, the zeros of any polynomial are the same as the zeros
of all its positive powers, and it follows that Z(I) = Z(Ik) for all k ≥ 1.

While the ideal whose locus determines a particular algebraic set V is not unique, there is a
unique largest ideal that determines V , given by the set of all polynomials that vanish on V . In
general, for any subset A of An define

I(A) := {f ∈ k[x1, . . . , xn] | f(a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) ∈ A}.

It is immediate that I(A) is an ideal, and is the unique largest ideal of functions that are identically
zero on A. This defines a correspondence

I : {subsets in An} −→ {ideals of k[An]}.

Example. Over any field k, the ideal of functions vanishing at (a1, a2, . . . , an) ∈ An is a maximal
ideal since it is the kernel of the surjective ring homomorphism from k[x1, . . . , xn] to the field k
given by evaluation at (a1, a2, . . . , an). It follows that

I((a1, a2, . . . , an)) = (x1 − a1, x2 − a2, . . . , xn − an).
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Example. Let V = Z(x3−y2) in A2. If (a, b) ∈ A2 is an element of V then a3 = b2. If a ̸= 0, then
also b ̸= 0 and we can write a = (b/a)2, b = (b/a)3. It follows that V is the set {(t2, t3) | t ∈ k}.

For any polynomial f(x, y) ∈ k[x, y] = k[x][y] we can write

f(x, y) = f0(x) + f1(x)y + (x3 − y2)g(x, y).

For any f(x, y) ∈ I(V ) (i.e., f(t2, t3) = 0 for all t ∈ k), it follows that f0(t2) + f1(t
2)t3 = 0 for

all t ∈ k. If k is infinite, the polynomial f0(t2) + f1(t
2)t3 has infinitely many zeros if and only if

all its coefficients are zero. The coefficients of the terms of even degree are the coefficients of f0(x)
and the coefficients of the terms of odd degree are the coefficients of f1(x), so it follows that f0(x)
and f1(x) are both 0. It follows that f(x, y) = (x3 − y2)g(x, y), and so

I(V ) = (x3 − y2) ⊆ k[x, y].

If k is finite, however, there may be elements in I(V ) not lying in the ideal (x3 − y2). For
example, if k = F2, then V is simply the set {(0, 0), (1, 1)} and the polynomial x(x− 1) ∈ I(V ).
in fact I(V ) = m1m2 where m1 = (x, y) and m2 = (x− 1, y − 1) (cf. [1] §15.1 Exercise 15).

The following properties of the map I (and relations between the maps Z and I) are very easy
exercises.

Proposition. Let A and B be subsets of An.

(6) I is also contravariant: if A ⊆ B then I(B) ⊆ I(A).

(7) I(A ∪B) = I(A) ∩ I(B).

(8) I(∅) = k[x1, . . . , xn]; if k is infinite, I(An) = 0.

(9) If A is any subset of An then A ⊆ Z(I(A)); and if I is any ideal then I ⊆ I(Z(I)).

(10) Z(I(Z(I))) = Z(I) and I(Z(I(A))) = I(A), i.e., the maps Z and I act as inverses of each
other provided one restricts to the collection of affine algebraic sets V = Z(I) in An and to
the set of ideals in k[An] of the form I(V ).

Proof. Exercises ([1] §15.1 Exercise 13).

If V ⊆ An is an affine algebraic set, the quotient ring k[An]/I(V ) is called the coordinate
ring of V , and is denoted by k[V ]. Note that for V = An and k infinite we have I(V ) = 0, so this
definition extends the previous terminology.

Exercise ([1] §15.1 Exercise 18). If k = Fq is the finite field with q elements, show that I(A1) is
the nontrivial ideal in k[x] generated by xq − x.

The polynomials in k[An] define k-valued functions on V simply by restricting these functions
on An to the subset V . Two such polynomial functions f and g define the same function on V
if and only if f − g is identically 0 on V , which is to say that f − g ∈ I(V ). Hence the cosets
f := f + I(V ) giving the elements of the quotient k[V ] are precisely the restrictions to V of
ordinary polynomial functions f : An → k (which helps to explain the notation k[V ]).

Note that k[V ] is a Noetherian ring since the quotient of a Noetherian ring is also Noetherian.
If xi denotes the ith coordinate function on An (projecting an n-tuple onto its ith component), then
the restriction xi of xi to V (which also just gives the ith component of the elements in V viewed
as a subset of An) is an element of k[V ], and k[V ] is finitely generated as a k-algebra by x1, . . . , xn
(although this need not be a minimal generating set).
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Example. If V = Z(xy − 1) is the hyperbola y = 1/x in R2, then R[V ] = R[x, y]/(xy − 1).
The polynomials f(x, y) = x (the x-coordinate function) and g(x, y) = x + (xy − 1), which are
different functions on R2, define the same function on the subset V .

In the quotient ring R[V ] we have xy = 1, so R[V ] ∼= R[x, 1/x]. For any function f ∈ R[V ]
and any (a, b) ∈ V we have f(a, b) = f(a, 1/a) for any preimage f ∈ R[x, y] of f .

1.3 Morphisms of algebraic sets
Suppose now that V ⊆ An and W ⊆ Am are two affine algebraic sets. Since V and W are
defined by the vanishing of polynomials, the most natural algebraic maps between V and W are
those defined by polynomials: A map φ : V → W is called a morphism (or polynomial map or
regular map) of algebraic sets if there are polynomials φ1, . . . , φm ∈ k[x1, x2, . . . , xn] such that

φ
(
(a1, . . . , an)

)
=

(
φ1(a1, . . . , an), . . . , φm(a1, . . . , an)

)
for all (a1, . . . , an) ∈ V . The map φ : V → W is an isomorphism of algebraic sets if there is a
morphism ψ : W → V with φ ◦ ψ = 1W and ψ ◦ φ = 1V .

Note that in general φ1, . . . , φm are not uniquely defined. For example, both f = x and
g = x+xy− 1 in the example above define the same morphism from V = Z(xy− 1) to W = A1.

Exercise ([1] §15.1 Exercise 25). Suppose V ⊆ An is an affine algebraic set and f ∈ k[V ].
The graph of f is the collection of points {

(
a1, . . . , an, f(a1, . . . , an)

)
} in An+1. Prove that the

graph of f is an affine algebraic set isomorphic to V . [Hint: The morphism in one direction maps
(a1, . . . , an) to

(
a1, . . . , an, f(a1, . . . , an)

)
.]

Suppose F is a polynomial in k[x1, . . . , xn]. Then F ◦ φ = F (φ1, . . . , φm) is a polyno-
mial in k[x1, . . . , xn], since φ1, . . . , φm are polynomials in x1, . . . , xn. If F ∈ I(W ), then
F ◦ φ((a1, . . . , an)) = 0 for every (a1, . . . , an) ∈ V since φ((a1, . . . , an)) ∈ W . Thus F ◦ φ ∈
I(V ). It follows that φ induces a well-defined map from the quotient ring k[x1, . . . , xn]/I(W ) to
the quotient ring k[x1, . . . , xn]/I(V ):

φ̃ : k[W ]→ k[V ], f 7→ f ◦ φ := F ◦ φ+ I(V ) for any polynomial F with f = F + I(W ).

It is easy to check that φ̃ is a k-algebra homomorphism. Note also the contravariant nature of φ̃:
the morphism from V to W induces a k-algebra homomorphism from k[W ] to k[V ].

Theorem ([1] §15.1 Theorem 6). Let V ⊆ An and W ⊆ Am be affine algebraic sets. Then there
is a bijective correspondence

{morphisms φ : V →W as algebraic sets} ←→ {k-algebra homomorphisms φ̃ : k[W ]→ k[V ]}.

More precisely,

(1) Every morphism φ : V → W induces an associated k-algebra homomorphism φ̃ : k[W ] →
k[V ] defined by φ̃(f) := f ◦ φ.

(2) Every k-algebra homomorphism Φ : k[W ]→ k[V ] is induced by a unique morphism φ : V →
W , i.e., Φ = φ̃.

(3) φ : V → W is an isomorphism if and only if φ̃ : k[W ]→ k[V ] is a k-algebra isomorphism.

(4) If V
φ−→ W

ψ−→ U are morphisms of affine algebraic sets, then ψ̃ ◦ φ = φ̃ ◦ ψ̃ : k[U ]→ k[V ].

5



Proof. Exercise.

Example. For any infinite field k let V = A1 and let W = Z(x3 − y2) = {(a2, a3) | a ∈ k}.
The map φ : V → W defined by φ(a) = (a2, a3) is a morphism from V to W . Note that φ is a
bijection.

The coordinate rings are k[V ] = k[x] and k[W ] = k[x, y]/(x3− y2) (it is at this point we need
k to be infinite) and the associated k-algebra homomorphism of coordinate rings is determined by

φ̃ : k[W ]→ k[V ], x 7→ x2, y 7→ x3.

The image of φ̃ is the subalgebra k[x2, x3] = k+x2k[x] $ k[x], so in particular φ̃ is not surjective.
Hence φ̃ is not an isomorphism of coordinate rings, and it follows that φ is not an isomorphism of
algebraic sets, even though the morphism φ is a bijective map.

The inverse map is given by ψ(0, 0) = 0 and ψ(a, b) = b/a for b ̸= 0, and this cannot be
achieved by a polynomial map.

Exercise. Show that for any field k the hyperbola Z(xy−1) is not isomorphic to an affine line A1.

The bijection in the above theorem gives a translation from maps between two geometrically
defined algebraic sets V and W into algebraic maps between their coordinate rings. It also allows
us to define a morphism intrinsically in terms of V andW without explicit reference to the ambient
affine spaces containing them:

Corollary ([1] §15.1 Corollary 7). Suppose φ : V → W is a map of affine algebraic sets. Then φ
is a morphism if and only if for every f ∈ k[W ] the composite map f ◦ φ is an element of k[V ] (as
a k-valued function on V ). When φ is a morphism, φ(v) = w with v ∈ V and w ∈ W if and only
if φ̃−1(I({v})) = I({w}).

The above Theorem and Corollary show that the isomorphism type of the coordinate ring of V
(as a k-algebra) does not depend on the embedding of V in a particular affine n-space.

2 Connections between geometry and algebra

2.1 Radicals and Hilbert’s Nullstellensatz
Since the zeros of a polynomial f are the same as the zeros of the powers f 2, f 3, . . . in general there
are many different ideals in the ring k[x1, x2, . . . , xn] whose zero locus define the same algebraic
set V in affine n-space. This leads to the notion of the radical of an ideal, which can be defined in
any commutative ring:

Definition. Let I be an ideal in a commutative ring R.

(1) The radical of I , denoted by
√
I or rad I , is the collection of elements in R some power of

which lie in I , i.e.,
√
I = rad I := {a ∈ R | ak ∈ I for some k ≥ 1}.

(2) The radical of the zero ideal is called the nilradical of R. (Note that a ∈ R is in the nilradical
ofR if and only if some power of a is 0, so the nilradical ofR is the set of all nilpotent elements
of R.)

(3) An ideal I is called a radical ideal if I = rad I .
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Example. In the ring of integers Z, the ideal (a) is a radical ideal if and only if a is square-free
or zero. More generally, if a = pk11 p

k2
2 · · · pkrr with ki ≥ 1 for all i, is the prime factorization of the

positive integer a, then rad(a) = (p1p2 · · · pr).
More generally, in any U.F.D. R, rad(a) = (p1p2 · · · pr) if a = pk11 p

k2
2 · · · pkrr is the unique

factorization of a into distinct irreducibles.

Theorem ([1] §15.2 Corollary 13). Prime (and hence also maximal) ideals are radical.

We saw in the preceding section that if we restrict to the set of ideals I of k[An] arising as the
ideals associated with some algebraic set V , i.e., with I = I(V ), then the mapsZ (from such ideals
to algebraic sets) and I (from algebraic sets to ideals) are inverses of each other: Z(I(V )) = V
and I(Z(I)) = I .

By definition, the ideal I(V ) is always a radical ideal. But for arbitrary fields k, it is in general
not true that every radical ideal is the ideal of some algebraic set, i.e., of the form I(V ) for some
algebraic set V . For example, the ideal (x2 + 1) in R[x] is maximal, hence is a radical ideal, but
is not the ideal of any algebraic set — if it were, then x2 + 1 would have to vanish on that set, but
x2+1 has no zeros in R. A similar construction works for any field k that is not algebraically closed
— there exists an irreducible polynomial p(x) of degree at least 2 in k[x], which then generates the
maximal (hence radical) ideal (p(x)) in k[x] that has no zeros in k.

The next theorem provides a fundamental connection between “geometry” and “algebra”, and
shows that over an algebraically closed field (such as C) every radical ideal is of the form I(V ).
Over these fields the “geometrically defined” ideals I = I(V ) are therefore the same as the radical
ideals, which is a “purely algebraic” property of the ideal I (namely that I = rad I).

Theorem ([1] §15.3 Theorems 31 & 32, Hilbert’s Nullstellensatz). Let k = k̄ be an algebraically
closed field. Then

• I(Z(I)) = rad I for every ideal I of k[x1, x2, . . . , xn]. Moreover, the maps Z and I in the
correspondence

{affine algebraic sets} I−−−⇀↽−−−
Z
{radical ideals}

are bijections that are inverses of each other.

• M is a maximal ideal in the polynomial ring k[x1, x2, . . . , xn] if and only if M = (x1 −
a1, . . . , xn − an) for some a1, . . . , an ∈ k. Equivalently, the maps Z and I give a bijective
correspondence

{points in An} I−−−⇀↽−−−
Z
{maximal ideals in k[An]}.

Moreover, if I is any proper ideal in k[x1, x2, . . . , xn] then Z(I) ̸= ∅.

The last statement of the Nullstellensatz shows that, there always exists at least one common
zero (“nullstellen” in German) for all the polynomials contained in a proper ideal (over an alge-
braically closed field).

The maps I and Z in the Nullstellensatz are defined over any field k, and as mentioned are not
bijections if k is not algebraically closed. For any field k, however, the map Z is always surjective
and the map I is always injective (cf. [1] §15.2 Exercise 9).

2.2 The Zariski topology on algebraic sets
Recall that the Zariski topology on affine n-space over an arbitrary field k is the topology in
which the closed sets are the affine algebraic sets in An. A similar definition can be used to define
a Zariski topology on any algebraic set V in An, as follows.
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If k[V ] is the coordinate ring of V , then the distinct elements of k[V ] define distinct k-valued
functions on V and there is a natural way of defining

Z : {ideals in k[V ]} −→ {algebraic subsets of V }
I : {subsets of V } −→ {(radical) ideals in k[V ]}

just as for the case V = An. For example, if J is an ideal in k[V ], then Z(J) is the set of elements
in V that are common zeros of all the functions in the ideal J . It is easy to verify that the resulting
zero sets in V satisfy the three axioms for a topological space, defining a Zariski topology on V ,
where the closed sets are the algebraic subsets, Z(J). for any ideal J of k[V ].

Exercise. Recall that in a topological space X , the closed sets with respect to the subspace topol-
ogy of a subspace Y are defined to be the sets C ∩ Y , where C is a closed set in X . Show that the
Zariski topology on V is just the subspace topology for V ⊆ An. (The advantage to the definition
of the Zariski topology on V above is that it is defined intrinsically in terms of the coordinate ring
k[V ] of V , and since the isomorphism type of k[V ] does not depend on the affine space An con-
taining V , the Zariski topology on V also depends only on V and not on the ambient affine space
in which V may be embedded.)

In fact the Zariski topology is the coarsest topology in which points are closed and for which
polynomial maps are continuous.

Exercise. (1) If V and W are two affine algebraic spaces, show that a morphism φ : V → W
is continuous with respect to the Zariski topologies on V and W (cf. [1] §15.1 Exercise 27,
which shows that the inverse image of a Zariski closed set under a morphism is Zariski closed).

(2) ([1] §15.2 Exercise 17) Show that there are Zariski continuous maps from A1 to itself that are
not polynomials.

If φ : V → W is a morphism of algebraic sets, the image φ(V ) of V need not be an algebraic
subset of W , i.e., need not be Zariski closed in W . For example the projection of the hyperbola
V = Z(xy − 1) in R2 onto the x-axis has image R1 − {0}, which as we have just seen is not an
affine algebraic set.

We have the usual topological notions of closure and density with respect to the Zariski topol-
ogy: For any subset A of An, the Zariski closure of A is the smallest algebraic set containing A.
If A ⊆ V for an algebraic set V , then A is Zariski dense in V if the Zariski closure of A is V .

Example. If k = R, the algebraic sets in A1 are ∅, R, and finite subsets of R (by [1] §15.1 Exercise
14). The Zariski closure of any infinite set A of real numbers is then all of A1, and A is Zariski
dense in A1.

Proposition ([1] §15.2 Proposition 15). The Zariski closure of a subset A in An is Z(I(A)).

Proof. Certainly A ⊆ Z(I(A)). For any algebraic set V ⊇ A, we have I(V ) ⊆ I(A) and
Z(I(A)) ⊆ Z(I(V )) = V , so Z(I(A)) is the smallest algebraic set containing A.

The next result shows that the Zariski closure of the image of a morphism is determined by the
kernel of the associated k-algebra homomorphism.

Proposition ([1] §15.2 Proposition 16). Suppose φ : V → W is a morphism of algebraic sets
and φ̃ : k[W ] → k[V ] is the associated k-algebra homomorphism of coordinate rings. Then
ker φ̃ = I(φ(V )), and the Zariski closure of φ(V ) is the zero set in W of ker φ̃. In particular, the
homomorphism φ̃ is injective if and only if φ(V ) is Zariski dense in W .
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2.3 Affine varieties
We next consider the question of whether an algebraic set can be decomposed into smaller algebraic
sets and the corresponding algebraic formulation in terms of its coordinate ring. A nonempty affine
algebraic set V is called irreducible if it cannot be written as V = V1 ∪ V2, where V1 and V2 are
proper algebraic sets in V . Equivalently, an algebraic set (which is a closed set in the Zariski
topology) is irreducible if it cannot be written as the union of two proper, closed subsets. An
irreducible affine algebraic set is called an affine variety.

Example. If k is an infinite field, then the varieties in A1 are the whole space and the one-point
subsets. What are the varieties in A1 in the case of a finite field k?

Proposition ([1] §15.2 Proposition 17 & Corollary 18). The affine algebraic set V is irreducible
if and only if I(V ) is a prime ideal, if and only if its coordinate ring k[V ] is an integral domain.

Proof. Exercise.

Example. The union of the x and y axes in R2, namely Z(xy), is not a variety: Z(xy) =
Z(x) ∪ Z(y) is its (unique) decomposition into subvarieties. The corresponding coordinate ring
R[x, y]/(xy) contains zero divisors.

The hyperbola xy = 1 in R2 is a variety since its coordinate ring is the integral domain
R[x, 1/x]. Note that the two disjoint branches of the hyperbola (defined by x > 0 and x < 0) are
not subvarieties (cf. [1] §15.2 Exercises 12 & 13).

Exercise ([1] §15.2 Exercise 15). Suppose V is a hypersurface in An and I(V ) = (f) for some
nonconstant polynomial f ∈ k[x1, x2, . . . , xn]. Prove that V is a variety if and only if f is irre-
ducible.

If V is a variety, then the field of fractions of the integral domain k[V ] is called the field of
rational functions on V and is denoted by

k(V ) := {f/g | f, g ∈ k[V ], g ̸= 0}.

The elements of k(V ) are called rational functions on V . The dimension of a variety V , denoted
dimV , is defined to be the transcendence degree of k(V ) over k.

Example. Single points in An are affine varieties since their corresponding ideals in k[An] are
maximal ideals. The coordinate ring of a point is isomorphic to k, which is also the field of
rational functions. The dimension of a single point is 0. Any finite set is the union of its single
point subsets, and this is its (unique) decomposition into affine subvarieties.

The x-axis in R2 is irreducible since it has coordinate ring R[x, y]/(y) ∼= R[x], which is an
integral domain. Similarly, the y-axis and, more generally, lines in R2 are also irreducible (cf. [1]
§15.1 Exercise 23). Linear sets in Rn are affine varieties. The field of rational functions on the
x-axis is the quotient field R(x) of R[x], which is why R(x) is called a rational function field. The
dimension of the x-axis (or, more generally, any line) is 1.

From the Nullstellensatz we have a dictionary between geometric and ring-theoretic objects
over the algebraically closed field k:

Geometry Algebra
affine algebraic set V coordinate ring k[V ]
points of V maximal ideals of k[V ]
affine algebraic subsets in V radical ideals of k[V ]
subvarieties in V prime ideals in k[V ]
morphism φ : V → W k-algebra homomorphism φ̃ : k[W ]→ k[V ]
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2.4 Local rings of affine algebraic varieties
Let k be an algebraically closed field and let V be an affine variety over k with coordinate ring
OV = k[V ] and field of rational functions k(V ).

The elements of k[V ] can be considered as k-valued functions on V , and if the denominator
doesn’t vanish, the same is true for an element of k(V ) (which helps to explain the terminology
for this field). Since the same element of k(V ) may be written in the form f/g in several ways
(since k[V ] is an integral domain, f/g = f1/g1 if and only if fg1 = f1g), we make the following
definition:

Definition. We say f/g ∈ k(V ) is regular at v or defined at the point v ∈ V if there is some
f1, g1 ∈ k[V ] with f/g = f1/g1 and g1(v) ̸= 0. (If f2, g2 is another such pair with g2(v) ̸= 0, then
f1(v)/g1(v) = f2(v)/g2(v) as elements of k, so whenever f/g is regular at v there is a well-defined
way of specifying its value in k at v.)

For each point v ∈ V the collection of rational functions on V that are defined at v,

Ov,V := {f/g ∈ k(V ) | f/g is regular at v, i.e. f/g = f1/g1 with g1(v) ̸= 0},

is called the local ring of V at v. In particular, Ov,V is a local ring with unique maximal ideal
mv,V , where

mv,V := {f/g ∈ Ov,V | f/g = f1/g1 with f1(v) = 0, g1(v) ̸= 0}

is the set of rational functions on V that are defined and equal to 0 at v.

For any point v ∈ V , a rational function f/g is regular at v if and only if f/g = f1/g1 for some
f1, g1 ∈ k[V ] with g1 /∈ I(v), the ideal of functions on V that are zero at v. This means that the set
Ov,V of rational functions that are defined at v is the same as the localization of OV = k[V ] at the
maximal ideal I(v) = {g ∈ k[V ] | g(v) = 0}. This shows that Ov,V depends intrinsically on the
ring k[V ] and is independent of the embedding of V in a particular affine space.

Since Ov,V is a localization of the Noetherian integral domain k[V ] at a prime ideal, Ov,V is
also a Noetherian integral domain. Note also that Ov,V /mv,V

∼= k[V ]/I(v) ∼= k by [1] §15.4
Proposition 46(5).

Recall that the polynomial maps from V to k are also referred to as the regular maps of V to k.
This is because these are precisely the rational functions on V that are regular everywhere (cf. [1]
§15.4 Proposition 51). The corresponding algebraic property of this is that, any integral domain R
is the intersection of its localizations at all its maximal ideals (cf. [1] §15.4 Proposition 48).

Suppose φ : V → W is a morphism of affine varieties with associated k-algebra homomor-
phism φ̃ : k[W ] → k[V ]. If v ∈ V is mapped to w ∈ W by φ, then it is straightforward to show
that φ̃ induces a homomorphism (also denoted by φ̃) between the corresponding local rings:

φ̃ : Ow,W → Ov,V where φ̃(h/k) = φ̃(h)/φ̃(k),

and that under this homomorphism, φ̃−1(mv,V ) = mw,W (a homomorphism of local rings hav-
ing this property is called a local homomorphism). It is also easy to check that, if ψ ◦ φ is a
composition of morphisms, then on the local rings ψ̃ ◦ φ = φ̃ ◦ ψ̃.

3 The prime spectrum of a ring

3.1 The Zariski topology on a spectrum
Throughout this section the term “ring” will mean commutative ring with 1 and all ring homomor-
phisms φ : R→ S will be assumed to map 1R to 1S .
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We have seen that most of the geometric properties of affine algebraic sets V over k can be
translated into algebraic properties of the associated coordinate rings k[V ] of k-valued functions on
V . In this development we have generally started with geometric properties of the affine algebraic
sets and then seen that many of the algebraic properties common to the associated coordinate rings
can be defined for arbitrary commutative rings.

Suppose now we try to reverse this, namely start with a general commutative ring as the alge-
braic object and attempt to define a corresponding “geometric” object by analogy with k[V ] and
V . Given a commutative ring R, perhaps the most natural analogy with k[V ] and V would suggest
defining the collection of maximal ideals m ofR as the “points” of the associated geometric object.
Under this definition, if φ̃ : R′ → R is a ring homomorphism, then φ̃−1(M) should correspond
to the maximal ideal m. Unfortunately, the inverse image of a maximal ideal by a ring homomor-
phism in general need not be a maximal ideal (cf. [1] §7.4 Exercise 13). Since the inverse image
of a prime ideal under a ring homomorphism (that maps 1 to 1) is prime, this suggests that a better
definition might include the prime ideals of R.

Definition. Let R be a commutative ring with 1.

• The spectrum or prime spectrum of R, denoted SpecR, is the set of all prime ideals of R.

• The set of all maximal ideals of R, denoted mSpecR, is called the maximal spectrum of R.

Example. If k is a field then Spec k = mSpec k = {(0)}.
If R = Z then SpecZ = {(0)} ∪ {(p) | p > 0 is a prime}, and mSpecZ = SpecZ− {(0)}.
The elements of SpecZ[x] are the following:

(a) (0);
(b) (p) where p is a prime in Z;
(c) (f(x)) where 1 ̸= f ∈ Z[x] is irreducible in Q[x], and the g.c.d. of its coefficients is equal to 1;
(d) (p, g(x)) where p is a prime in Z and g is a monic polynomial that is irreducible mod p.

The elements of mSpecZ[x] are the primes in (d) above.

In the analogy with k[V ] and V when k is algebraically closed, the elements f ∈ k[V ] are
functions on V with values in k, obtained by evaluating f at the point v in V . Note that “evaluation
at v” defines a homomorphism from k[V ] to k with kernel I(v), and that the value of f at v is
the element of k representing f in the quotient k[V ]/I(V ) ∼= k. Put another way, the value of
f ∈ k[V ] at v ∈ V can be viewed as the element f̄ ∈ k[V ]/I(V ) ∼= k. A similar definition can be
made in general:

Definition. If f ∈ R, then the value of f at the point p ∈ SpecR is the element f(p) := f̄ ∈ R/p.

Note that the values of f at different points p in general lie in different integral domains.
There are analogues of the maps Z and I and also for the Zariski topology. For any subset A

of R define
Z(A) := {p ∈ SpecR | A ⊆ p} ⊆ SpecR,

the collection of prime ideals containing A. It is immediate that Z(A) = Z(I), where I = (A) is
the ideal generated by A, so there is no loss simply in considering Z(I) where I is an ideal of R.
Note that, by definition, Z(I) consists of the points in SpecR at which all the functions in I have
the value 0.

For any subset Y of SpecR define

I(Y ) :=
∩
p∈Y

p ⊆ R,

the intersection of the prime ideals in Y , i.e. I(Y ) consists of the functions in R “vanishing” at all
points p ∈ Y .
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Proposition ([1] §15.5 Proposition 53). Let R be a commutative ring with 1. The maps Z and I
between R and SpecR defined above satisfy

(1) for any ideal I of R, Z(I) = Z(rad(I)) = Z(I(Z(I))), and I(Z(I)) = rad I ,

(2) for any ideals I, J of R, Z(I ∩ J) = Z(IJ) = Z(I) ∪ Z(J), and

(3) if {Iα} is an arbitrary collection of ideals of R, then Z(∪Iα) = ∩Z(Iα).

The proposition shows that the collection {Z(I) | I is an ideal of R} satisfies the three axioms
for the closed sets of a topology on SpecR. The topology on SpecR defined by the closed sets
Z(I) for the ideals I of R is called the Zariski topology on SpecR.

By definition, the closure in the Zariski topology of the singleton set {p} in SpecR consists of
all the prime ideals of R that contain p. In particular, a point p in SpecR is closed in the Zariski
topology if and only if the prime ideal p is not contained in any other prime ideals of R, i.e., if and
only if p is a maximal ideal (so the Zariski topology on SpecR is not generally Hausdorff). The
maximal ideals of R are called the closed points in SpecR. In terms of the terminology above,
the points in SpecR that are closed in the Zariski topology are precisely the points in mSpecR.

A closed subset of a topological space is irreducible if it is not the union of two proper closed
subsets, or, equivalently, if every nonempty open set is dense.

Proposition ([1] §15.5 Proposition 54). The maps Z and I define inverse bijections

{Zariski closed subsets of SpecR} I−−−⇀↽−−−
Z

{radical ideals in R},
{Zariski closed points in SpecR} −−⇀↽−− {maximal ideals in R},
{irreducible subsets of SpecR} −−⇀↽−− {prime ideals in R}.

If φ : R → S is a ring homomorphism mapping 1R to 1S and p is a prime ideal in S, then
φ−1(p) is a prime ideal in R. This defines a map φ∗ : SpecS → SpecR with φ∗(p) := φ−1(p).

Proposition ([1] §15.5 Proposition 55). Every ring homomorphism φ : R→ S mapping 1R to 1S
induces a map φ∗ : SpecS → SpecR that is continuous with respect to the Zariski topologies on
SpecR and SpecS.

Proof. If Z(I) ⊆ SpecR is a Zariski closed subset of SpecR, then it is easy to show that
(φ∗)−1(Z(I)) is the Zariski closed subset Z(φ(I)S) defined by the ideal generated by φ(I) in
S. Since the inverse image of a closed subset in SpecR is a closed subset in SpecS, the induced
map φ∗ is continuous in the Zariski topology.

While the generalization from affine algebraic sets to SpecR for general rings R has made
matters slightly more complicated, there are (at least) two very important benefits gained by this
more general setting. The first is that SpecR can be considered even for commutative rings R
containing nilpotent elements; the second is that SpecR need not be a k-algebra for any field
k, and even when it is, the field k need not be algebraically closed. The fact that many of the
properties found in the situation of affine k-algebras hold in more general settings then allows the
application of “geometric” ideas to these situations (for example, to SpecR when R is finite).

Example. The natural inclusion φ : Z→ Z[i] induces a map φ∗ : SpecZ[i]→ SpecZ. The fiber
(i.e. preimage) of φ∗ over the nonzero prime P in Z consists of the prime ideals of Z[i] containing
P . If P = (p) where p = 2 or p is a prime ≡ 3 mod 4, then there is only one element in this fiber;
if p is a prime ≡ 1 mod 4, then there are two elements in the fiber: the primes (π) and (π′) where
p = ππ′ in Z[i] (cf. [1] §8.3 Proposition 18).
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3.2 Affine schemes
The space SpecR together with its Zariski topology gives a geometric generalization for arbitrary
commutative rings of the points in a variety V . We now consider the question of generalizing the
ring of rational functions on V .

When V is a variety over the algebraically closed field k, the elements in the quotient field
k(V ) of the coordinate ring k[V ] define the rational functions on V . Each element α in k(V ) can
in general be written as a quotient a/f of elements a, f ∈ k[V ] in many different ways. The set
of points U at which α is regular is an open subset of V ; by definition, it consists of all the points
v ∈ V where α can be represented by some quotient a/f with f(v) ̸= 0, and then the representative
a/f defines an element in the local ring Ov,V . Note also that the same representative a/f defines
α not only at v, but also at all the other points where f is nonzero, namely on the open subset

Vf := {w ∈ V | f(w) ̸= 0} = V −Z(f)

of V . These open sets Vf (called principal open sets) for the various possible representatives a/f
for α give an open cover of U .

This interpretation of rational functions as functions that are regular on open subsets of V can
be generalized to SpecR. We first define the analogues Xf in X = SpecR of the sets Vf and
establish their basic properties.

Definition. For any f ∈ R let

Xf := {p ∈ X = SpecR | f /∈ p} = {p ∈ X | f(p) ̸= 0}.

The set Xf is called a principal (or basic) open set in SpecR.

Since Xf is the complement of the Zariski closed set Z(f) it is indeed an open set in SpecR as
the name implies. In fact, the principal open sets form a basis for the Zariski topology on SpecR,
i.e., every Zariski open set in X is the union of some collection of principal open sets Xf (cf. [1]
§15.5 Proposition 56(4)).

We now define an analogue for X = SpecR of the rational functions on a variety V . As we
observed, for the variety V a rational function α ∈ k(V ) is a regular function on some open set
U . At each point v ∈ U there is a representative a/f for α with f(v) ̸= 0, and this representative
is an element in the localization Ov,V = k[V ]I(v). In this way the regular function α on U can
be considered as a function from U to the disjoint union of these localizations: the point v ∈ U
is mapped to the representative a/f ∈ k[V ]I(v). Furthermore the same representative can be used
simultaneously not only at v but on the whole Zariski neighborhood Vf of v (so, “locally near v”, α
is given by a single quotient of elements from k[V ]). Note that a/f is an element in the localization
k[V ]f , which is contained in each of the localizations k[V ]I(w) for w ∈ Vf .

We now generalize this to SpecR by considering the collection of functions s from the Zariski
open subsetU ⊆ SpecR to the disjoint union of the localizationsRp for p ∈ U , such that s(p) ∈ Rp

and such that s is given locally by quotients of elements of R. More precisely:

Definition. Let R be a commutative ring with 1, and let X = SpecR. Suppose U is a Zariski
open subset of SpecR. Define O(∅) := 0. If U is nonempty, define O(U) to be the set of functions
s : U →

⊔
q∈U Rq from U to the disjoint union of the localizations Rq for q ∈ U with the following

two properties:

• s(q) ∈ Rq for every q ∈ U , and

• for every p ∈ U there is an open neighborhood Xf ⊆ U of p and an element a/fn in the
localization Rf defining s on Xf , i.e., s(q) = a/fn ∈ Rq for every q ∈ Xf .
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It is easy to verify that each O(U) is a commutative ring with identity (cf. [1] §15.5 Exercise 18),
and if U ′ is an open subset of U , then there is a natural restriction map O(U) → O(U ′) which
is a homomorphism of rings (cf. [1] §15.5 Exercise 19). The collection of rings O(U) for the
Zariski open sets of X together with the restriction maps O(U)→ O(U ′) for U ′ ⊆ U is called the
structure sheaf on X , and is denoted simply byO (orOX). The elements s ∈ O(U) are called the
sections of O over U . The elements of O(X) are called the global sections of O.

The next proposition generalizes the result of [1] §15.4 Proposition 51 that the only rational
functions on a variety V that are regular everywhere are the elements of the coordinate ring k[V ].

Proposition ([1] §15.5 Proposition 57). Let X = SpecR and let O = OX be its structure sheaf.
The global sections of O are the elements of R, i.e., O(X) ∼= R. More generally, O(Xf ) ∼= Rf ,
where Xf is a principal open set in X for some f ∈ R.

Definition. Let R be a commutativering with 1. The pair (SpecR,OSpecR), consisting of the
space SpecR with the Zariski topology together with the structure sheafOSpecR is called an affine
scheme.

The notion of an affine scheme gives a completely algebraic generalization of the geometry
of affine algebraic sets valid for arbitrary commutative rings, and is the starting point for modem
algebraic geometry. Theorem 59 in [1] §15.5 shows that the appropriate place to view affine
schemes is in the category of locally ringed spaces. Roughly speaking, a locally ringed space is
a topological space X together with a collection of rings O(U) for each open subset of X (with a
compatible set of homomorphisms O(U) → O(U ′) if U ′ ⊆ U and with some local conditions on
the sections) such that the stalks OP := lim−→O(U) (the direct limit of the rings O(U) for the open
sets U of X containing P , where the direct limit is defined in [1] §7.6 Exercise 8) are local rings.
The morphisms in this category are continuous maps between the topological spaces together with
ring homomorphisms between correspondingO(U) with precisely the same conditions as imposed
in the definition of a morphism of affine schemes.

A scheme is a locally ringed space in which each point lies in a neighborhood isomorphic
to an affine scheme (with some compatibility conditions between such neighborhoods), and is a
fundamental object of study in modern algebraic geometry. The affine schemes considered here
form the building blocks that are “glued together” to define general schemes in the same way that
ordinary Euclidean spaces form the building blocks that are “glued together” to define manifolds
in analysis.

Other related exercises in [1]
§15.1 16 19 23 24
§15.2 3 4 6 8 10 16 18 19 20 21 23 45
§15.3 2 3
§15.4 25 26
§15.5 1 2 4 6 7 9 10 11 13 14 18 21 23 31
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